
Car Accidents and 3G Coverage: New Evidence Using

Cell Phone Tower Construction

Bree Lang∗

Matthew Lang†

Jonathan Hersh‡

ABSTRACT

We examine the relationship between the growth of 3G cellular phone coverage and

traffic accidents in California between 2001 and 2013. Cellular coverage maps are only

available from the FCC in 2015 and 2016, but not in the mid-2000s when 3G coverage

was introduced to the public. We link cellular coverage along a highway in 2016 to

the location of antenna towers and then apply machine learning techniques to predict

coverage between 2001 and 2013. Fixed-effect Poisson regressions find that car accident

rates increase 1.1 percent when 3G cell phone coverage is introduced to an area, controlling

for traffic volume. The types of accidents most responsive to 3G coverage are non-severe

crashes that take place in highly trafficked areas. Accidents caused by drivers over 65 do

not change in response to 3G coverage. In contrast to much of the previous research, we

find a persistent increase in traffic accidents when access to cellular coverage increases.

Our empirical findings suggest that 3G coverage is responsible for approximately 3,305

accidents per year in California.
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I. Introduction

Between 2000 and 2015, the number of mobile cellular subscriptions in the United States

increased from 109 million to 382 million (International Telecommunications Union, 2017).

The rise in mobile phones corresponds with an increase in cell phone functionality. In addition

to being able to make a phone call, hand-held cellular devices are able to text message, browse

the internet, video chat and analyze data anywhere there is an adequate wireless connection.1

A potential consequence of the increased use of wireless devices is that users may become

distracted by their phone while engaging in common activities, such as driving.

The potential costs of using a cell phone while driving has caught the attention of public

health advocates, cellular providers, policy makers and researchers. The National Highway

Traffic Safety Administration (NHTSA) frequently promotes distracted driving awareness

campaigns2 and AT&T has released controversial advertisements depicting fatal car crashes

caused by cell phone use as part of their ”It Can Wait” campaign.3 There is strong public

support for cellular bans while driving, with support for texting bans ranging from 86 to 98

percent.4 All but two states have enacted a cellular phone ban for drivers (National Conference

of State Legislatures, 2018) and the state-level bans are often used to proxy for cell phone use

by drivers. Research relating cellular bans to traffic accidents are sensitive to the geographical

setting, time period and severity of accidents being analyzed.5 The inconclusive relationship

between aggregate cell phone use and accident rates are in contrast to individual-level research,

which finds that cell phone use reduces the quality of driving.6

In this paper, we predict 3G coverage along all road segments in California from 2001

to 2013 and examine how the frequency of accidents change before and after 3G coverage

1Wireless 3G coverage is reportedly available on the summit of Mt. Everest (Oberhaus, 2016).
2The NHTSA has turned to Twitter in order to personally tell drivers to stay off their phone (Matyszczyk,

2016)
3https://www.itcanwait.com/videos
4These numbers come from polls conducted by the New York Times (Connelly, 2009), the American

Automobile Association (American Automobile Association, 2013) and the Insurance Institute for Highway
Safety (Williams et al., 2011).

5Kolko (2009), Abouk and Adams (2013), Nikolaev et al. (2010), Sampaio (2014) and Burger et al. (2014)
all examine the relationship between cell phone laws and accident rates.

6See Redelmeier and Tibshirani (1997), Abdel-Aty (2003), Strayer et al. (2003) and Törnros and Bolling
(2005) for evidence showing that cell phones reduce the quality of driving and increase the likelihood of a crash.
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becomes available. Poisson fixed-effect regression results show that car accident rates increase

significantly by 1.1 percent when a road segment gains 3G coverage. In event-study analyses,

there is no change in accident rates prior to a road gaining 3G coverage, but a significant and

persistent increase in accidents after an area gains 3G coverage. The types of accidents most

responsive to 3G coverage are those that do not involve bodily harm, take place in high traffic

areas and where the driver at fault is younger than 65 years old. While the magnitude of our

results are smaller than related research studying the determinants of fatal accidents, we find

that 3G coverage is responsible for approximately 3,305 accidents per year in California.7

In order to carry out our empirical analysis, we construct a novel dataset that estimates

annual 3G coverage for a quarter-mile stretch of road (road segment). Each road segment

in California is assigned 3G coverage in 2016 using data from the Federal Communications

Commission (FCC). Because accurate coverage data is not available prior to 2016, information

on licensed antenna towers are linked to road segments in 2016. Machine learning techniques

are used to determine which attributes of towers best predict 3G coverage. Tower information

is available annually and the machine learning results are applied to road segments between

2001 and 2013, the time period in which 3G cellular towers were built. The resulting dataset

consists of the annual number of reported traffic accidents along a road segment in California,

annual traffic counts for each road segment and an estimate of whether 3G coverage is available.

The reliability of our results hinge on a number of assumptions. The first assumption is that

the predicted coverage variable we create accurately measures the growth in 3G coverage. It

is not possible to confirm the existence of 3G coverage before 2015, but we have evidence that

our coverage estimates are accurate. The machine learning results are created using a random

sample of 80% of data. The remaining 20% of the data is used as test data and our results

accurately predict coverage in over 98.5% of road segments in the test data. Additionally,

predicted growth in the fraction of road segments covered by 3G are strongly correlated with

the growth in mobile broadband subscriptions over the time period of our analysis.

7The fatal accident rate increases by 15 percent after an individual turns 21 (Carpenter and Dobkin, 2009)
and the accident rate in Tippecanoe County, Indiana increased by 47 percent in the months following the
introduction of Pokémon Go (Faccio and McConnell, 2018). Adams et al. (2012) find that a 10 percent increase
in the minimum wage is associated with a 5 to 10 percent increase in fatal accidents involving 16-20 year olds.
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Another assumption we make is that the construction of new towers explains the growth in

3G coverage, but tower construction is not related to unobservable characteristics that increase

accidents. Our empirical analysis controls for the annual average daily traffic (AADT) along a

road segment, mitigating concerns that the results are biased by an increase in overall traffic.

Additional analyses of the machine learning prediction method show the 3G coverage prediction

is unlikely to be capturing unobservables that increase the likelihood of an accident. We are

reasonably confident that the increase in accidents we observe along a road segment when 3G

coverage is introduced is caused by drivers changing their cell phone related behavior.

The existing data is not able to identify what drivers may be doing on their phone when they

enter a road segment that has 3G coverage. In areas that already had basic cellular coverage

prior to gaining 3G coverage, our results are measuring the effect of moving from a 2G to 3G

network. The primary difference between 2G and 3G coverage is that data can be transferred

hundreds of times faster on a 3G network allowing users to quickly access data from the internet

and use web-based applications (Qualcomm, 2014). If texting behavior does not change when

drivers enter an area with 3G coverage, the results suggest that checking email and using phone

applications while driving increase the likelihood of an accident.

It is also possible that the positive relationship between car accidents and 3G coverage is

caused by an increase in text messaging. Although texting was available throughout much of

California prior to 2001, the growth in text messaging coincided with the proliferation of 3G

coverage and an increase in the functionality of cellular devices.8 If drivers with 3G compatible

phones are more likely to operate their phone when they have 3G coverage, and the phone is

used primarily for texting, it is possible that text messaging is the primary cause of the increase

in traffic accidents when 3G coverage becomes available. Because we do not know what exactly

drivers are doing on their phones when they get in an accident, our results capture the overall

impact of drivers becoming distracted as they enter an area with 3G coverage.

One contribution of our paper is that we are able to better inform policy makers about the

8In December, 2000, there were 14.4 million text messages sent in the US. By December, 2011, there were
193.1 billion text messages sent. These numbers are generated by the Cellular Telecommunications Industry
Association (CTIA) and the Wayback Machine (https://archive.org/web/). The CTIA’s Wireless Quick Facts
(www.ctia.org/consumer info/service/index.cfm/AID/10323) from April 20, 2010 and April 22, 2012 yield the
monthly texts sent in the United States.
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consequences of using a cell phone while driving. We improve upon many related studies that

use state-level data and fatal accidents to estimate the relationship between cell phones and

accidents. We analyze accidents along a one-quarter mile stretch of road and road segment

fixed-effects capture time-invariant unobserved determinants of accidents, such as the inherent

dangers along a road. These unobservable factors cannot be captured when data are aggregated

to the county, state or national level. A policy implication of our paper is that existing cell

phone laws do not appear to be effective, but developing laws that substantially alter how

drivers use their cell phone may lead to a reduction in car accidents.

