A Semi-Nonparametric Estimator for Random Coefficient Logit Demand Models

Zhentong Lu, Xiaoxia Shi and Jing Tao

SUFE, Wisconsin-Madison and Washington-Seattle

January 7, 2018

Introduction

- the workhorse model in demand estimation for differentiated products: BLP random coefficient (RC) logit model
 - really neat idea to solve the price endogeneity problem with rich preference heterogeneity (represented by RCs)
 - standard BLP estimator: nested fixed-point GMM

Introduction

- the workhorse model in demand estimation for differentiated products: BLP random coefficient (RC) logit model
 - really neat idea to solve the price endogeneity problem with rich preference heterogeneity (represented by RCs)
 - standard BLP estimator: nested fixed-point GMM
- in this paper, we propose an alternative two-step estimator for the model
 - obtain estimates of fixed coefficients with little computational costs
 - allow nonparametric specification of RCs
 - obtain new results on some theoretical issues

▶ in this presentation, for expositional simplicity, we consider a single market with J + 1 competing products {0, 1, ..., J}, where 0 refers to the "outside option"

- ▶ in this presentation, for expositional simplicity, we consider a single market with J + 1 competing products {0, 1, ..., J}, where 0 refers to the "outside option"
- standard random utility model

$$u_{ij} = \delta_j + X'_{2,j} \upsilon_i + \varepsilon_{ij}$$

- mean utility: $\delta_j = \alpha + X'_{1,j}\beta + \xi_j$, $\delta_0 = 0$ and $\delta \equiv (\delta_1, ..., \delta_J)$
- ▶ heterogeneity: random coefficients $v_i \sim F(\cdot)$, ε_{ij} i.i.d. type I extreme value

- ▶ in this presentation, for expositional simplicity, we consider a single market with J + 1 competing products {0, 1, ..., J}, where 0 refers to the "outside option"
- standard random utility model

$$u_{ij} = \delta_j + X'_{2,j} \upsilon_i + \varepsilon_{ij}$$

- mean utility: $\delta_j = \alpha + X'_{1,j}\beta + \xi_j$, $\delta_0 = 0$ and $\delta \equiv (\delta_1, ..., \delta_J)$
- ▶ heterogeneity: random coefficients $v_i \sim F(\cdot)$, ε_{ij} i.i.d. type I extreme value
- ▶ aggregating individual optimal choices ⇒ aggregate demand (market share) system

$$s_{j} = \sigma_{j} (\delta, X_{2}; F) = \int \frac{\exp \left(\delta_{j} + X_{2,j}^{'} v_{i}\right)}{1 + \sum_{k=0}^{J} \exp \left(\delta_{k} + X_{2,k}^{'} v_{i}\right)} dF(v_{i}), \forall j$$
(1)

- ▶ in this presentation, for expositional simplicity, we consider a single market with J + 1 competing products {0, 1, ..., J}, where 0 refers to the "outside option"
- standard random utility model

$$u_{ij} = \delta_j + X'_{2,j} \upsilon_i + \varepsilon_{ij}$$

- mean utility: $\delta_j = \alpha + X'_{1,j}\beta + \xi_j$, $\delta_0 = 0$ and $\delta \equiv (\delta_1, ..., \delta_J)$
- ▶ heterogeneity: random coefficients $v_i \sim F(\cdot)$, ε_{ij} i.i.d. type I extreme value
- ▶ aggregating individual optimal choices ⇒ aggregate demand (market share) system

$$s_{j} = \sigma_{j} (\delta, X_{2}; F) = \int \frac{\exp\left(\delta_{j} + X_{2,j}^{'} \upsilon_{i}\right)}{1 + \sum_{k=0}^{J} \exp\left(\delta_{k} + X_{2,k}^{'} \upsilon_{i}\right)} dF(\upsilon_{i}), \forall j$$
(1)

• we want to estimate $\theta \equiv (\alpha, \beta, F)$ using aggregate data $(s_j, X_{1,j}, X_{2,j})$

