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Abstract

This paper evaluates changes in electricity generation costs caused by the introduction of
market mechanisms to allocate production in the United States. I use the staggered transition
to markets from 1999-2012 to estimate the causal impact of liberalization using a machine
learning-augmented differences-in-differences design on a comprehensive hourly panel of elec-
tricity demand and unit-level costs, capacities, and generation. I find that markets reduce
production costs by reallocating output: Gains from trade across service areas increase by
20% based on a 10% increase in traded electricity, and costs from using uneconomical units
fall 20% from a 10% reduction in their operation.
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1 Introduction

When regulation brings its own host of distortions and inefficiencies, the mere exis-

tence of a market failure is insufficient to ensure government intervention will improve

welfare. Instead, by comparing the distortions under potential regulatory regimes,

one can identify superior policies as those with relatively fewer imperfections (Kahn

(1979); Joskow (2010)). This paper undertakes such an evaluation in the context of

U.S. wholesale electricity markets, which have replaced command-and-control-type

operations in some areas.

To do so I construct a virtually complete hourly characterization of supply and

demand of the U.S. electrical grid from 1999 - 2012. I use data on fuel costs, capacities,

heat efficiency, and operations of nearly all generating units at the hourly level to

construct power supply curves (known as the “merit order”) for each of 98 “Power

Control Areas” (PCAs), as well as observe the units that were chosen to operate to

meet demand at any moment in time. These curves allow me to decompose observed

costs in to two key welfare measures of allocative efficiency for each PCA-date-hour:

“out of merit” losses from dispatching higher marginal cost units relative to installed

capacity, and the savings from trading electricity across areas. Market power losses

manifest themselves as out of merit production (Borenstein et al. (2002); Mansur

(2001)), as do normal grid operations, such as maintenance, refueling, start-up costs,

and transmission congestion (Davis and Wolfram (2012); Mansur (2008); Reguant

(2014)). In either case, the increased operational costs are observationally equivalent

as the distance between the realized cost of operations and cost from utilizing only

the lowest-cost installed capacity.

I develop a framework and compile the necessary data to examine both of these

welfare measures simultaneously over the history of market transitions since 1999. I

use the staggered creation and expansions of wholesale electricity markets over this

period to estimate the causal impact of using markets to allocate production on these

welfare measures. I employ a differences-in-differences (DD) framework to estimate

changes in gains from trade and out of merit losses following the transition to market

dispatch against PCAs that have not undergone such operational changes.1 This

approach finds gains from trade increase by upwards of 30% after adopting market

dispatch due to a 10% increase in electricity traded. There is also a 10% decrease in

1The timing of power plant divestitures and expansion of non-utility generators does not line up
with the transition to market dispatch: Most divestiture was completed by 2001 when state-level
restructuring stalled, while the median transition to market dispatch occurred in 2005. In fact, over
half of PCAs adopt market dispatch while retaining their traditional cost of service structure for
determining the retail price of electricity. See Appendix B for an event study-type figure.
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out of merit operations, reducing these costs by nearly 20%.

The simple DD approach is susceptible to the confounding effects of fuel price

fluctuations (over time and across areas) when estimating counterfactual outcomes:

One might estimate changes in the gains from trade without any actual changes in

production patterns because the value of offset production scales with fuel prices.

This issue motivates a policy function approach in which I use historical patterns of

unit-level production given demand, unit costs and capacities to estimate each system

operators’ rules for dispatching units. I estimate these rules for each PCA-year and

use them to predict unit-level production in the subsequent year. I show how the

treatment effect can be estimated by comparing changes in the quality of fit of this

rule between areas that switch to market dispatch against areas with no change in

regulation.2

Estimating dispatch probabilities with out-of-sample validity is a pure prediction

problem for which recent developments in the machine learning literature have proven

to be particularly effective (Kleinberg et al. (2015)). I use the random forest algorithm

of Breiman (2001) to non-parametrically estimate policy functions, then embed the

results in a DD framework to estimate causal treatment effects. This part of the paper

complements the recent work of Burlig et al. (2017), who also use machine learning

methods (Least Absolute Shrinkage and Selection Operator) to predict counterfactual

outcomes and contributes to a growing literature that synthesizes program evaluation

and machine learning methods (Chernozhukov et al. 2017; Athey, Imbens and Wager,

forthcoming XXX).

The policy function approach yields estimates smaller in magnitude than the sim-

ple DD estimates for gains from trade, suggesting fuel price confounding. I find that

production costs are reduced by about three billion dollars per year due to market-

based improvements in allocating output to lower cost units, with these savings split

between reduced output from uneconomical units and gains from trade by 2:1.

It should be noted at the outset that my estimates measure changes in how out-

put is allocated given the installed capacity, costs, and patterns of demand. It would

not be unreasonable to suspect that market dispatch has affected investment incen-

tives, which are likely to be an important source of welfare changes. In addition, my

estimates measure the average effect of market dispatch, which itself has been het-

erogeneous both with respect to pre-existing institutions (i.e. power pools, bilateral

2This approach avoids issues raised by Lucas (1976) by holding regulatory status fixed in the
estimation of counterfactuals: I compare observed outcomes to those predicted if generation units
were dispatched according to last year’s rules, i.e. the production decisions prior to market dispatch.
The Lucas Critique applies to attempting to predict outcomes under a different regulatory structure.
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markets, or smoke-filled rooms), and with respect to the rules of the markets im-

plemented (uniform or locational marginal prices, virtual bidding, market monitors,

etc.). However, given the even greater differences between market and traditional

dispatch methods these estimates should be informative regarding the performance of

the relatively new mechanisms that currently determine how over 60% of generating

capacity in the United States is utilized.

The paper is organized as follows: in the next section I describe the structure

of electricity generation and transmission in the United States, and the institutional

details that will facilitate estimation. The third section describes how out of merit

costs and gains from trade are measured in electricity generation, and the fourth

section describes the data. The fifth section presents an estimation strategy motivated

by this setting. The sixth section presents causal estimates of the impact of markets

on gains from trade and out of merit costs. The final section concludes. There are

two appendices, one provides greater detail on data assembly and the other contains

supplementary results.

2 Background on Power Control Areas and Dispatch in the United States

The U.S. electricity grid developed over the 20th century based on a mix of Investor

Owned Utilities (IOUs), government-owned utilities (municipal, state, and federal),

and non-profit cooperatives. All of these organizations tended to be vertically inte-

grated, so they owned the power plants, the transmission system, and the delivery net-

work within their respective, exclusively operated territories. As either government-

run or regulated monopolies, I use the term “command-and-control” to refer to the

methods of dispatch under this industrial structure. The entity that has historically

determined which power plants operate to meet demand is called a“balancing author-

ity.” A single balancing authority controls the transmission system and dispatches

power plants within a “Power Control Area,” or PCA. When vertically-integrated,

the balancing authority and utility have often been one-in-the-same, as with the ser-

vice territory and the PCA.3 These areas operate with relative autonomy over their

assets, and transmission lines that connect areas enable flows between them.

The national grid consists of three large Interconnections: East, West, and Texas

(with relatively little capacity to transmit power between them). Figure 1 shows

the approximate configurations of the U.S. Electricity Grid in 1999 and 2012.4 The

3Exceptions include the New York and New England Power Pools, which formed in response
to The Great Northeast Blackout of 1965, as well as smaller utilities that do not control dispatch
directly. Regional reserve margin coordination was also formalized during this time with the estab-
lishment of the National Electric Reliability Council.

4The exact geographic boundaries of PCAs often defy straightforward demarcation. This map is
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boundaries between Interconnections are denoted in Panel A by the thick black lines

separating Texas and the West (unchanged over the period). The red lines denote re-

gions of the North American Electric Reliability Corporation (NERC) that coordinate

their operations in order to preserve the stability of the transmission system (when

large plants go down for maintenance, for example). The tangle of power control

areas reflects the legacy of local monopolies that have been the principal architects

of the U.S. electricity grid.

Although the Public Utility Regulatory Policies Act of 1978 (PURPA) opened the

door for independent power generation (by requiring IOUs to buy their output at

“avoided cost”), the growth of such producers was impeded by discriminatory trans-

mission practices (Joskow (2000)). Because the IOUs owned the transmission system,

they could effectively shut independent producers out of wider markets by denying

transmission access.5 This began to change with the Energy Policy Act of 1992,

which required the functional separation of transmission system owners and power

marketers–they were no longer allowed to use their wires to prevent or extract the

surplus from trades across their territory. These changes were codified on April 24,

1996 with FERC orders 888 and 889, which required open-access, non-discriminatory

tariffs for wholesale electricity transmission.

Open-access created greater potential for wholesale electricity markets, which were

initially conducted through bilateral contracts for power. In this decentralized setting,

contracts would typically specify the amount of electricity to be generated by one

utility under a set of conditions, transmitted across a particular area, and withdrawn

from the system by the purchasing utility. Mansur and White (2012) give examples

showing why the nature of congestion in electricity transmission networks renders

decentralized markets particularly poorly suited for identifying all of the potential

gains from trade. In particular, transmission lines are constrained by net flows of

power. When this is the case, there are production externalities that may allow

otherwise infeasible bilateral trades to occur by coordinating offsetting transactions

to keep net flows below transmission capacity. Identifying such potential trades in

this type of decentralized market is a challenge akin to coordinating simultaneous

multilateral exchanges (Roth et al. (2004)).

based on U.S. counties, with the predominant PCA receiving assignment of the entire county–and
is therefore approximate for visualization purposes. In addition, a number of small or hydro-only
PCAs are merged with the larger neighboring areas that provide the majority of their (fossil-based)
energy.

5Examples of IOUs exercising market dominance can be found in Appendix C of FERC Order
888.
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Figure 1: U.S. Electrical Grid as Power Control Areas

(a) Approximate PCA Configuration in 1999
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Figure 2: Share of Generating Capacity Dispatched by Markets
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Note: Vertical red lines indicate dates of transition to market-based dispatch.

Operationally, balancing authorities have relied on engineering estimates of costs

to devise dispatch algorithms to determine which plants within the PCA operate, and

separately schedule any other operations requested by utilities (for bilateral trades).

Centralized wholesale electricity markets (“market dispatch”) integrate dispatch oper-

ations in to an auction for electricity. In day-ahead auctions, for example, generators

submit bids to produce electricity, and only those below the price needed to meet

projected demand are called on to operate. These auctions incorporate feasibility

constraints, so calling on higher-priced units to operate due to transmission conges-

tion allows for the direct revelation of the cost of shortcomings in the transmission

system.6 Day-ahead markets establish financial obligations to produce, which are sub-

sequently either met with production in the real time market or unwound by buying

back one’s allocated output at the real time price (Wolak (2000); Hortacsu and Puller

(2008); Ito and Reguant (2016); Cramton (2003); Jha and Wolak (2013); Borenstein

et al. (2008), among others).

As of 2012, 60 of the 98 PCAs operating in 1999 had adopted market dispatch,

either during the initial creation of a new market or as part of the expansion of

an existing market. Adopting market dispatch is a discrete change in the decision

algorithm that allocates output to generating units: the local PCA cedes control of

6In particular, auctions using the “Standard Market Design” yield “Locational Marginal Prices”
(LMPs) which denote the market-clearing price at each of the points of withdrawal from the system.
When LMPs are identical everywhere, the system is said to be uncongested.
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their transmission system to an Independent System Operator, who conducts the

auctions.

All told, there have been 15 distinct events in which PCAs have transitioned to

market dispatch overnight. Figure 2 denotes each of these events with a vertical red

line, and shows that over the period of study markets have expanded from covering

about 10% of capacity to roughly 60%. The remaining areas have retained their tra-

ditional dispatch methods, though a number have continued to explore the possibility

of joining existing markets.7 This variation in market adoption forms the basis of

the empirical strategy for causal estimates by allowing the comparison of changes in

allocative efficiency following the transition to market dispatch relative to areas that

have not undergone such changes over the same period.

