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Abstract

In the regression discontinuity design (RDD), it is common practice to assess the credibility

of the design by testing the continuity of the density of the running variable at the cut-off, e.g.,

McCrary (2008). In this paper we propose a new test for continuity of a density at a point based

on the so-called g-order statistics, and study its properties under a novel asymptotic framework.

The asymptotic framework is intended to approximate a small sample phenomenon: even though

the total number n of observations may be large, the number of effective observations local

to the cut-off is often small. Thus, while traditional asymptotics in RDD require a growing

number of observations local to the cut-off as n → ∞, our framework allows for the number q

of observations local to the cut-off to be fixed as n → ∞. The new test is easy to implement,

asymptotically valid under weaker conditions than those used by competing methods, exhibits

finite sample validity under stronger conditions than those needed for its asymptotic validity,

and has favorable power properties against certain alternatives. In a simulation study, we find

that the new test controls size remarkably well across designs. We finally apply our test to the

design in Lee (2008), a well-known application of the RDD to study incumbency advantage.
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1 Introduction

The regression discontinuity design (RDD) has been extensively used in recent years to retrieve

causal treatment effects - see Lee and Lemieux (2010) and Imbens and Lemieux (2008) for exhaus-

tive surveys. The design is distinguished by its unique treatment assignment rule where individuals

receive treatment when an observed covariate, known as the running variable, crosses a known cut-

off. Such an assignment rule allows nonparametric identification of the average treatment effect

(ATE) at the cut-off, provided that potential outcomes have continuous conditional expectations at

the cut-off (Hahn et al., 2001). The credibility of this identification strategy along with the abun-

dance of such discontinuous rules have made RDD increasingly popular in empirical applications.

While the continuity assumption that is necessary for nonparametric identification of the ATE at

the cut-off is fundamentally untestable, researchers routinely assess the plausibility of their RDD

by exploiting two testable implications of a stronger identification assumption proposed by Lee

(2008). We can describe the two implications as follows: (i) individuals have imprecise control over

the running variable, which translates into the density of the running variable being continuous

at the cut-off; and (ii) the treatment is locally randomized at the cut-off, which translates into

the distribution of all observed baseline covariates being continuous at the cut-off. The practice

of judging the reliability of RDD applications by assessing either of the two above stated impli-

cations (commonly referred to as manipulation, or falsification, or placebo tests) is ubiquitous in

the empirical literature. Indeed, Table 4 surveys RDD empirical papers in four leading applied

economic journals during the period 2011-2015. Out of 62 papers, 43 of them include some form

of manipulation, falsification, or placebo test.

This paper proposes a novel test for the null hypothesis on the first testable implication, i.e., the

density of the running variable is continuous at the cut-off.1 The new test has a number of distinctive

attractive properties relative to existing methods. First, the test does not require consistent non-

parametric estimators of densities and simply exploits the fact that a certain functional of order

statistics of the data is approximately binomially distributed under the null hypothesis. Second, our

test controls the limiting null rejection probability under fairly mild conditions that, in particular,

do not require existence of derivatives of the density of the running variable. In addition, our test

is valid in finite samples under stronger, yet plausible, conditions. Third, the asymptotic validity

of our test holds under two alternative asymptotic frameworks; one in which the number q of

observations local to the cut-off is fixed as the sample size n diverges to infinity, and another one

where q is allowed to grow as n diverges to infinity. Importantly, both frameworks require the same

mild assumptions. Fourth, our test is arguably simple to implement as it only involves computing

order statistics and a constant critical value. This contrasts with existing alternatives that require

1It is important to emphasize that the null hypothesis we test in this paper is neither necessary nor sufficient for

identification of the ATE at the cut-off. See Section 2 for a discussion on this.

1



local polynomial estimation of some order and either bias correction or under-smoothed bandwidth

choices. Finally, we have developed a companion Stata package to facilitate the adoption of our

test.2

The construction of our test is based on the simple intuition that, when the density of the

running variable is continuous at the cut-off, the fraction of units under treatment and control

local to the cut-off should be roughly the same. This means that the number of treated units,

out of the q observations closest to the cut-off, is approximately distributed as a binomial random

variable with sample size q and probability 1
2 . In order to formalize this intuition, we exploit and

develop properties of the so-called g-order statistics (see, e.g., Kaufmann and Reiss, 1992; Reiss,

1989) and employ two asymptotic frameworks that aim at capturing the small sample nature of the

problem. In the first framework, the number of observations q local to the cut-off is fixed as n→∞.

This framework is similar to the one in Canay and Kamat (2018), who in turn exploit results from

Canay, Romano and Shaikh (2017), and is the one that we prefer for the testing problem under

consideration. However, it is worth noting that the hypotheses we test, the test statistic, the critical

value, and most of the formal arguments are different from those in Canay and Kamat (2018) or

Canay, Romano and Shaikh (2017). In the second framework, we let q to slowly diverge to infinity

with n, in the sense that we require q
n → 0. Notably, we further show that if q diverges to infinity

at a faster rate, then our test would fail to control the limiting rejection probability under the null

hypothesis, see Remark 4.4. The asymptotic framework where q →∞ as n →∞ is similar to the

one in McCrary (2008); Otsu et al. (2013); Cattaneo et al. (2017a), among others, and is in line

with more traditional asymptotic arguments in non-parametric tests.

From a technical standpoint, this paper has several contributions relative to the existing liter-

ature. To start, our results exhibit two important differences relative to Canay and Kamat (2018)

that go beyond the difference in the null hypotheses. First, we do not study our test as an approx-

imate randomization test but rather as an approximate two-sided sign-test. This not only requires

different analytical tools, but also by-passes some of the challenges that would arise if we were to

characterize our test as an approximate randomization test; see Remark 4.2 for a discussion on

this. In addition, our approach in turn facilitates the analysis for the second asymptotic frame-

work where q diverges to infinity. Second, we develop results on g-order statistics as important

intermediate steps towards our main results. Some of them may be of independent interest; e.g.,

Theorem 4.1. In addition, relative to the results in McCrary (2008); Otsu et al. (2013); Cattaneo

et al. (2017a); our test does not involve consistent estimators of density functions to either side of

the cut-off and does not require conditions involving existence of derivatives of the density of the

running variable local to the cut-off. Finally, we note that related binomial tests have been recently

presented in the RDD context by Cattaneo et al. (2016) and Cattaneo et al. (2017b); see Remark

3.3 for a detailed description. While these papers rely on finite sample arguments to justify their

2The Stata package rdcont can be downloaded from http://sites.northwestern.edu/iac879/software/.
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test construction for the hypothesis of local randomization, here we provide a rigorous asymptotic

analysis under the two aforementioned asymptotic frameworks for the hypothesis of continuity of

a density. To the best of our knowledge, the formal asymptotic results we present are original to

this paper.

The remainder of the paper is organized as follows. Section 2 introduces the notation and

describes the null hypothesis of interest. Section 3 defines q-order statistics, formally describes the

test we propose, and discusses all aspects related to its implementation including a data dependent

way of choosing q. Section 4 presents the main formal results of the paper, dividing those results

according to the two alternative asymptotic frameworks we employ. In Section 5, we examine the

relevance of our asymptotic analysis for finite samples via a simulation study. Finally, Section 6

implements our test to reevaluate the validity of the design in Lee (2008) and Section 7 concludes.

The proofs of all results can be found in the Appendix.

2 Setup and notation

Let Y ∈ R denote the (observed) outcome of interest for an individual or unit in the population

and A ∈ {0, 1} denote an indicator for whether the unit is treated or not. Further denote by Y (1)

the potential outcome of the unit if treated and by Y (0) the potential outcome if not treated. As

usual, the (observed) outcome and potential outcomes are related to treatment assignment by the

relationship

Y = Y (1)A+ Y (0)(1−A) . (1)

The treatment assignment in the (sharp) RDD follows a discontinuous rule,

A = I{Z ≥ z̄} ,

where Z ∈ Z ≡ supp(Z) is an observed scalar random variable known as the running variable and

z̄ is the known threshold or cut-off value. For convenience we normalize z̄ = 0, which is without

loss of generality as we can always redefine Z as Z − z̄. This treatment assignment rule allows us

to identify the average treatment effect (ATE) at the cut-off; i.e.,

E[Y (1)− Y (0)|Z = 0] .

In particular, Hahn et al. (2001) establish that identification of the ATE at the cut-off relies on the

discontinuous treatment assignment rule and the assumption that

E[Y (1)|Z = z] and E[Y (0)|Z = z] are both continuous in z at z = 0 . (2)

Reliability of the RDD thus depends on whether the mean outcome for units marginally below the

cut-off identifies the true counterfactual for those marginally above the cut-off.
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The continuity assumption in (2) is arguably weak, but fundamentally untestable. In practice,

researchers routinely employ two specification checks in RDD that, in turn, are implications of a

stronger sufficient condition proposed by Lee (2008, Condition 2b). The first check involves testing

whether the distribution of pre-determined characteristics (conditional on the running variable) is

continuous at the cut-off. See Shen and Zhang (2016) and Canay and Kamat (2018) for a recent

treatment of this problem. The second check involves testing the continuity of the density of

the running variable at the cut-off, an idea proposed by McCrary (2008). This second check is

particularly attractive in settings where pre-determined characteristics are not available or where

these characteristics are likely to be unrelated to the outcome of interest. Formally, we can state

this hypothesis testing problem as

H0 : f+
Z (0) = f−Z (0) vs. H1 : f+

Z (0) 6= f−Z (0) , (3)

where

f+
Z (0) ≡ lim

ε↓0

1

ε
P{Z ∈ [0, ε)} and f−Z (0) ≡ lim

ε↓0

1

ε
P{Z ∈ (−ε, 0)} , (4)

provided these limits exist. In RDD empirical studies, the aforementioned specification checks are

often implemented (with different levels of formality) and referred to as falsification, manipulation,

or placebo tests (see Table 4 for a survey).

