# Monetary Policy and the Firm: Some Empirical Evidence<sup>1</sup>

Saleem Bahaj

Angus Foulis

Gabor Pinter

Paolo Surico

Bank of England; London Business School

January 2018

<sup>1</sup>The views expressed are those of the presenter and not necessarily those of the Bank of England, the MPC, the FPC or PRC.

Bahaj-Foulis-Pinter-Surico (BoE; LBS)

01/2018

### Motivation

- Limits to what we can learn about the transmission of monetary policy from aggregate data
- Heterogeneous responses at the firm level can distinguish channels
  - Size and age
  - Leverage and credit scores

#### • This paper:

- Impact of monetary policy in a panel of UK non-financial firms
  - Includes small and large firms
  - Private and listed firms
- "Off-the-shelf" high frequency identified monetary policy shocks
- Focus on employment

- 1. Aggregate and (weighted) average firm level responses align
  - Helpful to focus on employment
- 2. Small firms respond more (different dynamics)
  - So do young firms
- 3. Heterogeneity consistent with financial frictions narrative

### The Literature

- Which types of firms are more sensitive to aggregate shocks?
  - Monetary policy: Gertler and Gilchrist [1994]
  - Size and Business Cycle: Moscarini and Postel-Vinay [2012], Chari et al. [2013], Kudlyak and Sanchez [2017], Crouzet and Mehrotra [2017]
  - Age & size: Fort et al. [2013]
- Macro literature on household heterogeneity and monetary policy
  - Auclert [2015], Cloyne et al. [2016], Kaplan et al. [2016]

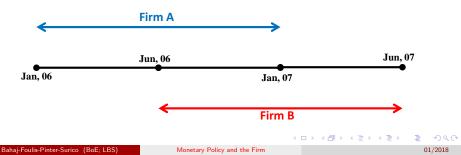
#### • Recent work on firms using Compustat

• Ippolito et al. [2017], Ottonello and Winberry [2017], Jeenas [2017]

イロト 不得 トイヨト イヨト

# Firm Data

Accounting Data: Bureau van Dijk (BVD) based on filings at Companies House (UK registrar)


- Annual data covering ~1.5 million UK firms annual Companies House filings
- BVD is a live database, which leads to several limitations, most importantly: selection issue, firms that die leave the database after ~ 5years
- To circumvent this issue, archived data sampled at a six monthly frequency to capture information when it was first published (similar to Kalemli-Ozcan et al. 2015)
  - Illustrating the Selection Effect

イロン イ団 とく ヨン イヨン

### Data

#### Treatment of Firms

- Sample selection:
  - $\bullet\,$  Exclude companies that have a parent with an ownership stake greater than 50%
  - Operate in finance, utilities or public sectors
  - Firms must be active, have operated for at least three years and report variables of interest
- Sample period is 1990-2015 (95% obs in 1998-2014).
- Annual data but firms have different accounting periods.



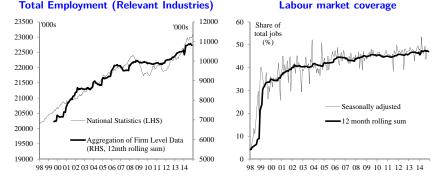
### **Two Samples**

#### Sample I: Firms who report Number of Employees

| Variable              | Mean        | Median        | 25%tile     | 75%tile     | Ν           | Histogram |
|-----------------------|-------------|---------------|-------------|-------------|-------------|-----------|
| Firms that report N   | umber of l  | Employees     | (105,610 ur | nique firms | )           |           |
| Total Assets (£'000s) | 61,718      | 2,326         | . 157       | 6909        | 465,444     | chart     |
| Number of Employees   | 303         | 28            | 4           | 91          | 467,816     | chart     |
| Age (years)           | 20          | 13            | 6.6         | 25          | 460,230     | chart     |
| Leverage              | 1.20        | 0.65          | 0.41        | 0.86        | 414,839     | chart     |
| Credit Score (0-100)  | 67          | 75            | 46          | 91          | 388,998     | chart     |
| Employment Growth R   | ates (condi | itional on su | ırvival)    |             |             |           |
| 1-year                | 0.011       | 0.000         | -0.026      | 0.065       | $467,\!816$ | chart     |
| 3-year                | 0.027       | 0.000         | -0.100      | 0.190       | 282,028     | chart     |
| 5-year                | 0.074       | 0.013         | -0.160      | 0.340       | $143,\!259$ | chart     |

Note: Firms are counted as reporting total assets/number of employees if they report either for three consecutive years or two consecutive years non-consecutively. Growth rates are calculated for firms who file all accounts in a regular annual pattern (observations for which there is an accounting period that is not annual are excluded). Nominal asset growth is converted into real terms using the UK CP1 at the month of films.