The transition from command-and-control to market dispatch is related to, but

distinct from the movement toward restructured electricity markets in the United

States (Joskow and Schmalensee (1988)). In particular, the changes to dispatch and

transmission described thus far were undertaken by the Federal government.8 The

end of cost-of-service regulation of vertically-integrated IOUs was initiated by states.

These state-led initiatives halted after the California electricity crisis, while the adop-

tion of market dispatch has continued through the 2000’s. It is important to distin-

guish between these developments, for although all states that adopted restructuring

legislation eventually adopted market dispatch, many areas began participating in

these markets while preserving their traditional regulatory framework.9 I therefore

focus my attention on the cost of generating electricity, rather than the retail price of

power delivered to consumers, whose relationship with their local utility may or may

not have changed over this period.

Vulnerability to the exercise of market power has been a primary focus of the re-

search on wholesale electricity markets to date. From the UK (Green and Newberry

(1992); Wolfram (1999); Wolak and Patrick (1997)), Spain (Reguant (2014); Ito and

Reguant (2016)), New Zealand and Australia (Wolak (2012)) abroad, to California

(Borenstein et al. (2002); Borenstein (2002); Joskow and Kahn (2002); Bushnell et al.

7For example, the East Kentucky Power Cooperative joined PJM on 6/1/2013, there was a
major southern expansion of MISO on 12/18/2013, and Pacificorp has formally begun to explore
the possibility of joining CAISO.

8The ERCOT system in Texas is the exception because this Interconnection does not cross
state lines, and is therefore not subject to FERC jurisdiction on many matters. However, Texas
does participates in the North American Electric Reliability Corporation (NERC), which has been
designated by FERC as the electricity reliability organization for the United States.

9Examples include Indiana, West Virginia, and parts of Kentucky in the Pennsyvania-Jersey-
Maryland (PJM) Interconnection, most of the Midwest ISO (MISO), and all of the Southwest Power
Pool (SPP).
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(2008); Puller (2007)), PJM (Mansur (2001, 2008)), plus New England (Bushnell et

al. (2008)) and Texas (Hortacsu and Puller (2008)) in the United States, one could

fairly characterize these vulnerabilities as robust. Against these losses, there is sparse

evidence of allocative efficiency gains from market dispatch, with the notable excep-

tion of Mansur and White (2012) who study one of the 15 market expansion events

described above. Instead, liberalization studies have focused on state-led deregula-

tory events to estimate within-plant changes: reduced maintenance time (Davis and

Wolfram (2012),Cropper et al. (2011)), labor and fuel costs (Fabrizio et al. (2007); Ci-

cala (2015)), and capital intensity of pollution abatement equipment (Fowlie (2010);

Cicala (2015)). On the other hand, the actual rate at which heat is converted to elec-

tricity (heat rate) has proven largely unaffected by the nature of regulatory oversight

(Fabrizio et al. (2007); Wolfram (2005); Cropper et al. (2011)).

While market imperfections are certainly cause for concern, evidence of their ex-

istence is not proof of their inferiority (Joskow (2010)). The relevant question for

policymakers considering what to do about the current regulatory situation is: do

markets (including all of their flaws) outperform the alternative methods for deciding

which plants should operate in order to satisfy demand for electricity?

3 Measuring Welfare in Electricity Generation

The approach I use to measure welfare decomposes observed production costs in to

two components of allocative efficiency, within- and across-PCAs. Each PCA has

a narrowly defined “merit order” in which the fixed, installed generating capacity is

lined up in order of increasing marginal cost (effectively a supply curve for the area).

Each generating unit has a nameplate rating that constrains the maximum amount

of electricity it is capable of generating at any moment. Its cost per MWh is based

on its heat rate, cost of fuel, and emissions fees, making the supply curve a step

function.10 “Economic dispatch” solves this constrained cost minimization problem to

meet a given level of demand without damaging plants by exceeding their nameplate

capacity.

To fix ideas, let Cpt(Qpt) denote the observed cost of producing total quantity of

electricity Qpt in PCA p at hour t, which has Npt MW of capacity installed. Further,

define C∗pt(Qpt) as the cost of generation from the Qpt lowest-cost MW of PCA p in

10Labor costs are unobserved, but relatively small compared to fuel costs. Commercial vendors of
unit production cost data (such as SNL or Platts) often include a 10-20% markup over fuel costs to
account for labor, operations, and maintenance costs.
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merit order, indexed by i:

C∗pt(Qpt) =

Qpt∑
i=0

cpt(i) (1)

where Qpt =

Npt∑
i=0

qpt(i); qpt(i) ∈ [0, 1] ∀ i

where cpt(i) is the cost of dispatching the ith lowest cost MW in PCA p at time

t.11

If, instead of producing Qpt, each area simply produced enough to meet their own

demand, Lpt, the merit order cost of autarky production would be C∗pt (Lpt). Total

observed costs can therefore be decomposed as

∑
p

Cpt (Qpt) =
∑
p

[
Cpt (Qpt)− C∗pt (Qpt)

]
︸ ︷︷ ︸

Within PCAs

+
∑
p

{
C∗pt (Lpt)−

[
C∗pt (Lpt)− C∗pt (Qpt)

]}
︸ ︷︷ ︸

Across PCAs
(2)

The first term holds each PCA’s total production fixed, and measures the cost

of deviating from the merit order. These are referred to as “out of merit costs.”

The second term includes the difference in costs from the observed PCA production

levels rather than producing in autarky. As shown below, the reduction in costs from

reallocating production across PCAs is derived from this second term.

Out of Merit Costs

A unit operates “out of the merit order” when it is called on to operate to help meet

Qpt MW of demand although it is not one of the Qpt cheapest MW of PCA p’s

installed capacity based on its marginal cost. There are a number of reasons to fire

up units that are out of merit: Plants must occasionally go off-line for maintenance,

or are forced to shutdown unannounced, causing more expensive units to fill the

gap. Transmission constraints may make it infeasible for the least-cost units to meet

local demand. Large units require time and fuel to substantially change their output

(ramping and start-up costs) which may exceed the cost of firing up a more nimble

11The unit dispatch problem partitions the Npt MW of capacity into distinct units (with common
costs), and chooses how much to generate from each unit subject to nameplate rating constraints.
While this is an identical problem, indexing MW according to i creates a stable metric of the merit
order, while indexing units themselves may shuffle as fuel prices vary.
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out of merit unit (Reguant (2014); Cullen (2011); Mansur (2008)). Large units may

also continue operating when out of merit to prevent having to pay larger start-up

costs from a cold start (idling). These are all real physical constraints that make out

of merit operation the true cost-minimizing allocation of output. The cost of these

constraints can be measured by the incrementally higher cost unit that must be used:

Cpt(Qpt)− C∗pt(Qpt).

This can be seen in Panel A of Figure 3, which plots a hypothetical (smooth)

supply curve against the perfectly inelastic demand that must be met in a particular

moment to avoid a blackout. The welfare costs of dispatching units out of merit is

simply the additional cost of output from these units relative to dispatching the lowest

cost units installed in the area. It is important to emphasize that these are the gross

costs, which are often incurred to avoid the even larger costs of following the strict

merit order.

This out of merit cost is also the loss borne when market power is exerted. A

firm may increase the market clearing price by taking an economical unit “down for

maintenance,” forcing an otherwise out of merit unit to operate (presumably to collect

rents on co-owned inframarginal units). Because demand is completely inelastic (in

real-time operations), the welfare loss is the incremental operating costs caused by

taking economical units offline (Borenstein et al. (2002)).

It should be clear that legitimate maintenance, congestion, etc. is observationally

equivalent from a welfare perspective to the exertion of market power–they differ by

intent only. Mansur (2008) and Reguant (2014) note that failing to account for start-

up and ramping costs will lead one to over-attribute the gap between the merit order

and observed dispatch to market power when only accounting for normal maintenance

and outages. The same is true when failing to account for transmission constraints

(Ryan (2013); Borenstein et al. (2000)). Instead of measuring the levels of out of

merit costs due to market power, as in Borenstein et al. (2002), my focus will be

in how a change in regulation brings a PCA closer or farther away from the merit

order.12

Gains From Trade

When importing electricity from another area, one saves having to fire up a more

expensive unit at the cost of the imports. When exporting, one gains any additional

12The critique of Mansur (2008) remains if unit operators fail to account for the wear of ramping
once facing prices in a wholesale market. In this case short-run operations will move closer to the
merit order, but damage to the units will go unaccounted for. In the longer run, operators will have
to adjust their bids to cover these additional costs.
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revenue beyond that required to generate the power. Panel B of Figure 3 considers

the gains from trade between two areas, effectively a fixed-factor Heckscher-Ohlin

model. The red line continues to represent demand in the “Local” PCA of Panel A.

Superimposed on this is the mirror image supply and demand figure from a “Foreign”

PCA. The width of the x-axis is the sum of the demand of the two areas. If the two

areas were to operate in autarky, the cost of meeting this demand would be the area

under the upper envelope of the supply curves, meeting at the solid demand line.

While their joint production costs in the absence of constraints would be minimized

at the intersection of their marginal cost curves, sending power between the areas

is costly. These constraints prevent them equating their marginal costs, and they

instead trade up the dotted line. Extending this logic to a multilateral setting yields a

decomposition of reallocation in the across-PCA term of equation (2). Let cpt (i = Qpt)

to be the cost of producing the Qth
pt MW in area p’s merit order and ct (i = Qt) as

the marginal cost in the national merit order for total production in hour t. Noting

that total supply equals total demand at any moment in time (
∑

pQpt − Lpt = 0),

the reduction in costs from autarky becomes:

∑
p

C∗pt (Lpt)− C∗t (Qpt) =
∑
p

C∗pt (Lpt)− C∗pt (Qpt) + cpt (i = Qpt) ∗ [Qpt − Lpt] + ...

(3)

−
∑
p

[cpt (i = Qpt)− ct (i = Qt)] ∗ [Qpt − Lpt]

The right side of the first line measures the gains from trade accruing to each

area, corresponding to the wedges of Figure 3, Panel B. These are positive, and

accrue as cost reductions in the decomposition of equation (2). The second line

adds up implied transmission costs: by how much the marginal merit order unit

differs from the national merit order (i.e. the intersection of marginal cost curves),

times trade volumes. These are barriers to trade, borne as iceberg costs: the sum

of transmission bottlenecks and other constraints that prevent a single merit order

marginal cost of production from prevailing across all areas. Note that any constant

times the sum of trade flows will add up to zero, so the national marginal merit order

cost simply facilitates interpretation. This term is ultimately a measure of by how

much marginal costs in importing areas exceed those of exporting areas, which raises

observed production costs in the decomposition of equation (2).

This approach builds upon that of Mansur and White (2012), extending it in a
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few important ways. First, the gains from trade can be calculated separately for

each PCA in a multilateral setting in which it is impossible to determine the origin

of electrons. Second, this framework allows for the evaluations of outcomes in the

absence of markets, while Mansur and White (2012) use the convergence of market

prices–which of course limits analyses to settings where markets of some form are

already in use. Finally, I measure gains from trade as wedges accrued PCA-by-

PCA rather than complete trapezoids (which would include the cross-hatched area

of Figure 3, Panel B). This distinction attributes the remaining barriers to a single

marginal cost from prevailing as due to transmission costs. Aside from completing

the decomposition of observed production costs, the inclusion of trade costs (broadly

defined) provides a natural explanation for marginal cost variance: importers buy

power up to the point that the delivery-inclusive price equates their own marginal

cost of production, and likewise for exporters. This framework greatly expands the

set of questions that can be explored, but comes at the cost of substantially higher

data requirements.
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Figure 3: Welfare Measurement in Electricity Markets

(a) Out of Merit Losses

(b) Gains From Trade
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4 Data

This study draws from a disparate and incongruous set of data sources to synthesize

an essentially complete characterization of U.S. electricity production at the hourly,

generating unit level from 1999-2012 (over 530 million unit-hour observations). This

section presents an overview of the data, while the details of data assembly can be

found in Appendix A.

