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Abstract

A breakdown frontier is the boundary between the set of assumptions which lead to a specific
conclusion and those which do not. In a potential outcomes model with a binary treatment,
we consider two conclusions: First, that ATE is at least a specific value (e.g., nonnegative)
and second that the proportion of units who benefit from treatment is at least a specific value
(e.g., at least 50%). For these conclusions, we derive the breakdown frontier for two kinds
of assumptions: one which indexes deviations from random assignment of treatment, and one
which indexes deviations from rank invariance. These classes of assumptions nest both the point
identifying assumptions of random assignment and rank invariance and the opposite end of no
constraints on treatment selection or the dependence structure between potential outcomes. This
frontier provides a quantitative measure of robustness of conclusions to deviations from the point
identifying assumptions. We derive

√
N -consistent sample analog estimators for these frontiers.

We then provide two asymptotically valid bootstrap procedures for constructing lower uniform
confidence bands for the breakdown frontier. As a measure of robustness, estimated breakdown
frontiers and their corresponding confidence bands can be presented alongside traditional point
estimates and confidence intervals obtained under point identifying assumptions. We illustrate
this approach in an empirical application to the effect of child soldiering on wages. We find
that the conclusions we consider are fairly robust to failure of rank invariance, when random
assignment holds, but these conclusions are much more sensitive to both assumptions for small
deviations from random assignment.
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1 Introduction

Traditional empirical analysis combines the observed data with a set of assumptions to draw con-

clusions about a parameter of interest. Breakdown frontier analysis reverses this ordering. It begins

with a fixed conclusion and asks, ‘What are the weakest assumptions needed to draw that conclu-

sion, given the observed data?’ For example, consider the impact of a binary treatment on some

outcome variable. The traditional approach might assume random assignment, point identify the

average treatment effect (ATE), and then report the obtained value. The breakdown frontier ap-

proach instead begins with a conclusion about ATE, like ‘ATE is positive’, and reports the weakest

assumption on the relationship between treatment assignment and potential outcomes needed to

obtain this conclusion, when such an assumption exists. When more than one kind of assumption

is considered, this approach leads to a curve, representing the weakest combinations of assumptions

which lead to the desired conclusion. This curve is the breakdown frontier.

At the population level, the difference between the traditional approach and the breakdown

frontier approach is a matter of perspective: an answer to one question is an answer to the other.

This relationship has long been present in the literature initiated by Manski on partial identification

(for example, see Manski 2007 or section 3 of Manski 2013). In finite samples, however, which

approach one chooses has important implications for how one does statistical inference. Specifically,

the traditional approach estimates the parameter or its identified set. Here we instead estimate

the breakdown frontier. The traditional approach then performs inference on the parameter or its

identified set. Here we instead perform inference on the breakdown frontier. Thus the breakdown

frontier approach puts the weakest assumptions necessary to draw a conclusion at the center of

attention. Consequently, by construction, this approach avoids the non-tight bounds critique of

partial identification methods (for example, see section 7.2 of Ho and Rosen 2016). One distinction

is that the traditional approach may require inference on a partially identified parameter. The

breakdown frontier approach, however, only requires inference on a point identified object.

The breakdown frontier we study generalizes the concept of an “identification breakdown point”

introduced by Horowitz and Manski (1995), a one dimensional breakdown frontier.1 Their break-

down point was further studied and generalized by Stoye (2005, 2010). Our emphasis on inference

on the breakdown frontier follows Kline and Santos (2013), who proposed doing inference on a

breakdown point. Finally, our focus on multi-dimensional frontiers builds on the graphical sensi-

tivity analysis of Imbens (2003). We discuss these papers and others in more detail at the end of

this section.

To illustrate the breakdown frontier approach, we study a simple potential outcomes model with

a binary treatment. Our main parameter of interest is the proportion of units who benefit from

treatment. Under random assignment of treatment and rank invariance, this parameter is point

1The identification breakdown point is distinct from the breakdown point introduced earlier by Hampel (1968,
1971) in the robust statistics literature that began with Huber (1964); also see Donoho and Huber (1983). Horowitz
and Manski (1995) give a detailed comparison of the two concepts. Throughout this paper we use the term “break-
down” in the same sense as Horowitz and Manski’s identification breakdown point.

2



D
e
v
ia

ti
o
n
 f

ro
m

 r
a
n
k
 i
n
v
a

ri
a
n
c
e

The Breakdown Frontier

Deviation from independence

Conclusion

    Holds

Inconclusive

  Evidence

Figure 1: An example breakdown frontier, partitioning the space of assumptions into the set for
which our conclusion of interest holds (the robust region) and the set for which our evidence is
inconclusive.

identified. One may be concerned, however, that these two assumptions are too strong. We relax

rank invariance by supposing that there are two types of units in the population: one type for which

rank invariance holds and another type for which it may not. The proportion t of the second type is

a measure of deviation from the rank invariance assumption. We relax random assignment using a

propensity score distance c ≥ 0 as in our previous work, Masten and Poirier (2017). We give more

details on both of these relaxations in section 2. We derive the sharp identified set for P(Y1 > Y0)

as a function of (c, t). For a specific conclusion, such as P(Y1 > Y0) ≥ 0.5, this identification result

defines a breakdown frontier.

Figure 1 illustrates this breakdown frontier. The horizontal axis measures c, the deviation

from the random assignment assumption. The vertical axis measures t, the deviation from rank

invariance. The origin represents the point identifying assumptions of random assignment and

rank invariance. Points along the vertical axis represent random assignment paired with various

relaxations of rank invariance. Points along the horizontal axis represent rank invariance paired with

various relaxations of random assignment. Points in the interior of the box represent relaxations

of both assumptions. The points in the lower left region are pairs of assumptions (c, t) such that

the data allow us to draw our desired conclusion: P(Y1 > Y0) ≥ 0.5. We call this set the robust

region. Specifically, no matter what value of (c, t) we choose in this region, the identified set for

P(Y1 > Y0) always lies completely above 0.5. The points in the upper right region are pairs of

assumptions that do not allow us to draw this conclusion. For these pairs (c, t) the identified set

for P(Y1 > Y0) contains elements smaller than 0.5. The boundary between these two regions is

precisely the breakdown frontier. The area under the breakdown frontier—the robust region—is a

quantitative measure of robustness.

Figure 2a illustrates how the breakdown frontier changes as our conclusion of interest changes.

3



Figure 2: Example breakdown frontiers

(a) For the claim P(Y1 > Y0) ≥ p, for five different values of p.

p =0.1 p =0.25 p =0.5 p =0.75 p =0.9

(b) For the claim ATE ≥ µ, for five different values of µ.

µ = −1.5 µ = −0.5 µ = 0 µ = 0.5 µ = 0.75

(c) For the joint claim P(Y1 > Y0) ≥ p and ATE ≥ 0, for five different values of p.

p =0.1, µ = 0 p =0.25, µ = 0 p =0.5, µ = 0 p =0.75, µ = 0 p =0.9, µ = 0

Specifically, consider the conclusion that

P(Y1 > Y0) ≥ p

for five different values for p. The figure shows the corresponding breakdown frontiers. As p

increases towards one, we are making a stronger claim about the true parameter and hence the set

of assumptions for which the conclusion holds shrinks. For strong enough claims, the claim may be

refuted even with the strongest assumptions possible. Conversely, as p decreases towards zero, we

are making progressively weaker claims about the true parameter, and hence the set of assumptions

for which the conclusion holds grows larger.

Under the strongest assumptions of (c, t) = (0, 0), the parameter P(Y1 > Y0) is point identified.

Let p0,0 denote its value. The value p0,0 is often strictly less than 1. In this case, any p ∈ (p0,0, 1]

yields a degenerate breakdown frontier: This conclusion is refuted under the point identifying

assumptions. Even if p0,0 < p, the conclusion P(Y1 > Y0) ≥ p may still be correct. This follows

since, for strictly positive values of c and t, the identified sets for P(Y1 > Y0) do contain values

larger than p0,0. But they also contain values smaller than p0,0. Hence there do not exist any

assumptions for which we can draw the desired conclusion.

The breakdown frontier is similar to the classical Pareto frontier from microeconomic theory: It
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shows the trade-offs between different assumptions in drawing a specific conclusion. For example,

consider figure 1. If we are at the top left point, where the breakdown frontier intersects the

vertical axis, then any relaxation of random assignment requires strengthening the rank invariance

assumption in order to still be able to draw our desired conclusion. The breakdown frontier specifies

the precise marginal rate of substitution between the two assumptions.

We also study breakdown frontiers and derive asymptotic distributional results for the average

treatment effect ATE = E(Y1 − Y0) and quantile treatment effects QTE(τ) = QY1(τ)−QY0(τ) for

τ ∈ (0, 1). Because the breakdown frontier analysis for these two parameters is nearly identical, we

focus on ATE for brevity. Since ATE does not rely on the dependence structure between potential

outcomes, assumptions regarding rank invariance do not affect the identified set. Hence, for a

specific conclusion like ATE ≥ 0, the breakdown frontiers are vertical lines. This was not the case

for the breakdown frontier for claims about P(Y1 > Y0), where the assumptions on independence

of treatment assignment and on rank invariance interact.

Figure 2b illustrates how the breakdown frontier for ATE changes as our conclusion of interest

changes. Specifically, consider the conclusion that

ATE ≥ µ

for five different values for µ. The figure shows the corresponding breakdown frontiers. As µ

increases, we are making a stronger claim about the true parameter and hence the set of assumptions

for which the conclusion holds shrinks. For strong enough claims, the claim may be refuted even

with the strongest assumptions possible. This happens when E(Y | X = 1) − E(Y | X = 0) < µ.

Conversely, as µ decreases, we are making progressively weaker claims about the true parameter,

and hence the set of assumptions for which the conclusion holds grows larger.

Breakdown frontiers can be defined for many simultaneous claims. For example, figure 2c

illustrates breakdown frontiers for the joint claim that P(Y1 > Y0) ≥ p and ATE ≥ 0, for five

different values of p. Compare these plots to those of figures 2a and 2b. For small p, many pairs

(c, t) lead to the conclusion P(Y1 > Y0) ≥ p. But many of these pairs do not also lead to the

conclusion E(Y1 − Y0) ≥ 0, and hence those pairs are removed. As p increases, however, the

constraint that we also want to conclude ATE ≥ 0 eventually does not bind. Similarly, if we look

at the breakdown frontier solely for our claim about ATE, many points (c, t) are included which

are ruled out when we also wish to make our claim about P(Y1 > Y0). This is especially true as p

gets larger.

Although we focus on one-sided claims like P(Y1 > Y0) ≥ p, one may also be interested in the

simultaneous claim that P(Y1 > Y0) ≥ p and P(Y1 > Y0) ≤ p, where p < p. Similarly to the

joint one-sided claims about P(Y1 > Y0) and ATE discussed above, the breakdown frontier for this

two-sided claim on P(Y1 > Y0) can be obtained by taking minimum of the two breakdown frontier

functions for each one-sided claim separately. Equivalently, the area under the breakdown frontier

for the two-sided claim is just the intersection of the areas under the breakdown frontiers for the

one-sided claims.
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As mentioned above, although identified sets are used in its definition, the breakdown frontier is

always point identified. Hence for estimation and inference we use mostly standard nonparametric

techniques. We first propose a consistent sample-analog estimator of the breakdown frontier. We

then do inference via two asymptotically valid bootstrap procedures. Our main approach, discussed

in section 3, relies on important work by Dümbgen (1993), Fang and Santos (2015), and Hong and

Li (2015). We discuss an alternative approach in appendix C. In both approaches we construct

one-sided lower uniform confidence bands for the breakdown frontier. Figure 6 on page 31 illustrates

such a band. A one-sided band is appropriate because our inferential goal is to determine the set

of assumptions for which we can still draw our conclusion. If α denotes the nominal size, then

approximately (1−α)100% of the time, all elements (c, t) which are below the confidence band lead

to population level identified sets for the parameters of interest which allow us to conclude that

our conclusions of interest hold; we also discuss a testing interpretation in appendix A. Keep in

mind that our reason for using one-sided confidence bands is unrelated to whether our conclusion

of interest is a one-sided or two-sided claim. We examine the finite sample performance of our main

approach in several Monte Carlo simulations.

Finally, we use our results to examine the role of assumptions in determining the effects of

child soldiering on wages, as studied in Blattman and Annan (2010). We illustrate how our results

can be used as a sensitivity analysis within a larger empirical study. Specifically, we begin by

first estimating and doing inference on parameters under point identifying assumptions. Next, we

estimate breakdown frontiers for several claims about these parameters. We present our one-sided

confidence bands as well. We then use these breakdown frontier point estimates and confidence

bands to judge the sensitivity of our conclusion to the point identifying assumptions: A large inner

confidence set for the robust region which includes many different points (c, t) suggests robust

results while a small inner confidence set close to the origin suggests non-robust results.

Related literature

In the rest of this section, we review the related literature. We begin with the identification

literature on breakdown points; as mentioned earlier, here we use “breakdown” in the same sense

as Horowitz and Manski’s (1995) identification breakdown point. This breakdown point idea goes

back to the one of the earliest sensitivity analyses, performed by Cornfield, Haenszel, Hammond,

Lilienfeld, Shimkin, and Wynder (1959). They essentially asked how much correlation between

a binary treatment and an unobserved binary confounder must be present to fully explain an

observed correlation between treatment and a binary outcome, in the absence of any causal effects

of treatment. This level of correlation between treatment and the confounder is a kind of breakdown

point for the conclusion that some causal effects of treatment are nonzero. Their approach was

substantially generalized by Rosenbaum and Rubin (1983), which is discussed in detail in chapter

22 of Imbens and Rubin (2015). Neither Cornfield et al. (1959) nor Rosenbaum and Rubin (1983)

formally defined breakdown points.
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Horowitz and Manski (1995) gave the first formal definition and analysis of breakdown points.

They studied a “contaminated sampling” model, where one observes a mixture of draws from the

distribution of interest and draws from some other distribution. An upper bound λ on the unknown

mixing probability indexes identified sets for functionals of the distribution of interest. They focus

on a single conclusion: That this functional is not equal to its logical bounds. They then define the

breakdown point λ∗ as the largest λ such that this conclusion holds. Put differently, λ∗ is the largest

mixing probability we can allow while still obtaining a nontrivial identified set for our parameter

of interest. They also relate this “identification breakdown point” to the earlier breakdown point

concepts studied in the robust statistics literature (e.g., Hampel, Ronchetti, Rousseeuw, and Stahel

1986 pages 96–98 and Huber and Ronchetti 2009 section 1.4 and chapter 11).

More generally, much work by Manski distinguishes between informative and noninformative

bounds (which the literature also sometimes calls tight and non-tight bounds; see section 7.2 of Ho

and Rosen 2016). The breakdown point is the boundary between the informative and noninforma-

tive cases. For example, see his analysis of bounds on quantiles with missing outcome data on page

40 of Manski (2007). There the identification breakdown point for the τth quantile occurs when

max{τ, 1−τ} is the proportion of missing data. Similar discussions are given throughout the book.

Stoye (2005, 2010) generalizes the formal identification breakdown point concept by noting

that breakdown points can be defined for any claim about the parameter of interest. He then

studies a specific class of deviations from the missing-at-random assumption in a model of missing

data. Kline and Santos (2013) study a different class of deviations from the missing-at-random

assumption and also define a breakdown point based on that class.

While all of these papers study a scalar breakdown point, Imbens (2003) studies a model of

treatment effects where deviations from conditional random assignment are parameterized by two

numbers r = (r1, r2). His parameter of interest θ(r) is point identified given a fixed value of

r. Imbens’ figures 1–4 essentially plot estimated level sets of this function θ(r), in a transformed

domain. While suggestive, these level sets do not generally have a breakdown frontier interpretation.

This follows since non-monotonicities in the function θ(r) lead to level sets which do not always

partition the space of sensitivity parameters into two connected sets in the same way that our

breakdown frontier does.

Neither Horowitz and Manski (1995) nor Stoye (2005, 2010) discuss estimation or inference of

breakdown points. Imbens (2003) estimates his level sets in an empirical application, but does not

discuss inference. Kline and Santos (2013), on the other hand, is the first and only paper we’re

aware of that explicitly suggests estimating and doing inference on a breakdown point. We build

on their work by proposing to do inference on the multi-dimensional breakdown frontier. This

allows us to study the tradeoff between different assumptions in drawing conclusions. They do

study something they call a ‘breakdown curve’, but this is a collection of scalar breakdown points

for many different claims of interest, analogous to the collection of frontiers presented in figures

2a, 2b, and 2c. Inference on a frontier rather than a point also raises additional issues they did

not discuss; see our appendix A for more details. Moreover, we study a model of treatment effects

7



while they look at a model of missing data, hence our identification analysis is different.

Our breakdown frontier is a known functional of the distribution of outcomes given treatment

and covariates and the observed propensity scores. This functional is not Hadamard differentiable,

however, which prevents us from applying the standard functional delta method to obtain its

asymptotic distribution. Instead, we show that it is Hadamard directionally differentiable, which

allows us to apply the results of Fang and Santos (2015). We then use the numerical bootstrap of

Dümbgen (1993) and Hong and Li (2015) to construct our confidence bands. For other applications

of Hadamard directional differentiability, see Lee and Bhattacharya (2016), Kaido (2016), and

Hansen (2017).

Our identification analysis builds on two strands of literature. First is the literature on relaxing

statistical independence assumptions. There is a large literature on this, including important work

by Rosenbaum and Rubin (1983), Robins, Rotnitzky, and Scharfstein (2000), and Rosenbaum

(1995, 2002). We apply results from our paper Masten and Poirier (2017), which discusses that

literature in more detail. In that paper we did not study estimation or inference. Second is

the literature on identification of the distribution of treatment effects Y1 − Y0, especially without

the rank invariance assumption. In their introduction, Fan, Guerre, and Zhu (2017) provide a

comprehensive discussion of this literature; also see Abbring and Heckman (2007) section 2. Here

we focus on the two papers most related to our sensitivity analysis. Heckman, Smith, and Clements

(1997) performed a sensitivity analysis to the rank invariance assumption by fixing the value of

Kendall’s τ for the joint distribution of potential outcomes, and then varying τ from −1 to 1; see

tables 5A and 5B. Their analysis is motivated by a search for breakdown points, as evident in their

section 4 title, “How far can we depart from perfect dependence and still produce plausible estimates

of program impacts?” Nonetheless, they do not formally define identified sets for parameters given

their assumptions on Kendall’s τ , and they do not formally define a breakdown point. Moreover,

they do not suggest estimating or doing inference on breakdown points. Fan and Park (2009)

provide formal identification results for the joint cdf of potential outcomes and the distribution of

treatment effects under the known Kendall’s τ assumption. They provide estimation and inference

methods for their bounds, but do not study breakdown points. Finally, none of these papers studies

the specific deviation from rank invariance we consider (as defined in section 2).

In this section we have focused narrowly on the papers most closely related to ours. We situate

our work more broadly in the literature on inference in sensitivity analyses in appendix A. In

that section we also briefly discuss Bayesian inference, although we use frequentist inference in this

paper.

2 Model and identification

To illustrate the breakdown frontier approach, we study the standard potential outcomes model with

a binary treatment. We focus on two key assumptions: random assignment and rank invariance.

We discuss how to relax these two assumptions and derive identified sets for various parameters
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under these relaxations. While there are many different ways to relax these assumptions, our goal is

to illustrate the breakdown frontier methodology and hence we focus on just one kind of deviation

for each assumption.

Setup

Let Y1 and Y0 denote the unobserved potential outcomes. Let X ∈ {0, 1} be an observed binary

treatment. We observe the scalar outcome variable

Y = XY1 + (1−X)Y0. (1)

For simplicity we omit covariates throughout most of this paper.

Let px = P(X = x) for x ∈ {0, 1}. We maintain the following assumption on the joint distribu-

tion of (Y1, Y0, X) throughout.

Assumption A1. For each x, x′ ∈ {0, 1}:

1. Yx | X = x′ has a strictly increasing and continuous distribution function on its support,

supp(Yx | X = x′).

2. supp(Yx | X = x′) = supp(Yx) = [y
x
, yx] where −∞ ≤ y

x
< yx ≤ ∞.

3. px > 0 for x = 0, 1.

Via A1.1, we restrict attention to continuously distributed potential outcomes. A1.2 states

that the unconditional and conditional supports of Yx are equal, and are a possibly infinite closed

interval. This assumption implies that the endpoints y
x

and yx are point identified. We maintain

A1.2 for simplicity, but it can be relaxed using similar derivations as in Masten and Poirier (2016).

A1.3 is an overlap assumption.

Define the rank random variables U0 = FY0(Y0) and U1 = FY1(Y1). Since FY1 and FY0 are

strictly increasing (by A1.1), U0 and U1 are uniformly distributed on [0, 1]. The value of unit i’s

rank random variable Ux tells us where unit i lies in the marginal distribution of Yx.

Identifying assumptions

It is well known that the joint distribution of potential outcomes (Y1, Y0) is point identified under

two assumptions:

1. Random assignment of treatment: X ⊥⊥ Y1 and X ⊥⊥ Y0.

2. Rank invariance: U1 = U0 almost surely.

Note that the joint independence assumption X ⊥⊥ (Y1, Y0) provides no additional identifying

power beyond the marginal independence assumption stated above. Any functional of FY1,Y0 is

point identified under these random assignment and rank invariance assumptions. The goal of our
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identification analysis is to study what can be said about such functionals when one or both of

these point-identifying assumptions fails. To do this we define two classes of assumptions: one

which indexes deviations from random assignment of treatment, and one which indexes deviations

from rank invariance. These classes of assumptions nest both the point identifying assumptions

of random assignment and rank invariance and the opposite end of no constraints on treatment

selection or the dependence structure between potential outcomes.

We begin with our measure of distance from independence.

Definition 1. Let c be a scalar between 0 and 1. Say X is c-dependent on the potential outcomes

Yx if

sup
y∈supp(Yx)

|P(X = x | Yx = y)− P(X = x)| ≤ c (2)

for x ∈ {0, 1}.

For c = 0, c-dependence implies X ⊥⊥ Y1 and X ⊥⊥ Y0. For c > 0, however, c-dependence allows

for some deviations from independence. We discuss c-dependence in detail in our previous paper

Masten and Poirier (2017).

