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Abstract

This paper develops the symmetric power order, a measure of voting

power for multicandidate elections. The measure generalizes standard

pivotality-based voting power measures for binary elections, such as

Banzhaf power. At the same time, the measure is not based on piv-

otality, but rather on a measure of freedom of choice in individual

decisions. Indeed, I use the symmetric power order to show that piv-

otality only measures voting power in monotonic elections, and is not

a good measure in multicandidate elections. Pivotality only provides

an upper bound on voting power. This result establishes a relation

between voting power and strategyproofness.
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1 Introduction

What makes for a good voting system? Should we focus on the objective

quality of outcomes or the match between voter preferences and voting out-

comes? What about voting systems that encourage sincere voting, so that

the inputs to voting at least reflect true preferences? Fairness is another

important criterion.

There are large literatures in political science and economics that evalu-

ate voting systems from many perspectives and using many different meth-

ods. One basic value that has been used to evaluate voting institutions is

agreement, broadly understood as the idea that voting institutions should

maximize agreement between the views of voters and electoral outcomes.

This value can be elaborated in many ways. The impossibility theorem in

Arrow’s (1951) Social Choice and Individual Values, the work that launched

the modern social choice literature, can be interpreted in terms of agreement.

Arrow’s theorem established that there does not exist a voting system that

satisfies certain intuitive normative axioms. In the second edition of Ar-

row’s monograph (1963), one of these axioms is the Pareto efficiency axiom,

which says that if all voters prefer one alternative to another, the voting rule

should rank the preferred alternative higher. This can be viewed as a mini-

mal requirement of agreement between voter’s views and electoral outcomes.

Arrow’s theorem says that, given some other conditions, we cannot have such

agreement.

Another basic value is control : Citizens should collectively have as much

control over voting outcomes as possible, and that control should be shared

fairly. The notion of popular control is central to democracy.

The voting power literature can be interpreted as assessing voting insti-

tutions in terms of control. In binary elections, voting power is measured

by pivotality, that is, the probability that a voter determines the outcome.

Under a “normative” probability distribution according to which (i) each

voter is equally likely to vote for either candidate, (ii) votes are indepen-

dent, and (iii) there is no abstention, pivotality is known as Banzhaf power.1

1This is referred to as a “normative distribution” because, while these assumptions
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Banzhaf power was discovered by Penrose (1946); it was rediscovered and

made famous by Banzhaf (1964, 1966, 1968). The main competing index

is the Shapley-Shubik power index (Shapley and Shubik 1954), which is an

application of the Shapley value (Shapley 1953) to voting games. While it

is not the most common interpretation, the Shapley-Shubik index can also

be interpreted in terms of pivotality (Straffin 1977).2,3 Gelman, Katz and

Bafumi (2004) criticize the probability model underlying Banzhaf power; I

discuss this in Section 2.1.4.

Through the lens of control, the evaluation of voting institutions can be

given an attractive economic interpretation. We can think of control as a

scarce resource: If we are faced with an indivisible public decision (e.g., shall

we go to war?) not everyone can fully control the decision. We can share

control, but if I share control with you, then my control must of necessity

be less than if it were all mine. This gives rise to an allocation problem:

the allocation of control. We seek voting institutions that allocate control

efficiently and fairly.

I now illustrate this interpretation in terms of well-known results about

voting power. Assume two candidates and n voters who vote according to

the normative binomial distribution above. I compare two voting institutions

that allocate power equally among voters: majority voting and random dicta-

torship. In a random dictatorship, each voter is selected with probability 1
n

to

be a “dictator” who can unilaterally determine the outcome. Under majority

voting, the probability of being pivotal is 1
2n−1

(
n−1
n−1
2

)
. Because under random

dictatorship, a voter is pivotal with probability 1
n

and 1
2n−1

(
n−1
n−1
2

)
> 1

n
, we can

declare that random dictatorship is inefficient in its allocation of control.

Random dictatorship is dominated by majority voting. Indeed, majority vot-

are never satisfied in practice, some authors have argued that they provide a natural
benchmark for evaluating voting institutions (see Felsenthal and Machover (1998) for a
discussion).

