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not depend on the correlation structure of the data and is computationally sim-
ple. We consider applications to constructing clustered standard errors when
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1 Introduction
Suppose the econometrician believes her data to be correlated but lacks information
regarding its dependence structure. For example, suppose she has data on individuals
sampled from a geographic region with only a small number of zip codes, but all she
observes about locations are individuals’ zip codes. If she believes her data to be
spatially dependent, it is difficult to account for this, since locations are imperfectly
observed. For instance, it is impossible to compute a spatial HAC variance estimator,
since distances between pairs of observations are unknown. Another example is clus-
tered data with imperfectly observed cluster memberships, for instance if there are
multiple potential levels at which one can cluster, but the right level of clustering is
unknown. Alternatively, it is possible that the econometrician has the option of com-
puting a variety of variance estimators that control for different types of dependence,
but it is unclear which form of dependence is of first-order importance. Should she
cluster geographically? At which level? Should she use a spatial HAC estimator to
control for a more heterogeneous form of spatial dependence? Or is the dependence
structure more complicated, for example network dependence?

This paper studies inference procedures robust to general forms of weak depen-
dence. These procedures are constructed using “randomized subsampling,” a resam-
pling procedure first proposed in an insightful paper by Song (2016), the implemen-
tation of which is independent of the correlation structure of the data. We prove that
randomized subsampling procedures are asymptotically valid under weak conditions
on the correlation structure that are satisfied by most forms of weakly dependent data.
In this sense, randomized subsampling is robust to general forms of weak dependence.

To be more concrete, consider inference on the population mean. The randomized
subsampling procedure consists computing a resampled test statistic that averages
over random subsamples of the original data. We show that this statistic is asymp-
totically normal under the weak requirement that the sample mean is

?
n-consistent.

One can then easily construct confidence intervals using normal quantiles. Song
(2016) proves that the randomized subsampling statistic has a normal limit under a
weak-dependence condition he refers to as local dependence. He verifies this condi-
tion holds under M -dependence or strong mixing, under certain restrictions on the
mixing coefficients. It is less clear how to verify this condition for other forms of de-
pendence such as near-epoch dependence or forms of network dependence that occur
in strategic models of network formation. In contrast,

?
n-consistency condition is a

very minimal requirement that follows directly from most conventional forms of weak
dependence, which makes randomized subsampling applicable to a wider variety of
contexts. Also, Song (2016) focuses on equality tests, while we also develop a method
for testing moment inequalities.

We consider four applications. The first is inference under cluster dependence
when the level of clustering is unknown and the number of clusters is potentially
small, which are well-known problems with implementing existing clustered standard
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errors (see e.g. Cameron and Miller, 2015, §IV-VI). The second is inference on network
statistics, such as the average clustering coefficient or degree distribution. The mo-
tivation is that there are many possible models of network formation, and the same
network statistics under different models may have different asymptotic variances.
However, for many such models, these statistics are

?
n-consistent, so randomized

subsampling can be used for inference robust to the underlying network formation
model. The third application is treatment effects with network spillovers when the
network is imperfectly observed. The fourth application is testing for a power law dis-
tribution, a problem that has received a great deal of attention in economics, network
science, biology, and physics (Barabási and Albert, 1999; Gabaix, 2009; Newman,
2005). Widely used methods in practice assume that the underlying data is i.i.d.
(Clauset et al., 2009; Klaus et al., 2011), which is generally implausible in economic
applications involving spatial or financial data and network applications.

Many resampling methods are available for inference on spatial, temporal, and
clustered data when the dependence structure is known (see e.g. Cameron et al., 2008;
Lahiri, 2013; Politis et al., 1999). Knowledge of the dependence structure is commonly
exploited by resampling blocks of neighboring observations, but this requires data on
which observations are neighbors, which is unavailable if, for example, locations are
imperfectly observed. It is also an open question how to devise valid resampling
procedures for dependent data that lack a temporal or spatial structure, such as
network data.

Conventional resampling procedures are used to construct critical values for a test
statistic computed on the original dataset. For the critical values to be asymptoti-
cally valid, resampling has to be implemented in a way that mimics the dependence
structure of the data, which requires information about the dependence structure.
In contrast, with randomized subsampling, one computes a resampled test statistic
and critical values for this new statistic based on its limiting distribution. Thus, the
objective is not to mimic the actual dependence structure, which is intuitively why
randomized subsampling is dependence-robust.

Asymptotic normality of randomized subsampling statistics follows from the fact
that we draw random subsamples in an i.i.d. fashion, so that conditional on the data,
the statistic has a normal limit when centered at the conditional mean. Under ap-
propriate conditions on the number of subsamples and subsample size, the difference
between the conditional mean and target unconditional mean is negligible in large
samples, which establishes asymptotical validity of the procedure.

Of course, the broad applicability of the randomized subsampling procedure comes
at some cost. First, implementation requires choosing two tuning parameters, the sub-
sample size and the number of random subsamples to average over. However, note
that conventional subsampling for dependent data also requires two tuning parame-
ters: the subsample size and the block size. Most inference methods for dependent
data depend on some tuning parameters, including the bootstrap and autocovariance-
consistent variance estimators, and it is generally a difficult problem to devise data-
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dependent choices of these parameters. In this paper, we provide simple rules of
thumb for tuning parameter choice that work well across a variety of data-generating
processes in our simulation study.

A second problem with randomized subsampling is that, in settings where ex-
isting inference procedures exist, randomized subsampling will typically yield wider
confidence intervals and tests with lower power, a problem shared with conventional
subsampling. This is the price to be paid for having a widely applicable procedure.
Our objective is not to propose a procedure that is competitive with existing proce-
dures but rather to provide a broadly applicable and robust inference procedure that
is advantageous when little is known about the dependence structure and useful for
complex forms of dependency for which no procedure is presently available.

The outline of the paper is as follows. The next section introduces the randomized
subsampling statistic and shows how to construct CIs for a population mean. We then
discuss the four applications and related literature. We prove the asymptotic validity
of the inference procedures for the population mean problem in §3 and provide a test
for moment inequality models in §4. We discuss results from an empirical application
to testing for power law degree distributions in §5. Then §6 presents simulation results
for four different data-generating processes, which motivate our recommendations for
tuning parameter choice. Finally, §7 concludes.

2 Overview and Applications
Let X “ tXiu

n
i“1 Ă Rm, a set of identically distributed random vectors with possibly

dependent row elements. Denote the mean of X by X̄. Our main assumption requires
X to be weakly dependent in the sense that X̄ is

?
n-consistent for a parameter µ0 P

Rm. For now, consider the case µ0 “ ErX1s; we will discuss other examples below. In
this section, we consider the problems of testing that µ0 equals a hypothesized value
and constructing a confidence region for µ0. We consider testing moment inequalities
in §4.

Let bn be a natural number less than n, denoting the subsample size, and Rn a
natural number denoting the number of subsamples. Let Π be the set of all bijections
(permutation functions) on t1, . . . , nu. Draw tπruRn

r“1 i.i.d. and uniformly from Π, and
let π “ pπ1, . . . , πRnq. Define the sample variance matrix Σ̂ “

řn
i“1pXi ´ X̄qpXi ´

X̄q1{n. Note that Σ̂ is generally not consistent for nVarpX̄q because we allow for
dependent data.

We define two statistics, following Song (2016). The first is the randomized sub-
sampling mean-type statistic, given by

Tnpµ0; πq “
1

?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

Σ̂´1{2
`

Xπrpiq ´ µ0

˘

.

This is computed by drawing Rn subsamples of size bn and averaging. The second is
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a variant of Song’s randomized subsampling U-type statistic,1 given by

Snpµ0; πq “
1

?
2Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

bn
ÿ

j“1,j‰i

pXπrpiq ´ µ0q
1Σ̂´1

pXπrpjq ´ µ0q.

Inference. In the next section, we show that if X̄ is
?
n-consistent for µ0, then

(under regularity conditions)

Tnpµ0; πq
d
ÝÑ N p0, Imq if

Rnbn
n

Ñ 0,

Snpµ0; πq
d
ÝÑ N p0, 1q if

?
Rnbn
n

Ñ 0, (1)

where Im is the m ˆ m identity matrix. Then to test the null that µ0 “ µ against
two-sided alternatives, we can use

1tTnpµ; πq1Tnpµ; πq ą cu or 1tSnpµ; πq ą zu, (2)

where c is the appropriate chi-square quantile (with m degrees of freedom) and z the
appropriate normal quantile. To construct a CI for a component of µ0 for the case
m “ 1, (1) suggests the following simple CI:

1

Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

Xπrpiq ˘ z
Σ̂1{2

?
Rnbn

,

where z is the appropriate normal quantile. Alternatively, we can use the U-type
statistic to obtain a CI by test inversion:

tµ0 P Rm : Snpµ0; πq ă zu .

Tuning Parameters. Based on our simulation study in §6, in practice we suggest
choosing

pRn, bnq “ pn
1{4, n1{4

q for Tnpµ0; πq,

pRn, bnq “ pn
2{3, n1{3

q for Snpµ0; πq,

which work well for both tests across a variety of testing problems and data-generating
processes.