Our second class of assumptions constrains the dependence structure between Y1 and Y0. By

Sklar’s Theorem (Sklar 1959), write

FY1,Y0(y1, y0) = C(FY1(y1), FY0(y0))

where C(·, ·) is a unique copula function. See Nelsen (2006) for an overview of copulas and Fan and

Patton (2014) for a survey of their use in econometrics. Restrictions on C constrain the dependence

between potential outcomes. For example, if

C(u1, u0) = min{u1, u0} ≡M(u1, u0),

then U1 = U0 almost surely. Thus rank invariance holds. In this case the potential outcomes Y1 and

Y0 are sometimes called comonotonic and M is called the comonotonicity copula. At the opposite

extreme, when C is an arbitrary copula, the dependence between Y1 and Y0 is constrained only by

the Fréchet-Hoeffding bounds, which state that

max{u1 + u0 − 1, 0} ≤ C(u1, u0) ≤M(u1, u0).

We next define a class of assumptions which includes both rank invariance and no assumptions on

the dependence structure as special cases.

Definition 2. The potential outcomes (Y1, Y0) satisfy (1−t)-percent rank invariance if their copula

C satisfies

C(u1, u0) = (1− t)M(u1, u0) + tH(u1, u0) (3)

where M(u1, u0) = min{u1, u0} and H is an arbitrary unknown copula.
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This assumption says the population is a mixture of two parts: In one part, rank invariance

holds. This part contains 100 · t% of the overall population. In the second part, rank invariance

fails in an arbitrary, unknown way. Hence, for this part, the dependence structure is unconstrained

beyond the Fréchet-Hoeffding bounds. This part contains 100(1 − t)% of the overall population.

Thus for t = 0 the usual rank invariance assumption holds, while for t = 1 no assumptions are

made about the dependence structure. For t ∈ (0, 1) we obtain a kind of partial rank invariance.

Note that by exercise 2.3 on page 14 of Nelsen (2006), a mixture of copulas like that in equation

(3) is also a copula.

To see this mixture interpretation formally, let T follow a Bernoulli distribution with P(T =

1) = t, where T is independent of (Y1, Y0). Suppose that individuals for whom Ti = 1 have an

arbitrary dependence structure, while those with Ti = 0 have rank invariant potential outcomes.

Then by the law of iterated expectations,

FY1,Y0(y1, y0) = (1− t)FY1,Y0|T (y1, y0 | 0) + tFY1,Y0|T (y1, y0 | 1)

= (1− t)M(FY1(y1), FY0(y0)) + tH(FY1(y1), FY0(y0)).

Our approach to relaxing rank invariance is an example of a more general approach. In this

approach we take a weak assumption and a stronger assumption and use them to define a continuous

class of assumptions by considering the population as a mixture of two subpopulations. The

weak assumption holds in one subpopulation while the stronger assumption holds in the other

subpopulation. The mixing proportion t continuously spans the two distinct assumptions we began

with. This approach was used earlier by Horowitz and Manski (1995) in their analysis of the

contaminated sampling model. While this general approach may not always be the most natural

way to relax an assumption, it is always available and hence can be used to facilitate breakdown

frontier analyses.

Throughout the rest of this section we impose both c-dependence and (1−t)-percent rank in-

variance.

Assumption A2.

1. X is c-dependent of the potential outcomes Yx, where c < min{p1, p0}.

2. (Y1, Y0) satisfies (1−t)-percent rank invariance where t ∈ [0, 1].

For brevity we focus on the case c < min{p1, p0} throughout this section.

Partial identification under deviations from independence and rank invariance

We next study identification under the deviations from full independence and rank invariance

defined above. We begin by briefly recalling results from Masten and Poirier (2017) on identification

of the quantile treatment effect QTE(τ) = QY1(τ) − QY0(τ), the average treatment effect ATE =

E(Y1 − Y0), and the marginal cdfs of potential outcomes under c-dependence. We then derive new
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identification results for the distribution of treatment effects (DTE), FY1−Y0(z), and its related

parameter P(Y1 > Y0).

In Masten and Poirier (2017), we showed that A1 and A2.1 imply that the identified set for

QTE(τ) is2 [
QTE(τ, c),QTE(τ, c)

]
≡
[
Qc
Y1

(τ)−QcY0(τ), Q
c
Y1(τ)−Qc

Y0
(τ)
]

(4)

where

Q
c
Yx(τ) = QY |X

(
τ +

c

px
min {τ, 1− τ} | x

)
(5)

Qc
Yx

(τ) = QY |X

(
τ − c

px
min {τ, 1− τ} | x

)
.

We further showed that, assuming E(|Y | | X = x) <∞ for x ∈ {0, 1}, the identified set for ATE is

[ATE(c),ATE(c)] ≡
[∫ 1

0
QTE(τ, c) du,

∫ 1

0
QTE(τ, c) du

]
(6)

and that

F
c
Yx(y) = min

{
FY |X(y | x)px

px − c
,
FY |X(y | x)px + c

px + c

}
(7)

and

F cYx(y) = max

{
FY |X(y | x)px

px + c
,
FY |X(y | x)px − c

px − c

}
(8)

are functionally sharp bounds on the cdf FYx . We use these marginal cdf bounds in our DTE bounds.

These results are unchanged if we further impose A2.2. That is, assumptions on rank invariance

have no identifying power for functionals of the marginal distributions of potential outcomes.

We next derive the identified set for the distribution of treatment effects (DTE), the cdf

FY1−Y0(z) = P(Y1 − Y0 ≤ z)

for a fixed z. While the ATE only depends on the marginal distributions of potential outcomes, the

DTE depends on the joint distribution of (Y1, Y0). Consequently, as we’ll see below, the identified

set for the DTE depends on the value of t.

For any z ∈ R define Yz = [y
1
, y1]∩ [y

0
+ z, y0 + z]. Note that supp(Y1−Y0) ⊆ [y

1
−y0, y1−y0

].

Let z be an element of [y
1
− y0, y1 − y0

] such that Yz is nonempty. If z is such that Yz is empty,

then the DTE is either 0 or 1 depending solely on the relative location of the two supports, which

is point identified by A1.2.

2In that paper we also extended the bounds in equations (4)–(8) to the c ≥ min{p1, p0} case.
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Define

DTE(z, c, t) = (1− t)P(Qc
Y1

(U)−QcY0(U) ≤ z) + t

(
1 + min

{
inf
y∈Yz

(F
c
Y1(y)− F cY0(y − z)), 0

})
DTE(z, c, t) = (1− t)P(Q

c
Y1(U)−Qc

Y0
(U) ≤ z) + tmax

{
sup
y∈Yz

(F cY1(y)− F cY0(y − z)), 0

}

where U ∼ Unif[0, 1]. The following result shows that these are sharp bounds on the DTE.

Theorem 1 (DTE bounds). Suppose the joint distribution of (Y,X) is known. Suppose A1 and

A2 hold. Let z ∈ [y
1
− y0, y1 − y

0
] be such that Yz is nonempty. Then the identified set for

P(Y1 − Y0 ≤ z) is

[DTE(z, c, t),DTE(z, c, t)].

The bound functions DTE(z, ·, ·) and DTE(z, ·, ·) are continuous and monotonic. When both

random assignment (c = 0) and rank invariance (t = 0) hold, these bounds collapse to a single point

and we obtain point identification. If we impose random assignment (c = 0) but allow arbitrary

dependence between Y1 and Y0 (t = 1) then we obtain the well known Makarov (1981) bounds.

For example, see equation (2) of Fan and Park (2010). DTE bounds have been studied extensively

by Fan and coauthors; see the introduction of Fan et al. (2017) for a recent and comprehensive

discussion of this literature.

Theorem 1 immediately implies that the identified set for P(Y1 − Y0 > z) is

P(Y1 − Y0 > z) ∈ [1−DTE(z, c, t), 1−DTE(z, c, t)].

In particular, setting z = 0 yields the proportion who benefit from treatment, P(Y1 > Y0). Thus

theorem 1 allows us to study sensitivity of this parameter to deviations from full independence and

rank invariance.

Finally, notice that all of the bounds and identified sets discussed in this section are analytically

tractable and depend on just two functions identified from the population—the conditional cdf

FY |X and the probability masses px. This suggests a plug-in estimation approach which we study

in section 3.

Breakdown frontiers

We now formally define the breakdown frontier, which generalizes the scalar breakdown point to

multiple assumptions or dimensions. We also define the robust region, the area below the breakdown

frontier. These objects can be defined for different conclusions about different parameters in various

models. For concreteness, however, we focus on just a few conclusions about P(Y1 − Y0 > z) and

ATE in the potential outcomes model discussed above.

We begin with the conclusion that P(Y1 − Y0 > z) ≥ p for a fixed p ∈ [0, 1] and z ∈ R. For

example, if z = 0 and p = 0.5, then this conclusion states that at least 50% of people have higher
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outcomes with treatment than without. If we impose random assignment and rank invariance, then

P(Y1 − Y0 > z) is point identified and hence we can directly check whether this conclusion holds.

But the breakdown frontier approach asks: What are the weakest assumptions that allow us to

draw this conclusion, given the observed distribution of (Y,X)? Specifically, since larger values of

c and t correspond to weaker assumptions, what are the largest values of c and t such that we can

still definitively conclude that P(Y1 − Y0 > z) ≥ p?
We answer this question in two steps. First we gather all values of c and t such that the

conclusion holds. We call this set the robust region. Since the lower bound of the identified set

for P(Y1 − Y0 > z) is 1 − DTE(z, c, t) (by theorem 1), the robust region for the conclusion that

P(Y1 − Y0 > z) ≥ p is

RR(z, p) = {(c, t) ∈ [0, 1]2 : 1−DTE(z, c, t) ≥ p}

= {(c, t) ∈ [0, 1]2 : DTE(z, c, t) ≤ 1− p}.

The robust region is simply the set of all (c, t) which deliver an identified set for P(Y1−Y0 > z) which

lies on or above p. See pages 60–61 of Stoye (2005) for similar definitions in the scalar assumption

case in a different model. Since DTE(z, c, t) is increasing in c and t, the robust region will be

empty if DTE(z, c, t) > 1− p, and non-empty if DTE(z, c, t) ≤ 1− p. That is, if the conclusion of

interest doesn’t even hold under the point identifying assumptions, it certainly will not hold under

weaker assumptions. From here on we only consider the first case, where the conclusion of interest

holds under the point identifying assumptions. That is, we suppose DTE(z, 0, 0) ≤ 1 − p so that

RR(z, p) 6= ∅.
The breakdown frontier is the set of points (c, t) on the boundary of the robust region. Specifi-

cally, for the conclusion that P(Y1 > Y0) ≥ p, this frontier is the set

BF(z, p) = {(c, t) ∈ [0, 1]2 : DTE(z, c, t) = 1− p}.

Solving for t in the equation DTE(z, c, t) = 1− p yields

bf(z, c, p) =
1− p− P(Qc

Y1
(U)−QcY0(U) ≤ z)

1 + min
{

infy∈Yz(F
c
Y1(y)− F cY0(y − z)), 0

}
− P(Qc

Y1
(U)−QcY0(U) ≤ z)

. (9)

Thus we obtain the following analytical expression for the breakdown frontier as a function of c:

BF(z, c, p) = min{max{bf(z, c, p), 0}, 1}.

This frontier provides the largest deviations c and t which still allow us to conclude that P(Y1−Y0 >

z) ≥ p. It thus provides a quantitative measure of robustness of this conclusion to deviations in the

point identifying assumptions of random assignment and rank invariance. Moreover, the shape of

this frontier allows us to understand the trade-off between these two types of deviations in drawing

our conclusion. We illustrate this trade-off between assumptions in our empirical illustration of
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section 5.

We next consider breakdown frontiers for ATE. Consider the conclusion that ATE ≥ µ for some

µ ∈ R. Analogously to above, the robust region for this conclusion is

RRate(µ) = {(c, t) ∈ [0, 1]2 : ATE(c) ≥ µ}

and the breakdown frontier is

BFate(µ) = {(c, t) ∈ [0, 1]2 : ATE(c) = µ}.

These sets are nonempty if ATE(0) ≥ µ; that is, if our conclusion holds under the point identifying

assumptions. As we mentioned earlier, rank invariance has no identifying power for ATE, and

hence the breakdown frontier is a vertical line at the point

c∗ = inf{c ∈ [0, 1] : ATE(c) ≤ µ}.

This point c∗ is a breakdown point for the conclusion that ATE ≥ µ. Note that continuity of

ATE(·) implies ATE(c∗) = µ. Thus we’ve seen two kinds of breakdown frontiers so far: The first

had nontrivial curvature, which indicates a trade-off between the two assumptions. The second was

vertical in one direction, indicating a lack of identifying power of that assumption.

We can also derive robust regions and breakdown frontiers for more complicated joint conclu-

sions. For example, suppose we are interested in concluding that both P(Y1 > Y0) ≥ p and ATE ≥ µ
hold. Then the robust region for this joint conclusion is just the intersection of the two individual

robust regions:

RR(0, p) ∩ RRate(µ).

The breakdown frontier for the joint conclusion is just the boundary of this intersected region.

Viewing these frontiers as functions mapping c to t, the breakdown frontier for this joint conclusion

can be computed as the minimum of the two individual frontier functions. For example, see figure

2c on page 4.

Above we focused on one-sided conclusions about the parameters of interest. Another natural

joint conclusion is the two-sided conclusion that P(Y1 − Y0 > z) ≥ p and P(Y1 − Y0 > z) ≤ p, for

0 ≤ p < p ≤ 1. No new issues arise here: the robust region for this joint conclusion is still the

intersection of the two separate robust regions. Keep in mind, though, that whether we look at a

one-sided or a two-sided conclusion is unrelated to the fact that we use lower confidence bands in

section 3.

Finally, the bootstrap procedures we propose in section 3 can also be used to do inference on

these joint breakdown frontiers. For simplicity, though, in that section we focus on the case where

we are only interested in the conclusion P(Y1 − Y0 > z) ≥ p.
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3 Estimation and inference

In this section we study estimation and inference on the breakdown frontier defined above. The

breakdown frontier is a known functional of the conditional cdf of outcomes given treatment and

the probability of treatment. Hence we propose simple sample analog plug-in estimators of the

breakdown frontier. We derive
√
N -consistency and asymptotic distributional results using a delta

method for directionally differentiable functionals. We then use a bootstrap procedure to construct

asymptotically valid lower confidence bands for the breakdown frontier. We conclude by discussing

selection of the tuning parameter for this bootstrap procedure.

Although we focus on inference on the breakdown frontier, one might also be interested in doing

inference directly on the parameters of interest. If we fix c and t a priori then we obtain identified

sets for ATE, QTE, and the DTE from section 2. Our asymptotic results below may be used as

inputs to traditional inference on partially identified parameters. See Canay and Shaikh (2017) for

a survey of this literature.

To establish our main asymptotic results, we present a sequence of results. Each result focuses

on a different component of the overall breakdown frontier: (1) the underlying conditional cdf

of outcomes given treatment and the probability of treatment, (2) the bounds on the marginal

distributions of potential outcomes, (3) the QTE bounds, (4) the ATE bounds, (5) breakdown

points for ATE, (6) the DTE under rank invariance but without full independence, (7) the DTE

without either rank invariance or full independence, and finally (8) the breakdown frontier itself.

Results (2)–(8) are new, while (1) follows from standard arguments.

We first suppose we observe a random sample of data.

Assumption A3. The random variables {(Yi, Xi)}Ni=1 are independently and identically distributed

according to the distribution of (Y,X).

We begin with the underlying parameters FY |X(y | x) and px = P(X = x). Let

F̂Y |X(y | x) =
1
N

∑N
i=1 1(Yi ≤ y)1(Xi = x)
1
N

∑N
i=1 1(Xi = x)

and

p̂x =
1

N

N∑
i=1

1(Xi = x)

denote the sample analog estimators of these two quantities. Let  denote weak convergence.

Using standard methods, the following result shows that these estimators converge uniformly in y

and x to a mean-zero Gaussian process.

Lemma 1. Suppose A3 holds. Then

√
N

(
F̂Y |X(y | x)− FY |X(y | x)

p̂x − px

)
 Z1(y, x),
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a mean-zero Gaussian process in `∞(R × {0, 1},R2) with continuous paths and covariance kernel

equal to

Σ1(y, x, ỹ, x̃) = E[Z1(y, x)Z1(ỹ, x̃)′]

=

(
FY |X(min{y,ỹ}|x)−FY |X(y|x)FY |X(ỹ|x)

px
1(x = x̃) 0

0 px1(x = x̃)− pxpx̃

)
.

Next consider the bounds (7) and (8) on the marginal distributions of potential outcomes.

These population bounds are a functional φ1 evaluated at (FY |X(· | ·), p(·)) where p(·) denotes the

probability px as a function of x ∈ {0, 1}. We estimate these bounds by the plug-in estimator

φ1(F̂Y |X(·, ·), p̂(·)). If this functional is differentiable in an appropriate sense,
√
N -convergence in

distribution of its arguments will carry over to the functional by the delta method. The type of

differentiability we require is Hadamard directional differentiability, first defined by Shapiro (1990)

and Dümbgen (1993), and further studied in Fang and Santos (2015).

Definition 3. Let D and E be Banach spaces with norms ‖·‖D and ‖·‖E. Let Dφ ⊆ D and D0 ⊆ D.

The map φ : Dφ → E is Hadamard directionally differentiable at θ ∈ Dφ tangentially to D0 if there

is a continuous map φ′θ : D0 → E such that

lim
n→∞

∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ∈ R+ such that tn ↘ 0, ‖hn − h‖D → 0, h ∈ D0 as n → ∞,

and θ + tnhn ∈ Dφ for all n.

If we further have that φ′θ is linear, then we say φ is Hadamard differentiable (proposition 2.1

of Fang and Santos 2015). Not every Hadamard directional derivative φ′θ must be linear, however.

We use the functional delta method for Hadamard directionally differentiable mappings (e.g.,

theorem 2.1 in Fang and Santos 2015) to show convergence in distribution of our estimators. Such

convergence is usually to a non-Gaussian limiting process. We do not use this distribution to do

inference since obtaining analytical asymptotic confidence bands would be challenging. Instead,

we use a bootstrap procedure to obtain asymptotically valid uniform confidence bands for our

breakdown frontier and associated estimators.

Returning to our population bounds (7) and (8), we estimate these by

F̂
c

Yx(y) = min

{
F̂Y |X(y | x)p̂x

p̂x − c
,
F̂Y |X(y | x)p̂x + c

p̂x + c

}
(10)

F̂
c

Yx(y) = max

{
F̂Y |X(y | x)p̂x

p̂x + c
,
F̂Y |X(y | x)p̂x − c

p̂x − c

}
.

In addition to assumption A1, we make the following regularity assumptions.
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Assumption A4.

1. For each x ∈ {0, 1}, −∞ < y
x
< yx < +∞.

2. For each x ∈ {0, 1}, FY |X(y | x) is continuously differentiable everywhere with density fY |X(y |
x) uniformly continuous in y, uniformly bounded from above, and uniformly bounded away

from zero on supp(Y | X = x).

A4.1 combined with our earlier assumption A1.2 constrain the potential outcomes to have

compact support. This compact support assumption is not used to analyze our cdf bounds es-

timators (10), but we use it later to obtain estimates of the corresponding quantile function

bounds uniformly over their arguments u ∈ (0, 1), which we then use to estimate the bounds

on P(QY1(U) − QY0(U) ≤ z). This is a well known issue when estimating quantile processes; for

example, see van der Vaart (2000) lemma 21.4(ii). A4.2 requires the density of Y | X to be bounded

away from zero uniformly. This ensures that conditional quantiles of Y | X are uniquely defined.

It also implies that the limiting distribution of the estimated quantile bounds will be well-behaved.

Uniform continuity of the density implies that the derivative of the conditional quantile function

with respect to τ are uniformly continuous.

For some of our main results in this section, we establish convergence uniformly over c ∈ C
for some finite grid C = {c1, c2, . . . , cJ} ⊂ [0,min{p1, p0}). We constrain this grid to be below

min{p1, p0} solely for simplicity, as all our results can be extended to grids C ⊂ [0, 1] by combining

our present bound estimates with estimates based on the c ≥ min{p1, p0} case given in Masten

and Poirier (2017). Uniformity over an interval of c does not hold since some of the functionals

below are not Hadamard directionally differentiable when their codomain is a set of functions on

that interval. To resolve this issue, we propose two ways of conducting inference on the breakdown

frontier uniformly over intervals of c. The first is to use the fixed grid and monotonicity of the

breakdown frontier to construct a uniform band. The second is to smooth the population breakdown

frontier such that it is Hadamard differentiable when viewed as a function of c.

The next result establishes convergence in distribution of the cdf bound estimators.

Lemma 2. Suppose A1, A3, and A4 hold. Let Y ⊂ R be a finite grid of points. Then

√
N

(
F̂
c

Yx(y)− F cYx(y)

F̂
c

Yx(y)− F cYx(y)

)
 Z2(y, x, c),

a tight random element of `∞(Y × {0, 1} × C,R2).

Z2 is not Gaussian itself, but it is a continuous transformation of Gaussian processes. A

characterization of this limiting process is given in the proof in appendix B.
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Next consider the quantile bounds (5), which we estimate by

Q̂
c

Yx(τ) = Q̂Y |X

(
τ +

c

p̂x
min{τ, 1− τ} | x

)
Q̂
c

Yx
(τ) = Q̂Y |X

(
τ − c

p̂x
min{τ, 1− τ} | x

)
.

The next result establishes uniform convergence in distribution of these quantile bounds estimators.

For the following results, let C ∈ (0,min{p1, p0}).

Lemma 3. Suppose A1, A3, and A4 hold. Then

√
N

(
Q̂
c

Yx(τ)−QcYx(τ)

Q̂
c

Yx
(τ)−Qc

Yx
(τ)

)
 Z3(τ, x, c),

a mean-zero Gaussian process in `∞((0, 1)× {0, 1} × [0, C],R2) with continuous paths.

This result is uniform in c on an interval, in x ∈ {0, 1}, and in τ ∈ (0, 1). This result directly

implies convergence over c ∈ C as well. Unlike the distribution of cdf bounds estimators, this process

is Gaussian. This follows by Hadamard differentiability of the mapping between θ0 ≡ (FY |X(· |
·), p(·)) and the quantile bounds. By applying the functional delta method, we can show asymptotic

normality of smooth functionals of these bounds. A first set of functionals are the QTE bounds of

equation (4), which are a linear combination of the quantile bounds. Let

Q̂TE(τ, c) = Q̂
c

Y1
(τ)− Q̂

c

Y0(τ) and Q̂TE(τ, c) = Q̂
c

Y1(τ)− Q̂
c

Y0
(τ).