In this paper we propose a test for the null hypothesis of continuity in the density of the running

variable Z at the cut-off z̄ = 0, i.e., (3). The new test has two attractive features compared to

existing approaches (see, e.g., McCrary, 2008; Otsu et al., 2013; Cattaneo et al., 2017a). First,

it does not require commonly imposed smoothness conditions on the density of Z, as it does not

involve non-parametric estimation of such a density. Second, it exhibits finite sample validity under

certain (stronger) easy to interpret conditions. We discuss these features further in Section 4.

Remark 2.1. Gerard et al. (2016) study the consequences of discontinuities in the density of Z at

the cut-off. In particular, the authors consider a situation in which manipulation occurs only for a

subset of participants and use the magnitude of the discontinuity of f(z) at z = 0 to identify the

proportion of always-assigned units among all units close to the cut-off. Using this setup, Gerard

et al. (2016) show that treatment effects in RDD are not point identified but that the model still

implies informative bounds.

Remark 2.2. It is important to emphasize that a running variable with a continuous density is

neither necessary nor sufficient for identification of the average treatment effect at the cut-off. For

a discussion of this and some intuitive examples, see Lee (2008) and McCrary (2008).

3 A test based on g-ordered statistics

Let P be the distribution of Z and Z(n) = {Zi : 1 ≤ i ≤ n} be a random sample of n i.i.d.

observations from P . Let q be a small (relative to n) positive integer and g : Z → R be a
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measurable function such that g(Z) has a continuous distribution function. For any z, z′ ∈ Z
define ≤g as

z ≤g z′ if g(z) ≤ g(z′) .

The ordering defined by ≤g is called a g-ordering on Z. The g-order statistics Zg,(i) corresponding

to Z(n) have the property

Zg,(1) ≤g · · · ≤g Zg,(n) ,

see, e.g., Reiss (1989, Section 2.1) and Kaufmann and Reiss (1992).

To construct our test statistic, we use the sign of the q values of {Zi : 1 ≤ i ≤ n} that are

induced by the q smallest values of {g(Zi) = |Zi| : 1 ≤ i ≤ n}. That is, for Zg,(1), . . . , Zg,(q), let

Ag,(j) ≡ I{Zg,(j) ≥ 0} for 1 ≤ j ≤ q , (5)

and

Sn ≡
∑
j≤q

Ag,(j) . (6)

The test statistic of our test only depends on the data via Sn and is defined as

Tq(Sn) ≡ √q
∣∣∣∣1qSn − 1

2

∣∣∣∣ . (7)

In order to describe the critical value of our test it is convenient to recall that the cumulative

distribution function (CDF) of a binomial random variable with q trials and probability of success
1
2 is given by

Ψq(b) ≡
1

2q

bbc∑
x=0

(
q

x

)
I{b ≥ 0} , (8)

where bxc is the largest integer not exceeding x. Using this notation the critical value for a

significance level α ∈ (0, 1) is given by

cq(α) ≡ √q
(

1

2
− bq(α)

q

)
, (9)

where bq(α) is the unique value in {0, 1, . . . , b q2c} satisfying

Ψq(bq(α)− 1) ≤ α

2
< Ψq(bq(α)) . (10)

The test we propose is then given by

φ(Sn) =


1 if Tq(Sn) > cq(α)

aq(α) if Tq(Sn) = cq(α)

0 if Tq(Sn) < cq(α)

, (11)
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where

aq(α) ≡ 2q−1

(
q

bq(α)

)−1

[α− 2Ψq(bq(α)− 1)] . (12)

Intuitively, the test φ(Sn) exploits the fact that, under the null hypothesis in (3), the distribution

of the treatment assignment should be locally the same to either side of the cut-off. That is, local

to the cut-off the treatment assignment behaves as purely randomized under the null hypothesis,

and so the fraction of units under treatment and control should be similar.

Remark 3.1. The test in (11) is possibly randomized. The non-randomized version of the test

that rejects when Tq(Sn) > cq(α) is also asymptotically level α by Theorem 4.2. In our simulations,

and for our data dependent choice of q we describe in the next section, the randomized and non-

randomized versions perform similarly.

Remark 3.2. The value of bq(α) ∈ {0, 1, . . . , b q2c} solving (10) is well-defined and unique for all

q ≥ 1 and α ∈ (0, 1). To see this, let

q∗(α) ≡ 1− logα

log 2
. (13)

When q < q∗(α), (10) uniquely holds for bq(α) = 0. In this case, φ(Sn) in (11) is purely randomized.

When q ≥ q∗(α), the uniqueness of the solution is guaranteed by Ψq(b) being strictly increasing

over {0, 1, . . . , b q2c}, Ψq(0) = 1
2q , and Ψq(

q
2) ≥ 1

2 . In this case, φ(Sn) in (11) deterministically rejects

with positive probability. This shows that in order for the non-randomized version of the test to

be non-trivial (see Remark 3.1), q needs to be larger than q∗(α). In order to better appreciate

these magnitudes, note that for α = 5% this requires q ≥ 6 while for α = 1% this requires q ≥ 8.

Similarly, and given bq(α), the value of aq(α) in (12) is also uniquely defined and taking values in

[0, 1) by the same properties of Ψq(·).

Given q, the implementation of our test proceeds in the following five steps.

Step 1. Find the q observations closest to the cut-off, i.e., Zg,(1), . . . , Zg,(q).

Step 2. Count the number of non-negative observations in Zg,(1), . . . , Zg,(q), i.e., Sn as in (6).

Step 3. Compute test statistic Tq(Sn) as in (7), cq(α) as in (9), and aq(α) as in (12).

Step 4. Compute the p-value of the non-randomized version of the test as

pvalue = 2 min {Ψq (Sn) ,Ψq (q − Sn)} . (14)

Step 5. Reject the null hypothesis in (3) using φ(Sn) in (11). If a non-randomized test is preferred,

reject the null hypothesis if pvalue < α.
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Remark 3.3. As it follows from Theorems 4.1 and 4.2 in Section 4, the test φ(Sn) is an approximate

two-sided sign test (or approximate binomial test). As we mentioned in the introduction, related

binomial tests have been recently presented in the RDD context by Cattaneo et al. (2016) and

Cattaneo et al. (2017b). There, the authors use a binomial test based on the number of “successes”

in a window Z ∈ [−h, h] for a varying bandwidth h. The authors propose to vary h until a “break-

down” window size h∗ is found, which is defined as the largest window such that the minimum

p-value of the binomial test is larger than α for all nested (smaller) windows. The justification

provided for the validity of such a test involves a finite sample argument: under the hypothesis of

“local randomization/random assignment” in [−h∗, h∗], a binomial test with probability π is exact

(Cattaneo et al., 2017b, p. 650, note that π = 1
2 is the most natural choice in the absence of

additional information). Contrary to Cattaneo et al. (2016) and Cattaneo et al. (2017b), here we

do not aim at testing a “local random assignment” hypothesis but rather the continuity hypothesis

in (3). As a result of this, we cannot exploit finite sample arguments and rather need to provide

a rigorous asymptotic analysis of the test we propose under an arguably weak assumption (i.e.,

Assumption 4.1). The formal results in Theorems 4.1, 4.2, and 4.3 are novel to this paper and, to

the best of our knowledge, they provide the first formal results about approximate two-sided sign

tests for the hypothesis in (3) in the RDD (or any other) framework.

3.1 Data dependent rule for q

In this section we discuss the practical considerations involved in the implementation of our test,

highlighting how we addressed these considerations in the companion Stata package. Additional

computational details are presented in Appendix C.

The only tuning parameter of our test is the number q of observations closest to the cut-

off. In this paper we propose a data dependent way to choose q that combines a rule of thumb

with a local optimization. We call this data-dependent rule the “informed rule of thumb” and its

computation requires the following two steps. For the sake of clarity, in this section we do not use

the normalization z̄ = 0.

In the first step, we compute an initial rule of thumb. Concretely, we propose

qrot = Cφ
n

log n
, (15)

where

Cφ =
1

max
{

25
∣∣σ2φ′µ,σ(z̄)

∣∣ , 1} × φµ,σ(z̄)

φµ,σ(µ)
, (16)

µ is the mean of Z, σ2 is the variance of Z, φµ,σ(·) is the density of a normally distributed random

variable with mean µ and variance σ2, and

σ2φ′µ,σ(z̄) =
1√
2π

(
z̄ − µ
σ

)
exp

(
−1

2

(
z̄ − µ
σ

)2
)
, (17)
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is the (scale invariant) derivative of the density φµ,σ(·) at z̄. The rate of qrot satisfies the properties

in Section 4 and is such that qrot/n ∝ 1/ log n → 0. The constant Cφ intends to capture the idea

that a steeper density at the cut-off should be associated with a smaller value of q. Intuitively, the

steeper the density, the more it resembles a density that is discontinuous (Figure 1.(c) illustrates

this in Section 5). Thus, Cφ is inversely proportional to such a derivative in the normal case. It

also captures the idea that q should be small if the cut-off is a point of low density relative to the

mode. Intuitively, when fZ(z̄) is low, the q closest observations to z̄ are likely to be “far” from z̄ if

q is too large (Figure 1.(a) with µ = −2 illustrates this in Section 5). Thus, Cφ is proportional to

this ratio in the normal case, i.e.,
φµ,σ(z̄)
φµ,σ(µ) . One could alternatively replace the normality assumption

with non-parametric estimators of these densities and derivatives, but being just a rule of thumb

we prefer to prioritize its simplicity.