In general, we face the following trade-off in tuning parameter choice: larger
values of Rn and bn mean higher power and narrower confidence intervals, but this
also inflates a bias term, leading to a poorer limiting approximation. Consider the
case µ0 “ 0. For the mean-type statistic, the test has power against local alternatives

1Our U-type statistic is scaled differently, and we do not partially bias-correct, since this appears
to worsen coverage in our simulations.
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that vanish no faster than pRnbnq
´1{2 (call this rate the test’s rate of convergence for

short), but the bias term vanishes at the rate pRnbn{nq
1{2. For the U-type statistic,

the test’s rate of convergence is R´1{4
n b

´1{2
n , but the bias term is order R1{2

n bn{n.2 Thus
for the first choice of tuning parameters above, for the mean-type statistic, the bias
and rate of convergence are both n´1{4, whereas for the U-type statistic, they are
respectively n´5{8 and n3{16. In contrast, for the second choice of tuning parameters
above, the bias and rate of convergence are respectively 1 and n´1{2 for the mean-type
statistic, and for the U-type statistic, both equal n´1{3.

Choice of Statistic. The mean-type statistic leads to confidence intervals that
are easy to compute because they have the simple form of being a mean of randomized
subsamples plus or minus a “standard error,” which does not require test inversion.
Also, the U-type statistic can only be used to test against two-sided alternatives,
whereas the mean-type statistic can be adopted for one-sided alternatives. However,
the U-type statistic has a better rate of convergence under our recommended tuning
parameters and should therefore be preferred.

Asymptotically Linear Estimators. Our setup generalizes beyond the sample-
mean case. Suppose we observe data Z “ tZiuni“1, and we are interested in a parameter
β0 P Rd. Let θ̂ be an asymptotically linear estimator in the sense that

?
npβ̂ ´ β0q “

1
?
n

n
ÿ

i“1

ψpZi; β0, γ̂q ` opp1q (3)

for some function ψ and first-stage estimator γ̂ that is a function of Z. For example, in
the case of maximum likelihood, γ̂ is the sample Hessian, and ψ is the score function
times the Hessian. We can then apply randomized subsampling to the asymptotically
linear form of β̂ to conduct inference on β0 by defining

Xi “ ψpZi; β0, γ̂q (4)

As discussed in Remark 2, under regularity conditions, the resulting procedure is
asymptotically valid if β̂ is

?
n-consistent for β0 and γ̂ is

?
n-consistent for its popu-

lation analog γ.
In the remainder of this section, we discuss four applications of randomized sub-

sampling.

2.1 Cluster Dependence

Let Y be an n-dimensional outcome vector, W an nˆ k matrix of covariates, and Wi

the ith row of X. Consider the standard linear model

Yi “ W 1
iβ0 ` εi,

2For the bias terms, see the proof of Theorem 1 in the appendix. For the rates of convergence,
see Remark 3 in §3.
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where tεiuni“1 is identically distributed with mean zero but possibly dependent. We
are interested in the jth component of β, denoted by βj.

It is a common concern that tpWi, εiqu
n
i“1 are dependent, perhaps because the

data is clustered (Bertrand et al., 2004), there is spatial dependence (Barrios et al.,
2012; Bester et al., 2011), or εi is some function of an underlying social network and
therefore exhibits network autocorrelation (Acemoglu et al., 2015). We may often not
know the precise form of dependence or not have enough data to use conventional
standard error formulas, for example if we do not fully observe the clusters, the spatial
locations of the observations, or the network. Nonetheless, we can still construct a
valid CI for βj using randomized subsampling.

To apply our procedure, we write the estimator in the form of a sample mean. Let
A “ pW 1W {nq´1W 1 and Aji its jith component. Then the least-squares estimator
for βj can be written as

1

n

n
ÿ

i“1

AjiYi.

This fits into our setup, specifically (4), if we define Zi “ pYi, Xiq, γ̂ “ W 1W {n, and
ψpZi; β0, γ̂q “ AjiYi. That is, we apply randomized subsampling to the summands
Xi “ AjiYi.

The main assumptions required for these CIs to have correct asymptotic coverage
are

?
n-consistency of the least-squares estimator and W 1W {n. For cluster depen-

dence, this holds under conventional many-cluster asymptotics, where the number of
observations in each clusters is small, but the number of clusters is large. Importantly,
we need not know the right level of clustering or even observe cluster memberships.
For spatial dependence, this holds under standard mixing or near-epoch dependence
conditions (Jenish and Prucha, 2009, 2012). For forms of dependence captured by
dependency graphs, this holds under restrictions on the degree distribution (Aronow
and Samii, forthcoming; Leung, 2017a).

We can also allow the number of clusters to be small, perhaps even equal to one,
so long as the data is weakly dependent within clusters in the sense of

?
n-consistency

of the estimator. Bakirov and Székely (2006), Canay et al. (2017), Ibragimov and
Müller (2010), and Ibragimov and Müller (2016) propose novel inference procedures
for cluster dependence when the number of clusters is small, also assuming weak
dependence within clusters. An advantage of randomized subsampling is that we can
allow for only a single cluster and do not require knowledge of cluster memberships.

2.2 Network Statistics

Much of the literature in network science is motivated by a handful of stylized facts
about real world social networks (Barabási, 2015; Jackson, 2008). These facts are
obtained by computing various network statistics from networks across a wide variety
of social and economic domains. However, we have no measure of sampling varia-
tion for these point estimates. In part, this is due to the wide variety of network
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formation models, many of which induce different dependence structures among the
set of potential links. This motivates the use of randomized subsampling, which can
be used to construct CIs for network statistics without taking a stance on the par-
ticular data-generating process. Network statistics are also important for inference
on strategic models of network formation (Sheng, 2016; de Paula et al., forthcoming;
Leung, 2017b). Leung and Moon (2017) develop a central limit theorem applicable
to such models, but the asymptotic variance has a complicated form for which it is
difficult to construct a consistent estimator. For this reason, the authors resort to
randomized subsampling for inference.

We consider two stylized facts that have arguably received the most attention in
the literature: clustering and power law degree distributions.3 This subsection focuses
on the former, while the latter is discussed in the more general context of testing for
power law distributions in §2.4. For a set of n nodes, let G be a symmetric, binary
adjacency matrix that represents a network. Define the individual clustering for a
node i under network G as

ClipGq “

ř

j‰i;k‰j;k‰iGijGikGjk
ř

j‰i;k‰j;k‰iGijGik

,

with ClipGq ” 0 if i has at most one link. The numerator counts the number of
pairs pj, kq linked to i that are themselves linked, while the denominator counts the
number of pairs linked to i. The average clustering coefficient of G is defined as
řn
i“1ClipGq{n.
This statistic is a well-known measure of transitivity or clustering, the tendency for

individuals with partners in common to associate. A well-known stylized fact in the
network literature is that most social networks exhibit nontrivial clustering, where
“nontrivial” is defined relative to the null model in which links are i.i.d. (Jackson,
2008). Under the null model, the average clustering coefficient in expectation equals
the probability of forming a link, which is typically order n´1, since most networks
are sparse. Yet, the average clustering coefficient typically appears to be quite larger
than zero in practice (Barabási, 2015, Ch. 3), hence the stylized fact.

In order to assess formally whether average clustering is significantly different from
the probability of link formation, we can use the tests given by (2) with

Xi “ ClipGq ´
2

n´ 1

n
ÿ

j“1

Gij.

Then X̄ is the difference between the average clustering coefficient and the empirical
linking probability. To verify the main regularity condition that the sample clustering
coefficient is

?
n-consistent, we can apply results in Bickel et al. (2011), Leung and

Moon (2017), and Resnick and Samorodnitsky (2016), which prove CLTs for various
classes of network statistics and network formation models.

3The degree of a node is the total number of links it forms.
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2.3 Treatment Effects with Spillovers

Suppose we observe data from a randomized experiment on a single network, where for
each node i, we observe an outcome Yi, a binary treatment assignmentDi, the number
of treated network neighbors Ti, and the number of such neighbors γi. Consider the
following outcome model studied in Leung (2017a):

Yi “ r pDi, Ti, γi, εiq

(also see Aronow and Samii, forthcoming). This departs from the conventional po-
tential outcomes model by allowing rp¨q to depend on Ti and γi, which violates the
conventional stable unit treatment value assumption. The object of interest is the
following measure of treatment/spillover effects:

E rrpd, t, γ, εipγqqs ´ E rrpd1, t1, γ, εipγqqs , (5)

where t, t1 ď γ, and εipγq is the conditional distribution of εi given γi “ γ. The
latter allows for some dependence between the network and unobserved heterogeneity.
Treatment effects are obtained from differences between d, d1 and spillover effects
from differences between t, t1. Leung (2017a) provides conditions on the network and
dependence structure of tεiuni“1 under which the sample analog of (5) is

?
n-consistent.

In particular, we can allow εi and εj to be correlated if the network distance between
i and j is at most M .

