Media News and Cross Industry Information Diffusion

Li Guo

Singapore Management Univeristy

June 13, 2017

Motivatioin

Cross Asset Return Predictability:

- Information Diffusion:
 - Hong and Stein (1999): Theory Model on Information Diffusion.
 - Cohen and Frazzini (2008): Firm ↔ Firm.
 - Hong and Valkavov (2007): Industry → Stock Market.
 - Menzly and Ozbas (2010): Industry ↔ Industry.
 - Rapach et.al (2015): Core Industries + Technique Spillover Effect.
- Liquidity: Lo and MacKinlay (1990), Brennan and Swaminathan (1993), Badrinath and Noe (1995), Jegadeesh and Titman (1995)
- Own-autocorrelation and cross-correlation: Boudoukh and Whitela (1994)
- Why Information Diffusion?
 Economic Linkage and Network Complexity
- Research Question:
 How News Travels across Different Industries?

Hypothesis

- Assumptions of Information Diffusion (Hong and Valkavov, 2007):
 - Investors' Limited Attention:
 - Fang and Peress (2009): # of News
 - Barber and Odeani (2008): Extreme trading volume/return
 - Jacobs and Weber (2012): Regional holidays
 - DellaVigna and Pollet (2009): Friday Dummy
 - •
 - News slowly diffuses across different industries (no formal test).
 - Peress (2015): Media strike drives return predictability.
 - Hong (2009): Negative news travels slowly.

Hypothesis I

Cross industry news contains valuable information of firm fundamentals.

- Dyck and Zingales (2002): Media selectively reduce the cost of acquiring and verifying information.
- Tetlock et.al (2008): Negative words predict future earnings.
- Bushee et.al (2010): Media serves as an information intermediary.
- Peress (2015): Media increases the speed with which information diffuses across investors.

Predictions:

- Cross industry news predicts firm fundamentals (SUE).
- Cross industry news is more valuable to those stocks with poor information environment.

Hypothesis II

- Cross industry news slowly diffuses.
 - Hard interpretation of cross industry news (Information Intermediary)
- Prediction:
 - Cross industry news has long term effect on future stock returns.
 - Sophisticated investors are able to interpret cross industry news to the market. (Analysts/Institutional investors)
 - Cross industry news should have longer effects on stocks with low analyst coverage or low institutional holdings than others. (Not report yet)

Data Sources

- News Archive: Thomson Reuters News Archive (From 01-Jan-1996 to 31-Dec-2014);
- Active Institutional Fund Flow: EPFR database.
- Earnings forecasts and analyst related data from the IBES detailed history;
- All other accounting variables come from COMPUSTAT, stock returns come from CRSP.
- Sentiment Index: http://apps.olin.wustl.edu/faculty/zhou/
- Policy Uncertainty Index: http://www.policyuncertainty.com/

News Tone Measures

News Tone (Tetlock et.al, 2008):

Tone =
$$\frac{\text{\# of negative word occurrences}}{\text{Total } \text{\# of Words in the news}}$$
. (1)

Firm Specific News:

Firm News_{i,t} =
$$\frac{\sum_{d=1}^{D} \text{Tone}_{i,d}}{D}$$
. (2)

Peer Industry News:

Peer News_{i,t} =
$$\frac{\sum_{k=1}^{K} \text{FirmNews}_{k,t}}{K}$$
, where $i \neq k$. (3)

• Cross Industry News:

Cross Industry News_{i,J,t} =
$$\frac{\sum_{j=1}^{J} \text{Firm News}_{j,t}}{J}$$
, with i, j in different industries. (4)

Cross Industry News Signal (CIS)

Step I: Predictive regression

$$\mathsf{r}_{i,t+1} = \alpha_i + \sum_{j=1}^N b_{i,j} \mathsf{Industry} \; \mathsf{News}_{j,t} + \epsilon_{i,t+1}, \mathsf{for} \; \mathsf{t} = 1,..., \; \mathsf{T-1}, \quad (5)$$

Adaptive Lasso Estimation:

$$\hat{b}_i^* = \operatorname{argmin} \|r_{i,t+1} - \alpha_i - \sum_{j=1}^N b_{i,j} \operatorname{Industry News}_{j,t}\|^2 + \lambda_i \sum_{j=1}^N \hat{w}_i |b_{i,j}|, \quad (6)$$

- Choose inverse of OLS estimation as weighted parameter as Zou (2006).
- Use Cross Validation to select the optimal λ_i .
- Require at least 260 weekly observations for each firm and set the initial estimation window as 208.
- Step II: Out-of-sample Forecast

$$CIS_{i,t} = \hat{r}_{i,T+1} = \alpha_i + \sum_{j=1}^{N} E_t[b_{i,j,t+1}] \text{Industry News}_{j,t}, \tag{7}$$

 Step III: Repeat step I and step II recursively to have a time series of CIS for each firm.

