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Introduction

I the workhorse model in demand estimation for differentiated
products: BLP random coefficient (RC) logit model

I really neat idea to solve the price endogeneity problem with rich
preference heterogeneity (represented by RCs)

I standard BLP estimator: nested fixed-point GMM

I in this paper, we propose an alternative two-step estimator for
the model

I obtain estimates of fixed coefficients with little computational costs
I allow nonparametric specification of RCs
I obtain new results on some theoretical issues
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Setup
I in this presentation, for expositional simplicity, we consider a

single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”

I standard random utility model

uij = δj +X
′

2,jυi + εij

I mean utility: δj = α+X
′
1,jβ + ξj , δ0 = 0 and δ ≡ (δ1, ..., δJ)

I heterogeneity: random coefficients υi ∼ F (·), εij i.i.d. type I
extreme value

I aggregating individual optimal choices⇒ aggregate demand
(market share) system

sj = σj (δ,X2;F )

=

∫ exp
(
δj +X

′

2,jυi

)
1 +

∑J
k=0 exp

(
δk +X

′
2,kυi

)dF (υi) , ∀j (1)

I we want to estimate θ ≡ (α, β, F ) using aggregate data
(sj , X1,j , X2,j)

2/22



Setup
I in this presentation, for expositional simplicity, we consider a

single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”

I standard random utility model

uij = δj +X
′

2,jυi + εij

I mean utility: δj = α+X
′
1,jβ + ξj , δ0 = 0 and δ ≡ (δ1, ..., δJ)

I heterogeneity: random coefficients υi ∼ F (·), εij i.i.d. type I
extreme value

I aggregating individual optimal choices⇒ aggregate demand
(market share) system

sj = σj (δ,X2;F )

=

∫ exp
(
δj +X

′

2,jυi

)
1 +

∑J
k=0 exp

(
δk +X

′
2,kυi

)dF (υi) , ∀j (1)

I we want to estimate θ ≡ (α, β, F ) using aggregate data
(sj , X1,j , X2,j)

2/22



Setup
I in this presentation, for expositional simplicity, we consider a

single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”

I standard random utility model

uij = δj +X
′

2,jυi + εij

I mean utility: δj = α+X
′
1,jβ + ξj , δ0 = 0 and δ ≡ (δ1, ..., δJ)

I heterogeneity: random coefficients υi ∼ F (·), εij i.i.d. type I
extreme value

I aggregating individual optimal choices⇒ aggregate demand
(market share) system

sj = σj (δ,X2;F )

=

∫ exp
(
δj +X

′

2,jυi

)
1 +

∑J
k=0 exp

(
δk +X

′
2,kυi

)dF (υi) , ∀j (1)

I we want to estimate θ ≡ (α, β, F ) using aggregate data
(sj , X1,j , X2,j)

2/22



Setup
I in this presentation, for expositional simplicity, we consider a

single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”

I standard random utility model

uij = δj +X
′

2,jυi + εij

I mean utility: δj = α+X
′
1,jβ + ξj , δ0 = 0 and δ ≡ (δ1, ..., δJ)

I heterogeneity: random coefficients υi ∼ F (·), εij i.i.d. type I
extreme value

I aggregating individual optimal choices⇒ aggregate demand
(market share) system

sj = σj (δ,X2;F )

=

∫ exp
(
δj +X

′

2,jυi

)
1 +

∑J
k=0 exp

(
δk +X

′
2,kυi

)dF (υi) , ∀j (1)

I we want to estimate θ ≡ (α, β, F ) using aggregate data
(sj , X1,j , X2,j)

2/22



The BLP Idea

I invert the demand system (1) (see Berry (1994) and Berry,
Gandhi, and Haile (2013))

δj = σ−1
j (s,X2;F ) , ∀j

I impose IV assumption E [ξj |Zj ] = 0

I construct a GMM estimator, with a parametric F (e.g., normal)

argmin
θ

∥∥∥∥∥∥ 1J
J∑
j=1

Z
′

j

[
σ−1
j (s,X2;F )− α−X

′

1,jβ
]∥∥∥∥∥∥
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Challenges

I the inverse demand σ−1
j (·) must be solved numerically (i.e., BLP

contraction mapping)
I computational issues have aroused research interests, e.g., Knittel

and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo
(2015)

I many endogenous variables (s is J-dimensional), in addition to
endogenous product characteristics (Berry and Haile (2014))

