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Overview

e Consider subvector inference in the linear IV model, allowing for weak
instruments but assuming conditional homoskedasticity

e Background:
— Projection of Anderson and Rubin (AR) test (Dufour and Taamouti,

Ecta 2005).

— Guggenberger, Kleibergen, Mavroeidis, and Chen (Ecta 2012, GKMC)

provide power improvement:

: 2 L 2 :
— Using Xk—myy,1—a 2 critical value, rather than Xk 1—a still controls
asymptotic size.

— “Worst case” occurs under strong identification.



HERE: consider a data-dependent critical value that adapts to strength
of identification.

One main objective: computational ease.

Show: conditional subvector AR test controls finite sample/asymptotic size
& has higher power than method in GKMC.

Test in GKMC is inadmissible.

Proposed test has a near optimality property when my; = 1.



Outline

1. Finite sample analysis
(a) Motivation for conditional subvector AR test
(b) Size of test when myy =1
(c) Power analysis when mypy = 1

(d) Size of test when mypy > 1

2. Asymptotics



Model and Objective (finite sample case)

y=Y 5+ Wr +e,
Y=ZMNy + Vy,
W=ZNy + Vi,

y €ERVY € RVMY W e RMXMW  and Z € RM1F.

e Reduced form:

—|—\(’Uy : VY

(y:Y:W)=2Z Ny : Ny) (stmY= 0 )

~~

0 Iy -

e Objective: test

Hqy: B =pBg versus Hy: B # B

s.t. size bounded by nominal size & “good” power.



Parameter space:

1. The error term is distributed as

Vi ~iid. N(0,Q), i=1,....n,

where Q € R(m+1)x(m+1) is assumed to be known and positive definite.

2. Z € R"¥F fixed, and Z'Z > 0 k X k matrix.

e Note: no restrictions on reduced form parameters — allow for weak V.



e Many tests available for full vector inference
Ho : B = Bg,7 = 7o vs Hy : not Hy

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleiber-
gen (2002), Moreira (2003, 2009).

e Optimality properties: Andrews, Moreira, and Stock (2006) and Cher-
nozhukov, Hansen, and Jansson (2009).



Derived subvector procedures

Projection: "inf" over parameter not under test, same critical value —
"computationally hard" and "uninformative".

Bonferroni: Staiger and Stock (1997), Chaudhuri and Zivot (2011), Mc-
Closkey (2012), Wang and Doko Tchatoka (2017)...; often computationally
hard, power ranking with projection unclear.

Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong ID of parameters not under test.

Kleibergen (2015): subvector CLR test with correct size under weak IV
and asymptotically efficient under strong IV.



e Power ranking under weak IV is unclear:

— In just-identified case k = my + myy, subvector LR statistic is equal
to the subvector AR statistic, and CLR cv is Xomy 1—a:

— Hence, less powerful than the test proposed here.



The Anderson and Rubin (1949) test

AR test stat for full vector hypothesis

Ho: 8 = B,y =0 vs Hy : not Hy

AR statistic exploits EZ;e; = 0.

AR test stat:

(y —YBo— Wnrg) Pz(y — YBo — Wryp)

ARn(Bo, 7o) =
(Fo-70) (1: —Bp: —vp)Q(1: =By —h)

AR stat is X% under null hypothesis; critical value X% l—o

/



e Subvector AR statistic for testing Hy is given by

Yo—WrA)YPy(Yog—W
ARn (Bg) = min ( 0 ’Y/) z(Yo ,7) .
yeR™W (1: —Bp: —)Q(1: —By: —7)
where Yo =y — Y 3.

e Alternative representation: Let &; fort =1,...,p = 1 4+ myy be roots of

characteristic polynomial in K

KQ (Bo) — (Yo : W)'PZ (Yo W)) — 0,

ordered non-increasingly, where we define

/

1 0 1 0
Q(Bo)=|-Bo 0 | Q[—-By O
0 Iy 0 Iy



Then
ARy, (BO) — ’%p-

e As discussed: When using X% I—o critical values, trivially, test has correct

size;

o GKMC show that this is also true for X%—mw 1_, Critical values.



e Next: AR statistic is the minimum eigenvalue of a non-central Wishart

matrix.

e The roots k; solve

—/=

O — ’%ill—i—mw e —

where = ~ N (M, I, ® Ip), and M isa k X p.

, =1 ..,p=14+my,

e Under Hy, the noncentrality matrix becomes M = (Ok, @W) , Where

—1/2

Oy = (Z’Z)l/ ? My v e

/ —1
2V Vive = LVipViy — Zstass 2 Vi



and
/

- - 1 0 1 0
wo) = — 0 | Q|- 0
<Z’€V zVWVW> _BO _50

e Summarizing, under Hy

='Z ~ Wy (k, Ip, MM) |
non-central Wishart, with noncentrality matrix
' (O 0
MM = <o e’WeW>

and

ARp (Bo) = ’§3min(E/E



e The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M/ M.

e Hence, distribution of &; only depends on the eigenvalues of @Q/V@W, K;
say, t =1,...,mpy and kK = (K1, ..., Kmyy)

o When myy =1, k1 = @W@W is scalar (concentration parameter for ~y
under Null).