The BLP Idea

 invert the demand system (1) (see Berry (1994) and Berry, Gandhi, and Haile (2013))

$$\delta_{j} = \sigma_{j}^{-1}\left(s, X_{2}; F\right), \,\forall j$$

The BLP Idea

 invert the demand system (1) (see Berry (1994) and Berry, Gandhi, and Haile (2013))

$$\delta_{j} = \sigma_{j}^{-1}\left(s, X_{2}; F\right), \,\forall j$$

• impose IV assumption $E[\xi_j | Z_j] = 0$

The BLP Idea

 invert the demand system (1) (see Berry (1994) and Berry, Gandhi, and Haile (2013))

$$\delta_j = \sigma_j^{-1}\left(s, X_2; F\right), \ \forall j$$

- impose IV assumption $E[\xi_j | Z_j] = 0$
- ▶ construct a GMM estimator, with a *parametric F* (e.g., normal)

$$\arg\min_{\theta} \left\| \frac{1}{J} \sum_{j=1}^{J} Z_{j}^{'} \left[\sigma_{j}^{-1} \left(s, X_{2}; F \right) - \alpha - X_{1,j}^{'} \beta \right] \right\|$$

Challenges

- ► the inverse demand σ_j⁻¹ (·) must be solved numerically (i.e., BLP contraction mapping)
 - computational issues have aroused research interests, e.g., Knittel and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo (2015)

Challenges

- ► the inverse demand σ_j⁻¹ (·) must be solved numerically (i.e., BLP contraction mapping)
 - computational issues have aroused research interests, e.g., Knittel and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo (2015)
- many endogenous variables (s is J-dimensional), in addition to endogenous product characteristics (Berry and Haile (2014))

$$E\left[\left.\sigma_{j}^{-1}\left(s,X_{2};F\right)-\alpha-X_{1,j}^{'}\beta\right|Z_{j}\right]=0$$

Challenges

- ► the inverse demand σ_j⁻¹ (·) must be solved numerically (i.e., BLP contraction mapping)
 - computational issues have aroused research interests, e.g., Knittel and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo (2015)
- many endogenous variables (s is J-dimensional), in addition to endogenous product characteristics (Berry and Haile (2014))

$$E\left[\left.\sigma_{j}^{-1}\left(s,X_{2};F\right)-\alpha-X_{1,j}^{'}\beta\right|Z_{j}\right]=0$$

 nontrivial interdependence of (X_{1,j}, X_{2,j}) across j (Berry, Linton, and Pakes (2004))

Our Approach: Transform to Partial Linear Form

 exploit a separability property of the random coefficient logit model

$$\int \frac{\exp\left(\delta_{j} + X_{2,j}^{'}\upsilon\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{k} + X_{2,k}^{'}\upsilon\right)} dF\left(\upsilon\right) = \exp\left(\delta_{j}\right) \cdot \int \frac{\exp\left(X_{2,j}^{'}\upsilon\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{k} + X_{2,k}^{'}\upsilon\right)} dF\left(\upsilon\right)$$

Our Approach: Transform to Partial Linear Form

 exploit a separability property of the random coefficient logit model

$$\int \frac{\exp\left(\delta_{j} + X_{2,j}^{\prime}\upsilon\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{k} + X_{2,k}^{\prime}\upsilon\right)} dF\left(\upsilon\right) = \exp\left(\delta_{j}\right) \cdot \int \frac{\exp\left(X_{2,j}^{\prime}\upsilon\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_{k} + X_{2,k}^{\prime}\upsilon\right)} dF\left(\upsilon\right)$$

taking log on both sides of demand equation,

$$\log\left(s_{j}\right) = \alpha + X_{1,j}^{'}\beta + \tilde{\psi}_{J}\left(X_{2,j}\right) + \xi_{j},$$

where

$$\tilde{\psi}_{J}\left(X_{2,j}\right) \equiv \log\left[\int \frac{\exp\left(X_{2,j}^{'}\upsilon\right)}{1 + \sum_{k=1}^{J}\exp\left(\delta_{k} + X_{2,k}^{'}\upsilon\right)}dF\left(\upsilon\right)\right]$$

