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Overview

� Consider subvector inference in the linear IV model, allowing for weak
instruments but assuming conditional homoskedasticity

� Background:
� Projection of Anderson and Rubin (AR) test (Dufour and Taamouti,
Ecta 2005).

� Guggenberger, Kleibergen, Mavroeidis, and Chen (Ecta 2012, GKMC)
provide power improvement:

� Using �2k�mW ;1�� as critical value, rather than �
2
k;1�� still controls

asymptotic size.

� �Worst case�occurs under strong identi�cation.



� HERE: consider a data-dependent critical value that adapts to strength
of identi�cation.

� One main objective: computational ease.

� Show: conditional subvector AR test controls �nite sample/asymptotic size
& has higher power than method in GKMC.

� Test in GKMC is inadmissible.

� Proposed test has a near optimality property when mW = 1:
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Model and Objective (�nite sample case)

y=Y � +W + ";

Y=Z�Y + VY ;

W=Z�W + VW ;

y 2 <n; Y 2 <n�mY ;W 2 <n�mW ; and Z 2 <n�k:
� Reduced form:
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� Objective: test

H0 : � = �0 versus H1 : � 6= �0
s.t. size bounded by nominal size & �good�power.



Parameter space:

1. The error term is distributed as

Vi � i.i.d. N (0;
) ; i = 1; :::; n;

where 
 2 R(m+1)�(m+1) is assumed to be known and positive de�nite.

2. Z 2 Rn�k �xed, and Z0Z > 0 k � k matrix.

� Note: no restrictions on reduced form parameters ! allow for weak IV.



� Many tests available for full vector inference

H0 : � = �0;  = 0 vs H1 : not H0

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleiber-
gen (2002), Moreira (2003, 2009).

� Optimality properties: Andrews, Moreira, and Stock (2006) and Cher-
nozhukov, Hansen, and Jansson (2009).



Derived subvector procedures

� Projection: "inf" over parameter not under test, same critical value !
"computationally hard" and "uninformative".

� Bonferroni: Staiger and Stock (1997), Chaudhuri and Zivot (2011), Mc-
Closkey (2012), Wang and Doko Tchatoka (2017)...; often computationally
hard, power ranking with projection unclear.

� Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong ID of parameters not under test.

� Kleibergen (2015): subvector CLR test with correct size under weak IV
and asymptotically e¢ cient under strong IV.



� Power ranking under weak IV is unclear:

� In just-identi�ed case k = mY +mW , subvector LR statistic is equal
to the subvector AR statistic, and CLR cv is �2mY ;1��.

� Hence, less powerful than the test proposed here.



The Anderson and Rubin (1949) test

� AR test stat for full vector hypothesis

H0 : � = �0;  = 0 vs H1 : not H0

� AR statistic exploits EZi"i = 0:

� AR test stat:

ARn(�0; 0) =
(y � Y �0 �W0)

0PZ(y � Y �0 �W0)�
1 ... � �00

... � 00
�


�
1 ... � �00

... � 00
�0

� AR stat is �2k under null hypothesis; critical value �
2
k;1��:



� Subvector AR statistic for testing H0 is given by

ARn (�0) = min
2RmW

(Y 0 �W)0PZ(Y 0 �W)�
1 ... � �00

... � 0
�


�
1 ... � �00

... � 0
�;

where Y 0 = y � Y �0:

� Alternative representation: Let �̂i for i = 1; :::; p = 1 +mW be roots of
characteristic polynomial in ������
 (�0)� �

Y 0
... W

�0
PZ

�
Y 0

... W
����� = 0;

ordered non-increasingly, where we de�ne


(�0) =

0B@ 1 0
��0 0
0 ImW

1CA
0




0B@ 1 0
��0 0
0 ImW

1CA :



Then

ARn (�0) = �̂p:

� As discussed: When using �2k;1�� critical values, trivially, test has correct
size;

� GKMC show that this is also true for �2k�mW ;1�� critical values.



� Next: AR statistic is the minimum eigenvalue of a non-central Wishart
matrix.