The second step involves a local maximization of the asymptotic rejection probability under the

null hypothesis of the non-randomized version of the test. In particular, based on Theorem 4.2 we

propose

qirot = argmax
q∈N (qrot)

Ψq(bq(α)− 1) , (18)

where Ψq(·) is the CDF defined in (8), bq(α) is defined in (10), andN (qrot) is a discrete neighborhood

of qrot that we describe in Appendix C. This second step is important for the performance of the

non-randomized version of the test (see Remark 3.1) as Ψq(bq(α) − 1) is not monotonic in q, see

Figure 3. In practice, we replace µ and σ with sample analogs to deliver a feasible informed rule of

thumb that we denote by q̂irot.

Remark 3.4. The recommended choice of q in (15) is simply a sensible rule of thumb that exploits

the shape of the limiting null-rejection probability of the non-randomized version of the test to

derive a better choice of q. However, this rule of thumb is not “optimal” in any formal sense. Given

the asymptotic framework considered in this paper, where q may be fixed as n→∞, it is difficult,

and out of the scope of this paper, to derive “optimal” rules for choosing q.

4 Asymptotic framework and formal results

In this section we derive the asymptotic properties of the test in (11) using two alternative asymp-

totic frameworks. The first one, and the most interesting from our point of view, is one where q

is fixed as n → ∞. This framework is similar to that in Canay and Kamat (2018) and intends

to capture a situation where only few of the observations available to the researcher contain good

information about the properties “at” the cut-off. The second one is in line with more traditional

arguments and requires q →∞ and q
n → 0 as n→∞.

There are three main features of our results that are worth highlighting: (i) our test exhibits

similar properties under both asymptotic frameworks, (ii) the implementation of the test does not
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depend on which asymptotic framework one has in mind, and (iii) all formal results require the

same, arguably weak, assumption. We start by introducing this assumption.

Assumption 4.1. The distribution P satisfies

(i) ∃δ > 0 such that Z has a continuous density on (−δ, 0) ∪ (0, δ).

(ii) f−Z (0) + f+
Z (0) > 0.

Assumption 4.1(i) allows for the distribution of Z to be discontinuous, both at the cut-off z̄ = 0

and outside a neighborhood of the cut-off. It allows us to study alternative hypotheses with a mass

point at the cut-off. More importantly, it does not require the density of Z to be differentiable

anywhere. This is in contrast to McCrary (2008), who requires three continuous and bounded

derivatives of the density of Z (everywhere except possibly at z̄ = 0), and Cattaneo et al. (2017a)

and Otsu et al. (2013), who require the density of Z to be twice continuously differentiable local to

the cut-off (in the case of a local-quadratic approximation). Assumption 4.1(ii) rules out a situation

where f−Z (0) = f+
Z (0) = 0, which is implicitly assumed in McCrary (2008) and Otsu et al. (2013)

and is weaker than assuming a positive density of Z in a neighborhood of the cut-off as in Cattaneo

et al. (2017a). In Section 5 we explore the sensitivity of our results to violations of these conditions.

4.1 Results for fixed q

In this section we present two main results. The first result, Theorem 4.1, describes the asymptotic

properties of Sn in (6) when q is fixed as n→∞. This result about g-order statistics with g(·) = | · |
represents an important milestone in proving the asymptotic validity of our test. The second result,

Theorem 4.2, exploits the result in Theorem 4.1 to show that the test in (11) controls the limiting

rejection probability under the null hypothesis.

Theorem 4.1. Let Assumption 4.1 hold and let q > 1 be fixed. If P{Z = 0} = 0, then

Sn
d→ S ∼ Bi(q, πf )

as n→∞, where Bi(q, πf ) denotes the Binomial distribution with q trials and probability of success

πf ≡
f−Z (0)

f−Z (0) + f+
Z (0)

.

If P{Z = 0} > 0, then S = q with probability one.

Theorem 4.1, although fairly intuitive, does not follow from standard arguments. The case when

P{Z = 0} > 0 is relatively simple, so we focus our discussion on the case P{Z = 0} = 0. First,

the random variables {Ag,(j) : 1 ≤ j ≤ q} are not necessarily i.i.d. by virtue of being indicators
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of g-order statistics. In general, they are neither independent nor identically distributed. Second,

applying results from the literature on g-order statistics (e.g., Kaufmann and Reiss, 1992, Theorem

1) requires g(Z) = |Z| to have a continuous distribution function everywhere on its domain. Under

Assumption 4.1 this is only true in (0, δ), and mass points are allowed, both at zero and outside

(0, δ). In the proof of Theorem 4.1 we use a smoothing transformation of Z as an intermediate step

and then accommodate the results in Kaufmann and Reiss (1992, Theorem 1) to reach the desired

conclusion.

The following result, which heavily relies on Theorem 4.1, is the main result of this section and

characterizes the asymptotic properties of our test.

Theorem 4.2. Let Assumption 4.1 hold and let q > 1 be fixed. Then, under H0 in (3),

lim
n→∞

E[φ(Sn)] = 2Ψq(bq(α)− 1) +
aq(α)

2q−1

(
q

bq(α)

)
= α .

In addition, under H1 in (3), limn→∞E[φ(Sn)] > α.

Theorem 4.2 shows that φ(Sn) behaves asymptotically, as n → ∞, as the two-sided sign-test

in an experiment with S ∼ Bi(q, π) and the hypotheses H0 : π = 1
2 versus H1 : π 6= 1

2 . This test

is not only among the oldest significance tests in statistics (see, e.g., Arbuthnott (1710)), but it is

also the uniformly most powerful test among the class of unbiased test for such hypothesis testing

problem; see Lehmann and Romano (2005, Section 4.2) and Lemma B.5 in the appendix.

Remark 4.1. Theorem 4.2 shows that limn→∞E[φ(Sn)] > α under H1 in (3). It is worth noticing

that limn→∞E[φ(Sn)] = 1 for any alternative hypothesis with a mass point at the cut-off, i.e., a

distribution such that P{Z = 0} > 0.

Remark 4.2. The test φ(Sn) could be alternatively characterized as an “approximate” random-

ization test, see Canay et al. (2017) for a general description of such tests. However, such a

characterization would make the analysis of the formal properties of the test more complicated

and, in particular, the results in Canay et al. (2017) would not immediately apply due to two

fundamental challenges. First, Assumption 3.1(iii) in Canay et al. (2017) is immediately violated

in our setting. Second, such an approach would require an asymptotic approximation to the joint

distribution of {Ag,(j) : 1 ≤ j ≤ q}, which in turn would require a strengthening of Lemma B.4.

Our proof approach avoids both of these technicalities by directly exploiting the binary nature of

{Ag,(j) : 1 ≤ j ≤ q} and by simply approximating the distribution of Sn, which is a scalar, as in

Theorem 4.1.

Remark 4.3. It is possible to show that φ(Sn) in (11) is level α in finite samples whenever the

distribution of Z is continuous and symmetric local to the cut-off. In this case, the fundamental

result in Lemma B.4 holds for Sn with P{Z > 0 | |Z| < r} = 1
2 for any r > 0, and the proof of

Theorem 4.2 can in turn be properly modified to show E[φ(Sn)] = α for all n ≥ 1.

10



4.2 Results for large q

In this section we study the properties of φ(Sn) in (11) in an asymptotic framework where q diverges

to infinity as n→∞. We further restrict the rate at which q is allowed to grow by requiring that
q
n → 0 as n→∞; a condition that turns out to be necessary for our results to hold (see Remark 4.4).

Importantly, the results in this section follow from Assumption 4.1 as well, and so the asymptotic

properties of our test under small and large q require the same mild conditions.

Theorem 4.3. Let Assumption 4.1 hold and assume P{Z = 0} = 0. Let q → ∞ and q
n → 0 as

n→∞. Then,
√
q

(
1

q
Sn − πf

)
d→ N (0, πf (1− πf )) ,

where πf is as in Theorem 4.1. In addition, the following results hold for α ∈ (0, 1):

(a) Under H0 in (3), limn→∞E[φ(Sn)] = α.

(b) Under a sequence of alternative distributions local to H0 satisfying
√
q(πf − 1

2)→ ∆ 6= 0,

lim
n→∞

E[φ(Sn)] = P{|ζ + 2∆| > zα/2} > α ,

where ζ ∼ N(0, 1) and zα/2 is the (1− α
2 )-quantile of ζ.

Theorem 4.3, although fairly intuitive again, does not follow from standard arguments. In

particular, given that the random variables {Ag,(j) : 1 ≤ j ≤ q} are neither independent nor

identically distributed, the result does not follow from a simple application of the central limit

theorem. We instead adapt Kaufmann and Reiss (1992, Theorem 1) and prove the result using

first principles and the normal approximation to the binomial distribution.

Remark 4.4. Lemma B.6 in the Appendix shows that lim infn→∞E[φ(Sn)] may exceed α under

H0 in (3) when q
n 6→ 0. This illustrates the sense in which, even when q is allowed to grow, it is

required that q remains small relative to n in order for the test to have good properties under the

null hypothesis.

Remark 4.5. It may be tempting to use the first part of Theorem 4.3 to consider a variation of

the test we propose; namely the test that rejects H0 when Tq(Sn) > 1
2zα/2 and zα/2 is the (1− α

2 )-

quantile of a standard normal random variable. However, we do not recommend this variation as it

provides no theoretical advantages over φ(Sn) in the asymptotic framework where q →∞, and it is

not formally justified in the asymptotic framework where q is fixed (in particular, such a variation

will not inherit the properties discussed in Remark 4.3).