Normalization

normalize by the outside share

$$\log\left(\frac{s_{j}}{s_{0}}\right) = \alpha + X_{1,j}^{'}\beta + \psi_{J}(X_{2,j}) + \xi_{j}$$

where

$$\psi_J(X_{2,j}) = \tilde{\psi}_J(X_{2,j}) - \tilde{\psi}_J(0) = \log \left[\frac{\int \frac{\exp(X'_{2,j}v)}{1 + \sum_{k=1}^J \exp(\delta_k + X'_{2,k}v)} dF(v)}{\int \frac{1}{1 + \sum_{k=1}^J \exp(\delta_k + X'_{2,k}v)} dF(v)} \right]$$

Normalization

normalize by the outside share

$$\log\left(\frac{s_{j}}{s_{0}}\right) = \alpha + X_{1,j}^{'}\beta + \psi_{J}(X_{2,j}) + \xi_{j}$$

where

$$\psi_J(X_{2,j}) = \tilde{\psi}_J(X_{2,j}) - \tilde{\psi}_J(0) = \log \left[\frac{\int \frac{\exp(X'_{2,j}v)}{1 + \sum_{k=1}^J \exp(\delta_k + X'_{2,k}v)} dF(v)}{\int \frac{1}{1 + \sum_{k=1}^J \exp(\delta_k + X'_{2,k}v)} dF(v)} \right]$$

- now we have a partial linear form, except that $\psi_J(\cdot)$ is a *random* function
 - we treat the *limit* of $\psi_J(\cdot)$, $\psi(\cdot)$, as an unknown function and apply sieve approximation as $J \to \infty$
 - comparing to simple logit, we can see that random coefficients imply the nonlinear terms of x_{2,j}

A Two-Step Semi-Nonparametric Estimator

- first step: estimate (α, β, ψ) in the partial linear model
 - approximate ψ by a linear sieve $\psi_{k_{1,J}}(X_{2,j}) \equiv \sum_{\ell=1}^{k_{1,J}} b_{\ell} p_{\ell}(X_{2,j})$, where $\{p_{\ell}(\cdot) : \ell = 1, ..., k_{1,J}\}$ are basis functions
 - ► sieve GMM based on $E[\xi_j | Z_j] = 0 \Leftrightarrow E[\xi_j \cdot \mathbf{I}^{\zeta_J}(z_j)] = 0$, where $\mathbf{I}^{\zeta_J}(\cdot)$ is a ζ_J -dimensional vector of basis functions

A Two-Step Semi-Nonparametric Estimator

• first step: estimate (α, β, ψ) in the partial linear model

- approximate ψ by a linear sieve $\psi_{k_{1,J}}(X_{2,j}) \equiv \sum_{\ell=1}^{k_{1,J}} b_{\ell} p_{\ell}(X_{2,j})$, where $\{p_{\ell}(\cdot) : \ell = 1, ..., k_{1,J}\}$ are basis functions
- ► sieve GMM based on $E[\xi_j | Z_j] = 0 \Leftrightarrow E[\xi_j \cdot \mathbf{I}^{\zeta_J}(z_j)] = 0$, where $\mathbf{I}^{\zeta_J}(\cdot)$ is a ζ_J -dimensional vector of basis functions

second step: estimate F nonparametrically via sieve MD

$$\arg\min_{F_{k_{2,J}}} \frac{1}{J} \sum_{j=1}^{J} \left\{ \log\left(\frac{s_{j}}{s_{0}}\right) - \log\left[\frac{\int \frac{\exp\left(\hat{\delta}_{j} + X_{2,j}^{'}\upsilon\right)}{1 + \sum_{k=1}^{J} \exp\left(\hat{\delta}_{k} + X_{2,k}^{'}\upsilon\right)} dF_{k_{2,J}}\left(\upsilon\right)}{\int \frac{1}{1 + \sum_{k=1}^{J} \exp\left(\hat{\delta}_{k} + X_{2,k}^{'}\upsilon\right)} dF_{k_{2,J}}\left(\upsilon\right)}\right]\right\}^{2}$$

