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Introduction

Nonlinear State-Space Model

Measurement Eq. : yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

State Transition : st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

Objects of interest:

Estimates of states: p(st |Y1:t , θ)

Likelihood function: p(Y1:T |θ) =
∏T

t=1 p(yt |Y1:t−1, θ).

Construct numerical approximation by particle filtering (sequential Monte Carlo).

In DSGE models with occasionally-binding constraints one can often approximate
Φ(·) by a piecewise linear function.
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Particle Filtering – Idea

Represent distribution p(st |Y1:t) by swarm of particles {s jt ,W j
t }Mj=1 such that

1

M

M∑
j=1

h(s jt )W j
t

SLLN,CLT≈ E[h(st)|Y1:t ]

Iteration t, given {s jt−1,W
j
t−1}Mj=1

1 Mutation: Draw s̃ jt ∼ gt(s̃t |s jt−1).

2 Correction: Compute incremental weights and update/normalize weights

w̃ j
t =

p(s̃t |s jt−1)

gt(s̃t |s jt−1)
p(yt |s̃ jt , θ), W̃ j

t ∝ w̃ j
tW

j
t−1.

3 Selection: Resampling.
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Implementations

Recall: incremental weights

w̃ j
t =

p(s̃t |s jt−1)

gt(s̃t |s jt−1)
p(yt |s̃ jt , θ)

Bootstrap particle filter (BSPF): gt(s̃t |s jt−1) = p(s̃t |s jt−1).

Conditionally-optimal particle filter (COPF): gt(s̃t |s jt−1) ∝ p(yt |s̃t)p(s̃t |s jt−1).

(. . .)
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Example 1: Linearized Smets-Wouters Model

BS (M = 400, 000) versus CO (M = 4, 000)
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Notes: Density estimates of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on Nrun = 100. Solid densities summarize results

for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO)

particle filter.
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Example 2: Linearized Small-Scale NK DSGE Model

Log Standard Dev of Log-Likelihood Increments
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Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter

(M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based

on Nrun = 100 runs of the filters.
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[HS] A Generic Approach

“Tempered Particle Filter”

Construct a sequence “bridge distributions” with inflated measurement errors.

Traverse these bridge distributions with “static” Sequential Monte Carlo method (Chopin,
2002).

This PF has much better statistical properties than the naive bootstrap PF, at little
computational cost.

Unlike other versions of the PF, this algorithm is self-tuning and does not require the
researcher to manually construct proposal densities.

Some related concurrent work in statistics literature:
Godsill and Clapp (2001), Johansen (2016)
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[HS] The Key Idea

Define

pn(yt |st , θ) ∝ φd/2
n |Σu(θ)|−1/2 exp

{
− 1

2
(yt −Ψ(st , t; θ))′

×φnΣ−1
u (θ)(yt −Ψ(st , t; θ))

}
,

where:

φ1 < φ2 < . . . < φNφ = 1.

Bridge posteriors given st−1:

pn(st |yt , st−1, θ) ∝ pn(yt |st , θ)p(st |st−1, θ).

Bridge posteriors given Y1:t :

pn(st |Y1:t) =

∫
pn(st |yt , st−1, θ)p(st−1|Y1:t−1)dst−1.
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An Illustration [HS]: pn(st |Y1:t), n = 1, . . . ,Nφ.
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[HS] Algorithm Overview

For each time period t, we embed a “static” SMC sampler used for parameter estimation
[Chopin (2002), (...), Herbst and Schorfheide (2014, 2015), (...)]:

Iterate over n = 1, . . . ,Nφ:

Goal: approximate bridge distributions pn(yt |Y1:t−1) and pn(st |Y1:t).

Correction step: change particle weights (importance sampling)

Selection step: equalize particle weights (resampling of particles)

Mutation step: change particle values (based on Markov transition kernel generated with
Metropolis-Hastings algorithm)
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[HS] Log-Likelihood Approx. Errors: Linearized Smets-Wouters Model

BSPF TPF
Number of Particles M 40,000 2,000 2,800
Target Ineff. Ratio r∗ 2 3

High Posterior Density: θ = θm

MSE(∆̂) 63,882 1,164 1,135

T−1
∑T

t=1 Nφ,t 1 6 5
Average Run Time (sec) 3 3 3

Low Posterior Density: θ = θl

MSE(∆̂) 69,613 1,490 1,994

T−1
∑T

t=1 Nφ,t 1 6 5
Average Run Time (sec) 3 3 3
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[ACS] Conditionally-Optimal Filtering for Piecewise-Linear Approximations

Not possible to directly sample from CO proposal in general nonlinear models.

However, it can be done in piece-wise linear approximations.
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[ACS] A Small-Scale Model

Households:

Et

[ ∞∑
s=0

βs

(
C 1−τ
t+s − 1

1− τ − χH
H

1+1/η
t+s

1 + 1/η
+ χMV

(
Mt+s

Pt+sAt+s

))]
Production of intermediate good j :

Yt(j) = Ht(j), ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

Yt(j).

Resource constraint: (gt is a generic demand shock):

Ct +ACt +Gt = Yt , Gt =

(
1− 1

gt

)
Yt , log gt = (1−ρg ) log g∗+ρg log gt−1 +σg εg ,t

Monetary Policy:

Rt = max

{
1,

[
rπ∗

( πt
π∗

)ψ1
]1−ρR

RρRt−1e
εR,t

}
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[ACS] Approximate Solution

State variables: X = (εR , ĝ , R̂−1).

Policy functions:

π̂ = fπ(X) =?

ŷ = fy (X) =?

Equilibrium conditions:

F (X) = 0

h(X) ≥ 0

Construct approximate solution by making policy functions piecewise linear and continuous
(PLC).
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[ACS] Illustration (Baseline Model): PLC vs. Linear
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[ACS] Illustration (Richer Model): PLC vs. Linear vs. Nonlinear
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[ACS] Filtering
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Conclusion

Structural macroeconometrics faces many computational challenges:

model solution,

likelihood computation

Posterior sampling or maximization of extremum estimator objective function.

Potential shortcuts to keep computations fast and feasible:

less accurate model solution

cruder state extraction / likelihood approximation

non-likelihood-based parametrization of the model.

In this talk: Slightly less accurate solution enables efficient evaluation of likelihood
function.
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