In addition to providing new and important insight into a relevant policy discussion,

the current paper adds to the growing use of machine learning in economics (Athey, 2017;

Mullainathan and Spiess, 2017).9 Cicala (2017) builds random forest models to non-

parametrically estimate operating rules for counterfactual electricity markets, which are then

embedded in a difference-in-difference framework. Bajari et al. (2015) use machine learning

based ensemble methods to estimate consumer demand, showing machine learning methods

often outperform the standard demand estimation methods. Other researchers have used

machine learning for predicting relevant information when surveys may be too expensive or of

insufficient spatial or temporal resolution. Glaeser et al. (2017) use data on changes in businesses

and restaurants on the website Yelp to forecast change in establishments and restaurants at

small geographies in official data. Engstrom et al. (2017) and Babenko et al. (2017) generate

poverty headcount rates for Sri Lanka and Mexico respectively, using machine learning models

developed on features derived from high resolution satellite images. The novel application here

is embedding a machine learning prediction into a causal model.

In the next section, we review the growth of mobile and broadband coverage. Section 3

introduces the data and develops coverage maps using machine learning techniques. Empirical

results are presented in section 4. We discuss the implications of our findings in section 5 before

concluding in section 6.

9The range of applications has led some researchers to suggest that machine learning methods should be
taught as part of core empirical methods in graduate programs (Hersh and Harding, 2018).
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II. Background

The first commercial mobile phone service in the United States was developed in 1983 by AT&T

Bell Labs. Ten antenna towers ranging from 150- to 550- feet high covered 2,100 square miles

around Chicago. This early analog system technology was costly, used sparingly and eventually

replaced by a digital, second generation (2G) wireless system in the early 1990s. The 2G mobile

system allowed for better voice quality, more efficient use of frequency bandwidths and improved

security as simple encryption became possible. The 2G networks facilitated the creation of the

Short Messaging Service (SMS), also known as text messaging and initially transferred data at

a speed of around 10 kilobytes per second. Improvements in the structure of 2G networks and

the quality of antenna towers increased the maximum downloading speed to 120 kilobytes by

the late-1990s, but this speed was difficult for the typical user to obtain. By the early 2000s,

technology for 3G networks had been developed, although the adoption of 3G coverage did not

begin until the mid-2000s.10 Devices on 3G networks could initially download data at a rate of

144 kilobytes per second when driving and 2000 kilobytes per second in a building environment.

By 2005, 3G coverage data speeds was over 500 kilobytes per second for the average user.11

Improving wireless download speeds spurred growth in related industries. When Ameritech

launched the first 1G network phone in 1983, the 2-pound DynaTAC 8000x retailed at $3,995

and could be used for 35 minutes before needing ten hours of charging (NBC, 2005). The growth

in 2G networks led to the creation of smaller mobile phones that had longer battery lives and

improved functionality. Browsing the internet on a 2G network was possible, but limited as a

result of the slow data transmission speed.12

The growth of the faster 3G networks led to further improvements in the functionality

of phones. When 3G service in the United States was first introduced by Verizon in 2002,

two devices were capable of accessing the 3G network as long as the device was connected to a

computer or had a PC card (CNN, 2002). In June 2007, Apple released the first iPhone (Apple,

10Prior to 2005, less than one percent of the United States population had a mobile broadband subscription,
which increased to 52 percent by 2010 (TekCarta, 2018).

11See Ghosh et al. (2010) and Sauter (2013) for more information on the history and technology of cellular
networks.

12By the end of the 1990s, mobile phones in Europe were being used to purchase goods from vending machines
(Peña-López et al., 1999) and Japan released full internet service on mobile phones in 1999 (Ishii, 2004).
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2007). The processing power of the 4.8-ounce first generation iPhone was faster than the 1980s

supercomputer CRAY-1 and comparable to laptops in the year 2000 (Experts Exchange, 2018).

The HTC Dream, with its QWERTY keyboard, was launched in 2008 and became the first

smartphone to use Google’s Android operating system (T-Mobile, 2008).

The influence of modern smartphones on individual lifestyles and behaviors is hard

to understate. Increased smartphone functionality gave rise to a market of smartphone

applications. By 2009, over 1 billion “apps” had been downloaded in Apple’s “App Store”

(Dormehl, 2018) and by 2012, both the Google Play and the App Store had over 500,000

unique apps available for download (Dogtiev, 2018). Smartphones are now used for many

activities, including watching TV, getting directions, trading stocks and video calls. In 2017,

Deloitte found that 89 percent of individuals check their phone within an hour of waking up

and 81 percent look at their phone less than an hour before going to bed (Deloitte, 2017).

Teens are estimated to spend nine hours per day on social media (Common Sense Media, 2015)

and approximately 20% of adults are estimated to own a smartphone but do not have landline

broadband internet at home (Pew Research Center, 2018).

Cell phone use is often compared to substance abuse and gambling disorders (De-

Sola Gutiérrez et al., 2016) and cell phone addiction has been linked to depression, relationship

issues and anxiety (Babadi-Akashe et al., 2014; Andreassen, 2015). Smartphone overuse can

lead to physical problems such as eye strain, “text neck” and male infertility (Rosenfield, 2016;

Lee et al., 2015; Deepinder et al., 2007). Researchers have found a negative correlation between

cell phone use and grades in science courses (Douglas et al., 2012) and productivity at work

(Thornton et al., 2014). Nasar and Troyer (2013) show that mobile phone related injuries

among pedestrians that resulted in emergency room visits increased significantly between 2004

and 2010. Palsson (2017) makes a significant stride in measuring high-speed wireless coverage in

the United States and shows that when a hospital becomes part of AT&T’s 3G network, injuries

for young children increase and the results are arguably driven by parents being distracted.

Considering that parents are less attentive to their children as a result of 3G coverage, it

is reasonable to believe that drivers would also be less attentive when using their cell phone.

Redelmeier and Tibshirani (1997) examine cell phone records from 700 accidents and find that
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the likelihood of a car crash increases significantly when a driver uses a cell phone. Studies

from driving simulations find that drivers on cell phones have reduced peripheral detection

(Törnros and Bolling, 2005), increased braking time (Strayer et al., 2003) and are more likely

to be involved in a crash (Abdel-Aty, 2003). Reviews of laboratory and simulator studies by

Caird et al. (2008) and Caird et al. (2014) suggest that texting while driving leads to increased

reaction time, more collisions and worse lane positioning.

Despite the evidence that cell phone use reduces the effectiveness of individual drivers,

there is less evidence showing that cell phone use increases the overall accident rate. The

lack of evidence can be partially attributed to the difficulty in obtaining data that reports

traffic accidents and cell phone accurately over a relevant period of time. Many studies use

the adoption of cell phone and texting bans to proxy for changes in the use of cell phones, but

the results of the studies vary based on the empirical approach used and time period examined

(Nikolaev et al., 2010; Sampaio, 2014; Burger et al., 2014; Abouk and Adams, 2013; Kolko,

2009). Cheng (2015) does show that bans are associated with reductions in cell phone use at

specific intersections, but it is possible that drivers respond to cell phone bans by increasing

their use of a hands-free cellular device (Carpenter and Nguyen, 2015). Bhargava and Pathania

(2013) exploit discontinuities in the ”free nights and weekends” cellular plans from the mid-

2000s and show that reducing the marginal cost of cellular calls at 9pm is not associated with

a change in the rate of car accidents at the state level.

A recent survey of 3 million individuals over 3 months by Zendrive found that drivers use

their phones on 88 percent of trips and are on their phone 3.5 minutes per hour of driving

(Zendrive.com, 2018). Although many drivers use their cell phone, and cell phone use is related

to poorer driving, researchers have been unable to consistently show that cell phone use leads

to an increase in the overall accident rate. The current paper improves upon existing research

by using a unique dataset and a new identification strategy to explore if gaining access to 3G

cellular coverage increases the rate of traffic accidents. Our analysis provides important insight

into the the relationship between cell phone use and traffic accidents that has been hard to

observe in previous research.
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III. Data Description and Predicting 3G Coverage

The first step in the construction of our data is defining a unit of observation. California defines

their highways with a postmile system. A postmile value reports the mileage along a route,

within a county. The postmile value starts at zero whenever a route crosses over a county

border or when it originates.