Suppose the econometrician obtains data tWiu
n
i“1 for Wi “ pYi, Di, Ti, γiq by

snowball-sampling 1-neighborhoods. That is, she first obtains a random sample of
units, from which she gathers pYi, Diq, and then she obtains the network neighbors
of those units and their treatment assignment, from which she gathers pTi, γiq. This
is a very common method of network sampling. However, standard error formulas
provided by Aronow and Samii (forthcoming) and Leung (2017a) rely on knowing
for each unit which alters are of path distance at most M , due to the dependence
structure on the unobservables. For this, we would have to instead snowball-sample
M -neighborhoods, which requires knowledge of M and can be costly in practice.

An alternative is to use randomized subsampling. Let 1ipd, t, γq “ 1tDi “ d, Ti “
t, γi “ γu. The frequency estimator for the average treatment/spillover effect is given
by

řn
i“1 Yi1ipd, t, γq
řn
i“1 1ipd, t, γq

´

řn
i“1 Yi1ipd

1, t1, γq
řn
i“1 1ipd

1, t1, γq
.

This fits into our setup, specifically (4), if we define Zi “ Wi,

γ̂ “

˜

1

n

n
ÿ

i“1

1ipd, t, γq,
1

n

n
ÿ

i“1

1ipd
1, t1, γq

¸

,

and
ψpZi; β0, γ̂q ”

Yi1ipd, t, γq
1
n

řn
i“1 1ipd, t, γq

´
Yi1ipd

1, t1, γq
1
n

řn
i“1 1ipd

1, t1, γq
.
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Thus, we can construct confidence intervals for (5) using randomized subsampling
with Xi given by (4).

2.4 Testing for Power Laws

Testing for whether the data follows a power law distribution is of wide empirical
interest in economics, finance, network science, neuroscience, biology, and physics
(Barabási, 2015; Gabaix, 2009; Klaus et al., 2011; Newman, 2005). Existing methods
rely on the assumption of i.i.d. data, which is unrealistic for spatial and financial data.
It is also unrealistic in network applications, which study the degree distribution, since
even if links are formed i.i.d., the degrees of different nodes are dependent.

By “power law” we mean that the probability density or mass function of the data
fpxq is proportional to x´α for some positive exponent α. Many methods are available
for estimating α, for example maximum likelihood.4 When the data is dependent,
this becomes a pseudo-maximum likelihood, but the estimator is still consistent under
weak dependence.

With an estimate of the power law exponent in hand, it is of interest to test how
well the data accords with or deviates from a power law. Standard methods assume
that the underlying data is independent, which motivates the use of randomized
subsampling. The hypothesis we test is motivated by Klaus et al. (2011): the power
law fits no better than some chosen null distribution, for example exponential or
log-normal.5 We operationalize this by testing the null that the log-likelihood ratio
is less than or equal to zero, where the numerator of the likelihood is the power
law distribution with exponent estimated using pseudo-maximum likelihood and the
denominator is the estimated null distribution. This is a non-nested model selection
test. Under general misspecification, the log-likelihood ratio is zero if both models
are misspecified and poor fits and less than (greater than) zero if the null distribution
fits better (worse) (Pesaran, 1987; Vuong, 1989). The reason we test the inequality
ď 0, rather than the equality “ 0 as in Klaus et al. (2011), is that this literature is
solely interested in making a decision about the power law hypothesis.6

Formally, for identically distributed data tZiuni“1, let `PLpZi, αq be the likelihood
of observation i under a power law and `0pZi, θq the likelihood under the null distri-

4Regression estimators are also popular. See e.g. Ibragimov et al. (2015); Nicolau and Rodrigues
(2015).

5It is common in practice to test for a power law using a Kolmogorov-Smirnov test (Clauset et
al., 2009). However, as pointed out by Klaus et al. (2011), nonrejection does not constitute evidence
for a power law, and with large enough samples, the test will eventually reject, since no distribution
perfectly follows a power law in practice.

6It is certainly possible to use, for example, a randomized subsampling version of the Vuong test
(Vuong, 1989) to test the equality, that the log-likelihood ratio is equal to zero against one-sided
alternatives. However, this requires using the mean-type statistic, which has worse power compared
to the moment inequalities test.
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bution, which we assume to be parameterized by θ. Then the null is

H0 : E rlog `PLpZi, αq ´ log `0pZi, θqs ď 0.

This fits into our setup (4) by defining γ̂ “ pα̂, θ̂q, the pseudo-maximum likelihood
estimates of pα, θq, and

ψpZi; β0, γ̂q “ log `PLpZi, α̂q ´ log `0pZi, θ̂q.

A key difference, however, is that this is a test of the moment inequality µ0 ”

ErψpZi; β0, γqs ď 0. Because the methods in §2 only apply to tests of moment equal-
ities, in §4, we develop a randomized subsampling procedure applicable to testing
moment inequalities.

3 Large-Sample Theory
Consider a generalization of the setup in the previous section where X is a triangular
array. Hence, Xi and µ0 may implicitly depend on n, but we suppress this in the nota-
tion. This is important to accommodate the previous network applications. The next
theorem provides conditions for asymptotic validity of the randomized subsampling
procedures previously introduced.

Theorem 1. Suppose Rn Ñ 8 and b´1
n “ Op1q as n Ñ 8, and the following condi-

tions hold.

(a)
řn
i“1pXi ´ µ0q{

?
n “ Opp1q.

(b) Σ “ limnÑ8

řn
i“1 ErpXi´µ0qpXi´µ0q

1s{n is finite and positive definite, and there
exists an estimator Σ̂ consistent for Σ.

(c) 1
n

řn
i“1 ||Xi||

3 “ Opp1q.

If Rnbn{n “ op1q, then

Tnpµ0; πq
d
ÝÑ N p0, Imq and TnpX̄; πq

d
ÝÑ N p0, Imq.

If
?
Rnbn
n

Ñ 0, then

Snpµ0; πq
d
ÝÑ N p0, 1q and SnpX̄; πq

d
ÝÑ N p0, 1q.

Remark 1. Assumption (b) requires an asymptotically nondegenerate sample vari-
ance. Note that if a CLT exists, unless the data is independent, Σ̂ will typically not
be consistent for the asymptotic variance of X̄. Song (2016) assumes locally depen-
dent data and that 8th moments exist. Assumptions (a) and (c) substantially weaken
these requirements, the latter of which is important for the power law application.
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Remark 2. Assumption (a) allows Xi to depend on a “first-stage” estimator, which is
important for many of the applications in §2.4 and asymptotically linear estimators.
Suppose we have data Z “ tZiu

n
i“1, and θ̂ is an estimator of a vector θ0 P Θ that

is a function of Z. Define Xi “ hpZi, θ̂q and µ0 “ ErhpZi, θ0qs. The following are
primitive conditions for the assumptions in Theorem 1:

(i)
řn
i“1phpZi, θ0q ´ µ0q{

?
n and

?
npθ̂ ´ θ0q are Opp1q.

(ii) Suppose S “ limnÑ8

řn
i“1 ErphpZi, θ0q ´ µqphpZi, θ0q ´ µq

1s{n is finite and posi-
tive definite. There exists an estimator Ŝ consistent for S.

(iii)
řn
i“1 ||hpZi, θ0q||

3{n “ Opp1q.

(iv) supθPΘ
ˇ

ˇ

řn
i“1∇θhpXi, θq ´ E r

řn
i“1∇θhpXi, θqs

ˇ

ˇ{n “ opp1q.

Note that for asymptotically linear estimators of the form (3), hp¨q “ ψp¨, β0, ¨q, and
θ̂ “ γ̂. Hence, the second requirement of (i) is

?
n-consistency of γ̂, and the first

requirement is
1
?
n

n
ÿ

i“1

ψpZi; β0, γq “ Opp1q,

which follows from standard weak-dependence conditions.

Remark 3. As with all other subsampling procedures, the generality of randomized
subsampling comes at the cost of having power against fewer sequences of alternatives.
If the econometrician could consistently estimate the asymptotic variance of X̄, then
the usual trinity of tests would have power against local alternatives µn “ µ0`h{

?
n.

In contrast, it is easy to see that the test in (2) using the mean-type statistic only
has nontrivial asymptotic power against alternatives µn “ h{αn, where αn Ñ 8 but
αnpRnbnq

´1{2 Ñ c P r0,8q. For the test using the U-type statistic, we have instead
αnR

´1{4
n b

´1{2
n Ñ c P r0,8q (Song, 2016, Theorem 3.3). We interpret the lower power

of randomized subsampling tests as the cost of having a dependence-robust procedure.

Remark 4. It should be straightforward to modify the rate conditions on Rn, bn
to allow for estimators that converge at rates slower than

?
n, for example kernel

estimators. We do not pursue these extensions here because, in light of the previous
remark, the power properties of the resulting tests will be rather poor.

Remark 5. The theorems prove convergence of TnpX̄; πq and SnpX̄; πq. These results
can be used to construct a permutation critical values, which may have better finite-
sample properties than the asymptotic critical values suggested in §2. Let L be a
natural number. For each l “ 1, . . . , L, let π̃l “ pπ̃1l, . . . , π̃Rlq, where the components
of π̃ are drawn independently and uniformly from Π. Following §3.2 of Song (2016),

12
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the permutation critical value for the test in (2) using the mean-type statistic is

cnpα, π̃q “ inf

#

c1 ą 0 :
1

L

L
ÿ

l“1

1
 

TnpX̄, π̃lq
1TnpX̄; π̃lq ą c1

(

ď α

+

.