Remark 4.6. As pointed out by a referee, in the asymptotic framework where q → ∞, the test

statistic Tq(Sn) can be shown to be proportional to a Wald-type statistic

Wn = |f̂Z(hn)− f̂Z(−hn)| ,

11



where f̂Z(z) is a non-parametric kernel density estimator of fZ (implemented with a uniform on

[−1, 1] kernel and bandwidth hn). Under some conditions, standard asymptotic arguments could be

used to show that the Wald-type statistic above is asymptotically normally distributed. A test for

H0 could therefore be constructed by using the quantile of a normal distribution and a consistent

estimator of the asymptotic variance. However, the equivalence between an approach like this and

the test we propose only holds in the asymptotic framework where q →∞, and for the same reasons

as those discussed in Remark 4.5, we do not recommend a variation like this.

5 Simulations

In this section, we examine the finite-sample performance of the test we propose in this paper

with a simulation study. Instead of just presenting designs where our proposed test excels relative

to competing ones, we present an array of data generating processes that hopefully illustrate the

relative strengths and weaknesses of the test we propose. The data for the study is simulated as an

i.i.d. sample from the following designs, where below Beta(a, b) denotes the Beta distribution with

parameters (a, b).

Design 1: For µ ∈ {−2,−1, 0}, Z ∼ N(µ, 1).

Design 2: For λ ∈ {1
3 , 1},

Z ∼

V1 with prob. λ

V2 with prob. (1− λ)
,

where V1 ∼ 2Beta(2, 4)− 1 and V2 ∼ 1− 2Beta(2, 8).

Design 3: For (λ1, λ2, λ3) = (0.4, 0.1, 0.5),

Z ∼


V1 with prob. λ1

V2 with prob. λ2

V3 with prob. λ3

,

where V1 ∼ N(−1, 1), V2 ∼ N(−0.2, 0.2), and V3 ∼ N(3, 2.5).

Design 4: For κ ∈ {0.05, 0.10, 0.25}, the density of Z is given by

fZ(z) =


0.75 if z ∈ [−1,−κ]

0.75− 1
4κ(z + κ) if z ∈ [−κ, κ]

0.25 if z ∈ [κ, 1]

.
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Design 5: For κ ∈ {0.05, 0.10, 0.25}, the density of Z is given by

fZ(z) =


0.25 if z ∈ [−1,−κ]

0.50 if z ∈ [−κ, κ]

0.75 if z ∈ [κ, 1]

.

Design 6: We first non-parametrically estimate the density of the running variable in Lee

(2008, see Section 6 for details) and then take i.i.d. draws from such a density.

Design 1 in Figure 1(a) is the canonical normal case and, by Remark 4.3, our test is expected

to control size in finite samples when µ = 0 but not when µ ∈ {−2,−1}. Indeed, µ = −2 is

a challenging case due to the low probability of getting observations to the right of the cut-off.

Design 2 in Figure 1(b) is taken from Canay and Kamat (2018). Design 3 in Figure 1(c) is a

parametrization of the taxable income density in Saez (2010, Figure 8). This design exhibits a

spike (almost a kink) to the left of the cut-off which is essentially a violation of the smoothness

assumptions required by McCrary (2008) and Cattaneo et al. (2017a). It also exhibits a steep

density at the cut-off, which also makes it a difficult case in general. Similar to Design 3, Design

4 in Figure 1(b) also illustrates the difficulty in distinguishing a discontinuity from a very steep

slope; see Kamat (2017) for a formal discussion. Here we can study the sensitivity to the slope by

changing the value of κ. Design 5 in Figure 1(e) requires δ in Assumption 4.1(a) to be such that

δ < κ in order for our approximations to be accurate, but as opposed to Design 4, it is locally

symmetric around the cut-off. As κ gets smaller, we expect our test to perform worse if q is not

chosen carefully. Finally, Design 6 in Figure 1(f) draws data i.i.d. from the non-parametric density

estimator of the running variable in Lee (2008), i.e., Z is the difference in vote shares between

Democrats and Republicans.

We consider sample sizes n ∈ {1, 000; 5, 000}, a nominal level of α = 10%, and perform 10, 000

Monte Carlo repetitions. Designs 1 to 6 satisfy the null hypothesis in (3). We additionally consider

the same models under the alternative hypothesis by randomly changing the sign of observations

in the interval [0, 0.1] with probability 0.1. We report results for the following tests.

AS-NR and AS-R: the approximate sign-test we propose in this paper in its two versions.

The randomized version (AS-R) in (11) and the non-randomized version (AS-NR) that rejects

when pvalue in (14) is below α, see Remark 3.1. We include the randomized version in order

to illustrate the differences between the randomized and non-randomized versions of the test.

The tuning parameter q is set to

q ∈ {20, 50, 75, q̂irot} ,

where q̂irot is the feasible informed rule of thumb described in Section 3 and Appendix C.
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Figure 1: Density functions f(z) for Designs 1 to 6 used in the Monte Carlo simulations

McC: the test proposed by McCrary (2008). We implement this test using the function

DCdensity from the R package rdd, with the default choices for the bandwidth parameter

and kernel type.

CJM: the test proposed by Cattaneo et al. (2017a). We implement this test using the

rddensity function from the R package rddensity. We use jackknifed standard errors and

bias correction, as these are the default choices in the paper.

Tables 1 and 2 report rejection probabilities under the null and alternative hypotheses for the

six designs we consider and for sample sizes of n = 1, 000 and n = 5, 000, respectively. We start

by discussing the results under the null hypothesis. AS-NR delivers rejection probabilities under

the null hypothesis closer to the nominal level than those delivered by McC and CJM in most of

the designs. The two empirically motivated designs (Designs 3 and 6) illustrate this feature clearly.

Designs 4 and 5 also show big differences in performance, both in cases where AS-NR delivers

rejection rates equal to the nominal level (Design 5) and McC and CJM severely over-reject; as

well as in cases where all tests over-reject (Design 4, κ = 0.05) but AS-NR is relatively closer to

the nominal level. The relatively most difficult case for AS-NR is Design 1 with µ = −2, where

the probability of getting observations to the right of the cut-off is below 2%. Tables 1 and 2 also

show negligible differences between the randomized (AS-R) and non-randomized (AS-NR) versions

of our test, consistent with our discussion in Remark 3.1.
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Rejection Rate under H0 Rejection Rate under H1

AS-NR AS-R McC CJM AS-NR AS-R McC CJM

q q q q

Design 20 50 75 q̂irot q̂irot 20 50 75 q̂irot q̂irot

D1: µ = 0 4.5 6.4 6.3 10.0 10.1 9.5 8.2 6.1 13.2 15.5 16.9 17.0 16.2 12.8

D1: µ = −1 4.2 8.3 11.9 9.3 9.7 11.6 8.2 6.9 19.5 25.3 12.9 13.4 19.4 10.2

D1: µ = −2 11.8 84.2 99.7 12.9 13.7 11.4 7.7 16.2 87.8 99.8 17.1 18.2 11.5 7.9

D2: λ = 1 4.2 7.2 7.2 10.4 10.5 11.2 10.2 6.1 10.9 9.4 14.5 14.7 22.5 12.7

D2: λ = 1
3 4.2 7.7 10.2 9.9 10.2 10.4 7.9 6.7 19.4 30.5 13.8 14.1 26.5 15.0

D3 4.8 17.9 39.3 15.4 15.6 100.0 86.0 8.4 36.5 59.9 30.1 30.3 100.0 90.0

D4: κ = 0.25 4.1 8.7 12.7 11.6 11.7 12.1 9.8 7.4 21.4 35.5 21.6 21.8 28.1 17.8

D4: κ = 0.1 4.8 18.3 41.8 16.1 16.3 47.8 24.8 8.5 37.4 69.8 31.0 31.1 73.6 40.8

D4: κ = 0.05 6.5 47.8 86.6 31.4 31.6 85.0 60.2 12.6 69.4 95.8 50.9 51.0 95.0 76.4

D5: κ = 0.25 3.8 6.8 6.3 9.8 9.9 20.8 12.9 5.9 13.1 16.0 15.5 15.7 14.2 29.0

D5: κ = 0.1 4.0 6.7 6.4 9.8 10.0 17.6 32.9 6.4 13.2 17.0 16.3 16.5 20.1 16.2

D5: κ = 0.05 4.1 7.8 35.3 9.4 9.6 40.6 25.6 5.7 18.4 63.4 16.0 16.1 67.5 39.8

D6 4.3 6.0 6.4 9.6 9.7 9.2 10.1 6.1 11.6 13.0 15.4 15.5 28.0 17.6

Table 1: Rejection probabilities (in %) under H0 and H1 across Designs 1-6 and for n = 1, 000.