Then,

√
N

(
Q̂TE(τ, c)−QTE(τ, c)

Q̂TE(τ, c)−QTE(τ, c)

)
 

(
Z

(1)
3 (τ, 1, c)− Z

(2)
3 (τ, 0, c)

Z
(2)
3 (τ, 1, c)− Z

(1)
3 (τ, 0, c)

)
,

where the superscript Z(j) denotes the jth component of the vector Z.

A second set of functionals are the ATE bounds from equation (6). These bounds are smooth

linear functionals of the QTE bounds. Therefore the joint asymptotic distribution of these bounds

can be established by the continuous mapping theorem. Let

ÂTE(c) =

∫ 1

0
Q̂TE(u, c) du and ÂTE(c) =

∫ 1

0
Q̂TE(u, c) du.

Then, by the linearity of the integral operator, these estimated ATE bounds converge to their

population counterpart at a
√
N -rate and therefore

√
N

(
ÂTE(c)−ATE(c)

ÂTE(c)−ATE(c)

)
 

( ∫ 1
0 (Z

(1)
3 (u, 1, c)− Z

(2)
3 (u, 0, c)) du∫ 1

0 (Z
(2)
3 (u, 1, c)− Z

(1)
3 (u, 0, c)) du

)
,
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a mean-zero Gaussian process in `∞([0, C],R2) with continuous paths.

Next consider estimation of the breakdown point for the claim that ATE ≥ µ where µ ∈ R.

To focus on the nondegenerate case, suppose the population value of ATE obtained under full

independence is greater than µ, ATE(0) > µ. Let

ĉ∗ = inf{c ∈ [0, 1] : ÂTE(c) ≤ µ}

be the estimated breakdown point. This is the estimated smallest deviation from independence such

that we cannot conclude that the ATE is strictly greater than µ. By the properties of the quantile

bounds as a function of c, the function ATE(c) is non-decreasing and directionally differentiable

everywhere. We now present a result about the asymptotic distribution of ĉ∗. For a function

f : R→ R, let

∂−u f(u0) = lim
t↗0

f(u0 + t)− f(u0)

t

denote the left-derivative of f at u0. Similarly, let

∂+
u f(u0) = lim

t↘0

f(u0 + t)− f(u0)

t

denote the right-derivative of f at u0.

Proposition 1. Suppose A1, A3, and A4 hold. Assume c∗ ∈ [0, C]. Suppose also that ∂−c ATE(c∗) 6=
0 and ∂+

c ATE(c∗) 6= 0. Then
√
N(ĉ∗ − c∗) Z4, a random variable.

The assumption that c∗ ∈ [0, C] can be relaxed to the general case where c∗ ∈ [0, 1] but we

maintain the stronger assumption for brevity. The derivatives of the ATE lower bound with respect

to c are assumed to be different from zero in both directions to allow for the limiting distribution

of the inverse of this function to exist.

Under rank invariance, we can also establish asymptotic normality of bounds for P(QY1(U) −
QY0(U) ≤ z), which are given by (P (c), P (c)) ≡ (DTE(z, c, 0),DTE(z, c, 0)). Estimates for these

quantities are provided by

P̂ (c) =

∫ 1

0
1(Q̂

c

Y1(u)− Q̂
c

Y0
(u) ≤ z) du

P̂ (c) =

∫ 1

0
1(Q̂

c

Y1
(u)− Q̂

c

Y0(u) ≤ z) du.

Asymptotic normality can be established using the Hadamard directional differentiability of the

mapping from the differences in quantile bounds to the bounds (P (c), P (c)). This mapping is called

the pre-rearrangement operator. Chernozhukov, Fernández-Val, and Galichon (2010) showed that

this operator was Hadamard differentiable when the quantile functions are continuously differen-

tiable for all u ∈ (0, 1). In our case, the underlying quantile functions are continuously differentiable

on (0, 1/2) ∪ (1/2, 1), and continuous but not differentiable at u = 1/2. At this value, the left and

right derivatives exist and are finite, but are generally different from one another. We extend
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the result of Chernozhukov et al. (2010) to the case where the quantile function has a point of

non-differentiability by showing Hadamard directional differentiability of this mapping.

To do so, we make additional assumptions on the behavior of these quantile functions.

Assumption A5. For each c ∈ C,

1. The number of elements in each of the sets

U∗1 (c) = {u ∈ (0, 1) : ∂−u (Q
c
Y1(u)−Qc

Y0
(u)) = 0 or ∂+

u (Q
c
Y1(u)−Qc

Y0
(u)) = 0}

U∗2 (c) = {u ∈ (0, 1) : ∂−u (Qc
Y1

(u)−QcY0(u)) = 0 or ∂+
u (Qc

Y1
(u)−QcY0(u)) = 0}

is finite.

2. The following hold.

(a) For any u ∈ U∗1 (c), Q
c
Y1(u)−Qc

Y0
(u) 6= z.

(b) For any u ∈ U∗2 (c), Qc
Y1

(u)−QcY0(u) 6= z.

These assumptions imply that the respective function’s derivatives change signs a finite number

of times, and therefore they cross the horizontal line at z a finite number of times. These func-

tions are continuously differentiable in u everywhere on (0, 1/2) ∪ (1/2, 1), and are directionally

differentiable at 1/2. The second assumption rules out that the functions are flat when exactly

valued at z. Failure of the second condition in this assumption implies that convergence will hold

uniformly over any compact subset that excludes these values, which typically form a measure-zero

set. Therefore this assumption can be satisfied by considering convergence for values of c which

exclude those where the second part of assumption 5 fails. Without knowing a priori at which val-

ues this assumption may fail, selecting grid points randomly from a continuous distribution ensures

that these values are selected with probability zero.

An alternative approach to inference if the second condition fails for some values of c is to

smooth the population function using methods described in appendix C. Like in Chernozhukov

et al. (2010), corollary 4, we require a tuning parameters to control the level of smoothing. We

show that
√
N -convergence holds for all parameter values when introducing any amount of fixed

smoothing.

Finally, note that A5 is refutable, since it is expressed as a function of identified quantities,

namely the QTE bounds for all u ∈ (0, 1).

With this additional assumption we can show
√
N -convergence of the bounds uniformly in C.

Lemma 4. Suppose A1, A3, A4, and A5 hold. Then

√
N

(
P̂ (c)− P (c)

P̂ (c)− P (c)

)
 Z5(c),

a tight random element in `∞(C,R2) with continuous paths.
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If random assignment holds (c = 0) in addition to rank invariance (t = 0), then the DTE is

point identified and lemma 4 gives the asymptotic distribution of the sample analog DTE estimator

(in this case the upper and lower bound functions are equal). This can be considered an estimator

of the DTE in one of the models of Matzkin (2003).

We now establish the limiting distribution of the DTE bounds uniformly in (c, t). Let

D̂TE(z, c, t) = (1− t)P̂ (c) + tmax

{
sup
a∈Yz

(F̂
c

Y1(a)− F̂
c

Y0(a− z)), 0
}

D̂TE(z, c, t) = (1− t)P̂ (c) + t

(
1 + min

{
inf
a∈Yz

(F̂
c

Y1(a)− F̂
c

Y0(a− z)), 0
})

.

We have shown in lemma 4 that the terms P (c) and P (c) are estimated at a
√
N -rate by

the Hadamard directional differentiability of the mapping linking empirical cdfs and these terms.

We now show that the second components of the DTE bounds are a Hadamard directionally

differentiable functional as well, leading to the
√
N joint convergence of these bounds to a tight,

random element uniformly in c and t.

Lemma 5. Suppose A1, A3, A4, and A5 hold. Then

√
N

(
D̂TE(z, c, t)−DTE(z, c, t)

D̂TE(z, c, t)−DTE(z, c, t)

)
 Z6(c, t), (11)

a tight random element of `∞(C × [0, 1],R2) with continuous paths.

Having established the convergence in distribution of the DTE, we can now show that the break-

down frontier also converges in distribution uniformly over its arguments. Denote the estimated

breakdown frontier for the conclusion that P(Y1 > Y0) ≥ p by

B̂F(0, c, p) = min{max{b̂f(0, c, p), 0}, 1} (12)

where

b̂f(0, c, p) =
1− p− P̂ (c)

1 + min
{

infy∈Y0(F̂
c

Y1(y)− F̂
c

Y0(y)), 0
}
− P̂ (c)

. (13)

By combining our previous lemmas, we can show that the estimated breakdown frontier con-

verges in distribution.

Theorem 2. Suppose A1, A3, A4, and A5 hold. Let P ⊂ [0, 1] be a finite grid of points. Then

√
N(B̂F(0, c, p)− BF(0, c, p)) Z7(c, p),

a tight random element of `∞(C × P).

This convergence is uniform over the deviation from independence c on any grid C, and over the

strength of the conclusion p on any grid P. This result essentially follows from the convergence of
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the preliminary estimators established in lemma 1 and by showing that the breakdown frontier is

a composition of a number of Hadamard differentiable and Hadamard directionally differentiable

mappings, implying convergence in distribution of the estimated breakdown frontier.

Breakdown frontiers for more complex conclusions can typically be constructed from breakdown

frontiers for simpler conclusions. For example, consider the breakdown frontier for the joint con-

clusion that P(Y1 > Y0) ≥ p and ATE ≥ µ. Then the breakdown frontier for this joint conclusion is

the minimum of the two individual frontier functions. Alternatively, consider the conclusion that

P(Y1 > Y0) ≥ p or ATE ≥ µ, or both, hold. Then the breakdown frontier for this joint conclusion

is the maximum of the two individual frontier functions. Since the minimum and maximum oper-

ators are Hadamard directionally differentiable, these joint breakdown frontiers will also converge

in distribution.

Since the limiting process is non-Gaussian, inference on the breakdown frontier is not based on

standard errors as with Gaussian limiting theory. Our processes’ distribution is characterized fully

by the expressions in the appendix, but obtaining analytical estimates of quantiles of functionals

of these processes would be challenging. In the next subsection we give details on the bootstrap

procedure we use to construct confidence bands for the breakdown frontier.

Bootstrap inference

As mentioned earlier, we use a bootstrap procedure to do inference on the breakdown frontier rather

than directly using its limiting process. In this subsection we discuss how to use the bootstrap to

approximate this limiting process. In the next subsection we discuss its application to constructing

uniform confidence bands.

First we define some general notation. Let Zi = (Yi, Xi) and ZN = {Z1, . . . , ZN}. Let θ0 denote

some parameter of interest and let θ̂ be an estimator of θ0 based on the data ZN . Let A∗N denote√
N(θ̂∗ − θ̂) where θ̂∗ is a draw from the nonparametric bootstrap distribution of θ̂. Suppose A

is the tight limiting process of
√
N(θ̂ − θ0). Denote bootstrap consistency by A∗N

P
 A where

P
 denotes weak convergence in probability, conditional on the data ZN . Weak convergence in

probability conditional on ZN is defined as

sup
h∈BL1

∣∣E[h(A∗N ) | ZN ]− E[h(A)]
∣∣ = op(1)

where BL1 denotes the set of Lipschitz functions into R with Lipschitz constant no greater than 1.

We focus on the following specific choices of θ0 and θ̂:

θ0 =

(
FY |X(· | ·)

p(·)

)
and θ̂ =

(
F̂Y |X(· | ·)

p̂(·)

)
.

For these choices, let Z∗N =
√
N(θ̂∗ − θ̂). Recall from lemma 1 that Z1 denotes the limiting

distribution of
√
N(θ̂ − θ0). Theorem 3.6.1 of van der Vaart and Wellner (1996) implies that

Z∗N
P
 Z1. Our parameters of interest are all functionals φ of θ0. For Hadamard differentiable
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functionals φ, the nonparametric bootstrap is consistent. For example, see theorem 3.1 of Fang

and Santos (2015). They further show that φ is Hadamard differentiable if and only if

√
N(φ(θ̂∗)− φ(θ̂))

P
 φ′θ0(Z1)

where φ′θ0 denotes the Hadamard derivative at θ0. This implies that the nonparametric bootstrap

can be used to do inference on the QTE and ATE bounds since they are Hadamard differentiable

functionals of θ0. A second implication is that the nonparametric bootstrap is not consistent for the

DTE or for the breakdown frontier for claims about the DTE since they are Hadamard directionally

differentiable mappings of θ0, but they are not ordinary Hadamard differentiable.

In such cases, Fang and Santos (2015) show that a different bootstrap procedure is consistent.

Specifically, let φ̂′θ0 be a consistent estimator of φ′θ0 . Then their results imply that

φ̂′θ0(Z∗N )
P
 φ′θ0(Z1).

Analytical consistent estimates of φ′θ0 are often difficult to obtain, so Dümbgen (1993) and Hong

and Li (2015) propose using a numerical derivative estimate of φ′θ0 . Their estimate of the limiting

distribution of
√
N(φ(θ̂)− φ(θ0)) is given by the distribution of

φ̂′θ0(
√
N(θ̂∗ − θ̂)) =

φ
(
θ̂ + εN

√
N(θ̂∗ − θ̂)

)
− φ(θ̂)

εN
(14)

across the bootstrap estimates θ̂∗. Under the rate constraints εN → 0 and
√
NεN →∞, and some

measurability conditions stated in their appendix, Hong and Li (2015) show

φ̂′θ0(
√
N(θ̂∗ − θ̂)) P

 φ′θ0(Z1).

where the left hand side is defined in equation (14).

This bootstrap procedures requires evaluating φ at two values, which is computationally simple.

It also requires selecting the tuning parameter εN , which we discuss later. Note that the standard,

or naive, bootstrap is a special case of this numerical delta method bootstrap where εN = N−1/2.

Uniform confidence bands for the breakdown frontier

In this subsection we combine all of our asymptotic results thus far to construct uniform confidence

bands for the breakdown frontier. As in section 2 we use the function BF(z, ·, p) to characterize

this frontier. We focus on z = 0 and a single fixed p so that our breakdown frontier is for the

claim that P(Y1 > Y0) ≥ p. Thus our goal is to do inference on the function BF(0, ·, p). We

specifically construct one-sided lower uniform confidence bands. That is, we will construct a lower
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band function L̂B(c) such that

lim
N→∞

P
(

L̂B(c) ≤ BF(0, c, p) for all c ∈ [0, 1]
)

= 1− α.

We use a one-sided lower uniform confidence band because this gives us an inner confidence set for

the robust region. Specifically, define the set

RRL = {(c, t) ∈ [0, 1]2 : t ≤ L̂B(c)}.

Then validity of the confidence band L̂B implies

lim
N→∞

P (RRL ⊆ RR) = 1− α.

Thus the area underneath our confidence band, RRL, is interpreted as follows: Across repeated

samples, approximately 100(1−α)% of the time, every pair (c, t) ∈ RRL leads to a population level

identified set for the parameter P(Y1 > Y0) which lies weakly above p. Put differently, approximately

100(1 − α)% of the time, every pair (c, t) ∈ RRL still lets us draw the conclusion we want at the

population level. Hence the size of this set RRL is a finite sample measure of robustness of our

conclusion to failure of the point identifying assumptions. We discuss an alternative testing-based

interpretation on page 48 in appendix A.

One might be interested in constructing one-sided upper confidence bands if the goal was to do

inference on the set of assumptions for which we cannot come to the conclusion of interest. This

might be useful in situations where two opposing sides are debating a conclusion. But since our

focus is on trying to determine when we can come to the desired conclusion, rather than looking

for when we cannot, we only describe the one-sided lower confidence band case.

When studying inference on scalar breakdown points, Kline and Santos (2013) constructed one-

sided lower confidence intervals. Unlike for breakdown frontiers, uniformity over different points in

the assumption space is not a concern for inference on breakdown points. See appendix A for more

discussion.

We consider bands of the form

L̂B(c) = B̂F(0, c, p)− k̂(c)

for some function k̂(·) ≥ 0. This band is an asymptotically valid lower uniform confidence band of

level 1− α if

lim
N→∞

P
(

B̂F(0, c, p)− k̂(c) ≤ BF(0, c, p) for all c ∈ [0, 1]
)

= 1− α,

or, equivalently, if

lim
N→∞

P

(
sup
c∈[0,1]

√
N
(

B̂F(0, c, p)− BF(0, c, p)− k̂(c)
)
≤ 0

)
= 1− α.
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In our theoretical analysis, we consider k̂(c) = ẑ1−ασ(c) for a scalar ẑ1−α and a function σ. We

focus on known σ for simplicity. We start by deriving a uniform band over a grid C, then extend it

over an interval using monotonicity of the breakdown frontier. As discussed earlier, we only derive

uniformity of the band over c ∈ [0, C] rather than over c ∈ [0, 1], but this is also for brevity and can

be relaxed. The choice of σ affects the shape of the confidence band, and there are many possible

choices of the function σ which yield valid level 1 − α uniform confidence bands. See Freyberger

and Rai (2017) for a detailed analysis. A simple choice of σ is the constant function: σ(c) = 1,

which delivers an equal width uniform band. Alternatively, as we do below, one could choose σ(c)

to construct a minimum width confidence band (equivalently, maximum area of RRL).

Proposition 2. Suppose A1, A3, A4, and A5 hold. Define φ : `∞(R × {0, 1},R2) → `∞(C) such

that

B̂F(0, c, p) = [φ(θ̂)](c).

Then φ is Hadamard directionally differentiable. Suppose that εN → 0 and
√
NεN → ∞. Let θ̂∗

denote a draw from the nonparametric bootstrap distribution of θ̂. Then[
φ̂′θ0(
√
N(θ̂∗ − θ̂))

]
P
 
[
φ′θ0(Z1)

]
≡ Z7. (15)

For a given function σ(·) such that infc∈C σ(c) > 0, define

ẑ1−α = inf

z ∈ R : P

sup
c∈C

[
φ̂′θ0(
√
N(θ̂∗ − θ̂))

]
(c, p)

σ(c)
≤ z | ZN

 ≥ 1− α

 . (16)

Finally, suppose also that the cdf of

sup
c∈C

[φ′θ0(Z1)](c, p)

σ(c)
= sup

c∈C

Z7(c, p)

σ(c)

is continuous and strictly increasing at its 1−α quantile, denoted z1−α. Then ẑ1−α = z1−α+ op(1).

This proposition is a variation of corollary 3.2 in Fang and Santos (2015). As a consequence of

this result, the lower 1 − α band L̂B(c) = B̂F(0, c, p) − ẑ1−ασ(c) is valid uniformly on the grid C.
To extend the uniformity to all of [0, C] we propose the following lower confidence band:

L̃B(c) =



L̂B(c1) if c ∈ [0, c1]
...

L̂B(cj) if c ∈ (cj−1, cj ], for j = 2, . . . , J
...

0 if c ∈ (cJ , C].

This band is a step function which interpolates between grid points using the least monotone
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interpolation. The following result shows its validity.

Corollary 1. Let the assumptions of proposition 2 hold. Then, L̃B(c) is a uniform lower 1 − α
band for BF(0, c, p) over c ∈ [0, C].

Rather than fixing the number of grid points, one could let J →∞ sufficiently slowly as N →∞
and show that any interpolated band gets arbitrarily close to a band uniform over [0, C]. Horowitz

and Lee (2012, 2017) discuss this approach in different settings.

Proposition 2 can be extended to estimated functions σ, although we leave the details for future

work. We use an estimated σ in our application, as described next. When both z1−α and σ are

estimated, we let k̂(c) = ẑ1−ασ̂(c). We choose k̂(c) to minimize an approximation to the area

between the confidence band and the estimated function; equivalently, to maximize the area of

RRL. Specifically, we let k̂(c1), . . . , k̂(cJ) solve

min
k(c1),...,k(cJ )≥0

J∑
j=2

k(cj)(cj − cj−1)

subject to

P

(
sup

c∈{c1,...,cJ}

√
N
(

B̂F(0, c, p)− BF(0, c, p)− k(c)
)
≤ 0

)
= 1− α,

where we approximate the left-hand side probability via the numerical delta method bootstrap.

The criterion function here is just a right Riemann sum over the grid points.

Bootstrap selection of εN

While Dümbgen (1993) and Hong and Li (2015) provide rate constraints on εN , they do not

recommend a procedure for picking εN in practice. In this section, we propose a bootstrap method

for picking εN . We use this method for our empirical illustration in section 5; we also present the

full range of bands considered. Since the question of choosing εN goes beyond the purpose of the

present paper, we defer a formal analysis of this method to future research. For discussions of

bootstrap selection of tuning parameters in other problems, see Taylor (1989), Léger and Romano

(1990), Marron (1992), and Cao, Cuevas, and Manteiga (1994).

Fix a p. Let CPN (ε;FY,X,W ) denote the finite sample coverage probability of our confidence

band as described above, for a fixed ε. This statistic depends on the unknown distribution of the

data, FY,X,W . Here we allow for covariates W , as discussed in Masten and Poirier (2017). The

bootstrap replaces FY,X,W with an estimator F̂Y,X,W . We pick a grid {ε1, . . . , εK} of ε’s and let ε̂N

solve

min
k=1,...,K

|CPN (εk; F̂Y,X,W )− (1− α)|.

We compute CPN by simulation. In our empirical illustration, we take B = 500 draws. We

use the same grid of ε’s as in our Monte Carlo simulations of section 4. Larger grids and larger

values of B can be chosen subject to computational constraints. We furthermore must choose
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!4 !2 0 2 4 6

Figure 3: The two distributions of Y | X = x for our Monte Carlo simulation. The dashed line is
Y | X = 0 while the solid line is Y | X = 1.

an estimator F̂Y,X,W . The nonparametric bootstrap uses the empirical distribution. We use the

smoothed bootstrap (De Angelis and Young 1992, Polansky and Schucany 1997). Specifically, we

estimate the distribution of (X,W ) by its empirical distribution. We then let F̂Y |X,W be a kernel

smoothed cdf estimate of the conditional cdf of Y |X,W . We use the standard logistic cdf kernel

and the method proposed by Hansen (2004) to choose the smoothing bandwidths. We divide

these bandwidths in half since this visually appears to better capture the shape of the conditional

empirical cdfs, and since smaller order bandwidths are recommended for the smoothed bootstrap

(section 4 of De Angelis and Young 1992).

Bootstrap consistency requires sufficient smoothness of the functional of interest in the under-

lying cdf. As mentioned earlier, formally investigating this issue is beyond the scope of this paper.

Our goal here is merely to suggest a simple first-pass approach at choosing εN .

4 Monte Carlo simulations

In this section we study the finite sample performance of our estimation and inference procedures.

We consider the following dgp. For x = 0, 1, Y | X = x has a truncated normal distribution, with

density

fY |X(y | x) =
1

γx+ 1
φ[−4,4]

(
y − πx
γx+ 1

)
,

where φ[−4,4] is the truncated standard normal density. We let γ = 0.1 and π = 1. These two

densities are shown in figure 3. We set P(X = 1) = 0.5. This dgp implies a joint distribution

of (Y,X), which we draw independently from. Figure 2a in the introduction shows population

breakdown frontiers for this dgp.