*δ*_j = *α̂* + X'_{1,j}*β̂* + *ξ̂*_j is obtained from the first stage estimation

 *F*_{k2,J} is sieve approximation to *F*

Remarks

- computationally lighter than standard BLP nested fixed point GMM estimator
 - no fixed-point computation and the estimates of fixed coefficients (α, β) could be obtained with little computational cost, similar to Salanie and Wolak (2016)

Remarks

- computationally lighter than standard BLP nested fixed point GMM estimator
 - no fixed-point computation and the estimates of fixed coefficients (α, β) could be obtained with little computational cost, similar to Salanie and Wolak (2016)
- the "many endogenous variable" does not show up in our estimation equation

$$\log\left(\frac{s_{j}}{s_{0}}\right) = \alpha + X_{1,j}^{'}\beta + \psi\left(X_{2,j}\right) + \xi_{j}$$

► the endogeneity issue has been "taken care of" automatically because ψ_J(·) → ψ(·) as J → ∞

Remarks (Cont'd)

 relaxing the parametric assumptions on RCs can be important: the shape of RC determines the substitution patterns, i.e., cross-product elasticities

Remarks (Cont'd)

- relaxing the parametric assumptions on RCs can be important: the shape of RC determines the substitution patterns, i.e., cross-product elasticities
- result: under very mild assumptions, normal RCs imply that all the cross-product elasticities vanishes at the same rate O (J⁻¹) as J → ∞
 - the vanishing cross-elasticities means that "local competition" disappears, which may not be realistic (effectively "IIA property")
 - intuition: the tail of normal RC is too thin to offset the effects of the logit error

Remarks (Cont'd)

- relaxing the parametric assumptions on RCs can be important: the shape of RC determines the substitution patterns, i.e., cross-product elasticities
- result: under very mild assumptions, normal RCs imply that all the cross-product elasticities vanishes at the same rate O (J⁻¹) as J → ∞
 - the vanishing cross-elasticities means that "local competition" disappears, which may not be realistic (effectively "IIA property")
 - intuition: the tail of normal RC is too thin to offset the effects of the logit error
- thus, flexible/nonparametric RCs are important for generating realistic substitution patterns

Data Structure and Asymptotic Framework

 data structure: a large cross-section of products in a single market

- practically relevant: national market (e.g., BLP auto data); products defined at disaggregate level, e.g., scanner data/online shopping data at SKU level
- theoretically, it is useful to understand identification/estimation issues within a single market, as Berry, Linton, and Pakes (2004) and Armstrong (2016)

Data Structure and Asymptotic Framework

 data structure: a large cross-section of products in a single market

- practically relevant: national market (e.g., BLP auto data); products defined at disaggregate level, e.g., scanner data/online shopping data at SKU level
- theoretically, it is useful to understand identification/estimation issues within a single market, as Berry, Linton, and Pakes (2004) and Armstrong (2016)
- ▶ major challenge: product characteristics {X_j : j = 1, ..., J} are interdependent in a non-trivial way due to firm's strategic interactions (e.g., price/advertising strategies)

Key Assumptions

Assumption

For each *J*, there exists a σ -field *C* such that, conditional on *C*, $\{(X_j, Z_j) : j = 1, ..., J\}$ are independent across *j*.

- ► the interdependence of (X_j, Z_j) across j are captured by the "common shock" C
- in the paper, we provide more primitive/verifiable conditions and compare with Berry, Linton, and Pakes (2004)'s approach in handling the interdependence

Key Assumptions

Assumption

For each J, there exists a σ -field C such that, conditional on C, $\{(X_j, Z_j) : j = 1, ..., J\}$ are independent across j.

