Publication Bias and the Cross-Section of Stock Returns

Andrew Y. Chen¹ Tom Zimmermann²

¹Federal Reserve Board

²Quantco, Inc

AFA: 2018

Disclaimer: The views expressed herein are those of the author and do not necessarily reflect the position of the Board of Governors of the Federal Reserve or the Federal Reserve System

The Cross-Sectional Asset Pricing Lit

p-hacking

- data-mining, data-snooping
- suspicion and ambition
- collective re-use of data

The Cross-Sectional Asset Pricing Lit

p-hacking

- data-mining, data-snooping
- suspicion and ambition
- collective re-use of data

Journal Review

- robustness tests
- theoretical motivations
- supporting results
- a scientific, ethical culture

The Cross-Sectional Asset Pricing Lit

p-hacking

- data-mining, data-snooping
- suspicion and ambition
- collective re-use of data

Journal Review

- robustness tests
- theoretical motivations
- supporting results
- a scientific, ethical culture

The Cross-Sectional Asset Pricing Lit

Our Question: Which Side is Winning?

(1) Focus: replications of 172 published cross-sectional predictors

- Excludes non-predictive and aggregate factors in Harvey, Liu, Zhu 2016
- Excludes un-published predictors in Chordia, Goyal, Saretto 2017

(1) Focus: replications of 172 published cross-sectional predictors

- Excludes non-predictive and aggregate factors in Harvey, Liu, Zhu 2016
- Excludes un-published predictors in Chordia, Goyal, Saretto 2017

(2) Structure: estimated model of biased publication

- Allows for p-hacking effects and journal review
- Unlike Hou, Xue, Zhang's 2017 informal approach

(1) Focus: replications of 172 published cross-sectional predictors

- Excludes non-predictive and aggregate factors in Harvey, Liu, Zhu 2016
- Excludes un-published predictors in Chordia, Goyal, Saretto 2017

(2) Structure: estimated model of biased publication

- Allows for p-hacking effects and journal review
- Unlike Hou, Xue, Zhang's 2017 informal approach

Result:

- ► Journal review dominates. Nearly all predictors were real!!
 - Consistent w/ McLean-Pontiff 2016, Jacobs-Müller 2016, Yan-Zheng 2017

Nearly all predictors were real!!

Nearly all predictors were real!!

Nearly all predictors were real!!

- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance

Nearly all predictors were real!!

- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance
 - \Rightarrow many predictors were fairy tales

Nearly all predictors were real!!

- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance
 - \Rightarrow many predictors were fairy tales
- ► Our more structured logic (James-Stein 1961, Efron-Morris 1973)

Nearly all predictors were real!!

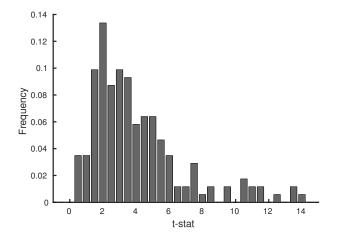
- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance
 - \Rightarrow many predictors were fairy tales
- ► Our more structured logic (James-Stein 1961, Efron-Morris 1973)
 - 172 predictors tell us about the nature of the publication process

Nearly all predictors were real!!

- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance
 - \Rightarrow many predictors were fairy tales
- ► Our more structured logic (James-Stein 1961, Efron-Morris 1973)
 - 172 predictors tell us about the nature of the publication process
 - They tell us that journal review dominates p-hacking

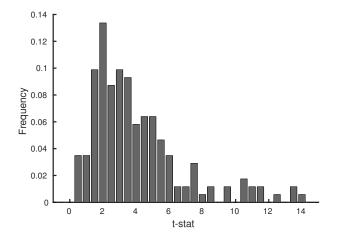
Nearly all predictors were real!!

- Standard logic (Bonferroni, Benjamini-Hochberg 1995)
 - After looking at 172+ predictors, many in-sample returns will be large by pure chance
 - \Rightarrow many predictors were fairy tales
- ► Our more structured logic (James-Stein 1961, Efron-Morris 1973)
 - 172 predictors tell us about the nature of the publication process
 - They tell us that journal review dominates p-hacking
 - \Rightarrow nearly all predictors were real.