Hourly Load Data

The demand side consists of a balanced panel of hourly load (consumption, includ-

ing line losses) from the 98 major U.S. power control areas (PCAs) that dispatched

power plants in 1999 to meet demand. These data have been reported annually

to the Federal Energy Regulatory Commission on Form 714, “Annual Electric Bal-

ancing Authority and Planning Area Report.” Record-keeping challenges at FERC

requires these data to be supplemented with equivalent data from regional author-

ities and markets (Western Interconnection, ERCOT, PJM, NYISO, NEISO, and

NERC). In instances that original administrative data are unavailable (or reporting

policies/boundaries change), I employ LASSO to estimate missing demand based on

weather, population, and employment. Combined with cross-validation to maximize

out-of-sample accuracy, this procedure delivers predictions within 4% of the realized

values on average (see the Data Appendix). Small municipal authorities that do not

actually conduct dispatch of fossil- or nuclear-powered plants are added to the load

of their principal suppliers or customers, yielding 98 total PCAs.

Figure 4 summarizes the electricity load data. The US consumes a bit less than

4,000 TWh (billions of kilowatt-hours) annually. Panel A shows that electricity

consumption increased from 1999 until the Great Recession, and was relatively flat

through 2012. Panel A also highlights the seasonal nature of electricity usage: summer

cooling and winter heating can increase usage by over a third of temperate seasonal

usage on a month-to-month basis, with much larger swings during peak usage. Panel

B plots hourly usage over the course of the week, averaged over the 14-year study

period. Here too there are large swings in usage both over the course of the day and

the week. The key fact to remember when interpreting these figures is that produc-

tion must move exactly in sync with these demand swings, and that utilities must

have enough generation capacity to meet demand at the moment of peak usage. Thus

every downward swing also represents vast quantities of generating capacity becoming

idle.

As a demonstration of real-time patterns of demand, I have animated one year’s
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worth of hourly load here. This animation shows the East-to-West flow of electricity

demand as usage follows local clocks. It also reflects the daily and seasonal patterns

shown in Figure 4, while highlighting the substantial variation around these averages:

peak demand can be as much as 2.5 times average annual usage, can be quite persistent

during summer months in the South and Southern Plains, and generally varies less

in temperate areas of the Pacific Northwest.

Hourly Generation Data

The supply side is based on data from the Energy Information Administration (EIA),

merged with hourly gross generation reported to the Environmental Protection Agency

(EPA) with Continuous Emissions Monitoring Systems (CEMS), as well as daily pro-

duction at nuclear-powered units from the Nuclear Regulatory Commission (NRC).

Boilers from the EPA are matched to generators’ monthly net generation and heat

rates via Forms EIA-767 and EIA-923, “Annual Steam-Electric Plant Operation and

Design Data / Power Plant Operations Report.” Hourly production in the data is

the gross generation from CEMS scaled by the ratio of monthly gross-to-net gener-

ation from EIA at the unit level. I then merge this data on heat rates and hourly

production with coal and oil fuel costs under a non-disclosure agreement with the

EIA (from Forms EIA-423, “Monthly Report of Cost and Quality of Fuels for Electric

Plants,” EIA-923 and Form FERC-423, “Monthly Report of Cost and Quality of Fuels

for Electric Plants”). These are shipment-level data, reported monthly by generating

facilities with a combined capacity greater than 50MW. I use estimated spot-market

coal prices to measure the opportunity cost of coal burned rather than contract prices.

Natural gas prices are from 65 trading hubs around the country reported by Platts,

Bloomberg, and NGI (not EIA), and are quoted daily. Plants are linked to their near-

est trading hub along the pipeline network. Areas with emissions markets for Sulfur

and Nitrogen Oxides include the cost of pollution based on measured emissions and

monthly market prices from BGC Environmental Brokerage Services.

Generation from hydro-powered units either comes directly from the source (i.e.

Tennessee Valley Authority, U.S. Bureau of Reclamation, etc.), or is based on the

streamflow of the nearest downstream gage from the U.S. Geological Survey’s Stream-

gage Network (linked through analysis of the National Hydrography Database). Be-

cause the cost of reservoir-based hydropower is the opportunity cost of the water, I

price hydropower-based power on the marginal cost of fossil generation in the merit

order that is being supplanted. Run-of-river hydro is priced at zero. Hydropower

units >10MW were classified as reservoir or run-of-river based on internet searches
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Figure 4: Electricity Load over Time

(a) Total Monthly Load
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and/or satellite images.13

Hourly generation is unavailable from a number of smaller fossil-fired units (whose

net generation rarely exceeds 3% by NERC region-year). Power from these units is

distributed across the hours of the month in an intuitive manner: having produced nW

MWh in a month, where W is the unit’s nameplate capacity, I assume that the unit

produced at maximum capacity during the n hours of highest demand observed over

the course of the month. This replicates the behavior of a dispatcher who employs

a threshold rule of when to generate from a unit (assuming no start-up costs or

ramping constraints), while allowing observed behavior to dictate what threshold was

employed each month.

Figure 5 presents the aggregate annual statistics for electricity generation in the

US. Roughly half of the electricity generated from 1999 - 2012 was powered by coal,

with a declining share since 2007. From that time, natural gas has grown from

rough parity with nuclear (20%) to 30%, almost entirely at the expense of coal-fired

generation. Following a nearly three-fold increase from 1999 - 2008, Panel B shows

that fossil fuel expenditures fell by approximately 50% from the peak in 2008 from the

combined effects of reduced demand overall and the massive reallocation of output

to units burning cheaper gas thanks to the advent of hydraulic fracturing (Hausman

and Kellogg (2015); Linn et al. (2014); Knittel et al. (2014)). Fossil fuel expenditures

averaged about $72B/year over these 14 years, thus the complete dataset tracks the

burning of $1T of fuel at the plant-generation unit-hour level.

Matching Supply and Demand

Because the supply data are built up from microdata independently from the demand

side, it is important to ensure congruence between the data sources–there is nothing

institutional about their reporting to ensure they agree. Beginning with the 1999

configuration of the electrical grid, I match plants to their initial PCA from the EPA

eGRID database. New capacity since that time is matched to PCA either directly

or based on historical utility service territory in the case that the PCA territory has

changed. These associations are then checked based on power plant names reported

by PCAs in FERC 714. I then compare the implied monthly totals from the supply

side of the data against those reported by the PCAs to FERC. In total, about 99%

13Pricing hydropower at the merit order marginal cost assumes that it is never operated out of
merit, so all dynamics of hydro production are orthogonal to out of merit results: the difference
between observed and merit order production costs will net out hydro at any price. Pricing reser-
voir hydropower in this manner infers that the value of storing 1MWh worth of power (either for
production later, or flood management, irrigation, etc.) is equal to the marginal cost of fossil power
required to offset hydro production. See Archsmith (2017) for a recent application.
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Figure 5: Annual Net Generation and Fuel Cost by Source

(a) Net Generation
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of reported generation from FERC 714 can be accounted for in the supply-side data.

About 3% of net generation does not fit neatly in to a single power control area

because multiple PCAs report a share of output from large plants as their own. In

these cases, the plant is assigned to the PCA with greatest dispatch authority.

Figure 6 breaks down generation by data source, and shows the quality of the

match between supply and demand. The top black line in Panel A is identical to the

total monthly load shown in Panel A of Figure 4. After totaling the generation ob-

served (or calculated) based on high-frequency data, the remaining numbers reported

at the monthly level result in totals that almost exactly match the demand side of the

data. Panel B gives a closer view of what is missing by calculating the gap (as imports

or exports) every hour across PCAs, then adding them separately up to the monthly

level, measuring the volume of trade across areas. The first striking statistic is that

roughly 90% of generation is effectively consumed in its local PCA–while PCAs are

interconnected, they continue to largely produce energy for their own consumption.

To my knowledge, these statistics are new: regulatory bodies typically report the net

flow of electricity between areas, which fails to reflect the real-time interdependence

among PCAs (or lack thereof).

The remaining gap between imports and exports as I observe them is due to

imports from outside of the US (which have grown over this period to about 1%

of supply (Energy Information Administration (2012) Table 2.13). Based on the

framework presented in Section 3, not observing this generation effectively values it

as an import from outside of each PCA, which is valued as displaced local generation.

The production costs and exporter surpluses (mostly from Canada) are outside of the

data.

5 Estimating Counterfactual Operations

I use the staggered timing of market creation and expansion to arrive at an estimate

of the causal impact of the transition to market-based electricity dispatch. These

events are defined as the PCAs formally ceding control of their transmission system

to an Independent System Operator, who conducts auctions to allocate output to

generating units. As demonstrated in Figure 2, these are discrete events–typically

demarcated prominently in the history of each market. These events suggest a DD

approach, using areas without regulatory change to estimate counterfactual outcomes

after one has adjusted for common shocks and time-invariant differences:

ypt = τDpt + γp + δtr + εpt (4)
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Figure 6: Monthly Net Generation by Data Source and Trade Across
PCAs
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where ypt is the logged value of the outcome variable for PCA p in date-hour t, and

Dpt is an indicator of market dispatch. This approach may also allow PCA-specific

coefficients on flexible measures of demand (taken to be exogenous since consumers

do not face the real-time cost of electricity). 14 The time fixed effects δtr are included

at the date-hour-region level to account for spatial and time-varying unobservables,

particularly with respect to fuel prices (Cicala (2015)). τ measures the average effect

of market dispatch, and should be interpret as an Average Treatment on the Treated

(ATT)–it measures the effect in the areas that have adopted market dispatch. Inter-

preting this as an Average Treatment Effect (ATE) requires the stronger assumption

that PCAs in the South and West have the same potential benefits from market

integration–rather than the continued business-as-usual assumption required for the

validity of the ATT. One should keep in mind that markets themselves are heteroge-

neous, and their rules change over time. Thus a single “treatment effect” of markets

as conceived here takes the average of these various institutional changes, compared

to the various institutions that preceded the transition to market dispatch.

A Policy Function Approach to Counterfactuals

The causal effect of markets on gains from trade or out of merit dispatch is the dif-

ference between an observed outcome in a market area and what that outcome would

have been if not for the market–holding production capacity, fuel costs, and demand

fixed. Although DD forms a natural starting point for the analysis, it is insufficient to

simply estimate the change in outcomes following market introduction, even relative

to areas without any regulatory change: Within a PCA, outcomes (holding demand

fixed) are confounded by varying fuel prices over time, which change the cost of op-

erating a given unit out of merit, or the value of offset production through trade.

Contemporaneous differences across areas are confounded by the fact that PCAs dif-

fer in their installed capacity, and are therefore differentially affected by common

time-varying shocks.

To illustrate this problem, Figure 7 presents the import gains of the “local” supply

curve from Figure 3. The lighter grey addition represents the import gains realized

in this same area, but under a different set of fuel prices, represented by the dashed

curve. Though there may be no differences in production between these two curves,

the difference in prices yields different gains from trade. If one curve were realized

14This would account for heterogeneous time-invariant relationships between the outcome variable
and demand–the fact that some areas are more prone to congestion in times of high demand, for
example. In addition, controlling for demand also accounts for the possibility that differences in
outcomes across areas might be driven by regional trends (such as population), instead of how
dispatchers allocate production taking demand as given.
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Figure 7: Cost Changes Unrelated to Deregulation Confound Coun-
terfactual Estimates

Note: This figure shows how measured gains from trade change with the price of fuel, holding
demand and traded quantities constant. Using gains from trade in period t′ as the counterfactual
for what would have happened in t in the absence of treatment would yield a predicted change in

outcome in spite of no behavioral change.

during regulation, and the other after the introduction of markets, a simple difference

would indicate that gains from trade had changed, although there had been no change

in behavior. Because each PCA differs in the composition of units, common fuel price

shocks affect areas differently, comparing changes in neighboring areas will fail to

correct for this confounding.