### **Two Samples**

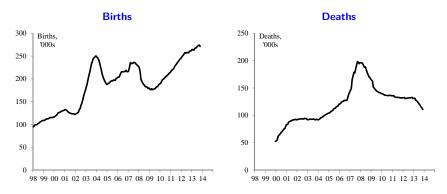

#### Sample II: Firms who report Total Assets

| Variable               | Mean        | Median       | 25%tile      | 75%tile | Ν                | Histogram |
|------------------------|-------------|--------------|--------------|---------|------------------|-----------|
| Firms that report T    | otal Asset  | s (3,744,71  | l8 unique fi | rms)    |                  |           |
| Total Assets (£'000s)  | 2,779       | 55           | 15           | 225     | $12,\!050,\!499$ | chart     |
| Age (years)            | 11          | 7            | 3.9          | 13      | 12,050,480       | chart     |
| Real Asset Growth (col | nditional d | on survival) |              |         |                  |           |
| 1-year                 | 0.022       | 0.000        | -0.160       | 0.220   | $12,\!050,\!499$ | chart     |
| 3-year                 | 0.068       | 0.031        | -0.260       | 0.430   | 8,072,643        | chart     |
| 5-year                 | 0.160       | 0.120        | -0.310       | 0.670   | 4,462,878        | chart     |

Note: Firms are counted as reporting total assets/number of employees if they report either for three consecutive years or two consecutive years non-consecutively. Growth rates are calculated for firms who file all accounts in a regular annual pattern (observations for which there is an accounting period that is not annual are excluded). Nominal asset growth is converted into real terms using the UK CP1 at the month of films.

# **Descriptive Statistics**

Firm vs Aggregate Employment




Notes: (i) left panel: Thick black line (aggregation of firm level data) is the sum of the employment of all companies that file in particular month expressed as a 12 month moving sum. Thin black line (national statistics) is employment in the relevant industries as sourced from the UK ONS. (ii) right panel: thick black line (12 month rolling sum) is the ratio between the two lines in the top left panel. Thin black line (seasonally adjusted) is the constructed by taking the sum of all firms that file in a particular month, seasonally adjusting the time series and multiplying it by 12 dividing by the thin black line in the left panel.

イロト イヨト イヨト

# **Descriptive Statistics**

Birth and Death



Notes: (i) left panel: number of firms with incorporation date in a rolling 12 month window. (ii) right panel: number of firms with a statement date where the company status was first listed as dissolved in a rolling 12 month window.

э

イロト イヨト イヨト

# Microdata Validation

#### 1. Representativeness

• Replicate the aggregate response for employment

#### 2. Selection

• Compare total asset response for firms that do and don't report employment

#### 3. Administrative data

- Interdepartmental Business Register (IDBR): the complete universe of firm level employment
- Similar to Census Bureau's Longitudinal Business Database (LBD)
- $\bullet$  No balance sheet info/within year timing:  $\implies$  in future work merge to BvD data

イロト 不得 トイヨト イヨト

# General Methodology

#### 1. Proxy SVAR (Mertens and Ravn 2013)

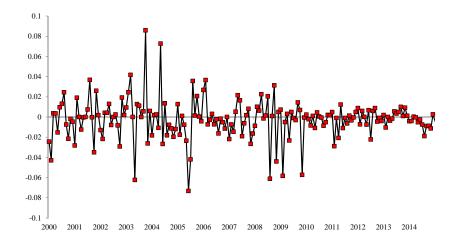
- Feed in monetary policy shock instrument
- Get aggregate response

#### 2. Extract shock from VAR

• Advantage: not limited by instrument sample

#### 3. Use extracted shock in firm level local projections

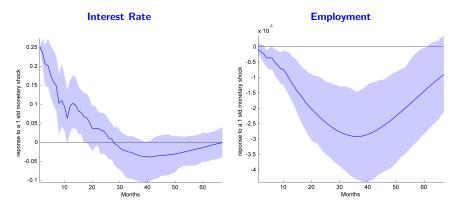
Robustness: using proxy directly - similar results