- ► the interdependence of (X_j, Z_j) across j are captured by the "common shock" C
- in the paper, we provide more primitive/verifiable conditions and compare with Berry, Linton, and Pakes (2004)'s approach in handling the interdependence

Assumption

The unobserved product characteristics ξ_j are independent across j conditional on $\{Z_j\}_{j=1}^J$ and satisfy $E[\xi_j|Z_j] = 0$ a.s.

 identical to the standard assumptions imposed on the unobserved characteristic ξ as in Berry, Linton, and Pakes (2004)

Asymptotic Results

 first stage: suppose that the above assumptions, standard identification assumption for partial linear IV models, as well as appropriate LLN and CLT results hold, we have

$$\sqrt{J} V_J^{-1/2} \left(\begin{array}{c} \hat{\alpha} - \alpha \\ \hat{\beta} - \beta \end{array} \right) \to_d N\left(\mathbf{0}, I \right),$$

where V_J achieves the semi-parametric efficiency bound in the limit.

Asymptotic Results

 first stage: suppose that the above assumptions, standard identification assumption for partial linear IV models, as well as appropriate LLN and CLT results hold, we have

$$\sqrt{J}V_{J}^{-1/2}\left(\begin{array}{c} \hat{\alpha}-\alpha\\ \hat{\beta}-\beta \end{array}\right) \rightarrow_{d} N\left(\mathbf{0},I\right),$$

where V_J achieves the semi-parametric efficiency bound in the limit.

- second stage: sieve MLE with generated regressor (see Newey (1994))
 - ► consistency: $d_{LP}\left(\hat{F}_{J}, F\right) \xrightarrow{p} 0$, where $d_{LP}(\cdot, \cdot)$ is the Lévy-Prokhorov metric
 - similar to the idea in Fox, Kim and Yang (2016)

Monte Carlo Simulations: DGP

- a single market with J inside products
 - exogenous characteristic: $X_j \sim U[0, \bar{x}]$
 - unobserved characteristic: $\xi_j \sim N(0, .5^2)$
 - endogenous price/marginal cost:
 - $p_j = mc_j = \gamma_1 X_j + \gamma_2 \breve{W}_j + \xi_j + \zeta_j$
 - exogenous cost shifter $W_j \sim U[0, \bar{w}]$ and a shock $\zeta_j \sim N(0, .1^2)$
 - assumed market structure: single-product firms, perfect competition

Monte Carlo Simulations: DGP

- a single market with J inside products
 - exogenous characteristic: $X_j \sim U[0, \bar{x}]$
 - unobserved characteristic: $\xi_j \sim N(0, .5^2)$
 - endogenous price/marginal cost:
 - $p_j = mc_j = \gamma_1 X_j + \gamma_2 \tilde{W}_j + \xi_j + \zeta_j$
 - exogenous cost shifter $W_j \sim U[0, \bar{w}]$ and a shock $\zeta_j \sim N(0, .1^2)$
 - assumed market structure: single-product firms, perfect competition
- market share is generated via simulation

$$s_{j} = \frac{1}{R} \sum_{i=1}^{R} \frac{\exp(\delta_{j} + v_{i}p_{j})}{1 + \sum_{k=1}^{J} \exp(\delta_{k} + v_{i}p_{k})}$$

- mean utility: $\delta_j = \alpha + X_j \beta + \xi_j$, and $\alpha \sim U[-12, -8]$ is a "common shock"
- random coefficient: $v_i \sim F$ with R draws

Estimation: Implementation Details

- first stage: two-stage (sieve) GMM
 - sieve approximation $\psi_{k_{1,J}}$: cubic splines/power series
 - instrument function (of x and ω): cubic splines/power series

Estimation: Implementation Details

- first stage: two-stage (sieve) GMM
 - sieve approximation $\psi_{k_{1,J}}$: cubic splines/power series
 - instrument function (of x and ω): cubic splines/power series
- ▶ second stage: sieve MD with F approximated by $F_{k_{2,J}}$
 - ► sieve I: generate random draws from $F_{k_{2,J}}$, as suggested by Fosgerau and Mabit (2013)
 - ▶ draw *u* ~ *U*[0, 1] and stick into cubic splines/power series
 - in effect, this strategy approximates the inverse CDF F^{-1}
 - ► sieve II: approximate *F* by the probability weights on a grid of *v*, as suggested by Train (2016)
 - ▶ pre-specify a grid of v: $v_1, ..., v_S$
 - weight on each grid point v_s is a logit probability