For the U-type statistic we replace TnpX̄, π̃lq1TnpX̄; π̃lq with SnpX̄, π̃lq.

We give a quick sketch of the proof of Theorem 1 for mean-type statistics. Define

X̃T,r “
1
?
bn

bn
ÿ

i“1

Σ̂´1{2
`

Xπrpiq ´ µ0

˘

. (6)

Consider the decomposition

Tnpµ0; πq “
1

?
Rn

Rn
ÿ

r“1

´

X̃T,r ´ ErX̃T,r |Xs
¯

loooooooooooooooooomoooooooooooooooooon

rIs

`
1

?
Rn

Rn
ÿ

r“1

ErX̃T,r |Xs

looooooooooomooooooooooon

rIIs

.

It is not too hard to calculate that

rIIs “

c

Rnbn
n

Σ̂´1{2 1
?
n

n
ÿ

i“1

pXi ´ µ0q,

which is immediately opp1q by the assumptions of the theorem. Since the random
permutations are i.i.d. conditional on X, we can then show that rIs d

ÝÑ N p0, Imq
using a martingale difference CLT. The proof for Snpµ0; πq follows a similar logic.

4 Testing Moment Inequalities
The results in the previous section are relevant testing the hypothesis that µ0 “ µ.
In this section, we instead consider the null hypothesis

H0 : µ0 ď 0, (7)

where “ď” denotes a component-wise inequality. Let Tnkpµk; πq be the mean-type
statistic applied to data tXiku

n
i“1, where Xik is the kth component of Xi. We focus

on the test statistic
Qnpπq “ max

1ďkďm
Tnkp0;πq

studied in, e.g., Romano et al. (2014). From the proof of the theorem below, it
is evident that we could also use test statistics other than the max statistic above
satisfying the regularity conditons of Andrews and Soares (2010).

13
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Let λ̂k “
?
RnbnΣ̂

´1{2
kk X̄k, where X̄k is the kth component of X̄ and Σ̂kk is the

kkth element of Σ̂. Then

Qnpπq “ max
1ďkďm

tTnkpX̄k; πq ` λ̂ku. (8)

We construct a critical value for Qnpπq by replacing λ̂k with mintλ̂k, 0u (which is
asymptotically equivalent only under the null) and resampling π L times and taking
the appropriate quantile of the resulting permutation distribution of statistics, as in
Remark 5. Formally, the critical value is

c1´α “ inf

#

c1 ą 0 :
1

L

L
ÿ

l“1

1

"

max
1ďkďm

TnkpX̄k; πq `mintλ̂k, 0u ą c1
*

ď α

+

.

Our proposed test is to reject if and only if φn “ 1 for

φn ” 1tQnpπq ą c1´αu.

Based on our simulations, we suggest choosing

pRn, bnq “ pn
0.4, n0.4

q.

Remark 6. For the casem “ 1, dropping the subscript k, we have that Qnpπq´λ̂
d
ÝÑ

N p0, 1q directly from Theorem 3. We can therefore use the computationally simpler
test φ̃n “ 1tQnpπq ´ mintλ̂, 0u ą q1´αu, where q1´α is the p1 ´ αq-quantile of the
standard normal distribution.

We next show that the test uniformly controls size. Let λminpAq denote the small-
est eigenvalue of a matrix A, and ΣP “ limnÑ8

řn
i“1 EP rpXi´µ0qpXi´µ0q

1s{n, where
EP r¨s denotes the expectation under the data-generating process (DGP) P .

Theorem 2. Let P0 be the set of all DGPs any sequence of DGPs tPnunPN in P0, we
have

(a)
řn
i“1pXi ´ µ0q{

?
n “ OPnp1q.

(b) There exists an estimator Σ̂ consistent for ΣPn. Additionally, lim supnÑ8 ||ΣPn || ă

8 and lim infnÑ8 λminpΣPnq ą 0.

(c) lim supnÑ8
1
n

řn
i“1 ||Xi||

3 ă 8.

If Rn Ñ 8, b´1
n “ Op1q, and Rnbn{n “ op1q as nÑ 8, then supPPP0

Erφns Ñ α.

The theorem follows fairly directly from the next proposition, which also provides
results on the power of the test.

14
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Proposition 1. Suppose assumptions (a)-(c) of Theorem 1 hold, and the rate condi-
tions on Rn, bn in Theorem 2 hold. For k “ 1, . . . ,m, let δ˚k “ limnÑ8

?
RnbnΣ

´1{2
kk µ0k,

where µ0k is the kth component of µ0.

(a) If maxk δ
˚
k “ ´8, then Erφns Ñ α.

(b) If maxk δ
˚
k is constant and weakly negative, then Erφns Ñ α.

(c) If maxk δ
˚
k “ 8 for all k, then Erφns Ñ 1.

(d) If maxk δ
˚
k is constant and strictly positive, then Erφns Ñ β P p0, 1q.

Note that Theorem 1 allows X to be a triangular array, which we also allow here.
Parts (a) and (b) show that the test controls size and is asymptotically exact. Parts
(c) and (d) describe the test’s power, (d) showing that the test has power against local
alternatives that vanish no faster than rate pRnbnq

´1{2. Since we need Rnbn{n Ñ 0,
this implies that it does not have power against

?
n local alternatives, which is the

same as conventional subsampling.
We sketch the proof of the proposition for the simple case where m “ 1. Dropping

the dependence on k, we have

Qnpπq “ TnpX̄; πq `
a

RnbnΣ̂´1{2
pX̄ ´ µ0q `

a

RnbnΣ̂´1{2µ0. (9)

The first term on the right-hand side is asymptotically distributed N p0, 1q by the
proof of Theorem 3. The second term is opp1q by the assumptions of the proposition.
Hence, for δ˚ “ limnÑ8

?
RnbnΣ´1{2µ0, Qnpπq is approximately distributed

TnpX̄; πq ` δ˚ „ N p0, 1q ` δ˚.

Critical values are instead constructed using the distribution of

TnpX̄; πq `min
!

a

RnbnΣ̂´1{2
pX̄ ´ µ0q `

a

RnbnΣ̂´1{2µ0, 0
)

, (10)

which has asymptotic distribution N p0, 1q `mintδ˚, 0u. This is the same asymptotic
distribution as that of (9) only under the null. Moreover, these arguments hold under
any sequence of DGPs tPnunPN in P0.

Remark 7. Suppose m “ 1, and consider the “conventional” moment-inequalities
setting in which X is i.i.d. and the test statistic is

řn
i“1 Σ̂´1{2Xi{

?
n. The problem

with constructing critical values for this statistic is that while

1
?
n

n
ÿ

i“1

Σ̂´1{2
pXi ´ µ0q

d
ÝÑ N p0, Imq,

it is impossible to consistently estimate
?
nΣ´1{2µ0. Much of the moment-inequalities

literature boils down to finding clever ways to bound this nuisance parameter from
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above (Canay and Shaikh, forthcoming). In contrast, in our setting the nuisance
parameter is

?
RnbnΣ´1{2µ0, which can be consistently estimated by

?
RnbnΣ̂´1{2X̄,

since Rnbn{nÑ 0.

Remark 8. Consider the case m “ 1 and drop the subscript k. The bias-variance
trade-off appears in the moment inequalities context when δ˚ is a negative constant.
To see this, recall thatQnpπq satisfies (9), whereas critical values are constructed using
(10). Hence, if Rnbn “ n, then the bias term

?
RnbnΣ̂´1{2pX̄ ´ µ0q

d
ÝÑ N p0, 1q, and

clearly the size of the test is incorrect. Thus, validity of the test requires Rnbn{nÑ 0,
and the rate of convergence is pRnbnq

´1{2, which is the same type of bias-variance
trade-off faced by the mean-type test in the equality-testing case.

5 Empirical Application
Jackson and Rogers (2007) propose a model of network formation that generates a
parametric degree distribution, where a parameter r interpolates between the ex-
ponential and power law distributions. Their model provides microfoundations for
the different distributions. When r Ñ 8, the network is formed primarily through
random meetings, and the distribution is exponential. When r Ñ 0, the network is
formed primarily through “network-based meetings,” as nodes are more likely to meet
friends of nodes that were previously met randomly. High-degree nodes are more
likely to be met through network-degree meetings, which corresponds to a “rich-get-
richer” or “preferential-attachment” mechanism that generates a power law degree
distribution.

Jackson and Rogers (2007) estimate the parameters of the degree distribution
using data on six distinct social networks and informally assess the extent to which
the estimated distributions depart from a power law. In this section, we use the same
datasets to implement the test described in §2.4 and §4. This formally tests the null
that an exponential degree distribution fits the data at least as well as a power law.