In the analysis below, the postmiles of interest represent the road segment east or north until

the next postmile on the route. This is done because postmile values increase to the west and

south. Imagine a route runs west to east, the start of the route is postmile zero, one mile east

is postmile one and two miles east is postmile two. The first road segment is defined between

postmile zero (which lies on the west side of the road segment) and postmile one. The second

road segment is defined between postmile one and postmile two. The same process occurs when

the route runs from south to north.

California reports two different postmiles for each location on a highway, one for each

direction. We combine these two points into a single postmile observation, which yields a

total of 63,733 postmiles along California highways. The average distance between postmiles

is approximately 0.25 miles, although the distance can be larger in rural areas. However, only

5% of the postmile observations represent road segments greater than one mile and only 1%

are greater than 2.25 miles. Each postmile can be thought of as representing a road segment

along a California highway. The postmile definitions do not change from year-to-year, so we

use them as our unit of observation.13.

A. 3G Coverage Data

The Federal Communications Commission’s (FCC) Mobile Deployment Form 477 shapefiles

provide information on mobile broadband coverage, by provider, on December 31, 2014 and

December 31, 2015. Because the coverage maps are so similar between the two years, we focus

on the shapefile that was published on December 31, 2015, but refer to it as the broadband

coverage in 2016. The 477 files define and report broadband coverage in categories based on

13We only include postmiles that are in existence over the entire time period, so we do not account for road
construction or destruction. For more information about postmiles, see https://postmile.dot.ca.gov/
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Figure 1: Postmile 3G Coverage in 2016

speed.14 We build our coverage data using the shapefiles for coverage defined as 3G or faster.

The data only includes the coverage maps for the four largest mobile service providers, measured

by market share in 2016 (in parentheses): Verizon (34.9%), AT&T (32.3%), T-Mobile (16.8%)

and Sprint (14.4%).15

Using ArcMap, software for Geographical Information System (GIS) analysis, we overlay the

3G coverage maps with the postmiles. Then we define a postmile as having 3G coverage in 2016

if the postmile intersects with the shapefile from the FCC. If the shapefile overlaps with the

postmile (a point on the map), the entire road segment the postmile represents is assumed to

have 3G coverage. This assumption is not strong, given the average distance between postmiles

is only 0.25 miles.

We define 61,074 out of the 63,733 postmiles as having 3G coverage in 2016, or 97%. Figure

1 is a map of the postmiles, showing whether or not they are reported as having 3G coverage

14The codes for 2G coverage are 85 and 86. The codes for 3G coverage are 80 and 82. The codes for 4G
coverage are 81 and 84. The code for 4G LTE coverage is 83.

15Market share statistics are from https://www.androidheadlines.com/2016/11/

top-7-us-wireless-carriers-q3-2016.html/.
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in 2016.

While the FCC shapefiles are useful for establishing coverage in 2016, there is no information

reported between 2001 and 2013. Because this is the time period in which 3G coverage was

expanding, we devise a strategy to predict coverage during that time period. We first assume

that no road segments had 3G coverage prior to 2005, which is consistent with the fact that

less than one percent of the population had mobile broadband service before 2005. A second

3G coverage data point is available by combining the information on 3G coverage in 2016 with

information on the location and attributes of cellular towers. With 3G coverage and tower

attributes at two points in time for each road segment, we can predict 3G coverage for the time

period that accident data is available in California, 2001 to 2013.

B. Cellular Tower Data

The FCC requires all antenna structures over 200 feet high (towers) to be registered through

the Antenna Structure Registration (ASR) system and information on tower location, elevation,

year of construction and height is available publicly. Even though all structures over 200 feet

high are required to be registered, roughly half of the towers in the registry are less than 200

feet.

The location of towers are geocoded using Geographical Information System (GIS) software

and are laid on the map consisting of California postmiles. We restrict the sample of towers to

those that were built after 1990, as older towers are less likely to be used for cellular coverage.

In 2001, there were 3,101 existing towers within California’s borders, which increased to 6,255

towers in 2013. In 2016, there were 6,556 towers. We create variables that measure the spatial

relationship between postmiles and towers, based on information at the beginning of each year.

Table I reports those statistics.

The first variable we create is the number of towers that exist within a 20-mile radius of

each postmile. The range of coverage from a tower is unknown and varies. A tower’s range

depends on the type of cell tower built, the strength of the transmitter, the relative height, the

surrounding landscape and the number of users in the area. In densely populated areas, such
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as business parks and campuses, picocell towers are common and have a range of 250 yards

(Harris, 2011). Macrocell towers in rural areas can provide coverage more than 20 miles away

(Heimerl et al., 2013). Based on estimates of maximum tower ranges, we determine that a

20-mile radius is a sufficiently large range to capture the relevant towers for each postmile. The

average number of towers within a 20-mile radius in 2001 was 82.4 and increased to 170.4 in

2013.

Table I: Relationship between Postmiles and Towers: Descriptive Statistics

Attributes of Tower Nearest to Postmile

Year Towers Within 20 Miles Distance Construction Year Max Tower Elevation

2001 82.4 3.66 1996.2 455.9
2002 92.1 3.42 1996.8 452.4
2003 97.3 3.21 1997.1 449.7
2004 103.2 3.11 1997.5 447.4
2005 111.9 3.03 1997.9 447.0
2006 122.1 2.98 1998.2 446.7
2007 131.9 2.86 1998.7 448.8
2008 138.2 2.82 1999.0 447.5
2009 144.3 2.78 1999.3 449.4
2010 149.3 2.77 1999.5 448.3
2011 158.5 2.72 2000.0 446.5
2012 165.6 2.68 2000.4 448.8
2013 170.4 2.65 2000.7 445.6
2016 179.0 2.60 2001.4 445.7

Describes 63,733 postmiles in California. Distance is reported in miles. Elevation is reported in feet. The
average elevation of the postmiles is 498.3 feet and the standard deviation of the elevation within 20 miles is
36.3 feet.

The remaining variables we create are based on the attributes of the tower that is closest

to the postmile in a given year. The average distance of the closest tower decreased from

3.66 miles in 2001 to 2.60 miles in 2016; the average year of construction for the closest tower

increased from 1996.1 to 2001.4 between 2001 and 2016; and the average elevation of the top

of the nearest towers decreased from 455.9 to 445.7 between 2001 and 2016. The shortening

of towers over time is consistent with an increase in demand for ”stealth towers” by citizens.

Stealth towers are built to look like the surrounding area (Wikle, 2002). Assuming that new

and closer towers are indicative of an area gaining 3G coverage, the tower data is consistent

with the expansion of 3G coverage throughout California over this time period.
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C. Predicting 3G Coverage with Machine Learning

Using information on whether a postmile has 3G coverage in 2016, we use machine learning

methods to predict whether a postmile has 3G coverage during the years 2001-2013, during

which we only observe detailed cellular tower characteristics and not 3G coverage. Specifically

we fit a random forest model (Breiman, 2001) to predict 3G coverage based on characteristics

of cellular towers close to the postmile.

We estimate a model using 2016 data to estimate if postmile i has 3G coverage yi where

yi =


1 if postmile has 3G coverage

0 if postmile does not have 3G coverage

The desired output is a model of conditional probability pi ≡ Pr(yi = 1|X) where X is a

vector of characteristics about cellular towers located near the postmile. Table II shows the

full list of variables available to model 3G coverage. These include the number of towers within

20 miles of the postmile, the distance to the nearest cellular tower, elevation and standard

deviation of elevation of the areas near postmiles, year of construction of the closest tower,

among others. In total we use fourteen continuous variables to model the probability a postmile

has 3G coverage.

The standard approach is to fit a parametric logistic regression of yi on X. There are several

reasons why this approach is inadvisable for this prediction task. The relationship between yi

and X may be sufficiently non-linear such that we cannot assume to know the functional form

mapping the two. Indeed, estimating a logit of yi results in a very poor fit of the data. Without

assuming the functional form of yi we estimate a model of the form

pi = (Y = 1|X) = f(X) + ε

where f(X) is estimated using a random forest. Random forests are a popular method for

classification and regression prediction that produce reliable out-of-sample prediction. A

random forest model is an ensemble method, meaning it combines many different models,

each of which is a simple decision tree. Decision trees partition the target data (postmile 3G
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coverage) by finding a variable (e.g. height of tower) and a proposed split of that variable

(e.g. less than 30 feet) that best partitions the target into groups that reduce within-group

variance.16 A series of variable selection and splits are performed until some stopping criterion

is reached.

