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1 Introduction

In many real-life principal-agent relationships, actions by agents have long-lasting – not

immediately observable – effects on outcomes. For example, within the financial sector,

investments by private equity or venture capital fund managers only produce verifiable

returns to investors upon an exit, a credit rating issued by a credit rating agency (or a loan

officer’s loan decision) can be evaluated more accurately over the lifetime of a loan, and,

a bank’s risk management is only stress-tested in times of crisis. Outside the financial

sector, innovation activities by researchers, be it in academia or in industry, typically

produce signals such as patents or citations only with considerable delay. Similarly, the

quality of a CEO’s strategic decisions may not be assessed until well into the future. The

list is certainly not exclusive and, yet, it suggests that the delay of observability is an

important, if not defining feature of many moral hazard environments.

The goal of our paper is to address a basic research question. How does one optimally

structure the intertemporal provision of incentives in “only time will tell” information

environments when the agent’s liquidity needs make it costly to defer compensation?

We allow for abstract, general information systems, and, yet, obtain a tractable and

intuitive characterization of optimal contracts, in particular of the optimal duration of

pay. Our modeling framework can be used to shed light on various economic applications

ranging from the effects of regulatory interventions in the timing of pay (such as bonus

deferral requirements or clawbacks) to the optimal maturity structure of an entrepreneur’s

financing decisions.

In order to focus on the optimal intertemporal provision of incentives in general

information environments, we consider an otherwise parsimonious principal-agent setting

with one-time action (such as Holmstrom (1979)), bilateral risk-neutrality and limited

liability on the side of the agent (cf., Innes (1990) and Kim (1997)). The agent chooses an

unobservable action that affects the distribution of a process of contractible signals, such

as output realizations, defaults, annual performance reviews, etc. These signals may

arrive continuously or at discrete points in time. A compensation contract stipulates

(bonus) payments to the agent, conditioning on all information available at a particular

date (the history of signals), and must satisfy both the agent’s incentive compatibility

and participation constraint. Finally, as in DeMarzo and Duffie (1999), we model the

agent’s liquidity needs via relative impatience.

The key simplification of the compensation design problem in this setting results from

the construction of a simple unidimensional measure of the gain in informativeness over

time, formally capturing “only time will tell :” For any signal process, the information
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content relevant for the optimal timing of pay is fully summarized by the maximal likeli-

hood ratio across signal histories, which is an increasing function of time. The intuition

for this result draws on insights from static models (e.g., Innes (1990)) and adapts them

to our dynamic environment: If an optimal contract stipulates a bonus at some date t,

then this bonus is only paid for an outcome, here a history of realized signals up to date

t, that maximizes the likelihood ratio across all possible date-t realizations. Without a

risk-sharing motive, it is optimal to punish the agent for all other outcomes, i.e., pay out

zero due to limited liability of the agent. Then, by tracing out this maximal date-t like-

lihood ratio over time we obtain the informativeness function. Since the likelihood ratio

process – which captures the information about the agent’s action – is a martingale, the

informativeness function is increasing in time and measures by how much the principal

is able to reduce incentive pay by deferring longer.

The timing of payouts trades off this benefit of deferral with the deadweight costs

resulting from the agent’s liquidity needs (relative impatience). When the agent’s outside

option is low, the duration of pay reflects a rent-extraction motive. More informative

signals allow the principal to reduce the agency rent, and the principal will optimally

defer bonus payments as long as the growth rate of informativeness exceeds the growth

rate of impatience costs, resulting in a single payout date. In turn, when the agent’s

outside option is sufficiently high, the size of the compensation package is fixed, so the

principal’s rent extraction motive is absent. Then, optimal contracts simply minimize

weighted average impatience costs subject to ensuring incentive compatibility. Optimal

contracts may now require two payout dates in order to exploit significant changes in the

growth rate of informativeness over time. We find that the duration of pay, the weighted

average payout time, is shorter if the agent’s outside option is higher. The intuition is

that contracts provide incentives via two substitutable channels, the size of the agent’s

compensation package and contract duration. When the (binding) outside option exoge-

nously increases the size of the compensation package, the principal optimally responds

by reducing the duration of pay.

The tractability of our framework – with at most two payout dates regardless of

the signal process – allows us to obtain closed-form solutions for payout dates for many

commonly used signal processes. Yet, in some settings the just described benchmark

contracts may have stark implications in that they prescribe “high” bonus payments for

low-probability events. In those cases, but also more generally in an applied context, it

seems natural to consider an extension of our basic framework by imposing bounds on

transfers to the agent. These bounds could capture a simple form of risk-aversion on the

side of the agent (see Plantin and Tirole (2015)) or a limited liability constraint of the
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principal. We show that the basic intuition underlying optimal contract design remains

robust. Now, the agent obtains payments following the realization of histories for which

the ratio of informativeness (measured in likelihood ratio units) to impatience costs is

above a cutoff. The setup thus predicts that the “performance hurdle” for payouts to

the agent is increasing over time. Relative to the benchmark contracts without bounds,

this results both in a wider range of payout histories for a given date as well as more

payout dates. Hence, our simple agency model with persistent effects can generate rich

optimal dynamic payoff structures. For instance, building on Innes (1990), we discuss

how persistent moral hazard may imply the optimality of simultaneously issuing debt

with multiple maturities.

Finally, we extend our binary-action setup to allow for a continuum of actions and

show that the optimal compensation design problem is virtually identical as long as

the first-order-approach is valid. More importantly, a continuous action set delivers new

economic insights: As the signal process, and, hence, informativeness itself are a function

of the action, the duration of pay may be non-monotonic in the induced effort level.

Intuitively, the sign of the comparative statics depends on whether the principal “learns”

faster under high or low effort, which depends on the signal structure. Thus, short-term

compensation packages may not be indicative of weak incentives, which has implications

for the effectiveness of regulatory proposals mandating minimum deferral periods for

bonuses paid to executives in the financial sector (cf. Hoffmann et al. (2017)).

Literature. The premise of our paper is that the timing of pay determines the infor-

mation about the agent’s hidden action that the principal can use for incentive com-

pensation. This relates our analysis to the broader literature on comparing information

systems in agency problems, which derives sufficient conditions for information to have

value for the principal (Holmstrom (1979), Gjesdal (1982), Grossman and Hart (1983),

Kim (1995)). Time generates a family of information systems via the arrival of addi-

tional signals, such that a principal must do (weakly) better when having access to an

information system generated by a later date. In a risk-neutral setting like ours, the

measurement of “how much better” is exactly determined by the increase in the maximal

likelihood-ratio.1 The key difference of our paper relative to this classical strand of the

literature is that having access to a better information system generates (endogenous)

costs due to the agent’s liquidity needs. The optimal timing of pay resolves the resulting

trade-off, thereby determining the optimal information system in equilibrium.