� The roots �̂i solve

0 =
����̂iI1+mW � �0�

��� ; i = 1; :::; p = 1 +mW ;

where � � N (M; Ik 
 Ip) ; andM is a k � p.

� Under H0, the noncentrality matrix becomesM =
�
0k;�W

�
; where

�W =
�
Z0Z

�1=2
�W�

�1=2
VWVW :"

;

�VWVW :" = �VWVW � �0"VW�
�1
"" �"VW



and  
�"" �"VW
�0"VW �VWVW

!
=
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� ImW
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0
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��0 0
� ImW
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� Summarizing, under H0

�0� � Wp

�
k; Ip;M0M

�
;

non-central Wishart, with noncentrality matrix

M0M =

 
0 0
0 �0W�W

!
and

ARn (�0) = �min(�
0�)



� The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrixM0M.

� Hence, distribution of �̂i only depends on the eigenvalues of �0W�W ; �i
say; i = 1; : : : ;mW and � = (�1; :::; �mW )

0

� When mW = 1; �1 = �0W�W is scalar (concentration parameter for 
under Null).



Theorem: Suppose mW = 1. Then, under the null hypothesis H0 : � = �0,
the distribution function of the subvector AR statistic, ARn (�0) ; is monoton-
ically decreasing in the parameter �1.

Figure 1: The cdf of the subset AR statistic with k = 3 instruments, for
di¤erent values of �1 = 5; 10; 15; 100, shown in the legend on the right.



New critical value for subvector Anderson and Rubin test

� Relevance: If we knew �1 we could implement the subvector AR test with
a smaller critical value than �2k�mW ;1�� which is the critical value in the
case when �1 is �large�.

� Intuition for new critical value. Let�s assume mW = 1 for simplicity.

� Under null, when �1 �is large�, the larger root b�1 is a su¢ cient statistic
for �1, see Muirhead (1978).

� Muirhead provides approximate, nuisance parameter free, density ofARn (�0) =b�2 given b�1 (which measures strength of identi�cation).



� The new critical value for the subvector AR-test at signi�cance level 1��
is given by

1� � quantile of (approximation of ARn given b�1)
� Denote cv by

c1��(�̂1; k �mW )

Depends only on �; k �mW ; and �̂1:

� We �nd, by simulations over �ne grid of values of �1; that test controls
size.

� It improves on the GKMC procedure in terms of power.



� Theorem: Suppose mW = 1. The subvector Anderson Rubin test that
uses the new conditional critical value c1��(�̂1; k�mW ) has correct size
under the assumptions above.

Details

� Again: �1 � 0 is nonzero latent root ofM0M (nuisance parameter).

� When the root is �large�, the conditional density of ARn (�0) = �̂2 given
�̂1 can be approximated by

f�̂2j�̂1 (x) � f�2k�1
(x) (�̂1 � x)1=2 g (�̂1) ;

where f�2k�1
is the density of a �2k�1 and g is a function that does not

depend on �1. (Muirhead, 1978 due to Leach, 1969).



� Analytical formula for g:

� Conditional quantiles can be computed by numerical integration.

� Conditional critical values can be tabulated! implementation of new test
is trival and fast.

� They are increasing in �̂1 and converging to quantiles of �2k�1:
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Table of conditional critical values

� = 5%; k �mW = 4
�̂1 cv �̂1 cv �̂1 cv �̂1 cv �̂1 cv �̂1 cv
0.22 0.2 2.00 1.8 3.92 3.4 6.10 5.0 8.95 6.6 14.46 8.2
0.44 0.4 2.23 2.0 4.17 3.6 6.41 5.2 9.40 6.8 15.88 8.4
0.65 0.6 2.46 2.2 4.43 3.8 6.73 5.4 9.89 7.0 17.85 8.6
0.87 0.8 2.70 2.4 4.69 4.0 7.05 5.6 10.42 7.2 20.89 8.8
1.10 1.0 2.94 2.6 4.96 4.2 7.39 5.8 11.01 7.4 26.42 9.0
1.32 1.2 3.18 2.8 5.24 4.4 7.75 6.0 11.68 7.6 39.82 9.2
1.54 1.4 3.42 3.0 5.52 4.6 8.13 6.2 12.44 7.8 114.76 9.4
1.77 1.6 3.67 3.2 5.81 4.8 8.52 6.4 13.35 8.0 +.Inf 9.5
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Null rejection frequency of subset AR test based on conditional (red) and
�2k�1 (blue) critical values, as function of �1: 10000 MC simulations with