イロト イヨト イヨト

### Monetary Policy VAR Gerko and Rey (2017)

#### Off-the-shelf approach

- Shock instrument from Gerko and Rey [2017], covering 2000m1-2015m1
- High frequency market reaction to monetary policy announcements
  - Using Bank of England's MPC Minutes, Inflation Report
  - Interpretation is a monetary policy news shock
- Specification as in Gerko and Rey [2017] (augmented to include labour variables). Proxy SVAR, estimated over 1982-2015.
  - VAR series: 5-year gilts, IP, Prices, £/\$, corporate bond spread, unemployment rate, employment of firms in our industries
  - F-stat for relevance of instrument is above 10
  - The estimated shock goes into our firm level regression

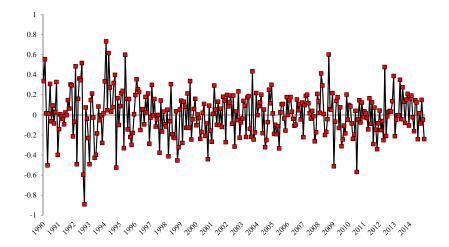

### Monetary Policy VAR Gerko Rey (2017) Policy Surprises



01/2018

# Aggregate Responses to Monetary Policy Shock

1sd monthly contractionary shock




Notes: Estimates are from a proxy SVAR estimated on UK monthly data over the period 1982-2012. Monetary policy shocks are identified using the Gerko and Rey [2017] series. The blue solid lines are the point estimates, and the shaded areas are the 90% confidence intervals constructed from a wild recursive bootstrap.

Output and Prices

A (10) N (10)

### Monetary Policy Shock Series Extracted From the VAR



#### 1 standard deviation = 24bps

Rolling sum

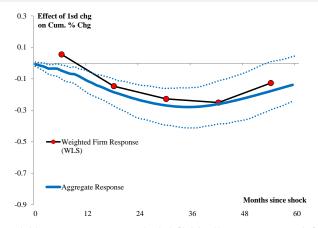
01/2018

# Firm Level Responses

Linear effects

Specification follows local projection method of Jorda [2005]:

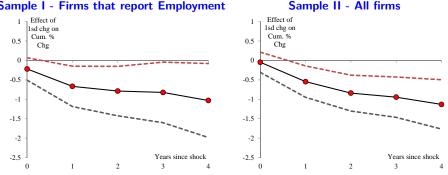
$$log(EMP_{t+h,i}) - log(EMP_{t-1,i}) = \alpha_i^h + \beta^h \times \sum_{m=1}^{12} w_m e_{m,t} + \gamma^h \times controls_{i,t-1} + \sum_{j=1}^6 \phi^h \times \sum_{m=1}^{12} \tilde{u}_{m,j,t} + \varepsilon_{i,t}^h$$


- t is an index of time denoting firm accounting year
- *m* denotes months over a firm's account year
  - $\sum_{m=1}^{12} w_m e_{m,t}$  is the weighted sum of monetary shocks over the accounting year
  - We show  $w_m = 1$ , results robust to other weights

#### • Inference:

- Multiway clustering to account for overlapping time windows
- Also cluster at the industry level

## Comparison to the Aggregate


Employment Responses: 1sd Contractionary Shock



Notes: Responses to a 1 standard deviation contractionary monetary policy shock. Black dotted lines are point estimates at the firm level, WLS estimates weighted by firm level employment. Blue Line is the aggregate response from the VAR, dashed blue lines denote 90% confidence intervals.

Firm Level with errors

### Selection: Comparison of Total Asset Responses



Notes: Firm level responses to a 1 standard deviation contractionary monetary policy shock. Black dotted lines are point estimates. Dashed lines are +/two stand errors. The dependent variable is the cumulative growth rate in log points of total assets from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.