1 Cf. also Chaigneau et al. (2016) for an option pricing approach to quantifying the cost savings
associated with “more precise” information in optimal contracting.
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More concretely, our paper belongs to a small, but growing literature that analyzes

moral hazard setups where actions have persistent effects. Most closely related is Hopen-

hayn and Jarque (2010) who consider the case of a risk-averse agent. Due to the agent’s

desire to smooth consumption across states (and time), risk-aversion generates different

trade-offs in compensation design, such that the entire likelihood ratio distribution mat-

ters to capture the benefit of deferral in their setup. This makes it difficult to sharply

characterize the optimal duration of pay even for the special case of i.i.d. signals with bi-

nary outcomes. Our model with an impatient but risk neutral agent allows for a complete

characterization of the optimal timing of pay for general (discrete as well as continuous)

signal processes. This nests the important finance application of moral hazard by a se-

curitizer of defaultable assets, as studied in Hartman-Glaser et al. (2012) and Malamud

et al. (2013).

In our setup, the only reason for deferral is to improve the information system available

to the principal. As is well known, in repeated-action settings the timing of pay may

play an important role even when actions are immediately and perfectly observed (cf.,

Ray (2002)): In this literature, backloading of rewards to the agent has the benefit

that it incentivizes both current as well as future actions.2 Work by Jarque (2010),

Sannikov (2014), or Zhu (2017) combines the effects of repeated actions and persistence.

The additional complexity, however, requires special assumptions on the signal process.

Instead, our setup tries to isolate one effect, the idea that information gets better over

time, and studies it in (full) generality.

2 Basic model

2.1 Setup

We consider a principal-agent problem with bilateral risk-neutrality and limited liability

of the agent in which the principal observes informative signals about the agent’s action

over time. Time is continuous t ∈
[
0, T̄

]
. At time 0, an agent A with outside option

v takes an unobservable action a ∈ A = {aL, aH}. We let aH denote the high-cost

action which comes at cost cH , and let aL denote the low-cost action with respective cost

cL = cH − ∆c, where ∆c > 0. As is standard, we suppose that the principal P wants

to implement the high action, and we subsequently fully extend our analysis to the case

where a is continuous (see Section 3.2).

2 Opp and Zhu (2015) analyze a repeated-action setting, where these incentive benefits derived from
backloading have to be traded off against the agent’s liquidity needs.
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The one-time action a affects the distribution of a stochastic process of verifiable

signals Xt that may arrive continuously or at discrete points in time.3 These abstract

signals may correspond to output realizations, annual performance reviews by the princi-

pal, or, more generally, any (multidimensional) combination of informative signals. The

respective date-t history of realized signals ht = {xj}0≤j≤t ∈ H
t then captures the entire

information about the agent’s action available to the principal at time t. Thus, it is

useful to take a reduced form approach and define the respective probability measures

directly over histories. For each given (a, t), let µt(·|a) denote the parameterized proba-

bility measure on the set of histories H t. Then, for any subset H̃ t ⊂ H t, µt(H̃
t|·) maps A

into R such that µt(H
t|a) = 1. We denote the associated likelihood function as Lt (a|ht).

By convention of the statistics literature, the likelihood function, Lt (a|ht), refers to the

density if history ht has zero mass, while Lt (a|ht) = µt({ht}|a) otherwise. We assume

that the action aH is identifiable, i.e., Lt (aH |ht) 6= Lt (aL|ht) for some (t, ht).

The following two information environments are stylized examples of this framework

and will be used throughout the text to illustrate our notation and general findings.

Example 1 Discrete information arrival: At each t ∈
{

1, 2, ..., T̄
}

there is an i.i.d.

binary signal xt ∈ {s, f} where the probability of success “s” is given by a ∈ A ⊂ [0, 1].

Example 2 Continuous information arrival: Xt is a (stopped) counting process where

xt = 1 indicates that failure has occurred before time t (xt = 0 otherwise). The action

a ∈ A affects the survival function S(t|a) such that the failure rate λ (t|a) := −d logS(t|a)
dt

satisfies λ(t|aL) > λ(t|aH) ∀t.

Thus, in Example 1 the probability measure associated with a history of two successes

satisfies µ2 ({(s, s)} |a) = L2 (a| (s, s)) = a2. The i.i.d. assumption in this example can be

easily dropped (see Online-Appendix B.1.1 for an illustration). In Example 2, the date-t

history without previous failure is summarized by the last signal, xt = 0, and has positive

probability mass, i.e., µt ({xt = 0} |a) = Lt (a|xt = 0) = S (t|a). In contrast, a history h̃t

with a failure at any particular date t has zero mass, so Lt(a|h̃t) = S (t|a)λ(t|a).

A compensation contract C stipulates transfers from the principal to the agent as a

function of the information available at the time of payout. Formally, such a contract is

represented by the cumulative compensation process bt (progressively measurable with

respect to the filtration generated by Xt). In particular, dbt denotes the instantaneous

bonus paid out to the agent at time t. Limited liability of the agent implies that bt must

be non-decreasing. While deferring payments allows the principal to condition bonuses

3 Formally, the index set of the stochastic process Xt can be any subset of
[
0, T̄

]
.
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on more informative signals, it is costly to do so since the agent has liquidity needs. In

particular, as is standard in dynamic principal-agent models, we make the assumption

that the agent is relatively impatient.4 The discount rates of the agent, rA, and the

principal, rP , satisfy

∆r := rA − rP > 0.

We assume that the principal is able to commit to long-term contracts.5 Then, an

optimal contract C solves the following compensation design problem.

Problem 1 (Compensation design)

W := min
bt

E

[∫ T̄

0

e−rP tdbt

∣∣∣∣∣ aH
]

s.t. (1)

VA := E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ aH
]
− cH ≥ v (PC)

E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ aH
]
− E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ aL
]
≥ ∆c (IC)

dbt ≥ 0 ∀t (LL)

The principal’s objective is to minimize the present value of wage cost W (discounted

at the principal’s rate rP ). The first constraint is the agent’s time-0 participation con-

straint (PC): The agent’s utility VA, the present value of compensation discounted at

the agent’s rate net of the cost of the action, must at least match her outside option v.6

Second, incentive compatibility (IC) requires that it is optimal for the agent to choose

action aH given C . Limited liability of the agent (LL) imposes a lower bound on the

transfer to the agent, i.e., dbt ≥ 0.

4 See, e.g., DeMarzo and Duffie (1999), DeMarzo and Sannikov (2006), or Opp and Zhu (2015).
5 Due to differential discounting, there else would be scope for ex-post renegotiation whenever the ex-

ante optimal contract requires deferred payments. Similarly, in Fudenberg and Tirole (1990) or Hermalin
and Katz (1991) renegotiation arises due to differential risk aversion.

6 Since the agent in our model only chooses an action once at time 0 and is protected by limited
liability, the participation constraint of the agent only needs to be satisfied at t = 0.
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2.2 Analysis

2.2.1 Maximal-incentives contracts

Our preliminary goal is to show that a contract solving Problem 1 typically falls in the

class of “maximal-incentives” contracts. The construction of this contract class draws on

insights from static moral hazard models. In static principal-agent models with bilateral

risk-neutrality and limited liability of the agent maximal-incentives contracts are optimal

as long as there is a relevant incentive constraint:7 Due to the absence of risk-sharing

considerations, the agent is only rewarded for the outcome which is most indicative of

the recommended action, i.e., the outcome with the highest likelihood ratio given this

action (and obtains zero for all other outcomes due to limited liability).