The test requires estimates of two parameters of the power law distribution, the
lower support point and the power law exponent. For a fixed value of the lower support
point, we estimate the exponent by (pseudo) maximum likelihood. We estimate the
lower support point by minimizing the Kolmogorov-Smirnov distance between the
empirical distribution and the power law distribution with exponent equal to the
maximum likelihood estimate (see e.g. Clauset et al., 2009, p. 672). Based on our
simulation results, we set the randomized subsampling parameters to be pRn, bnq “
pn0.4, n0.4q.

Jackson and Rogers (2007) describe the six datasets as follows: “the links among
Web sites at Notre Dame University (labeled ‘WWW’ below), the network of coauthor-
ship relations among economists publishing in journals listed by EconLit in the 1990s
(labeled ‘Coauthor’), a citation network of research articles stemming from Milgram’s
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1960 paper. . . (labeled ‘Citation’), a friendship network among 67 prison inmates in
the 1950s (labeled ‘Prison’), a network of ham radio calls during a one-month pe-
riod (labeled ‘Ham Radio’), and, finally, a network of romantic relationships among
high-school students (labeled ‘Romance’).”

Table 1 displays the results of the tests. Row “Exponent” displays the estimated
power law exponent, while row “xmin” displays the estimated lower support point.
Row “LL” gives the log likelihood ratio. We reject the null for the WWW and citation
networks and do not reject for the others. This is qualitatively consistent with the
findings in Table 1 of Jackson and Rogers (2007). They estimate r to be close to zero
only for the WWW and citation networks (respectively 0.57 and 0.63). The coauthor
and ham radio networks yield respective estimates of 4.7 and 5.0. As the authors
note, this means network-based meetings are eight times more common in the WWW
network compared to the coauthor network, so their degree distributions should be
closer to exponential than power law, which is consistent with our test results. Lastly,
they estimate r to be infinite for the prison and romance networks, indicating that
the distribution is very close to exponential for these networks. This is also consistent
with our results.

Table 1: Power Law Tests.

Coauthor Ham Radio Prison Romance Citation WWW

# Nodes 56639 44 67 572 396 325729
Exponent 4.03 1.46 1.63 1.94 2.12 1.95
xmin 9 1 1 1 4 2
LL -0.11 -1.69 -5.80 -13.75 0.92 25.44
Reject N N N N Y Y

6 Monte Carlo
This section presents results from four simulation studies exploring the finite-sample
properties of the proposed tests, each corresponding to one of the applications in
§2. For tests of moment equalities, we only present results for the U-type statistic
using test (2) and asymptotic critical values. Our tests of moment inequalities only
involve single inequalities, so we use the asymptotic critical value given in Remark 6.
For both tests, due to space constraints, we only display results for pairs of tuning
parameters that imply the same rate of convergence.
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6.1 Cluster Dependence

Let c index cities, f index families, and i index individuals. We generate outcomes
according to

Yifc “ θ0 ` αf ` εifc,

where αf
iid
„ N p0, 1q and εifc

iid
„ N p0, 1q. Thus, the true level of clustering is at the

family level.
We first test the null that θ0 “ θ, for values of θ specified below, against a two-sided

alternative at the 5 percent level. We present results for randomized subsampling and
t-tests using Liang and Zeger (1986) clustered standard errors at each possible level
of clustering. For these equality tests, we set the true θ0 “ 1.

Table 2 displays simulation results for the size and power of the test, computed
using 5000 simulations. The sample size is denoted by n, the number of individuals;
the number of families is n{2; and the number of cities 20. The tuning parameters
pRn, bnq are given by the floors of pnκ1 , nκ2q. Rows “RS (θ “ α)” display results for
the randomized subsampling test for θ “ α. Rows “cluster α” display results for the
t-test, where α “ c means clustering at the city level, α “ f the family level, and
α “ i the individual level.

The results show that the t-test overrejects when clustering at too coarse a level
and the number of clusters is small (clustering at the city level). It also overrejects
when clustering at too fine a level (clustering at the individual level), intuitively
because this assumes more independence in the data than is warranted. Random-
ized subsampling controls size well when pRn, bnq “ pn

2{3, n1{3q. When bn is chosen
larger (pκ1, κ2q “ p1{3, 1{2q), the test tends to overreject, and when chosen smaller
(pκ1, κ2q “ p1, 1{6q), the test is underpowered. Note that the latter two choices of
tuning parameters have the same rate of convergence as pn2{3, n1{3q.

Table 2: Equality Test

n 400 4000
pκ1, κ2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q
RS (θ “ 1) 5.24 1.24 6.98 4.92 2.18 7.48
RS (θ “ 1.5) 88.20 55.10 85.64 100 100 100
cluster c 7.34 7.16
cluster f (θ “ 1) 5.72 4.88
cluster f (θ “ 1.5) 99.98 100
cluster i 11.48 10.88

θ0 “ 1. 5000 simulations. Significance level: 5%.

Next, we test the null that θ0 ď 0 at the 5 percent level using the moment
inequalities test in §4. Table 3 reports results computed using 5000 simulations. The
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rows indicate the true value of θ0. All choices of tuning parameters displayed satisfy
Rnbn “ n0.8, and all perform well.

Table 3: Inequality Test

n 400 4000
pκ1, κ2q p0.2, 0.6q p0.4, 0.4q p0.6, 0.2q p0.2, 0.6q p0.4, 0.4q p0.6, 0.2q
θ0 “ ´1 4.54 4.62 5.24 4.98 5.00 4.80
θ0 “ ´pRnbnq

´1{2 5.18 5.20 5.88 5.24 5.38 5.10
θ0 “ pRnbnq

´1{2 22.22 20.84 22.46 21.26 20.06 19.76
θ0 “ 1 100 100 100 100 100 100

H0 : θ0 ď 1. 5000 simulations. Significance level: 5%.

6.2 Network Statistics

We generate a network according to a strategic model of network formation, follow-
ing the Monte Carlo design in Leung (2017c) with θ “ p0, 0.25, 0.25, 1q. We are
interested in two statistics that are functions of the network, the average clustering
coefficient (defined in §2.2) and the average degree. Leung and Moon (2017) prove
?
n-consistency of the sample statistics for their population analogs.
We test the null that the expected value of the statistic is equal to θ against a

two-sided alternative at the 5 percent level, for both average clustering (Table 4 in
the appendix) and average degree (Table 5). The tables report rejection rates, with
n denoting the network size and tuning parameters pRn, bnq given by the floors of
pnκ1 , nκ2q. Row “RS (θ “ θ0)” displays results from the randomized subsampling test
when θ is set to the true expectation θ0. Row “t-test” displays rejection rates for
θ “ θ0 for the naive t-test that assumes i.i.d. data. Rejection rates are computed by
averaging across 5000 simulations.

The results show that setting pRn, bnq “ pn
2{3, n1{3q works well across the different

sample sizes, producing rejection percentages fairly close to the nominal level. The t-
test unsurprisingly substantially overrejects. Similar to the cluster-dependence results
in the previous subsection, when bn is chosen larger (pκ1, κ2q “ p1{3, 1{2q), the test
substantially overrejects, and when chosen smaller (pκ1, κ2q “ p1, 1{6q), the test is
very underpowered. Note that the latter two choices of tuning parameters have the
same rate of convergence as pn2{3, n1{3q.

In unreported results, we compute rejection rates under two different models of
network formation and obtain similar results. One is the Erdős-Rényi model, where
link-formation is i.i.d., and the linking probability is set to 7{n, chosen to obtain
a sparse network with limiting average degree of seven. The other is the following
random geometric graph model: nodes are endowed with positions Xi

iid
„ Upr0, 1s2q,

and nodes i and j form a link if and only if ||Xi ´ Xj|| ď rn, where || ¨ || is the
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Euclidean norm and rn “ p7{pnπqq1{2. (The parameter rn is chosen to obtain a sparse
network with limiting average degree of seven.)

6.3 Treatment Effects with Network Spillovers

Consider the setup in §2.3. We assign units to treatment with probability 0.3, and
draw the network from a strategic model of network formation following the Monte
Carlo design in Leung (2017c) with θ “ p´1, 0.25, 0.25, 1q. We generate outcomes
according to the linear model

Yi “ β1 ` β2Di ` β3Ti ` β4γi ` εi,

where εi “
ř

j Gijνj{
ř

j Gij, with νj
iid
„ N p0, 1q. This represents exogenous peer

effects in unobservables. We set pβ1, β2, β4q “ p1, 2, 0.5q, and β3 is specified below.
Unless the network is very large, nonparametric estimators suffer from small ef-

fective sample sizes. We therefore consider a linear regression estimator of Yi on
p1, Di, Ti, γiq.

For equality tests, we set the true β2 equal to ´2. We test the null that β3 “ β
at the 5 percent level. Table 6 in the appendix displays simulation results for the
size and power of the test, computed using 5000 simulations. The number of nodes
is denoted by n. The tuning parameters pRn, bnq are given by the floors of pnκ1 , nκ2q.
The row labels display the hypothesized value of β2 being tested. Hence, the first
row concerns the size of the test and the second row the power. The results are
fairly similar to those in the previous two subsections, although our preferred choice
of tuning parameters pn2{3, n1{3q slightly underrejects, and pn1{3, n1{2q is closer to the
nominal level.