Cross Industry News Signal (CIS) Formation

• Repeat Table 2 of Rapach, D., Strauss, J., Tu, J., & Zhou, G. (2015)

	food	beer	smoke	games	books	hsh1d	c1th
ntercept	0.01040179	0.009893651	0.01247286	0.008590713	0.008113343	0.008809311	0.00957434
ood		0.157717279					
eer		-0.029904254					
moke							
ames							
ooks				0.175269375		0.019834329	0.0300634
sh1d							-0.0726444
lths		0.011733393				0.099372463	0.0066596
lth							
nems							0.1353713
xtls							
nstr							0.0417346
eel						-0.031693673	-0.0751041
abpr	0.01491884						
lceq							-0.1874192
itos							
arry			0.14399277				0.0075946
ines							
al	-0.02088105	-0.029619731				-0.032771990	-0.0446775
11	-0.04990590	-0.002064895	-0.09567388	-0.049104047	-0.108354980		-0.1212977
il .	0.10737464		0.23149128		0.016084642		0.1324186
elcm							-0.0943115
ervs			-0.11193850		0.065461321		0.1268792
ıseq							0.0926770
aper			-0.04333529				
ans						:	
ılsl	:					-0.042535392	:
ail	0.01377803						0.0982220
als							
in			0.01070637	0.107172036	0.156387160	0.066797468	0.0864636

CIS v.s. CIR I: Abnormal Return around CIR

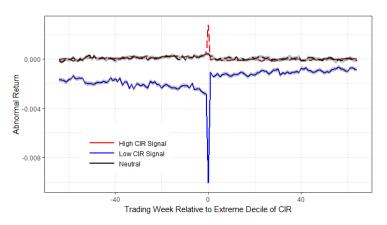


Figure: This figure plots firms' average abnormal return from 64 trading weeks preceding a top (bottom) decile of out-of-sample forecasted return based on CIR. All news stories come from Thomson Reuters between 1996 and 2014 inclusive. The out-of-sample period is 2000-2014. We also compute 95 confidence interval for both positive and negative signals represented by the gray area.

CIS v.s. CIR II: Abnormal Return around CIR only

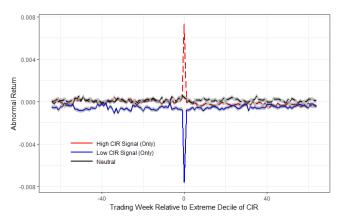


Figure: This figure plots firms' average abnormal return from 64 trading weeks preceding a top (bottom) decile of out-of-sample forecasted return based on unique CIR signals. All news stories come from Thomson Reuters between 1996 and 2014 inclusive. The out-of-sample period is 2000-2014. We also compute 95 confidence interval for both positive and negative signals represented by the gray area.

CIS v.s. CIR III: Abnormal Return around CIS only

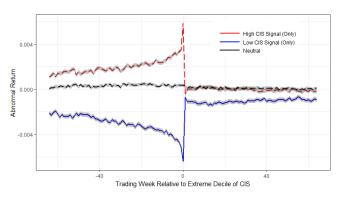
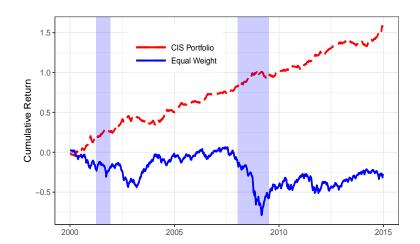


Figure: This figure plots firms' average abnormal return from 64 trading weeks preceding a top (bottom) decile of out-of-sample forecasted return based on unique CIS. All news stories come from Thomson Reuters between 1996 and 2014 inclusive. The out-of-sample period is 2000-2014. We also compute 95 confidence interval for both positive and negative signals represented by the gray area.

Cross Industry News and SUE

Adaptive Lasso:	No	Controls	Tet	Tetlock 2008		All Controls	
	Coef	P — value	Coef	P — value	Coef	P — value	
Food Beer Smoke Games Books Hshld Clths Hlth	0.09 -0.06 -0.03 -0.03 -0.02 -0.02 0.00 0.02	< 0.01 < 0.01 0.02 0.02 0.01 0.13 0.31 0.20			0.01	0.28	
Chems Txtls Cnstr Steel	-0.07	< 0.01					
FabPr ElcEq Autos Carry	-0.01 - 0.07 - 0.11	$ \begin{array}{c} 0.36 \\ < 0.01 \\ < 0.01 \end{array} $	-0.01 -0.11	$\stackrel{<}{<} 0.01 \\ \stackrel{<}{<} 0.01$	-0.02 -0.08	$\stackrel{<}{<} 0.01 \\ \stackrel{<}{<} 0.01$	
Carry Mines Coal Oil Util Telcm Servs BusEq	-0.03 0.06 0.12 0.11 0.02 0.04 0.04	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.23 \\ 0.03 \\ 0.02 \end{array}$	0.01 0.04	< 0.01 < 0.01	0.02 0.05	< 0.01 < 0.01	
Paper Trans Whlsl Rtail Meals Fin Other	0.02 -0.07 -0.03 -0.05 0.05 0.04 -0.01	0.10 < 0.01 0.07 < 0.01 < 0.01 0.04 0.16	-0.02	< 0.01			