To extend the definition of these maximal-incentives contracts to our dynamic setting,

we first define for each date t, the likelihood ratio evaluated at history ht,

LRt(h
t) :=

Lt (aH |ht)− Lt (aL|ht)
Lt (aH |ht)

. (2)

We apply the convention that if some date-t history has strictly positive mass given aH

but not given aL, µt({ht}|aH) > 0 = µt ({ht}|aL), then LRt(h
t) = 1, and, similarly,

LRt(h
t) = −∞ for the reciprocal case where µt({ht}|aH) = 0 < µt ({ht}|aL). Hence, the

most informative outcome using date-t information is given by:

htMI := arg max
ht∈Ht

LRt(h
t).

To be able to abstract from (Mirrlesian) existence problems, we initially impose the

following restriction on these maximizer(s).

Assumption 1 For each date t, the set of htMI histories has strictly positive probability

mass.

In Section 3.1 we impose additional bounds on transfers in Problem 1, which ensures

existence of optimal contracts even when Assumption 1 does not hold, e.g., as, with un-

bounded support, for given t only the supremum over LRt(h
t) exists or as the maximizer

htMI has zero probability mass. Importantly, Assumption 1 is satisfied for our leading ex-

amples. In Example 1 the most informative histories are success in t = 1, i.e., h1
MI = (s)

and a sequence of successes by date 2, i.e., h2
MI = (s, s), etc. For our Example 2, the

7 See e.g., Innes (1990) or, for a textbook treatment, Tirole (2005). If the incentive constraint is
not relevant for compensation costs, the compensation design problem generically has a multiplicity of
solutions.
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assumption on the hazard rate implies that the most informative history at each date t,

htMI , is survival up to t, which is summarized by xt = 0. In general, ht+1
MI need not be

a continuation history of htMI (see Online-Appendix B.1.1 for an illustration based on a

non-i.i.d. version of Example 1).

Given the definition of htMI histories, bilateral risk-neutrality implies the optimality

of maximal-incentives contracts.

Definition 1 Maximal-incentives contracts (CMI-contracts) stipulate rewards only for

htMI histories. That is, for all t, dbt = 0 whenever ht 6= htMI .

Lemma 1 There always exists an optimal contract from the class of CMI-contracts. If

the shadow price on (IC), κIC, is strictly positive, any optimal contract is a CMI-contract.

Hence, in solving Problem 1, it is without loss of generality to restrict attention to

CMI-contracts. To provide intuition for the proof, it is useful to introduce the concept

of the size of the compensation package, defined as the agent’s time-0 valuation of C :

B := E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ aH
]
. (3)

Then, (PC) requires that B ≥ v + cH . Now, the only reason for why the principal’s

wage costs in an optimal contract, W , may exceed the minimum wage cost imposed by

(PC), v + cH , is a relevant incentive constraint. In the interesting case when (IC) is

relevant, the agent, thus, either obtains an agency rent, B > v+ cH , and/or the principal

defers some payouts beyond date 0 resulting in a wedge between W and B due to agent

impatience. It is now easy to see that contracts outside the class of CMI-contracts are

strictly suboptimal, i.e., yield strictly higher wage costs to the principal. By shifting

rewards towards htMI histories, the principal would either be able to reduce the size

of the compensation package B or move payments to an earlier date (or both) while

preserving incentive compatibility and satisfying (PC).

When the (IC) constraint is irrelevant for compensation costs, the principal can

achieve the minimum wage cost imposed by (PC), W = B = v + cH , by making all

payments at time 0. Since it is thus only interesting to analyze optimal payout times

when (IC) is relevant, we suppress the trivial case of slack (IC) until Theorem 1.

2.2.2 Optimal payout times

The principal’s choice of payout times t can be interpreted as choosing the quality of

the information system. Specifically, in Example 1 we have to determine whether the
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principal should optimally stipulate rewards for dates 0, 1, ..., T̄ or any combination of

these, while in Example 2 the choice is from t ∈
[
0, T̄

]
. Intuitively, optimal payout

times are pinned down by the trade-off between impatience costs, measured by e∆rt, and

gains in informativeness. The key simplification of our analysis results from the fact

that CMI-contracts only stipulate rewards for maximally informative histories. Without

a risk-sharing motive, it is possible to disregard informativeness of performance signals

associated with any non-htMI history. Date-t informativeness is then appropriately mea-

sured by the maximal likelihood ratio at date t.

Proposition 1 Maximal informativeness I (t) := maxht∈Ht LRt(h
t) = LRt(h

t
MI) ∈ [0, 1]

is an increasing function of time.

Formally, the result follows from the fact that the likelihood ratio LRt(h
t) is a mar-

tingale. Intuitively, since the principal can observe the entire history of signals he could

always choose to ignore additional signals if he wanted to do so. Thus, I (t) must be an

increasing function of time. It is a deterministic function, as it already maximizes over

all possible realizations of histories H t.

In Example 1 where htMI is a sequence of successes up to t, the informativeness

function satisfies I(t) = 1−
(
aL
aH

)t
. Starting from I(0) = 0 informativeness grows faster

the smaller the ratio of aL and aH . In Example 2, survival up to time t is the most

informative history, so that I (t) = 1− S(t|aL)
S(t|aH)

. Informativeness grows at a faster rate, as

measured by I ′ (t) = S(t|aL)
S(t|aH)

[λ(t|aL)− λ (t|aH)], the greater the difference in the hazard

rate under the low action λ(t|aL) and the high action λ(t|aH). In contrast, if the hazard

rate under both actions is identical at time t, the principal learns nothing from the

absence (or occurrence) of failure so that I ′ (t) = 0.

To determine the optimal timing of CMI-contracts it is now convenient to define

ws as the (expected) fraction of the compensation package that the agent derives from

stipulated payouts up to time s, i.e.,

ws := E
[∫ s

0

e−rAtdbt

∣∣∣∣ aH] /B, (4)

so that wT̄ =
∫ T̄

0
dwt = 1. Hence,

∫ T̄
0
tdwt measures the duration of the compensation

contract.8 Then, the proof of Lemma 1 implies that Problem 1 can be written as a

deterministic problem by viewing B and w as control variables (rather than b). Given

B, wt and htMI , one then obtains dbt from E[dbt|aH ]e−rAt = Bdwt.

8 We thus employ a duration measure analogous to the Macaulay duration which is standard in the
fixed-income literature; the weights of each payout date are determined by the present value of the
associated payment divided by the size of the compensation package.
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Problem 1∗

W (a) = min
B,wt

B

∫ T̄

0

e∆rtdwt

B ≥ v + cH (PC)

B

∫ T̄

0

I (t)dwt = ∆c (IC)

dwt ≥ 0 ∀t and wT̄ = 1 (LL)

The transformed problem clearly shows that as long as two signal generating processes

give rise to the same maximal informativeness, I (t), the timing of pay in the respective

optimal contracts will be identical (even if likelihood ratios differ along less informative

histories). Thus, one may think of the function I (t) (rather than Xt) as the primitive of

the information environment that fully captures the formalization of “time will tell:” It

is easy to show that for any weakly increasing function f :
[
0, T̄

]
→ [0, 1] there exists a

signal process Xt such that f represents its associated informativeness function I (t) (see

left panel of Figure 1 for an example). This benefit of deferral encoded in I (t), however,

comes at a cost due to the agent’s relative impatience.