 $\frac{\exp\left[\varphi_{k_{2,J}}(v_s)\right]}{\sum_{t=1}^{S}\exp\left[\varphi_{k_{2,J}}(v_t)\right]}\text{, where }\varphi_{k_{2,J}}\text{ is a linear sieve to be estimated}$

Results: F is Normal

			7 50	100	200	400
			J = 50	100	200	400
	SN	RtMSE	.0610	.0396	.0268	.0179
Ø		Bias	0039	0011	0012	4.58E-4
β	BLP	RtMSE	.0499	.0352	.0246	.0172
		Bias	0047	0019	0024	-3.97E-4
	SN	RtMSE	.0946	.0629	.0429	.0297
		Bias	0052	0015	0018	5.63E-4
α	BLP	RtMSE	.0567	.0401	.0284	.0208
		Bias	-6.79E-4	0012	0013	0013

Table: Monte Carlo Results: Fixed Coefficients

Results: F is Normal

Estimator	J	50	100	200	400
SN-I	RtMSE	.0758	.0518	.0385	.0298
511-1	Bias	.0034	0039	0013	-8.92E-4
SN-II	RtMSE	.0795	.0521	.0360	.0244
511-11	Bias	-4.46E-4	0046	-1.38E-5	.0016
SN-Para	RtMSE	.0585	.0498	.0461	.0445
51 N-1 ala	Bias	0258	0343	0353	0380
BLP	RtMSE	.0478	.0359	.0304	.0261
DLF	Bias	0094	0166	0157	0175

Table: Monte Carlo Results: Mean of Random Coefficient

Results: F is Normal

Estimator	J	50	100	200	400
SN-I	RtMSE	.0778	.0569	.0507	.0441
511-1	Bias	0090	0022	0033	0036
SN-II	RtMSE	.1020	.0667	.0519	.0426
51 N-11	Bias	0287	0077	0041	0030
SN-Para	RtMSE	.0808	.0520	.0380	.0262
51 N-1 ala	Bias	0049	.0014	5.77E-4	.0025
BLP	RtMSE	.0693	.0459	.0345	.0246
DLI	Bias	0030	9.96E-4	4.87E-4	.0010

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

			50	100	200	400
	SN	RtMSE	.0580	.0387	.0266	.0178
		Bias	0040	-9.16E-4	0013	2.68E-4
β	BLP	RtMSE	.0500	.0353	.0246	.0171
ρ		Bias	0043	0016	0022	-3.10E-4
	BLP-Mis	RtMSE	.0499	.0353	.0246	.0171
		Bias	0047	0018	0024	-4.83E-4
	SN	RtMSE	.0678	.0451	.0302	.0216
		Bias	.0019	.0010	.0012	6.39E-4
α	BLP	RtMSE	.0563	.0403	.0289	.0211
α		Bias	0036	0020	-6.23E-4	3.01E-4
	BLP-Mis	RtMSE	.0556	.0400	.0287	.0209
	DLI -IVIIS	Bias	-3.17E-4	5.40E-4	6.91E-4	8.25E-4

Table: Monte Carlo Results: Fixed Coefficients

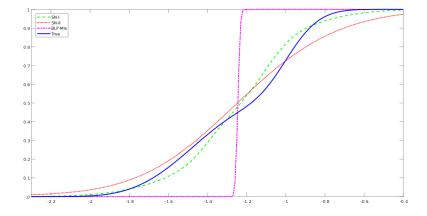
Estimator	J	50	100	200	400
SN-I	RtMSE	.0542	.0377	.0299	.0217
511-1	Bias	.0046	0028	0025	0033
SN-II	RtMSE	.0561	.0393	.0312	.0223
519-11	Bias	.0095	-6.02E-4	0017	0037
SN-Para	RtMSE	.0495	.0339	.0265	.0192
51 N-1 al a	Bias	.0057	0022	0027	0037
BLP	RtMSE	.0469	.0336	.0266	.0207
DLI	Bias	0036	0105	0101	0116
BLP-Mis	RtMSE	.0456	.0303	.0228	.0164
DLI -IVIIS	Bias	.0047	0026	0025	0043