We consider two sample sizes, N = 500 and N = 2000. For each sample size we generate

S = 500 simulated datasets. In each dataset we compute the estimated breakdown frontier and

a 95% lower bootstrap uniform confidence band, as discussed in section 3. We use B = 1000

bootstrap draws. We consider the same five values of p used in the introduction: 0.1, 0.25, 0.5,

0.75, and 0.9.
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Figure 4: Left: N = 500. Right: N = 2000. These plots show the sampling distribution of our
breakdown frontier estimator by gathering the point estimates of the breakdown frontier across all
Monte Carlo simulations into one plot. The true breakdown frontier is shown on top in white.

First we consider the performance of our point estimator of the breakdown frontier. Figure

4 shows the sampling distribution of our breakdown frontier estimator. We show only p = 0.25,

but the other values of p yield similar figures. For this p, we gather all point estimates of the

breakdown frontier in the same plot. These plots show several features. First, as predicted by

consistency, the sampling distribution becomes tighter around the truth as sample size increases.

Second, the sampling distribution is not symmetric around the true frontier—it generally appears

biased downwards. This is confirmed in figure 5 which plots the estimated finite sample mean

function, Ê[B̂F(c)]. This mean is estimated as the sample mean across all of our Monte Carlo

datasets; that is, across all estimates shown in figure 4. The figure also shows the true breakdown

frontier as a dotted line. In general the truth lies above the mean function. Again by consistency,

this finite sample bias converges to zero as sample size increases, which we see when comparing the

top row to the bottom row.

Next we consider the performance of our confidence bands. Figure 6 shows an example band

along with the estimated frontier and the true frontier. To evaluate the performance of bands

like this, we compute uniform coverage probabilities. We use 50 grid points for computing and

evaluating uniform coverage of the confidence band. Table 1 shows the results. Here we present a

range of choices for εN . Since εnaive
N = 1/

√
N yields the naive bootstrap, we use this choice as our

baseline. We then consider seven other choices by rescaling the naive εN . Specifically, we consider

εN = Kεnaive
N for K ∈ {0.5, 1.5, 2, 4, 6, 8, 10}. Recall that Hong and Li (2015) impose the rate

constraints that εN → 0 and
√
NεN →∞. Hence asymptotically the ratio εN/ε

naive
N must diverge.

First consider N = 500. For p = 0.1, 0.25, and 0.75, the choice of εN which yields coverage

probabilities closest to the nominal coverage of 0.95 is twice the naive choice. This is also approxi-

mately true for p = 0.5. For p = 0.9, the next largest εN has the coverage probability closest to the

nominal coverage. Focusing on these choices of εN , the coverage probabilities are relatively close
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Figure 5: Rows are sample sizes (top is N = 500, bottom is N = 2000). Columns are five values
of p (from left to right: p = 0.1, 0.25, 0.5, 0.75, and 0.9). Dotted lines are the true breakdown

frontiers. The solid lines are the Monte Carlo estimates of E[B̂F(c)]. This plot shows the finite
sample bias of our breakdown frontier estimator.

to the nominal for the ‘outside’ columns p = 0.1, 0.25, and 0.9. For the ‘inside’ columns p = 0.25

and p = 0.5, we have substantial over-coverage. Indeed, for p = 0.1, 0.25, and 0.5, all choices of

εN ’s considered lead to over-coverage. For the two larger values of p, some values of εN lead to

under-coverage. Finally, with εN ’s large enough, we obtain 100% coverage for all p’s.

Next consider N = 2000. Here we obtain similar results. For p = 0.1 and 0.25, the choice of εN

which yields coverage probabilities closest to the nominal coverage of 0.95 is four times the naive

choice. This is also approximately true for p = 0.5. For p = 0.75, the next largest εN is the best

(six times the naive choice). For p = 0.9, an even larger εN is the best (eight times the naive, with

the optimal scaling probably around seven). And for εN ’s large enough, we obtain essentially 100%

coverage for all p’s.

Before we interpret these results, we discuss one more table, table 2. While table 1 showed

coverage probabilities, table 2 gives us an idea of the power of our confidence bands. For each

simulation, we compute the ratio of the area under the confidence band to the area under the

estimated breakdown frontier. By definition our confidence bands are all below the estimated

breakdown frontier and hence this ratio can never be larger than one. Although we do not perform

formal analysis of power, this ratio gives us an idea of the main trade-off in obtaining our confidence

bands: We want them to be as large as possible subject to the constraint that they have correct

coverage. This is how we defined our band in section 3, for a fixed εN . Here we compare the

properties of these bands across different εN ’s. First consider N = 500 and p = 0.1. From table

1, twice the naive choice of εN yields the closest to nominal coverage. All other choices gave over-

coverage. We see this in table 2 since twice the naive choice gives essentially the largest area—all

but one other choice have smaller area. Similarly, for p = 0.9, the best choice based on table 1 is

four times the naive choice, which gives an area under the confidence band of 47% that of the area

under the estimated breakdown frontier. Smaller εN ’s give larger areas, but under-cover. Larger

εN ’s give smaller areas, but over-cover. For large enough εN , the confidence bands get close to
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Figure 6: N = 500. Example 95% lower uniform confidence band (dotted line), estimated break-
down frontier (solid line), true breakdown frontier (dashed line).

zero everywhere, and hence have very small area and 100% coverage. The results for N = 2000 are

similar.

In table 1 we saw that most combinations of p and εN led to over-coverage. This is caused

by a downward bias in our estimated breakdown frontiers, as shown in figure 5. Since we are

constructing lower confidence bands, this downward bias causes our confidence bands to over-

cover. Although this finite-sample bias disappears asymptotically, one may wish to do a finite-

sample bias correction to obtain higher-order refinements. Fan and Park (2009) previously studied

this specific bias problem, in the case with random assignment (our c = 0) and no assumptions

on rank invariance (our t = 1). They propose analytical and bootstrap bias corrected estimators

of the bounds. Chernozhukov, Lee, and Rosen (2013) study a related problem. We leave such

higher-order refinements to future work.

5 Empirical illustration: The effects of child soldiering

In this section we use our results to examine the impact of assumptions in determining the effects of

child soldiering on wages. We first briefly discuss the background and then we present our analysis.

Background

We use data from phase 1 of SWAY, the Survey of War Affected Youth in northern Uganda,

conducted by principal researchers Jeannie Annan and Chris Blattman (see Annan, Blattman, and

Horton 2006). As Blattman and Annan (2010) discuss on page 882, a primary goal of this survey

was to understand the effects of a twenty year war in Uganda, where “an unpopular rebel group

has forcibly recruited tens of thousands of youth”. In that paper, they use this data to examine
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Table 1: Coverage Probabilities

p

N εN εN/ε
naive
N 0.10 0.25 0.50 0.75 0.90

500 0.0224 0.50 1.000 1.000 0.998 0.966 0.898
0.0447 1.00 0.986 0.992 0.990 0.928 0.892
0.0671 1.50 0.970 0.990 0.988 0.922 0.884
0.0894 2.00 0.956 0.990 0.990 0.936 0.884
0.1789 4.00 0.974 0.994 0.994 0.980 0.956
0.2683 6.00 0.998 1.000 1.000 1.000 1.000
0.3578 8.00 1.000 1.000 1.000 1.000 1.000
0.4472 10.00 1.000 1.000 1.000 1.000 1.000

2000 0.0112 0.50 0.994 1.000 0.992 0.934 0.934
0.0224 1.00 0.986 0.992 0.990 0.934 0.918
0.0335 1.50 0.980 0.988 0.986 0.932 0.900
0.0447 2.00 0.980 0.976 0.982 0.930 0.882
0.0894 4.00 0.952 0.970 0.984 0.926 0.870
0.1342 6.00 0.960 0.982 0.986 0.942 0.906
0.1789 8.00 0.980 0.996 1.000 0.990 0.978
0.2236 10.00 0.994 1.000 1.000 1.000 1.000

Nominal coverage is 1− α = 0.95. As discussed in the body text, the choice
εnaiveN = 1/

√
N yields the naive bootstrap. Cell values show uniform-over-

c coverage probabilities of one-sided lower confidence bands, computed to
maximize total area under the band.

the impacts of abduction on educational, labor market, psychosocial, and health outcomes. In our

illustration, we focus solely on the impact of abduction on wages.

Blattman and Annan note that self-selection into the military is a common problem in the

literature studying the effects of military service on outcomes. They argue that forced recruitment

in Uganda led to random assignment of military service in their data. They first provide qualitative

evidence for this, based on interviews with former rebels who led raiding parties. After murdering

and mutilating civilians, the rebels had no public support, making abduction the only means of

recruitment. Youths were generally taken during nighttime raids on rural households. According

to the former rebel leaders, “targets were generally unplanned and arbitrary; they raided whatever

homesteads they encountered, regardless of wealth or other traits.”

This qualitative evidence is supported by their survey data, where Blattman and Annan show

that most pre-treatment covariates are balanced across the abducted and nonabducted groups (see

their table 2). Only two covariates are not balanced: year of birth and prewar household size. They

say this is unsurprising because

“a youth’s probability of ever being abducted depended on how many years of the

conflict he fell within the [rebel group’s] target age range. Moreover, abduction levels

varied over the course of the war, so youth of some ages were more vulnerable to

abduction than others. The significance of household size, meanwhile, is driven by
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Table 2: Proportional area under the confidence bands

p

N εN εN/ε
naive
N 0.10 0.25 0.50 0.75 0.90

500 0.0224 0.50 0.644 0.643 0.637 0.672 0.734
0.0447 1.00 0.759 0.716 0.705 0.740 0.774
0.0671 1.50 0.780 0.734 0.722 0.751 0.776
0.0894 2.00 0.779 0.730 0.722 0.746 0.763
0.1789 4.00 0.604 0.552 0.541 0.529 0.468
0.2683 6.00 0.252 0.174 0.117 0.069 0.024
0.3578 8.00 0.022 0.007 0.001 0.000 0.000
0.4472 10.00 0.000 0.000 0.000 0.000 0.000

2000 0.0112 0.50 0.869 0.832 0.808 0.834 0.884
0.0224 1.00 0.894 0.865 0.841 0.862 0.896
0.0335 1.50 0.901 0.876 0.853 0.873 0.901
0.0447 2.00 0.904 0.882 0.859 0.879 0.902
0.0894 4.00 0.906 0.879 0.862 0.877 0.890
0.1342 6.00 0.875 0.840 0.829 0.837 0.833
0.1789 8.00 0.814 0.755 0.732 0.717 0.665
0.2236 10.00 0.704 0.615 0.563 0.499 0.387

Nominal coverage is 1− α = 0.95. As discussed in the body text, the choice
εnaiveN = 1/

√
N yields the naive bootstrap. Cell values show the average

(across simulations) ratio of the area under the confidence band to the area
under the estimated breakdown frontier.

households greater than 25 in number. We believe that rebel raiders, who traveled in

small bands, were less likely to raid large, difficult-to-control households.” (Page 887)

Hence they use a selection-on-observables identification strategy, conditioning on these two vari-

ables.

While their evidence supporting the full conditional independence assumption is compelling,

this assumption is still nonrefutable. Hence they apply the methods of Imbens (2003) to analyze

the sensitivity to this assumption. In this analysis they only consider one outcome variable, years of

education. Likewise, as in Imbens (2003), they only look at one parameter, the constant treatment

effect in a fully parametric model.

We complement their results by applying the breakdown frontier methods we develop in this

paper. We focus on the log-wage outcome variable. We look at both the average treatment effect

and P(Y1 > Y0), which was not studied in Blattman and Annan (2010).

Analysis

The original phase 1 SWAY data has 1216 males born between 1975 and 1991. Of these, wage data

is available for 504 observations. 56 of these earned zero wages; we drop these and only look at

people who earned positive wages. This leaves us with our main sample of 448 observations. In
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Table 3: Summary statistics

Variable Name Mean Median Stddev Min Max

Daily wage in Uganda shillings 2957.60 1400.00 6659.76 35.71 83333.34
Log wage 7.23 7.24 1.18 3.58 11.33
Not abducted? 0.36 0.00 0.48 0.00 1.00
Age when surveyed 22.11 22.00 4.88 14.00 30.00
Household size in 1996 8.31 8.00 4.19 2.00 28.00

Sample size is 448. 1 USD is approximately 1800 Uganda shillings (Exchange rate at time of
survey, 2005-2006; source: World Bank).

addition to this outcome variable, we let our treatment variable be an indicator that the person was

not abducted. We include the two covariates discussed above, age when surveyed and household

size in 1996. Additional covariates can be included, but we focus on just these two for simplicity.

Table 3 shows summary statistics for these four variables. 36% of our sample were not abducted.

Age ranges from 14 years old to 30 years old, with a median of 22 years old. Household size ranges

from 2 people to 28, with a median of 8 people. Wages range from as low as 36 shillings to as high

as about 83,300 shillings, with a median of 1,400 shillings.

Age has 17 support points and household size has 21 support points. Hence there are 357

total covariate cells. Including the treatment variable, this yields 714 total cells, compared to

our sample size of 448 observations. Since we focus on unconditional parameters, having small or

zero observations per cell is not a problem in principle. However, in the finite sample we have,

to ensure that our estimates of the cdf bounds F
c
Yx(y) and F cYx(y) are reasonably smooth in y,

we collapse our covariates as follows. We replace age with a binary indicator of whether one is

above or below the median wage. Likewise, we replace household size with a binary indicator of

whether one lived in a household with above or below median household size. This reduces the

number of covariate cells to 4, giving 8 total cells including the treatment variable. This yields

approximately 55 observations per cell. While this crude approach suffices for our illustration, in

more extensive empirical analyses one may want to use more sophisticated methods. For example,

we could use discrete kernel smoothing, as discussed in Li and Racine (2008), who also provide

additional references.

Table 4 shows unconditional comparisons of means of the outcome and the original covariates

across the treatment and control groups. Wages for people who were not abducted are 702 shillings

larger on average. People who were not abducted are also about 1.4 years younger than those who

were abducted. People who were not abducted also had a slightly larger household size than those

who were abducted. Only the difference in ages is statistically significant at the usual levels, but as

in tables 2 and 3 of Blattman and Annan (2010) the standard errors can be decreased by including

additional controls. These extra covariates are not essential for illustrating our breakdown frontier

methods, however.

The point estimates in table 4 are unconditional on the two covariates. Next we consider the

conditional independence assumption, with age and household size in 1996 as our covariates. Under

34



Table 4: Comparison of means

Variable Name Not Abducted Abducted Difference

Daily wage in Uganda shillings 3409.12 2706.75 702.36 [725.49]
Log wage 7.33 7.18 0.15 [0.12]
Age when surveyed 21.23 22.60 -1.37 [0.48]
Household size in 1996 8.53 8.19 0.34 [0.42]

Observations 160 288

Sample size is 448. 1 USD is approximately 1800 Uganda shillings (Exchange rate at time of
survey, 2005-2006; source: World Bank). Standard errors in brackets.

this assumption, our estimate of ATE is 890 [726.13] shillings when the outcome variable is level of

wages, and is 0.21 [0.11] when the outcome variable is log wage. To check the robustness of these

point estimates to failure of conditional independence, we estimate the breakdown point c∗ for the

conclusion ATE ≥ 0, where we use log-wages as our outcome variable. We measure deviations from

conditional independence by our conditional c-dependence distance. The estimated breakdown

point is ĉ∗ = 0.041. Based on this point estimate, for all x ∈ {0, 1} and w ∈ supp(W ) we can allow

the conditional propensity scores P(X = x | Yx = y,W = w) to vary ±4 percentage points around

the observed propensity scores P(X = x |W = w) without changing our conclusion.

Is this a big or small amount of variation? Well, as a baseline, the upper bound on c is about

0.73. This is an estimate of

max
w∈supp(W )

max{P(X = 1 |W = w),P(X = 0 |W = w)}.

Any c ≥ 0.73 would lead to the no assumptions identified set for ATE. In this sense, 0.041 is quite

small, which would suggest that our results are quite fragile. Next we examine variation in the

observed propensity scores as we suggested in Masten and Poirier (2017). Specifically, we consider

the difference between the “full” propensity score and the “leave out variable k” propensity score

which omits variable k: Define

cage = sup
s=0,1

sup
a=0,1

|P̂(X = 1 | age = a, hhSize = s)− P̂(X = 1 | hhSize = s)|

and

chhSize = sup
a=0,1

sup
s=0,1

|P̂(X = 1 | age = a, hhSize = s)− P̂(X = 1 | age = a)|.

Using these numbers as a reference, a robust result would have a breakdown point above one or both

of the c’s. In the data, we obtain cage = 0.0625 and chhSize = 0.0403. The estimated breakdown

point ĉ∗ = 0.041 is below cage and approximately equal to chhSize. This latter result suggests that

perhaps our conclusion could be considered somewhat robust. Accounting for sampling uncertainty

in the breakdown point, however, shows that the true breakdown point may be less than chhSize.

Overall, this suggests that our conclusion that ATE ≥ 0 is not robust to deviations from full
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conditional independence.

This argument for judging the plausibility of specific values of c relies on using variation in

the observed propensity score to ground our beliefs about reasonable variation in the unobserved

propensity scores. The general question here is how one should quantitatively distinguish ‘large’ and

‘small’ deviations in an assumption. This is an old and ongoing question in the sensitivity analysis

literature, and much work remains to be done. For discussions on this point for different measures

of deviations from independence in various settings, see Rotnitzky, Robins, and Scharfstein (1998),

Robins (1999), Imbens (2003), Altonji, Elder, and Taber (2005, 2008), and Oster (2016).

Next consider the parameter P(Y1 > Y0). Since we define treatment as not being abducted, this

parameter measures the proportion of people who earn higher wages when they are not abducted,

compared to when they are abducted. For this parameter, we must make both the full conditional

independence assumption and the rank invariance assumption to obtain point identification. Under

these assumptions, our point estimate is 0.93 with a 95% CI of [0.44, 0.99]. Given the severity of

being abducted, it is not surprising that our point estimate is so high.

Is this point estimate robust to failures of full conditional independence and rank invariance?

We examine this question by estimating breakdown frontiers and corresponding confidence bands

for the conclusion that P(Y1 > Y0) ≥ p. We do this for p = 0.1, 0.25, 0.5, 0.75, and 0.9 as in our

Monte Carlo simulations. Besides picking a grid of p’s a priori, one could let p = p̂0,0/2, half the

value of the parameter estimated under the point identifying assumptions. In our application this

is 0.465, which is close to 0.5 so we omit it. Imbens (2003) suggests a similar choice of cutoff in his

approach.

Figure 7 shows the results. As in our earlier plots, the horizontal axis plots c, deviations

from full conditional independence, while the vertical axis plots t, deviations from rank invariance.

As mentioned earlier, the natural upper bound for c is about 0.73. Since all of the breakdown

frontiers intersect the horizontal axis at much smaller values, we have cut off the part of the overall

assumption space with c ≥ 0.2. Remember that, for the following analysis, it’s valid to examine

various (c, t) combinations since we use uniform confidence bands.

First consider the top left plot, p = 0.1. Since this is the weakest conclusion of the five we

consider, the estimated breakdown frontier and the corresponding robust region are the largest

among the five plots. If we impose full independence, then our estimated frontier suggests that

we can almost fully relax rank invariance and still conclude that at least 10% of people benefit

from not being forced into military service. Even accounting for sampling uncertainty, we can still

draw this conclusion if rank invariance fails for up to 80% of the population. Moreover, looking

at all choices of εN—not just our selected one—the lowest the vertical intercept ever gets is about

58%. Next suppose we relax full independence. Recall that the maximal deviation between the

observed propensity score and the “leave out variable k” propensity scores gave cage = 0.0625 and

chhSize = 0.0403. Both of these numbers are smaller than the horizontal intercept of our selected

confidence band. Hence, if we impose full rank invariance, our conclusion that P(Y1 > Y0) ≥
0.1 is robust to deviations from full independence. Suppose instead that we think selection on
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Figure 7: Estimated breakdown frontiers (solid lines) and confidence bands (dashed lines) for the
claim P(Y1 > Y0) ≥ p. Top, left to right: p = 0.1, 0.25. Bottom, left to right: p = 0.5, 0.75, 0.9.
Light dashed lines are confidence bands for all eight values of εN considered. The darker dashed
line is the band selected by our bootstrap procedure.

unobservables is at most the smaller c value, about 0.04. Then for c’s in the range [0, 0.04], we

can still conclude P(Y1 > Y0) ≥ 0.1 so long as at least 20–40% of the population satisfies rank

invariance. Thus we can relax full independence within this range without paying too high a cost

in terms of requiring stronger rank invariance assumptions. The rate of substitution between these

two assumptions quickly changes for c’s larger than 0.04, however. Specifically, if we increase it

to 0.07 then we must impose rank invariance on the entire population if we still want to conclude

that at least 10% of people benefit from not being forced into military service. All the breakdown

frontiers we estimate in this application have this feature: we can relax full independence some

while only requiring a small increase in the proportion of the population satisfying rank invariance.

But after a point, further deviations from independence require much stronger assumptions on

rank invariance. Understanding this kind of trade-off between assumptions is a primary goal of our

breakdown frontier analysis.

Overall, our results from this top left plot suggest that the conclusion that at least 10% of people

benefit from not being forced into military service is robust to deviations from full independence

up to the size we see between the observed and leave out variable k propensity scores, depending

on how much rank invariance failure we allow. For deviations from full independence up to the
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smaller value of c, we can allow up to 60% of the population to deviate from rank invariance.

Next consider the top right plot, p = 0.25. Since this is a stronger conclusion than the previous

one, all the frontiers are shifted towards the origin. Consequently, by construction, this conclusion

is not as robust as the other one. If we focus on the estimated breakdown frontier, we obtain

similar qualitative conclusions as for p = 0.1. However, our selected confidence band for p = 0.25

is substantially shifted inward relative to the p = 0.1 confidence band. Thus even if we impose full

independence we can only allow for about 38% failure of rank invariance. Relaxing full independence

to a 2 percentage point deviation in the propensity score requires 100% rank invariance if we still

want to maintain our conclusion. One caveat, however, is that our selected confidence band is

substantially smaller than the bands corresponding to other choices of εN . Hence alternative

choices of εN would suggest more robust results. This point underscores the need for future work

on the choice of εN .