More concretely, from Problem 1∗, the optimal timing of pay for CMI-contracts is

determined by the trade-off between weighted average impatience costs,
∫ T̄

0
e∆rtdwt, and

the weighted average informativeness,
∫ T̄

0
I (t)dwt, which, in the following, we refer to

as contract informativeness IC . To quantify this cost-benefit trade-off for a given signal

process it is useful to define the function

C (IC ) := e∆r inf{t:I(t)≥IC }. (5)

C (IC ) may be interpreted as the minimum cost of generating an informativeness level

of at least IC by using contracts that only stipulate payments at a single payout date t.

Hence, C (I(t)) = e∆rt. The right panel of Figure 1 illustrates how C can be constructed

from the underlying informativeness function, I(t), and impatience costs, e∆rt.

Since optimal contracts do not necessarily restrict payouts to a single payout date,

but instead allow for any possible weighted average via w (t), we introduce

Definition 2 The cost of informativeness, C̆(IC ), is the lower convex envelope of C.

By construction (see solid black line in right panel of Figure 1 for an illustration),

C̆(IC ) is an increasing and convex function mapping IC ∈
[
0, I(T̄ )

]
into

[
1, e∆rT̄

]
. It
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Figure 1. Impatience costs versus informativeness: The left panel plots both impatience
costs, e∆rt, and maximal informativeness, I (t), as a function of time t for an example economy that
features a significant increase in informativeness at date t∗. The right panel plots the function C
and its lower convex envelope C̆ against contract informativeness IC . The solid circles in the left
and right panel correspond to the boundary points that define the cost of informativeness C̆ (IC ).

measures the minimum weighted average impatience costs for a given value of contract

informativeness.

For ease of exposition, our subsequent analysis of the timing of pay considers optimal

payout dates for the case when (PC) is slack and when (PC) binds separately. Theorem 1

then synthesizes these results and provides conditions for when each case applies.

PC slack. First, consider the case when (PC) is slack. Then, using B = ∆c∫ T̄
0 I(t)dwt

from

(IC) the objective function in Problem 1∗ simplifies to

W = ∆cmin
wt

∫ T̄
0
e∆rtdwt∫ T̄

0
I(t)dwt

. (6)

Thus, the optimal timing reflects the principal’s rent extraction (RE) motive: The prin-

cipal can reduce the size of the agent’s compensation package, B, by deferring longer and

hence using more informative performance signals. However, deferral does not imply a

zero-sum transfer of surplus to the principal, but instead involves deadweight costs due
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to relative impatience. The optimal payout time resolves this trade-off:

TRE = arg min
t

e∆rt

I (t)
, 9 (7)

which implies contract informativeness of IC = I (TRE). Graphically, it can be identified

by the point on (IC , C (IC )) that minimizes the slope of a ray through the origin (see

red dotted line in right panel of Figure 1 where TRE = t∗ ). This minimum slope can

be interpreted in economic terms as the shadow price on (IC), κIC . Moreover, if I is

differentiable in t, as is, e.g., the case in Example 2, we can characterize TRE in terms of

an intuitive first-order condition:

d log I(t)

dt

∣∣∣∣
t=TRE

= ∆r. (8)

That is, the principal defers until the (log) growth rate of informativeness, d log I
dt

, equals

the (log) growth rate of impatience costs, ∆r.

PC binds. In contrast, when (PC) binds the size of the agent’s compensation package

is fixed, so that the principal’s rent extraction motive is absent. Using B = v + cH ,

Problem 1∗ becomes

W = (v + cH) min
wt

∫ T̄

0

e∆rtdwt (9)

subject to (IC)

IC =

∫ T̄

0

I(t)dwt =
∆c

v + cH
(10)

Hence, the principal chooses payout dates to minimize the weighted average impatience

costs,
∫ T̄

0
e∆rtdwt subject to the required contract informativeness implied by (IC) and

(PC), i.e., IC = ∆c
v+cH

. Using the concept of the cost of informativeness from Definition 2,

this minimization yields total wage costs of W = (v + cH) C̆
(

∆c
v+cH

)
.

Lemma 2 Timing of CMI-contracts with binding (PC)

1) Single-date: The optimal contract can be implemented with a single payout date T1

if and only if C̆
(

∆c
v+cH

)
= C

(
∆c
v+cH

)
. Then, T1 solves I (T1) = ∆c

v+cH
.

2) Two-dates: Otherwise, the contract requires a short-term payout date TS and a long-

term date TL < TS. The respective payout dates define the boundary points of the linear

9 In the knife-edge case of multiple global minimizers, one can use Pareto optimality as a criterion
to select the earliest payout date. The agent strictly prefers the one with the earliest payout date since
VA = ∆c

I(TRE) − cH , while the principal is indifferent.

12



segment of C̆ that contains IC = ∆c
v+cH

. The fraction of B derived from payouts at date

TS is given by wS =
I(TL)− ∆c

v+cH

I(TL)−I(TS)
.

0 T1 TRE t

1

e"rt

I(t)

0 "c

v + cH

I(TRE) IC

1

e"rT1

Single payout date

C(IC)
6C(IC)

0 TS T1 TL t

1

e"rt

I(t)

0 I(TS) "c

v + cH

I(TL) IC

1

e"rT1

Two payout dates

C(IC)
6C(IC)

Figure 2. PC binds one vs. two dates: The upper panels plot a case with strictly convex C
(so that a given level of informativeness is optimally achieved with one payout date). In the lower
panels, single payout dates are strictly suboptimal for any IC ∈ (I (TS) , I (TL)).

Formally, the optimality of multiple payment dates depends on whether the function C

exhibits non-convexities. Economically, these non-convexities arise if I features sufficient

changes in the growth rate of informativeness or discrete information events. It is most

instructive to explain the economics behind the choice of one versus two payment dates

with an example environment where I is continuous. In the top left panel of Figure 2,

informativeness is strictly concave in time t (Example 2 with a Poisson process) while

impatience costs grow exponentially. Hence, C is strictly convex (see right top panel of

Figure 2).10 Since thus C̆ = C, statement 1) of Lemma 2 applies and the use of two

payout dates is suboptimal. One may have conjectured that the optimal contract with

binding (PC) can be decomposed into the optimal contract under slack (PC), which pays

out at date TRE, and an additional sufficiently high (unconditional) date-0 payment to

10 More generally, as long as I is weakly concave, C will be strictly convex.
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satisfy (PC). This conjecture is typically wrong. The candidate contract (indicated by

the red circle in right top panel of Figure 2) turns out to produce strictly higher wage

costs to the principal than the optimal contract with a single payout date at T1 (indicated

by the black star).

In contrast, in the bottom left panel of Figure 2, the underlying informativeness

process features two phases of high growth. As a result, the impatience costs associated

with single-date contracts exhibit non-convexities (see bottom right panel of Figure 2).

To tap “late” increases in informativeness, the optimal contract now makes a payment

at a long-term date TL to target (IC) and an additional short-term payment at date TS

to satisfy (PC) at lower impatience costs. The optimal choice of TS and TL generates a

strict improvement over the single-date contract that pays out exclusively at date T1 (see

red circle in top right panel).