Replications of 172 Published Predictors

Data: Replications of 172 Published Predictors

- (1) Replicate McLean and Pontiff's (2016) 97 published cross-sectional predictors
- (2) Replicate 75 additional variables that were
 - shown to predict cross-sectional returns
 - published in "top-tier" journals


Data available at sites.google.com/site/chenandrewy/

Distribution of Replicated t-stats

- ► Sharp left shoulder ⇒ strongly suggestive of **p-hacking**
- But what explains the long right tail?

Distribution of Replicated t-stats

- ► Sharp left shoulder ⇒ strongly suggestive of **p-hacking**
- ▶ But what explains the long right tail? ⇒ need model

Model and Estimation

A Statistical Model of Publication 1/2

Motivating Story:

- 1. Anything that might be published is submitted to journals
 - Allows for p-hacking
- 2. Only portfolios with "narratives" are considered for publication
 - Allows for journal review: robustness tests, supporting results, ...
- 3. Only narratives with high t-stats are published
 - Another **p-hacking** effect

A Statistical Model of Publication 1/2

Motivating Story:

- 1. Anything that might be published is submitted to journals
 - Allows for p-hacking
- 2. Only portfolios with "narratives" are considered for publication
 - Allows for journal review: robustness tests, supporting results, ...
- 3. Only narratives with high t-stats are published
 - Another **p-hacking** effect
- \Rightarrow statistical model of publication similar to Harvey, Liu, and Zhu's (2016) model with correlations

A Statistical Model of Publication 2/2

Key equations

▶ If portfolio *i* has a narrative,

```
true return \mu_i \sim scaled student's t with \sigma_{\mu}, \nu_{\mu}
```

• dispersion of true returns σ_{μ} measures power of journal review

– large σ_{μ} \Rightarrow narratives find variation in true returns

A Statistical Model of Publication 2/2

Key equations

▶ If portfolio *i* has a narrative,

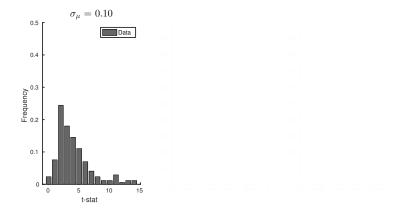
true return $\mu_i \sim$ scaled student's t with σ_μ , ν_μ

• dispersion of true returns σ_{μ} measures power of journal review

– large σ_{μ} \Rightarrow narratives find variation in true returns

• In-sample returns are noisy and biased signals of μ_i

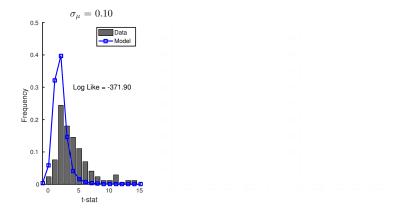
$$r_i = \mu_i + \epsilon_i$$


- Choose 7 parameters to maximize likelihood of replicated data
 - 172 in-sample returns and standard errors

- Choose 7 parameters to maximize likelihood of replicated data
 - 172 in-sample returns and standard errors
- Identification of σ_{μ} comes from dispersion of t-stats

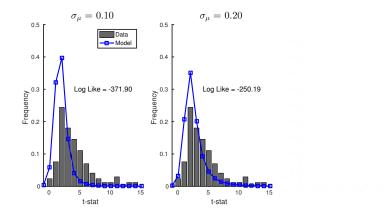
Choose 7 parameters to maximize likelihood of replicated data