I propose a policy function approach that builds upon the “generation regressions”

of Davis and Hausman (2016) and emissions regressions of Mansur (2007); Holland

and Mansur (2008); Graff Zivin et al. (2014); Holland et al. (2016) to overcome this

issue: I use historical patterns of unit-level production given load, unit capacity,

and position in the merit order to estimate predicted allocations of production.15 I

apply these predicted quantities to observed unit costs and demand to estimate what

production costs would have been if not for treatment.

Let a policy function for PCA p in year y be the probability that the PCA orders

generation from the ith MW of capacity of the merit order in hour t, conditional upon

covariates Xipt (such as load, month of year, hour of day, and nameplate capacity of

15Here, policy refers to a rule that maps states in to actions, without any reference to the optimality
of that rule, as is typically implied in the use of this term in the control theory literature.
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the unit producing the ith MW) and treatment, Dpt

ψpy (i,Xipt, Dpt) = Pr [qpt(i) = 1|Xipt, Dpt] (5)

With this notation, a PCA can be expected to produce the total amount

E(Qpt|Xipt, Dpt) =

Npt∑
i=0

ψpy (i,Xipt, Dpt)

Expected costs of production are based on the inner product of costs and the policy

function in vector form, cpt′ψpt (Xpt, Dpt).

To operationalize these policy functions for causal inference, some assumptions

are required. To economize on notation I adopt the ‘Potential Outcomes’ framework

popularized by Rubin (1974), in which a generic outcome can be thought of taking on

value Y 0
pt in the absence of treatment, and Y 1

pt if treated. Thus estimating the causal

impact when Y 1
pt is observed requires estimating Y 0

pt, which is not. Here the outcomes

being evaluated are functions of production allocations and costs, capacities, and

demand: Y D = F
(
qD
pt,X

D
pt

)
, such as gains from trade in the first line of equation

(3).

Assumption 1. Demand, unit production costs and capacities are invariant to treat-

ment:

X0
ipt = X1

ipt = Xipt

This assumption narrows the set of potential outcomes to focus on the question:

how does market dispatch affect the allocative efficiency of meeting demand? Real-

time pricing for retail customers is nearly nonexistent during the sample period, so

that consumers’ behavior is invariant to hourly production costs. Although I have

shown elsewhere (Cicala (2015)) that prices paid for coal (but not gas) depend on

plant-level regulations, this study focuses on allocative efficiency changes–how produc-

tion moves across power plants holding costs fixed. The brief time horizon evaluated

after the introduction of market dispatch is intended to hold the capital stock fixed

so that the observed supply function for each area is invariant to treatment.
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Assumption 2. Parallel trends in unobservables and evolution of the policy function:

Y 0
pt = F

(
q0
pt,Xpt

)
= F

(
ψ0
p,y−1,Xpt

)
+ F

(
q0
pt,Xpt

)
− F

(
ψ0
p,y,Xpt

)︸ ︷︷ ︸
Contemporaneous Error

+ ...

+F
(
ψ0
p,y,Xpt

)
− F

(
ψ0
p,y−1,Xpt

)︸ ︷︷ ︸
Change in Policy Function

= F
(
ψ0
p,y−1,Xpt

)
+ δtr + γp + υpt

where E (υpt) = 0

This assumption forms the basis of the estimation strategy, using the allocation

of production based on operations in year y − 1 to predict operations in the absence

of markets in year y. There are two forms of error with this approach: the differ-

ence between the true outcome and the value based on the contemporaneous policy

function, and the difference induced by the evolution of policy functions from year-

to-year. Assumption 2 decomposes these errors in to a PCA-specific, time-invariant

component, a regional contemporaneous shock, and noise. This allows, for example,

for out-of-sample predictions based on last year’s operations to persistently be off by

an amount that varies by PCA, while also accounting for contemporaneous regional

shocks to fuel prices.

Assumption 3. Conditional Independence of Treatment for Control Outcomes and

Policy Function Measurement Error

Y 0
pt ,

(
F (ψ0

p,y−1,Xpt)− F (ψ̂0
p,y−1,Xpt)

)

|= Dpt|Xpt

That treatment is conditionally independent of control outcomes allows the iden-

tification of an average treatment on the treated (ATT). The second part of this

assumption ensures that using estimated values of counterfactual outcomes will not

bias estimates of the treatment effect. Rather than including these estimates as a

generated regressor, this assumption allows a modified DD-type estimating equation

in which the dependent variable is the departure from the outcome predicted by the

estimated policy function:

Ypt − F (ψ̂0
p,y−1,Xpt) = τDpt + δtr + γp + upt (6)

To develop intuition for how estimates are constructed, Figure 8 plots weekly gen-
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Figure 8: Comparing Observed and Predicted Generation After Mar-
ket Dispatch
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market dispatch during this period.
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eration for two PCAs, Northern States Power and WAPA Colorado-Missouri. Starting

with unit-level generation, the solid symbols aggregate each PCA’s hourly production,

and depicts weekly averages. Northern States Power joined the Midwest on April 1,

2005, so the observed production after the red line in the top panel is an example of

Y 1
pt in the nomenclature above, and the rest of observed production is Y 0

pt. The hol-

low symbols are predicted values based on the prior year’s estimated policy function,

(ψ̂0
p,y−1) and contemporaneous covariates, (Xpt). These are combined to produce pre-

dicted outcomes F (ψ̂0
p,y−1,Xpt), that estimate what the allocation would have been

if units were run as they had been in the prior year.16 The dependent variable in

equation (6) is the difference between these observed and predicted values–the verti-

cal distance between solid and hollow symbols in Figure 8. The treatment effect is

estimated by comparing the change in how well predictions match outcomes before

and after the red line, between the upper and lower panels. The figure shows that

predictions were matching outcomes well for both areas in the year before market

dispatch, but that following market dispatch, Northern States Power began gener-

ating less electricity than predicted, while predictions continue to match observed

operations in WAPA Colorado-Missouri.

There are a number of potential threats to the validity of this research design.

First and foremost, the stable unit treatment value assumption (SUTVA) requires

that the treatment status of markets that become PCAs does not affect the outcomes

of other areas. This will be violated, for example, if the expansion of markets in Ohio

facilitates the delivery of electricity from the Tennessee Valley Authority (TVA),

which is not dispatched by markets. Using TVA as a control PCA will understate the

true effect of market dispatch when their exports change due to the policy change.

This estimation framework also assumes that outcomes change immediately with

the change in treatment status. However, sudden massive changes tend not to be

conducive to keeping the lights on. The pre-period may be contaminated if PCAs

began to change their dispatch policies in preparation for the transition to markets.

On the other hand, the treatment effect may take time to fully manifest itself as PCAs

learn how to use the market to improve their operations (or exert market power).

As is standard in DD research designs, unrelated, differential trends between treat-

ment and control also threaten the validity of estimates. The policy function approach

mitigates this issue by transforming the dependent variable in to the residual of be-

havior predicted by the prior year’s policy. This kicks the threat of differential trends

16In this example, F () is the sum of ψ̂0
p,y−1 over the merit order, yielding predicted PCA genera-

tion.
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up one level (for quantities, not prices), requiring an unrelated trend in how well last

year’s policy matches that of this year. Such problems become evident with event

study-style estimates leading up to the time of treatment.

On interpretation, the supply curves I construct are based on fuel and emissions

prices, while variable labor, operations, and maintenance costs are ignored. Although

these other costs are small relative to total variable cost, they create distance between

my measured merit order and the true marginal cost of power. The treatment effect

on the costs I observe may be well-measured, but it will be a biased estimate of the

overall change in allocative efficiency if something about the transition to market

dispatch changes these errors–such as reduced labor costs in markets as in Fabrizio

et al. (2007). The small share of non-fuel costs multiplied by the modest impact of

restructuring renders the potential magnitude of this bias quite small. There is likely

to be greater measurement error concerning exact fuel prices and unit capacities. I

reduce these errors to the extent possible by using daily gas prices at geographically

disperse hubs (to account for pipeline congestion), and by using the implied capacity

based on observed operations from CEMS (maximum hourly net generation by season)

rather than the round figures reported to EIA. Again, these errors bias my causal

estimates only to the extent that they are non-stationary and correlated with market

dispatch.

Regarding inference, estimates using this approach are presented with standard

errors calculated by block-bootstrapping PCA-months, with regular DD estimates

clustered at the PCA-month. This reflects the thought experiment that the observed

data (a complete census of operations) are drawn from a super-population of opera-

tions to allow for the inference of potential outcomes–and that each months’ fluctua-

tions in demand allow for an independent observation for each PCA. If one believes

that there are really only 98 (PCA) independent observations, the reported standard

errors roughly double. Conversely, the standard errors become infinitesimal if one

follows the existing literature, having studied one area at a time with independence

(or serially correlation) assumed across fine time units.

Machine Learning Estimation of the Policy Functions

The policy function approach removes the role of fuel price variation in the estimation

of counterfactual outcomes for a given allocation of output: Instead it is the quantities

themselves that are predicted, then applied to the observed production costs and

demand to calculate counterfactual behavior.

Estimating the policy functions requires balancing flexibility and risk of over-
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fitting. On one hand, the probability of running a unit is a complex, unknown function

of the variables system operators use to make decisions–simple approximations are

unlikely to deliver high-quality predictions of behavior. On the other hand, overly-

flexible specifications may provide the illusion of superior fit, but perform poorly out-

of-sample. Since the estimated treatment effect comes from changes in the quality of

fit between predicted and observed behavior, it is particularly important to prevent

overfitting from showing up as illusory treatment effects.

This is a pure prediction problem, for which recent tools from machine learning are

well-suited. I use the“random forest”algorithm of Breiman (2001) as implemented by

Wright and Ziegler (2016). This nonparametric estimation algorithm draws bootstrap

samples of the data and calculates means of the outcome variable for random parti-

tions of the explanatory variables. It then aggregates these weak predictions across

the bootstrap samples to form robust estimates without functional form assumptions.

More formally, for PCA p and year y − 1 with sample size Np,y−1, random forest

draws Np,y−1 pairs (qipt, Xipt) with replacement from that PCA-year. It then “grows”

a regression tree as follows: starting from an origin node, it randomly selects a set of

variables from Xp,y−1 ⊆ Rp where p is the dimension of Xp,y−1. It then splits the data

along these dimensions at cut-points that make the subsequent nodes as homogeneous

as possible with respect to the outcome (Breiman et al. (1984)), forming two nodes.

Each of these nodes are subsequently split using the same method until a pre-specified

(and here, cross-validated) number of observations remain at each final node, referred

to as leaves (or perfect uniformity is achieved). Using θm to denote the random vector

used to draw the bootstrap sample and determine which explanatory variables are

used to split at each node of tree m, the tree produces a set of leaves l = 1, ..., L that

partition the space of explanatory variables (Rp) in to rectangular subspaces, Rl. The

prediction of the tree given a particular x is obtained by averaging over the outcomes

of the observations in the leaf to which x belongs, l(x, θm). Following Meinshausen

(2006), the prediction for a vector of covariates x can be thought of as a weighted

mean of the entire sample of the original data, depending upon each observation’s

inclusion in the bootstrapped sample and terminal leaf position

ψ̂m(x) =

Np,y−1∑
i=1

wi(x, θm)qi

where
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wi(x, θm) =
1
{
Xi ∈ Rl(x,θm)

}∑Np,y−1

j=1 1
{
Xj ∈ Rl(x,θm)

}
with 1 {· } denoting an indicator function that is one when the statement in the

braces is true, zero otherwise. The prediction from a single tree provides a poor

prediction–it does not use all of the underlying data and over-fits the data it does

use–Breiman (2001) shows that as the number of trees grown in this way increases,

the quality of out-of-sample predictions stabilizes.17 Continuing with the weighted-

average interpretation, one draws a number of iid θm vectors to grow M trees, then

calculates the final weights each observation receives in the final prediction as

wi(x) =
1

M

M∑
m=1

wi(x, θm)

Predictions for policy functions are made out-of-sample for year y for data with

explanatory variables Xp,y by calculating

ψ̂p,y−1 (Xp,y) =
1

M

M∑
m=1

Np,y−1∑
i=1

wi(Xp,y, θm)qi

where each i indexes observations of the production data of PCA p in year y − 1.