### Sample I - Firms that report Employment

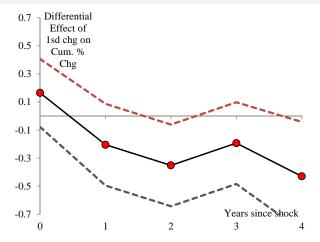
Bahai-Foulis-Pinter-Surico (BoE: LBS)

01/2018

イロト イヨト イヨト

# Firm Level Responses

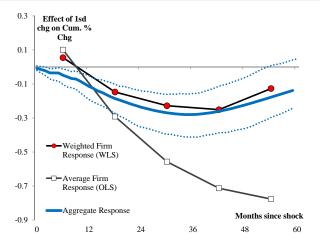
Assessing Heterogeneity


Specification:

$$log(EMP_{t+h,i}) - log(EMP_{t-1,i}) = \alpha_i^h + \delta_{j,t}^h + \beta^h \times dum_{i,t-1} \times \sum_{m=1}^{12} w_m e_{m,t} + \gamma^h \times controls_{i,t} + \varepsilon_{i,t}^h$$

- Industry-time fixed effect,  $\delta_{i,t}^h$
- $dum_{i,t-1}$ : binary dummy if firm *i* is in a particular group (small, levered, etc)
- $\beta^h$  is then the relative impulse response at horizon h

### Relative Effect of Being a Small Firm


#### Firms with Fewer than 1000 Employees



Notes: Additional firm level response to a 1 standard deviation contractionary monetary policy shock when the firm is small. Black dotted lines are point estimates. Dashed lines are +/- two stand errors. The dependent variable is the cumulative growth rate in log points of employment from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.

イロト イヨト イヨト

### The Response of the Average Firm Revisited



Notes: Responses to a 1 standard deviation contractionary monetary policy shock. Grey lines with squares and black dotted lines are point estimates at the firm level, OLS and WLS estimates weighted by firm level employment respectively. Blue Line is the aggregate response in from the VAR, dashed blue lines denote 90% confidence intervals.

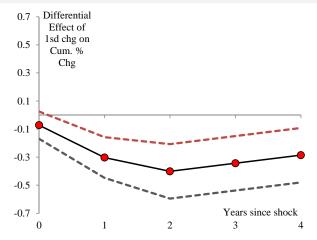
イロト イヨト イヨト

# Comparison of Characteristics

Size

|       | Age (years) | Employees | Leverage<br>(Share of<br>Assets) | Credit Score (0-100) |
|-------|-------------|-----------|----------------------------------|----------------------|
| <1000 | Employees   |           |                                  |                      |
| p25   | 7           | 4         | 0.41                             | 46                   |
| mean  | 19          | 76        | 0.80                             | 67                   |
| p50   | 13          | 28        | 0.65                             | 74                   |
| p75   | 25          | 87        | 0.86                             | 91                   |
| ≥1000 | Employees   |           |                                  |                      |
| p25   | 8           | 1413      | 0.50                             | 58                   |
| mean  | 30          | 2001      | 0.68                             | 75                   |
| p50   | 19          | 2328      | 0.65                             | 86                   |
| p75   | 47          | 2515      | 0.82                             | 92                   |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


# Comparison of Characteristics Age

|         | Age (years)     | Employees | Leverage<br>(Share of<br>Assets) | Credit Score (0-100) |
|---------|-----------------|-----------|----------------------------------|----------------------|
| Less th | an 10 years old | _         |                                  |                      |
| p25     | 3               | 2         | 0.49                             | 37                   |
| mean    | 5               | 96        | 0.96                             | 59                   |
| p50     | 5               | 7         | 0.76                             | 59                   |
| p75     | 7               | 63        | 0.97                             | 89                   |
| Greater | r than 10 years | old       |                                  |                      |
| p25     | 15              | 9         | 0.38                             | 54                   |
| mean    | 28              | 142       | 0.70                             | 72                   |
| p50     | 22              | 47        | 0.59                             | 83                   |
| p75     | 35              | 109       | 0.79                             | 92                   |

2

# Relative Effect of Being a Young Firm

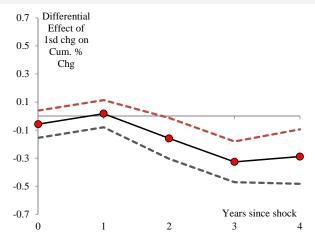
#### Less than 10 years old



Notes: Additional firm level response to a 1 standard deviation contractionary monetary policy shock when the firm is less than 10 years old. Black dotted lines are point estimates. Grey dashed lines are +/- two stand errors. The dependent variable is the cumulative growth rate in log points of employment from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.