2For the history of voting power, see Felsenthal and Machover (1998, 2005).
3Banzahf power has a relation to agreement and not just control. As already pointed

out by Penrose (1946), under the normative distribution, the probability that a voter i
agrees with the outcome is 1+βi

2 , where βi is i’s (absolute) Banzhaf power. However this
relationship is not robust to other assumptions about the distribution of voting behav-
ior (Laruelle and Valenciano 2005), and becomes even more tenuous in mutlicandidate
elections.
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ing is the binary voting mechanism that maximizes average voter pivotality

given the normative distribution (Dubey and Shapley 1979).4 We can also use

pivotality to assess the fairness of the allocation of control. Pivotality can be

used to argue that the National Popular Vote is more fair than the Electoral

College. Under the normative distribution, national popular vote gives each

voter the same voting power, whereas the electoral college exaggerates the

relative voting power of voters in large states (Penrose 1946, Banzhaf 1968).

The national popular vote also leads to a higher average voter pivotality than

the electoral college. It follows that if the scarce resource to be allocated is

control, then national popular vote leads both to a larger pie, and to a more

equally distributed one. An appealing feature of this way of evaluating elec-

tions is that it side-steps the problem of impossibility. If we can convert

the evaluation of elections into an optimization problem – such as that of

maximizing aggregate control with a penalty for unequal allocations – then

we do not need to worry about whether election mechanisms satisfy a set of

discrete conditions, such as Arrow’s axioms.

One shortcoming of the above analysis is that it is limited to binary elec-

tions.5 The distinction between two and more than two alternatives is fun-

damental to voting. For example, Arrow’s impossibility result requires three

alternatives: With two alternatives, majority voting satisfies all of Arrow’s

conditions, and there is no impossibility. If dealing with two alternatives

were sufficient, then Arrow’s theorem would never have achieved the influ-

ence it has had. In reality, there are almost never only two atlernatives, and

if only two alternatives appear on the ballot, that means that the agenda set-

ting procedure has done much of the work in determining the social choice.

The purpose of this paper is to present a general theory for measuring and

evaluating shared control in elections, including multicandidate elections.

There have been attempts to ageneralize Banzhaf power to multi-candidate

elections, most notably by Bolger (1983, 1986, 1990, 2002). Closely related

is work on voting power with abstention and multiple levels of approval

4Majority voting is optimal among monotonic binary voting mechanisms. See Defini-
tion 1.

5Another shortcoming is the assumption of independent votes (Gelman et al. 2004).
This is discussed in Section 2.1.4.
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(Felsenthal and Machover 1997, Freixas and Zwicker 2003). My work dif-

fers from these works in several respects.

The first and most fundamental difference is that my voting power mea-

sure – the symmetric power order – is founded on a ranking of individual

decisions in terms of freedom of choice. This latter freedom ranking was ax-

iomatized in Sher (2018b) and relates to the decision theoretic literature on

preference for flexibility (Koopmans 1964, Kreps 1979, Nehring 1999, Dekel,

Lipman and Rustichini 2001). Intuitively, freedom and power are closely

allied concepts. Dowding and van Hees (2009) conclude their survey on free-

dom in social choice theory:

... it would be illuminating to examine the differences and similar-

ities between the measurement of freedom and the measurement

of power. Within cooperative game theory there is an exten-

sive formal literature on the measurement of power. Given the

close relationship between the concepts of freedom and power, it

would be interesting to explore the extent to which the two types

of analysis can profit from each other, and in particular insure

that they are not measuring the same quantity.

The current paper carries out the program suggested by Dowding and van

Hees, and concludes positively that it is possible to derive a measure of voting

power as a special case of a measure of freedom.

The second difference is that whereas Bolger and others view themselves

as generalizing the notion of pivotality to multicandidate elections, I use

my ranking to assess pivotality as the guiding idea for measuring voting

power. I use the symmetric power order to show that pivotality only mea-

sures voting power in monotonic elections. Since monotonicity is hard to

achieve in multicandidate elections, it follows that when multiple candi-

dates are genuinely competitive, pivotality does not measure voting power.