2.2.3 Optimal contracts and comparative statics

Synthesizing the cases with (PC) binding and (PC) slack, we can now fully characterize

optimal contracts. Together with the conditions for the optimality of CMI-contracts

derived in Lemma 1 we thereby obtain a characterization of optimal contracts based on

the solution to Problem 1∗. For completeness, the characterization also includes the less

interesting case when (IC) is slack (κIC = 0).

Theorem 1 The optimal contract is characterized as follows:

1. If v ≤ v̄ = ∆c
I(TRE)

− cH , (PC) is slack. The optimal payout date is T ∗ = TRE as

defined in (7) and the size of the compensation package is B∗ = ∆c
I(TRE)

.

2. If v > v̄, (PC) binds, so that B∗ = v + cH and IC = ∆c
v+cH

. If I (0) ≤ ∆c
v+cH

, (IC)

binds and the optimal contract requires at max two payout dates T ∗ as characterized

in Lemma 2. If I (0) > ∆c
v+cH

, (IC) is slack and all payments are made at date 0.

Theorem 1 summarizes the intuitive characterization of the timing of optimal con-

tracts in general information environments. From this characterization we also obtain

the associated wage cost to the principal:

W =


∆c

I(TRE)
e∆rTRE

(v + cH) C̆
(

∆c
v+cH

) v ≤ v̄

v > v̄
. (11)

Depending on the particular application at hand (cf., Section 4), W can then be

substituted into the principal’s objective function to determine whether implementing

aH is indeed optimal, the second step in the structure of Grossman and Hart (1983).
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Using the characterization of the optimal timing of pay in Theorem 1, it is now also

possible to analyze its comparative statics

Corollary 1 The duration of the compensation package
∫
tdw∗t is decreasing in v and

increasing in ∆c.

The comparative statics in v and ∆c follow from the fact that the size of the com-

pensation package, B, and more informative performance signals, IC , are substitutes for

providing incentives to the agent, i.e., BIC = ∆c. When an increase in the agent’s outside

option v exogenously raises the size of pay, this substitutability implies that the principal

optimally shortens the duration of the compensation package, such as to reduce contract

informativeness (strictly so if (IC) and (PC) bind). In contrast, if the agency problem

gets more severe, i.e., ∆c increases, then the principal relies on both more informative

performance signals and a larger compensation package. In Section 3.2, we extend our

setup to a continuous action set, which allows us to characterize the non-trivial compar-

ative statics of payout times in the action choice a.

3 Extensions

3.1 Payment bounds

So far, the focus of our paper was to provide a tractable characterization of the optimal

timing of pay (see Theorem 1). The associated maximal-incentives contracts have stark

implications in that they may prescribe high rewards for low-probability events. However,

many real-life contracts do not exclusively stipulate payments for the most informative

signal histories and also have a wider selection of payment dates. One way to capture

these additional realistic contract features without losing tractability is to incorporate

(upper) bounds on payments (see also Jewitt et al. (2008)). Bounds on payments may

be economically motivated by a physical resource constraint, such as the principal’s

limited liability, regulatory constraints, such as bonus caps, or arise endogenously via the

agent’s risk-aversion (see Plantin and Tirole (2015)). Apart from this applied motivation,

the introduction of bounds has the technical benefit that they allow us to eliminate

Assumption 1 from now on, and, hence, extend our analysis to information settings

where a solution to the original Problem 1 does not exist.

For ease of exposition, we suppose that there be a constraint k > 0 on the payment

rate that can be paid out to the agent, i.e., dbt ≤ kdt.11 Following Plantin and Tirole

11 We note that a more general specification of payment bounds, say dbt ≤ dk (ht), would yield
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(2015), one way to rationalize this particular form of a bound is to appeal to a simple form

of risk aversion on the side of the agent: Her marginal utility from (flow) consumption

at any given point of time drops from one to zero when it exceeds k.12 For brevity’s sake

we restrict consideration to the case where v = 0 and I (0) < ∆c
cH
, so that (PC) is slack

and (IC) binds. Moreover, we suppose that aH is implementable even in the presence of

bounds.

Proposition 2 There exists a value κIC ≥ e∆rTRE

I(TRE)
such that the payment bound binds,

dbt = kdt, if e∆rt

LRt(ht)
< κIC and dbt = 0 if e∆rt

LRt(ht)
> κIC.
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Figure 3. Payment bounds and payout dates: The left panel plots for each date t the upper
support, I (t), and the lower support, I (t), of the date-t likelihood ratio distribution. Any history
contained in the shaded region (above the red line Icutoff (t)) is a payment history. The right panel
illustrates this insight in the informativeness vs. impatience costs space.

By construction, adding payment bounds must increase the shadow value on (IC),

κIC , relative to the benchmark without bounds, κ∗IC (see right panel of Figure 3). Since

the principal can no longer satisfy (IC) by exclusively relying on a reward for the history

with the best impatience - informativeness trade-off, he selects the next best alternatives

according to the metric e∆rt

LRt(ht)
, up to the value of κIC that results in satisfying (IC) (see

qualitatively the same results. Quantitatively, the effect of payment bounds is fully captured by the
value of κIC .

12 Then, while the principal could, in principle, pay at a higher rate (or even make a lump-sum
payment), this will be suboptimal. Thus, it is without loss of generality to impose the constraint
dbt ≤ kdt.
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histories contained in the shaded region of the right panel of Figure 3). Then, given

κIC , the left panel of Figure 3 traces out the cutoff for the date-t likelihood ratio that

results in payments to the agent, Icutoff (t) := e∆rt

κIC
.13 Thus, the performance “hurdle”

for obtaining payments increases over time at a rate of ∆r. For the example signal

process, this implies two disconnected time intervals of payment dates [t1, t2] and [t3, t4].

In Online-Appendix B.1.2 we show the effects of payment bounds within our Example 2.

3.2 Continuous actions

We finally extend our analysis to a continuous action set, a ∈ A = [0, ā], which allows

for additional comparative statics analysis. The associated cost function c (a) satisfies

the usual conditions, i.e., it is strictly increasing and strictly convex with c(0) = c′(0) = 0

as well as c′(ā) = ∞. To mirror the structure of our analysis so far, we will focus on

optimal compensation design, i.e., characterize cost-minimizing contracts to implement a

given action a (the first problem in Grossman and Hart (1983)) and relegate the optimal

action choice by the principal to Online-Appendix B.2.

Our key object is now the log likelihood ratio (score), d logLt

da
, the analog of LRt(h

t)

for continuous actions. We impose standard Cramér-Rao regularity conditions used in

statistical inference (cf. e.g., Casella and Berger (2002)): In particular, the score, d logLt

da
,

exists and is bounded for any (t, ht). We then adjust our preceding notation as follows:

htMI (a) := arg max
ht∈Ht

d logLt (a|ht)
da

(12)

I (t|a) := max
ht∈Ht

d logLt (a|ht)
da

=
d logLt (a|htMI)

da
.14 (13)

As the score
d logLt(a|ht)

da
is a martingale, I (t|a) is an increasing function of time (cf.,

Proposition 1).15

As is common in static moral hazard problems with continuous actions (see e.g.,

Holmstrom (1979) and Shavell (1979)) we assume that the first-order approach is valid.