- 172 in-sample returns and standard errors

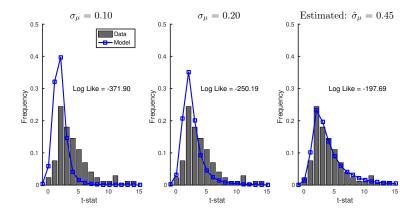

• Identification of σ_{μ} comes from dispersion of t-stats

Choose 7 parameters to maximize likelihood of replicated data

- 172 in-sample returns and standard errors


• Identification of σ_{μ} comes from dispersion of t-stats

Choose 7 parameters to maximize likelihood of replicated data


- 172 in-sample returns and standard errors

• Identification of σ_{μ} comes from dispersion of t-stats

Maximum Likelihood Estimation

- Choose 7 parameters to maximize likelihood of replicated data
 - 172 in-sample returns and standard errors
- Identification of σ_{μ} comes from dispersion of t-stats

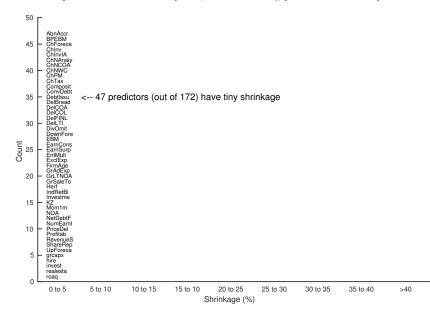
Bias Adjustment and Shrinkage

► We focus on Shrinkage defined by

- 100% Shrinkage \Rightarrow **p-hacking** dominates, bias-adjusted return = 0
- 0% Shrinkage \Rightarrow journal review works, bias-adjusted = in-sample

Bias Adjustment and Shrinkage

► We focus on Shrinkage defined by


 $[Bias-Adjusted Return]_i = (1 - Shrinkage_i)[In-Sample Return]_i$

- 100% Shrinkage \Rightarrow **p-hacking** dominates, bias-adjusted return = 0
- 0% Shrinkage \Rightarrow journal review works, bias-adjusted = in-sample
- Bayesian logic gives a shrinkage formula (Dawid 1994, Senn 2008, Efron 2011, 2012)

$$\begin{split} \mathsf{Shrinkage}_i &\approx \frac{[\mathsf{Standard Error}]_i^2}{\hat{\sigma}_{\mu}^2 + [\mathsf{Standard Error}]_i^2} \\ \hat{\sigma}_{\mu}^2 &= \mathsf{Estimated Dispersion of True Returns} \end{split}$$

Results

[Bias-Adjusted Return]_i = $(1 - \text{Shrinkage}_i)[\text{In-Sample Return}]_i$

 $[Bias-Adjusted Return]_i = (1 - Shrinkage_i)[In-Sample Return]_i$

50	Г					
45	AbnAccr BPEBM ChForeca ChInv ChInvIA	AOP Accruals AdExp AnalystV AssetGro				
40	ChNAnaly ChNCOA - ChNWC ChPM ChTax	BetaTail ChAssetT ChEQ ChangeIn CompEqul				
35	Composit ConvDebt DebtIssu DelBread DeICOA DeICOL	Coskewne DelEqu DivInd EarnIncr EarnSupB FR				
30	 DelFINL DelLTI DivOmit DownFore 	FailureP GP GrGMToGr GrSaleTo				
25 O	EBM EarnCons EarnSurp EntMult ExclExp FirmAge	IndMom Intrinsi LTLevera MS MeanRank MomBey				
20	GrAdExp – GrLTNOA GrSaleTo Herf	MomSeas OPLevera OperProf OrderBac				
15	IndRetBi Investme KZ Mom1m NOA	PctAcc PctTotAc RD REV6 RIO_Idio				
10	NetDebtF NumEarnl PriceDel Profitab RevenueS ShareRep	RoE Sharels1 Sharels5 ShortInt Skew1 VoISD				
5	 UpForeca grcapx hire invest realesta 	XFIN pchdepr pchgm_pc retCongl sar				
0	roaq	sinAlgo				
	0 to 5	5 to 10	10 to 15	15 to 10 Si	20 to 25 hrinkage (%)	25 to 30

