Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Handwashing and Habit Formation: A Test of Rational Addiction

Reshmaan Hussam, Harvard Business School

with Atonu Rabbani, Dhaka University Giovanni Reggiani, MIT Natalia Rigol, Harvard University

ASSA 2018: AEDB Session

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Handwashing with soap

- High rates of child stunting and mortality worldwide due to bacterial and viral transmission
 - Diarrhea, ARI
 - 2 million child deaths yearly (WHO 2013)
- Handwashing with soap
 - "the most effective vaccine against childhood infections" (World Bank 2005)
- But handwashing rates abysmally low (3-35%) worldwide, especially during critical times. Why?

Context

- Conceptual framework
- Experimental design
- Habit formation results
- Child health results
- Conclusion

Why don't people wash their hands?

- 1 Scarcity of information
 - Information interventions have not worked. (WSP 2015, Galiani et al. 2015)
 - People believe washing is important. study context
- 2 Scarcity of resources
 - Resource interventions, including our own, have not worked. (WSP 2013, Ejemot et al. 2015, SHDS 2015)
 - People have soap and water. study context
- 3 No health returns in high-disease environments
 - Not true in our setting: handwashing reduces acute respiratory infection and loose stool incidence results
 - translates into significant improvements in weight and height results

People still don't wash. • study context

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Key features of handwashing with soap

Preventive activity.

- Returns are not salient.
- Not a social norm.
 - No persistent social costs to shirking.
- **3** Repetitive activity.
 - Repeated engagement is costly...unless it becomes a habit.

study context

These features apply to many important health activities: water treatment, latrine use, clean cookstove use, etc.

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Conceptual framework: habits and rational addiction

Becker and Murphy (1988): A Theory of Rational Addiction

- **1** Habit formation: intertemporal complementarities in the utility from consumption
- **Rational** habit formation: Agents are aware of complementarities, so changes in future consumption affect current consumption

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

What we do in practice

We implement an RCT among 2900 rural households with young children in West Bengal.

- 1 Our experimental design randomizes:
 - whether agents *receive* monetary incentives, social incentives, only a soap dispenser, or no intervention for daily handwashing
 - \Rightarrow habit formation
 - whether agents *anticipate* monetary incentives, social incentives, or neither

 \Rightarrow rational habit formation

2 We observe:

- precise measure of handwashing behavior before, during, and after withdrawal of the interventions
- willingness-to-pay for soap
- child health: diarrhea, ARI, weight, height

Measurement technology: from the Media Lab

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Measurement technology: to the field

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Handwashing outcome measure

Primary outcome: binary measure of dispenser use during the family's self-reported evening mealtime.

Maximize σ by making handwashing amenable to habituation: \Rightarrow habit loop: trigger, routine, feedback (Neal et al. 2015)

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Experimental design

Households are visited once every two weeks.

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Incentives intervention

Incentivized households receive:

1 calendar

- 2 dispenser to keep
- 3 soap for one year
- 4 tracking of behavior on calendar
- 5 tickets (one or three) per night dispenser active
 - redeemed for child and household prizes (on day of receipt or later)
 - 1 ticket = Rs. 3 = USD 0.05

Note: tracking measured and incentives earned daily, but recorded and received every two weeks

Incentives

Parallel monitoring experiment

Disentangling incentives from feedback alone:

Introductior

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Monitoring intervention

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child healtl results

Conclusion

Household Receives	Incentive	Monitoring
calendar	×	×
dispenser to keep	×	×
soap for one year	×	×
feedback on calendar	×	×
tickets	×	

Monitoring

- Context
- Conceptual framework
- Experimental design
- Habit formation results
- Child healtl results
- Conclusion

Roadmap

- 1 Introduction
- 2 Conceptual framework
- 3 Experimental design
- 4 Habit formation results
 - Contemporaneous effects
 - Persistence effects
 - Anticipatory effects
- **5** Child health results
- 6 Conclusion

Context

Conceptual framework

Experimenta design

Habit formation results

Child healt results

Conclusion

Contemporaneous effects

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Contemporaneous effects: receiving any tickets increases handwashing at dinnertime

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Contemporaneous effects: tripling tickets has little effect on handwashing

Context

Conceptua framework

Experimenta design

Habit formation results

Child health results

Conclusion

Contemporaneous effects: monitoring increases handwashing

Context

Conceptual framework

Experimenta design

Habit formation results

Child healt results

Conclusion

Persistence effects

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Habit formation: previously receiving incentives makes you wash more on extensive margin

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Habit formation: previously receiving triple vs. single tickets does not persist

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Habit formation: previously being monitored makes you wash more

Context

Conceptual framework

Experimenta design

Habit formation results

Child healtl results

Conclusion

Rational habit formation effects

Context

Conceptua framework

Experimenta design

Habit formation results

Child health results

Conclusion

Rational habit formation: no evidence in households anticipating triple tickets

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Rational habit formation: strong evidence in households anticipating being monitored

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Child health effects

Handwashing decreases loose stool and ARI incidence

	(1)	(2)	(3)	(4)
	Any loose	Total days of	Any ARI	Total days of
	stool	loose stool	symptoms	ARI
Received dispenser	-0.0315***	-0.0817***	-0.0393**	-0.204**
	[0.00975]	[0.0236]	[0.0154]	[0.0884]
Mean of pure control	0.100	0.209	0.270	1.247
	[0.00572]	[0.0151]	[0.00886]	[0.0504]
Observations	3,820	3,830	3,830	3,830

Child health results

Notes: Observations are at the child level. "Received dispenser" is any household that received a dispenser, pooled over treatment arms. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Handwashing improves child anthropometric outcomes

	(1)	(2)	(3)
VARIABLES	Weight for age z-score	Height for age z-score	Mid-arm circ. for age z- score
Received dispenser	0.135*	0.227*	0.0752*
	[0.0640]	[0.0902]	[0.0518]
Mean of pure control	-2.167	-1.866	-1.365
-	[0.0459]	[0.0666]	[0.0432]
Observations	863	862	858

Notes: Observations are at the child level. "Received dispenser" is any household that received a dispenser, pooled over treatment arms. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.