Rejection Rate under H0 Rejection Rate under H1

AS-NR AS-R McC CJM AS-NR AS-R McC CJM

q q q q

Design 20 50 75 q̂irot q̂irot 20 50 75 q̂irot q̂irot

D1: µ = 0 3.9 6.6 6.9 10.1 10.2 9.6 9.0 6.1 13.0 16.7 51.2 51.3 45.6 39.9

D1: µ = −1 4.0 6.7 6.8 10.1 10.4 12.2 9.0 6.2 14.4 19.5 20.0 20.3 43.4 20.9

D1: µ = −2 4.3 12.3 25.7 13.3 13.4 11.9 9.1 8.2 30.1 46.0 26.4 26.6 15.0 13.1

D2: λ = 1 4.1 7.0 6.8 10.7 10.9 10.8 9.4 6.3 13.1 15.8 26.5 26.7 49.8 13.4

D2: λ = 1
3 3.9 6.3 6.4 9.8 10.0 10.6 8.1 6.5 14.2 19.4 20.3 20.5 71.1 37.5

D3 4.4 7.0 8.1 23.6 23.8 100.0 93.7 6.8 17.1 25.2 65.6 65.7 100.0 98.1

D4: κ = 0.25 4.2 6.4 6.4 11.1 11.3 12.0 10.2 6.3 15.1 19.8 39.8 40.0 64.0 40.4

D4: κ = 0.1 4.0 6.7 7.7 17.8 18.0 69.1 23.4 6.0 15.6 24.3 53.3 53.5 97.8 64.8

D4: κ = 0.05 4.3 8.4 12.0 41.1 41.3 99.8 94.1 6.8 20.7 34.2 76.2 76.4 100.0 99.4

D5: κ = 0.25 4.1 6.2 6.0 9.5 9.6 31.7 17.1 6.1 13.5 16.9 32.9 33.1 38.9 68.6

D5: κ = 0.1 4.2 6.5 6.1 9.4 9.5 51.0 44.4 6.2 12.8 16.1 30.1 30.4 20.0 18.8

D5: κ = 0.05 3.9 6.8 6.6 10.3 10.4 46.2 31.3 6.2 13.2 16.4 29.9 30.1 92.0 55.8

D6 3.8 6.3 6.4 9.9 9.9 13.2 13.7 6.0 12.6 15.8 38.1 38.1 72.1 48.1

Table 2: Rejection probabilities (in %) under H0 and H1 across Designs 1-6 and for n = 5, 000.

To describe the performance of the different tests under the alternative hypothesis, we focus

on designs where the rejection under the null hypothesis is close to the nominal level for all tests.

In those cases, we see that AS-NR has competitive power, although it is rarely the test with the

highest rejection under the alternative hypothesis. In Design 1 with µ = 0 AS-NR indeed delivers

the highest rejection probability under the alternative hypothesis both for n = 1, 000 and n = 5, 000.
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D1 D1 D1 D2 D2 D3 D4 D5 D6

µ = 0 µ = −1 µ = −2 λ = 1 λ = 1
3 all κ all κ

n = 1000 147 18 13 37 18 37 37 37 37

n = 5000 562 53 37 119 53 147 131 125 144

Table 3: Mean values of q̂irot in Designs 1-6 and for n = 1, 000 and n = 5, 000.
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Figure 2: Rejection probability of AS-NR (blue line) and AS-R (orange line) as a function of q. The vertical dashed

line denotes the value of q̂irot and the horizontal dotted line the value of α.

In the rest of the cases McC exhibits the highest power, sometimes followed by AS-NR (i.e., Design

1 with µ = −1, Design 2 with λ = 1, Design 4 with κ = 0.25 when n = 1, 000), and sometimes

followed by CJM (i.e., Design 2 with λ = 1
3 , Design 4 with κ = 0.25 when n = 5, 000). Overall, the

best design in terms of power for AS-NR is Design 1 with µ = 0, while the worst one is Design 2

with λ = 1
3 .

Table 3 shows the mean values of q̂irot across simulations for all designs and sample sizes. As

described in Section 3, q̂irot takes into account both the slope and the magnitude of the density at

the cut-off. As a result, q̂irot is relatively high in designs with flat density at the cut-off and high

fZ(0) (e.g., Design 1 with µ = 0) and relatively low in designs with steep slopes or low fZ(0) (e.g.,
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Design 1 with µ = −2 or Design 2 with λ = 1
3). To gain further insight on the sensitivity of our test

to the choice of q, Figure 2 displays the rejection probabilities of AS-NR and AS-R as a function on

q in two types of designs. In the top row we illustrate two designs where the rejection probability is

mostly insensitive to the choice of q (Design 1 with µ = 0 and Design 6). These are designs where

the density is rather flat around the cut-off and so increasing q does not deteriorate the performance

of our test. In the bottom row we illustrate two designs where the rejection probability is highly

sensitive to the choice of q (Design 1 with µ = −2 and Design 3). These are designs that feature a

steep density at the cut-off (also low in Design 1), and so increasing q very quickly deteriorates the

performance of the test under the null hypothesis. The rule of thumb q̂irot is displayed in each case

with a vertical dashed line and seems to be doing a good job at choosing relatively smaller values

in the sensitive cases.

We conclude this section by highlighting how one could compare the results in Tables 1 and 2

for a fix value of q to appreciate the results in Section 4.1. For example, taking q = 75, the rejection

probability in Design 1 with µ = −2 and Design 3 are 84.3 and 17.9, respectively, when n = 1, 000.

The same numbers when n = 5, 000 are 12.3 and 7.0, respectively, which are closer to the nominal

level as predicted by our results.

6 Empirical Illustration

In this section we briefly reevaluate the validity of the design in Lee (2008). Lee studies the benefits

of incumbency on electoral outcomes using a discontinuity constructed with the insight that the

party with the majority wins. Specifically, the running variable Z is the difference in vote shares

between Democrats and Republicans at time t; see Figure 1(f) for a graphical illustration of the

density of Z. The assignment rule then takes a cutoff value of zero that determines the treatment

of incumbency to the Democratic candidate, which is used to study their election outcomes in time

t+1. The total number of observations is 6,559 with 2,740 below the cutoff. The dataset is publicly

available at http://economics.mit.edu/faculty/angrist/data1/mhe.

Lee assessed the credibility of the design in this application by inspecting discontinuities in

means of the baseline covariates, but mentions in footnote 19 the possibility of using the test

proposed by McCrary (2008). Here, we frame the validity of the design in terms of the hypothesis

in (3) and use the newly developed test as described in Section 3, using q̂irot as our default choice

for the number of observations q. The new test delivers a p-value of 0.71 for Sn = 137 out of

q̂irot = 267 observations. The null hypothesis of continuity is therefore not rejected.
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7 Concluding remarks

This paper presents a new tests for testing the continuity of a density at a point in RDD. The

test can be interpreted as an approximate two-sided sign test and is based on the so-called g-

order statistics. We study its properties under a novel asymptotic framework where the number

q of observations employed by the test are allowed to be fixed as the sample size n → ∞. Our

new test is easy to implement, asymptotically valid under weaker conditions than those used by

competing methods, exhibits finite sample validity under stronger conditions than those needed for

its asymptotic validity, and delivers competitive power properties in simulations.

A final aspect we would like to highlight of our test is its simplicity. The test only requires

to count the number of non-negative observations out of the q observations closest to the cut-off

(note that this is all we need to compute the p-value in (14)), and does not involve kernels, local

polynomials, bias correction, or bandwidth choices. Importantly, we have developed the rdcont

Stata package that allow for effortless implementation of the test we propose in this paper.
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A Proof of the main results

A.1 Proof of Theorem 4.1

Consider the case P{Z = 0} = 0 first. In this case, by Assumption 4.1(i) the distribution of Z is continuous

in (−δ, δ) for some δ > 0. Throughout the proof we repeatedly use {Z∗i : 1 ≤ i ≤ n} as defined in Lemma B.1,

which in turn allow us to apply Kaufmann and Reiss (1992, Theorem 1) later in the proof, when invoking

Lemma B.4.

Let Z∗g,(1), . . . , Z
∗
g,(q) denote the q values of {Z∗i : 1 ≤ i ≤ n} that are induced by the q smallest values of

{g(Z∗i ) = |Z∗i | : 1 ≤ i ≤ n} and let

A∗g,(j) ≡ I{Z
∗
g,(j) ≥ 0} for 1 ≤ j ≤ q

and

S∗n ≡
q∑
j=1

A∗g,(j) . (A-19)

Next consider Sn in (6) and note that Sn takes values in Nq ≡ {0, 1, . . . , q}. By the Portmanteau’s

theorem, see e.g. van der Vaart and Wellner (1996, Theorem 1.3.4(iii)), it follows that if Sn
d→ S for some

random variable S, then

1 = lim inf
n→∞

P{Sn ∈ Nq} ≤ P{S ∈ Nq} ,

since Nq is a closed subset of R. Thus, it must be that Sn and S take values in Nq, and so by Durrett (2010,

Exercise 3.2.11), convergence in distribution is equivalent to convergence of the probability mass function

(pmf) for all s ∈ Nq. To establish this result, let pq(s|π) be the pmf of a Binomial random variable with q

trials and probability of success π ∈ [0, 1], i.e.

pq(s|π) =

(
q

s

)
πs(1− π)q−s . (A-20)

It suffices to show that for any η > 0, there exists N such that ∀n ≥ N ,

|P{Sn = s} − pq(s|πf )| ≤ η ,

with

πf =
f−Z (0)

f−Z (0) + f+Z (0)
. (A-21)

To this end, first note that pq(s|π) is continuous in π and so there exists µ > 0 such that

sup
|π−πf |≤µ

|pq(s|π)− pq(s|πf )| ≤ η

2
. (A-22)

For such µ, we can find ε ∈ (0, δ2 ) such that

sup
r≤ε

∣∣∣P{Z∗ ≥ 0 | |Z∗| < r} − πf
∣∣∣ = sup

r≤ε

∣∣∣P{Z ≥ 0 | |Z| < r} − πf
∣∣∣ ≤ µ , (A-23)

where the first equality holds by Lemma B.1(b) and the second equality holds for by Lemma B.2. The rest

of the argument will make repeated reference to ε determined by (A-23).