importance sampling over a grid of 42 points.



Power

� The subvector AR statistic is the LR statistic for testingH 00 : � (A) � mW
against H 01 : � (A) = mW + 1 for A = E

�
Z0 (y � Y �0 ... W )

�
; where

the data is Z0 (y � Y �0 ... W ) :

� H0 : � = �0 implies H 00 but the converse is not true:

� H 00 holds i¤ � (�Y (� � �0)
... �W ) � mW , which includes H1 : � 6=

�0 when H
0
0nH0 holds, i.e., if �W is rank de�cient or �Y (�� �0) 2

span(�W ):

� UnderH 00; (�̂1; :::; �̂p) are distributed as eigenvalues ofWp
�
k; Ip;M0M

�
with rank de�cient noncentrality.



� Thus, every test '(�̂1; :::; �̂p) 2 [0; 1] that has size � under H0 must
also have size � under H 00; so cannot have power exceeding size under
alternatives H 00nH0.

� In other words, size � tests '(�̂1; :::; �̂p) can only have nontrivial power
under alternatives � (A) = mW + 1.

� We use this insight to derive a power envelope for tests of the form
' (�̂1; :::; �̂p) :

� Consider only the case mW = 1:



� Testing � (M) � 1 against � (M) = 2; where � � N (M; I) :

� Equivalently, H 00 : �2 = 0; �1 � �2 against H 01 : �2 > 0; �1 � �2:

� Maximal invariant is �̂1; �̂2 (Muirhead, 2009, Section 10.2).

� Likelihood (James, 1964)

lik (�j�̂) = exp
�
��1 + �2

2

�
0F

(2)
1

 
k

2
;
1

4

 
�1
0

0

�2

!
;

 
�̂1
0

0

�̂2

!!

� Computed using the algorithms developed by Koev and Edelman (2008),
available in C and Matlab.



Power bounds

� Point-optimal power bounds for reduced rank testing problem using least
favourable distribution �LF over nuisance parameter �1.

� Two methods: Andrews Moreira and Stock (JoE, 2008, Sec 4.2) �AMS.

� assumes one-point �LF ; gives lower and upper bounds on envelope.

� Elliott Mueller and Watson (Ecma 2015, Lemma 1) �ALFD (Approximate
LF distn).

� Implementation: 42 points evenly spaced in log-scale between 0 and 99.
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Power of conditional subvector AR test 'c (�̂) = 1f�̂2>c1��(�̂1;k�1)g relative to power
bound (left) and power of 'c, 'GKMC (�̂) = 1

n
�̂2>�

2
k�1;1��

o = 1f�̂2>c1��(1;k�1)g
and bound at �1 = �2 (right) for k = 5. Computed using 10000 MC replications.



� Little scope for power improvement over proposed test.



Size for mW > 1

When mW = 1 the new subvector AR test has correct size and uniformly
improves the power of the test in GKMC.

! Generalize this result to any mW :

We de�ne a new subvector AR test that rejects when

ARn (�0) > c1��(�max
�
�0�

�
; k �mW ):

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Show now that this test has correct size and has uniformly larger power than
the test in GKMC.



Theorem: Under the null H0 : � = �0, there exists a random orthogonal
matrix O, such that for

e� = �O 2 Rk�p; and its upper left submatrix ~�11 2 Rk�mW+1�2

~�011~�11 is a non-central Wishart 2 � 2 matrix of order k �mW + 1 (cond�l
on O); whose noncentrality matrix, ~M0

1
~M1 say, is of reduced rank.