Hence, for each a, we replace (IC) by the following first-order condition

∂

∂a
E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ a
]

= c′ (a) . (IC-FOC)

13 Clearly, histories with a negative likelihood ratio will never be selected (cf. the weakly decreasing
lower support of the likelihood ratio distribution depicted in the left panel of Figure 3, I(t) < Icutoff (t)).

14The function I (t|a) is similar to the well known Fisher information function in statistics, which for
a given t, is defined as the variance of the score across histories.

15 The score is no longer bounded above by one, but this is irrelevant for the further analysis.
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It is immediate that our preceding characterization now readily extends to the continuous

action case as long as (IC) is relevant for compensation costs. For completeness, we

restate Theorem 1 in Online-Appendix B.2. It is now also possible to provide a sufficient

condition for the validity of the first-order approach.

Lemma 3 If Lt
(
ã|hTMI (a)

)
is strictly concave in ã for the optimal payout dates T ∗(a),

then the first-order approach is valid for action a.16

We conclude by conducting a comparative statics analysis of the duration of pay,∫
tdw∗t , in the incentivized action a. Does higher effort optimally require further defer-

ral? The associated analysis makes it transparent how the learning process, and hence

informativeness itself, I(t|a), are now a function of the implemented action. One may

thus already conjecture that the comparative statics are subtle and ought to depend on

the characteristics of the signal process.

For brevity’s sake we focus on the case when (PC) is slack.17 The optimal payment

date associated with action a then satisfies: T ∗(a) = TRE (a) = arg mint
e∆rt

I(t|a)
. The

comparative statics thus depend on whether the principal learns faster under high or

low effort. To provide further intuition, we assume that I is differentiable, so that the

first-order condition in (8) applies. Then, the sign of the comparative statics of contract

duration TRE (a) in a depends on whether the (log) growth rate of informativeness, d log I
dt

,

increases or decreases in a, i.e.,

sgn

(
dTRE (a)

da

)
= sgn

(
d

da

d log I(t|a)

dt

∣∣∣∣
t=TRE(a)

)
. (14)

To illustrate that all comparative statics are generically possible even within our

Example 2, we make use of three commonly used parametric survival time distributions.18

Example 2.1 Mixed distribution: S(t|a) = aSL(t) + (1− a)SH(t) with a ∈ [0, 1] and

where SL(t) dominates SH(t) in the hazard rate order, i.e., λL(t) < λH(t).

Example 2.2 Exponential distribution: S(t|a) = e−
t
a , with a > 0.

Example 2.3 Log-normal distribution: S(t|a) = 1
2
− 1

2
erf
[

log t−a√
2σ

]
, with a ≥ 0, σ > 0.

16 The condition is reminiscent of the convexity of the distribution function condition (CDFC) in static
models (cf. e.g., Rogerson (1985)).

17 The main takeaways equally apply to the case where (PC) binds.
18 We note that for Example 2.2 and 2.3 the validity of the first-order approach must be ensured via

appropriate parametrization.
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First, we consider the benchmark case of an exponential distribution (Example 2.2).

With a continuous action set, any i.i.d. process yields an informativeness function that

is linear in time (here: I(t|a) = t
a2 ). As a result, the log-growth rate is independent of

the action, i.e., 1
t
, implying a payout date of TRE (a) = 1

∆r
for all actions a. In this case

(and for all other i.i.d. processes), the timing of the bonus alone would not provide any

information about the induced action. In contrast, in Example 2.1 information grows

faster for lower effort so that a shorter duration is indicative of higher, rather than lower

incentives. The opposite comparative static holds for Example 2.3. Knowledge of the

information process (and how it is influenced by the action) is thus crucial for making

predictions about the optimal timing of pay.

Our results suggest that the empirical analysis of compensation contracts ought to

relate the timing dimension of pay also to variation in the nature of information arrival

across industries (see e.g., Gopalan et al. (2014)). For example, it may be hypothesized

that firms in R&D intensive industries (with year-long lags and few products) ought to

design longer-duration contracts for their CEOs.

4 Applications

We conclude with three potential applications of our basic framework and its extensions.

First, our framework can be used to understand the effects of regulatory interventions in

the timing of pay, such as minimum deferral periods or clawback clauses. For example,

in the United Kingdom, the regulator has recently started to impose a minimum deferral

period of 3 years and a clawback period of 7 years for bonuses to executives in the

financial sector. It is thus a timely policy question to analyze the effect of such regulations

on the action that the principal, the board of a bank, induces in equilibrium. In the

absence of any regulation, the board may choose to implement actions that primarily

exploit tax payer guarantees. Does deferral regulation nudge the principal to implement

better actions? While minimum deferral regulation (trivially) increases wage costs for all

actions, we show in our companion paper Hoffmann et al. (2017), that it can work akin to

a Pigouvian tax if it taxes wage costs of actions that are “bad” from a society’s perspective

more than wage costs of “good” actions. The effectiveness of deferral clauses is thus

intimately linked to the comparative statics analysis of payout times: If the principal’s

unconstrained compensation design features longer payout dates for those actions that

are better from a society’s perspective, then deferral regulation can be effective by making

better actions relatively cheaper.

Second, our framework lends itself to develop an incentive-based theory of debt ma-
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turity. As shown by Innes (1990), if signals correspond to output realizations satisfying

MLRP and one imposes a monotonicity constraint on the principal’s payoff, the optimal

contract for outside financing is a debt contract (inside equity). Within our dynamic

framework, it is now possible to solve for the optimal dynamic payoff structure. Building

on our analysis of payment bounds in Section 3.1, a simple moral hazard problem with

persistent effects can give rise to a complex maturity structure of insiders’ and outsiders’

claims (similar to Figure 3), resulting from the trade-off between the entrepreneur’s liq-

uidity needs and the increased informativeness associated with new performance signals

available to investors. Different from our previous analysis, payment bounds at a par-

ticular point in time t should then, however, depend both on the history ht and on the

endogenously chosen payouts (dividends, sale of equity stakes) at earlier points in time.

Finally, it is possible to give the principal a more active role by allowing him to in-

vest directly in information (accounting) systems. For example, one can imagine many

settings where the principal can also acquire costly signals about the agent’s action, say

via costly monitoring and auditing and not just wait for information (see Plantin and

Tirole (2015) for a similar mechanism). It is now possible to analyze the optimal mix

of information sources. The difference between these two types of investments in infor-

mation is that the costs associated with deferral are endogenous in that the impatience

costs interact with the size of the deferred bonus package, whereas investments in IT or

accounting systems are lump sum.

Appendix A Proofs

Proof of Lemma 1. We will start with some useful definitions: Let B denote the
agent’s expected time-0 valuation of the compensation package, i.e.,

B := E

[∫ T̄

0

e−rAtdbt

∣∣∣∣∣ aH
]
,

and denote by wt the fraction of the compensation package that the agent derives from
expected payouts up to time t ≤ T̄ , i.e.,

wt := E
[∫ t

0

e−rAsdbs

∣∣∣∣ aH] /B,
so that wT̄ =

∫ T̄
0
dwt = 1. Further, denote, for each given t, the maximal likelihood ratio

by I(t) := maxht∈Ht LRt(h
t) which exists by Assumption 1. Using the definition of B,
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the incentive constraint (IC) can be written as:

B

1−
E
[∫ T̄

0
e−rAtdbt

∣∣∣ aL]
E
[∫ T̄

0
e−rAtdbt

∣∣∣ aH]
 ≥ ∆c.