The core motivation for methods such as random forest from the machine learning

literature has been its performance in out-of-sample prediction. This remains true in

this setting as well, as demonstrated in Figure 9. The metric of performance here is

the out-of-sample residual sum of squares, divided by that of a simple OLS regression

of unit operations on the covariates used in the random forest estimation (separately

by PCA, including month and hour of day as dummies). The x-axis separates units by

their position in the merit order, as a percentile of costs of installed capacity for each

PCA-hour to create a common scale. The figure is constructed using data from areas

without market dispatch to show quality of fit in the control group. The dashed line

shows the performance of a more flexible OLS specification: a second-order polynomial

of all terms, estimated separately by PCA for each month and hour of day. While this

specification fits the data better than the simpler one, random forest far outperforms

throughout the merit order. It delivers a superior fit to observed operations uniformly

17Scornet et al. (2015) establish the consistency of random forests grown in this way as estimators
of the conditional expectation function in the presence of an additive error. Wager and Athey
(2016) establish consistency and asymptotic normality results more broadly in the context of causal
inference using the unconfoundedness assumption for estimating treatment effects conditional upon
terminal leaf partitions, and review related results.
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across the merit order, and is particularly good at predicting baseload and peaking

operations.

It is important to note that this estimation framework has been designed so that

all predicted values of the policy function come from out-of-sample estimates. The

treatment effect is based on changes in how well last year’s operations predict this

year’s operations. Using the change in how well observed behavior in year y − 1 fits

predictions estimated during year y− 1 against using year y− 1’s predictions for year

y risks baking-in an in-sample/out-of-sample change in fit.18 It also requires iterative

estimation of placebo treatment dates among areas that never receive treatment, an

exceptionally high computational burden in this setting (or the assumption of time

invariance of overfitting issues).

6 Results

Tables 1 through 4 present the main results as Average Treatment on the Treated

estimates to measure the impact of market dispatch on allocative efficiency in elec-

tricity production. The first columns are based on straight DD estimates that include

date-hour-region and PCA fixed effects. The second column flexibly controls for the

effect of load on the outcome variables (allowing a different slope for each quartile of

each PCA’s load distribution). This permits each area to have persistent idiosyncratic

relationships between demand and how it goes about meeting that demand with out

of merit generation and trade. The third column adds PCA-specific time trends.

The final column transforms the outcome variable to be the difference between the

observed outcome and that predicted by the policy function, as described in Section

5.

All specifications also include separate dummies for greater than 24 months prior,

and greater than 24 months after the transition to markets. This serves two func-

tions: For the first three specifications, this prevents long-term responses to market

dispatch (and potential confounders) from loading on to the short-term DD estimates.

For the policy function estimates, “treatment” only occurs when predicting behavior

for a period with a different status of market dispatch. I predict from the year before

dispatch out two years afterwards (and year-on-year otherwise). Subsequent predic-

18Burlig et al. (2017) deal with this issue by randomly selecting a placebo date to separate in-
sample/out-of-sample data in the control group, then including an indicator of out-of-sample predic-
tion. This makes the estimated treatment effect the relative deterioration of fit going from in-sample
to out-of-sample (non-contemporaneously). The approach taken here avoids making assumptions on
the in-sample/out-of-sample transitions, instead evaluating the quality of out-of-sample predictions
made from contemporaneous training periods. The cost of this approach is that a year of baseline
outcomes lacks out-of-sample predictions.
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Figure 9: Relative Prediction Quality of Random Forest in Control
Group
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Notes: This figure plots the relative residual sum of squares (RSS) based on out-of-sample
predictions of random forest and a flexible OLS specification where the numeraire is the
RSS of an OLS specification with linear terms and indicators for month and hour of day.
Explanatory variables include: position in the merit order, nameplate capacity, and load.

All predictions are estimated separately by PCA.
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tions are based on behavior after markets have begun, making treatment effectively

an impulse during this initial window. A post-24-month indicator allows this new

period to have a different mean than pre-treatment. Changes in observation counts

between these tables indicates the extent to which PCAs operate exactly according to

my measure of the merit order: zeroes are dropped in the logarithmic specifications

when the merit order is followed so that no generation is out of merit. The drop in

observations between the DD and policy function specifications in Tables 1 through

4 is because the baseline period is held out to ensure all observations for the policy

function estimates are from out-of-sample calculations.19

Beginning with quantities, Table 1 indicates a roughly 10% increase in traded

volumes following the adoption of market dispatch. Because the data is structured

PCA-by-PCA, an increase in exports in one area will be complemented with increases

in imports in other areas. In a DD framework, this yields an underestimate of the

true treatment effect if that power is being sent to a control PCA in a way that

increases its trade volumes (netting out the increased trade between treatment and

control). Increases in trade between market PCAs are not double-counted in coef-

ficient estimates, as their changes are being compared to changes in control PCAs.

These estimates are relatively stable across specifications, and do not change in a

statistically significant manner when using policy functions to predict counterfactual

operations. This is also true for out of merit generation, with the exception of a drop

when including PCA-specific trends. However, estimates return to their original lev-

els in the final specification, suggesting the coarser linear trend projects over changes

that are more subtly accounted for with policy functions.

One striking measure of the predictive power of the policy functions is to compare

the R2 of the models across specifications. Removing the outcomes predicted by

the machine learning algorithm leaves substantially less variation in the dependent

variable, and the control variables have far less power in explaining the variation that

remains.

To ensure these results are not the artifacts of pre-existing time trends, Figure 10

estimates the model of column (2) to control for load, including separate dummies

for each month measuring the time until (or since) market dispatch adoption. Note

that this specification only measures the effect for the initial transition to market

dispatch: performance changes among incumbents (with whom the area is trading)

19To avoid losing the first year completely (which includes the New York and New England transi-
tions), the held-out data are from every-other week for the first year. The impacts in these markets
were relatively large, but dropping them does not change the overall estimates substantially.
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following market expansion are not included. While not as clean as one might like

for event study-style figures, they make clear that the overall estimates are not due

to long-term trends. There is an overall level shift in Panel (a) corresponding with

the onset of treatment, while it appears the slide to a new, lower level of out of merit

generation occurs over a few months.

Tables 3 and 4 estimate the welfare impacts of this reallocation of output based

on changes in production costs. These results indicate substantial impacts of market

dispatch: over 30 log points for gains from trade, and 20% reductions in out of

merit costs. One should note the substantial reduction in observations between the

two tables. This is because the specifications in Table 3 condition upon positive

gains from trade: in roughly 25% of PCA-hours, there is sufficiently little trade that

both supply and demand land on the same generator, which yields zero surplus (as

described in Section 3).

That the value of this trade exceeds the change in volume implies that there is

a substantial gap between the cost of electricity whose production increases versus

that being displaced–equating the marginal cost of power across areas would yield

zero net benefits of an additional MWh traded. Similarly for out of merit costs, these

results imply that it is the relatively expensive out of merit units whose production

is reduced by market dispatch.

Figure 11 presents the main results on cost reductions relative to the onset of

treatment. The additional volatility of coefficients in these figures relative to the

quantity estimates highlights the dependence of the welfare estimates on fuel prices

mentioned above: production costs scale with input prices in this Leontief setting, so

volatility in fuel prices is directly translated in to volatility of the welfare impacts of

a given change in behavior.

While there is a nice jump in gains from trade in Panel (a), longer-term trends

play a more prominent role in the overall shape of the plots than in Figure 10. That

differential trends in fuel prices might confound estimates as presented in Figure 11

motivates the policy function estimates of Figure 12. This figure plots the analogous

event-time coefficients, but with the dependent variable transformed in to the residual

between observed outcomes and those predicted by the policy function. Although this

approach adds volatility relative to the straight DD estimates, it makes clear that the

estimated treatment effects are not due to differential trends: there are unambiguous

breaks in the series for both outcomes and an absence of pre-trends. The timing of

these breaks also correspond with the transition to markets, though reductions in out

of merit costs begin the month prior to market dispatch.
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There are two possible contributing factors to why the results are lower for the

policy function approach for gains from trade. First, estimating a slightly smaller

shift in output naturally yields smaller cost reductions (less output is offset). Second,

as highlighted in Figure 7, the simple DD estimates are potentially confounded by

fuel price changes. Higher fuel prices steepen the supply curve, yielding greater gains

from trade compared to periods with lower prices. Straight DD estimates make such

comparisons, while the basis of the policy function approach is to compare a given

supply curve to itself.

With over $4.2B in trade surplus in market PCAs annually, applying the gains

from trade treatment uniformly over the treated territories is worth nearly $1B/year.

For out of merit costs, these estimates applied to the $10B accrued in market PCAs

raises the overall impact of this institutional change on cost reductions to about $3B

per year.
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Table 1: Market Dispatch on Log(Trade Volume)

(1) (2) (3) (4)
Market Dispatch 0.125*** 0.118*** 0.095*** 0.098***

(0.021) (0.020) (0.021) (0.029)
Log(Load) Yes Yes Yes
PCA Trend Yes Yes
Policy Function Yes
Clusters 16464 16464 16464 15910
PCAs 98 98 98 98
R2 0.557 0.595 0.613 0.099
Obs. 12001882 12001882 12001882 11352820

Note: All specifications include PCA and Region-Date-Hour Fixed
Effects. Demand controls are PCA-specific. Standard errors clustered
by PCA-Month in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table 2: Market Dispatch on Log(MWh Out of Merit)

(1) (2) (3) (4)
Market Dispatch –0.111*** –0.113*** –0.061*** –0.117***

(0.018) (0.017) (0.017) (0.019)
Log(Load) Yes Yes Yes
PCA Trend Yes Yes
Policy Function Yes
Clusters 16448 16448 16448 16430
PCAs 98 98 98 98
R2 0.841 0.852 0.863 0.157
Obs. 11648909 11648909 11648909 11428353

Note: All specifications include PCA and Region-Date-Hour Fixed
Effects. Demand controls are PCA-specific. Standard errors clustered
by PCA-Month in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Figure 10: Treatment Effects by Months to Market: Quantities
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Note: These figures are based on regressing logged outcomes on a set of indicator variables for each
month until (after) the transition to market dispatch, PCA-specific controls for load,

date-hour-region and PCA fixed effects. The month prior to treatment is normalized to zero.
Confidence intervals are based on clustering at the PCA-month level.
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Table 3: Market Dispatch on Log(Gains from Trade)

(1) (2) (3) (4)
Market Dispatch 0.312*** 0.350*** 0.258*** 0.191***

(0.045) (0.042) (0.041) (0.048)
Log(Load) Yes Yes Yes
PCA Trend Yes Yes
Policy Function Yes
Clusters 16424 16424 16424 15814
PCAs 98 98 98 98
R2 0.494 0.579 0.617 0.125
Obs. 8671235 8671235 8671235 8098935

Note: All specifications include PCA and Region-Date-Hour Fixed
Effects. Demand controls are PCA-specific. Standard errors clustered
by PCA-Month in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table 4: Market Dispatch on Log(Out of Merit Costs)

(1) (2) (3) (4)
Market Dispatch –0.186*** –0.164*** –0.009 –0.179***

(0.034) (0.033) (0.033) (0.033)
Log(Load) Yes Yes Yes
PCA Trend Yes Yes
Policy Function Yes
Clusters 16450 16450 16450 16444
PCAs 98 98 98 98
R2 0.775 0.793 0.812 0.302
Obs. 11648731 11648731 11648731 11427266

Note: All specifications include PCA and Region-Date-Hour Fixed
Effects. Demand controls are PCA-specific. Standard errors clustered
by PCA-Month in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Figure 11: Treatment Effects by Months to Market: Welfare
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Note: These figures are based on regressing logged outcomes on a set of indicator variables for each
month until (after) the transition to market dispatch, PCA-specific controls for load,

date-hour-region and PCA fixed effects. The month prior to treatment is normalized to zero.
Confidence intervals are based on clustering at the PCA-month level. The presence of trends in

these figures motivates the use of policy functions below.
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Figure 12: Policy Function-Based Treatment Effects by Months to
Market
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Note: These figures are based on regressing the difference between logged outcomes and those
predicted by the policy function on a set of indicator variables for each month until (after) the
transition to market dispatch, PCA-specific controls for load, date-hour-region and PCA fixed
effects. The month prior to treatment is normalized to zero. Confidence intervals are based on

clustering at the PCA-month level.
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Heterogeneity over the Year

The richness of the data allow for the examination of heterogeneous treatment effects

in order to better understand the forces driving the overall point estimate. In that

spirit, Figures 13 and 14 interact the treatment variable with the day of the year,

and plot the corresponding coefficients. For quantities, Figure 13 shows the strong

complementarity between the two measures: The biggest reductions in out of merit

generation occur during the low demand periods when utilities use to perform main-

tenance on their large units (and refuel nuclear-powered units). How do they manage

to reduce these outage costs? Panel (a) shows that trade volumes increase during

these periods in market areas. This indicates that markets keep utilities from favor-

ing their own higher-cost units during maintenance, and instead coordinate supply of

lower-cost power across PCAs. These results complement the prior findings of Davis

and Wolfram (2012), who show that merchant nuclear units reduce their down-time.