It then follows that

(i) ARn (�0) = �min
�
�0�

�
= �min

�
~�0~�

�
� �min

�
~�011~�11

�
� �max

�
~�011~�11

�
� �max

�
~�0~�

�
= �max

�
�0�

�



and thus

P (ARn (�0) > c1��(�max
�
�0�

�
; k �mW ))

� P (�min
�
~�011~�11

�
> c1��(�max

�
~�011~�11

�
; k �mW ))

� �;

where the last inequality follows from the case mW = 1 (by conditionning on
O).

(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1��(�; k �mW )) is increasing and converging to �2k�mW ;1�� as argument
goes to in�nity).



Asymptotic case

� Parameter space F under the null hypothesis H0 : � = �0: Let Ui =
("i; V

0
W;i)

0 and F distribution of (Ui; VY i; Zi)

F is set of all (;�W ;�Y ; F ) s.t.

 2 RmW ;�W 2 Rk�mW ;�Y 2 Rk�mY ;
EF (jjTijj2+�) � B; for Ti 2 fZi"i; vec(ZiV 0W;i); VW;i"i; "i; VW;i; Zig;
EF (Zi("i; V

0
Wi; V

0
Y i)) = 0;

EF (vec(ZiU
0
i)(vec(ZiU

0
i))
0) = (EF (UiU

0
i)
 EF (ZiZ0i));

�min(A) � b for A 2 fEF (ZiZ0i); EF (UiU 0i)g

for some b > 0, B < 1; where �min(�) is smallest eigenvalue, �
�
Kronecker product, vec(�) column vectorization.



� Subvector AR stat equals

ARn (�0) = �min

0B@
0@Y 0MZY

n� k

1A�1=2 (Y 0PZY )
0@Y 0MZY

n� k

1A�1=2
1CA

where

Y := (y � Y �0 ... W ) 2 Rn�(1+mW )

� GKMC showed 'GKMC = 1n
ARn(�0)>�

2
k�mW;1��

o has correct asymp-
totic size for parameter space F .

� Current paper: 'c = 1fARn(�0)>c1��(b�max;k�mW )g has correct asy size.



Asymptotic Size of conditional subvector AR test

� The derivation of asymptotic size follows the method of Andrews Cheng
and Guggenberger (2011).

� The complication relative to GKMC is that we need joint limiting distrib-
ution of b�1; :::; b�p; not just the minimum, b�p:

� Fortunately, we can use the results of Andrews and Guggenberger (2015)
on limit distribution of eigenvalues of quadratic forms.

� It turns out that joint limit depends only on localization parameters corre-
sponding to the singular values of

(EFZiZ
0
i)
1=2(�W;�W )
(�0)

�1=2;



which correspond to singular values of �W (concentration matrix) in the
�nite sample case.

� Hence, replicates the �nite sample, normal, �xed IV, known variance matrix
setup.

� Correct asymptotic size then follows from correct �nite sample size.



Takeaways

� We can obtain uniform power improvement over the subvector AR test in
GKMC by using data-dependent critical values.

� We propose one such test whose conditional cv�s are easy to compute and
can be tabulated.

� In the case mW = 1; i.e., when there is a single endogenous regressor
whose coe¢ cient is unrestricted under H0; the proposed cv�s are an in-
creasing function of a �rst-stage F statistic for that regressor.

� There is little scope for further power improvement when mW = 1 �our
proposed test is nearly optimal.



Current work: Drop assumption of conditional homoskedasticity ! allow for
heteroskedasticity.

� Lee (2014) found an example in which the subvector AR with �2k�mW ;1��
cv�s overrejects when the covariance matrix does not have Kronecker prod-
uct form.

� Importantly, this does not apply to iid data.

� So far, we have found correct size of the heteroskedasticity robust subvector
AR test that uses �2k�mW ;1�� cv�s when mW = 1 and k = 2:

� We are working on generalizing this to higher dimensions.