I show however that pivotality does always provide an upper bound on vot-

ing power. My negative result relies on the Gibbard Satterthwaite theorem

(Gibbard 1973, Satterthwaite 1975), a close cousin of Arrow’s theorem, and
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thus implicitly relates power to incentives.6

The voting power literature has focused primarily on monotonic binary

elections. My voting power measure coincides with pivotality for monotonic

elections, and hence it is a generalization of pivotality-based measures of

voting power, such as Banzhaf power, to multicandidate elections. At the

same time, I claim that for multicandidate elections, which are generally not

monotonic, pivotality and voting power come apart. To establish this result

requires generalizing the concept of pivotality to multicandidate elections.

The generalization of pivotality is a second distinct contribution of this paper.

Thus one can view this paper as generalizing standard voting power measures

to multicandidate elections in two different ways, and arguing that one way

is correct and the other incorrect.

The symmetric power order only provides partial ranking of elections. In

and of itself, this is not an advantage. After all, it would be desirable to be

able to rank every pair of elections in terms of voting power. However, it can

also be a disadvantage to rank elections that shouldn’t be ranked. In Section

5.4, I show that when the symmetric power order does not rank election σ

above election σ′, one can always find a purpose that σ′ allows a voter to

achieve better than σ. This can provide a justification for leaving some pairs

of elections unranked. Nevertheless, in Appendix A, I discuss refinements of

the symmetric power order that can compare more pairs of elections.

The outline of the paper is as follows. Section 2 defines the symmetric

power order. Section 3 analyzes binary elections and Section 4 analyzes mul-

ticandidate elections. Section 5 provides illustrations. An appendix presents

proofs and technical details.

2 Defining voting power

This section presents the basic voting framework, the measure of freedom of

choice, and the definition of voting power in terms of freedom of choice

6My result also relates closely to the Muller Satterthwaite theorem (Muller and
Satterthwaite 1977). It is interesting to note here that positive association – a version
of monotonicity – was the axiom in the original version of Arrow’s theorem (1951) that
was replaced by Pareto efficiency in the second edition (1963).
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2.1 Framework

2.1.1 Candidates, voters, and votes

Let C = {1, . . . ,m} be the set of candidates, I = {1, . . . , n} the set of

voters, and V the set of votes. Votes could be of many forms, such as,

“I vote for candidate c”, or “I rank candidate c1 first, candidate c2 second,

candidate c3 third .... candidate cm last”, or “I approve of candidates c1 and

c2 but of no others,” or something else. I assume that V is finite.7

In addition to the voters in I, there there is also an automated agent,

“voter 0”, who is the tie-breaker. Intuitively, the tie-breaker is intended as a

randomization device used to break ties, but in principle the tie-breaker could

be used to introduce randomness into the voting mechanism in a more robust

way. For example, under random dictatorship, the so-called tie-breaker may

select the voter who is to be dictator. Let I0 = {0, 1, . . . , n} be the set of

voters, including the tie-breaker. V0 is the finite set of “votes” for the tie-

breaker. It is natural to assume that V0 6= V . For example, V0 might be

the set of possible sequences of 0’s and 1’s of a fixed length k, interpreted

as the possible set of outcomes of k coin flips. I sometimes also refer to

the tie-breaker’s vote v0 as the tie-breaker, where this will not cause any

confusion.

A vote profile is a list v = (v0, v1, . . . , vi, . . . , vn) where v0 ∈ V0 is the

tie-breaker’s vote, and, for i ∈ I, vi is voter i’s vote. v−i is a list with i’s vote

removed: v−i = (v0, v1, . . . , vi−1, vi+1, . . . , vn). If we put i’s vote back in, we

write v = (vi, v−i) = (v0, v1, . . . , vi−1, vi, vi+1, . . . , vn). V̄ = V0 × V I is the set

of all vote profiles, and for each i ∈ I, V−i = V0 × V I\i is the set of all vote

profiles, excluding i’s vote.

A voting rule is a function f : V̄ → C that maps a vote profile into a

winning candidate. Many voting systems fit into this framework, including

majority voting between two candidates, plurality voting among three can-

didates, the electoral college, instant runoff voting, the Borda rule, and the

Condorcet rule.