- Context
- Conceptual framework
- Experimenta design
- Habit formation results
- Child health results
- Conclusion

To summarize:

- Handwashing alone has substantial impacts on child health
- 2 Financial incentives and monitoring without incentives increases handwashing
- **3 Handwashing is habitual**: effects persist after incentives or monitoring are removed
 - \Rightarrow optimal scheme: frontload incentives
- Agents are rational habit formers: anticipation of a rise in the future likelihood of handwashing increases current handwashing
 - \Rightarrow optimal scheme: delay and announce incentives

- Context
- Conceptual framework
- Experimental design
- Habit formation results
- Child health results
- Conclusion

A model of habit formation for good behaviors

Discrete time model with periods 1, ..., T.

Agent chooses to:

- wash hands: $w_t = 1$
- not wash: $w_t = 0$

Habit stock of activity:

• $k_t = \gamma k_{t-1} + w_{t-1}, \gamma \in [0, 1)$ where γ is the level of decay

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

A model of habit formation for good behaviors

Define the agent's instantaneous utility from washing in period t as

$$u_t(w_t, k_t) = \begin{cases} \alpha - [x_t - \sigma k_t] & \text{if } w_t = 1\\ 0 & \text{if } w_t = 0 \end{cases}$$
(1)

where

- α is the health benefit from washing
- *x_t* is the cost of washing (in time, effort, attention)
- σ is ease in washing due to habituation

Behavior is **habit forming**: $\frac{\partial u_t}{\partial k_t} > 0 \Rightarrow \sigma > 0$

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Levers to increase handwashing

We want to maximize the net instantaneous utility of handwashing:

$$u_t(k) = u_t(1, k) - u_t(0, k)$$
(2)
= $\alpha - x_t + \sigma k_t$

When consumption stock is zero, we can only shift:

• x_t: subsidize cost of washing

Once k_t is positive, σ kicks in \Rightarrow subsidy can be temporary.

Context

Conceptual framework

Experimenta design

Habit formation results

Child health results

Conclusion

Testable predictions

$$u_t(k) = \alpha - \underbrace{x_t}_{incentives} + \sigma k_t$$

 Incentives: ∂u_t/∂x_t ≤ 0. Reducing the cost of handwashing (by increasing the value of handwashing) raises handwashing rates.

2 Habit formation: $\frac{\partial u_t}{\partial k_t} \ge 0$. A rise in past handwashing rates increases current handwashing rates.

Testable predictions

- **1** Incentives: $\frac{\partial u_t}{\partial x_t} \leq 0$. Reducing the cost of handwashing (by increasing the value of handwashing) raises handwashing rates.
- **2** Habit formation: $\frac{\partial u_t}{\partial k_t} \ge 0$. A rise in past handwashing rates increases current handwashing rates.

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Rational habit formation

In a world where agents are forward looking, their long run utility is:

$$U_t(k_t) = \max_{w_t} \begin{cases} [\alpha - x_t + \sigma k_t] + \delta U_{t+1}(\gamma k_t + 1) & \text{if } w_t = 1 \\ \\ \delta U_{t+1}(\gamma k_t) & \text{if } w_t = 0 \end{cases}$$

Additional testable prediction:

Rational habit formation: $\frac{\partial^2 U_t}{\partial k_{t+1}} \ge 0$. An anticipated [and actual] rise in future handwashing rates is associated with an increase in current handwashing rates.

Consistency check:

Health: $\alpha \ge 0$. Handwashing generates positive health internalities.

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

Rational habit formation

Introduction

Conceptua

Experimenta design

Habit formation results

Child health results

Conclusion

In a world where agents are forward looking, their long run utility is:

$$U_t(k_t) = \max_{w_t} \begin{cases} [\alpha - x_t + \sigma k_t] + \underbrace{\delta U_{t+1}(\gamma k_t + 1)}_{\substack{rational \\ habit \\ formation}} & \text{if } w_t = 1 \\ \delta U_{t+1}(\gamma k_t) & \text{if } w_t = 0 \end{cases}$$

Additional testable prediction:

Stational habit formation: ∂²U_t/∂k_t∂k_{t+1} ≥ 0. An anticipated [and actual] rise in future handwashing rates is associated with an increase in current handwashing rates.

Consistency check:

Health: $\alpha \ge 0$. Handwashing generates positive health internalities.

Rational habit formation

Introduction

Context

Conceptual framework

Experimental design

Habit formation results

Child health results

Conclusion

In a world where agents are forward looking, their long run utility is:

$$U_t(k_t) = \max_{w_t} \begin{cases} [\alpha - x_t + \sigma k_t] + \underbrace{\delta U_{t+1}(\gamma k_t + 1)}_{rational} & \text{if } w_t = 1\\ \delta U_{t+1}(\gamma k_t) & \text{if } w_t = 0 \end{cases}$$

Additional testable prediction:

S Rational habit formation: ∂²U_t/∂k_t∂k_{t+1} ≥ 0. An anticipated [and actual] rise in future handwashing rates is associated with an increase in current handwashing rates.

Consistency check:

• Health: $\alpha \ge 0$. Handwashing generates positive health internalities.