Given the definition of LRt(h
t) = 1− Lt(aL|ht)

Lt(aH |ht)
, we may write this incentive constraint as:

B

(∫ T̄

0

[∫
Ht

LRt(h
t|aH)dγt(h

t)

]
dwt

)
≥ ∆c, (15)

for some weighing function γt(h
t) satisfying dγt(h

t) ≥ 0 and
∫
Ht dγt(h

t) = 1. The follow-
ing Lemma shows when (IC) binds, i.e., is relevant for compensation costs.

Lemma A.1 The shadow value on (IC), κIC, is zero if and only if I(0) ≥ ∆c
v+cH

.

Proof of Lemma A.1 From (PC) and (LL) together with differential discounting we
have that W ≥ v+cH . Hence, we need to show that W = v+cH if and only if I(0) ≥ ∆c

v+cH
.

To show sufficiency, consider the CMI-contract delivering total expected payB = (v + cH)
with a single payment at t = 0. This contract trivially satisfies (PC) and (LL), as well
as, from I(0) ≥ ∆c

v+cH
also (IC), and implies expected wage costs of v + cH . To show the

necessary part, observe that any contract with W = v + cH cannot feature any delay
due to differential discounting, i.e., must satisfy w0 = 1. Note further, that the contract
that provides strongest incentives with date-0 payments only is, from (15), the one that
makes the entire expected pay B contingent on h0

MI . However, whenever I(0) < ∆c
v+cH

,
such a contract requires B > v + cH in order to satisfy (IC), implying W > v + cH . �

Take now the case where κIC > 0, implying W = B
∫ T̄

0
e∆rtdwt > v + cH . The

proof then is by contradiction. So assume that under the optimal contract there exists
some t for which

∫
Ht\htMI

dγt(h
t) 6= 0. Then, there exists another feasible contract with∫

Ht\htMI
dγt(h

t) = 0 for all t and strictly lower compensation costs. To see this, observe

that this new contract maximizes, for given wt and B, the left-hand side in (15). So,
assume, first, that (PC) is slack. Then, holding wt constant, the new contract allows
for a strictly lower B, thus reducing W . Second, assume that (PC) binds, which, from
κIC > 0 implies that w0 < 1. Then, holding B constant, the new contract allows to
reduce some wt, t > 0, and increase w0 resulting in lower W . Finally, that there exists
an optimal contract from the class of CMI contracts when κIC = 0 follows directly from
the construction in the proof of Lemma A.1. Q.E.D.

Proof of Proposition 1. The result follows from the well-known fact that LRt(h
t)

as defined in (2) is a martingale (see e.g., Casella and Berger (2002)) and for each t we
consider the maximal realization. Q.E.D.

Proof of Lemma 2. As has been shown in the main text, the optimal CMI-contract
with binding participation constraint requires contract informativeness of IC = ∆c

v+cH
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with associated cost of informativeness of C̆( ∆c
v+cH

). As C̆(IC ) is the lower convex enve-
lope of C(IC ), the cost of informativeness associated with contracts stipulating a single
payout date, it is immediate that at most 2 payout dates are sufficient for achieving
C̆( ∆c

v+cH
). These are generally characterized by IS = I(TS) and IL = I(TL), where IS =

sup
{
IC ≤ ∆c

v+cH
: C̆(IC ) = C(IC )

}
and IL = inf

{
IC ≥ ∆c

v+cH
: C̆(IC ) = C(IC )

}
, which we

refer to as the boundary points of C̆(IC ) around IC = ∆c
v+cH

. If C̆( ∆c
v+cH

) = C( ∆c
v+cH

) we
have IS = IL and, hence, B is paid out at a single date TS = TL =: T1. Else, there
are two payments, TS < TL and the fraction of B paid out at TS is obtained from (10).
Q.E.D.

Proof of Theorem 1. It follows from Lemma 1 that, given Assumption 1, Problem 1
has a solution within the class of CMI-contracts, i.e., the solution to Problem 1∗ solves
Problem 1. Consider now, first, the relaxed problem ignoring (PC). Then, as shown in
the main text, the optimal payout time is given by TRE as characterized in (7) which
implies from (IC) that B = ∆c/I (TRE). Then (PC) is indeed satisfied, such that the
solution to the relaxed problem solves the full problem, if and only if B ≥ v + cH which
is equivalent to v ≤ v̄ := ∆c/I (TRE)− cH . Else, it is easy to show that (PC) must bind
under the optimal contract, i.e., B = v+ cH . The optimal timing of pay then depends on
whether (IC) is relevant for compensation costs, which from Lemma A.1 is the case if and
only if I(0) < ∆c

v+cH
. Hence, if I(0) < ∆c

v+cH
, the optimal payout times are as characterized

in Lemma 2, while for I(0) ≥ ∆c
v+cH

all payouts are made at date 0. Q.E.D.

Proof of Corollary 1. From Theorem 1, these comparative statics hold trivially if
I (TRE) < ∆c

v+cH
so that PC is slack. In this regime 1, the duration TRE does not depend

on v and ∆c. When I (TRE) ≥ ∆c
v+cH

> I(0), PC and IC bind (regime 2), the result

follows directly from IC = ∆c
v+cH

, which is decreasing in v and increasing in ∆c, together

with Lemma 2. Finally, when I (TRE) ≥ I(0) ≥ ∆c
v+cH

, IC is slack (regime 3) and the
duration is equal to zero independently of v and ∆c. Now note that, as v increases or
∆c decreases, we either stay within each regime or move from regime 1 to regime 2 to
regime 3 and the result follows. Q.E.D.

Proof of Lemma 3. The assumption in the Lemma is sufficient to ensure that, given a
contract as characterized in Theorem B.1, the agent’s problem maxã {VA(ã)} is strictly
concave. Hence, the first-order condition in (IC-FOC) is both necessary and sufficient
for incentive compatibility. Q.E.D.

Proof of Proposition 2. With pay caps, the incentive constraint can still be written
as (15) but now with the additional restriction that Bdγt(h

t)dwt ≤ kdt. Hence, when
(IC) binds and (PC) is slack we can write in analogy to (6)

W = ∆cmin
wt

∫ T̄
0

∫
Ht e

∆rtdγt(h
t)dwt∫ T̄

0

∫
Ht LRt(ht)dγt(ht)dwt

,

and the result immediately follows. Q.E.D.
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Appendix B Online-Appendix

B.1 Further results for binary action set

B.1.1 Non-i.i.d. example

In this Appendix we extend Example 1 in the main text to allow for non-i.i.d. signals. To
illustrate the additional insights it is sufficient to again focus on binary signals xt ∈ {s, f}
and to restrict attention to the two period case, i.e., T̄ = 2. In particular, consider the
information environment depicted in Figure 4 with a ∈ A ⊂ [0, 1]. For this concrete

𝐿𝑅(𝑠)=1-
𝑎𝐿

𝑎𝐻

𝐿𝑅(𝑠, 𝑠) =1-
𝑎𝐿²

𝑎𝐻²

𝐿𝑅(𝑠, 𝑓)=1-
𝑎𝐿(1−𝑎𝐿)

𝑎𝐻(1−𝑎𝐻)