Next consider the bottom left plot, p = 0.5. Here we consider the conclusion that at least half

of people benefit from not being forced into military service. If we impose full independence, and

accounting for sampling uncertainty, then we can allow rank invariance to fail for about 30% of

the population. This is quite large, but it relies on full independence holding exactly. If we also

relax independence to c = 0.02 then we need rank invariance to hold for everyone if we still want

to conclude that at least 50% of people benefit from not being forced into military service. 0.02 is

smaller than 0.09, the maximal deviation in observed propensity scores. Hence we might not be

comfortable with such small values of c, which suggests the data do not definitively support the

conclusion P(Y1 > Y0) ≥ 0.5. Similar results hold for p = 0.75 and p = 0.9. For these conclusions,

even under full independence we cannot allow for too much rank invariance failure. And these

conclusions are not robust to essentially any deviations from full independence. Coincidentally, the

lower bound of our confidence interval for p̂0,0 = 0.93 is 0.44, which implies that even if we imposed

the point identifying assumptions, the sampling uncertainty in the data prevent us from rejecting

the hypothesis that p0,0 < p for p = 0.5, 0.75, and 0.9.

In this section we used our breakdown frontier methods to study the robustness of conclusions

about ATE and P(Y1 > Y0) to failures of independence and rank invariance. We first considered the

conclusion that the average treatment effect of not being abducted on log wages is nonnegative. Our

point estimates suggest that this conclusion is robust to deviations in unobserved propensity scores

up to the same value as cage, which is also about two-thirds as large as chhSize; this robustness does

not hold up when accounting for sampling uncertainty, however. We then considered the conclusion

that at least p% of people earn higher wages when they are not abducted. This conclusion is

robust to reasonable deviations in rank invariance and full independence for p = 10%, but not

for larger percentages. In general, the results appear more sensitive to full independence than to

rank invariance. This robustness to rank invariance matches the findings of Heckman et al. (1997),

who imposed full independence and studied deviations form rank invariance. In their table 5B they

found that, in their empirical application, one could generally conclude that P(Y1 > Y0) was at least

50%, regardless of the assumption on rank invariance. In our empirical application our results are
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not quite as robust to rank invariance failures, which could be because we use a different measure

of deviation from rank invariance, and also because of differences in the empirical applications.

6 Conclusion

In this paper we advocated the breakdown frontier approach to sensitivity analysis. This approach

defines the population breakdown frontier as the weakest set of assumptions such that a given

conclusion of interest holds. Sample analog estimates and lower uniform confidence bands allow

researchers to do inference on this frontier. The area under the confidence band is a quantita-

tive, finite sample measure of the robustness of a conclusion to deviations from point-identifying

assumptions. To examine this robustness, empirical researchers can present these estimated break-

down frontiers and their accompanying confidence bands along with traditional point estimates

and confidence intervals obtained under point identifying assumptions. We illustrated this general

approach in the context of a treatment effects model, where the robustness of conclusions about

ATE and P(Y1 > Y0) to deviations from random assignment and rank invariance are examined. We

applied these results in an empirical study of the effect of child soldiering on wages. We found that

some conclusions about P(Y1 > Y0) are fairly robust to failure of rank invariance, when random

assignment holds, but conclusions are much more sensitive to both assumptions for small deviations

from random assignment.

As with the previous literature on breakdown points, breakdown frontier analysis can in prin-

ciple be done in most models. It requires an indexed class of assumptions which deliver a nested

sequence of identified sets, with non-refutable point identification obtained at one extreme and the

no assumptions bounds obtained at the other. One then must characterize identified sets for the

parameter of interest as a function of the sensitivity parameters. Given these identified sets, the

breakdown frontier for a conclusion about that parameter can be defined, and inference procedures

for this frontier can be developed.

A key conceptual step is deciding how to define the parametric classes of assumptions such

that the magnitude of the deviation can be reasonably interpreted. This is not easy, and will

generally depend on the model, the specific kind of assumption being relaxed, and the empirical

context. Moreover, this choice may affect our findings: A conclusion can be robust with respect

to one measure of deviation but not another. Thus one goal of future research is to explore this

space of assumption deviations, to understand their substantive interpretations, and to chart their

implications for the robustness of empirical findings. In Masten and Poirier (2016) we have already

compared three different measures of deviation from the random assignment assumption, including

the one used here. In the present paper, we also used a general method for spanning two discrete

assumptions by defining a (1−t)-percent deviation, as we did with rank invariance. But much work

still remains to be done.
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A Inference in sensitivity analyses

In this section we provide additional details explaining how our results compare to several ap-
proaches in the literature. We focus on the different inference methods used in sensitivity analyses.
Most methods can be grouped by whether the population level sensitivity analysis is a parametric
path or nonparametric neighborhood approach. In Masten and Poirier (2016) we compare and
contrast these population level approaches in more detail. The parametric path approach has
two key features: (1) a specific parametric deviation r from a baseline assumption of r = 0 and
(2) a parameter θ(r) that is point identified given that deviation. The nonparametric neighbor-
hood approach specifies increasing nested neighborhoods around a baseline assumption of r = 0
such that Θ(r) is the identified set for the parameter given a specific neighborhood r. Typically
Θ(r) = [ΘL(r),ΘU (r)] for point identified lower and upper bound functions ΘL and ΘU .
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Parametric paths

The most common approach for a parametric path analysis is to report the estimated function θ̂(r)
along with pointwise confidence bands. For example, see figure 1 of Rotnitzky et al. (1998), figure
1 of Robins (1999), and figure 1 of Vansteelandt, Goetghebeur, Kenward, and Molenberghs (2006).
Uniform confidence bands can be used instead, as in figure 3 of Todem, Fine, and Peng (2010).
Those authors use their uniform confidence bands to test hypotheses about θ(r) uniformly over
r. They also suggest projecting these bands onto their domain to obtain confidence sets for the
set {r : |θ(r)| > 0}, although they do not discuss this in detail (see the last few sentences of page
562). They emphasize that using uniform confidence bands is important since the functions θ(r)
are often not monotonic, as we discussed earlier with respect to Imbens (2003). A similar method
is proposed by Rotnitzky et al. (1998). They study a model with two scalar sensitivity parameters
r = (r1, r2) and two parameters θ1(r) and θ2(r). They construct a standard test statistic T (r) for
testing the null that θ1(r) = θ2(r). They then plot the contours

{r ∈ R2 : T (r) = −1.96} and {r ∈ R2 : T (r) = 1.96}.

See their figure 2. Unlike Todem et al. (2010), they do not account for multiple testing concerns.
Also see figures 2–4 of Rotnitzky, Scharfstein, Su, and Robins (2001). Several papers also suggest
picking a set R to form an identified set {θ(r) : r ∈ R} and then doing inference on this identified
set. For example, see Vansteelandt et al. (2006). Escanciano and Zhu (2013) consider the diameter
of such identified sets,

d = sup
r,r′∈R

‖θ(r)− θ(r′)‖,

and study estimation and inference on d.
Finally, Rosenbaum (1995, 2002) proposes a sensitivity analysis within the context of finite

sample randomization inference for testing the sharp null hypotheses of no unit level treatment
effects for the units in our dataset. This is a very different approach to the approaches discussed
above and what we do in the present paper.

Nonparametric neighborhoods

Our population level sensitivity analysis uses nonparametric neighborhoods, not parametric paths.
Thus for each r we obtain an identified set Θ(r). There is a large literature on how to do inference
on a single identified set; see Canay and Shaikh (2017) for an overview. Few papers discuss inference
on a continuous sequence of identified sets Θ(r), however. The simplest approach arises when the
identified set is characterized by point identified upper and lower bounds: Θ(r) = [ΘL(r),ΘU (r)].
In this case one can plot estimated bound functions Θ̂L and Θ̂U along with outer confidence bands
for these functions. For example, see figure 2 of Richardson, Hudgens, Gilbert, and Fine (2014).
They informally discuss how to use these bands to check robustness of the claim that the true
parameter is nonzero, but they do not formally discuss breakdown points or inference on them.

Kline and Santos (2013) similarly begin by constructing pointwise confidence bands for the
bound functions. They then use level sets of these bands to construct their confidence intervals for
a breakdown point (see equation 41 on page 249). In their remark 4.4 on page 250 they mention
the approach we take—doing inference based directly on the asymptotic distribution of breakdown
point estimators. In order to compare these two approaches, we discuss the approach of projecting
confidence bands for lower bound functions in more detail here.

Let the sensitivity parameter r be in [0, 1]dr for some integer dr ≥ 1. Let ΘL(r) denote the
lower bound function for a scalar parameter θ. By construction, ΘL(·) is weakly decreasing in
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its components. Suppose it is also continuous. Suppose we are interested in the conclusion that
θtrue ≥ θ. Suppose for simplicity that it is known that ΘL(0) ≥ θ. This allows us to ignore the
upper bound function and its confidence band. Define the breakdown frontier for the claim that
θtrue ≥ θ by

BF = {r ∈ [0, 1]dr : ΘL(r) = θ}.

Let
RR = {r ∈ [0, 1]dr : ΘL(r) ≥ θ}.

denote the robust region, the set of sensitivity parameters that lie on or below the breakdown
frontier. The following proposition shows that, in general, projections of uniform lower confidence
bands for ΘL produce valid uniform lower confidence bands for the breakdown frontier.

Proposition 3. Let LB(·) be an asymptotically exact uniform lower (1−α)-confidence band for
ΘL(·). That is,

lim
N→∞

P
(

LB(r) ≤ ΘL(r) for all r ∈ [0, 1]dr
)

= 1− α.

(We call LB(·) a ‘band’ even though it’s really a hypersurface.) Define the projections

BFL = {r ∈ [0, 1]dr : LB(r) = θ}

and
RRL = {r ∈ [0, 1]dr : LB(r) ≥ θ}.

Then
lim
N→∞

P(RRL ⊆ RR) ≥ 1− α.

Proof of proposition 3. We have

P(RRL ⊆ RR) = P(For all r ∈ [0, 1]dr s.t. LB(r) ≥ θ, we have ΘL(r) ≥ θ)
≥ P(LB(r) ≤ ΘL(r) for all r ∈ [0, 1]dr).

Now take limits on both sides as N →∞. The inequality arises essentially because the functional
inequality LB(·) ≤ ΘL(·) is a sufficient, but not necessary, condition for RRL ⊆ RR.

Proposition 3 shows that projecting a uniform band always yields a confidence band for the
breakdown frontier which has size at least 1−α. Notice that although we did not use monotonicity
of ΘL(·) here, this monotonicity implies that we can always take LB(·) to be weakly decreasing
without loss of generality. This follows since monotonicity of ΘL(·) allows us to convert any non-
monotonic lower confidence band into a monotonic one without any loss of coverage.

There are two downsides to this projection approach, compared to our direct approach:

1. In general, this projection approach may be conservative.

2. Relatedly, one must choose the lower confidence band ΘL(·). There are many such choices.
The standard ones, such as equal width or inversion of a sup t-statistic (e.g., see Freyberger
and Rai 2017), will likely yield conservative projection bands, since they are not chosen with
the goal of doing inference on the breakdown frontier in mind.

Kline and Santos (2013) do not propose projections of uniform confidence bands. They propose
projections of pointwise confidence bands. As we discuss next, projection of pointwise bands
produces valid confidence intervals for breakdown points. But it does not generally produce valid
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confidence bands for breakdown frontiers. Hence in the multidimensional r case one either must
use our direct approach, or appeal to proposition 3 above.

To see that pointwise band projections are valid in the scalar r case, we expand on Kline and
Santos’ (2013) analysis. Define the population breakdown point by

r∗ = inf{r ∈ [0, 1] : ΘL(r) ≤ θ}.

Let c1−α(r) be the 1− α quantile of the asymptotic distribution of

√
N
[
Θ̂L(r)−ΘL(r)

]
.

Define the pointwise one-sided lower confidence band for ΘL(·) by

LB(r) = Θ̂L(r)− c1−α(r)√
N

.

Let
rL = inf{r ∈ [0, 1] : LB(r) ≤ θ}

be the projection of this confidence band. The following result is a minor generalization of example
2.1 in Kline and Santos (2013).

Proposition 4. Assume that the cdf of the asymptotic distribution of
√
N
[
Θ̂L(r∗) − ΘL(r∗)

]
is

continuous and strictly increasing at its 1− α quantile. Then

lim
N→∞

P(rL ≤ r∗) ≥ 1− α.

If LB(·) is weakly decreasing with probability one then this inequality holds with equality.

Proof of proposition 4. We have

P(rL ≤ r∗) = P(r∗ ≥ inf{r ∈ [0, 1] : LB(r) ≤ θ})
≥ P(LB(r∗) ≤ θ)

= P
(

Θ̂L(r∗)− c1−α(r∗)√
N

≤ θ
)

= P
(√

N
(
Θ̂L(r∗)− θ

)
≤ c1−α(r∗)

)
= P

(√
N
(
Θ̂L(r∗)−ΘL(r∗)

)
≤ c1−α(r∗)

)
.

The first line follows by definition of rL. For the second line, notice that LB(r∗) ≤ θ implies that
r∗ ∈ {r ∈ [0, 1] : LB(r) ≤ θ} and hence r∗ ≥ inf{r ∈ [0, 1] : LB(r) ≤ θ} by the definition of the
infimum. This gives us

P(LB(r∗) ≤ θ) ≤ P(r∗ ≥ inf{r ∈ [0, 1] : LB(r) ≤ θ}).

If LB(·) is weakly decreasing with probability one, then the reverse inequality holds, and hence we
have an equality in the second line. To see this, suppose r∗ ≥ rL holds. Then LB(r∗) ≤ LB(rL)
since LB(·) is weakly decreasing. But now notice that LB(rL) ≤ θ by definition of rL. Hence
LB(r∗) ≤ θ.

The third line follows by definition of LB. The fifth line by definition of the population break-
down point, as the solution to ΘL(r) = θ. The result now follows by taking limits as N → ∞
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on both sides, and by definition of c1−α(r∗) and the invertibility of the limiting cdf at its 1 − α
quantile.

Proposition 4 shows that, for doing inference on scalar breakdown points, projections of mono-
tonic lower pointwise confidence bands for the lower bound function yields a one-sided confidence
interval [rL, 1] for the breakdown point r∗ which has asymptotically exact size. If the lower band
function is not always monotonic, however, this projection can be conservative. Moreover, since
we’re constructing one-sided pointwise confidence bands, we do not have any flexibility to choose
the shape of this confidence band. Hence whether it is monotonic or not will be determined by
the distribution of the data. Furthermore, it does not appear that this proof strategy extends to
multidimensional r. Hence projections of pointwise bands are unlikely to yield uniform confidence
bands for the breakdown frontier.

Overall, our analysis above shows that the projection of confidence bands approach to doing
inference on breakdown points and frontiers will likely yield conservative inference. This is not
surprising since, unlike our approach, these bands are not designed specifically for doing inference
on the breakdown frontier. Finally, we note that if one nonetheless wants to use a projection
approach, our asymptotic results in section 3 can be used to do so.

A testing interpretation of lower confidence bands for breakdown frontiers

Consider the scalar r case, as above. Suppose we want to test

H0 : ΘL(r) ≤ θ versus H1 : ΘL(r) > θ

for a fixed r ∈ [0, 1]. By definition of the breakdown point, H0 is true if and only if r ≥ r∗. Let
[rL, 1] denote a one-sided lower confidence interval for the breakdown point r∗; that is, P([rL, 1] 3
r∗) = 1− α. Define the test

φ =

{
Choose H0 if rL < r

Choose H1 if r ≤ rL.

Then

P(Choose H1 | H0 true) = P(r ≤ rL)

≤ P(r∗ ≤ rL)

= α.

The second line follows since r ≥ r∗. The last line follows by construction of rL. Hence φ has
size at most α. This result holds for any r ∈ [0, 1]. Thus we can interpret the robust region inner
confidence set [0, rL] as the set of sensitivity parameters r such that we reject the null that the true
parameter might be below θ. That is, for r ∈ [0, rL], our test concludes that θ > θ. For r outside
the robust region inner confidence set, we do not reject the null that θ might be at or below θ.

Here we considered the scalar r case for simplicity, but this argument extends to the general
case of interpreting lower confidence bands for an arbitrary dimensional breakdown frontier.

Local analyses

Since Pitman (1949), local asymptotics are sometimes used to study the behavior of a given esti-
mator under small deviations from model assumptions. Several papers use this approach to study
deviations from exogeneity-type assumptions. In a missing data model, Copas and Eguchi (2001)
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consider local-to-full-independence asymptotic distributions of MLEs. Conley, Hansen, and Rossi
(2012) derive the asymptotic bias of the 2SLS estimator in an IV model along sequences where
violations of the exclusion restriction converge to zero. The asymptotic bias depends on a local
parameter. By placing a prior on this local parameter, they do Bayesian inference on the coefficient
of interest. Andrews, Gentzkow, and Shapiro (2017) generalize this local-to-zero asymptotic result
to the GMM estimator for a given system of moment equalities. Unlike this literature, breakdown
frontier analysis focuses on the largest deviations from an assumption under which one’s conclusions
still hold.

Bayesian inference and breakdown frontiers

Although we focus on frequentist inference, here we briefly discuss Bayesian approaches. In section
11 of Robins et al. (2000), Robins studied Bayesian inference in a parametric path approach to
sensitivity analysis. Let r denote the sensitivity parameter and θ(r) the parameter of interest,
which is point identified given r. Holding r fixed, one can do standard Bayesian inference on θ(r).
Thus Robins simply suggests placing a prior on r and averaging posteriors conditional on r over
this prior. Indeed, this approach is essentially just Bayesian model averaging, where r indexes the
class of models under consideration. See Hoeting, Madigan, Raftery, and Volinsky (1999) for a
survey of Bayesian model averaging, and Leamer (1978) for important early work. Among other
approaches, Conley et al. (2012) apply these ideas to do a sensitivity analysis in an IV model. See
DiTraglia and Garćıa-Jimeno (2016) for a generalization and a detailed analysis of priors in that
IV setting.

Next consider the nonparametric neighborhood approach. Here the parameter of interest is
only partially identified for a fixed r, and thus even holding r fixed leads to non-standard Bayesian
analysis. Giacomini, Kitagawa, and Volpicella (2016) study Bayesian model averaging where one
of the models is partially identified. They study averaging of a finite number of models. If their
results can be extended to a continuum of models, then this method could be applied to the model
and assumptions we consider in this paper.

A subtlety arises in both Robins et al. (2000) and Giacomini et al. (2016): Depending on how
one specifies the joint prior for the sensitivity parameters and the remaining parameters, it may
be possible to obtain some updating of the prior for the sensitivity parameters (a point mentioned
more generally by Lindley 1972 in his footnote 34 on page 46; also see Koop and Poirier 1997).
As Giacomini et al. (2016) discuss, however, the model posterior will not converge to the truth
unless the model is refutable. None of the assumptions (c, t) in the model we study are refutable.
Hence the prior over (c, t) generally matters even asymptotically. That said, the breakdown frontier
determines exactly how much the model priors matter for a specific claim. For instance, suppose
the model prior places all of its mass below the breakdown frontier for a specific claim. Then
we conjecture that the Bayesian model averaged posterior probability that the claim is true will
converge to one as N → ∞, regardless of the specific choice of prior. Kline and Tamer (2016)
provide results like this in the single model case. More generally, we conjecture that the proportion
of model prior mass that falls below the breakdown frontier partially determines the tightness of
the corresponding asymptotic posterior probability of the conclusion being true: The more mass
outside the breakdown frontier, the more the model priors matter. Consequently, a sample analog
estimate and perhaps even frequentist inference on the breakdown frontier can be useful even in
a Bayesian analysis, to help determine the importance of one’s model priors. This is similar to
Moon and Schorfheide’s (2012) recommendation that one report estimated identified sets along
with Bayesian posteriors. Here we have just sketched the relationship between Bayesian analysis
and breakdown frontiers. We leave a complete analysis of these issues to future work.
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B Proofs

Proofs for section 2

Proof of theorem 1. Let F1 and F0 be any strictly increasing cdfs. Suppose (Y1, Y0) have joint cdf
FY1,Y0(y1, y0) = C(F1(y1), F0(y0)). Then

P(Y1 − Y0 ≤ z) =

∫
{y1−y0≤z}

dC(F1(y1), F0(y0))

= (1− t)
∫
{y1−y0≤z}

dM(F1(y1), F0(y0)) + t

∫
{y1−y0≤z}

dH(F1(y1), F0(y0)).

For fixed marginal distributions (F1, F0), the first integral is the probability that {Y1 − Y0 ≤ z}
where (Y1, Y0) are random variables that satisfy rank invariance. Hence for these random variables
the corresponding ranks are equal almost surely: U1 = U0 a.s. Let U ∼ Unif[0, 1] denote this almost

sure common random variable. Using A1.1, we can thus write (Y1, Y0)
d
= (F−1

1 (U), F−1
0 (U)) and

therefore ∫
{y1−y0≤z}

dM(F1(y1), F0(y0)) = P(F−1
Y1

(U)− F−1
Y0

(U) ≤ z).

Makarov (1981) derived sharp bounds on
∫
{y1−y0≤z} dH(F1(y1), F0(y0)) as follows:

∫
{y1−y0≤z}

dH(F1(y1), F0(y0))

∈

[
max

{
sup
y∈Yz

(F1(y)− F0(y − z)), 0

}
, 1 + min

{
inf
y∈Yz

(F1(y)− F0(y − z)), 0
}]

.

Therefore, for given (F1, F0), sharp bounds for P(Y1 − Y0 ≤ z) are given by [θ(F1, F0), θ(F1, F0)],
where

θ(F1, F0) = (1− t)P(F−1
1 (U)− F−1

0 (U) ≤ z) + tmax

{
sup
y∈Yz

(F1(y)− F0(y − z)), 0

}

θ(F1, F0) = (1− t)P(F−1
1 (U)− F−1

0 (U) ≤ z) + t

(
1 + min

{
inf
y∈Yz

(F1(y)− F0(y − z)), 0
})

.

Define the first order stochastic dominance ordering as follows: For two cdfs F and G, let
F �fsd G if F (t) ≥ G(t) for all t ∈ R. All of the following statements refer to this ordering. For
any fixed F1,

F̃0 �fsd F0 implies θ(F1, F̃0) ≤ θ(F1, F0).

That is, the lower bound function θ(F1, F0) is weakly increasing in F0. This can be shown in two
steps. First, the expression

P(F−1
1 (U)− F−1

0 (U) ≤ z)

is weakly increasing in F0 since, for F̃0 �fsd F0, we have F̃−1
0 (u) ≤ F−1

0 (u) for u ∈ (0, 1), and
therefore,

P(F−1
1 (U)− F̃−1

0 (U) ≤ z) ≤ P(F−1
1 (U)− F−1

0 (U) ≤ z).
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Second, the expression

max

{
sup
y∈Yz

(F1(y)− F0(y − z)), 0

}
is weakly increasing in F0 since the supremum and maximum operators are weakly increasing. Thus
both components of θ are weakly increasing in F0. Therefore the linear combination of them is also
weakly increasing in F0.