The timing of those divestitures largely precede the transition to market dispatch, so

the results presented here should be interpreted as mostly in addition to those found

previously. Furthermore, the decompositions of equations (2) and (3) make clear that

there is no a priori reason that these effects would go hand-in-hand–a PCA that

reduces its out of merit generation may find itself less reliant on outside generation

sources.

For gains from trade, Figure 13 shows how fuel prices are not simply confounders,

but also drivers of treatment effect heterogeneity. There are substantial increases in

gains from trade during peak summer months even with smaller trade volumes be-

cause more expensive units’ production is supplanted with traded generation. The

overall treatment effects measured earlier are in fact weighted averages of quite large

treatment effects during shoulder seasons and summer, but much smaller effects dur-

ing the winter months.

Panel (b) highlights the key opposing forces at play when switching to market

dispatch: On one hand, generators have an increased incentive to ensure their low-cost

generators are available for production. On the other hand, peak periods of demand

create the potential to profitably exercise market power by taking an economical

unit offline. Thus even though there is a reduction in the quantity of out of merit

generation in 13.b, the reduction in out of merit costs is low relative to the value of

offset generation (high during these peak periods). On net, diligent market monitoring

has made these strategies of withholding production more difficult, and the effect

overall is reduced out of merit costs throughout the year.
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Figure 13: Treatment Effects by Day of Year: Quantities
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Note: These figures are based on regressing logged outcomes on a set of indicator variables for each
day of the year interacted with market dispatch, along with date-hour-region and PCA fixed

effects. Confidence intervals are based on clustering at the PCA-month level.
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Figure 14: Treatment Effects by Day of Year: Policy Function Esti-
mates
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Note: These figures are based on regressing the difference between logged outcomes and those
predicted by the policy function on a set of indicator variables for each month until (after) the
transition to market dispatch, PCA-specific controls for load, date-hour-region and PCA fixed
effects. The month prior to treatment is normalized to zero. Confidence intervals are based on

clustering at the PCA-month level.
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7 Conclusion

In this paper I use the recent introduction of wholesale electricity markets in some

areas as a natural experiment to evaluate the performance of markets relative to the

policy-relevant counterfactual: centralized dispatch by a regulated private or govern-

ment local monopolist. In constructing a fourteen year panel of hourly operations,

I am able to infer gains from trade at any moment of time based on the amount

of electricity being produced and consumed in an area, and the installed generating

capacity that might have been used to equate local supply and demand. Observing

hourly production at the generating unit level allows me to calculate the difference

between actual production costs, and those that would have been realized if only

the most economical (based on marginal fuel cost) units were utilized. I show how

production costs can be decomposed in to these two measures, and estimate how the

introduction of wholesale markets affected them. These effects are interpreted as the

net impact of market power problems and improved coordination on production costs.

I find that market-based dispatch has caused a roughly 20% increase in the gains from

trade due to reallocated production across power control areas, while also reducing

out of merit costs by 20%–a reduction in production costs of about $3B per year.

While the estimated allocative efficiency improvements caused by market dispatch

are substantial, they are likely part of a much bigger story. These short-run estimates

are based on responses to institutional changes imposed on a grid that was built

for reliability rather than massive trans-regional exchange. This inherently imposes

an upper bound on the potential gains that might be observed with this estimation

strategy, but is a constraint that may be relaxed over time as locational marginal

prices reveal profitable transmission investments.

About 40% of electricity in the United States continues to be generated by plants

called upon to operate based on the decision-making of the local balancing author-

ity. Policymakers are therefore faced with the question of whether markets should

be expanded or scaled-back. This is difficult to answer for a particular PCA, but ag-

gregating over experiences thus far provides evidence on the balance between market

failures and regulatory shortcomings. While market power is certainly a concern for

market monitors (Wolak (2012) shows their work is critical), my results suggest the

benefits realized by more efficient allocation of output though market-based dispatch

have far outweighed such losses thus far.
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A Data Appendix: For Online Publication

A.1 Power Control Area Definitions

The definition of a Power Control Area (PCA), or Balancing Authority (BA) is some-

what flexible, varying across regions, regulatory agencies, and over time. For the

purposes of this paper, I am interested in identifying decisionmaking units respon-

sible for allocating production to generating units to keep supply and demand for

electricity in balance at all moments in time. As a practical matter, the method I use

to measure the value of reservoir hydropower (discussed below) relies on the opportu-

nity cost of water based on offsetting fossil power. I therefore classify PCAs as those

recognized as such in load reporting by FERC in 1999, also reporting control of fossil-

fired units based on a combination of reporting in FERC Form 714 (Part II, Schedule

1), and the 1999 configuration of the grid based on EPA’s eGRID database.20 This

results in the consolidation of a number of “planning areas” that report their own

load, though they do not dispatch plants, as well as a few hydropower-only PCAs

in the Pacific Northwest (see Tables A.1, A.2, and A.3). I use county-level approxi-

mations of these 1999 PCA configurations when using demographic, meteorological,

and economic variables to predict load (see Section A.2). To construct these maps, I

begin with the 1999 EIA Form 861, “Annual Electric Power Industry Report”, which

connects local utilities to PCAs, and reports the counties in which respondent utilities

have generation equipment. I then use individual service territory maps (via internet

search) to refine these boundaries.

Much like the Neighborhood Change Database, the goal is to create a time-

invariant characterization of the grid, which has indeed changed over time. New

generation units, for example, are associated with their contemporary ISO rather

than historical PCA. To determine the 1999 PCA in which new generation would

have been located (ignoring differential investment issues), I first use local utility

association: many of these utilities are unchanged in spite of changes to the bulk

electricity system. If that utility belonged to a 1999 PCA, the plant inherits that

association. If no other information is available, the 1999 PCA maps are used to

associate new generation with historical areas.

20eGRID is used as the starting point, then corrections are made by hand based on FERC reporting
because these forms are only available as (occasionally handwritten) pdfs of plant names, rather than
EIA facility codes.
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A.2 Load Data

Hourly data on electricity usage (load) are compiled from a combination of the Fed-

eral Energy Regulatory Commission (FERC) Form 714, local system operators, and

the North American Electricity Reliability Corporation (NERC), depending on data

availability. While this data, in theory, are publicly-available from a straightforward

download from the FERC site, this is emphatically not the case in practice. Until

2006, there was no required submission format for hourly load data, so that each

PCA’s data might be submitted in anything from an Excel file to free-form text, of-

ten without a codebook. In addition, there is no standard procedure for accounting

for daylight savings time: some areas ignore it completely, others report zero at the

start and double-report the final hour, etc. Annual reports are missing altogether for

some PCA-years, or are reported as part of the load of an adjacent area (again, often

without documentation). A number of smaller areas that do not own generation (and

are therefore planning areas, rather than control areas) are combined with the neigh-

boring PCA that conducts dispatch. To avoid PCAs composed entirely of estimated

hydro generation, a handful of areas in the Pacific Northwest are combined as well.

Areas that join an ISO often have their load included in the ISO total, and may not

be available as a single PCA.

When missing, hourly load data are estimated separately for each PCA using

LASSO to uncover the best functional form in a disciplined manner. One benefit of

consumers’ insulation from electricity market conditions is that electricity load can

estimated extremely well as a function of time (of year, week and day), population,

weather, and economic conditions. The day of week/year variables used in prediction

are a set of trigonometric functions with varying periodicity over the course of the week

and year to account for regular calendar fluctuations. Temperature variables measure

heating and cooling degrees (degrees above or below 65oF ) on the daily minimum,

maximum, and average temperatures, as well as relative humidity and precipitation.

This data come from PRISM Climate Group (2004), and collapses county-level data

with population weights for PCA-wide measures. Economic data include unemploy-

ment rates as well as electricity-intensive employment in manufacturing and mining

sectors aggregated from the county level to the approximate footprint of the PCA in

1999 as with the meteorological data.

These variables are used in a LASSO estimation procedure to avoid over-fitting by

including a regularization term in the standard OLS procedure that sets less important

predictors to exactly zero rather than fit on noise. When estimated using data for

even years, it produces estimates that have a mean absolute deviation of less than
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5% when validated against odd years.21

Western Interconnection

Load data for the Western Interconnection come from both FERC and the Western

Electricity Coordinating Council (WECC), depending upon availability. PCAs as of

1999, and constituent load-reporting areas are reported in Table A.1. The abundance

of hydropower requires the consolidation of a number of Public Utility Districts in

Washington and Irrigation Districts in California to arrive at a level of aggregation

such that reservoir power is offsetting fossil power. In addition, there is relatively

inconsistent reporting of load in the former Southern California Edison territory,

though total load from the California Independent System Operator (CAISO) is well-

reported, as is load from the other territories in the CAISO footprint. Southern

California Edison load is therefore calculated from the remaining CAISO load after

subtracting off load from Pacific Gas & Electric, San Diego Gas & Electric, and their

respective constituent load areas.

Texas Interconnection

The Electric Reliability Council of Texas (ERCOT) is a separate interconnection that

consolidated ten PCAs in to a single market on 31 July, 2001. After a period of only

reporting total ERCOT load in 2001 and 2002, the ISO began reporting load by eight

“weather zones” that do not cleanly overlap with the original PCAs. The ERCOT

total is consistently reported throughout the sample period. I therefore run LASSO

using the ERCOT total and the population-weighted characteristics for the entire ISO,

then use the ISO-derived coefficients projected upon the PCA-level characteristics to

predict PCA-level load. Final estimates are scaled by the ratio of observed ERCOT

load to the sum of predicted PCA loads to ensure that the totals match those observed

in the data. This method delivers estimates of load in 1999 and 2000 for the original

PCAs that have an absolute mean deviation from the true loads of about 6%, in line

with the out of sample estimates delivered by estimating fixed footprints to years

without load data.

Eastern Interconnection

Load data for the Eastern Interconnection varies in the consistency of reporting. The

Northeastern ISOs in New York and New England did not consolidate multiple PCAs

upon transition to markets, but simply changed the method for allocating output over

21Using only PCA-specific means yields an error of about 20%, which is reduced to 15% by using
PCA-hour means, and no other explanatory variables.
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a fixed territory–load reporting is consistent throughout. PCAs in the Pennsylvania-

Jersey-Maryland (PJM) market have delegated load reporting to the ISO, but PJM

has helpfully preserved the original footprints as the basis for more detailed reporting

available through their website. The Southwest Power Pool (SPP) has also made

hourly load data available by original PCAs in spite of aggregate reporting to FERC.