イロト イヨト イヨト

# Comparison of Characteristics


Leverage

|         | Age (years)    | Employees | Leverage<br>(Share of<br>Assets) | Credit Score (0-100) |
|---------|----------------|-----------|----------------------------------|----------------------|
| Below : | median leverag | e         |                                  |                      |
| p25     | 9              | 5         | 0.27                             | 62                   |
| mean    | 23             | 131       | 0.42                             | 77                   |
| p50     | 17             | 39        | 0.45                             | 87                   |
| p75     | 32             | 101       | 0.58                             | 93                   |
| Above   | median leverag | e         |                                  |                      |
| p25     | 5              | 3         | 0.80                             | 33                   |
| mean    | 14             | 120       | 1.30                             | 55                   |
| p50     | 10             | 21        | 0.90                             | 53                   |
| p75     | 19             | 88        | 1.01                             | 86                   |

Ξ.

## Relative Effect of Being a Highly Levered Firm

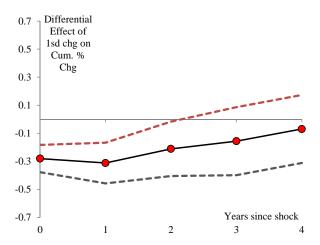
#### Leverage above the Median



Notes: Additional firm level response to a 1 standard deviation contractionary monetary policy shock when the firm is highly levered. Black dotted lines are point estimates. Grey dashed lines are +/- two stand errors. The dependent variable is the cumulative growth rate in log points of employment from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.

## Credit Score

- Credit Score: QuiScore is a propriety measure of creditworthiness developed by UK credit rating agency CIRF; primarily used to rate small firms.
- The QuiScore is calculated from a number of financial variables including fixed assets and shareholder funds.
- The QuiScore runs from 0-100 and indicates the probability of the company failing within the next year
- Companies with a QuiScore of 61-100 are stable/secure and are very unlikely to fail.
- Companies with a QuiScore of 0-60 are far more likely to fail.


# Comparison of Characteristics

Credit Score

|        | Age (years) | Employees | Leverage<br>(Share of<br>Assets) | Credit Score (0-100) |
|--------|-------------|-----------|----------------------------------|----------------------|
| QuiSco | re<60       |           |                                  |                      |
| p25    | 5           | 2         | 0.61                             | 28                   |
| mean   | 15          | 89        | 1.12                             | 37                   |
| p50    | 10          | 8         | 0.80                             | 40                   |
| p75    | 19          | 59        | 0.99                             | 50                   |
| QuiSco | re≥60       |           |                                  |                      |
| p25    | 8.25        | 8         | 0.33                             | 79                   |
| mean   | 22          | 152       | 0.57                             | 85                   |
| p50    | 16          | 51        | 0.53                             | 90                   |
| p75    | 29          | 118       | 0.75                             | 93                   |

Ξ.

### Relative Effect of Being a Firm with a Bad Credit Score Score less than "Stable" (60)



Notes: Additional firm level response to a 1 standard deviation contractionary monetary policy shock when the firm has a low credit score. Black dotted lines are point estimates. Grey dashed lines are +/ two stand errors. The dependent variable is the cumulative growth rate in log points of employment from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.



- Empirical evidence on the impact of monetary policy shocks at the firm level
- Near representative sample: consistent with the aggregate
- Small firms respond more
- Consistent with financial frictions

#### Future Work:

- Double-sorts of firm characteristics
- Merge balance sheet data with administrative employment data

### References I

- Adrien Auclert. Monetary policy and the redistribution channel. 2015 Meeting Papers 381, Society for Economic Dynamics, 2015. URL http://EconPapers.repec.org/RePEc:red:sed015:381.
- V. V. Chari, Lawrence J. Christiano, and Patrick J. Kehoe. The gertler-gilchrist evidence on small and large firm sales. mimeo, Northwestern University, 2013.
- James Cloyne, Clodomiro Ferreira, and Paolo Surico. Monetary policy when households have debt: new evidence on the transmission mechanism. Bank of England working papers 589, Bank of England, April 2016. URL https://ideas.repec.org/p/boe/boeewp/0589.html.
- N. Crouzet and N. Mehrotra. Small and large firms over the business cycle. *FRB Minneapolis Working Paper*, 2017.
- Teresa C Fort, John Haltiwanger, Ron S Jarmin, and Javier Miranda. How firms respond to business cycles: The role of firm age and firm size. *IMF Economic Review*, 61(3): 520–559, August 2013. URL

https://ideas.repec.org/a/pal/imfecr/v61y2013i3p520-559.html.

Elena Gerko and Helene Rey. Monetary policy in the capitals of capital. NBER Working Papers 23651, National Bureau of Economic Research, Inc, August 2017.