7Nothing significant would change if different voters had different vote sets Vi.
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2.1.2 Probabilities

Let µi be a probability distribution over V for voter i. For example in a

binary election µi might specify that voter i votes for Clinton with probability

.55, and votes for Trump with probability .45. These probabilities may be

different for different voters. µ0 is the tie-breaker’s distribution. For example,

if V0 = {Heads,Tails}, µ0 might specify that a coin, which could be used

to break a tie, lands on either Heads or Tails with an equal probability

of .5.8 I assume that voting behavior is independent so that the probability

distribution over voter profiles is the product distribution µ =
∏n

i=0 µi. µ−i =∏
j 6=i µj is the joint distribution of votes other than the vote of voter i.

2.1.3 Elections

A voting situation or election is a pair σ = (f, µ), where f is a voting

rule, and µ is a vote profile distribution. I am after a ranking of elections

σ = (f, µ) in terms of voting power for each voter i. It is important to

emphasize that my measure of voting power depends on both the voting rule

and voting behavior. It is not sufficient to know only the voting rule.9

2.1.4 Comments

Independence

The assumption that different voters’ vote probabilities are independent is

unrealistic. Think, for example, about James Comey’s announcement days

before the 2016 US presidential election, which was plausibly a common cause

of a number of voters’ voting decisions. There are many factors that may

correlate the votes of different voters. The votes of voters in the same social

network, the same geographic area, or who watch the same television station

may be correlated. Knowing how Ohio voted might cause you to update your

beliefs about how Michigan voted. Gelman et al. (2004) argue that standard

8Assume for simplicity that the coin is flipped simultaneously with the voting, regard-
less of whether there is a tie, but we only appeal to the outcome of the flip if there is a
tie.

9Laruelle and Valenciano (2005) also emphasize the importance of both ingredients.
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voting indices – in particular the Banzhaf power index – are not empirically

adequate because they ignore correlation of votes.

Independence is unrealistic, but my purpose here is largely orthogonal to

the question of whether votes are correlated: It is to provide a new foundation

for voting power measures and to challenge pivotality as a basis for measuring

voting power. I do this in the simplest and most extensively studied context:

that of independent votes. Considering correlated votes introduces some

subtle conceptual issues that I wish to avoid.10 Future work will explore

correlated votes.

Preferences

I treat the distribution over votes as a primitive. However, one would think

that votes are mediated by preferences: So that preferences are (randomly)

determined, and then preferences causally influence votes. So much of the

randomness in votes might be explained by randomness in preferences.

This is true, but I will ignore preferences in this paper. This paper aims

to develop a measure of voting power as a function of voting rules f and

voting behavior µ. To measure power, at least on the conception I present

here, it is not necessary to know preferences if one knows voting behavior.

If one has a theory of how behavior arises from preferences (e.g., Bayesian

Nash equilibrium with an equilibrium selection rule) then one can use my

measure to measure voting power on the basis of voting rules and the distri-

butions of preferences. However one does not need a theory of voting behavior

to measure voting power.

Causal influence of the voting rule on behavior

The choice of voting rule f doubtless causally influences the distribution of

votes µ. This influence may be mediated through preferences and equilib-

rium, as discussed above. In light of this, it is important to specify what the

theory presented here can and cannot do. The theory can answer counter-

factual questions of the form “How would voting power change if the voting

10See Machover (2007) and Bovens and Beisbart (2011).
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rule were to change from f to f ′ and behavior changed from µ to µ′?”, but

without further assumptions, it cannot answer questions of the form “How

would voting power change if the voting rule changed from f to f ′?” However,

given any theory of how voting rules determine voting behavior as input, the

theory developed here can answer the second question.

Current follow-up research considers the question of multicandidate vot-

ing rules that are optimal with regard to voting power. This does require

additional assumptions – at least weak assumptions – about how voting rules

determine voting behavior. However, without a way of measuring voting

power in multicandidate elections, it is impossible to even ask the question

of which voting rules are optimal with respect to voting power. So, by pro-

viding a measure of voting power, this paper does make a contribution to

answering to such questions.

2.2 General strategy:

Rank menus to rank elections

I am after a ranking of voting situations σ = (f, µ) in terms of voting power.