Theorem: Suppose myy = 1. Then, under the null hypothesis Hgy : 8 = By,
the distribution function of the subvector AR statistic, ARy, (8g) , is monoton-

ically decreasing in the parameter k1.
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Figure 1. The cdf of the subset AR statistic with £k = 3 instruments, for
different values of k1 = 5,10, 15,100, shown in the legend on the right.



New critical value for subvector Anderson and Rubin test

Relevance: If we knew 1 we could implement the subvector AR test with
a smaller critical value than X%—mw,l—a which is the critical value in the
case when k1 is “large”.

Intuition for new critical value. Let's assume my = 1 for simplicity.

Under null, when s “is large”, the larger root Ky is a sufficient statistic
for k1, see Muirhead (1978).

Muirhead provides approximate, nuisance parameter free, density of ARy, (8g) =
Ko given kK1 (which measures strength of identification).



The new critical value for the subvector AR-test at significance level 1 —«
Is given by

1 — « quantile of (approximation of ARy, given K1)

Denote cv by

c1—a(R1, k — myy)

Depends only on o, K — myy, and Rj.

We find, by simulations over fine grid of values of k1, that test controls
size.

It improves on the GKMC procedure in terms of power.



e Theorem: Suppose my,y = 1. The subvector Anderson Rubin test that
uses the new conditional critical value ¢1_,(~1, k —myy) has correct size
under the assumptions above.

Details
e Again: k1 > 0 is nonzero latent root of M/ M (nuisance parameter).

e When the root is “large”, the conditional density of ARy, (8g) = A2 given
K1 can be approximated by

Faoliy (@) ~ fra (2) (R — 2)1/2 g (A1),

where fXQ is the density of a X%—l and g is a function that does not
k—1

depend on k1. (Muirhead, 1978 due to Leach, 1969).



Analytical formula for g.
Conditional quantiles can be computed by numerical integration.

Conditional critical values can be tabulated — implementation of new test
is trival and fast.

They are increasing in 41 and converging to quantiles of X%—l'
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Table of conditional critical values

a=5%, k—my =4

l'%l Cv l%l Ccv 1%1 Cv 1%1 Cv /%1 Cv l%l Ccv
022 02200 18(392 34610 50| 895 66| 1446 8.2
0.44 041|223 20417 36641 52| 940 68| 1588 8.4
065 06246 22|443 38 |6./3 54| 989 70| 1785 8.6
087 08270 24469 40705 561042 72| 2089 8.8
110 1.01294 26496 42739 58|11.01 74| 2642 9.0
1.32 1.2 1318 28524 44775 601168 7.6 | 39.82 9.2
1.54 141342 30552 463813 6.2]1244 738 |114.76 94
1.77 1.6 |3.67 32|58l 48852 641335 80| +.Inf 95
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Null rejection frequency of subset AR test based on conditional (red) and
X%—l (blue) critical values, as function of k1. 10000 MC simulations with
importance sampling over a grid of 42 points.



Power

e The subvector AR statistic is the LR statistic for testing H : p (A) < myy
against Hy : p(A) = my +1for A= E[Z'(y—YBy: W), where
the datais Z' (y — Y By : W).

o Hy: (3 = implies H), but the converse is not true:
0 0 0

— Hj{ holds iff p (My (8 — Bg) : Myy) < myy, which includes Hy : 8 #
Bo when Hp\ Hy holds, i.e., if My is rank deficient or My (58 — Bg) €

span ().

o Under H, (A1, ..., Rp) are distributed as eigenvalues of Wy, (k, Ip, M'M)
with rank deficient noncentrality.



Thus, every test ¢(R1,...,Ap) € [0, 1] that has size o under Hg must
also have size v under H(’), so cannot have power exceeding size under
alternatives H))\ Hp.

In other words, size a tests ¢(<1, ..., Ap) can only have nontrivial power
under alternatives p (A) = my + 1.

We use this insight to derive a power envelope for tests of the form
SO (/%]_, ceey /%p) .

Consider only the case my = 1.



Testing p (M) < 1 against p (M) = 2, where = ~ N (M, ]).
Equivalently, Hj : kp = 0, k1 > ko against Hy : kg > 0, k1 > Ko.
Maximal invariant is A1, Ko (Muirhead, 2009, Section 10.2).
Likelihood (James, 1964)

, R K1 + K2 N(k 1 (k1O k1 O
e 5 w30 32

Computed using the algorithms developed by Koev and Edelman (2008),
available in C and Matlab.