Bahaj-Foulis-Pinter-Surico (BoE; LBS)

### References II

- Mark Gertler and Simon Gilchrist. Monetary policy, business cycles, and the behavior of small manufacturing firms. *The Quarterly Journal of Economics*, 109(2):309–40, May 1994. URL http://ideas.repec.org/a/tpr/qjecon/v109y1994i2p309-40.html.
- Filippo Ippolito, Ali K. Ozdagli, and Ander Perez-Orive. The transmission of monetary policy through bank lending: The floating rate channel. Finance and Economics Discussion Series 2017-026, Board of Governors of the Federal Reserve System (U.S.), 2017. URL https://ideas.repec.org/p/fip/fedgfe/2011-14.html.
- P Jeenas. Monetary policy shocks, financial structure, and firm activity: A panel approach. *Mimeo*, *NYU*, 2017.
- Oscar Jorda. Estimation and inference of impulse responses by local projections. *American Economic Review*, 95(1):161–182, March 2005. URL https://ideas.repec.org/a/aea/aecrev/v95y2005i1p161-182.html.
- Sebnem Kalemli-Ozcan, Bent Sorensen, Carolina Villegas-Sanchez, Vadym Volosovych, and Sevcan Yesiltas. How to construct nationally representative firm level data from the orbis global database. NBER Working Papers 21558, National Bureau of Economic Research, Inc, September 2015. URL

https://ideas.repec.org/p/nbr/nberwo/21558.html.

э.

### References III

- Greg Kaplan, Benjamin Moll, and Giovanni L. Violante. Monetary policy according to hank. Working Paper 21897, National Bureau of Economic Research, January 2016. URL http://www.nber.org/papers/w21897.
- Marianna Kudlyak and Juan M. Sanchez. Revisiting the behavior of small and large firms during the 2008 financial crisis. *Journal of Economic Dynamics and Control*, 77:48 69, 2017. ISSN 0165-1889. doi: https://doi.org/10.1016/j.jedc.2017.01.017. URL http://www.sciencedirect.com/science/article/pii/S0165188917300258.
- Karel Mertens and Morten O. Ravn. The dynamic effects of personal and corporate income tax changes in the united states. *American Economic Review*, 103(4): 1212–47, June 2013. URL

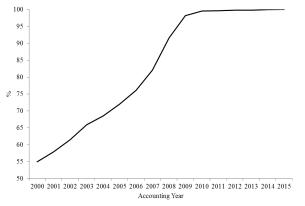
https://ideas.repec.org/a/aea/aecrev/v103y2013i4p1212-47.html.

- Giuseppe Moscarini and Fabien Postel-Vinay. The contribution of large and small employers to job creation in times of high and low unemployment. *American Economic Review*, 102(6):2509–2539, October 2012.
- P. Ottonello and T. Winberry. Financial heterogeneity and the investment channel of monetary policy. *Mimeo*, 2017.

э.

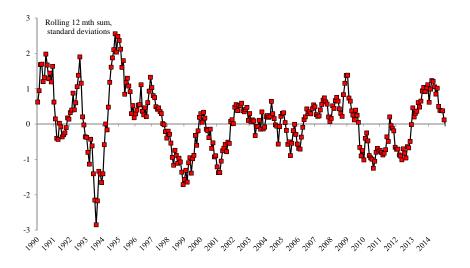
# Appendix Material

Bahaj-Foulis-Pinter-Surico (BoE; LBS)


01/2018

2

・ロト ・四ト ・ヨト ・ヨト

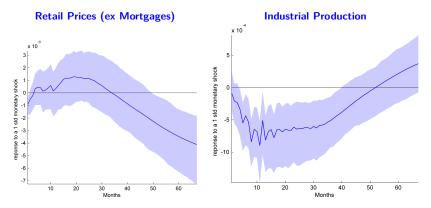

### Illustrating the Selection Effect

Fraction of Companies Present in August 2015 Vintage



Notes: the figure displays the proportion of companies in each statement year, as derived from the full panel of 21 discs, that are present in the August 2015 disc.