Random forests are comprised of many of these decision trees, however there is a catch

in estimating each regression tree. Each time a decision tree is estimated, we bootstrap a

subsample of data on which we estimate (also know as train) the decision tree. Further, at

each decision node (or variable split), we sample which variables the decision tree can use to

partition the response data. This may seem as if we are needlessly handicapping the model by

reducing the variables the model can choose. However, in practice this approach works well

for fully exploring the parameter space and preventing overfitting, or fitting noise rather than

signal. Prediction in a random forest is performed by combining (or ensembling) all of the

decision trees. The resulting pi for any postmile i is the fraction of decision trees that predict

the postmile with characteristics Xi have 3G coverage.

Our random forest model is estimated using 1,000 decision trees. We further partition

our estimation dataset into a training and test set, of sizes 80% (Ntrain = 254, 912) and 20%

(Ntest = 63, 728) of the full estimation dataset respectively.17 Our model is estimated against

the training set and model diagnostics are performed on the test data – which was not used

to fit the model and thus functions as a better approximation of out-of-sample performance.

The remaining parameter to select is how many variables to randomly sample at each decision

split. Appendix figure 10 shows cross-validation model accuracy across a number of values of

the parameter. We achieve best cross-validated accuracy by randomly sampling five variables

at every decision split.

A remaining assumption to make is the date of 3G cellular introduction. We set 3G coverage

to be equal to zero from 2001 - 2004, giving 2005 as the first date of introduction of 3G service.

This assumption best matches rates of mobile broadband in the US (TekCarta, 2018), which

16Classification problems such as this amounts to separating postmiles into those that have and don’t have
3G coverage.

17Summary stats for the estimation and prediction stages are shown in table II. Summary statistics for the
observations used for prediction are shown in panel B of the same table.
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Table II: Summary statistics, 3G coverage estimation data

mean sd min max

Panel A: Summary statistics, data used to estimate postmile 3G coverage, 2001-05; 2016
Towers within 20 mi. of postmile 111 138 0 843
Towers within 20 mi. squared 31,279 76,678 0 710,649
Distance to nearest tower from postmile 3.2 4.3 .0018 46
Distance to nearest tower squared 29 86 3.2e-06 2,130
Std. dev. of elevation of land within 20 mi. 36 11 7.2 64
Elevation at centroid of postmile 498 514 -21 2,665
Year of construction of nearest tower 1,998 4.4 1,990 2,015
Height in feet of nearest tower 30 22 0 584
Height squared 1,405 3,773 0 340,706
Height above sea-level of nearest tower minus height -48 275 -1,373 1,850
Std. dev. elevation X Towers in 20 mi. 1102698 2987691 0 2.9e+07
Year of construction X height nearest tower 60,518 44,099 0 1176156
Year of construction X std. dev elevation 2888102 1709135 103,996 8222200
Towers within 20 miles X height nearest 2,906 4,767 0 158,246

Observations 318640

Panel B: Summary statistics, data used to predict 3G coverage, 2006 - 2013
Towers within 20 mi. of postmile 132 160 0 843
Towers within 20 mi. squared 42,846 90,502 0 710,649
Distance to nearest tower from postmile 2.9 4 .0018 46
Distance to nearest tower squared 25 76 3.2e-06 2,130
Std. dev. of elevation of land within 20 mi. 36 11 7.2 64
Elevation at centroid of postmile 498 514 -21 2,665
Year of construction of nearest tower 1,999 4.7 1,990 2,015
Height in feet of nearest tower 30 22 0 584
Height squared 1,369 3,027 0 340,706
Height above sea-level of nearest tower minus height -50 271 -1,373 1,850
Std. dev. elevation X Towers in 20 mi. 1521921 3519389 0 2.9e+07
Year of construction X height nearest tower 60,134 43,046 0 1176156
Year of construction X std. dev elevation 2889420 1710047 103,996 8222200
Towers within 20 miles X height nearest 3,435 5,535 0 158,246

Observations 892237
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show broadband subscriptions per 100 persons in 2004 of 0.41. In 2005 the US achieved 1.03

mobile broadband subscriptions per 100 persons.18

The Receiver Operating Characteristic (ROC) plot from using the fitted random forest

model to predict 3G coverage for observations in the test set is shown in figure 11. The ROC

plot shows an exceptional model fit, with an Area Under Curve (AUC) of 0.9966. This is an

impressive result given that these are diagnostics from predicted observations into the test set,

which were not used to estimate the random forest model. The prediction task is all the more

challenging given that the majority of postmiles have 3G coverage in 2016, and none had 3G

coverage in ’01 - ’04.

Threats to identification embedded in the prediction model

One threat to identification is that the random forest model learns and predicts characteristics

that increase the probability of traffic accidents that are correlated with changes in predicted

3G coverage but are not related to 3G coverage itself. An example is that changes in predicted

3G coverage may be correlated with road disrepair, which may increase the likelihood of traffic

accidents in absence of 3G coverage.

One is naturally tempted to ask the random forest model how it calculates its predictions.

While inference with these models is cumbersome, we can infer which variables are most useful

for the estimation by constructing a variable importance plot, as shown in figure 2, according

to the method described by (Breiman, 2001). The variable importance plot shows that the year

of construction of the closest tower is the most important variable used to predict 3G coverage

– over four times as important as the next variable. Other important predictor variables are

elevation, number of cellular towers and the standard deviation of elevation near the postmile.

The random forest appears to have ”learned” that postmiles located close to few, old cellular

towers, and near rocky terrain, do not have 3G coverage. We have no reason to believe why

any of these are correlated with unobservables that positively impact the probability of traffic

accidents, thus we are reasonably certain the prediction model is measuring changes in 3G

18Appendix figure 14 shows model diagnostics varying the assumption of 3G introduction from 2003, 2004,
and 2005. Prediction performance is comparable across models varying this date of introduction.

16



●

●

●

●

●

●

●

●

●

●

●

●

●

●

Distance nearest tower

Distance squared

Elevation

Height difference tower vs. postmile

Height of closest tower

Height squared

s.d. elevation X towers w/in 20 mi.

Std. dev. elevation

Tower year constructed

Towers w/in 20 mi.

Towers w/in 20 mi. sq.

Towers w/in 20 mi. X height

Year constructed X height

Year constructed X sd. elevation

0 25 50 75 100
Importance (increase in node purity)

V
ar

ia
bl

e 
na

m
e

Training data (80%), Assuming 3G introduced '05
Variable Importance, Random Forest Model

Figure 2: Random forest model variable importance plot

Variable importance plots are constructed according to (Breiman, 2001). The importance of variable j is
calculated by taking each decision tree in which the variable appears and re-calculating the out-of-bag error.
Importance is calculated by averaging over all of the decision trees the difference in out-of-bag error with and
without this permutation. Scores are normalized by dividing by the importance score of the variable with the
highest importance scores, thus the variable importance scores measure contribution relative to the highest
variable.

coverage and not unobservables that are correlated with 3G coverage.

From continuous probabilities to binary 3G coverage prediction

To generate a binary prediction from the continuous probabilities of postmile 3G coverage pi,

we must define some threshold c such that

ŷi =


1, if pi ≥ c

0, if pi < c

This is to say that we must make a threshold decision such that postmiles with probabilities

below this cutoff will be classified as not having 3G coverage, and those above this threshold

will be classified as having 3G coverage. The ROC curve, which presents the true and false

positives from any threshold decision, presents guidelines for that decision process.

Our preferred threshold cutoff value is 0.8. This choice is motivated by the fact that when

17



using this cutoff, observed mobile broadband subscribers most closely matches predicted 3G

postmile coverage, as shown in figure 3. The correlation between observed mobile broadband

coverage and predicted 3G postmile coverage is highest at this threshold, compared to

discretized cutoff values at 10% increments. The consequence of various thresholds in terms of

type I and type II error rates is shown in table III. We experiment with a variety of threshold

values between 0 and 1. The accuracy of our predictions using 0.8 as a threshold is 98.63%.

Choosing an alternative cutoff near 0.8 does not qualitatively impact the results, although the

magnitude and significance of the impact are generally increasing with the threshold used.