We can similarly show that θ(F1, F0) is weakly decreasing in F1. Thus substituting (F1, F0) =
(F cY1 , F

c
Y0) yields the lower bound DTE(z, c, t). The upper bound function θ(F1, F0) is also weakly

increasing in F0 and weakly decreasing in F0. Thus substituting (F1, F0) = (F
c
Y1 , F

c
Y0

) yields the

upper bound DTE(z, c, t). In making these substitutions we applied proposition 2 from Masten
and Poirier (2017). In that paper we defined functions F cYx(· | ε, η), which we now use to sharpness
of the DTE bounds.

Substitute (F cY1(· | ε, 0), F cY0(· | 1 − ε, 0)) into the bound functionals and continuously vary ε

between [0, 1]. Note that we let η = 0 since c < min{p1, p0}. By continuity of θ(·, ·) and θ(·, ·) in
their arguments and continuity of (F cY1(· | ε, 0), F cY0(· | 1−ε, 0)) in ε, the intermediate value theorem
implies that every element between the bounds can be attained.

Proofs for section 3

Proof of lemma 1. By a second order Taylor expansion,

F̂Y |X(y | x)− FY |X(y | x)

=
1
N

∑N
i=1 1(Yi ≤ y)1(Xi = x)
1
N

∑N
i=1 1(Xi = x)

− P(Y ≤ y,X = x)

P(X = x)

=
1
N

∑N
i=1 1(Yi ≤ y)1(Xi = x)− P(Y ≤ y,X = x)

P(X = x)

−
FY |X(y | x)

P(X = x)

(
1

N

N∑
i=1

1(Xi = x)− P(X = x)

)

+Op

((
1

N

N∑
i=1

1(Yi ≤ y)1(Xi = x)− FY |X(y | x)P(X = x)

)(
1

N

N∑
i=1

1(Xi = x)− P(X = x)

))

+Op

( 1

N

N∑
i=1

1(Xi = x)− P(X = x)

)2
 .

By standard bracketing entropy results (e.g., example 19.6 on page 271 of van der Vaart 2000) the
function classes {1(Y ≤ y)1(X = x) : y ∈ R, x ∈ {0, 1}} and {1(X = x) : x ∈ {0, 1}} are both
P -Donsker. Hence the residual is of order Op(N

−1) uniformly in (y, x) ∈ R × {0, 1}. Combining
this with Slutsky’s theorem we get the uniform over y and x asymptotic representation

F̂Y |X(y | x)− FY |X(y | x) =
1

N

N∑
i=1

1(Xi = x)(1(Yi ≤ y)− FY |X(y | x))

P(X = x)
+ op(N

−1/2).
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By the same bracketing entropy arguments, the class{
1(X = x)(1(Y ≤ y)− FY |X(y | x))

P(X = x)
: y ∈ R, x ∈ {0, 1}

}
is P -Donsker and hence

√
N(F̂Y |X(· | ·) − FY |X(· | ·)) converges in distribution to a mean-zero

Gaussian process with continuous paths. The covariance kernel Σ1 can be calculated as follows:

Σ1(y, x, ỹ, x̃)

=


E
[
1(Xi=x)1(Xi=x̃)(1(Yi≤y)−FY |X(y|x))(1(Yi≤ỹ)−FY |X(ỹ|x̃))

P(X=x)P(X=x̃)

]
E
[
1(Xi=x)(1(Xi=x̃)−px̃)(1(Yi≤y)−FY |X(y|x))

P(X=x)

]
E
[
1(Xi=x̃)(1(Xi=x)−px)(1(Yi≤ỹ)−FY |X(ỹ|x̃))

P(X=x̃)

]
E[(1(Xi = x)− px)(1(Xi = x̃)− px̃)]


=

(
FY |X(min{y,ỹ}|x)−FY |X(y|x)FY |X(ỹ|x)

px
1(x = x̃) 0

0 px1(x = x̃)− pxpx̃

)
.

Lemma 6 (Chain Rule for Hadamard directionally differentiable functions). Let D, E, and F be
Banach spaces with norms ‖ · ‖D, ‖ · ‖E, and ‖ · ‖F. Let Dφ ⊆ D and Eψ ⊆ E. Let φ : Dφ → Eψ
and ψ : Eψ → F be functions. Let θ ∈ Dφ and φ be Hadamard directionally differentiable at θ
tangentially to D0 ⊆ D. Let ψ be Hadamard directionally differentiable at φ(θ) tangentially to the
range φ′θ(D0) ⊆ Eψ. Then, ψ ◦φ : Dφ → F is Hadamard directionally differentiable at θ tangentially
to D0 with Hadamard directional derivative equal to ψ′φ(θ) ◦ φ

′
θ.

This result is a version of proposition 3.6 in Shapiro (1990), who omits the proof. We give the
proof here because this result is key to our paper.

Proof of lemma 6. Let {hn}n≥1 be in D and hn → h ∈ D0. By Hadamard directional differentia-
bility of φ tangentially to D0 ∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E

= o(1)

as n→∞ for any tn ↘ 0. That is,

gn ≡
φ(θ + tnhn)− φ(θ)

tn

E→ φ′θ(h) = g

where φ′θ ∈ φ′θ(D0). Therefore, by Hadamard directional differentiability of ψ, we have

ψ(φ(θ + tnhn))− ψ(φ(θ))

tn
=
ψ(φ(θ) + tngn)− ψ(φ(θ))

tn
F→ ψ′φ(θ)(g)

= ψ′φ(θ)(φ
′
θ(h)).

By Hadamard directional differentiability of φ at θ and ψ at φ(θ), φ′θ and ψ′φ(θ) are continuous

mappings. Hence their composition ψ′φ(θ) ◦ φ
′
θ is continuous. This combined with our derivations

above imply that ψ ◦ φ is Hadamard directionally differentiable tangentially to D0 at θ.
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Proof of lemma 2. Let θ0 = (FY |X(· | ·), p(·)) and θ̂ = (F̂Y |X(· | ·), p̂(·)). For fixed y and c, define
the mapping

φ1 : `∞(R× {0, 1})× `∞({0, 1})→ `∞({0, 1},R2)

by

[φ1(θ)](x) =


min

{
θ(1)(y, x)θ(2)(x)

θ(2)(x)− c
,
θ(1)(y, x)θ(2)(x) + c

θ(2)(x) + c

}

max

{
θ(1)(y, x)θ(2)(x)

θ(2)(x) + c
,
θ(1)(y, x)θ(2)(x)− c

θ(2)(x)− c

}


where θ(j) is the jth component of θ. Note that(
F
c
Yx(y)

F cYx(y)

)
= [φ1(θ0)](x) and

(
F̂
c

Yx(y)

F̂
c

Yx(y)

)
= [φ1(θ̂)](x).

The maps (a1, a2) 7→ min{a1, a2} and (a1, a2) 7→ max{a1, a2} are Hadamard directionally differen-
tiable with Hadamard directional derivatives at (a1, a2) equal to

h 7→


h(1) if a1 < a2

min{h(1), h(2)} if a1 = a2

h(2) if a1 > a2

and

h 7→


h(2) if a1 < a2

max{h(1), h(2)} if a1 = a2

h(1) if a1 > a2

respectively, where h ∈ R2; for example, see equation (18) in Fang and Santos (2015). The mapping
φ1 is comprised of compositions of these min and max operators, along with four other functions.
We can show that these four mappings are ordinary Hadamard differentiable. Here we compute
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these Hadamard derivatives with respect to θ:

[δ1(θ)](x) =
θ(1)(y, x)θ(2)(x)

θ(2)(x) + c
has Hadamard derivative equal to

[δ′1,θ(h)](x) =
θ(1)(y, x)h(2)(x) + h(1)(y, x)θ(2)(x)

θ(2)(x) + c
− θ(1)(y, x)θ(2)(x)h(2)(x)

(θ(2)(x) + c)2
,

[δ2(θ)](x) =
θ(1)(y, x)θ(2)(x)− c

θ(2)(x)− c
has Hadamard derivative equal to

[δ′2,θ(h)](x) =
θ(1)(y, x)h(2)(x) + h(1)(y, x)θ(2)(x)

θ(2)(x)− c
− (θ(1)(y, x)θ(2)(x)− c)h(2)(x)

(θ(2)(x)− c)2
,

[δ3(θ)](x) =
θ(1)(y, x)θ(2)(x)

θ(2)(x)− c
has Hadamard derivative equal to

[δ′3,θ(h)](x) =
θ(1)(y, x)h(2)(x) + h(1)(y, x)θ(2)(x)

θ(2)(x)− c
− θ(1)(y, x)θ(2)(x)h(2)(x)

(θ(2)(x)− c)2
,

[δ4(θ)](x) =
θ(1)(y, x)θ(2)(x) + c

θ(2)(x) + c
has Hadamard derivative equal to

[δ′4,θ(h)](x) =
θ(1)(y, x)h(2)(x) + h(1)(y, x)θ(2)(x)

θ(2)(x) + c
− (θ(1)(y, x)θ(2)(x) + c)h(2)(x)

(θ(2)(x) + c)2
.

All these derivatives are well defined at θ0 because θ
(2)
0 (x) = px > C ≥ c. With this notation, we

can write the functional φ1 as

φ1(θ) =

(
min {δ3(θ), δ4(θ)}
max {δ1(θ), δ2(θ)}

)
.

By the chain rule (lemma 6), the map φ1 is Hadamard directionally differentiable at θ0 with
Hadamard directional derivative evaluated at θ0 equal to

φ′1,θ0(h) =



1(δ3(θ0) < δ4(θ0)) · δ′4,θ0(h)

+1(δ3(θ0) = δ4(θ0)) ·min{δ′3,θ0(h), δ′4,θ0(h)}
+1(δ3(θ0) > δ4(θ0)) · δ′3,θ0(h)

1(δ1(θ0) < δ2(θ0)) · δ′1,θ0(h)

+1(δ1(θ0) = δ2(θ0)) ·max{δ′1,θ0(h), δ′2,θ0(h)}
+1(δ1(θ0) > δ2(θ0)) · δ′2,θ0(h)


.

By lemma 1,
√
N(θ̂(y, x)− θ0(y, x)) Z1(y, x). Hence we can use the delta method for Hadamard

directionally differentiable functions (see theorem 2.1 in Fang and Santos 2015) to find that[√
N(φ1(θ̂)− φ1(θ0))

]
(x) [φ′1,θ0(Z1)](x)

≡ Z̃2(x).

This result holds uniformly over any finite grid of values for y ∈ R and c ∈ C by considering the
Hadamard directional differentiability of a vector of these mappings indexed at different values of
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y and c, which yields the process Z2(y, x, c).

Proof of lemma 3. Let S = {(y, x) ∈ R2 : x ∈ {0, 1}, y ∈ [y
x
, yx]}. Let D(S) ⊂ `∞(S) denote the

set of functions that are càdlàg in the first argument for each x ∈ {0, 1}. Define the mapping

φ̃2 : D(S)× `∞({0, 1})→ `∞((0, 1)× {0, 1},R2)

by

[φ̃2(θ)](τ, x) =

(
(θ(1))−1(τ, x)

θ(2)(x)

)
.

By A1, A3, A4, and lemma 21.4(ii) in van der Vaart (2000) this mapping is Hadamard differentiable
at θ0 tangentially to C (S) ⊂ `∞(S), the set functions that are continuous in the first argument for
each x ∈ {0, 1}. Its Hadamard derivative at θ0 = (FY |X(· | ·), p(·)) is

[φ̃′2,θ0(h)](τ, x) 7→

(
−

h(1)(QY |X(τ | x), x)

fY |X(QY |X(τ | x) | x)
, h(2)(x)

)
.

By the functional delta method and theorem 7.3.3 part (iii) of Bickel and Doksum (2015),

[
√
N(φ̃2(θ̂)− φ̃2(θ0))](τ, x) Z̃3(τ, x),

where Z̃3 is a mean-zero Gaussian process in `∞((0, 1)×{0, 1},R2) with uniformly continuous paths.
Now define the mapping

φ2 : `∞((0, 1)× {0, 1})× `∞({0, 1})→ `∞((0, 1)× {0, 1} × [0, C],R2)

by

[φ2(ψ)](τ, x, c) =

 ψ(1)
(
τ + c

ψ(2)(x)
min{τ, 1− τ}, x

)
ψ(1)

(
τ − c

ψ(2)(x)
min{τ, 1− τ}, x

)  .

Then (
Q
c
Yx(τ)

Qc
Yx

(τ)

)
= [φ2(φ̃2(θ0))](τ, x, c) and

(
Q̂
c

Yx(τ)

Q̂
c

Yx
(τ)

)
= [φ2(φ̃2(θ̂))](τ, x, c).

We will show that φ2 is Hadamard differentiable tangentially to the space of uniformly contin-
uous functions on (0, 1)× {0, 1}. The Hadamard derivative of the first component of φ2 evaluated
at ψ0 ≡ φ̃2(θ0) is

[φ
(1)′
2,ψ0

(h)](τ, x, c) = h(1)

(
τ +

c

ψ
(2)
0 (x)

min{τ, 1− τ}, x

)

− ψ(1)′
0

(
τ +

c

ψ
(2)
0 (x)

min{τ, 1− τ}, x

)
cmin{τ, 1− τ}

(ψ
(2)
0 (x))2

h(2)(x).
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To see this, a Taylor expansion gives

φ
(1)
2 (ψ0 + tnhn)− φ(1)

2 (ψ0)

tn
= h(1)

n

(
τ +

c

ψ
(2)
0 (x) + tnh

(2)
n (x)

min{τ, 1− τ}, x

)

− ψ(1)′
0

(
τ +

c

ψ
(2)
0 (x) + an(x)

min{τ, 1− τ}, x

)
cmin{τ, 1− τ}

(ψ
(2)
0 (x) + an(x))2

h(2)
n (x)

using the fact that ψ
(1)
0 (τ, x) = QY |X(τ | x) is continuously differentiable in τ by assumption A4.2,

and noting that term an(x) satisfies |an(x)| ≤ |tnh(2)
n (x)| = O(tn). Next,

sup
τ∈(0,1),x∈{0,1},c∈[0,C]

∣∣∣∣∣h(1)
n

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x) + tnh

(2)
n (x)

, x

)
− h(1)

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x)

, x

)∣∣∣∣∣
≤ sup

τ∈(0,1),x∈{0,1},c∈[0,C]

∣∣∣∣∣h(1)
n

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x) + tnh

(2)
n (x)

, x

)
− h(1)

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x) + tnh

(2)
n (x)

, x

)∣∣∣∣∣
+ sup
τ∈(0,1),x∈{0,1},c∈[0,C]

∣∣∣∣∣h(1)

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x) + tnh

(2)
n (x)

, x

)
− h(1)

(
τ +

cmin{τ, 1− τ}
ψ

(2)
0 (x)

, x

)∣∣∣∣∣
≤ ‖h(1)

n − h(1)‖∞ + o(1)

= o(1).

The last inequality follows from uniform continuity of h(1). The last line follows from uniform
convergence of hn to h.

Similarly, we have that

sup
τ∈(0,1),x∈{0,1},c∈[0,C]

∣∣∣∣∣ψ(1)′
0

(
τ +

c

ψ
(2)
0 (x) + an(x)

min{τ, 1− τ}, x

)
cmin{τ, 1− τ}

(ψ
(2)
0 (x) + an(x))2

h(2)
n (x)

− ψ
(1)′
0

(
τ +

c

ψ
(2)
0 (x)

min{τ, 1− τ}, x

)
cmin{τ, 1− τ}

(ψ
(2)
0 (x))2

h(2)(x)

∣∣∣∣∣ = o(1)

by uniform continuity of ψ
(1)′
0 (implied by A4.2) and by an(x) = o(1). Therefore φ

(1)
2 is Hadamard

differentiable tangentially to the space of uniformly continuous functions. A similar argument can

be made for φ
(2)
2 . By composition, φ2 ◦ φ̃2 is Hadamard differentiable tangentially to C (S).

By the functional delta method and the fact that Z1(y, x) has uniformly continuous paths, we
have that

[
√
N(φ2(φ̃2(θ̂))− φ2(φ̃2(θ0)))](τ, x, c) [φ′2,ψ0

◦ φ̃′2,θ0(Z1)](τ, x, c)

≡ Z3(τ, x, c),

a mean-zero Gaussian process with continuous paths in τ ∈ (0, 1) and c ∈ [0, C].

The following lemma is a variation of lemma 21.3 on page 306 of van der Vaart (2000), allowing
for a directionally differentiable function F rather than a fully differentiable F . We use this lemma
in our analysis of ATE breakdown points in the proof of proposition 1 below.
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Lemma 7. Let F : [0, 1] → R be a continuous, non-decreasing function. Let p ∈ R be such that
F (ξp) = p, F is directionally differentiable at ξp ∈ [0, 1] with ∂+F (ξp) > 0 and ∂−F (ξp) > 0. Define
the mapping φ by F 7→ inf{y ∈ R : F (y) ≥ p}. Then φ is Hadamard directionally differentiable at F
tangentially to the set of càdlàg functions on [0, 1], D([0, 1]), with Hadamard directional derivative
equal to

φ′F (h) = −h(ξp)

(
1(h(ξp) > 0)

∂−F (ξp)
+
1(h(ξp) < 0)

∂+F (ξp)

)
.

Proof of lemma 7. This proof follows that of lemma 21.3 in van der Vaart (2000). Let hn → h in
the sup-norm, h ∈ D([0, 1]), tn ↘ 0, and let ξpn = φ(F + tnhn). By the proof of lemma 21.3 in
van der Vaart (2000), we can write

[F + tnhn](ξpn − εn) ≤ p ≤ [F + tnhn](ξpn)

where ξpn → ξp, εn > 0, and εn = o(tn). He also shows that hn(ξpn − εn) = h(ξp) + o(1). Since
p = F (ξp),

[F + tnhn](ξpn − εn) ≤ F (ξp) ≤ [F + tnhn](ξpn).

Rearranging the second inequality yields

−hn(ξpn) ≤ F (ξpn)− F (ξp)

tn

while rearranging the first inequality yields

F (ξpn − εn)− F (ξp)

tn
≤ −hn(ξpn − εn).

Consider the left hand side:

F (ξpn − εn)− F (ξp)

tn
=
F (ξpn)− F (ξp)

tn
+
F (ξpn − εn)− F (ξpn)

tn

=
F (ξpn)− F (ξp)

tn
+O

(
εn
tn

)
=
F (ξpn)− F (ξp)

tn
+ o(1).

The second equality follows from a Taylor expansion. The last equality follows from εn/tn = o(1).
Therefore,

F (ξpn)− F (ξp)

tn
≤ −hn(ξpn − εn) + o(1).

Combining these two inequalities gives

−hn(ξpn) ≤ F (ξpn)− F (ξp)

tn
≤ −hn(ξpn − εn) + o(1).

Thus
F (ξpn)− F (ξp)

tn
= −h(ξp) + o(1)

since hn(ξpn − εn) = h(ξp) + o(1), by uniform convergence of hn to h, εn → 0, and by ξpn → ξp.

Case 1: Let h(ξp) > 0. Then there is an N such that hn(ξpn) > 0 for all n ≥ N by uniform
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convergence of hn to h, and by ξpn = ξp + o(1). By definition of ξpn, [F + tnhn](ξpn) = p. Hence

F (ξpn) + tnhn(ξpn) = p

= F (ξp).

Thus

F (ξpn)− F (ξp)

tn
= −hn(ξpn)

< 0

for n ≥ N . Hence F (ξpn) < F (ξp) and therefore ξpn < ξp for n ≥ N . Therefore, we have that

F (ξpn)− F (ξp)

tn
=
F (ξpn)− F (ξp)

ξpn − ξp
ξpn − ξp
tn

= ∂−F (ξp)× φ′F (h) + o(1).

For the second line, recall that ξpn = φ(F + tnhn) and ξp = φ(F ) by definition. Combining this
result with our derivation above of the limit of the left hand side shows that

φ′F (h) =
−h(ξp)

∂−F (ξp)

Case 2: Let h(ξp) < 0. Here we similarly conclude

F (ξpn)− F (ξp)

tn
= ∂+F (ξp)× φ′F (h) + o(1).

and hence

φ′F (h) =
−h(ξp)

∂+F (ξp)
.

Case 3: Finally, let h(ξp) = 0. Then

F (ξpn)− F (ξp)

tn
= o(1)

by our earlier derivations. For a given n, if ξpn ≥ ξp, we have that

|F (ξpn)− F (ξp)| = ∂+F (ξ̃p)|ξpn − ξp|

by a one-sided Taylor expansion for some ξ̃p between ξpn and ξp. If ξpn < ξp, we have

|F (ξpn)− F (ξp)| = ∂−F (ξ∗p)|ξpn − ξp|
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for some ξ∗p between ξpn and ξp. Combining these two cases we have

o(1) =

∣∣∣∣F (ξpn)− F (ξp)

tn

∣∣∣∣
=
(
∂−F (ξ∗p)1(ξpn < ξp) + ∂+F (ξ̃p)1(ξpn ≥ ξp)

) |ξpn − ξp|
tn

.

Since ∂+F (ξp) and ∂−F (ξp) are bounded above, we have ξpn − ξp = o(tn). Hence φ′F (h) = 0.

Combining all three cases yields

φ′F (h) = −h(ξp)

(
1(h(ξp) > 0)

∂−F (ξp)
+
1(h(ξp) < 0)

∂+F (ξp)

)
as n→∞. Finally, since φ′F (h) is continuous in h, φ is Hadamard directionally differentiable.

Proof of proposition 1. Consider the QTE bound of equation (4) as a function of c, for a fixed τ .
It satisfies the assumptions of lemma 7. The ATE lower bound also satisfies these assumptions
since it is the integral of this QTE bound over τ ∈ (0, 1). By the discussion following lemma 3,√
N(ÂTE(c)−ATE(c)) converges in distribution to a random element of `∞([0, C]) with continuous

paths.
Let

c̃∗ = inf{c ∈ [0, C] : ÂTE(c) ≤ µ}.

By c∗ ∈ [0, C] and lemma 7 applied to the domain [0, C], we can apply the functional delta method
for Hadamard directionally differentiable functions to see that

√
N(c̃∗−c∗) converges in distribution

to a random variable we denote by Z4.
Since c∗ ∈ [0, C] and by monotonicity of ATE(·), we have ATE(C) ≤ µ. By

√
N -convergence of

the ATE bounds,

P
(
ÂTE(C) > µ

)
= P

(
−
√
N
(
ATE(C)− µ

)
<
√
N
(
ÂTE(C)−ATE(C)

))
→ 0.