We next test the null that the ASE is weakly negative at the 5 percent level using
the moment inequalities test in §4. Table 7 in the appendix reports results computed
using 5000 simulations. The row labels display the true value of β2. Hence, the first
two such rows concern the size of the test and the next two rows the power. Similar to
the simulation experiments under cluster dependence, the displayed tuning parameter
choices all perform similarly.

6.4 Testing for Power Laws

Following the notation in §4, the data tZiuni“1 consists of the degrees of n nodes
generated according to one of two network formation models: the Erdős-Rényi or
preferential attachment model. In the former model, links are i.i.d. Bernoulli(10{n),
and thus the degree distribution has exponential tails. The preferential attachment
model is the standard Barabási and Albert (1999) model, where the out-degree of a
node equals 10, and that generates a limiting power law exponent of 3. Resnick and
Samorodnitsky (2016) (Theorem 4.1) proves that the empirical degree distribution of
a variant of the Barabási-Albert model is

?
n-consistent.
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We test the null that the log-likelihood ratio in §2.4 is at most zero at the 5
percent level, where the null distribution is exponential and the alternative is the
power law. Details for maximum likelihood estimation can be found in §5. Table 8 in
the appendix reports rejection percentages, which are obtained by averaging across
5000 simulations, with n “ 5000 and tuning parameters pRn, bnq given by the floors
of pnκ1 , nκ2q. Row “Exp” is the average estimated power law exponent, “xmin” the
average estimated lower support, “LL” the likelihood ratio, and “Reject” the rejection
rate of the test. All choices of the tuning parameters displayed satisfy Rnbn “ n0.8

and all perform well.

7 Conclusion
In this paper, we provide general and computationally simple methods for construct-
ing confidence intervals and hypothesis tests that are robust to dependence. The basic
procedure, first proposed by Song (2016), is to compute a resampled test statistic by
averaging over random subsamples of the data, which does not require knowledge of
the dependence structure. We extend Song’s results, showing that randomized sub-
sampling is valid for general forms of weakly dependent data. To illustrate the broad
applicability of the results, we discuss in detail applications to clustering when the
group structure is unknown, spatial data when locations are unobserved, and network
data. We also devise a randomized subsampling test for moment inequalities. An in-
teresting theoretical result is that, while conventional moment-inequalities procedures
have to account for a nuisance parameter that cannot be consistently estimated, the
nuisance parameter is actually known when using randomized subsampling, which
leads to a simple and asymptotically exact test.

A Appendix

A.1 Proofs
Proof of Theorem 1. This is a corollary of Theorems 3 and 4 below.

Theorem 3 (Mean-Type Statistic). Suppose the following conditions hold.

(a) As nÑ8, we have Rn Ñ8, b´1
n “ Op1q, and Rnbn{n “ op1q.

(b)
řn
i“1pXi ´ µ0q{

?
n “ Opp1q.

(c) Suppose Σ “ limnÑ8
řn
i“1 ErpXi´µ0qpXi´µ0q

1s{n is finite and positive definite. There
exists an estimator Σ̂ consistent for Σ.

(d) 1
n

řn
i“1 ||Xi||

3 “ Opp1q.
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Then
Tnpµ0;πq

d
ÝÑ N p0, Imq and TnpX̄;πq

d
ÝÑ N p0, Imq.

Proof. Notice TnpX̄q “ Tnpµ0q ` en, where

en “

c

Rnbn
n

1
?
n

n
ÿ

i“1

Σ̂´1{2pXi ´ µ0q. (11)

By assumptions (a)-(c), en “ opp1q. Hence, it remains to establish asymptotic normality of
Tnpµ0q.

Recall the definition of X̃T,r from (6), and consider the decomposition

Tnpµ0q “
1

?
Rn

Rn
ÿ

r“1

´

X̃T,r ´ErX̃T,r |Xs
¯

looooooooooooooooooomooooooooooooooooooon

rIs

`
1

?
Rn

Rn
ÿ

r“1

ErX̃T,r |Xs

loooooooooooomoooooooooooon

rIIs

.

By definition of πr,

rIIs “

c

Rn
bn

Σ̂´1{2 1

|Π|

ÿ

πPΠ

bn
ÿ

i“1

pXπpiq ´ µ0q

“

c

Rn
bn

Σ̂´1{2 1

n!

bn
ÿ

i“1

ÿ

πPΠ

pXπpiq ´ µ0q

“

c

Rn
bn

Σ̂´1{2 1

n!
bn

n
ÿ

i“1

pXi ´ µ0q

ˆ

n´ 1

bn ´ 1

˙

pbn ´ 1q!pn´ bnq!

“

c

Rn
bn

Σ̂´1{2 pn´ bnq!

n!
bn

n
ÿ

i“1

pXi ´ µ0q

ˆ

n´ 1

bn ´ 1

˙

pbn ´ 1q!

“

c

Rnbn
n

Σ̂´1{2 1
?
n

n
ÿ

i“1

pXi ´ µ0q. (12)

To understand the third line, note that the number of times Xi ´ µ0 appears in the sum
ř

πPΠpXπpiq´µ0q is equal to the number of permutation-subsamples of size bn for which Xi

is assigned the label of 1. The number of such permutation-subsamples is the number of
ways one can choose the remaining bn´ 1 elements of the subsample from n´ 1 units times
the number of possible orderings of the subsample pbn ´ 1q! times the number of possible
orderings of indices not included in the subsample pn ´ bnq!. Since the right-hand side of
(12) equals (11), we have established that rIIs “ opp1q.

It remains to show that rIs d
ÝÑ N p0, Imq. We will apply a martingale difference CLT,

where the conditioning σ-algebra is that generated by X (e.g. Hall and Heyde, 2014, Corol-
lary 3.1). First, we show that the conditional variance of rIs converges in probability un-
conditionally to Im. Note that

VarprIs |Xq “ ErX̃T,rX̃
1
T,r |Xs ´ErX̃T,r |XsErX̃T,r |Xs

1

“ ErX̃T,rX̃
1
T,r |Xs ` opp1q
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by our argument for rIIs. Now,

ErX̃T,rX̃
1
T,r |Xs “

1

|Π|

ÿ

πPΠ

1

bn

bn
ÿ

i“1

bn
ÿ

j“1

Σ̂´1{2pXπpiq ´ µ0qpXπpjq ´ µ0q
1pΣ̂´1{2q1

“
1

n!

«

n
ÿ

i“1

Σ̂´1{2pXi ´ µ0qpXi ´ µ0q
1pΣ̂´1{2q1pn´ 1q!

` pbn ´ 1q
n
ÿ

i“1

ÿ

j‰i

Σ̂´1{2pXi ´ µ0qpXj ´ µ0q
1pΣ̂´1{2q1pn´ 2q!

ff

“

ˆ

1´
bn

npn´ 1q

˙

1

n

n
ÿ

i“1

Σ̂´1{2pXi ´ µ0qpXi ´ µ0q
1pΣ̂´1{2q1

`
bn ´ 1

npn´ 1q
Σ̂´1{2pX̄ ´ µ0qpX̄ ´ µ0q

1pΣ̂´1{2q1.

The first term in the last equation converges in probability to Im by assumptions (b) and
(c). The second term is opp1q by assumptions (a)-(c). Thus, we obtain

VarpTnpµ0q |Xq
p
ÝÑ Im.

It remains to check the Lindeberg condition. Let µ0s denote the sth component of µ0.
Since ErX̃T,r |Xs “ opp1q by (12), it is enough to show that

E

»

–

˜

1
?
bn

bn
ÿ

i“1

`

Xπrpiqs ´ µ0s

˘

¸3
ˇ

ˇ

ˇ

ˇ

X

fi

fl “ Opp1q

for any s “ 1, . . . ,m. Abbreviate X̃is “ Xis ´ µ0s. Then

E

»

–

˜

1
?
bn

bn
ÿ

i“1

X̃πrpiqs

¸3
ˇ

ˇ

ˇ

ˇ

X

fi

fl “
1

|Π|

ÿ

πPΠ

1

b
3{2
n

bn
ÿ

i,j,k

X̃πpiqsX̃πpjqsX̃πpkqs

“
1

n!

«

1
?
bn

n
ÿ

i“1

X̃3
is

pn´ 1q!

pn´ bnq!pbn ´ 1q!
pbn ´ 1q!pn´ bnq!` 3

bn ´ 1
?
bn

n
ÿ

i‰j

X̃2
isX̃jspn´ 2q!

pbn ´ 1qpbn ´ 2q
?
bn

n
ÿ

i‰j‰k

X̃isX̃jsX̃kspn´ 3q!

fi

fl .