Table III: Binary prediction accuracy varying cutoff threshold

Prediction
Threshold

Accuracy
False negative

rate (type 1 error)
False positive

rate (type II error)
Correlation
Coefficient

1 88.42% 60.52% 0.00% 0.9852
0.9 97.78% 11.43% 0.04% 0.9671
0.8 98.63% 6.89% 0.07% 0.9729
0.7 99.02% 5.55% 0.09% 0.9728
0.6 99.16% 3.78% 0.14% 0.9682
0.5 99.27% 3.01% 0.19% 0.9590
0.4 99.29% 2.52% 0.28% 0.9433
0.3 99.22% 2.13% 0.46% 0.9204
0.2 99.22% 1.78% 0.81% 0.8865
0.1 98.23% 1.51% 1.83% 0.8306

D. Car Accident and Traffic Data

The previous sections combine recent 3G coverage data along road segments with tower

information to estimate the annual growth in 3G coverage between 2001 and 2013. A potential

consequence of the increase in 3G coverage is that automobile drivers will be more distracted by

their phones and the accident rate will rise. To explore this possibility, we merge 3G coverage

information to the number of accidents that took place along a postmile each year. Accident

data is available continuously in California between 2001 and 2013 from the California Highway

Patrol (CHP) Statewide Integrated Traffic Records System. The CHP reports the location of

a collision based on the county, route number and exact postmile. In most incidents, the age of

the drivers in the accident are reported, but whether the cause of the accident is inattention and
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Figure 3: Mobile broadband diffusion and postmile 3G prediction over time

alcohol involvement is less reliable, as detailed recording likely differs across police jurisdictions.

The dependent variable in our analysis is constructed by first aggregating the number of

accidents along a road segment each year. Each accident along a road segment is assigned

to the nearest postmile to the west or south of the accident. We also utilize information on

the the volume of traffic along a road segment, which allows us to construct an accident rate.

Traffic volume is reported annually by the California Department of Transportation (CalTrans)

through their Traffic Census Program.19 Their specific metric is the Annual Average Daily

Traffic (AADT), which is the total number of vehicles that travel along a road segment in a

year, divided by 365. The AADT provides a measure of how busy the road is on an average

day in a particular year.

Each year, Caltrans publishes traffic volume in a spreadsheet for approximately 4,000

locations in both directions. The locations are defined by county, route number and postmile.

This information is available for every year between 2001 and 2013 except 2009, in which there

was an error in the administrative data. We extrapolate values for 2009 using 2008 and 2010.

We assign AADT values to the nearest postmile west or south of the reporting location and

19See http://www.dot.ca.gov/trafficops/census/ for more information.
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take the average of the two directions.

Using this process yields precise traffic volume data for 3,709 postmiles in our dataset. This

is only a small subset of postmiles in our sample, so we use this data to construct average AADT

measures for routes within counties. For example, imagine we only have traffic information for

three postmiles of a route with 10 postmiles in a particular county. We take the average of the

AADT on the three postmiles and apply that average to all 10 postmiles on the route in that

county. Using this process, we are able to construct traffic value data for 61,804 of the 63,733

postmiles in our sample.

Because the sample of postmiles with traffic is a subset of all available postmiles, it is

important to note that the accident counts are similar, regardless of the sample. Appendix

figure 9 shows that the trend in accidents is the same for all postmiles, postmiles with traffic

data, all postmiles that have at least one accident between 2001 and 2013 and postmiles with at

least one accident between 2001 and 2013 that has traffic data. Accidents in all four postmile

subsets are increasing until 2005, decrease from 2007 to 2010, then remain relatively stable until

2013.20

In the previous subsection, the most accurate measure of 3G coverage along a road segment

occurs when the predicted probability of coverage is greater than 0.8. This distinct cutoff allows

us to evaluate how traffic accident rates change as a result of 3G coverage. Table IV presents

accident rate averages for all postmiles, postmiles that did not have coverage in 2005 but gained

coverage by 2013 (“Changers”), postmiles that gained 3G coverage in 2005 (“Always Covered”)

and postmiles that did not gain 3G coverage by 2013. The first column of Table IV shows that

the final dataset includes 51,727 postmiles and 70 percent of those postmiles gained coverage

between 2006 and 2013.

The second column of Table IV reports the Annual Average Daily Traffic average for each

group and shows that there is a noticeable difference in the level of traffic across the three

subsets of postmiles. The postmiles that are always covered have a relatively high AADT

average (100,192), compared to postmiles that gained 3G coverage between 2006 and 2013

20In the empirical analysis, we employ a fixed-effect count model, which omits the 16 percent of postmiles
that do not experience at least one car accident over the time period of interest.
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Table IV: Descriptive Statistics

AADT Accident Rate %∆ Accident Rate

Postmiles All Years All Years 2001 2005 2013 2005-2013

All 51,727 61,784 0.94 1.07 0.99 0.77 -22%
Changers 36,305 61,493 0.92 1.05 0.97 0.75 -23%
Always Covered 3,904 100,192 0.87 0.91 0.90 0.64 -28%
Never Covered 11,518 49,680 1.06 1.18 1.12 0.89 -20%

Predicted Coverage Threshold=0.8

(61,493). Areas that do not gain 3G coverage have a lower AADT average (49,680) than both

postmiles that were always covered and the postmiles that gained coverage in our analysis.

The accident rate for all years, 2001, 2005 and 2013 are reported for each subset of postmiles,

as well as the universe of all postmiles in the data. The average accident rate on a road segment

in all years is 0.94 per 10,000 AADT. This means that road segments that average 10,000 vehicles

per day average 0.94 accidents per year. The AADT average for all years of 61,784 implies that

the average road segment has 5.807 accidents per year.

Although the subsets of postmiles may be inherently different regarding their location and

traffic patterns, the relative change in accident rates across the postmile subsets suggest that

3G coverage could have had an observable impact on accidents. Specifically, in 2005, the subset

of postmiles that gained 3G coverage had an accident rate of 0.97 per 10,000 AADT, which

decreased to 0.75 in 2013, a 23 percent decrease. Postmiles that had 3G coverage starting in

2005 observed a 28 percent reduction in their accident rate (0.90 to 0.64).

Table IV only provides information on three specific years making the comparison of accident

rates across postmiles over time limited. Nonetheless, a first glance at the data suggests that

areas that gained 3G coverage between 2006 and 2013 had a lower reduction in accidents

than postmiles that had 3G coverage beginning in 2005. To more completely understand how

accident rates change in response to 3G coverage, the next section explores the relationship in

a fixed-effects regression framework.
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IV. Empirical Analysis

A. Empirical Specifications

The distribution of car accidents is skewed heavily to the right with 41 percent of postmile-year

observations having no accidents and 92 percent reporting fewer than 10 accidents. Because

of the nature of car accident data, we propose a Poisson fixed-effects model to examine the

relationship between car accidents and 3G coverage within a postmile. Assuming that the

conditional mean assumption holds, the estimates are consistent with robust standard errors

clustered on postmile (Cameron and Trivedi, 2005; Gourieroux et al., 1984).21

The exposure variable is average annual daily traffic (AADT) along the postmile route for

a given year, so it enters the specification with its coefficient constrained to equal one.22 The

resulting Poisson specification is the following:

E[Accidentit|·] = exp(α1PredictedCoverageit + ln(AADTit) + γi + τt + υit). (1)

The variable Accidentit represents the number of accidents that occur at postmile i in year

t. PredictedCoverageit can represent one of various measures of predicted 3G coverage. The

analysis will initially use a continuous measure of predicted coverage between zero and one

and then an indicator variable defined by a threshold between zero and one. AADTit is the

estimated annual average traffic volume for the postmile, γi is a postmile fixed effect and τt is

a time fixed effect.

In specification 1, the estimated coefficient α1 is interpreted as the percentage increase in

the accident rate when a postmile gains 3G coverage. When using a strict cutoff to define 3G

coverage, α1 is the percentage difference in the accident rate between all the years in which

PredictedCoverageit equals zero and all the years in which PredictedCoverageit equals one.

The identifying assumption in equation 1 is that the change in 3G coverage in a postmile, caused

21Although not provided, we also estimate these models with a fixed-effects negative binomial, fixed-effects
Poisson with bootstrapped standard errors and the quasi-maximum likelihood estimator with robust standard
errors suggested by Wooldridge (1999) and Simcoe (2008). All of the results from these estimation strategies
yield results that are similar in magnitude and statistical significance.

22If the coefficient is not constrained to one, the estimated coefficient of interest is not meaningfully altered.
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by the construction of new cellular towers, is not related to unobservable characteristics that

could influence the accident rate. While the regression does not have a large number of controls,

the analysis is able to control for changes in the AADT along postmiles, reducing concerns that

the results are capturing a change in traffic patterns. Postmile fixed-effects control for time-

invariant road segment characteristics associated with traffic accidents, further strengthening

our identification strategy.