Table: Monte Carlo Results: Mean of Random Coefficient

Estimator	J	50	100	200	400
SN-I	RtMSE	.1279	.0826	.0564	.0365
511-1	Bias	0268	0136	0134	0088
SN-II	RtMSE	.1303	.0877	.0640	.0412
318-11	Bias	0341	0215	0210	0130
SN-Para	RtMSE	.1311	.0844	.0569	.0358
51 N-1 a1a	Bias	0261	0118	0110	0069
BLP	RtMSE	.1216	.0807	.0577	.0391
DLI	Bias	0200	0092	0091	0075
BLP-Mis	RtMSE	.3949	.4087	.4189	.4257
DLI -IVIIS	Bias	2598	2802	2970	3064

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

Figure: Monte Carlo Results: CDF of Random Coefficient



Revisiting BLP Auto Data

	BLP			SN	
Fixed Coefficient	Logit	RC-Logit		First Step	
HP/Weight (log)	$^{1.38}_{(.23)}$	$^{.69}_{(.12)}$		$^{1.56}_{(.20)}$	
Weight (log)	$^{1.77}_{(.46)}$	$^{.02}_{(.35)}$		$^{2.19}_{(.56)}$	
Size (log)	$^{1.05}_{(.58)}$	$^{3.44}_{(.43)}$		$^{2.25}_{(.55)}$	
Dollar per Miles (log)	$^{.03}_{(.12)}$	$^{31}_{(.11)}$		$^{-1.37}_{(.33)}$	
A/C	$^{1.25}_{(.14)}$	$^{.57}_{(.08)}$		$^{.42}_{(.12)}$	
Power Steering	$^{.40}_{(.09)}$	$^{.17}_{(.07)}$		$^{.27}_{(.10)}$	
Automatic	$^{.43}_{(.08)}$	$^{.30}_{(.07)}$		$^{.45}_{(.08)}$	
FWD	$^{.16}_{(.06)}$	$(.06)^{.22}$		$^{.44}_{(.08)}$	
Constant	-3.63 (.30)	-3.05 (.46)		-3.90 (1.03)	
Random Coefficient				Second Step	
on Price (Log)			Para.	Ι	п
Mean	-3.77 (.23)	-2.89 (.29)	-3.31	-3.24	-3.19
Std. Dev.	-	$.46 \\ (.14)$.61	.44	.36
Ave. No. of Prod. per Mkt.			110.85		
No. of Mkt.			20		

- ARMSTRONG, T. B. (2016): "Large Market Asymptotics for Differentiated Product Demand Estimators with Economic Models of Supply," *Working Paper*.
- BERRY, S. (1994): "Estimating discrete-choice models of product differentiation," *The RAND Journal of Economics*, pp. 242–262.
- BERRY, S., A. GANDHI, AND P. HAILE (2013): "Connected substitutes and invertibility of demand," *Econometrica*, 81(5), 2087–2111.
- BERRY, S., O. LINTON, AND A. PAKES (2004): "Limit theorems for estimating the parameters of differentiated product demand systems," *Review of Economic Studies*, 71(3), 613–654.
- BERRY, S. T., AND P. A. HAILE (2014): "Identification in differentiated products markets using market level data," *Econometrica*, 82(5), 1749–1797.
- DUBÉ, J.-P., J. T. FOX, AND C.-L. SU (2012): "Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation," *Econometrica*, 80(5), 2231–2267.
- KNITTEL, C. R., AND K. METAXOGLOU (2012): "Estimation of Random Coefficient Demand Models: Two Empiricists' Perspective," .

- LEE, J., AND K. SEO (2015): "A computationally fast estimator for random coefficients logit demand models using aggregate data," *The RAND Journal of Economics*, 46(1), 86–102.
- NEWEY, W. K. (1994): "The asymptotic variance of semiparametric estimators," *Econometrica: Journal of the Econometric Society*, pp. 1349–1382.