This is the same asymptotic order as

1
?
bn

1

n

n
ÿ

i“1

X̃3
is ` 3

c

bn
n

˜

1

n

n
ÿ

i“1

X̃2
is

¸˜

1
?
n

n
ÿ

i“1

X̃is

¸

`

ˆ

bn
n

˙3{2
˜

1
?
n

n
ÿ

i“1

X̃is

¸3

,

which is Opp1q by assumptions (a)-(d).
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Theorem 4 (U-Type Statistic). Define

S̃npµ0;πq “
1

?
Rn

Rn
ÿ

r“1

1

bn

bn
ÿ

i“1

bn
ÿ

j“1,j‰i

pXπrpiq ´ µ0q
1Σ̂´1pXπrpjq ´ µ0q. (13)

Suppose the assumptions of Theorem 3 hold, except with (a) replaced with

Rn Ñ8, b´1
n “ Op1q,

?
Rnbn
n

“ op1q, (14)

as nÑ8. Then

Snpµ0;πq
d
ÝÑ N p0, 2q and SnpX̄;πq

d
ÝÑ N p0, 2q.

Proof. Step 1. We first show that S̃npX̄;πq “ S̃npµ0;πq ` An ` opp1q for some term An
defined below. We have

S̃npX̄;πq ˘ S̃npµ0;πq “ S̃npµ0;πq

`
1

?
Rnbn

R
ÿ

r“1

bn
ÿ

i“1

ÿ

j‰i

´

´pX̄ ´ µ0q
1Σ̂´1Xπrpjq ´X

1
πrpiq

Σ̂´1pX̄ ´ µ0q ` X̄
1Σ̂´1X̄ ´ µ10Σ̂´1µ0

¯

.

From the right-hand side, add and subtract

1
?
Rnbn

R
ÿ

r“1

bn
ÿ

i“1

ÿ

j‰i

´

´pX̄ ´ µ0q
1Σ̂´1p´µ0q ´ p´µ0q

1Σ̂´1pX̄ ´ µ0q

¯

to obtain

S̃npX̄;πq “ S̃npµ0;πq ´ pX̄ ´ µ0q
1Σ̂´1 1

?
Rnbn

R
ÿ

r“1

bn
ÿ

i“1

ÿ

j‰i

`

pXπrpiq ´ µ0q ` pXπrpjq ´ µ0q
˘

`

?
Rnpbn ´ 1q

n

?
npX̄ ´ µ0q

1Σ̂´1?npX̄ ´ µ0q.

By assumption (14) of this theorem and assumption (b) of Theorem 3, the third term on
the right-hand side is opp1q. Call the second term on the right-hand side An.

Step 2. We show that An “ opp1q, from which it follows that S̃npX̄;πq and S̃npµ0;πq
have the same asymptotic distribution. Notice that An equals ´1 times the sum of two
virtually identical terms (they are equal up to an opp1q term), one of which is

pX̄ ´µ0q
1Σ̂´1 1

?
Rnbn

R
ÿ

r“1

bn
ÿ

i“1

ÿ

j‰i

pXπrpiq´µ0q “

?
Rnpbn ´ 1q

n

?
npX̄ ´µ0q

1Σ̂´1?npX̄ ´µ0q

`

?
bnpbn ´ 1q

bn
pX̄ ´ µ0q

1Σ̂´1 1
?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

pXπrpiq ´ X̄q.
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The first term on the right-hand side was shown to be opp1q in step 1. The second term
equals

c?
Rnbn
n

bn ´ 1

bn

?
npX̄ ´ µ0q

1Σ̂´1{2 1

R
1{4
n

1
?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

Σ̂´1{2pXπrpiq ´ X̄q

loooooooooooooooooooooooomoooooooooooooooooooooooon

Bn

.

Following the exact same steps as the proof of Theorem 3, we can show that Bn “ opp1q.
In particular, by assumption (14) of this theorem and assumptions (b) and (c) of Theorem
3, we have

en “ rIIs “

c?
Rnbn
n

Σ̂´1{2 1
?
n

n
ÿ

i“1

pXi ´ µ0q “ opp1q.

Furthermore, rIs is now multiplied by an extra R´1{4
n term and is therefore opp1q. Hence,

An “ opp1q.
Step 3. Decompose

S̃npµ0;πq “ pS̃npµ0;πq ´ErS̃npµ0;πq |Xsq `ErS̃npµ0;πq |Xs. (15)

We show that ErS̃npµ0;πq |Xs
p
ÝÑ 0:

ErS̃npµ0;πq |Xs “
1

?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

ÿ

j‰i

E
”

pXπrpiq ´ µ0q
1Σ̂´1pXπrpjq ´ µ0q

ˇ

ˇX
ı

“
1

|Π|

ÿ

πPΠ

a

Rn
1

bn

bn
ÿ

i“1

ÿ

j‰i

pXπpiq ´ µ0q
1Σ̂´1pXπpjq ´ µ0q

“
a

Rn
1

n!bn

bn
ÿ

i“1

ÿ

j‰i

ÿ

πPΠ

pXπpiq ´ µ0q
1Σ̂´1pXπpjq ´ µ0q

“
a

Rn
pn´ bnq!

n!
pbn ´ 1q

pn´ 2q!

pn´ bnq!

bn
ÿ

i“1

ÿ

j‰i

ÿ

πPΠ

pXπpiq ´ µ0q
1Σ̂´1pXπpjq ´ µ0q

“
a

Rnpbn ´ 1q
1

npn´ 1q

n
ÿ

i“1

ÿ

j‰i

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q.

From the last line, add and subtract

a

Rnpbn ´ 1q
1

npn´ 1q

n
ÿ

i“1

pXi ´ µ0q
1Σ̂´1pXi ´ µ0q

to obtain
?
Rnpbn ´ 1q

n´ 1

˜

?
npX̄ ´ µ0q

1Σ̂´1?npX̄ ´ µ0q ´
1

n

n
ÿ

i“1

pXi ´ µ0q
1Σ̂´1pXi ´ µ0q

¸

.
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Assumptions (b) and (c) of Theorem 3 imply that

1

n

n
ÿ

i“1

pXi ´ µ0q
1Σ̂´1pXi ´ µ0q

p
ÝÑ 1.

Assumption (14) then establishes the claim.
Step 4. In view of (15) and step 3, it remains to show that

S̃npµ0;πq ´ErS̃npµ0;πq |Xs
d
ÝÑ N p0, 2q.

We will apply a martingale difference CLT, where the conditioning σ-algebra is that gen-
erated by X (e.g. Hall and Heyde, 2014, Corollary 3.1). In this step, we show that the
conditional variance converges in probability to 2. Let

X̃r “
1

bn

bn
ÿ

i“1

ÿ

j‰i

pXπrpiq ´ µ0q
1Σ̂´1pXπrpjq ´ µ0q.

Then VarpS̃npµ0;πq |Xq “ ErX̃2
r |Xs´ErX̃r |Xs

2, where the second term on the right-hand
side is opp1q by step 3 above. Now,

ErX̃2
r |Xs “

1

b2n

1

|Π|

ÿ

πPΠ

bn
ÿ

i“1

ÿ

j‰i

bn
ÿ

k“1

ÿ

l‰k

pXπrpiq´µ0q
1Σ̂´1pXπrpjq´µ0qpXπrpkq´µ0q

1Σ̂´1pXπrplq´µ0q

“
1

b2n

1

n!

˜

2bn!
n
ÿ

i“1

ÿ

j‰i

”

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q

ı2 pn´ 2q!

pn´ bnq!

` 4
bn!

pbn ´ 3q!

n
ÿ

i“1

ÿ

j‰k‰i

pXi ´ µ0q
1Σ̂´1pXj ´ µ0qpXk ´ µ0q

1Σ̂´1pXi ´ µ0q
pn´ 3q!

pbn ´ 2q!

`bn!
n
ÿ

i“1

ÿ

j‰k‰l‰i

pXi ´ µ0q
1Σ̂´1pXj ´ µ0qpXk ´ µ0q

1Σ̂´1pXl ´ µ0q
pn´ 4q!

pbn ´ 4q!

˛

‚. (16)

The first term on the right-hand side equals

2
bn ´ 1

bn

1

n

n
ÿ

i“1

pXi ´ µ0q
1 1

n´ 1

ÿ

j‰i

Σ̂´1pXj ´ µ0qpXj ´ µ0q
1Σ̂´1pXi ´ µ0q,

which converges in probability to 2 by assumption (c) of Theorem 3. The second term on
the right-hand side of (16) equals

4
bn ´ 1

bn

bn ´ 2

n´ 2

1

npn´ 1q

n
ÿ

i“1

ÿ

j‰i

ÿ

k‰i

pXj ´ µ0q
1Σ̂´1pXi ´ µ0qpXi ´ µ0q

1Σ̂´1pXk ´ µ0q.

Under the assumptions of this theorem, this is of the same asymptotic order as

4
bn
n

˜

1
?
n

n
ÿ

j“1

pXj ´ µ0q
1

¸

Σ̂´1

˜

1

n

n
ÿ

i“1

pXi ´ µ0qpXi ´ µ0q
1

¸

Σ̂´1

˜

1
?
n

n
ÿ

k“1

pXk ´ µ0q

¸

,
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which is opp1q. Lastly, the third term on the right-hand side of (16) is of the same asymptotic
order as

b2n
n2

”?
npX̄ ´ µ0qΣ̂

´1?npX̄ ´ µ0q

ı2
“ opp1q.