Fama-MacBeth regressions of stock returns on CIS

		2000 - 2014			2000 - 2007	,		2008 - 2014	
CIS	0.137***	0.130***	0.095***	0.126***	0.118***	0.079***	0.153***	0.148***	0.118***
	(7.15)	(6.48)	(5.09)	(5.21)	(4.51)	(3.32)	(4.90)	(4.74)	(3.98)
Lagged Return	-0.036***	-0.036***	-0.042***	-0.039***	-0.039***	-0.045***	-0.032***	-0.032***	-0.038***
D N	(-21.08)	(-22.12)	(-23.60)	(-17.62)	(-18.46)	(-19.27)	(-11.81)	(-12.43)	(-13.73)
Peer News		-0.001	-0.002		-0.001	-0.001		-0.001	-0.002
E' N		(-0.60)	(-1.53)		(-0.56)	(-1.14)		(-0.28)	(-1.02)
Firm News		-0.001**	-0.002***		-0.000	-0.001***		-0.001***	-0.002***
// . C.D N		(-2.04)	(-5.02)		(-0.68)	(-2.72)		(-2.63)	(-5.09)
# of Peer News		0.000 (0.01)	0.000 (0.24)		0.000 (0.06)	-0.000 (-0.54)		-0.000 (-0.07)	0.000 (1.11)
# of Firm News		0.001***	0.000		0.000*	-0.000**		0.001***	0.001***
# Of Fifth News		(5.17)	(0.76)		(1.66)	(-2.25)		(7.29)	(6.05)
Size		(3.17)	0.001***		(1.00)	0.001***		(1.23)	0.001***
Size			(8.39)			(6.67)			(5.13)
B/M			0.000***			0.000***			0.000***
5/			(8.19)			(6.10)			(5.52)
Turnover			-0.000***			-0.000***			-0.000***
			(-4.83)			(-3.84)			(-3.00)
Leverage			-0.003***			-0.003***			-0.002***
			(-5.90)			(-4.58)			(-3.78)
Volatility			-0.013***			-0.009*			-0.020***
			(-3.41)			(-1.73)			(-3.44)
Intercept	-0.000	-0.000	-0.001**	-0.001	-0.001	-0.001***	0.001	0.001	-0.000
	(-0.04)	(-0.14)	(-2.41)	(-0.94)	(-1.25)	(-2.95)	(0.99)	(0.82)	(-0.64)
N	1,401,162	1,401,162	1,401,162	855,092	855,092	855,092	546,070	546,070	546,070
Average R ² (%)	1.17	2.43	4.00	1.20	2.54	4.06	1.14	2.28	3.91

Long-short Portfolio

• Log Cumulative Returns of Cross-Industry-News (CIS) portfolio

Sensitivity of News Based Trading Returns to Forecast Horizons

Week				
after News	Raw Return (%)	T_{Raw}	α (%)	T_{α}
2	11.49	5.65	13.16	6.63
3	9.40	4.59	11.28	5.60
4	10.77	5.31	12.25	6.18
5	13.01	5.81	14.84	7.11
6	10.14	4.97	12.43	6.28
7	10.48	4.96	12.69	6.08
8	11.97	5.46	13.65	6.33
9	13.77	6.63	15.79	7.79
10	9.86	4.48	10.85	4.99

Sensitivity of News Based Trading Returns to Forecast Horizons

Week	Firm Specific News						
after News	Raw Return (%)	T_{Raw}	α (%)	T_{α}			
2	2.96	1.70	3.12	1.85			
3	2.99	1.63	3.19	1.94			
4	3.82	2.18	3.87	2.30			
5	4.58	2.67	5.13	3.11			
6	1.91	1.09	2.25	1.32			
7	1.43	0.84	1.86	1.14			
8	1.18	1.49	1.38	1.68			
9	3.82	2.28	3.97	2.44			
10	1.69	1.05	2.05	1.31			

Robustness Test & Further Discussion

Robustness Test

- CIS is more valuable to small stocks, illiquid stocks, high volatility stocks, low analyst coverage stocks and high analyst dispersion stocks.
- Cross industry news is more valuable during a high uncertainty period proxied by VIX and news dispersion, while it is not sensitive to policy uncertainty.
- CIS is more valuable during a high sentiment period than the low sentiment periods.

Channels of News Traveling

- Cross Industry News Tone affect analyst forecast revision and improves their forecast accuracy.
- Cross Industry News Tone affect active institutional fund flows.
- CIS is incorporated into firm specific news tone by a delayed timer.

Conclusions

- Media News Travels Slowly across Different Industries.
 - Cross industry news contains valuable information about firm fundamentals.
 - A long-short portfolio based on CIS generates an annulized risk adjusted return 10.85% after 10 weeks of the signal.
 - Cross industry news is more valuable to stocks with small size, illiquidity, high volatility, low analyst coverage and high analyst dispersion.
 - Cross industry news is more valuable during a high uncertainty period and high sentiment period.
 - Analyst forecasts, institutional fund flows and media news might be 3 channels that interpret cross industry news to the market.