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This Paper: A Focused, Structured Estimate of
Who’s Winning

(1) Focus: replications of 172 published cross-sectional predictors
– Excludes non-predictive and aggregate factors in Harvey, Liu, Zhu 2016
– Excludes un-published predictors in Chordia, Goyal, Saretto 2017

(2) Structure: estimated model of biased publication
– Allows for p-hacking effects and journal review
– Unlike Hou, Xue, Zhang’s 2017 informal approach

Result:
I Journal review dominates. Nearly all predictors were real!!

– Consistent w/ McLean-Pontiff 2016, Jacobs-Müller 2016, Yan-Zheng 2017
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Nearly all predictors were real!!

How can this be true??
I Standard logic (Bonferroni, Benjamini-Hochberg 1995)

– After looking at 172+ predictors,
many in-sample returns will be large by pure chance

⇒ many predictors were fairy tales

I Our more structured logic (James-Stein 1961, Efron-Morris 1973)
– 172 predictors tell us about the nature of the publication process
– They tell us that journal review dominates p-hacking
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Replications of 172 Published
Predictors
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Data: Replications of 172 Published Predictors

(1) Replicate McLean and Pontiff’s (2016) 97 published cross-sectional
predictors

(2) Replicate 75 additional variables that were
– shown to predict cross-sectional returns
– published in “top-tier” journals

Data available at sites.google.com/site/chenandrewy/

4 / 14
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Model and Estimation

5 / 14



A Statistical Model of Publication 1/2

Motivating Story:

1. Anything that might be published is submitted to journals
– Allows for p-hacking

2. Only portfolios with “narratives” are considered for publication
– Allows for journal review: robustness tests, supporting results, ...

3. Only narratives with high t-stats are published
– Another p-hacking effect

⇒ statistical model of publication similar to Harvey, Liu, and Zhu’s (2016)
model with correlations
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A Statistical Model of Publication 2/2

Key equations
I If portfolio i has a narrative,

true return µi ∼ scaled student’s t with σµ, νµ

I dispersion of true returns σµ measures power of journal review
– large σµ⇒ narratives find variation in true returns

I In-sample returns are noisy and biased signals of µi

ri = µi + εi
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Maximum Likelihood Estimation
I Choose 7 parameters to maximize likelihood of replicated data

– 172 in-sample returns and standard errors

I Identification of σµ comes from dispersion of t-stats
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Bias Adjustment and Shrinkage

I We focus on Shrinkage defined by

[Bias-Adjusted Return]i = (1− Shrinkagei)[In-Sample Return]i

– 100% Shrinkage ⇒ p-hacking dominates, bias-adjusted return = 0
– 0% Shrinkage ⇒ journal review works, bias-adjusted = in-sample

I Bayesian logic gives a shrinkage formula
(Dawid 1994, Senn 2008, Efron 2011, 2012)

Shrinkagei ≈
[Standard Error]2i

σ̂2
µ + [Standard Error]2i

σ̂2
µ= Estimated Dispersion of True Returns
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Main Result 1/2: Bias Adjustments are Modest

[Bias-Adjusted Return]i = (1 − Shrinkagei)[In-Sample Return]i
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The other half are skewed right, but nearly all are < 40%
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Main Result 1/2: Bias Adjustments are Modest
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High volatility => high shrinkage

More noise => higher chance of p-hacking

top quartile return volatility
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But even IndIPO (48% shrinkage) has a good bias-adjusted return

bias-adjusted return = 1.04*(1-0.48)=0.54% monthly

top quartile return volatility
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Summary: shrinkage is modest, journal review dominates

Consistent with McLean-Pontiff 2016
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Main Result 2/2: Nearly All Anomalies were Real

We can estimate the false discovery rate (FDR) (à la HLZ 2016)
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0 1 2 3 4 5 6 7 8 9 10

In-Sample t-stat

-1

-0.5

0

0.5

1

1.5

2

T
ru

e
 R

e
tu

rn

false discovery
naive hurdle: false discovery rate = 0.6%
hurdle for false discovery rate = 5%

I Can calculate hurdles for other FDRs
I Standard t-stat hurdles can actually be lowered!!!

11 / 14



Main Result 2/2: Nearly All Anomalies were Real

Standard t-stat hurdles can actually be lowered!!!

How can this be true???

I Standard multiple-testing logic (Bonferroni, Benjamini-Hochberg
1995)

– After running 172+ tests, the null will be rejected by pure chance
⇒ t-stat hurdles should be raised

I Our more structured logic (James-Stein 1961, Efron-Morris 1973)
– 172 tests tell us about the nature of the publication process
– The publication process produces dispersed true returns
⇒ t-stats are informative about true returns
⇒ t-stat hurdles can be lowered!
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Main Result 2/2: Nearly All Anomalies were Real

I Other multiple testing studies find most results are false
– Harvey, Liu, Zhu (2016); Chordia, Goyal, Saretto (2017)

I Difference: focus on cross-sectional predictors in top-tier journals

Variable Counts

Harvey- Chordia-Goyal- Our
Liu-Zhu Saretto Paper

Aggregate Risk Factor 113 0 0
X-Sectional Predictor 202 2,100,000 172
X-Sectional & Top Tier Pub 146 <500 151

Total 315 2,100,000 172

I Suggests p-hacking much worse among aggregate risk factors
and outside top journals
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Conclusion

I A structured, focused estimation finds
– Journal review has triumphed over p-hacking∗

∗in top-tier pubs predicting cross-sectional stock returns, for now
Consistent w/ McLean-Pontiff 2016, Jacobs-Müller 2016, Yan-Zheng 2017

I Suggests a complete accounting for the typical anomaly return
– 13% publication bias (this paper)
– 35% mispricing that can be traded away (McLean and Pontiff 2016)
– 52% trading costs (Chen and Velikov 2017)
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