Although specification 1 is able to capture many elements that explain traffic accidents, the

regression is unable to show the dynamic change in accident rates before and after a postmile

gains 3G coverage. To examine the annual effects of 3G coverage, we construct an event study

specification with a four year lead and lag, which illustrates how the number of accidents

changes when a postmile gains 3G coverage. The omitted category is the first full year of cell

phone coverage.23 The general equation is:

E[Accidentit|·] = exp(
−1∑

k=−4+

θkSit+k +
4+∑
j=1

θjSit+j + ln(AADTit) + γi + τt + υit). (2)

The term Sit equals one when the postmile has its first full year of 3G coverage in time t and

zero otherwise. The event study can only facilitate the use of binary treatment variables. The

previous section suggests that the most accurate cutoff occurs when a road segment is defined

as having 3G coverage when the predicted probability is above 0.8. However, we show results

when defining the coverage threshold to be 0.4, 0.6, 0.8 and 1.

B. Results

Table V shows the results from the fixed-effects Poisson specification (Equation 1). The first

two columns report results using continuous predicted 3G coverage. In column (1), the AADT

or traffic volume, enters the regression as a control. According to the coefficient of interest,

accidents in a postmile increase by 0.65 percent when predicted coverage increases by one

standard deviation in a postmile.24 When traffic volume is the exposure variable in column (2),

23A postmile is said to have coverage for the full year if the tower was built before January 1st of the given
year.

24The standard deviation of predicted coverage is 0.41.
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the strength of the results are unchanged and increasing predicted coverage by one standard

deviation is associated with a 0.70 percent increase in the accident rate.

Columns (3) through (6) of table V report the change in the accident rate when 3G coverage

is defined as a binary variable. In column (3), all postmile-year observations are defined as

covered if the continuous predicted 3G coverage measure is 0.4 or above. The coefficient of

interest in column (3) suggests that when predicted coverage in a postmile crosses the threshold

of 0.4, the accident rate increases insignificantly by 0.58 percent. When the threshold is changed

to 0.6 in column (4), the results show that accident rates increase significantly by 0.83 percent

when a postmile gains 3G coverage.

Table V: Fixed Effect Poisson Regressions: Accidents and 3G Coverage

(1) (2) (3) (4) (5) (6)

Predicted Coverage 0.0158*** 0.0170***
(0.00613) (0.00613)

ln(Traffic Volume) 0.571***
(0.0357)

I(Coverage≥0.4) 0.00581
(0.00408)

I(Coverage≥0.6) 0.00834**
(0.00410)

I(Coverage≥0.8) 0.0111**
(0.00493)

I(Coverage≥0.99) 0.01686***
(0.00484)

p<0.01, ** p<0.05, * p<0.10. Dependent variable is annual number of accidents at a postmile. All regressions
include 672,451 observations, which represent 51,727 postmiles over 13 years. The exposure variable in columns
(2) through (6) is traffic volume.

Our preferred definition of 3G coverage is when predicted 3G coverage in a postmile is 0.8 or

above. Column (5) of table V suggests that when a postmile gains 3G coverage the accident rate

increases significantly by 1.1 percent. In column (6), postmiles are not considered covered by 3G

unless predicted coverage is greater than 0.99. Even when this extreme definition of coverage

is used, the relationship between coverage and traffic accidents continues to be significant at

conventional levels.

In the preferred specification, a postmile is considered to have 3G coverage if the predicted
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Figure 4: Coefficient Estimates and Confidence Intervals for Panel Regression by Predicted
Coverage Threshold

Notes: This figure shows the coefficient estimate in a panel regression framework on an indicator variable
equal to one if the predicted 3G coverage for a postmile is above a defined threshold.

probability of coverage is 0.8 or greater. Using this threshold aligns with subscription rates for

mobile broadband coverage, but the results in table V are not sensitive to the threshold used

over a relatively large range of cutoffs. Figure 4 shows the coefficient estimates and 95 percent

confidence intervals when the coverage threshold is defined by every value from 0.01 to 1.00,

in increments of 0.01. For nearly every threshold above 0.57, the coefficient of interest from

equation 1 is significant at the 95% level. Of the thresholds between 0.58 and 0.99, only the

cutoffs 0.65 and 0.75 are insignificant. The 0.8 cutoff is our preferred threshold, but the cutoff

choice over a wide range of values does not meaningfully alter our findings.

Table V and figure 4 provide evidence that the introduction of 3G coverage is associated

with a significant increase in the traffic accident rate. However, the results are not able to

provide insight as to whether or not our results are picking up a larger trend in accident rates

that could lead to a spurious correlation between 3G coverage and accidents. In order to better

understand the dynamic changes in accident rates when 3G coverage is introduced, table VI

reports the results from event study regressions, equation 2.

The four columns in table VI define 3G coverage using a different threshold. Consistent

with the previous table, there is not a significant relationship between 3G coverage and traffic
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Table VI: Event Study Coefficients

(1) (2) (3) (4)
I(Coverage≥0.40) I(Coverage≥0.60) I(Coverage≥0.80) I(Coverage≥0.99)

4+ years before -0.016** -0.020*** -0.015** -0.0093
(0.0075) (0.0073) (0.0076) (0.0096)

3 years before -0.018*** -0.014** -0.0058 0.0027**
(0.0060) (0.0059) (0.0062) (0.0081)

2 years before -0.0093* -0.00035 -0.0028 -0.0186
(0.0052) (0.0052) (0.0054) (0.0073)

1 year before -0.0053 -0.0066 -0.0062 -0.0071
(0.0042) (0.0043) (0.0046) (0.0062)

1 year after -0.0058 0.0052 0.0070 0.0097
(0.0045) (0.0046) (0.0057) (0.0064)

2 years after 0.0040 0.013** 0.021*** 0.0227**
(0.0059) (0.0058) (0.0071) (0.0099)

3 years after 0.0092 0.022*** 0.030*** 0.033***
(0.0083) (0.0082) (0.0086) (0.0123)

4+ years after 0.040*** 0.061*** 0.076*** 0.0490***
(0.010) (0.010) (0.0091) (0.0163)

Observations 632,216 597,246 531,401 315,627
Postmiles 48,632 45,942 40,877 24,279
p<0.01, ** p<0.05, * p<0.10. Dependent variable is annual number of accidents at a postmile. Traffic volume
is the exposure variable in every column. Observations vary based on the number of postmiles that cross the
defined predicted coverage threshold between 2001 to 2013.

accidents when coverage is defined at a threshold of 0.4 or 0.99. Columns (2), (3) and (4) use

the thresholds of 0.6, 0.8 and 0.99, respectively. The columns all show that 2 years after a

postmile gains coverage, there is a significant increase in the accident rate. The increase in the

accident rate persists 3 and 4 or more years after gaining coverage. In the years immediately

preceding 3G coverage, there is not a significant difference in accident rates.

The results in table VI are conveyed visually in figure 5. Figure 5 shows the plots of the

coefficients from table VI, along with the 95 percent confidence intervals. In panel (a), the

threshold of 0.40 is used to define 3G coverage. There is a slight upward trend in the accident

rate prior to the year 3G coverage is gained (year 0), an insignificant increase in the accident

rate in years 2 and 3 and a significant increase 4 or more years after coverage is gained.

Using the threshold of 0.6 to define coverage in panel (b) generates a similar graph as panel
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(d) Threshold=0.99, N=24,279

Figure 5: Accident Event Studies Over Different Predicted Coverage Thresholds

(a). There are two noticeable differences between panels (a) and (b). First, in panel (b), there is

essentially no change in the accident rate in the two years leading up to the change in coverage.

Second, within two years after gaining coverage, the accident rate in panel (b) is significantly

greater than in the year 3G coverage was acquired.

Panel (c) uses our preferred threshold of 0.8. The trend in the accident rate prior to the

change in coverage is relatively flat. There is a noticeable rise in the accident rate after a

postmile is defined as having coverage. When the threshold of 0.99 is used to define coverage

in panel (d) a similar, but more pronounced pattern exists. It is worth noting the event study

regressions only include postmiles that crossed the defined threshold. This causes each event

study result to have a different number of postmiles, which are reported in the figure.

The results in tables V and VI, along with figures 4 and 5 provide evidence that there is
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a significant relationship between gaining 3G coverage and the traffic accident rate. Although

event study results are only reported for four unique thresholds, any threshold between 0.58

and 0.99 yields similar figures, further strengthening the robustness of the results.