10/14

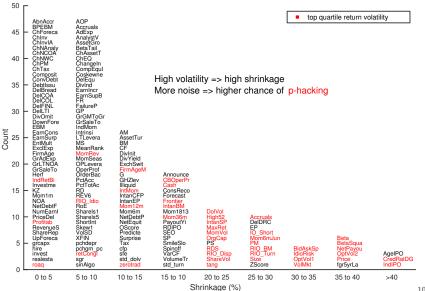
>40

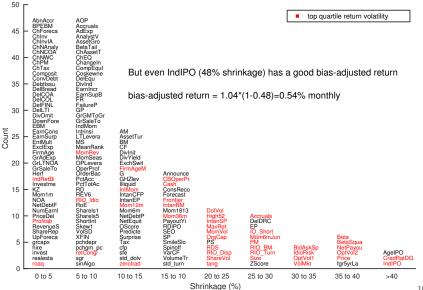
30 to 35

35 to 40

50	Г								
45	AbnAccr BPEBM ChForeca ChInv ChInvIA	AOP Accruals AdExp AnalystV AssetGro							
40	ChNAnaly ChNCOA - ChNWC ChPM ChTax	BetaTail ChAssetT ChEQ ChangeIn CompEqui							
35	Composit ConvDebt DebtIssu DelBread DelCOA DelCOL	CompEqui Coskewne DelEqu DivInd EamIncr EamSupB FR	< 94 p	redictors (out of 172) h	ave small	shrinkage		
30	DelFINL DelLTI DivOmit DownFore EBM	FailureP GP GrGMToGr GrSaleTo IndMom							
25 Count	EarnCons EarnSurp EntMult ExclExp	Intrinsi LTLevera MS MeanBank							
20	FirmAge GrAdExp GrAdExp GrLTNOA GrSaleTo Herf	MomRev MomSeas OPLevera OperProf OrderBac							
15	IndRetBi Investme KZ Mom1m NOA NetDebtF	PctAcc PctTotAc RD REV6 RIO_Idio RoE							
10	 NumEarnl PriceDel Profitab RevenueS ShareRep 	Sharels1 Sharels5 ShortInt Skew1 VoISD							
5	UpForeca grcapx hire invest realesta	XFIN pchdepr pchgm_pc retCongl sgr sinAlgo							
0	roaq								
	0 to 5	5 to 10	10 to 15	15 to 10	20 to 25 Shrinkage (%)	25 to 30	30 to 35	35 to 40	>40

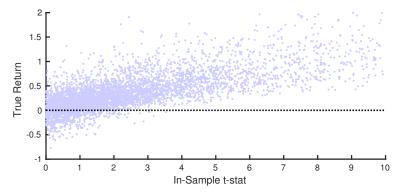
[Bias-Adjusted Return]_i = $(1 - \text{Shrinkage}_i)[\text{In-Sample Return}]_i$