Power bounds

Point-optimal power bounds for reduced rank testing problem using least

/\LF

favourable distribution over nuisance parameter K7.

Two methods: Andrews Moreira and Stock (JoE, 2008, Sec 4.2) — AMS.

— assumes one-point ALE, gives lower and upper bounds on envelope.

Elliott Mueller and Watson (Ecma 2015, Lemma 1) — ALFD (Approximate
LF distn).

Implementation: 42 points evenly spaced in log-scale between 0 and 99.
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e Little scope for power improvement over proposed test.



Size for myy > 1

When mypy; = 1 the new subvector AR test has correct size and uniformly
improves the power of the test in GKMC.

— Generalize this result to any myy .

We define a new subvector AR test that rejects when

ARn (Bo) > c1—a(kimax (Z'Z) , k — my).

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Show now that this test has correct size and has uniformly larger power than
the test in GKMC.



Theorem: Under the null Hy : 8 = [, there exists a random orthogonal
matrix O, such that for

~

===0 ¢ RkXp, and its upper left submatrix 211 c RF—mw+1x2

~ ~
— —
— —

=71=11 is a non-central Wishart 2 x 2 matrix of order k — myy + 1 (cond'l
on O), whose noncentrality matrix, ./\;l’l./\;ll say, is of reduced rank.

It then follows that



and thus

P(ARn (BO) > Cl_a(lﬁlmax (E/E> k — mW))
< P(Kmin (2'11211) > c1—a(Kmax (231211) ke —my))
< a,

where the last inequality follows from the case my; = 1 (by conditionning on

0).

(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1—al+y k — myy)) is increasing and converging to X%—mw 1_, as argument
goes to infinity).



Asymptotic case

e Parameter space F under the null hypothesis Hy : 8 = By. Let U; =
(g4, VI;Vi)/ and F' distribution of (U;, Vy;, Z;)

F is set of all (v, My, My, F) s.t.

~v € R™ My, € RF>™W My e RF>X™My

Ep(/|T|[*T°) < B, for T; € {Zig;, vec(ZiViy ), Vivaigis € Viwis Zi}
Er(Zi(ei Vivis Vi) = 0,

Ep(vec(Z;U;)(vec(Z;U]))) = (Ep(UsU;) ® Ep(Z;Z;)),

Fmin(A) > b for A € {Ep(Z;2;), Erp(U;U;)}

for some b > 0, B < 00, where Kpin(+) is smallest eigenvalue, "®"

Kronecker product, vec(-) column vectorization.



e Subvector AR stat equals

v, v\ Y (v
ARn (Bo) = Kmin ( 2 ) (Y,PZY)( z )
n—=k n—=k

where

Y — (y — Y 8o : W) e Rnx(l—l—mW)

e GKMC showed oo =1 } has correct asymp-

{ARn(60)>X%—mW,1—a
totic size for parameter space F.

e Current paper: ¢, = 1{ARn(50)>Cl—a(/ﬁ\3max,k—mw)} has correct asy size.



Asymptotic Size of conditional subvector AR test

The derivation of asymptotic size follows the method of Andrews Cheng
and Guggenberger (2011).

The complication relative to GKMC is that we need joint limiting distrib-
ution of Ky, ..., Kp, not just the minimum, Kp.

Fortunately, we can use the results of Andrews and Guggenberger (2015)
on limit distribution of eigenvalues of quadratic forms.

It turns out that joint limit depends only on localization parameters corre-
sponding to the singular values of

(EpZ; ZD)?(Myy, My )Q(Bo) ~Y2,



which correspond to singular values of @y (concentration matrix) in the
finite sample case.

e Hence, replicates the finite sample, normal, fixed IV, known variance matrix
setup.

e Correct asymptotic size then follows from correct finite sample size.



Takeaways

We can obtain uniform power improvement over the subvector AR test in
GKMC by using data-dependent critical values.

We propose one such test whose conditional cv's are easy to compute and
can be tabulated.

In the case myy = 1, i.e., when there is a single endogenous regressor
whose coefficient is unrestricted under Hp, the proposed cv's are an in-
creasing function of a first-stage F statistic for that regressor.

There is little scope for further power improvement when my, = 1 — our
proposed test is nearly optimal.



Current work: Drop assumption of conditional homoskedasticity — allow for
heteroskedasticity.

e Lee (2014) found an example in which the subvector AR with X%—mw,l—a
cv's overrejects when the covariance matrix does not have Kronecker prod-
uct form.

e Importantly, this does not apply to iid data.

e So far, we have found correct size of the heteroskedasticity robust subvector
AR test that uses X%—mw,l—a cv's when myy = 1 and k£ = 2.

e We are working on generalizing this to higher dimensions.