C. Heterogeneous Effects

Using the universe of highway postmiles in California shows that introducing 3G coverage is

associated with a significant increase in the accident rate. However, the effect of using a cell

phone while driving may depend on many factors, such as the traffic patterns along a postmile,

the age of the driver at fault and the severity of the accident.

Postmile Traffic Volume

Postmile fixed-effects do control for many unobserved, fixed characteristics associated with

a road segment, but it is possible that areas with less traffic are impacted by 3G coverage

differently than areas with more traffic. Figure 6 shows event study results using our preferred

threshold of 0.8 after creating subsets of postmiles based on the average traffic volume in the

postmile between 2001 and 2013. In panel (a) the results using postmiles with an average

AADT below the first quartile are reported. No pattern emerges and none of the coefficients

are significant at conventional levels. Similar conclusions are drawn when examining the second

and third quartiles of traffic. The postmiles with the most traffic are reported in panel (d).

One year following the onset of 3G coverage, there is a significant increase in the traffic accident

rate and there is no evidence of a trend prior to coverage.

The results from figure 6 provide evidence that postmiles with high traffic volume are

responsible for the main results above. Postmiles with less traffic do not have significantly

different accident rates before and after 3G coverage becomes available. Although we cannot

weigh in on differences in driving behaviors across the quartiles of traffic, 3G coverage appears

to be more detrimental when traffic volume is high.
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(a) First Traffic Quartile, N=9,301
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(b) Second Traffic Quartile, N=10,207
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(c) Third Traffic Quartile, N=10,131
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(d) Fourth Traffic Quartile, N=11,238

Figure 6: Heterogeneous Effects: Traffic Volume, Predicted Coverage Threshold=0.80

Age of the Driver At Fault

Although many details of the traffic accident data are not consistently reported within and

across police jurisdictions, we are reasonably confident that the age of the driver at fault in

an accident is accurately reported. According to multiple studies discussed above, younger

individuals are more likely to use and own a smartphone, compared to older individuals. This

would suggest that younger drivers would respond more strongly to 3G coverage than older

drivers. However, it is possible that younger drivers are better at using a smartphone than

older drivers and an older driver with a smartphone may be more likely to get in an accident

than a younger driver with a smartphone.

Figure 7 shows the results of event study regressions, again using 0.8 as the threshold for

coverage, and stratifying the sample based on the age of the driver deemed at fault in the
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accident. In panel (a), the effect of 3G coverage on accident rates where the driver at fault is

younger than 29 years old is reported. A familiar pattern is seen. There is not a significant

difference in accident rates prior to 3G coverage, but accident rates increase significantly two

years after a postmile obtains 3G coverage. Panels (b) and (c) report the results for accidents

where the driver at fault is between 30 and 49 years old, and 50 and 64 years old, respectively.

The same pattern is seen between all three age groups in panels (a), (b) and (c). In panel (d),

3G coverage does not change the accident rate in crashes where the driver at fault is 65 years

old or older.
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(c) Between 50 and 64 Years, N=33,857
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(d) 65 Years and Older, N=27,494

Figure 7: Heterogeneous Effects: Age, Predicted Coverage Threshold=0.80

The age-specific event study results in figure 7 show that accidents caused by older

individuals do not change when a postmile gains 3G coverage. Accidents caused by individuals

between 16 and 64 increase in a postmile when 3G coverage is gained. The results suggest that
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3G coverage has an impact on the driving behavior across a wide age range. However, we are

unable to decipher whether this is because there is an equal increase in cell phone use across the

majority of ages while driving when 3G coverage is available or because cell phone use impacts

drivers differently, depending on their age.

Severity of the Accident

Each accident reported in the data is assigned to one of five general severity categories.

Accidents that only damage vehicles are labeled as ”property damage only”. The category of

”no visible bodily harm” captures accidents where the most severe outcome is that an individual

says they feel pain, but it is not visible. Whiplash falls into this category. Accidents categorized

as ”Non-Severe, Visible Bodily Harm” have individuals with cuts or bruises, but the wounds are

not severe. ”Severe Bodily Harm” implies that an individual requires immediate assistance and

has a critical injury. Accidents with a fatality are graded as the most severe type of accident.

Figure 8 shows the effect of 3G coverage on accidents, by severity. Event study results from

”property damage only” accidents are presented in panel (a) and mimic event study results

above. After a postmile gains 3G coverage, less severe accidents increase and there is not

evidence of a strong trend prior to gaining coverage.

Results for accidents where an individual has a non-visible injury are reported in panel (b).

There are similarities between the pattern found in panel (b) and the least severe accidents in

panel (a), but the estimates using accidents with non-visible injuries are relatively noisy. Panels

(c), (d) and (e) report accidents that are increasingly severe. There is not a strong relationship

between 3G coverage and accidents that involve visible injuries, severe bodily harm or fatalities.

The results in figure 8 suggest that minor traffic accidents are driving the main results in

the previous section. The relationship between accidents and 3G coverage becomes weaker as

the severity of the accident increases. It is noteworthy that the number of postmiles in the

regressions decrease significantly as the severity of the accident being examined rises. This

is because there are relatively few postmiles that have a fatal accident in the data and those

postmiles without a fatal accident between 2001 and 2013 are automatically dropped from the

regression. Nonetheless, the insignificant relationship between severe accidents and 3G coverage
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(b) No Visible Bodily Harm, N=30,601
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(c) Non-Severe Visible Bodily Harm, N=28,617
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Figure 8: Heterogeneous Effects: Severity of Accident, Predicted Coverage Threshold=0.80
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is consistent with many of the previous studies that find a limited relationship between cell

phone use and fatal accidents.

Unreported Regressions

In addition to examining accidents by severity, age of the driver at fault and the traffic volume

of the postmile, we investigate the potential effect of 3G coverage along a number of other

dimensions that are worth mentioning 25. In the time period we examine, California enacted

two cell phone laws. A hand-held cellular device ban while driving was enacted on July 1, 2008.

Using monthly accident data in 2008, we do not find a significant change in the accident rate

along postmiles with or without 3G coverage, after the ban went into effect. The insignificant

finding is consistent with Burger et al. (2014), who explore California’s hand-held ban in detail.

California enacted a specific texting ban six months later on January 1, 2009. We do find

that there is a reduction in monthly accident rates between December, 2008 and January, 2009,

but the reduction is not dependent on 3G coverage. This finding is not surprising as nearly all

postmiles in California had 2G coverage by the early 2000s. Consequently, there is not a strong

counter factual and the reduction in accidents after the ban must be interpreted with extreme

caution.

Each observation in our data has information on the time-of-day that an accident took

place. We use this information to explore whether 3G coverage impacts drivers more during

the day or at night. Daytime accidents are broadly defined as accidents that occurred between

6am and 6pm and nighttime accidents are defined as accidents that occurred between 6pm and

6am. Daytime and nighttime accident rates increase in a similar way when a postmile gains

3G coverage. It is possible that assigning a specific sunlight index to each accident could yield

a different conclusion. However, when daylight is defined as 5am to 7pm or 7am to 7pm, the

effect of 3G coverage is the same across daytime and nighttime accidents. Our findings suggests

that the effect of 3G coverage is not dependent on the time-of-day.

Unreported regressions that stratify the data into different subsets based on the attributes

of accidents do not alter the findings. We also show that the results are not dependent on the

25All results discussed in this subsection are available upon request.
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inclusion of a particular year. When any single year is dropped from the sample, there is not

a meaningful change in the results. Regressions that isolate the effect of gaining coverage by

year show that gaining 3G coverage between 2004 and 2007 are associated with the strongest

increase in accidents. However, gaining coverage during the Great Recession (2008 and 2009)

was associated with a decrease in the accident rate. We also find negative effects associated

with gaining coverage during the last two years of the sample (2012 and 2013). The estimates

in these later years are derived from a relatively small number of observations, which may

partially explain the relationship we find in 2012 and 2013.

When a probit model and linear input variables are used to predict coverage, our conclusions

are unchanged. The machine learning techniques employed in section III increase the precision

of our coverage estimates, but our main findings are not altered by the use of machine learning.

V. Discussion

Many studies exist that examine the relationship between cell phone use and driving behavior.

Individual driving behavior is impaired when a driver is using a phone, but data limitations

have made it difficult for researchers to find a link between cell phone use and traffic accident

rates. We overcome many of the limitations in previous research by exploring how all traffic

accidents respond to changes in 3G coverage.

Our analysis first attaches cellular tower information to postmiles for each year of data.