Therefore, the set {c ∈ [0, C] : ÂTE(c) ≤ µ} is non-empty with probability approaching one. This
implies that c̃∗ ∈ [0, C] with probability approaching one, and therefore P(c̃∗ = ĉ∗) also approaches
one as N →∞. Using these results, we obtain

√
N(ĉ∗ − c∗) =

√
N(ĉ∗ − c̃∗) +

√
N(c̃∗ − c∗)

= op(1) +
√
N(c̃∗ − c∗)

 Z4.

The following result extends proposition 2(i) of Chernozhukov et al. (2010) to allow for input
functions which are directionally differentiable, but not fully differentiable, at one point. It can be
extended to allow for multiple points of directional differentiability, but we omit this since we do
not need it for our application.

Lemma 8. Let θ0(u, c) = (θ
(1)
0 (u, c), θ

(2)
0 (u, c)) where for j ∈ {1, 2} we have that θ

(j)
0 (u, c) is strictly

increasing in u ∈ [0, 1], bounded above and below, and differentiable everywhere except at u = u∗,
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where it is directionally differentiable. Further, assume that the two components satisfy A5. Then,
for fixed z ∈ R, the mapping φ3 : `∞((0, 1)× C,R2)→ `∞(C,R2) defined by

[φ3(θ)](c) =

( ∫ 1
0 1(θ(2)(u, c) ≤ z) du∫ 1
0 1(θ(1)(u, c) ≤ z) du

)

is Hadamard directionally differentiable tangentially to C ((0, 1)×C,R2) with Hadamard directional
derivative given by equations (17) and (18) below.

Proof of lemma 8. Our proof follows that of proposition 2(i) in Chernozhukov et al. (2010). Let

U1(c) = {u ∈ (0, 1) : θ
(1)
0 (u, c) = z}

denote the set of roots to the equation θ
(1)
0 (u, c) = z for fixed z and c. By A5.1 this set contains a

finite number of elements. We denote these by

U1(c) = {u(1)
k (c), for k = 1, 2, . . . ,K(1)(c) <∞}.

A5.1 also implies that U1(c) ∩ U∗1 (c) = ∅ for any c ∈ C.
We will show the first component of the Hadamard directional derivative is given by

[φ
(1)′
3,θ0

(h)](c) = −
K(1)(c)∑
k=1

h(u
(1)
k (c), c)

(
1(h(u

(1)
k (c), c) > 0)

|∂−u θ(1)
0 (u

(1)
k (c), c)|

+
1(h(u

(1)
k (c), c) < 0)

|∂+
u θ

(1)
0 (u

(1)
k (c), c)|

)
, (17)

where h ∈ C ((0, 1)× C).
First suppose u∗ /∈ U1(c) for any c ∈ C. In this case we can apply proposition 2(i) of Cher-

nozhukov et al. (2010) directly to obtain∣∣∣∣∣∣ [φ
(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn
−

−K(1)(c)∑
k=1

h(u
(1)
k (c), c)

|∂uθ(1)
0 (u

(1)
k (c), c)|

∣∣∣∣∣∣ = o(1)

for any c ∈ C, where tn ↘ 0, hn ∈ `∞((0, 1)× C), and

sup
(u,c)∈(0,1)×C

|hn(u, c)− h(u, c)| = o(1)

as n→∞. Hence

[φ
(1)′
3,θ0

(h)](c) = −
K(1)(c)∑
k=1

h(u
(1)
k (c), c)

|∂uθ(1)
0 (u

(1)
k (c), c)|

,

a linear map in h.

Now suppose u∗ ∈ U1(c) for some c ∈ C. Without loss of generality, let u
(1)
1 (c) = u∗. Let Bε(u)

denote a ball of radius ε centered at u. By equation (A.1) in Chernozhukov et al. (2010), for any
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δ > 0 there exists an ε > 0 and a large enough n such that

[φ
(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn

≤
K(1)(c)∑
k=1

∫
Bε(u

(1)
k (c))

1(θ0(u, c) + tn(h(u
(1)
k (c), c)− δ) ≤ z)− 1(θ0(u, c) ≤ z)

tn
du.

Likewise, for any δ > 0 there exists ε > 0 and large enough n such that

[φ
(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn

≥
K(1)(c)∑
k=1

∫
Bε(u

(1)
k (c))

1(θ0(u, c) + tn(h(u
(1)
k (c), c) + δ) ≤ z)− 1(θ0(u, c) ≤ z)

tn
du.

The k = 1 element in the first sum is∫
Bε(u∗)

1(θ0(u, c) + tn(h(u∗, c)− δ) ≤ z)− 1(θ0(u, c) ≤ z)
tn

du.

θ0(u, c) is absolutely continuous in u and, by the change of variables formula for absolutely contin-
uous functions, the transformation z′ = θ0(u, c) implies that this k = 1 term is

1

tn

∫
J1∩[z,z−tn(h(u∗,c)−δ)]

1

|∂uθ0(θ−1
0 (z′, c), c)|

dz′,

where J1 is the image of Bε(u
∗) under θ0(·, c) and the change of variables follows from the mono-

tonicity of θ0 in Bε(u
∗) for small enough ε (this monotonicity follows from A5.1, which implies that

the derivative of θ0 changes sign a finite number of times). The closed interval [z, z−tn(h(u∗, c)−δ)]
should be interpreted as [z − tn(h(u∗, c)− δ), z] when z − tn(h(u∗, c)− δ) < z. Next consider three
cases:

1. When h(u∗, c) > 0, the interval [z, z−tn(h(u∗, c)−δ)] has the form [z−ψn, z] for an arbitrarily
small ψn > 0. Therefore, the denominator |∂uθ0(θ−1

0 (z′, c), c)| converges to |∂−u θ0(u∗, c)| as
n → ∞, by continuous differentiability on (0, u∗) and directional differentiability as u = u∗

and by θ−1
0 (z′, c) = u∗+ o(1). This holds by z′ ∈ [z− tn(h(u∗, c)− δ), z], an interval shrinking

to {z}. Therefore,

1

tn

∫
J1∩[z,z−tn(h(u∗,c)−δ)]

1

|∂uθ0(θ−1
0 (z′, c), c)|

dz′ =
1

tn

∫ z

z−tn(h(u∗,c)−δ)

1

|∂−u θ0(u∗, c)|+ o(1)
dz′

=
−h(u∗, c) + δ

|∂−u θ0(u∗, c)|
+ o(1).

By a similar argument,∫
Bε(u∗)

1(θ0(u, c) + tn(h(u∗, c) + δ) ≤ z)− 1(θ0(u, c) ≤ z)
tn

du =
−h(u∗, c)− δ
|∂−u θ0(u∗, c)|

+ o(1).
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Letting δ > 0 be arbitrarily small and by the squeeze theorem, we obtain

[φ
(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn
= −

K(1)(c)∑
k=1

h(u
(1)
k (c), c)

|∂−u θ(1)
0 (u

(1)
k (c), c)|

+ o(1).

2. When h(u∗, c) < 0, the interval [z, z − tn(h(u∗, c) − δ)] is of the form [z, z + ψn] for arbi-
trarily small ψn > 0. Using the same argument as in case 1, |∂uθ0(θ−1

0 (z′, c), c)| converges to
|∂+
u θ0(u∗, c)| as n→∞. Therefore, proceeding as in the previous case, we obtain that

[φ
(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn
= −

K(1)(c)∑
k=1

h(u
(1)
k (c), c)

|∂+
u θ

(1)
0 (u

(1)
k (c), c)|

+ o(1).

3. When h(u∗, c) = 0, this k = 1 term converges to zero.

Combining these three cases into a single expression we find that

1

tn

∫
J1∩[z,z−tn(h(u∗,c)−δ)]

1

|∂uθ0(θ−1
0 (z′, c), c)|

dz′

= −h(u∗, c)

(
1(h(u∗, c) > 0)

|∂−u θ0(u∗, c)|
+
1(h(u∗, c) < 0)

|∂+
u θ0(u∗, c)|

)
+ o(1).

This expression coincides with the Hadamard derivative under continuous differentiability at u =
u∗, since that implies ∂−u θ0(u∗, c) = ∂+

u θ0(u∗, c). It follows from the remainder of the proof in
Chernozhukov et al. (2010) that

sup
c∈C

∣∣∣∣∣ [φ(1)
3 (θ0 + tnhn)](c)− [φ

(1)
3 (θ0)](c)

tn
− [φ

(1)′
3,θ0

(h)](c)

∣∣∣∣∣ = o(1),

where ‖ · ‖e is the Euclidean norm, and where φ
(1)′
3,θ0

is defined in equation (17). Note that φ
(1)′
3,θ0

is
continuous in h, and therefore it is a Hadamard directional derivative.

That completes our analysis of the first component of the Hadamard directional derivative of
φ3 with respect to θ at θ0. By similar arguments, the second component is

[φ
(2)′
3,θ0

(h)](c) = −
K(2)(c)∑
k=1

h(u
(2)
k (c), c)

(
1(h(u

(2)
k (c), c) > 0)

|∂−u θ(2)
0 (u

(2)
k (c), c)|

+
1(h(u

(2)
k (c), c) < 0)

|∂+
u θ

(2)
0 (u

(2)
k (c), c)|

)
. (18)

Proof of lemma 4. Let

θ0(τ, c) =

(
Qc
Y1

(τ)−QcY0(τ)

Q
c
Y1(τ)−Qc

Y0
(τ)

)
and θ̂(τ, c) =

 Q̂
c

Y1
(τ)− Q̂

c

Y0(τ)

Q̂
c

Y1(τ)− Q̂
c

Y0
(τ)

 .

Therefore (
P (c)
P (c)

)
= [φ3(θ0)](c) and

(
P̂ (c)

P̂ (c)

)
= [φ3(θ̂)](c).
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By lemma 3,

√
N

 Q̂
c

Y1
(τ)− Q̂

c

Y0(τ)− (Qc
Y1

(τ)−QcY0(τ))

Q̂
c

Y1(τ)− Q̂
c

Y0
(τ)− (Q

c
Y1(τ)−Qc

Y0
(τ))

 (
Z

(2)
3 (τ, 1, c)− Z

(1)
3 (τ, 0, c)

Z
(1)
3 (τ, 1, c)− Z

(2)
3 (τ, 0, c)

)
,

a mean-zero Gaussian processes in `∞((0, 1)× C,R2) with continuous paths.
By lemma 8 with u∗ = 1/2, the mapping φ3 is Hadamard directionally differentiable tangentially

to C ((0, 1) × C,R2). By the functional delta method for Hadamard directionally differentiable
functions (e.g., theorem 2.1 in Fang and Santos 2015), we obtain

√
N

 P̂ (c)− P (c)

P̂ (c)− P (c)

 


[
φ

(2)′
3,Q

(·)
Y1

(·)−Q(·)
Y0

(·)
(Z

(2)
3 (·, 1, ·)− Z

(1)
3 (·, 0, ·))

]
(c)

[
φ

(1)′
3,Q

(·)
Y1

(·)−Q(·)
Y0

(·)
(Z

(1)
3 (·, 1, ·)− Z

(2)
3 (·, 0, ·))

]
(c)


≡ Z5(c),

a tight random element of `∞(C,R2) with continuous paths.

The following lemma shows that the sup operator is Hadamard directionally differentiable. It
is a very minor extension of lemma B.1 in Fang and Santos (2015), where we take the supremum
over just one of two arguments.

Lemma 9. Let A and C be compact subsets of R. Define the map φ : `∞(A× C)→ `∞(C) by

[φ(θ)](c) = sup
a∈A

θ(a, c).

Let
ΨA(θ, c) = argmax

a∈A
θ(a, c)

be a set-valued function. Then φ is Hadamard directionally differentiable tangentially to C (A×C)
at any θ ∈ C (A× C), and φ′θ : C (A× C)→ C (C) is given by

[φ′θ(h)](c) = sup
a∈ΨA(θ,c)

h(a, c)

for any h ∈ C (A× C).

Proof of lemma 9. This proof follows that of Lemma B.1 in Fang and Santos (2015). Let tn ↘ 0,
and hn ∈ `∞(A× C) such that

sup
(a,c)∈A×C

|hn(a, c)− h(a, c)| ≡ ‖hn − h‖∞ = o(1)

for h ∈ C (A×C). Since A is a closed and bounded subset of R, their lemma shows that tangential
Hadamard directional differentiability holds for any fixed c ∈ C. We show that this holds uniformly
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in c ∈ C as well. First, by their equation (B.1), we note that for some tn ↘ 0,

sup
c∈C

∣∣∣∣sup
a∈A

(
θ(a, c) + tnhn(a, c)

)
− sup
a∈A

(
θ(a, c) + tnh(a, c)

)∣∣∣∣ ≤ sup
c∈C

tn sup
a∈A
|hn(a, c)− h(a, c)|

= tn‖hn − h‖∞
= o(tn). (19)

Second, by their equations leading to (B.3)

sup
c∈C

∣∣∣∣∣sup
a∈A

(
θ(a, c) + tnh(a, c)

)
− sup
a∈ΨA(θ,c)

(
θ(a, c) + tnh(a, c)

)∣∣∣∣∣
≤ tn sup

c∈C
sup

a0,a1∈A:|a0−a1|≤δn
|h(a0, c)− h(a1, c)|

= o(tn) (20)

by uniform continuity of h(a, c) in a and c, which follows from the continuity of h on its compact
support A × C. Finally, combining equations (19) and (20) as in equation (B.4) from Fang and
Santos (2015), it follows that

sup
c∈C

∣∣∣∣∣sup
a∈A

(
θ(a, c) + tnhn(a, c)

)
− sup
a∈A

θ(a, c)− tn sup
a∈ΨA(θ,c)

h(a, c)

∣∣∣∣∣
≤ sup

c∈C

∣∣∣∣∣ sup
a∈ΨA(θ,c)

(
θ(a, c) + tnh(a, c)

)
− sup
a∈ΨA(θ,c)

θ(a, c)− tn sup
a∈ΨA(θ,c)

h(a, c)

∣∣∣∣∣+ o(tn)

= 0 + o(tn),

which completes the proof.

Proof of lemma 5. We begin by showing that the first component in equation (11) converges to a
tight random element of `∞(C × [0, 1]). Fix c and define

φ4 : `∞(R)→ R

by

φ4(θ) = max

{
sup
a∈Yz

θ(a, c), 0

}
.

As in the proof of lemma 2, the four mappings (δ1, δ2, δ3, δ4) from `∞(R× {0, 1})× `∞({0, 1})
to `∞(R× {0, 1}) are all Hadamard differentiable when evaluated at θ0.
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We can write

φ4(θ0)

= max

{
sup
a∈Yz

(F cY1(a)− F cY0(a− z)), 0
}

= max

{
sup
a∈Yz

(
max{[δ1(θ0)](a, 1), [δ2(θ0)](a, 1)} −min{[δ3(θ0)](a− z, 0), [δ4(θ0)](a− z, 0)}

)
, 0

}
= max

{
sup
a∈Yz

(
[δ1(θ0)](a, 1)− [δ3(θ0)](a− z, 0)

)
, sup
a∈Yz

(
[δ1(θ0)](a, 1)− [δ4(θ0)](a− z, 0)

)
,

sup
a∈Yz

(
[δ2(θ0)](a, 1)− [δ3(θ0)](a− z, 0)

)
, sup
a∈Yz

(
[δ2(θ0)](a, 1)− [δ4(θ0)](a− z, 0)

)
, 0

}
.

By linearity (δj − δk)(θ) is Hadamard differentiable at θ0 for j = 1, 2 and k = 3, 4. By the chain
rule (lemma 6) and lemma 9, the mappings

θ 7→ sup
a∈Yz

(
[δj(θ)](a, 1)− [δk(θ)](a− z, 0)

)
are Hadamard directionally differentiable at θ0 for j = 1, 2 and k = 3, 4. Finally, the maximum
operator over five arguments is Hadamard directionally differentiable, and by another application
of the chain rule, φ4 is Hadamard directionally differentiable for fixed c. Uniformity over c ∈ C is
obtained from considering the vector of Hadamard directional derivatives for all c ∈ C.

By lemma 4, the mapping (FY |X(· | ·), p(·)) 7→ P (·) is Hadamard directionally differentiable. Lin-
earity of the Hadamard directional derivative operator yields that the mapping (FY |X(· | ·), p(·)) 7→
DTE(z, ·, ·) is Hadamard directionally differentiable.

Since
inf
a∈A

θ(a, c) = − sup
a∈A

(−θ(a, c)),

the infimum operator is Hadamard directionally differentiable. As in the proof of lemma 2, the
minimum operator is Hadamard directionally differentiable. Following lemma 4, the mapping
(FY |X(· | ·), p(·)) 7→ P (·) is Hadamard directionally differentiable. A similar argument as above

implies the mapping (FY |X(· | ·), p(·)) 7→ DTE(z, ·, ·) is Hadamard directionally differentiable.
Combining these results with lemma 1 allows us to conclude that equation (11) holds.

Proof of theorem 2. By lemma 4, the numerator of equation (13) converges in process over c ∈ C.
By lemmas 4 and 5, the denominator also converges uniformly over c ∈ C. By the delta method,

√
N
(

b̂f(0, c, p)− bf(0, c, p)
)

=
√
N

 1− p− P̂ (c)

1 + min
{

infy∈Y0(F̂
c

Y1(y)− F̂
c

Y0(y)), 0
}
− P̂ (c)

−
1− p− P (c)

1 + min
{

infy∈Y0(F
c
Y1(y)− F cY0(y)), 0

}
− P (c)

)

 
−Z

(1)
5 (c)

1 + min
{

infy∈Y0(F
c
Y1(y)− F cY0(y)), 0

}
− P (c)

−
1− p− P (c)(

1 + min
{

infy∈Y0(F
c
Y1(y)− F cY0(y)), 0

}
− P (c)

)2 Z̃(c)
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where √
N
(

1− p− P̂ (c)− (1− p− P (c))
)
 −Z

(1)
5 (c)

and

√
N

(
min

{
inf
y∈Y0

(F̂
c

Y1(y)− F̂
c

Y0(y)), 0

}
− P̂ (c)−min

{
inf
y∈Y0

(F
c
Y1(y)− F cY0(y)), 0

}
+ P (c)

)
 Z̃(c).

Here Z̃(c) is a random element of `∞(C) by lemmas 4 and 5. Therefore,

√
N
(

b̂f(0, c, p)− bf(0, c, p)
)

converges to a random element in `∞(C × P).
As discussed in the proof of lemma 2, the maximum and minimum operators in equation (12) are

Hadamard directionally differentiable. By lemma 6, their composition is Hadamard directionally
differentiable. Therefore, by the delta method for Hadamard directionally differentiable functions,√
N(B̂F(0, c, p)− BF(0, c, p)) converges in process as in the statement of the theorem.

Lemma 10. Let h : A→ R where A ⊆ R. Let F (h) = supx∈A h(x). Let ‖·‖∞ denote the sup-norm
‖h‖∞ = supx∈A |h(x)|. Then F is Lipschitz continuous with respect to the sup-norm ‖ · ‖∞ and has
Lipschitz constant equal to one.

Proof of lemma 10. For functions h and h′,

sup
x∈A

h(x)− sup
x̃∈A

h′(x̃) = sup
x∈A

(
h(x)− sup

x̃∈A
h′(x̃)

)
≤ sup

x∈A
(h(x)− h′(x))

≤ sup
x∈A
|h(x)− h′(x)|.

By a symmetric argument,

sup
x∈A

h′(x)− sup
x̃∈A

h(x̃) ≤ sup
x∈A
|h′(x)− h(x)|

= sup
x∈A
|h(x)− h′(x)|.

Therefore |F (h)− F (h′)| ≤ ‖h− h′‖∞.

Proof of proposition 2. Hadamard directional differentiability of φ follows from the chain rule (lemma
6) and from the proof of theorem 2, since the breakdown frontier is a Hadamard directionally dif-
ferentiable mapping of P (·) and DTE(z, ·, ·), which are themselves Hadamard directionally differ-
entiable mappings of θ0.

Lemma 1 combined with theorem 3.6.1 of van der Vaart and Wellner (1996) implies consistency

of the nonparametric bootstrap for our underlying parameters: Z∗N =
√
N(θ̂∗ − θ̂) P

 Z1. By this
result, εN → 0,

√
NεN →∞, and theorem 3.1 in Hong and Li (2015), equation (15) holds.

By 1/σ(c) being uniformly bounded, we have that[
φ̂′θ0(
√
N(θ̂∗ − θ̂))

]
(c, p)

σ(c)

P
 

Z7(c, p)

σ(c)
.
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By lemma 10, the sup operator is Lipschitz with Lipschitz constant equal to 1. Therefore, by
proposition 10.7 on page 189 of Kosorok (2008), we can apply a continuous mapping theorem to
get

sup
c∈C

[
φ̂′θ0(
√
N(θ̂∗ − θ̂))

]
(c, p)

σ(c)

P
 sup

c∈C

Z7(c, p)

σ(c)
.

The rest of the proof follows from corollary 3.2 of Fang and Santos (2015).

Proof of corollary 1. This follows immediately from proposition 2 and lemma 11 below.

Lemma 11. Let C > 0 and C = {c1, . . . , cJ} ⊆ [0, C] be a finite grid of points. Let f : [0, C]→ R+

be a nonincreasing function. Let L̂B(·) be an asymptotically exact uniform lower 1− α confidence
band for f on the grid points:

lim
N→∞

P
(

L̂B(cj) ≤ f(cj) for j = 1, . . . , J
)

= 1− α.

Define L̃B : [0, C]→ R+ by

L̃B(c) =



L̂B(c1) if c ∈ [0, c1]
...

L̂B(cj) if c ∈ (cj−1, cj ], for j = 2, . . . , J
...

0 if c ∈ (cJ , C].

Then L̃B(·) is an asymptotically exact uniform lower 1− α confidence band on [0, C]:

lim
N→∞

P
(

L̃B(c) ≤ f(c) for all c ∈ [0, C]
)

= 1− α.

Proof of lemma 11. Define the events

A = {L̂B(cj) ≤ f(c) for all c ∈ (cj−1, cj ], for j = 1, . . . , J}

and
B = {L̂B(cj) ≤ f(cj) for j = 1, . . . , J}.