19



Next consider the following decomposition for s ∈ Nq,

P{Sn = s} = Rn,1 +Rn,2 +Rn,3 ,

with

Rn,1 ≡ P{Sn = s} − P{S∗n = s}

Rn,2 ≡
∫ ∞
ε

P{S∗n = s | |Z∗g,(q+1)| = r}dP{|Z∗g,(q+1)| = r}

Rn,3 ≡
∫ ε

0

P{S∗n = s | |Z∗g,(q+1)| = r}dP{|Z∗g,(q+1)| = r} .

First, Lemma B.3(b) implies that Rn,1 = o(1). Second, note that

0 ≤ Rn,2 ≤
∫ ∞
ε

dP{|Z∗g,(q+1)| = r} = P{|Z∗g,(q+1)| ≥ ε} = o(1) , (A-24)

where the last equality follows from Lemma B.3(a). Finally, note that for π(r) = P{Z ≥ 0 | |Z| < r},

Rn,3 =

∫ ε

0

pq(s|π(r))dP{|Z∗g,(q+1)| = r}

≥ P{|Z∗g,(q+1)| ≤ ε} inf
r≤ε

pq(s|π(r))

≥ P{|Z∗g,(q+1)| ≤ ε} inf
|π−πf |≤µ

pq(s|π)

≥ P{|Z∗g,(q+1)| ≤ ε}pq(s|πf )− η

2
, (A-25)

where the first line follows from Lemma B.4, the third line follows from (A-23), and the fourth line follows

from (A-22). By the analogous arguments,

Rn,3 ≤ P{|Z∗g,(q+1)| ≤ ε}pq(s|πf ) +
η

2
≤ pq(s|πf ) +

η

2
. (A-26)

Combining (A-25) and (A-26) we obtain

|Rn,3 − pq(s|πf )| ≤ η

2
+ (1− P{|Z∗g,(q+1)| ≤ ε}) =

η

2
+ o(1) ,

where the equality follows from Lemma B.3(a). We conclude that |P{Sn = s} − pq(s|πf )| ≤ η
2 + o(1) for all

s ∈ Nq and this completes the proof for the case where P{Z = 0} = 0.

Now consider the case where P{Z = 0} > 0. Take the following decomposition,

P{Sn 6= q} = R̃n,1 + R̃n,2 + R̃n,3 ,

with

R̃n,1 ≡ P{Sn 6= q} − P{S∗n 6= q}

R̃n,2 ≡ P{{S∗n 6= q} ∩ {|Z∗g,q+1| 6= 0}}

R̃n,3 ≡ P{{S∗n 6= q} ∩ {|Z∗g,q+1| = 0}} .

First, Lemma B.3(b) implies that R̃n,1 = o(1). Second, R̃n,2 ≤ P{|Z∗g,q+1| 6= 0} = o(1), where the last

equality follows from Lemma B.3(c). Finally, {|Z∗g,q+1| = 0} implies that {S∗n = q} by definition, and so

R̃n,3 = 0. We conclude that P{Sn = q} → 1 as n→∞ and this completes the proof. �
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A.2 Proof of Theorem 4.2

By the definition of φ(Sn) in (11) and the expressions of T (Sn) in (7) and cq(α) in (9),

E[φ(Sn)] = P{Sn < bq(α)}+ P{Sn > q − bq(α)}+ aq(α) (P{Sn = bq(α)}+ P{Sn = q − bq(α)}) .

Theorem 4.1 shows that P{Sn = s} = P{S = s} + o(1) for all s ∈ Nq ≡ {0, 1, . . . , q}, where S ∼ Bi(q, πf )

and πf is as in (A-21). It follows from this result and the above display that E[φ(Sn)]→ E[φ(S)] as n→∞,

where

E[φ(S)] = P{S < bq(α)}+ P{S > q − bq(α)}+ aq(α) (P{S = bq(α)}+ P{S = q − bq(α)}) . (A-27)

We complete the proof by analyzing each term on the right hand side of (A-27) under H0 and H1 in (3).

Under H0 in (3), πf = 1
2 . In this case, it follows immediately that

P{S < bq(α)}+ P{S > q − bq(α)} = 2Ψq(bq(α)− 1) ,

where we used that bq(α) ∈ {0, 1, . . . , q2} and P{S < b} = P{S > q− b} for any b ∈ {0, . . . , q2} when πf = 1
2 .

In addition,

aq(α) (P{S = bq(α)}+ P{S = q − bq(α)}) = 2aq(α)
1

2q

(
q

bq(α)

)
,

where we used that
(
q
C

)
=
(

q
q−C

)
for any C ∈ {0, . . . , q}. We conclude that, under H0 in (3),

lim
n→∞

E[φ(Sn)] = 2Ψq(bq(α)− 1) +
aq(α)

2q−1

(
q

bq(α)

)
= α , (A-28)

where the last equality follows by definition of aq(α).

To claim that E[φ(S)] > α under H1 in (3), let S ∼ Bi(q, π) and consider testing H0 : π = 1
2 against

a simple alternative H1 : π = π̄ 6= 1
2 . By Lehmann and Romano (2005, Theorem 3.2.1), the most powerful

test rejects for large values of the likelihood ratio

π̄S(1− π̄q−S)
1
2q

.

That is, if π̄ > 1
2 the most powerful test rejects for small values of S, while if π̄ < 1

2 the most powerful test

rejects for large values of S. Since E[φ(S)] = α by (A-28), it follows that φ(S) is most powerful for this

simple testing problem. The result then follows from Lehmann and Romano (2005, Corollary 3.2.1) as the

alternative π̄ 6= 1
2 was arbitrary. �

A.3 Proof of Theorem 4.3

Let ξn ≡
√
q
(

1
qSn − πf

)
and ξ∗n ≡

√
q
(

1
qS
∗
n − πf

)
with S∗n as in (A-19). For any π ∈ (0, 1) denote by

Jq(x|π) the cdf of
√
q
(

1
qS − π

)
, where S ∼ Bi(q, π), and by J(x|π) the cdf of the normal distribution with

mean zero and variance π(1− π). It suffices to show that for any η > 0, there exists N such that ∀n ≥ N ,

|P{ξn ≤ x} − J(x|πf )| ≤ η .
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To this end, first note that J(x|π) is continuous in π and so there exists µ > 0 such that

sup
|π−πf |≤µ

|J(x|π)− J(x|πf )| ≤ η

2
.

For such a µ, we can find ε ∈ (0, δ2 ) such that

sup
r≤ε

∣∣∣P{Z∗ ≥ 0 | |Z∗| < r} − πf
∣∣∣ = sup

r≤ε

∣∣∣P{Z ≥ 0 | |Z| < r} − πf
∣∣∣ ≤ µ , (A-29)

where the first equality holds by Lemma B.1(b) and the second equality holds for by Lemma B.2. The rest

of the argument will make repeated reference to the ε determined by (A-29).

Next consider the following decomposition for x ∈ R,

P{ξn ≤ x} = R̄n,1 + R̄n,2 + R̄n,3 , (A-30)

with

R̄n,1 ≡ P{ξn ≤ x} − P{ξ∗n ≤ x}

R̄n,2 ≡
∫ ∞
ε

P{ξ∗n ≤ x | |Z∗g,(q+1)| = r}dP{|Z∗g,(q+1)| = r}

R̄n,3 ≡
∫ ε

0

P{ξ∗n ≤ x | |Z∗g,(q+1)| = r}dP{|Z∗g,(q+1)| = r} .

First, Lemma B.3(b) implies that R̄n,1 = o(1). Second, R̄n,2 = o(1) by the same arguments as those in

(A-24). Finally,

|R̄n,3 − Jq(x|πf )| ≤ η

2
+ (1− P{|Z∗g,(q+1)| ≤ ε}) =

η

2
+ o(1) , (A-31)

invoking the same arguments as those in (A-25) and (A-26). In particular, the result relies again on Lemma

B.4. We conclude that

|P{ξn ≤ x} − J(x|πf )| ≤ |P{ξn ≤ x} − Jq(x|πf )|+ |Jq(x|πf )− J(x|πf )| ≤ η

2
+ o(1) , (A-32)

where the last inequality follows from (A-30), (A-31), and the normal approximation to the binomial distri-

bution, i.e., Jq(x|πf )→ J(x|πf ) as q →∞. This completes the proof of the first statement of the theorem.

Next, note that by definition of cq(α) in (9), it follows that for any α ∈ (0, 1)

cq(α)→ 1

2
zα/2 (A-33)

as q → ∞, where zα/2 be the (1 − α
2 )-quantile of a standard normal random variable. Under the null

hypothesis in (3) it follows that πf = 1
2 , so limn→∞E[φ(Sn)] = α directly follows from (A-32) and (A-33).

This proves part (a) of the Theorem. In addition, since

2
√
q

(
1

q
Sn −

1

2

)
= 2
√
q

(
1

q
Sn − πf

)
+ 2
√
q

(
πf −

1

2

)
,

part(c) follows again from (A-32) and (A-33). �
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B Auxiliary Results

Lemma B.1. Let δ > 0 be as in Assumption 4.1 and {υi : 1 ≤ i ≤ n} be an i.i.d. sample such that

υi ∼ U(− δ2 ,
δ
2 ) independent of Z(n). Define the sequence of i.i.d. random variables {Z∗i : 1 ≤ i ≤ n} as

Z∗i ≡ Zi + υiI{|Zi| ≥ δ} .

The following statements follow from Assumption 4.1 whenever P{Z = 0} = 0.

(a) The distribution function of |Z∗| is continuous on R.