E
[
σ−1
j (s,X2;F )− α−X

′

1,jβ
∣∣∣Zj] = 0

I nontrivial interdependence of (X1,j , X2,j) across j (Berry, Linton,
and Pakes (2004))
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Our Approach: Transform to Partial Linear Form

I exploit a separability property of the random coefficient logit
model

∫ exp
(
δj +X

′
2,jυ

)
1 +

∑J
k=1 exp

(
δk +X

′
2,kυ

)dF (υ) = exp (δj)·
∫ exp

(
X
′
2,jυ

)
1 +

∑J
k=1 exp

(
δk +X

′
2,kυ

)dF (υ)

I taking log on both sides of demand equation,

log (sj) = α+X
′

1,jβ + ψ̃J (X2,j) + ξj ,

where

ψ̃J (X2,j) ≡ log

∫ exp
(
X
′
2,jυ

)
1 +

∑J
k=1 exp

(
δk +X

′
2,kυ

)dF (υ)
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Normalization

I normalize by the outside share

log

(
sj
s0

)
= α+X

′
1,jβ + ψJ(X2,j) + ξj

where

ψJ(X2,j) = ψ̃J (X2,j)− ψ̃J (0) = log


∫ exp

(
X
′
2,jυ

)
1+
∑J

k=1
exp

(
δk+X

′
2,k

υ
)dF (v)∫

1

1+
∑J

k=1
exp

(
δk+X

′
2,k

υ
)dF (v)



I now we have a partial linear form, except that ψJ(·) is a random
function

I we treat the limit of ψJ(·), ψ(·), as an unknown function and apply
sieve approximation as J →∞

I comparing to simple logit, we can see that random coefficients
imply the nonlinear terms of x2,j
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A Two-Step Semi-Nonparametric Estimator

I first step: estimate (α, β, ψ) in the partial linear model
I approximate ψ by a linear sieve ψk1,J (X2,j) ≡

∑k1,J
`=1 b`p`(X2,j),

where {p` (·) : ` = 1, ..., k1,J} are basis functions
I sieve GMM based on E [ξj |Zj ] = 0⇔ E

[
ξj · IζJ (zj)

]
= 0, where

IζJ (·) is a ζJ -dimensional vector of basis functions

I second step: estimate F nonparametrically via sieve MD

arg min
Fk2,J

1

J

J∑
j=1

log

(
sj

s0

)
− log


∫ exp

(
δ̂j+X

′
2,jυ

)
1+
∑J

k=1
exp

(
δ̂k+X

′
2,k

υ
)dFk2,J (υ)∫

1

1+
∑J

k=1
exp

(
δ̂k+X

′
2,k

υ
)dFk2,J (υ)




2

I δ̂j = α̂+X
′
1,j β̂ + ξ̂j is obtained from the first stage estimation

I Fk2,J is sieve approximation to F
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Remarks

I computationally lighter than standard BLP nested fixed point
GMM estimator

I no fixed-point computation and the estimates of fixed coefficients
(α, β) could be obtained with little computational cost, similar to
Salanie and Wolak (2016)

I the “many endogenous variable” does not show up in our
estimation equation

log

(
sj
s0

)
= α+X

′

1,jβ + ψ (X2,j) + ξj

I the endogeneity issue has been “taken care of” automatically
because ψJ(·)→ ψ(·) as J →∞
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Remarks (Cont’d)

I relaxing the parametric assumptions on RCs can be important:
the shape of RC determines the substitution patterns, i.e.,
cross-product elasticities

I result: under very mild assumptions, normal RCs imply that all
the cross-product elasticities vanishes at the same rate O

(
J−1

)
as J →∞

I the vanishing cross-elasticities means that “local competition”
disappears, which may not be realistic (effectively “IIA property”)

I intuition: the tail of normal RC is too thin to offset the effects of the
logit error

I thus, flexible/nonparametric RCs are important for generating
realistic substitution patterns
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Data Structure and Asymptotic Framework

I data structure: a large cross-section of products in a single
market

I practically relevant: national market (e.g., BLP auto data); products
defined at disaggregate level, e.g., scanner data/online shopping
data at SKU level

I theoretically, it is useful to understand identification/estimation
issues within a single market, as Berry, Linton, and Pakes (2004)
and Armstrong (2016)

I major challenge: product characteristics {Xj : j = 1, ..., J} are
interdependent in a non-trivial way due to firm’s strategic
interactions (e.g., price/advertising strategies)
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Key Assumptions

Assumption
For each J , there exists a σ-field C such that, conditional on C,
{(Xj , Zj) : j = 1, ..., J} are independent across j.