This section lays out my approach. To this end, imagine that instead of

selecting candidates by election, society selected candidates by lottery. Recall

that C = {1, . . . ,m} is the set of candidates. A lottery ` is a probability

distribution over candidates. `c is the probability ` assigns to candidate c.

Formally, a lottery is a vector ` = (`c : c ∈ C) in RC satisfying `c ≥ 0 for all

c ∈ C and
∑

c∈C `c = 1. ∆ (C) is the set of all candidate lotteries.

Now imagine that instead of a candidate being selected by a predeter-

mined lottery, a voter may select a lottery from a menu of lotteries M =

{`, `′, `′′, . . .}. In fact, an election essentially gives each voter a menu of lot-

teries. Consider the election between Clinton and Trump. If Ann votes for

Clinton, then this leads to a lottery `C in which Clinton wins with some

probability and Trump wins with some probability. If instead, Ann votes

for Trump, this leads to a different lottery `T in which Trump wins with a

slightly higher probability. In a large election, the different lotteries avail-

able to a voter are typically only very slightly different, but they are differ-

9



ent. The lotteries `C and `T that Ann faces are determined by the voting

rule f (e.g., electoral college vs. national popular vote) and by the proba-

bility distribution of others’ votes µ−i, where i = Ann. The menu of votes

{Clinton,Trump} corresponds to a menu of lotteries
{
`C , `T

}
, and thus, with

regard to Ann’s voting decision, the election between Clinton and Trump also

corresponds to the menu
{
`C , `T

}
.

In any election, if voter i selects a vote vi, this will lead a lottery over

candidates in the manner described above. The candidates may no longer be

just two. Let `i (vi|σ) be the lottery that voter i selects by selecting vote vi

in voting situation σ = (f, µ). [`i (vi |σ )]c = µ−i ({v−i : f (vi, v−i) = c}) is the

probability that this lottery assigns to candidate c.11 Define i’s electoral

menu in σ to be

Mi (σ) = {`i (vi|σ) : vi ∈ V } . (1)

Voter i’s electoral menu is the menu of lotteries that i can select by selecting

some vote. This leads to a key idea, represented schematically as:

Key Idea: Rank Menus ⇒ Rank Elections.

The idea is that if we can rank menus in terms of the power they allow, this

will lead to a ranking of voting institutions. In particular

• Voter i’s power in election σ is given by i’s power in the menu Mi (σ).

To rank menus, I employ a ranking of menus in terms of freedom of choice.

2.3 Measuring freedom

This section presents my ranking of menus in terms of freedom, which was in-

troduced and studied in Sher (2018b). The ranking is justified axiomatically.

While I briefly justify the axioms, there is not space for detailed arguments

in their favor here. Such detailed arguments, discussion of limitations of the

axioms, and additional results can be found in Sher (2018b).

11Observe that the validity of the expression [`i (vi |σ )]c = µ−i ({v−i : f (vi, v−i) = c})
depends on the assumption that different voters vote independently.
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Let Z = {1, . . . ,m} be a finite set of outcomes. In the electoral context,

Z = C. However, to emphasize that the ranking applies to individual choice

more generally, not just to elections, I distinguish Z from C. Z is any set of

outcomes that an individual might care about. For example, the outcomes

in Z might correspond to the possibilities of winning or losing a contest.

Different actions that the agent may take may lead to different winning

probabilities, or, in other words, different lotteries over winning and losing.

We can then identify the actions with the lotteries to which they lead. We

want to know how much freedom the agent has in virtue of the lotteries

that she can bring about through her actions. The set of such lotteries is

her menu. I assume that the agent’s menu contains lotteries rather than

outcomes because I want to be able to measure freedom when the agent has

imperfect control.

Let ∆ (Z) be the set of all lotteries over Z. A generic lottery is denoted

by ` = (`z : z ∈ Z). A menu of lotteries is a closed subset of ∆ (Z). M is

the set of all menus of lotteries.

2.3.1 Axioms

I now present the axioms for a freedom ranking - on the set of menus M .

Axiom 1 (Quasiorder) - is transitive and reflexive.

Observe that I do not assume that - is complete; that is, there may be menus

that are incomparable in terms of freedom.