A immediately implies B. Since f is nonincreasing, B implies A. Thus

P(L̃B(c) ≤ f(c) for all c ∈ [0, C]) = P(L̂B(cj) ≤ f(c) for all c ∈ (cj−1, cj ], for j = 1, . . . , J)

= P(L̂B(cj) ≤ f(cj) for j = 1, . . . , J).

The first line follows by definition of L̃B and since f is nonnegative. Taking limits as N →∞ yields

lim
N→∞

P(L̃B(c) ≤ f(c) for all c ∈ [0, C]) = lim
N→∞

P(L̂B(cj) ≤ f(cj) for j = 1, . . . , J)

= 1− α,

where the last equality follows from the validity of the band L̂B(·) on C.
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C Inference via population smoothing

In this section we develop an alternative approach to constructing lower uniform confidence bands
for the breakdown frontier. As discussed in section 3, the population breakdown frontier BF(0, ·, p)
evaluated on a finite grid of c’s is a Hadamard directionally differentiable functional of the under-
lying parameters θ0 = (FY |X(· | ·), p(·)), but it is not necessarily ordinary Hadamard differentiable.
We therefore applied the work of Dümbgen (1993), Fang and Santos (2015), and Hong and Li
(2015) to do inference. In this section, we instead replace BF(0, ·, p) by a smoother lower envelope
function. We then construct uniform lower confidence bands for this smoothed breakdown frontier,
which are asymptotically valid—but potentially conservative—for the original breakdown frontier.
We compare and contrast these two approaches to inference at the end of this section.

Specifically, recall from section 2 that

BF(z, c, p) = min{max{bf(z, c, p), 0}, 1}

where

bf(z, c, p) =
1− p− P(Qc

Y1
(U)−QcY0(U) ≤ z)

1 + min
{

infy∈Yz(F
c
Y1(y)− F cY0(y − z)), 0

}
− P(Qc

Y1
(U)−QcY0(U) ≤ z)

. (9)

For simplicity, we fix z ∈ R and p ∈ [0, 1] throughout this section. We use κ throughout to denote a
scalar or vector of smoothing parameters. We replace BF(z, ·, p) by a smooth lower approximation
SBFκ(z, ·, p), defined as follows.

Definition 4. Let (Θ, ‖ · ‖Θ) and (G , ‖ · ‖G ) be Banach spaces. Let ≤ be a partial order on G .

Let f : Θ → G be a function. Consider a function fκ : Θ → G , where κ ∈ Rdim(κ)
+ is a vector of

bandwidths. We say fκ is a smooth lower approximation of f if it satisfies the following:

1. (Lower envelope) fκ(θ) ≤ f(θ) for all θ ∈ Θ and κ ∈ Rdim(κ)
+ .

2. (Approximation) For each θ ∈ Θ, fκ(θ) → f(θ) as all components of κ converge to infinity.
Here we take → to mean pointwise convergence.

3. (Smoothness) fκ is Hadamard differentiable, possibly only tangentially to a specified set.

Define smooth upper approximations analogously.

Throughout this section we let ≤ denote the component-wise order when applied to functions
with Euclidean codomain. Recall our notation θ0 = (FY |X(· | ·), p(·)), θ̂ = (F̂Y |X(· | ·), p̂(·)), and

Z1 as the limiting distribution of
√
N(θ̂ − θ0). Below we show how to construct a functional

ψ : `∞(R × {0, 1}) × `∞({0, 1}) → `∞([0, C]) which maps θ0 into SBFκ(0, ·, p) such that this
functional is a smooth lower approximation of the functional mapping θ0 to BF(0, ·, p). Given such
a functional, we estimate the smoothed breakdown frontier by sample analog:

ŜBFκ(0, c, p) = [ψ(θ̂)](c).

We then construct uniform confidence bands for the breakdown frontier as follows. As in section
3, consider bands of the form

L̂B(c) = ŜBFκ(0, c, p)− k̂(c)

for some function k̂(·) ≥ 0. We specifically focus on k̂(c) = ẑ1−ασ(c) for a scalar ẑ1−α and a known
function σ, for simplicity. We now immediately obtain the following result.
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Proposition 5. Suppose A1, A3, and A4 hold. Let ψ denote the functional described above, a
smooth lower approximation to the breakdown frontier functional. Let θ̂∗ denote a draw from the
nonparametric bootstrap distribution of θ̂. Then

√
N(ψ(θ̂∗)− ψ(θ̂))

P
 ψ′θ0(Z1) (21)

where ψ′θ0 denotes the Hadamard derivative of ψ at θ0. For a given function σ(·) such that
infc∈[0,C] σ(c) > 0, define

ẑ1−α = inf

{
z ∈ R : P

(
sup
c∈[0,C]

√
N([ψ(θ̂∗)](c)− [ψ(θ̂)](c))

σ(c)
≤ z | ZN

)
≥ 1− α

}
. (22)

Finally, suppose also that the cdf of

sup
c∈[0,C]

[ψ′θ0(Z1)](c)

σ(c)

is continuous and strictly increasing at its 1−α quantile, denoted z1−α. Then ẑ1−α = z1−α+ op(1).

Corollary 2. Suppose the assumptions of proposition 5 hold. Let k̂(c) = ẑ1−ασ(c), where ẑ1−α is
defined in equation (22). Then

lim
N→∞

P
(

ŜBFκ(0, c, p)− k̂(c) ≤ BF(0, c, p) for all c ∈ [0, C]
)
≥ 1− α.

Importantly, the level of smoothing κ is fixed asymptotically. This is analogous to the require-
ment that the grid of c’s must be fixed asymptotically in the approach discussed in section 3. It
is also similar to a proposal by Chernozhukov et al. (2010) in their corollary 4. They suggested
replacing the non-smooth function with a smoothed version and doing inference on the smoothed
version. Their approach delivers valid inference on the smoothed function, but not the original
function. This follows since their smoothed function does not satisfy an envelope property. Our
modification of their suggestion, however, delivers valid inference on both the smoothed and original
functions.

All that remains is to construct such a function SBFκ(z, c, p). We consider each piece composing

the function BF(z, c, p) in turn. First consider F
c
Y1(y). This bound is a minimum of two terms (see

equation 7). In general, consider the minimum of a finite number of terms x1, . . . , xn. There are
many smooth approximations of this function. Here we just consider one:

smκ{x1, . . . , xn} =
n∑
i=1

xi
exp(κxi)∑n
j=1 exp(κxj)

for κ < 0. This same function approximates max{x1, . . . , xn} for κ > 0. Let D be a subset of
a Euclidean space. Let D1 denote the set of functions in `∞(D)n with range contained in some
compact set Y ⊆ Rn. In our application, we are interested using the functional ψ1,κ : D1 → `∞(D)
defined by

[ψ1,κ(f1, . . . , fn)](y) = smκ{f1(y), . . . , fn(y)}

to approximate the functionals ψ1,max : D1 → `∞(D) defined by

[ψ1,max(f1, . . . , fn)](y) = max{f1(y), . . . , fn(y)}
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and ψ1,min : D1 → `∞(D) defined by

[ψ1,min(f1, . . . , fn)](y) = min{f1(y), . . . , fn(y)}.

Lemma 12. Let κ ∈ R+.

1. ψ1,κ is a smooth lower approximation of ψ1,max.

2. ψ1,−κ is a smooth upper approximation of ψ1,min.

Since F
c
Y1(y) enters the denominator of equation (9), and since smκ for κ < 0 is an upper

envelope for the minimum, replacing the minimum in the definition of F
c
Y1(y) with smκ for κ < 0

decreases the value of equation (9). Similarly, replacing the maximum in the definition of F cY0(y)
by smκ for some κ > 0 decreases the value of equation (9).

Next consider the P(Qc
Y1

(U) − QcY0(U) ≤ z) term. As discussed in section 3, this term is the

pre-rearrangement operator pr : `∞((0, 1)× C)→ `∞(C) defined by

[pr(f)](c) =

∫ 1

0
1[f(u, c) ≤ z] du

evaluated at the difference of the quantile bounds, where C ⊆ [0, 1]. Define the smoothed pre-
rearrangement operator sprκ : `∞((0, 1)× C)→ `∞(C) by

[sprκ(f)](c) = 1−
∫ 1

0
ssκ(f(u, c)) du

where ssκ is a smooth (upper or lower) approximation to the step function 1(x ≥ 0).

Lemma 13. Let ssκ : R → R be a smooth upper (lower) approximation to the step function.
Suppose further that ssκ approximates the step function in the L1-norm and ssκ’s derivative is
uniformly continuous on its domain. Then sprκ is a smooth lower (upper) approximation to pr.

As with the maximum and minimum, there are many ways to construct smooth approximations
to the step function 1(x ≥ 0). Here we mention just one:

ss+
κ (x) = S1(κx− 1) and ss−κ (x) = S1(κx) (23)

where

S1(x) =


0 if x ≤ 0

3x2 − 2x3 if x ∈ (0, 1)

1 if x ≥ 1.

Lemma 14. Let κ ∈ R+. Consider ss+
κ and ss−κ defined in equation (23).

1. ss+
κ : R→ R is a smooth upper approximation of 1(x ≥ 0).

2. ss−κ : R→ R is a smooth lower approximation of 1(x ≥ 0).

Moreover, both ss−κ and ss+
κ approximate the step function in the L1-norm and have uniformly

continuous derivative on R.
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We can now replace the pre-rearrangement operator in the numerator of equation (9) by sprκ(f)
where the step function is approximated by ss−κ . Likewise we replace the pre-rearrangement operator
in the denominator by sprκ(f) where the step function is approximated by ss+

κ . Both of these
changes decrease the value of equation (9).

Next consider the infimum piece in the denominator of equation (9). First notice that

inf
y∈Yz

(F
c
Y1(y)− F cY0(y − z)) = 1 + inf

y∈Yz
(−1 + F

c
Y1(y)− F cY0(y − z)).

This ensures the argument of the infimum is nonpositive, a property we use below. As Fang and
Santos (2015) note in their example 2.3 on page 10, if this infimum always has a unique optimizer,
then the infimum operator is actually ordinary Hadamard differentiable. To avoid assuming that
such a unique optimizer always exists, however, we will also replace the infimum by a smooth
approximation. Specifically, let

‖f‖p =

(∫
Yz
|f(y)|p dy

)1/p

denote the Lp(Yz)-norm. As p→∞, the Lp-norm converges to the sup-norm. We use this result to
construct our smooth approximation to the infimum. Let y = inf Yz and y = supYz, which are both
finite since Yz is compact. Let D2 denote the set of all nonpositive functions in `∞(R×C) with Lp-
norm bounded away from zero and range contained in [−2, 0]. Let p ≥ 1. Define ψ2,p : D2 → `∞(C)
by

[ψ2,p(f)](c) = − 1

(y − y)1/p
‖ − f(·, c)‖p.

We scale the Lp-norm to ensure that we obtain a lower approximation to the supremum. The two
minus signs then switch this to an upper approximation to the infimum.

Lemma 15. ψ2,p is a smooth upper approximation to the infimum function, as p→∞.

Using this result, we replace

1 + inf
y∈Yz

(−1 + F
c
Y1(y)− F cY0(y − z))

by its smooth upper approximation

1 +
[
ψ2,p

(
−1 + F

(·)
Y1(·)− F (·)

Y0
(· − z)

)]
(c)

in equation (9), which decreases the value of the breakdown frontier. In this step we require the
argument of ψ2,p to have nonzero Lp-norm. This assumption rules out extreme cases, such as when
both 0 ∈ C and FY |X(· | 0) = FY |X(· | 1).

Finally, the maximum in the definition of BF(z, c, p) can be replaced with smκ. For the minimum
in this definition we want a smooth lower approximation. Since min{0, x} = x[1 − 1(x ≥ 0)], one
such approximation is x[1− ss+

κ (x)].
In section 3 we showed that the population breakdown frontier is a composition of Hadamard

directionally differentiable functionals. In this section, we showed how to replace each functional in
this composition by an ordinary Hadamard differentiable functional in such a way that the overall
function is weakly smaller than the original breakdown frontier. Moreover, the difference between
the original and smoothed frontiers can be made arbitrarily small by choosing appropriate values of
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the tuning parameters. Corollary 2 above shows how to use this construction to do valid inference
on the original breakdown frontier.

We conclude by comparing our two approaches to inference: The first based on Hadamard di-
rectional differentiability and the second based on smoothing the population frontier. For any fixed
finite grid of c values, the first approach provides asymptotically exact inference while the second
approach will always be possibly conservative. Visually, the first approach uses step functions to
obtain a uniform band while the second approach produces a smoother appearing frontier. The
first approach required assumption A5 while the second approach does not. The first approach
requires choosing the εN tuning parameter for the numerical delta method bootstrap, while the
second approach does not since the ordinary bootstrap is valid. The second approach, however,
requires choosing a large number of smoothing functions and bandwidths, unlike the first approach.
Too much smoothing will lead to conservative inference, while too little smoothing will likely lead
to poor finite sample performance. Overall, neither approach appears to strictly dominate.

Proofs for appendix C

Proof of proposition 5. Equation (21) follows by the functional delta method (e.g., theorem 3.1 of
Fang and Santos 2015), since ψ is Hadamard differentiable. The rest of the proof follows as in the
proof of proposition 2.

Proof of corollary 2. This result follows immediately by the lower envelope property of the smoothed
breakdown frontier.

Proof of lemma 12. We give the proof for part 1. Part 2 is analogous.

1. Let x1, . . . , xn ∈ R. smκ{x1, . . . , xn} is a weighted average of x1, . . . , xn where the weights
are in (0, 1). Hence it must always be weakly smaller than the maximum of x1, . . . , xn. Thus
smκ{f1(y), . . . , fn(y)} ≤ max{f1(y), . . . , fn(y)} for any functions f1, . . . , fn and any y ∈ D.

2. Let x1, . . . , xn ∈ R. Suppose xk = max{x1, . . . , xn}. Without loss of generality, suppose this
maximum is unique. Multiplying and dividing by exp(−κxk) yields

smκ{x1, . . . , xn} =
n∑
i=1

xi
exp(κ[xi − xk])∑n
j=1 exp(κ[xj − xk])

.

For all i 6= k, xi−xk < 0 hence exp(κ[xi−xk])→ 0 as κ→∞. Thus the weights on all i 6= k
converge to zero while the weight on xk converges to one. Hence for any fixed f1, . . . , fn and
y ∈ D, [ψ1,κ(f1, . . . , fn)](y) converges to ψ1,max(f1, . . . , fn)](y).

3. For any fixed κ, the derivatives of the weights with respect to each xi are uniformly bounded.
This follows by the functional form of the weights and compactness of Y. Therefore ψ1,κ is
Fréchet differentiable by lemma 16 below. Finally, note that Fréchet differentiability implies
Hadamard differentiability.

Lemma 16. Let g : Rn → R be an everywhere differentiable function with uniformly continuous
derivative on Y ⊆ Rn. Let D be a subset of a Euclidean space. Define the functional φ : `∞(D)n →
`∞(D) by

[φ(f1, . . . , fn)](y) = g(f1(y), . . . , fn(y)).
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Let D denote the set of functions in `∞(D)n with range contained in Y. Let f ∈ D. Then φ is
Fréchet differentiable at f with derivative

[φ′f (h)](y) =
n∑
i=1

[∇ig](f1(y), . . . , fn(y)) · hi(y)

where ∇ig denotes the ith partial derivative of g.

Proof of lemma 16. We show the n = 1 case, where

[φ′f (h)](y) = g′(f(y))h(y).

The n ≥ 2 case is similar. We also suppose Y = R for simplicity. We have∣∣[φ(f + h)](y)−
(
[φ(f)](y) + [φ′f (h)](y)

)∣∣ =
∣∣(g(f(y) + h(y))− g(f(y))

)
− g′(f(y))h(y)

∣∣
= |g′(f̄(y))h(y)− g′(f(y))h(y)|
= |g′(f̄(y))− g′(f(y))| · |h(y)|.

The second line follows by the mean value theorem, which says that there exists a f̄(y) such that

g(f(y) + h(y))− g(f(y)) = g′(f̄(y))h(y)

and |f̄(y)− f(y)| ≤ |h(y)|. We apply this argument for each y ∈ D.
Next, fix ε > 0. By uniform continuity of g′(·), there is a δ > 0 such that for all h̃ ∈ R with

|h̃| < δ and all f̃ ∈ R,
|g′(f̃ + h̃)− g′(f̃)| < ε.

Therefore,
|g′(f̄(y))− g′(f(y))| · |h(y)| ≤ ε|h(y)|

for all ‖h‖∞ < δ. Hence

sup
y∈D

∣∣[φ(f + h)](y)−
(
[φ(f)](y) + [φ′f (h)](y)

)∣∣ ≤ ε sup
y∈D
|h(y)|

for all ‖h‖∞ < δ. That is,
‖φ(f + h)−

(
φ(f) + φ′f (h)

)
‖∞

‖h‖∞
≤ ε

for ‖h‖∞ < δ. Since ε was arbitrary, this shows that the left hand side is o(1).

Proof of lemma 13. We show that sprκ is a smooth lower approximation to pr when ssκ is a smooth
upper approximation to the step function. The second part is analogous.

1. This follows immediately since ssκ is an upper approximation to the step function, which is
then multiplied by a negative sign in the definition of sprκ.

2. This follows by our assumption that ssκ approximates the step function in the L1-norm:∫
R
|ssκ(u)− 1(u ≥ 0)| du→ 0

as κ→∞.
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3. This follows immediately from lemma 17 below.

Lemma 17. Let Λ : R → R be an everywhere differentiable function with uniformly continuous
derivative on its domain. Let C ⊆ R. Define the functional φ : `∞((0, 1)× C)→ `∞(C) by

[φ(f)](c) =

∫ 1

0
Λ[f(u, c)] du.

Then φ is Fréchet differentiable, where

[φ′f (h)](c) =

∫ 1

0
Λ′[f(u, c)]h(u, c) du

is the Fréchet derivative of φ at f .

Proof of lemma 17. This result is a modification of example 5 on page 174 of Luenberger (1969).
We have∣∣[φ(f + h)](c)−

(
[φ(f)](c) + [φ′f (h)](c)

)∣∣
=

∣∣∣∣∫ 1

0

(
Λ[f(u, c) + h(u, c)]− Λ[f(u, c)]− Λ′[f(u, c)]h(u, c)

)
du

∣∣∣∣
By the usual mean value theorem,

Λ[f(u, c) + h(u, c)]− Λ[f(u, c)] = Λ′[f̄(u, c)]h(u, c)

where |f(u, c)− f̄(u, c)| ≤ |h(u, c)|. We apply this argument for each u ∈ (0, 1) and c ∈ C.
Next, fix ε > 0. Λ′(·) is uniformly continuous by assumption. Hence there is a δ > 0 such that

for all h̃ ∈ R with |h̃| < δ and all f̃ ∈ R,

|Λ′(f̃ + h̃)− Λ′(f̃)| < ε.

Therefore,

sup
c∈C

∣∣∣∣∫ 1

0

(
Λ[f(u, c) + h(u, c)]− Λ[f(u, c)] + Λ′[f(u, c)]h(u, c)

)
du

∣∣∣∣
= sup

c∈C

∣∣∣∣∫ 1

0

(
Λ′[f̄(u, c)]− Λ′[f(u, c)]

)
h(u, c) du

∣∣∣∣
≤ sup

c∈C

∣∣∣∣∫ 1

0
εh(u, c) du

∣∣∣∣
≤ ε sup

c∈C
sup

u∈(0,1)
|h(u, c)|

= ε‖h‖∞.

The first inequality holds for ‖h‖∞ < δ. Thus

‖φ(f + h)−
(
φ(f) + φ′f (h)

)
‖∞

‖h‖∞
≤ ε
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for ‖h‖∞ < δ. Since ε was arbitrary, this shows that the left hand side is o(1).

Proof of lemma 14. We give the proof for part 1. Part 2 is analogous.

1. By construction, 0 ≤ S1(x) ≤ 1 on (0, 1).

2. By construction, ss+
κ (x) equals 1(x ≥ 0) everywhere except on (0, 1/κ). Thus we immediately

obtain the desired pointwise convergence. Furthermore, note that∫
R
|ss+

κ (x)− 1(x ≥ 0)| dx ≤ 1

κ

which converges to zero as κ→∞. We use this property in lemma 13.

3. This follows since S1 : R→ R is differentiable.

S′1(x) = 6x(1 − x) is bounded by 3 on x ∈ [0, 1]. For x /∈ [0, 1], S′1(x) = 0. Hence S1 is Lipschitz.
Therefore it is uniformly continuous. Thus both ss+

κ and ss−κ are also uniformly continuous.

Proof of lemma 15.

1. This follows from (∫
Yz
f(y, c)p dx

)1/p

≤ sup
y∈Yz

f(y, c)

(∫
Yz

1 dx

)1/p

≤ ‖f(·, c)‖∞(y − y)1/p.

2. This follows, for example, from proposition 2.2 on page 8 of Stein and Shakarchi (2011).

3. Define φ : D2 → `∞(C) by [φ(f)](c) = ‖ − f(·, c)‖p. ψ2,p is just a scaled version of this
functional. Define ψ : D2 → `∞(C) by

[ψ(f)](c) = [φ(f)](c)p = ‖ − f(·, c)‖pp =

∫ 1

0
[−f(u, c)]p du.

The last equality follows since −f is nonnegative. By lemma 17, ψ is Fréchet differentiable
with Fréchet derivative

[ψ′f (h)](c) = −
∫ 1

0
p[−f(u, c)]p−1h(u, c) du.

Here we use uniform continuity of xp on the compact set [−2, 0].

Let D3 denote the set of nonnegative functions in `∞(C) with Lp-norm bounded away from
zero. Note that the range of ψ is contained in D3. Consider the functional θ : D3 → `∞(C)
defined by [θ(g)](c) = g(c)1/p. By arguments as in lemma 16, the Fréchet derivative of θ is

[θ′g(h)](c) =
1

p
g(c)1/p−1h(c).

Here we will use both the bounded range of our input functions f and their Lp-norm bounded
away from zero to ensure uniform continuity of (1/p)x1/p−1. Note that [φ(f)](c) = [θ(ψ(f))](c).
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The result now follows by the chain rule, which further states that [φ′f (h)](c) = [θ′ψ(f)(ψ
′
f (h))](c).

Hence

[φ′f (h)](c) =
1

p

(∫ 1

0
[−f(u, c)]p du

)1/p−1

(−1)

(∫ 1

0
p[−f(u, c)]p−1h(u, c) du

)
= − ‖ − f(·, c)‖p∫ 1

0 [−f(u, c)]p du

∫ 1

0
[−f(u, c)]p−1h(u, c) du.

This derivative is not defined when f has zero Lp-norm.
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