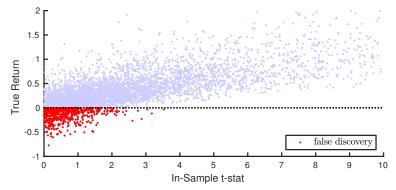

50	Г									
45	AbnAccr BPEBM ChForeca ChInv ChInvIA ChInvIA	AOP Accruals AdExp AnalystV AssetGro BetaTail								
40	ChNCOA ChNWC ChPM ChTax	BetaTail ChAssetT ChEQ ChangeIn CompEqui								
35	Composit ConvDebt DebtIssu DelBread DelCOA DelCOL DelFINL	Coskewne DelEqu DivInd EarnIncr EarnSupB FR								
30	DelFINL DelLTI DivOmit DownFore EBM	FailureP GP GrGMToGr GrSaleTo IndMom								
25 Count	 EarnCons EarnSurp EntMult ExclExp 	Intrinsi LTLevera MS MeanRank MomRev	AM AssetTur BM CF DivInit							
20	FirmAge GrAdExp GrLTNOA GrSaleTo Herf IndRetBi	MomSeas OPLevera OperProf OrderBac	DivYield ExchSwit FirmAgeM G GHZlev	Announce						
15	KZ Mom1m NOA	PctAcc PctTotAc RD REV6 RIO_Idio RoE	Illiquid IntMom IntanCFP IntanEP	CBOperPr Cash ConsReco Forecast Frontier IntanBM						
10	NetDebtF NumEarnI PriceDel Profitab RevenueS	HoE Sharels1 Sharels5 ShortInt Skew1 VoISD	Mom12m Mom6m NetDebtP NetEquit OScore	Mom1813 Mom36m	DolVol High52 IntanSP MaxRet MomVol	Accruals DelDRC EP				
5	ShareRep UpForeca grcapx hire invest realesta roag	VolSD XFIN pchdepr pchgm_pc retCongl sgr sinAlgo	Predicte Surprise Tax cfp sfe std_dolv zerotrad	PayoutYi RDIPO SEO SP SmileSlo Spinoff VarCF VolumeTr std turn	MomVol OrgCap PS RDS RIO_Disp ShareVol tang	IO_Short Mom6mJun PM RIO_BM RIO_Turn Size ZScore	BidAskSp IdioRisk OptVol1 VolMkt	Beta BetaSqua NetPayou OptVol2 Price fgr5yrLa	AgelPO CredRatDG IndIPO	
0	0 to 5	5 to 10	10 to 15	15 to 10	20 to 25	25 to 30	30 to 35	35 to 40	>40	
				S	hrinkage (%)					10

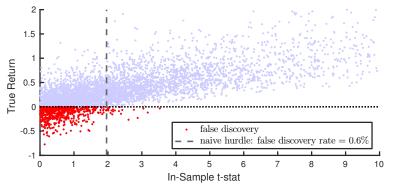

50	Г									
45	AbnAccr BPEBM - ChForeca ChInv ChInvIA ChNAnaly	AOP Accruals AdExp AnalystV AssetGro BetaTail								
40	ChNCOA ChNWC ChPM ChTax	BetaTail ChAssetT ChEQ ChangeIn CompEqui								
35	Composit ConvDebt DebtIssu DelBread DelCOA DelCOL	Coskewne DelEqu DivInd EarnIncr EarnSupB FR		The other	half are ske	ewed right,	but nearly	all are < 40)%	
30	DelFINL DelLTI DivOmit DownFore FBM	FailureP GP GrGMToGr GrSaleTo IndMom								
25 Count	EarnCons EarnSurp EntMult ExcIExp	Intrinsi LTLevera MS MeanRank MomBey	AM AssetTur BM CF Div/nit							
20	FirmAge GrAdExp GrLTNOA GrSaleTo Herf IndRetBi	MomSeas OPLevera OperProf OrderBac	Divlnit DivYield ExchSwit FirmAgeM G GHZlev	Announce CBOperPr						
15	Mometal Investme KZ Mom1m NOA NetDebtF	PctAcc PctTotAc RD REV6 RIO_Idio RoE	IntanCFP IntanEP Mom12m	Cash ConsReco Forecast Frontier IntanBM						
10	NumEarni – PriceDel Profitab RevenueS ShareRep	Sharels1 Sharels5 ShortInt Skew1 VoISD XFIN	Mom6m NetDebtP NetEquit OScore Predicte	Mom1813 Mom36m PayoutYi RDIPO SEO SP	DolVol High52 IntanSP MaxRet MomVol	Accruals DelDRC EP IO_Short				
5	UpForeca grcapx hire invest realesta	XFIN pchdepr pchgm_pc retCongl sgr sinAlgo	Surprise Tax cfp sfe std doly	SmileSlo Spinoff VarCF VolumeTr	OrgCap PS RDS RIO_Disp ShareVol	Mom6mJun PM RIO_BM RIO_Turn Size	BidAskSp IdioRisk OptVol1 VolMkt	Beta BetaSqua NetPayou OptVol2 Price	AgelPO CredRatDG	
0	0 to 5	sínAlgo 5 to 10	zerotrad 10 to 15	std_turn 15 to 10	tang 20 to 25	ZScore 25 to 30	30 to 35	fgr5yrLa 35 to 40	IndIPO >40	
	0.00	0.010	101010		hrinkage (%)	2010 00	001000	00 10 40		1(