𝐿𝑅(𝑓) =1-
1−𝑎𝐿

1−𝑎𝐻

𝐿𝑅(𝑓, 𝑠)=1-
(1−𝑎𝐿)𝑎𝐿³

(1−𝑎𝐻)𝑎𝐻³

𝐿𝑅(𝑓, 𝑓)=1-
(1−𝑎𝐿)(1−𝑎𝐿³)

(1−𝑎𝐻)(1−𝑎𝐻³)

Figure 4. Example information process. This graph plots an example information environment
with discrete information arrival as in Example 1 but non-i.i.d. signals.

specification, a success is the most informative signal in t = 1, i.e., h1
MI(a) = (s), while

h2
MI(a) changes with the concrete values of aH > aL: When aH > 1 − aL, the maxi-

mum informativeness history at t = 2 is a continuation history of h1
MI(a), in particular,

h2
MI(a) = (s, s). When aH < 1− aL, however, h2

MI = (f, s), i.e., in this case early failure
followed by a success is the best indicator of the agent taking the intended action (cf.
e.g., Manso (2011) or Zhu (2017)).

B.1.2 Effect of bounds in Example 2.

In this Appendix we illustrate the optimal contract with payment bounds, dbt ≤ kdt, and
its implementation for the concrete information system given in Example 2. Recall that,
in this case, the maximal likelihood ratio at each t is given by I(t) = 1− S(t|aL)

S(t|aH)
associated

with the htMI history of survival up to t, while the likelihood ratio of the history with
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failure at time t which we denote by htf is given by

LRt(h
t
f ) = 1−

Lt
(
aL|htf

)
Lt
(
aH |htf

) = 1− S (t|aL)

S (t|aH)

λ(t|aL)

λ(t|aH)

= I (t)− [1− I (t)]

[
λ(t|aL)

λ(t|aH)
− 1

]
.

Clearly, LRt(h
t
f ) < I (t) for all finite t, but for t sufficiently large it holds that LRt(h

t
f ) > 0

such that a payment following htf provides incentives.19 To complete the description of
the likelihood ratio process, note that conditional on failure at some t = t′, the likelihood
ratio stays constant at LRt′(h

t′

f ) for all t ≥ t′ as no further information is revealed. It is
then easy to see from the characterization in Proposition 2 that, for a sufficiently tight
payment bound (i.e., a sufficiently high κIC), rewards following failure become optimal.
In particular, as the likelihood ratio stays constant following failure, it will be optimal to
pay the agent in a time interval following failure at t as long as e∆rt/LRt(h

t
f ) < κIC .20

Within our interpretation of payment bounds as a reduced form modeling of agent risk
aversion, these payments can simply be implemented by making a lump-sum “golden
parachute” payment at the time of failure, which the agent then consumes over the
respective interval.

B.2 Continuous action set

B.2.1 Optimal compensation design

In this Appendix, we formally characterize the optimal contract for the model with
continuous action choice described in Section 3.2.

Theorem B.1 Suppose I (0|a) ≤ c′(a)
v+c(a)

, then (IC) is relevant for compensation costs

and action a is optimally implemented with a CMI-contract.
1) If v ≤ v̄(a) = c′(a)

I(TRE(a)|a)
− c (a), (PC) is slack, the unique optimal payout date is

T ∗(a) = TRE (a) which solves TRE(a) = arg mint e
∆rt/I(t|a), and the size of the compen-

sation package is B∗ = c′(a)
I(TRE(a)|a)

.

2) Otherwise, (PC) binds, so that B∗ = v + c (a) and IC = c′(a)
v+c(a)

. Payments are opti-

mally made at maximally two payout dates T ∗(a) which are characterized as follows: If

C(IC |a) = e∆r inf{t:I(t|a)≥IC } and its lower convex envelope C̆(IC |a) coincide at IC = c′(a)
v+c(a)

,

there is a single payout at T1(a) which solves I(T1|a) = c′(a)
v+c(a)

. Else there are two payout

dates TS(a) < TL(a) corresponding to the boundary points of the linear segment of C̆ that

contains IC = c′(a)
v+c(a)

.

19 For instance, with an exponential arrival time distribution as in Example 2.2 where I (t) = t
a2
H

and

λ(t|a) = 1
a , we have LRt(h

t
f ) > 0 for all t > aH (aH − aL).

20 E.g., for the case of an exponential survival time distribution (cf., Example 2.2) which has strictly
convex C̆(IC ), we obtain the following characterization: Payments conditional on survival are optimally
made on a single time interval [t1, t2], which, for sufficiently tight payment bound, are complemented by

rewards following failure on some interval
[
tf1 , t

f
2

]
⊂ (t1, t2).
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Theorem B.1 summarizes the characterization of the optimal contract for the case with a
relevant (IC) constraint. It remains to characterize the (less interesting) case when (IC) is
irrelevant for compensation costs such that CMI-contracts do not apply. Intuitively, this
is the case if the principal receives sufficiently precise signals at time 0 (and v > 0). In

particular, if I (0|a) > c′(a)
v+c(a)

, CMI-contracts would provide excessive incentives, violating

(IC-FOC).21 Hence, deferral is not needed to provide incentives:

Lemma A.2 If I (0|a) > c′(a)
v+c(a)

, CMI-contracts do not apply. (PC) binds and all pay-

ments are made at time 0, w∗ (0) = 1, and B∗ = v + c (a).

We have now completely characterized optimal compensation contracts to implement any
given action a. The associated wage cost to the principal follows immediately:

W (a) =

{ c′(a)
I(TRE(a)|a)

e∆rTRE(a)

(v + c (a)) C̆
(

c′(a)
v+c(a)

∣∣∣ a) v ≤ v̄(a)
v > v̄(a)

. (16)

B.2.2 Optimal action choice

So far, the analysis has focused on the principal’s costs to induce a given action, W (a).
In this Appendix we discuss the principal’s preferences over actions and the resulting
equilibrium action choice, the second problem in Grossman and Hart (1983). We capture
the benefits of an action a to the principal by a strictly increasing and concave bounded
function π (a). Here, π (a) could simply be interpreted as the principal’s utility derived
from action a, or may, more concretely, correspond to the present value of the (gross)
profit streams under action a. For instance, take Example 2 with an exponential survival
time distribution (cf., Example 2.2) and suppose that the agent is a bank employee
generating a consumer loan or mortgage of size 1, designed as a perpetuity with flow
payment f . Through exerting (diligence) effort a, the agent can decrease the likelihood
with which a loan subsequently defaults, in which case the asset becomes worthless. For
this specification, we can write the bank’s (the principal’s) expected discounted revenue
for given a as π (a) = f

rP + 1
a

−1. Generally, given any (gross) profits π(a) and compensation

costs W (a) the equilibrium action then solves

a∗ = arg max
a∈A

π (a)−W (a) , (17)

and, given a solution a∗, the chosen payout times are characterized by Theorem B.1 (and
Lemma A.2).

21 To see this note that when the principal makes the minimum size of the compensation package
required by (PC), B = v + c (a), contingent on h0

MI , the least informative signal within the class of
CMI -contracts, then the marginal benefit of increasing the action to the agent is I (0|a) (v + c (a)) which
exceeds the marginal cost, c′ (a).
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