I the interdependence of (Xj , Zj) across j are captured by the
“common shock” C

I in the paper, we provide more primitive/verifiable conditions
and compare with Berry, Linton, and Pakes (2004)’s approach in
handling the interdependence

Assumption
The unobserved product characteristics ξj are independent across j
conditional on {Zj}Jj=1 and satisfy E[ξj |Zj ] = 0 a.s.

I identical to the standard assumptions imposed on the
unobserved characteristic ξ as in Berry, Linton, and Pakes (2004)
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Asymptotic Results

I first stage: suppose that the above assumptions, standard
identification assumption for partial linear IV models, as well as
appropriate LLN and CLT results hold, we have

√
JV

−1/2
J

(
α̂− α
β̂ − β

)
→d N (0, I) ,

where VJ achieves the semi-parametric efficiency bound in the
limit.

I second stage: sieve MLE with generated regressor (see Newey
(1994))

I consistency: dLP
(
F̂J , F

)
p→ 0, where dLP (·, ·) is the

Lévy-Prokhorov metric
I similar to the idea in Fox, Kim and Yang (2016)

12/22



Asymptotic Results

I first stage: suppose that the above assumptions, standard
identification assumption for partial linear IV models, as well as
appropriate LLN and CLT results hold, we have

√
JV

−1/2
J

(
α̂− α
β̂ − β

)
→d N (0, I) ,

where VJ achieves the semi-parametric efficiency bound in the
limit.

I second stage: sieve MLE with generated regressor (see Newey
(1994))

I consistency: dLP
(
F̂J , F

)
p→ 0, where dLP (·, ·) is the

Lévy-Prokhorov metric
I similar to the idea in Fox, Kim and Yang (2016)

12/22



Monte Carlo Simulations: DGP

I a single market with J inside products
I exogenous characteristic: Xj ∼ U [0, x̄]
I unobserved characteristic: ξj ∼ N

(
0, .52

)
I endogenous price/marginal cost:
pj = mcj = γ1Xj + γ2Wj + ξj + ζj

I exogenous cost shifter Wj ∼ U [0, w̄] and a shock ζj ∼ N
(
0, .12

)
I assumed market structure: single-product firms, perfect competition

I market share is generated via simulation

sj =
1

R

R∑
i=1

exp (δj + υipj)

1 +
∑J
k=1 exp (δk + υipk)

I mean utility: δj = α+Xjβ + ξj , and α ∼ U [−12,−8] is a
“common shock”

I random coefficient: υi ∼ F with R draws
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Estimation: Implementation Details

I first stage: two-stage (sieve) GMM
I sieve approximation ψk1,J : cubic splines/power series
I instrument function (of x and ω): cubic splines/power series

I second stage: sieve MD with F approximated by Fk2,J
I sieve I: generate random draws from Fk2,J , as suggested by

Fosgerau and Mabit (2013)
I draw u ∼ U [0, 1] and stick into cubic splines/power series
I in effect, this strategy approximates the inverse CDF F−1

I sieve II: approximate F by the probability weights on a grid of υ, as
suggested by Train (2016)

I pre-specify a grid of υ: υ1, ..., υS
I weight on each grid point υs is a logit probability

exp
[
ϕk2,J

(υs)
]

∑S
t=1 exp

[
ϕk2,J

(υt)
] , where ϕk2,J is a linear sieve to be estimated
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Results: F is Normal

Table: Monte Carlo Results: Fixed Coefficients

J = 50 100 200 400

SN
RtMSE .0610 .0396 .0268 .0179

β
Bias -.0039 -.0011 -.0012 4.58E-4

BLP
RtMSE .0499 .0352 .0246 .0172

Bias -.0047 -.0019 -.0024 -3.97E-4

SN
RtMSE .0946 .0629 .0429 .0297

α
Bias -.0052 -.0015 -.0018 5.63E-4

BLP
RtMSE .0567 .0401 .0284 .0208

Bias -6.79E-4 -.0012 -.0013 -.0013
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Results: F is Normal

Table: Monte Carlo Results: Mean of Random Coefficient

Estimator J 50 100 200 400

SN-I
RtMSE .0758 .0518 .0385 .0298

Bias .0034 -.0039 -.0013 -8.92E-4

SN-II
RtMSE .0795 .0521 .0360 .0244

Bias -4.46E-4 -.0046 -1.38E-5 .0016

SN-Para
RtMSE .0585 .0498 .0461 .0445

Bias -.0258 -.0343 -.0353 -.0380

BLP
RtMSE .0478 .0359 .0304 .0261

Bias -.0094 -.0166 -.0157 -.0175
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Results: F is Normal