Step 5. It remains to verify the Lindeberg condition. Since ErX̃r |Xs “ Opp1q by step
4, it is enough to show that

E

»

–

˜

1

bn

bn
ÿ

i“1

ÿ

j‰i

pXπrpiq ´ µ0q
1Σ̂´1pXπrpjq ´ µ0q

¸3
ˇ

ˇ

ˇ

ˇ

X

fi

fl “ Opp1q

Similar to step 4, we break this expectation into a sum of multiple summations and show
that each is opp1q. This is tedious algebra, and we only show below calculations for a few
representative terms. One term is a summation over six distinct indices, which, following
calculations in step 4, equals

1

b3n

bn!

n!

ÿ

i‰j‰k‰l‰m‰p

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q

ˆ pXk ´ µ0q
1Σ̂´1pXl ´ µ0qpXm ´ µ0q

1Σ̂´1pXp ´ µ0q
pn´ 6q!

pbn ´ 6q!
.

This is of the same asymptotic order as

b3n
n3

”?
npX̄ ´ µ0q

1Σ̂´1?npX̄ ´ µ0q

ı3
“ Opp1q.

Several terms will be summations over five distinct indices (so that, e.g. index i equals
index p and all others are distinct). These are of the same asymptotic order as

b2n
n2

?
npX̄ ´ µ0q

1Σ̂´1?npX̄ ´ µ0qΣ̂
´1

ˆ
1

n

n
ÿ

i“1

pXi ´ µ0q
1Σ̂´1pXi ´ µ0q

?
npX̄ ´ µ0q

1Σ̂´1?npX̄ ´ µ0q “ Opp1q.

Several terms will be summations over 4 distinct indices (so that, e.g. index i “ k “ m
and all others are distinct), equal to

1

b3n

bn!

n!
pn´ bnq!

ÿ

i‰j‰l‰p

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q

ˆ pXi ´ µ0q
1Σ̂´1pXl ´ µ0qpXi ´ µ0q

1Σ̂´1pXp ´ µ0q
pn´ 4q!

pbn ´ 4q!
.

This is of the same asymptotic order as

bn

n3{2

?
npX̄ ´ µ0qΣ̂

´1 1

n

n
ÿ

i“1

pXi ´ µ0qpXi ´ µ0q
1Σ̂´1?npX̄ ´ µ0q

?
npX̄ ´ µ0q

1Σ̂´1pXi ´ µ0q,

27



Michael P. Leung

which is Opp1q using (d) of Theorem 3 to account for the presence of three pXi ´ µ0q in the
summation over i.

The last terms we will consider are the summations over two indices (so that, e.g. indices
i “ k “ m and j “ l “ p but they are otherwise distinct), equal to

1

b3n

bn!

n!

ÿ

i‰j

”

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q

ı3 pn´ 2q!

pbn ´ 2q!
.

This is of the same asymptotic order as

1

bn

1

n2

n
ÿ

i“1

n
ÿ

j“1

”

pXi ´ µ0q
1Σ̂´1pXj ´ µ0q

ı3
.

The average over i, j is Opp1q under assumptions (c) and (d) of Theorem 3. Hence, the term
is Opp1q by assumption (14).

Proof of Theorem 2. We first establish that supPPP0
Erφns Ñ α1 ď α. If not, then

we can find some sequence tPnunPN satisfying the assumptions of the theorem under which
lim infnÑ8Erφns ą α. This contradicts conclusions (a) and (b) of Proposition 1. Lastly,
the test is asymptotically exact because P0 includes DGPs in which µ0 “ 0, which falls
under conclusion (b) of Proposition 1.

Proof of Proposition 1. Note that the setup of this Proposition allows X to be a
triangular array, as in §3. We have that

pTnkp0;πq; k “ 1, . . . ,mq “ pTnkpX̄k;πq ` λ̂k; k “ 1, . . . ,mq, (17)

and by the assumptions of the theorem,

λ̂k “
a

RnbnΣ̂
´1{2
kk µ0k ` opp1q.

Thus,

Qnpπq “ max
k

#

Σ̂
´1{2
kk

˜

1
?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

pXπrpiq,k ´ X̄kq `
a

Rnbnµ0k ` opp1q

¸+

.

By assumption, Σ̂
1{2
kk {Σ

1{2
kk

p
ÝÑ 1 for all k. By the proof of Theorem 3, for any λ̃ P Rm´ ,

˜

1
?
Rnbn

Rn
ÿ

r“1

bn
ÿ

i“1

pXπrpiq,k ´ X̄kq ` λ̃k; k “ 1, . . . ,m

¸

d
ÝÑ N pλ̃,Σq. (18)

Now consider cases (a) and (b). Let Z „ N p0, Σ̃q for Σ̃jk “ Σjk{pΣjjΣkkq
1{2. By

Slutsky’s theorem and Polya’s theorem, the CDF of

max
k
tTnkpX̄k;πq ` Σ̂

´1{2
kk λ̃ku
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converges in sup norm to the CDF of

max
k
tZk ` Σ

´1{2
kk λ̃ku.

Moreover, this convergence holds uniformly in λ̃ P Rm´ (see e.g. Romano and Shaikh, 2008). It
therefore holds for λ̃ “

?
Rnbnµ0. Then (a) and (b) follow from the fact mintλ̂k, 0u´λ̂k

p
ÝÑ 0

for all k and the max function is continuous and strictly increasing in the largest component
of its input.

For case (b), we have (17) p
ÝÑ 8 and mintλ̂k, 0u

p
ÝÑ 0 for each k. The claim follows

from the fact that the max function is continuous and strictly increasing in the largest
component of its input.

For case (c), without loss of generality suppose that δ˚k is finite and positive for k “
1, . . . , `l and finite and negative for k “ `1 ` 1, . . . , `2. Then

max
k

(17) d
ÝÑ max

k“1,...,`
tN p0, Σ̃q ` δ˚ku,

mintλ̂k, 0u
p
ÝÑ 0 for k “ 1, . . . , `1, and mintλ̂k, 0u

p
ÝÑ δ˚k for k “ `1 ` 1, . . . , `2. Thus,

Erφns Ñ P

ˆ

max
k“1,...,`

tN p0, Σ̃q ` δ˚ku ą q1´α

˙

,

where q1´α is the 1´ α quantile of maxk“1,...,`tN p0, Σ̃q ` δ̃u, where δ̃k “ 0 for k “ 1, . . . , `
and δ̃k “ δ˚k for k “ `1 ` 1, . . . , `2. The claim follows.

A.2 Tables
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Table 4: Average Clustering.

n 100 500 1000
pκ1, κ2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q
RS test (θ “ θ0) 6.26 1.86 9.68 6.04 1.34 8.66 5.60 3.34 7.98
RS test (θ “ θ0 ` 0.1) 51.00 37.72 54.86 99.62 94.52 98.74 100 100 92.16
t-test (θ “ θ0) 18.24 18.36 19.58

5000 simulations. Significance level: 5%.

Table 5: Average Degree.

n 100 500 1000
pκ1, κ2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q
RS test (θ “ θ0) 7.28 2.84 10.22 5.88 1.14 8.22 6.30 2.72 8.82
RS test (θ “ θ0 ` 1) 43.48 34.94 49.18 89.98 65.62 87.92 99.34 98.94 98.44
t-test 21.72 19.66 19.48

5000 simulations. Significance level: 5%.
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Table 6: Treatment Spillovers (Equality Test)

n 100 500 1000
pκ1, κ2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q p2{3, 1{3q p1, 1{6q p1{3, 1{2q
H0 : β2 “ ´2 2.72 1.32 3.44 3.56 1.84 4.64 3.90 2.42 4.90
H0 : β2 “ ´3 15.40 6.42 25.18 66.88 22.30 68.16 93.30 90.52 88.48

True β2 “ ´2. 5000 simulations. Significance level: 5%.

Table 7: Treatment Spillovers (Inequality Test)

n 500 1000 2500
pκ1, κ2q p0.6, 0.2q p0.4, 0.4q p0.2, 0.6q p0.6, 0.2q p0.4, 0.4q p0.2, 0.6q p0.6, 0.2q p0.4, 0.4q p0.2, 0.6q
β2 “ ´2 4.12 3.08 2.68 4.14 3.84 3.26 3.96 4.24 3.80
β2 “ ´pRnbnq

´1{2 4.94 4.72 4.30 4.70 4.78 4.30 5.16 5.24 4.90
β2 “ pRnbnq

´1{2 7.62 6.96 6.16 7.08 7.26 6.64 7.20 7.50 7.42
β2 “ 2 27.84 29.66 26.38 69.00 75.06 70.72 85.88 89.84 85.66

H0 : β2 ď 0. 5000 simulations. Significance level: 5%.

Table 8: Power Law Test.

Erdős-Rényi Preferential Attachment
pκ1, κ2q p0.2, 0.6q p0.4, 0.4q p0.6, 0.2q p0.2, 0.6q p0.4, 0.4q p0.6, 0.2q
Exponent 5.09 2.87
xmin 10.00 11.32
LL -19.35 9.17
Reject % 4.30 5.40 5.50 100 100 99.90

n “ 5000. 5000 simulations. Significance level: 5%.
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