#### Shock Series Extracted from the VAR

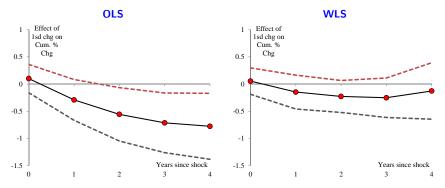



#### back

< ロ > < 同 > < 回 > < 回 >

## Aggregate Responses to Monetary Policy Shock

1sd monthly contractionary shock

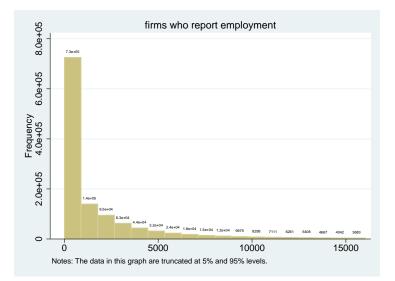



Notes: Estimates are from a proxy SVAR estimated on UK monthly data over the period 1982-2012. Monetary policy shocks are identified using the Gerko and Rey [2017] series. The blue solid lines are the point estimates, and the shaded areas are the 90% confidence intervals constructed from a wild recursive bootstrap.

Bahaj-Foulis-Pinter-Surico (BoE; LBS)

(人間) とうき くうう

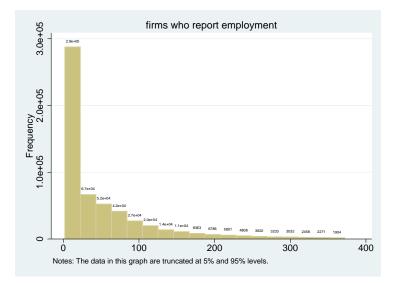
#### Employment Responses: 1sd Annual Contractionary Shock With Standard Errors



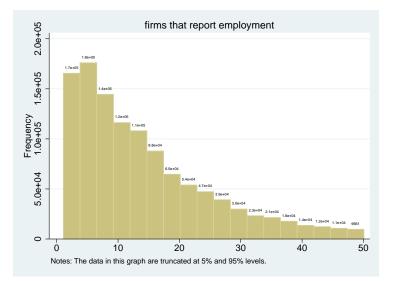

Notes: Firm level responses to a 1 standard deviation contractionary monetary policy shock. Black dotted lines are point estimates. Grey dashed lines are +/- two stand errors. The dependent variable is the cumulative growth rate in log points of employment from t - 1 to t + h where t is the date of the monetary policy shock and h is the x-axis.

back

イロト イポト イヨト イヨト


## Histogram: Total Assets




01/2018

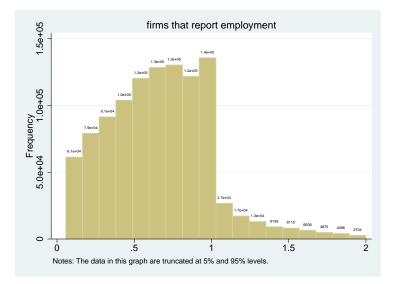
æ

## Histogram: Number of Employees



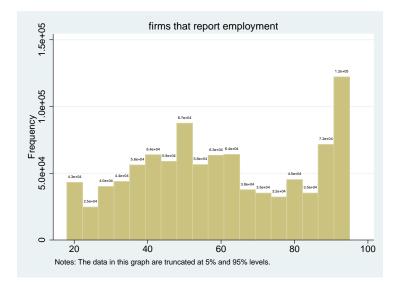
## Histogram: Age




Bahaj-Foulis-Pinter-Surico (BoE; LBS)