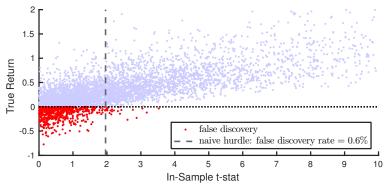
 $[Bias-Adjusted Return]_i = (1 - Shrinkage_i)[In-Sample Return]_i$

50	Г								
45	AbnAccr BPEBM ChForeca ChInv ChInvIA	AOP Accruals AdExp AnalystV AssetGro					 top qu 	uartile return vo	latility
40	ChNAnaly ChNCOA - ChNWC ChPM ChTax	BetaTail ChAssetT ChEQ ChangeIn CompEgul							
35	Composit ConvDebt – DebtIssu DelBread DelCOA DelCOL	CompEquI Coskewne DelEqu DivInd EarnIncr EarnSupB FR							
30	DelFINL DelLTI DivOmit DownFore EBM	FailureP GP GrGMToGr GrSaleTo IndMom							
25 Count	EamCons EamSurp EntMult ExclExp FirmAge GrAdExp	Intrinsi LTLevera MS MeanRank MomRev MomSeas	AM AssetTur BM CF DivInit						
20	GrAdExp GrLTNOA GrSaleTo Herf IndRetBi	MomSeas OPLevera OperProf OrderBac PctAcc PctTotAc	DivYield ExchSwit FirmAgeM G GHZley	Announce CBOperPr					
15	KZ Mom1m NOA NetDebtF	PctTotAc RD REV6 RIO_Idio RoE	Illiquid IntMom IntanCFP IntanEP Mom12m	Cash ConsReco Forecast Frontier IntanBM					
10	 NumEarnl PriceDel Profitab RevenueS 	Sharels1 Sharels5 ShortInt Skew1 VoISD	Mom6m NetDebtP NetEquit OScore Predicte	Mom1813 Mom36m PayoutYi RDIPO SEO SP	DolVol High52 IntanSP MaxRet MomVol	Accruals DelDRC EP IO_Short			
5	ShareRep UpForeca grcapx hire invest realesta roag	VoiSD XFIN pchdepr pchgm_pc retCongl sgr sinAlgo	Surprise Tax cfp sfe std_dolv zerotrad	SEO SP SmileSlo Spinoff VarCF VolumeTr std turn	Mom voi OrgCap PS RDS RIO_Disp ShareVol tang	IO_Snort Mom6mJun PM RIO_BM RIO_Turn Size ZScore	BidAskSp IdioRisk OptVol1 VolMkt	Beta BetaSqua NetPayou OptVol2 Price fgr5yrLa	AgelPO CredRatDG IndIPO
0	0 to 5	5 to 10	10 to 15	15 to 10	20 to 25	25 to 30	30 to 35	35 to 40	>40
				S	hrinkage (%)				:

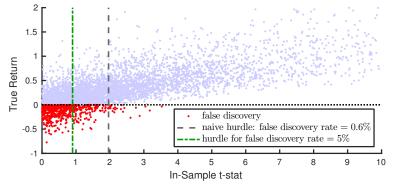

10/14



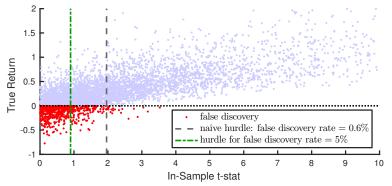

We can estimate the false discovery rate (FDR) (à la HLZ 2016)


Simulate true returns and t-stats using estimated parameters

• Define false discoveries: true returns ≤ 0 (equivalent to HLZ)



- Calculate false discovery rate (FDR) for a given t-stat hurdle
- ▶ Naive hurdle (1.96) implies a tiny FDR of 0.6%



- Calculate false discovery rate (FDR) for a given t-stat hurdle
- ▶ Naive hurdle (1.96) implies a tiny FDR of 0.6%
- Nearly all anomalies were real (in-sample)

We can estimate the false discovery rate (FDR) (à la HLZ 2016)

Can calculate hurdles for other FDRs

- Can calculate hurdles for other FDRs
- Standard t-stat hurdles can actually be lowered!!!