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

Estimator J 50 100 200 400

SN-I
RtMSE .0778 .0569 .0507 .0441

Bias -.0090 -.0022 -.0033 -.0036

SN-II
RtMSE .1020 .0667 .0519 .0426

Bias -.0287 -.0077 -.0041 -.0030

SN-Para
RtMSE .0808 .0520 .0380 .0262

Bias -.0049 .0014 5.77E-4 .0025

BLP
RtMSE .0693 .0459 .0345 .0246

Bias -.0030 9.96E-4 4.87E-4 .0010
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Results: F is Mixed Normal

Table: Monte Carlo Results: Fixed Coefficients

50 100 200 400

SN
RtMSE .0580 .0387 .0266 .0178

Bias -.0040 -9.16E-4 -.0013 2.68E-4

β BLP
RtMSE .0500 .0353 .0246 .0171

Bias -.0043 -.0016 -.0022 -3.10E-4

BLP-Mis
RtMSE .0499 .0353 .0246 .0171

Bias -.0047 -.0018 -.0024 -4.83E-4

SN
RtMSE .0678 .0451 .0302 .0216

Bias .0019 .0010 .0012 6.39E-4

α BLP
RtMSE .0563 .0403 .0289 .0211

Bias -.0036 -.0020 -6.23E-4 3.01E-4

BLP-Mis
RtMSE .0556 .0400 .0287 .0209

Bias -3.17E-4 5.40E-4 6.91E-4 8.25E-4
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Results: F is Mixed Normal

Table: Monte Carlo Results: Mean of Random Coefficient

Estimator J 50 100 200 400

SN-I
RtMSE .0542 .0377 .0299 .0217

Bias .0046 -.0028 -.0025 -.0033

SN-II
RtMSE .0561 .0393 .0312 .0223

Bias .0095 -6.02E-4 -.0017 -.0037

SN-Para
RtMSE .0495 .0339 .0265 .0192

Bias .0057 -.0022 -.0027 -.0037

BLP
RtMSE .0469 .0336 .0266 .0207

Bias -.0036 -.0105 -.0101 -.0116

BLP-Mis
RtMSE .0456 .0303 .0228 .0164

Bias .0047 -.0026 -.0025 -.0043
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Results: F is Mixed Normal

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

Estimator J 50 100 200 400

SN-I
RtMSE .1279 .0826 .0564 .0365

Bias -.0268 -.0136 -.0134 -.0088

SN-II
RtMSE .1303 .0877 .0640 .0412

Bias -.0341 -.0215 -.0210 -.0130

SN-Para
RtMSE .1311 .0844 .0569 .0358

Bias -.0261 -.0118 -.0110 -.0069

BLP
RtMSE .1216 .0807 .0577 .0391

Bias -.0200 -.0092 -.0091 -.0075

BLP-Mis
RtMSE .3949 .4087 .4189 .4257

Bias -.2598 -.2802 -.2970 -.3064

20/22



Results: F is Mixed Normal

Figure: Monte Carlo Results: CDF of Random Coefficient
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Revisiting BLP Auto Data
BLP SN

Fixed Coefficient Logit RC-Logit First Step

HP/Weight (log) 1.38
(.23)

.69
(.12)

1.56
(.20)

Weight (log) 1.77
(.46)

.02
(.35)

2.19
(.56)

Size (log) 1.05
(.58)

3.44
(.43)

2.25
(.55)

Dollar per Miles (log) .03
(.12)

−.31
(.11)

−1.37
(.33)

A/C 1.25
(.14)

.57
(.08)

.42
(.12)

Power Steering .40
(.09)

.17
(.07)

.27
(.10)

Automatic .43
(.08)

.30
(.07)

.45
(.08)

FWD .16
(.06)

.22
(.06)

.44
(.08)

Constant −3.63
(.30)

−3.05
(.46)

−3.90
(1.03)

Random Coefficient Second Step

on Price (Log) Para. I II

Mean −3.77
(.23)

−2.89
(.29)

-3.31 -3.24 -3.19

Std. Dev. - .46
(.14)

.61 .44 .36

Ave. No. of Prod. per Mkt. 110.85

No. of Mkt. 20
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