back

01/2018

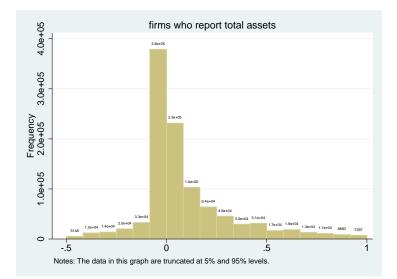

2

## Histogram: Debt to Assets



æ

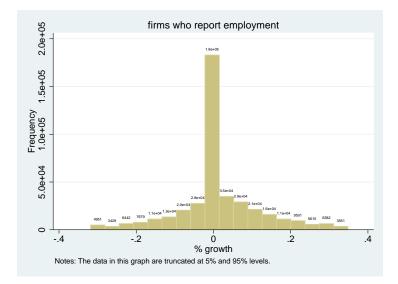
## Histogram: Credit Score




back

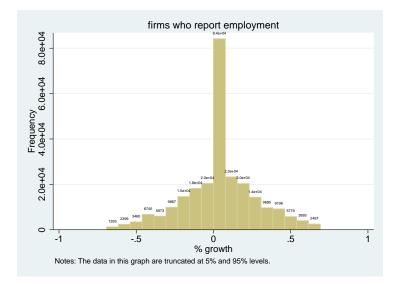
01/2018

æ

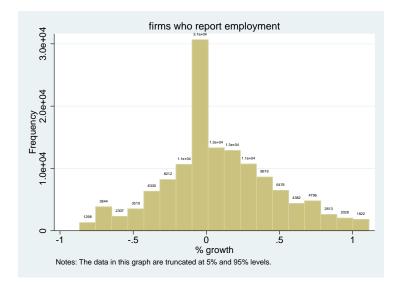

## Histogram: Interest Coverage Ratio



01/2018

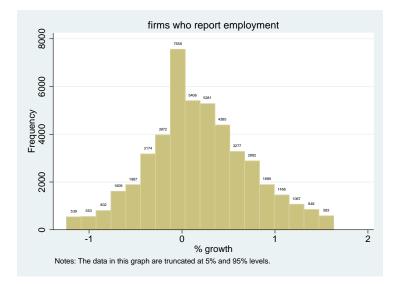

æ

## Histogram: Employment Growth 1-year




01/2018

## Histogram: Employment Growth 3-year

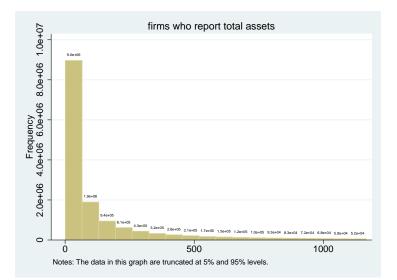



## Histogram: Employment Growth 5-year



01/2018

## Histogram: Employment Growth 10-year

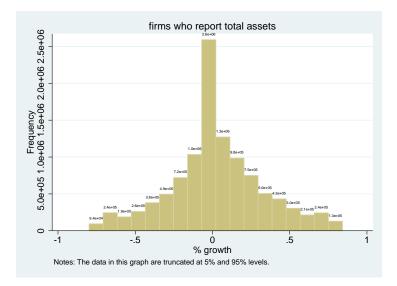



back

01/2018

イロト イヨト イヨト

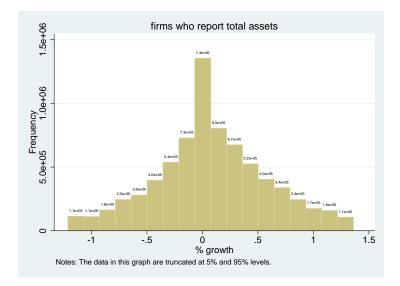
### Histogram: Total Assets




01/2018

æ

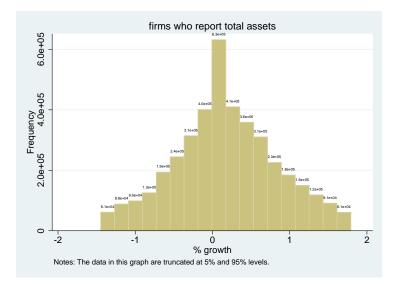
イロト イヨト イヨト イヨト


## Histogram: Asset Growth 1-year



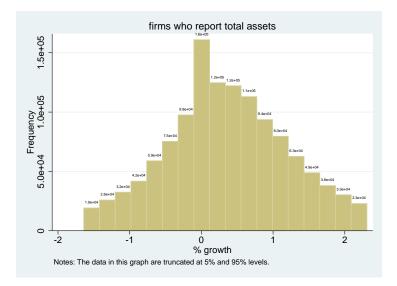
01/2018

æ


## Histogram: Asset Growth 3-year



01/2018

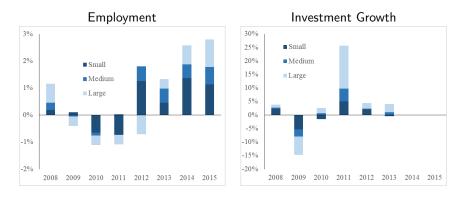

æ

## Histogram: Asset Growth 5-year



01/2018

## Histogram: Asset Growth 10-year




01/2018

æ

# Are Small Firms Important?

Contributions to Macro Dynamics by Firm Size



Source: ONS, BSD and ABS, Note: microdata do not perfectly correspond to national accounts, small: <50 employees, medium: >50 & <250; large: >250.

イロト イヨト イヨト