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

- Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg 1995)
 - After running 172+ tests, the null will be rejected by pure chance
 - \Rightarrow t-stat hurdles should be raised

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

- Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg 1995)
 - After running 172+ tests, the null will be rejected by pure chance
 - \Rightarrow t-stat hurdles should be raised
- ► Our more structured logic (James-Stein 1961, Efron-Morris 1973)
 - 172 tests tell us about the nature of the publication process

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

- Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg 1995)
 - After running 172+ tests, the null will be rejected by pure chance
 - \Rightarrow t-stat hurdles should be raised

► Our more structured logic (James-Stein 1961, Efron-Morris 1973)

- 172 tests tell us about the nature of the publication process
- The publication process produces dispersed true returns

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

- Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg 1995)
 - After running 172+ tests, the null will be rejected by pure chance
 - \Rightarrow t-stat hurdles should be raised

► Our more structured logic (James-Stein 1961, Efron-Morris 1973)

- 172 tests tell us about the nature of the publication process
- The publication process produces dispersed true returns
- \Rightarrow t-stats are informative about true returns

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

- Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg 1995)
 - After running 172+ tests, the null will be rejected by pure chance
 - \Rightarrow t-stat hurdles should be raised

► Our more structured logic (James-Stein 1961, Efron-Morris 1973)

- 172 tests tell us about the nature of the publication process
- The publication process produces dispersed true returns
- \Rightarrow t-stats are informative about true returns
- \Rightarrow t-stat hurdles can be lowered!

- Other multiple testing studies find most results are false
 - Harvey, Liu, Zhu (2016); Chordia, Goyal, Saretto (2017)
- ► Difference: focus on cross-sectional predictors in top-tier journals

- Other multiple testing studies find most results are false
 - Harvey, Liu, Zhu (2016); Chordia, Goyal, Saretto (2017)
- ► Difference: focus on cross-sectional predictors in top-tier journals

		Variable Counts	
	Harvey- Liu-Zhu	Chordia-Goyal- Saretto	Our Paper
Aggregate Risk Factor	113	0	0
X-Sectional Predictor	202	2,100,000	172
X-Sectional & Top Tier Pub	146	<500	151
Total	315	2,100,000	172

- Other multiple testing studies find most results are false
 - Harvey, Liu, Zhu (2016); Chordia, Goyal, Saretto (2017)
- ► Difference: focus on cross-sectional predictors in top-tier journals

		Variable Counts	
	Harvey- Liu-Zhu	Chordia-Goyal- Saretto	Our Paper
Aggregate Risk Factor	113	0	0
X-Sectional Predictor	202	2,100,000	172
X-Sectional & Top Tier Pub	146	<500	151
Total	315	2,100,000	172

 Suggests p-hacking much worse among aggregate risk factors and outside top journals

Conclusion

Conclusion

► A structured, focused estimation finds

- Journal review has triumphed over p-hacking*

*in top-tier pubs predicting cross-sectional stock returns, **for now** Consistent w/ McLean-Pontiff 2016, Jacobs-Müller 2016, Yan-Zheng 2017

Conclusion

► A structured, focused estimation finds

- Journal review has triumphed over p-hacking*

*in top-tier pubs predicting cross-sectional stock returns, **for now** Consistent w/ McLean-Pontiff 2016, Jacobs-Müller 2016, Yan-Zheng 2017

► Suggests a complete accounting for the typical anomaly return

- 13% publication bias (this paper)
- 35% mispricing that can be traded away (McLean and Pontiff 2016)
- 52% trading costs (Chen and Velikov 2017)