The FCC reports 3G coverage data in 2016 and we assume that 3G coverage was not available

prior to 2005. Machine learning techniques allow us to estimate how the construction of cellular

towers change the predicted level of 3G coverage along a postmile for every year that accident

data is available.

Poisson fixed-effects regressions compare postmile accident rates before and after the

introduction of 3G coverage. We find that accident rates increase in a postmile after a tower

is constructed and a postmile gains 3G coverage. The identifying assumption in the empirical

analysis is that unobserved characteristics that influence traffic accidents are unrelated to the

construction of cellular towers. Although we cannot directly test whether or not our identifying
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assumption holds, we are confident in our results. Regressions incorporate changes in traffic

volume, reducing concerns that the effect of 3G coverage is being confounded by an increase

in traffic. Postmile fixed-effects capture many important unobservable characteristics of a road

segment that are related to accidents, such as road quality, line-of-sight and unchanging traffic

patterns. Event study results mitigate concerns that the increase in accidents is part of a larger

trend that began prior to a postmile gaining 3G coverge. Any remaining endogeneity in our

analysis comes from a systematic change in driving behavior that is unrelated to cell phone use

and happens to occur when a cellular tower is constructed.

In summarizing the results above, a plausible story emerges. Cell phone tower construction

increases the likelihood that a road segment has 3G coverage. Postmile accident rates in the

years preceding 3G coverage are statistically similar to the year coverage is acquired. In the

year after gaining coverage, there is a subtle increase in the accident rate. Two, three and four

or more years after a postmile gains coverage, the accident rate increases significantly. Because

changes in 3G coverage results are determined largely by the construction of cellular towers,

the delayed accident rate response is not surprising. Historically, cellular towers have not been

constructed by cellular carriers such as Verizon or AT&T. Instead, firms that specialize in

cellular tower construction build the towers and then lease the tower to cellular providers. This

suggests that it is possible for a tower to be constructed near a postmile, leading us to assign

the postmile 3G coverage, but a lag between tower construction and service suggests that users

may not change their driving behavior until the following year.26

Gaining 3G coverage does not influence all road segments in the same way. Road segments

that have relatively low traffic volume do not see a significant change in traffic accidents after

3G coverage becomes available. Accidents where the driver at fault is over 65 years old are

not impacted by 3G coverage. The trend in severe accidents where bodily harm is visible or

there is a fatality does not change when 3G coverage becomes available. This suggests that 3G

coverage increases the likelihood of a non-severe accident occurring in areas of high traffic and

for drivers under the age of 65. In other words, when a road segment gains 3G coverage, fender

26In 2017, Verizon and AT&T signed a contract with the cellular tower construction company, Tillman
Infrastructure, where Tillman builds towers specifically for Verizon and AT&T, reducing the time between
tower completion and usage (Reuters, 2017).
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benders in high traffic areas where the driver at fault is relatively young are more likely.

The magnitude of the results are comparable to previous research using traffic accidents as

an outcome. Our point estimates suggest that the accident rate in a postmile is 1.1 percent

higher when there is 3G coverage, compared to there being no 3G coverage. The average

postmile in our data over all years has an accident rate of 0.94 per 10,000 AADT and an

average AADT of 61,784. If all 51,727 postmiles in the data gained 3G coverage, a 1.1 percent

increase would translate into 3,305 more accidents per year in California.

A 1.1 percent increase in the accident rate is comparable to work by Adams et al. (2012), but

noticeably less than Carpenter and Dobkin (2009) and Faccio and McConnell (2018). Adams

et al. (2012) use changes in state-level minimum wages to show that fatal accidents involving 16

to 20 years increase 5 to 10 percent when there is a 10 percent increase in the minimum wage.

Carpenter and Dobkin (2009) show that motor vehicle fatalities increase by 15 percent after

an individual becomes legally allowed to drink at the age of 21. Faccio and McConnell (2018)

conclude that Pokémon Go was responsible for 134 crashes, a 47 percent increase, in Tippecanoe

County between July 6, 2016 and November 30, 2016, the 5-month time period in which the

game Pokémon Go became popular. Being legally allowed to drink alcohol and addictive

mobile games are strongly related to traffic accidents, but the effects found in these studies

are temporary by nature. Both alcohol consumption and motor vehicle fatalities decrease as

individuals age (Carpenter and Dobkin, 2009). Pokémon Go users peaked at approximately 25

million users per day in July, 2016 then quickly fell to less than 7 million users by January,

2017 (Windels, 2017). General cell phone use grew throughout the 2000s and continues to grow

today (Deloitte, 2017).

The majority of previous studies do not find a strong relationship between cell phones and

accident rates, but our analysis differs considerably from those studies. Arguably the most

important difference lies in our measurement of cell phone use. Previous papers using laws to

proxy for changes in cell phone use rely to some extent on self-enforcement. Cell phone use by

drivers may lead to more traffic accidents, but if a cellular ban does not lead to a persistent

change in driver behavior, observing a change in accidents is difficult to detect.

Using the introduction of 3G coverage to capture cell phone use is beneficial because in

36



areas without 3G coverage, the benefits of a smartphone are limited; only calling and texting

are available in areas with 2G coverage. This does highlight a limitation of using 3G coverage to

identify effects. If an area that gains 3G coverage previously had 2G coverage, we are capturing

the effect of a postmile moving from 2G to 3G coverage. Assuming that a driver is texting

when there is 2G coverage and using other smartphone functions when there is 3G coverage,

our positive findings then suggest that the functionality of the smartphone is more distracting

than texting. It is possible that a driver is less likely to use a smartphone to text when there

is not 3G coverage and entering 3G coverage increases the use of all smartphone functions.

We cannot observe what drivers are doing when they enter an area with 3G coverage, and are

unable to provide more insight into the exact mechanism causing the increase in accidents when

3G coverage becomes available. Despite this limitation, the use of 3G coverage as a measure of

cell phone use improves upon previously used proxies.

In many of the studies, fatal traffic accidents are used (Abouk and Adams, 2013; Kolko,

2009). In figure 8, less severe accidents increase when 3G coverage becomes available, but more

severe accidents and fatal accidents are not impacted by 3G coverage. Our results suggest

previous studies may not find a persistent relationship between cell phone use and accidents

because fatal accidents are used as the dependent variable. Additionally, the current paper

is able to examine traffic accidents at the postmile level as opposed to the state level, which

allows us to capture important unobservable characteristics that may influence accident rates.

Using machine learning techniques to estimate the relationship between traffic accidents and

3G coverage at a fine geographic level yields an important finding that researchers have been

unable to identify: cell phone use leads to a persistent increase in traffic accidents.

VI. Conclusion

This paper uses the construction of cellular towers between 2001 and 2013 in California to show

that accident rates increase when a road segment gains 3G coverage. Estimates of 3G coverage

are derived from historical cellular tower information, current 3G coverage and machine learning

techniques. The main results show that traffic accidents in a postmile increase after gaining 3G
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coverage. Event study results show there is not a trend in accidents within a postmile prior to

gaining coverage and the rise in accidents is most noticeable two, three and four or more years

after gaining coverage. The findings are not sensitive to the threshold used to define coverage,

the time-of-day that the accident took place or using a probit model to predict coverage instead

of machine learning.

We contribute to the literature on cellular phone use and accidents. Unlike much of

the previous work, we show that there is a significant and persistent increase in accidents

following the introduction of 3G coverage. Although we cannot identify changes in specific

driver behavior, heterogeneous results show that accidents that increase after 3G coverage is

introduced do not involve severe injuries, occur in highly trafficked areas and are caused by

drivers younger than 65.

These detailed results speak directly to policy makers. Banning cell phone use by drivers has

not effectively reduced traffic fatalities, but laws requiring cars to have certain safety features

may prove to be more influential. Blind spot monitoring, lane drift alerts and collision avoidance

systems are becoming increasingly common. Effective in May, 2018, back-up cameras are

required on all new vehicles less than 10,000 pounds (Bomey, 2018). Advancing car safety

features may be able to overcome the increase in distraction caused by increasing cell phone

usage by drivers.
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Figure 10: Random forest parameter selection
This plot shows cross-validated performance varying the number of variables sampled at each split. This is
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This plot shows prediction calibration by binning the 3G predictions into eleven bins, and for each bin

calculating the observed 3G coverage. According to (Dawid, 1982), forecasts are ”well calibrated if, for
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value of the predicted quantity turns out to be 75 percent.” This corresponds to observed event percentages on
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