This has, unfortunately, not been the case for the Midwest ISO (MISO), which de-

clines to release the disaggregated data which was previously publicly available before

the ISO took over load reporting in 2009. Instead, the most disaggregated load avail-

able from MISO is broken down by three large regions spanning many former PCAs

each. Fortunately MISO began market dispatch three years before taking over load

reporting, so demand is largely observed through the transition to markets. For the

areas without directly-reported load data from 2009-2012, it is estimated via LASSO.

Adding up the predicted loads and comparing to the regional totals to which they

roughly correspond lines up reasonably well, including predicting the drop in electric-

ity demand in 2009 due to the Great Recession based on pre-recession data.
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Table A.1: Power Control Areas in the Western Interconnection

1999 PCA Constituent Load Unreported Periods ISO Market Date
Avista Avista Corp 1999
Arizona Public Service Arizona Public Service Co

WAPA Lower Colorado River 2001-2007
Bonneville Power Authority Bonneville Power Authority

PUD 1 of Chelan County 2011-2012
PUD 1 of Douglas County
PUD 2 of Grant County

El Paso Electric El Paso Electric Company
Imperial Irrigation District Imperial Irrigation District
Idaho Power Idaho Power Company
Los Angeles Dept Of Water & Power Los Angeles, City Of
Montana Power Montana Power Company
Nevada Power Nevada Power Company
Pacificorp Pacificorp
Pacific Gas & Electric Pacific Gas & Electric 2011-2012 CAISO 1 April 1998

Modesto Irrigation District CAISO 1 April 1998
WAPA Sierra Nevada Region CAISO 1 April 1998

City of Redding CAISO 1 April 1998
Sacramento Municipal Utility District CAISO 1 April 1998

Portland General Electric Portland General Electric Co
Public Service Co Of New Mexico Public Service Co Of New Mexico
Public Service Co Of Colorado Public Service Co Of Colorado
Puget Sound Energy Puget Sound Energy

Seattle Department of Lighting
Tacoma Power

Southern California Edison Southern California Edison CAISO 1 April 1998
City of Vernon CAISO 1 April 1998

CA Dept of Water Resources CAISO 1 April 1998
City of Anaheim CAISO 1 April 1998

City of Santa Clara CAISO 1 April 1998
City of Riverside CAISO 1 April 1998
City of Pasadena CAISO 1 April 1998

San Diego Gas & Electric San Diego Gas & Electric CAISO 1 April 1998
Sierra Pacific Power Sierra Pacific Power Co
Salt River Project Salt River Project
Tucson Electric Power Tucson Electric Power Co
WAPA Colorado-Missouri WAPA Colorado-Missouri 1999

Table A.2: Power Control Areas in the Texas Interconnection

1999 PCA Constituent Load ISO Market Date
Central And South West Services Central And South West Services (AEP) ERCOT 31 July 2001

South Texas Electric Cooperative ERCOT 31 July 2001
Brownsville Public Utilities Board ERCOT 31 July 2001

Lower Colorado River Authority Lower Colorado River Authority ERCOT 31 July 2001
Austin Energy ERCOT 31 July 2001

Reliant Energy Reliant Energy ERCOT 31 July 2001
San Antonio Public Service Board San Antonio Public Service Board ERCOT 31 July 2001
Texas Municipal Power Pool Texas Municipal Power Pool ERCOT 31 July 2001
TXU Energy Texas Utilities ERCOT 31 July 2001

Texas-New Mexico Power Company ERCOT 31 July 2001
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Table A.3: Power Control Areas in the Eastern Interconnection

NERC Region 1999 PCA Constituent Load Unreported Periods ISO Market Date
ECAR American Electric Power American Electric Power PJM 1 October 2004
ECAR Buckeye Power PJM 1 October 2004
ECAR American Municipal Power - Ohio PJM 1 October 2004
ECAR Allegheny Power Service Allegheny Power Service PJM 1 April 2002
ECAR Big Rivers Electric Big Rivers Electric Corp 2011-2012 MISO 1 December 2010
ECAR Cinergy Cinergy 2009-2012 MISO 1 April 2005
ECAR Consumers Energy Consumers Energy 2009-2012 MISO 1 April 2005
ECAR Detroit Edison Detroit Edison Co 2009-2012 MISO 1 April 2005
ECAR Duquesne Light Duquesne Light Company PJM 1 January 2005
ECAR Dayton Power & Light Co Dayton Power & Light Co PJM 1 October 2004
ECAR East Kentucky Power Coop East Kentucky Power Coop
ECAR Firstenergy Firstenergy 2009-2012 MISO 1 April 2005
ECAR Hoosier Energy Hoosier Energy 2006-2012 MISO 1 April 2005
ECAR Indianapolis Power & Light Indianapolis Power & Light 2009-2012 MISO 1 April 2005
ECAR Louisville Gas & Electric Louisville Gas & Electric MISO 1 April 2005
ECAR Northern Indiana Public Service Northern Indiana Public Service 2009-2012 MISO 1 April 2005
ECAR Southern Indiana G & E Southern Indiana G & E 2006-2012 MISO 1 April 2005
FRCC Florida Municipal Power Agency Florida Municipal Power Agency
FRCC Orlando Utilities 2003, 2004
FRCC City of Lakeland 2004
FRCC Florida Power Florida Power Corporation
FRCC Florida Power & Light Florida Power & Light
FRCC Gainesville Regional Utilities City Of Gainesville
FRCC Jacksonville Electric Authority Jacksonville Electric Authority
FRCC Seminole Electric Coop Seminole Electric Coop 2003
FRCC City Of Tallahassee City Of Tallahassee
FRCC Tampa Electric Tampa Electric Company 2004
MAAC Pennsylvania-Jersey-Maryland Pennsylvania-Jersey-Maryland PJM 1 April 1997
MAIN Alliant East Alliant East 2009-2012 MISO 1 April 2005
MAIN Ameren Ameren 2009-2012 MISO 1 April 2005
MAIN Columbia Water & Light 2004,2009-2012 MISO 1 April 2005
MAIN Commonwealth Edison Commonwealth Edison Co PJM 1 May 2004
MAIN Central Illinois Light Central Illinois Light Co 2007-2012 MISO 1 April 2005
MAIN Illinois Power Illinois Power 2009-2012 MISO 1 April 2005
MAIN Southern Illinois Power Coop Southern Illinois Power Coop 2009-2012 MISO 1 April 2005
MAIN Springfield (IL) Water Light & Power City of Springfield, IL 2009-2012 MISO 1 April 2005
MAIN Wisconsin Energy Wisconsin Electric Power 2009-2012 MISO 1 April 2005
MAIN Wisconsin Public Service Wisconsin Public Service 2004, 2009-2012 MISO 1 April 2005
MAIN Madison Gas & Electric Co 2004, 2009-2012 MISO 1 April 2005
MAPP Alliant West Alliant West 2009-2012 MISO 1 April 2005
MAPP WAPA Upper Missouri WAPA Upper Missouri East Basin 2000, 2001, 2004, 2005 MISO 1 April 2005
MAPP Basin Electric Power Cooperative 2000, 2001, 2004, 2005 MISO 1 April 2005
MAPP WAPA Upper Missouri West Basin 2000, 2001, 2004, 2005 MISO 1 April 2005
MAPP Dairyland Power Coop Dairyland Power Coop 2000, 2001, 2004, 2011, 2012 MISO 1 June 2010
MAPP Great River Energy Great River Energy 2000-2005, 2009-2012 MISO 1 April 2005
MAPP Midamerican Energy Midamerican Energy 2010-2012 MISO 1 September 2009
MAPP Muscatine Power & Water 2000, 2001, 2004, 2006-2012 MISO 1 September 2009
MAPP Minnesota Power & Light Minnesota Power & Light 2000-2004, 2009-2012 MISO 1 April 2005
MAPP Nebraska Public Power District Nebraska Public Power Dist 2004 SPP 1 April 2009
MAPP Lincoln Electric System 2004 SPP 1 April 2009
MAPP Northern States Power Northern States Power Co 2001, 2004, 2009-2012 MISO 1 April 2005
MAPP Southern MN Municipal Power 1999, 2000, 2004, 2006, 2009-2012 MISO 1 April 2005
MAPP Omaha Public Power District Omaha Public Power District 2000, 2001, 2004 MISO 1 April 2005
MAPP Otter Tail Power Otter Tail Power 2001, 2004, 2009-2012 MISO 1 April 2005
MAPP Minnkota Power Cooperative 1999-2001, 2004 MISO 1 April 2005
NPCC New England Power Pool New England Power Pool NEISO 1 May 1999
NPCC New York Power Pool New York Power Pool NYISO 18 November 1999
SERC Alabama Electric Cooperative Alabama Electric Cooperative
SERC Associated Electric Cooperative Associated Electric Cooperative
SERC Carolina Power & Light Carolina Power & Light
SERC Duke Energy Duke Energy
SERC South Carolina Electric & Gas South Carolina Electric & Gas
SERC South Carolina Pub Serv Auth South Carolina Public Service Authority
SERC South Mississippi Electric Power South Mississippi Electric Power 2001
SERC Southern Southern Co
SERC Oglethorpe Power
SERC Tennessee Valley Authority Tennessee Valley Authority
SERC Dominion Virginia Power Dominion Virginia Power PJM 1 May 2005
SPP CLECO Central Louisiana Electric Co 2002 SPP 1 February 2007
SPP Lafayette Utility System SPP 1 February 2007
SPP Empire District Electric Empire District Electric SPP 1 February 2007
SPP Entergy Entergy
SPP Grand River Dam Authority Grand River Dam Authority 2002 SPP 1 February 2007
SPP Kansas City Power & Light Kansas City Power & Light 2002, 2006 SPP 1 February 2007
SPP City of Independence 2002, 2006 SPP 1 February 2007
SPP Kansas City Board of Public Utilities Kansas City Board of Public Utilities 2002 SPP 1 February 2007
SPP Louisiana Energy & Power Authority Louisiana Energy & Power Auth
SPP Louisiana Generating 2000, 2007-2012
SPP Aquila Networks - MPS Missouri Public Service Co SPP 1 January 2010
SPP Oklahoma Gas & Electric Co Oklahoma Gas & Electric Co 2002 SPP 1 February 2007
SPP Sunflower Electric Cooperative Sunflower Electric Cooperative SPP 1 February 2007
SPP Public Service of OK (SWEPCO) Public Service of OK (SWEPCO) 2002, 2006 SPP 1 February 2007
SPP Southwestern Power Admin Southwestern Power Admin SPP 1 February 2007
SPP Southwestern Public Service 2002 SPP 1 February 2007
SPP Golden Spread Electric Cooperative 2003 SPP 1 February 2007
SPP Western Farmers Elec Coop Western Electric Farmers Coop 2002 SPP 1 February 2007
SPP Oklahoma Municipal Power Authority 2000, 2001, 2003-2005 SPP 1 February 2007
SPP Aquila Networks - WPK Aquila - WestPlains 2007-2012 SPP 1 February 2007
SPP Western Resources Western Resources 2002 SPP 1 February 2007
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A.3 Generation

EPA Continuous Emissions Monitor System (CEMS) Data

Roughly 90% of fossil-powered generation in the United States from 1999-2012 is

reported at the boiler-hour level in the EPA CEMS data. While reporting for the

largest units begins in 1996, comprehensive reporting does not begin until 1999. This

data system was designed to monitor emissions for compliance with NOx and SO2

programs of the 1990 Amendments to the Clean Air Act. I adjust for net-to-gross

ratios, as CEMS reports gross generation for unit i in hour t, but power station

usage (typically about 6%) must be subtracted to measure how much power is being

sent to the grid. The adjustment is a unit-level version of that used by Cullen and

Mansur (n.d.) to measure hourly net generation, except at the interconnection-fuel

level, rather than generating unit:

Net Generationit =
EIA Net Generationim∑

t∈m CEMS Gross Generationit
∗ CEMS Gross Generationit

The hourly gross load data from CEMS are merged to the monthly EIA data on

net generation and heat rate (at the unit level from EIA-767 when possible, otherwise

at the plant-prime mover level from EIA-906), and scaled by the ratio of monthly

net generation to monthly gross load. This accomplishes two tasks: First, it ensures

output represents net generation at the hourly level, smoothing start-up and ramping

costs over the month. Second, a number of units (especially Combined Cycle units)

only include the steam portion of the unit in CEMS, leaving the generation from the

second cycle unreported. This scaling treats the (hourly) unreported generation as

dispatched at the same rate as the main unit. Figure A.1 plots the kernel density

estimates of the net-to-gross ratios of CEMS units. While a density of the scaling is

overwhelmingly concentrated at about 94% (the gross-to-net scale), combined cycle

units feature a bimodal distribution with a second (much smaller) peak around 1.4

(reflecting the contribution of the unmatched cycles). The top and bottom percentile

of scales is trimmed for outliers (outside of 0.2 and 2), and estimated scales based

on a regression of observable unit characteristics are used instead.
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For heat rate: top and bottom percent of heat rates are trimmed for outliers

(outside of 6 and 100), as well as monthly heat rates that are more than three

standard deviations from the unit’s mean heat rate (2% of unit-months). Estimated

heat rates are used for these outliers, as well as in months with zero net generation.