(b) For any r ∈ (0, δ2 ),

P{Z∗ ≥ 0 | |Z∗| < r} = P{Z ≥ 0 | |Z| < r} . (B-34)

(c) For any r ∈ R, P{|Z∗| < r} > 0.

Proof. Note that the distribution of Z is continuous in (−δ, δ) by Assumption 4.1(i) and P{Z = 0} = 0.

Then, to prove part (a), let E ⊂ R be a set of zero Lebesgue measure and note that

P{|Z∗| ∈ E} = P{|Z + υI{|Z| ≥ δ}| ∈ E}

= P{|Z + υI{|Z| ≥ δ}| ∈ E ∩ |Z| ≥ δ}+ P{|Z + υI{|Z| ≥ δ}| ∈ E ∩ |Z| < δ}

= P{|Z + υ| ∈ E ∩ |Z| ≥ δ}+ P{|Z| ∈ E ∩ |Z| < δ}

≤ P{|Z + υ| ∈ E}+ P{|Z| ∈ E ∩ (0, δ)} = 0

where the last equality holds because |Z + υ| is continuously distributed and E ∩ (0, δ) is a subset of zero

Lebesgue measure in the region where |Z| is continuously distributed.

For part (b) note that for any r ∈ (0, δ2 ), |Z∗| < r implies that Z = Z∗ and (B-34) follows.

For part (c) use again that P{|Z∗| < r} = P{|Z| < r} whenever r ∈ (0, δ2 ). In addition, Assumption

4.1 implies that the distribution of Z is continuous in (−δ, δ) when P{Z = 0} = 0. It follows that for any

0 < ε < δ,
1

ε
P{|Z| < ε} =

1

ε
P{Z ∈ [0, ε)}+

1

ε
P{Z ∈ (−ε, 0)} .

Taking limits as ε ↓ 0, using the definitions of f+Z (0) and f−Z (0) in (4), and invoking Assumption 4.1(ii)

shows that limε↓0
1
εP{|Z| < ε} = f+Z (0) + f−Z (0) > 0. Thus, there exists ε̄ < δ such that P{|Z| < ε} > 0 for

all ε ∈ (0, ε̄) and so P{|Z| < r} > 0 for all r ∈ R. This completes the proof.

Lemma B.2. Let Assumption 4.1 hold, πf be defined as in (A-21), and assume P{Z = 0} = 0. Then, for

all µ > 0, there exists ε > 0 s.t.

sup
r≤ε
|P{Z ≥ 0 | |Z| < r} − πf | ≤ µ .
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Proof. First note that, under Assumption 4.1(ii), the proof of Lemma B.4 shows that P{|Z| < r} > 0 for all

r ∈ R. It follows that

P{Z ≥ 0 | |Z| < ε} ≡ P{Z ∈ [0, ε)}
P{Z ∈ (−ε, ε)}

=
1
εP{Z ∈ [0, ε)}

1
εP{Z ∈ [0, ε)}+ 1

εP{Z ∈ (−ε, 0)}

=
f+Z (0)

f+Z (0) + f−Z (0)
+ δε ,

where δε → 0 as ε → 0 and in the last equality we used the definitions of f+Z (0) and f−Z (0) in (4) and

Assumption 4.1(ii) again. The result then follows by definition of πf .

Lemma B.3. Let Assumption 4.1 hold and q < n be such that q
n → 0 as n→∞. Then,

(a) For any ε ∈ (0, δ2 ), P{lim infn→∞{|Z∗g,(q+1)| ≤ ε}} = P{lim infn→∞{|Zg,(q+1)| ≤ ε}} = 1.

(b) P{lim infn→∞{Sn = S∗n}} = 1, where Sn is as in (6) and S∗n is as in (A-19).

(c) If P{Z = 0} > 0, (a) also holds with ε = 0.

Proof. Fix ε ∈ (0, δ2 ) arbitrarily and set Nn ≡
∑n
i=1 I{|Zi| ≤ ε}. Note that Nn ≥ q+ 1 implies that Z∗i = Zi

and Z∗g,(j) = Zg,(j) for at least q + 1 observations that are within an ε-neighborhood of zero. It follows that

for all these observations, Ag,(j) = A∗g,(j), Z
∗
g,(j) ≤ ε, and Zg,(j) ≤ ε. We conclude that Nn ≥ q + 1 implies

Sn = S∗n, Z∗g,(q+1) ≤ ε, and Zg,(q+1) ≤ ε .

Results (a)-(b) thus follow from proving that P{lim infn→∞{Nn ≥ q + 1}} = 1. In order to show this, note

that Nn ∼ Bi(n, P{|Z| ≤ ε}). Now set µ ≡ 1
2P{|Z| ≤ ε}, which is strictly positive by the proof of Lemma

B.1. It follows that

P{lim inf
n→∞

{Nn ≥ q + 1}} = P

{
lim inf
n→∞

{
1

n
Nn ≥

1

n
(q + 1)

}}
≥ P

{
lim inf
n→∞

{
1

n
Nn ≥ µ

}}
= 1

where the inequality holds for all n > 1
µ (q + 1), and the last equality follows by the strong law of large

numbers, i.e., Nn/n
a.s.→ 2µ > 0. This completes the proof for parts (a)-(b).

Finally, part (c) holds by repeating the same argument for ε = 0. The result extends in this case because

µ ≡ 1
2P{|Z| = 0} > 0.

Lemma B.4. Let Assumption 4.1 hold and assume P{Z = 0} = 0. Fix r ∈ (0, δ2 ) and q ∈ {1, . . . , n − 1}
arbitrarily. Then, for all s ∈ Nq ≡ {0, 1, . . . , q},

P{S∗n = s | |Z∗g,(q+1)| = r} = pq(s|π(r))

where pq(s|π(r)) is the pmf defined in (A-20) with π(r) ≡ P{Z ≥ 0 | |Z| < r}.
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Proof. Let X ≡ (|Z∗|, A∗) with A∗ = I{Z∗ ≥ 0} and note that the g-order statistics we defined in Section 3

using g = | · |, could be alternatively obtained using X and g̃-order statistics where g̃ is now the projection

into the first component of X, i.e.

g̃(X) = |Z∗| .

In this way, and for this particular choice of g̃, g̃-order statistics on X deliver

Xg̃,(1) ≡ (|Z∗|(1), A∗[1]) ≤g̃ (|Z∗|(2), A∗[2]) ≤g̃ · · · ≤g (|Z∗|(n), A∗[n]) ≡ Xg̃,(q) ,

where the random variables (A∗[1], . . . , A
∗
[n]) are called induced order statistics or concomitants of order

statistics, see David and Galambos (1974); Bhattacharya (1974).

Let X̃1, . . . , X̃q be i.i.d. bivariate random variables such that X̃
d
= {X | g̃(X) < r}. Theorem 1 in

Kaufmann and Reiss (1992) states that

{(Xg̃,(1), . . . , Xg̃,(q)) | g̃(Xg̃,(q+1)) = r} d
= {X̃g̃,(1), . . . , X̃g̃,(q)} , (B-35)

with X̃g̃,(1), . . . , X̃g̃,(q) being the g̃-order statistics of X̃1, . . . , X̃q, provided that (i) g̃(X) has a continuous

distribution and (ii) P{g̃(X) < r} > 0. Since g̃(X) = |Z∗| has a continuous distribution by Lemma B.1(a)

and P{g̃(X) < r} = P{|Z∗| < r} > 0 by Lemma B.1(c), we use (B-35) to prove our result.

Next, note that we can re-write S∗n in (A-19) as a function of (Xg̃,(1), . . . , Xg̃,(q)) by using the function

h that projects into the second component of X, i.e.

S∗n =

q∑
j=1

A∗g,(j) =

q∑
j=1

A∗[j] =

q∑
j=1

h(Xg̃,(j)) ,

where in the second equality we used that A∗g,(j) = A∗[j] by definition. Using this characterization, it follows

that

P{S∗n = s | |Z∗g,(q+1)| = r} = P
{ q∑
j=1

h(Xg̃,(j)) = s | |g̃(Xg̃,(q+1))| = r
}

= P
{ q∑
j=1

h(X̃g̃,(j)) = s
}

= P
{ q∑
j=1

h(X̃j) = s
}

= pq(s|π(r)) ,

where the second equality follows from (B-35), the third equality follows from
∑q
j=1 h(X̃g̃,(j)) =

∑q
j=1 h(X̃j),

and the last equality follows from h(X̃1), . . . , h(X̃q) being i.i.d. bivariate random variables such that h(X̃)
d
=

{h(X) | g̃(X) < r} and {h(X) | g̃(X) < r} = {I{Z∗ ≥ 0} | |Z∗| < r} being distributed Bernoulli with

parameter π(r) = P{Z∗ ≥ 0 | |Z∗| < r}. Since P{Z∗ ≥ 0 | |Z∗| < r} = P{Z ≥ 0 | |Z| < r} for r ∈ (0, δ2 ) by

Lemma B.1(b), this completes the proof.

Lemma B.5. Let S ∼ Bi(q, π) for q > 1 and consider testing H0 : π = 1
2 versus H1 : π 6= 1

2 at level

α ∈ (0, 1) using the test φ(S) in (11). It follows that (i) φ(S) is a level α test, (ii) φ(S) is unbiased, (iii)

φ(S) is uniformly most powerful unbiased.
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Proof. This results follows from Lehmann and Romano (2005, Example 4.2.1) after noticing that Equations

(4.5) and (4.6) in Lehmann and Romano (2005) reduce to (12) in this paper (which jointly determines aq(α)

and bq(α)) under H0 : π = 1
2 .