Estimation allows for unit-level fixed effects (which captures most of the variance),

as well as flexible unit-specific trends to account for decaying heat rates with unit

age.22

Nuclear Generation

Daily output from nuclear-powered units is reported to the Nuclear Regulatory Com-

mission (NRC) as a share of potential output for each generating unit. The exact

potential output is calculated by taking the ratio of the monthly total net generation

reported on EIA Form 906 to the sum of these daily potential outputs:23

Net Generationit =
EIA Net Generationim∑

t∈m NRC Share of Capacityit
∗ NRC Share of Capacityit

Output levels are determined by multiplying the calculated potential output by daily

share of output generated, and distributing the generation over the hours of the

day. There is minimal potential for error in this last step because nuclear units

are typically running at maximum capacity, down for maintenance, or transitioning

between the two over the course of days.

Hydro Generation

Monthly hydro generation is reported on Form EIA-906. I use discharge and/or

streamflow data to distribute this aggregated generation across the hours of the

month. Inquiries at individual hydropower administrators yielded exact hourly tur-

bine discharge numbers. These sources include the Tennessee Valley Authority, U.S.

Army Corps of Engineers, and U.S. Bureau of Reclamation. Over one third of hy-

22Such effects are small: these regressions show heat rates tend to rise about 0.2% with each year
of operation, particularly for smaller units.

23Note that the ratio of monthly net generation to the sum of capacity shares is equal to the

unit’s capacity:Capacityim = EIA Net Generationim∑
t∈m NRC Share of Capacityit
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Figure A.1: Net-Gross Scaling of CEMS Units with Monthly Data

(a) All CEMS units
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dropower generation is collected from these sources.

When exact numbers were not available, I infer hourly generation from streamflow

data collected by the U.S. Geological Survey’s streamgage network. To do so, I use

plant coordinates from EIA to locate generators along the National Hydrography

Database’s stream network. I then use network analysis software to identify the

nearest downstream gage that collects streamflow data (in many cases the dam’s

discharge monitor is the USGS streamflow recorder). I then allocate the month’s

generation to hours based on the share of monthly streamflow released in that hour

in the same spirit as the generation allocation methods described above.

Fossil Generation Reported Monthly

About 10% of generation from fossil-powered units does not appear in the CEMS

data. For these units, I use monthly data at the unit level from EIA-767 (mostly small

steam-powered boilers), or plant-prime mover level from EIA-906 (mostly small gas

turbines and internal combustion generators). To allocate this production to hours

of the month, monthly generation is allocated over hours by ranking the hours of the

month by load, and producing at maximum capacity in the highest load hours up to

the total reported monthly generation (or analogously for annual generation if that

is the level of EIA-906 reporting).

For example, if a turbine with a capacity of 10MW reports on Form 906 that it

produced 10MWh in a month, it is assumed that it only produced in the hour of

maximum load that month. If it produced 50MW, it is assumed to have produced

10MWh in the five highest demand hours that month, and was idle otherwise. This

approach is motivated by demand sweeping through the merit order, so that gener-

ating units are only briefly marginal, and therefore typically producing at maximum

capacity, if at all. In this case, generation is proportional to the number of hours in

which demand is sufficiently high for the unit to be “in” the merit order.

This algorithm is applied consistently throughout the sample period, and is in-

variant to the institutions used to allocate production. The share of production

allocated in this manner is also stable over time.
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Other Generation

Monthly wind generation by farm is reported in EIA-906. I merge this data with

hourly wind speed data from nearby weather stations, as reported in National Oceanic

and Atmospheric Administration’s (NOAA) Integrated Surface Database. I estimate

the potential output of the farm based on a cut-in wind speed of 3 m/s, a cut-out

speed of 20 m/s, a rated wind speed of 10 m/s (at which point the farm produces

at maximum capacity), and an increasing cubic between the cut-in and rated wind

speeds. I then use predicted power to distribute the observed monthly total over the

month:

Net Generationit =
EIA Net Generationim∑

t∈m Predicted Wind Generationit
∗Predicted Wind Generationit

For areas that report hourly wind generation in the ISO footprint (ERCOT since

2007, SPP and MISO since 2008), I use the hourly analog for wind farms in the ISO

n’s footprint:

Net Generationit =
ISO Wind Generationnt∑

i∈n Predicted Wind Generationit
∗Predicted Wind Generationit

Finally, geothermal generation is also reported in EIA-906 at the plant-month

level. Geothermal plants are used as baseload, run at maximum possible capacity at

zero marginal cost. The monthly generation is evenly distributed over the hours of

the month.

A.4 Heat Rates and Capacities

With a Leontief production function, the ratio of output to heat inputs measures

the productivity of generation unit. A substantial literature has developed in in-

dustrial organization to consistently measure (Hicks-neutral) productivity, which is

typically unobserved and time-invariant. It is possible to measure supply curves in

the electricity setting because unit productivity is (more or less) time invariant and

capacities are known whether the unit is operating or not. This simplifies matters
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quite a bit.

Heat rates when operating are observed at the unit-month level in EIA-767, and

EIA-906 at the plant-prime mover-month. When not operating, I use estimated heat

rates based on regressions including unit-specific trends.

Heat rates for cogeneration units are a bit trickier: these are units that also pro-

vide useful steam energy, making it economical to run even if would not be operating

otherwise. These units tend to have higher heat rates, which unaccounted for, would

show up as out-of-merit generation. This then becomes a question of how much of

the cost of fuel should be attributed to electricity versus steam production. The ap-

proach I use is to estimate what the unit’s heat rate would be if not for cogeneration

based on its vintage, capacity, etc. Fuel usage in excess of this estimated heat rate

is attributed to steam generation, and not counted as a cost of running the unit for

electricity production.

Unit capacities are reported in EIA-860 (as well as EIA-767), but to ensure out

of merit costs are always positive, I use the maximum net generation observed from

CEMS units in a year to measure the capacity of the unit.24 For nuclear units, I

calculate capacity as described above: the ratio of monthly output to the share of

capacity utilized, as reported by the NRC. Because energy inputs are a fundamental

constraint on production from renewables units, I assume that wind and hydro units

are never withheld, and are therefore their observed production is their maximum

capacity at that moment in time. Differential capacity factors of wind farms, for

example, do not contribute to out of merit calculations. For hydro reservoirs this

means that dry years, for example, similarly do not show up as economical units

sitting idle.

24This effectively defines the merit order frontier as the lowest possible cost of production, inclu-
sive of the ability to produce slightly higher than the rated limit when necessary, or less than the
rated limit due to constraints not considered in nameplate rating reporting. Results are substan-
tially unchanged when using EIA-860 nameplate capacity instead of observed capacities for CEMS
units.
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A.5 Fuel Prices

Coal Prices

As in Cicala (2015), this paper detailed data on coal deliveries to power plants from

the Energy Information Administration (Forms EIA-423, “Monthly Report of Cost

and Quality of Fuels for Electric Plants,” and EIA-923, “Power Plant Operations

Report”) and Federal Energy Regulatory Commission (Form FERC-423, “Monthly

Report of Cost and Quality of Fuels for Electric Plants”). These are shipment-

level data, reported monthly for nearly all of the coal burned for the production of

electricity in the United States (all facilities with a combined capacity greater than

50MW are required to report). The reader is referred to the Online Appendices of

that paper for more details.

For this paper, the extensive use of bilateral contracts for coal procurement is

potentially problematic: the merit order is determined by spot prices, not contract

prices. This is because it is the opportunity cost of coal that determines its value

when allocating production to plants. If coal were very expensive, one would want to

dispatch those plants judiciously, regardless of whether a particular plant received its

coal free of charge. This is a conceptually important distinction, though in practice

the main results of the paper are largely invariant to using the observed contract

prices instead of estimated spot prices.

The approach I use to estimate spot prices is to separate the delivered price of

coal delivered to plant i in region d and month m from mine county origin o in to

minemouth and shipping costs using hedonic regressions that include the character-

istics of the coal and a third order polynomial in distance shipped:

coim = Ximβom + frm(distanceoim) + εiom

I then estimate the minemouth spot prices by removing the shipping cost component

from the hedonic estimates for the deliveries procured from the spot market only. To

this I add the shipping portion of the hedonic regressions from all deliveries:25

25Although all coal regions deliver some coal to the spot market in all periods, they do not deliver
them to all areas, making the origin-destination pairs sparse for estimating spot shipping separately.
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ĉspotoim = Ximβ̂
spot
om + f̂ rm(distanceoim)

Oil Prices

Oil-burning units also report deliveries in forms EIA-423/923. I estimate spot prices

at the state-month level separately by fuel type (diesel, residual fuel oil, etc.), or

wider geographic if state-month deliveries are not reported.

Natural Gas Prices

Spot prices for natural gas deliveries are based on daily prices from 65 major trading

hubs across the country with consistent prices series from 1999-2012. These data

come from the Platts, Bloomberg, and NGI. I use plant coordinates and natural gas

pipeline network shapefiles from EIA to locate plants along the pipeline network.

I then use network analysis software to connect each plant to the nearest pricing

hub. These hubs are not uniformly distributed across the US, as illustrated in Figure

A.2, which displays the connections between power plants and hubs. The southeast

generally lacks pricing points in particular. Missing daily prices for weekends and

holidays are based on carrying the most recent trading day forward.
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Figure A.2: Gas Hub - Power Plant Links
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B Supplementary Results: For Online Publication

As described in the paper, the adoption of market mechanisms to determine produc-

tion was a separate development from state-led restructuring that allowed generators

to become the residual claimants of operational revenues. A natural concern is that

these non-utility generators have a greater incentive to operate when economical,

and that their expansion was correlated with the adoption of market dispatch. To

gauge the extent to which this other policy change might bias estimates of market

dispatch’s impact, Figure A.3 presents an event study-type figure analogous to the

main results, but with the logarithm of non-utility generation capacity as the de-

pendent variable. The figure shows that there has indeed been differential growth

of non-utility capacity in areas that adopted market dispatch. However, the trend

through the onset of treatment is smooth and continues at the same pace throughout

the four-year period relative to market adoption. The divestiture and/or installa-

tion of new non-utility generation does not line up with the onset of treatment, but

these results underscore the importance of the policy function’s role in accounting

for differential trends.
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Figure A.3: Non-Utility Generating Capacity
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Note: This figure is based on regressing logged non-utility capacity on a set of indicator variables
for each month until (after) the transition to market dispatch, PCA-specific controls for load,
date-hour-region and PCA fixed effects. The month prior to treatment is normalized to zero.

Confidence intervals are based on clustering at the PCA-month level.
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