Lemma B.6. Let Assumption 4.1 hold and assume P{Z = 0} = 0. Let q → ∞ and q
n 6→ 0 as n → ∞.

Then, under H0 in (3), lim infn→∞E[φ(Sn)] > α.

Proof. Let Z ∼ N(µ, 1) with µ > 0 and note that the distribution of Z is continuous everywhere. This

creates two major simplifications relative to the results in Theorems 4.1 and 4.3. First, we do not need to

introduce the smoothing transformation Z∗ as in Lemma B.1. Second, the result in Lemma B.4 is no longer

restricted to values of r ∈ (0, δ2 ), i.e., it holds for any r > 0. We exploit these two simplifications below.

Assume that q = τn for some τ ∈ (0, 1] (this is without loss as lim sup q/n > 0 implies this must hold

for a subsequence). In turn, q = τn implies that |Zg,(q+1)| converges in probability to the τ -th quantile of

|Z|, which we denote by Q > 0. If we now let π(r) ≡ P{Z ≥ 0 | |Z| < r}, Z ∼ N(µ, 1) implies that

lim
r↓0

π(r) =
1

2
and π(Q) >

1

2
,

where the second statement follows from π(r) being continuous and strictly increasing in r. Let ξn ≡
√
q
(

1
qSn −

1
2

)
. For any x ∈ R and η ∈ (0, Q/2), consider the following derivation

P{ξn ≤ x} = Rn,1(x) +Rn,2(x) +Rn,3(x) ,

with

Rn,1(x) ≡
∫ Q−η

0

P{ξn ≤ x | |Zg,(q+1)| = r}dP{|Zg,(q+1)| = r}

Rn,2(x) ≡
∫ ∞
Q+η

P{ξn ≤ x | |Zg,(q+1)| = r}dP{|Zg,(q+1)| = r}

Rn,3(x) ≡
∫ Q+η

Q−η
P{ξn ≤ x | |Zg,(q+1)| = r}dP{|Zg,(q+1)| = r} .

Below we argue that Rn,j(x) = o(1) for j ∈ {1, 2, 3} and x ∈ R. This, together with the fact that

cq(α)→ 1
2zα/2 > 0 as q →∞, implies that P{ξn > cq(α)} → 1 and completes the proof.

First, note that

sup
x∈R
|Rn,1(x)| ≤

∫ Q−η

0

dP{|Zg,(q+1)| = r} = P{|Zg,(q+1)| ≤ Q− η} → 0 ,

which follows from |Zg,(q+1)|
P→ Q and η > 0. Similarly, supx∈R |Rn,2(x)| ≤ P{|Zg,(q+1)| ≥ Q + η} → 0.

Finally, for Rn,3(x) we need to introduce additional notation. Let ξ̄(π) ≡ √q
(

1
q S̄(π)− 1

2

)
where S̄(π) ∼

Bi(q, π). Next, note that

Rn,3(x) =

∫ Q+η

Q−η
P{ξ̄(π(r)) ≤ x}dP{|Zg,(q+1)| = r}

≤
∫ Q+η

Q−η
P{ξ̄(π(Q− η)) ≤ x}dP{|Zg,(q+1)| = r}

= P{ξ̄(π(Q− η)) ≤ x}P{|Zg,(q+1)| ∈ [Q− η,Q+ η]} ≤ P{ξ̄(π(Q− η)) ≤ x}

= P

{
√
q

(
1

q
S̄(π)− π(Q− η)

)
+
√
q

(
π(Q− η)− 1

2

)
≤ x

}
→ 0 ,
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where the first line follows from Lemma B.4, and the second line follows from π(r) being an increasing

function of r and P{ξ̄(π) ≤ x} being a decreasing function of π, and the last line follows from the normal

approximation to the Binomial and the fact that
√
q
(
π(Q− η)− 1

2

)
→∞ by π(Q− η) > 1

2 . This completes

the proof.

C Computational details on the data-dependent rule for q

In the simulations of Section 5 and in the companion Stata package, the feasible informed rule of thumb is

computed as follows. First, we compute

q̂rot =
⌈

max

{
q∗(α), Ĉφ

n

log n

}⌉
,

where q∗(α) is defined in (13),

Ĉφ =
1

max
{

25
∣∣∣σ̂2φ′µ̂,σ̂(z̄)

∣∣∣ , 1} × φµ̂,σ̂(z̄)

φµ̂,σ̂(µ̂)
,

µ̂ is the sample mean of {Z1, . . . , Zn}, σ̂2 is the sample variance of {Z1, . . . , Zn}, z̄ is the cut-off point, and

n is the sample size. In principle, the value q̂rot could be used to implement our test. However, this would

ignore the non-monotonicity of the limiting null rejection probability of the non-randomized version of our

test, which according to Theorem 4.2, equals 2Ψq(bq(α) − 1) with bq(α) defined in (10). Figure 3 displays

2Ψq(bq(α)− 1) for α = 5% as a function of q. The figure shows that 2Ψq(bq(α)− 1) takes values very close

to α for q as low as 17 (i.e., 4.9%), but could be far from α for q = 19 (i.e., 1.9%). We therefore propose an

additional layer in the data-dependent way of choosing q that guarantees that such a value delivers a local

“peak” of 2Ψq(bq(α)− 1) in Figure 3.
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Figure 3: Limiting null rejection probability (in %) of the non-randomized version of the test, 2Ψq(bq(α) − 1), as a

function of q (red solid line). Nominal level of the test (dotted orange line).
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To be concrete, we define q̂irot as

q̂irot = argmax
q∈N (q̂rot)

Ψq(bq(α)− 1) , (C-36)

where N (q̂rot) ≡ {q ∈ N : max{q∗(α), q̂rot − d4 log(q̂rot)e} ≤ q ≤ q̂rot + d4 log(q̂rot)e}. The value of window

size d4 log(q̂rot)e is the minimum number of points that are required to reach a local peak of 2Ψq(bq(α)− 1)

for values of α ∈ {1%, 5%, 10%} and is such that, for large values of qrot, the window gets larger to improve

the chances of getting one of the peaks closer to α as qrot increases. A smaller window size may not guarantee

one actually reaches a local peak. The value q̂irot defined in (C-36) is the one we use in the simulations of

Section 5 and the default value in the companion Rdcont Stata package.

D Surveyed papers on RDD

Table 4 displays the list of papers we surveyed in leading journals that use regression discontinuity designs.

For a description on the criteria used to compile the list of papers in Table 4, see Canay and Kamat (2018,

Appendix E).

Authors (Year) Journal Density Test Mean Test

Schmieder et al. (2016) AER X X

Feldman et al. (2016) AER X X

Jayaraman et al. (2016) AER × ×
Dell (2015) AER X X

Hansen (2015) AER X X

Anderson (2014) AER × ×
Martin et al. (2014) AER × ×
Dahl et al. (2014) AER X X

Shigeoka (2014) AER × X

Crost et al. (2014) AER × X

Kostol and Mogstad. (2014) AER X X

Clark and Royer (2013) AER × X

Brollo et al. (2013) AER X X

Bharadwaj et al. (2013) AER X X

Pop-Eleches and Urquiola (2013) AER X X

Lacetera et al. (2012) AER X ×
Duflo et al. (2012) AER × ×
Gopinath et al. (2011) AER X X

Auffhammer and Kellogg (2011) AER × ×
Duflo et al. (2011) AER × ×
Ferraz and Finan (2011) AER × ×
McCrary and Royer (2011) AER × X

Beland (2015) AEJ:AppEcon X X

Buser (2015) AEJ:AppEcon X X

Fack and Grenet (2015) AEJ:AppEcon X X

Cohodes and Goodman (2014) AEJ:AppEcon X X

Haggag and Paci (2014) AEJ:AppEcon X X

Dobbie and Fryer (2014) AEJ:AppEcon X X

Sekhri (2014) AEJ:AppEcon X X

Schumann (2014) AEJ:AppEcon X X

Lucas and Mbiti (2014) AEJ:AppEcon X X

Authors (Year) Journal Density Test Mean Test

Miller et al. (2013) AEJ:AppEcon X X

Litschig and Morrison (2013) AEJ:AppEcon X X

Dobbie and Skiba (2013) AEJ:AppEcon X X

Kazianga et al. (2013) AEJ:AppEcon X X

Magruder (2012) AEJ:AppEcon × ×
Dustmann and Schnberg (2012) AEJ:AppEcon × ×
Clots-Figueras (2012) AEJ:AppEcon X X

Manacorda et al. (2011) AEJ:AppEcon X X

Chetty et al. (2014) QJE X X

Michalopoulos and Papaioannou (2014) QJE × X

Fredriksson et al. (2013) QJE X X

Schmieder et al. (2012) QJE X X

Lee and Mas (2012) QJE × ×
Saez et al. (2012) QJE × ×
Barreca et al. (2011) QJE × ×
Almond et al. (2011) QJE X X

Malamud and Pop-Eleches (2011) QJE X X

Fulford (2015) ReStat × X

Snider and Williams (2015) ReStat × ×
Doleac and Sanders (2015) ReStat × ×
Coşar et al. (2015) ReStat × ×
Avery and Brevoort (2015) ReStat × ×
Carpenter and Dobkin (2015) ReStat × X

Black et al. (2014) ReStat X X

Anderson et al. (2014) ReStat × ×
Alix-Garcia et al. (2013) ReStat × X

Albouy (2013) ReStat × ×
Garibaldi et al. (2012) ReStat X X

Manacorda (2012) ReStat X X

Martorell and McFarlin (2011) ReStat X X

Grosjean and Senik (2011) ReStat × ×

Table 4: Papers using manipulation/placebo tests from 2011− 2015.
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