The next three axioms are due to Dekel, Lipman, and Rustichini (2001)

who axiomatize preference for flexibility, rather than freedom.12 Sher (2018b)

discusses the relationship between the interpretation of the axioms in terms

of preference for flexibility and in terms of freedom of choice in more detail.

Axiom 2 (Continuity) For any convergent sequences {Mi},{Ni} in M ,

and M,N ∈M , (Mi →M and Ni → N and [∀i,Mi - Ni])⇒M - N.13

12Dekel et al. (2001) employ a weak order axiom rather than a quasiorder axiom. That
is, they assume that - is complete. Kochov (2007) and Galaabaatar (2010) characterize a
version of preference for flexibility with the quasiorder axiom. The version of the continuity
axiom used here is also due to them.

13Convergence is in the metric topology generated by the Hausdorff distance.
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Axiom 3 (Opportunity Monotonicity)

∀M,N ∈M ,M ⊆ N ⇒M - N.

It is intuitive that a larger menu – larger in the sense that more alterna-

tives have been added – provides more freedom. That is what opportunity

monotonicity says.

The next axiom requires a little machinery. For lotteries `, `′ ∈ ∆ (Z)

and λ ∈ [0, 1], the mixture λ` + (1− λ) `′ is the lottery that assigns to each

outcome z the probability λ`z + (1− λ) `′z. The mixture of menus λM +

(1− λ)M ′ is defined by taking the mixtures of all selections of lotteries in

those menus,

λM + (1− λ)M ′ := {λ`+ (1− λ)`′ : ` ∈M, `′ ∈M ′}.

For future reference, it is useful to generalize this operation to any number

of menus. Let (p1, . . . , ph) ∈ Rh be a probability vector. That is, pk ≥ 0 for

k = 1, . . . , h and
∑h

k=1 pi = 1. For any set of h lotteries
(
`1, . . . , `h

)
, define∑h

k=1 pk`
k to be the mixed lottery that puts probability

∑h
k=1 pk`

k
z on each

outcome z. For any collection (M1, . . . ,Mh) of menus of lotteries, define the

Minkowski average

h∑
k=1

pkMk =

{
h∑
k=1

pk`
k : `k ∈Mk for k = 1, . . . , h

}
. (2)

Thus,
∑h

k=1 pkMk is the set of all weighted averages of selections from the

menus (M1, . . . ,Mh), where the weight on the selection from Mk is pk.∑h
k=1 pkMk is a genuine menu of lotteries – i.e., an element of M . How-

ever, we can also regard
∑h

k=1 pkMk as a lottery over menus (of lotteries)

because
∑h

k=1 pkMk is the set of lotteries that an agent could generate (ex

ante) by selecting a (pure) strategy for selecting a lottery from each menu Mk

given that she faces each menu Mk with probability pk. For this reason, I also

refer to
∑h

k=1 pkMk as a menu lottery. As a special case, λM + (1− λ)M ′

can be regarded as a lottery over the two menus M and M ′. We are now in

a position to present the next axiom.
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Axiom 4 (Independence)

∀λ ∈ (0, 1),∀L,M,N ∈M , M - N ⇔ λM + (1− λ)L - λN + (1− λ)L.

To understand why this axiom is compelling for freedom, I present an

example which was previously presented in Sher (2018a) and Sher (2018b).

Consider an agent who faces the prospect of going to prison outside of North

America with probability 1− λ. If the agent does not go to prison, she will

either become a US citizen or a Canadian citizen. Let US be the choice

set that the agent would have in virtue of becoming a US citizen and C the

choice set that she would have in virtue of being a Canadian citizen. P is

the choice set the agent would have in virtue of being in prison. Scenario

A, in which the agent becomes a US citizen if she does not go to prison,

is represented by the menu λUS + (1 − λ)P and Scenario B, in which she

becomes a Canadian citizen if she does not go to prison, is represented by

λC + (1− λ)P . The independence axiom applied to this case says that

C - US ⇔ λC + (1− λ)P - λUS + (1− λ)P.

That is, the agent has more freedom in Scenario A than in Scenario B if and

only if she has more freedom in the US than in Canada. This is intuitively

correct: the possibility of going to prison, which occurs with the same prob-

ability in both scenarios, cancels out. This is very similar to the intuition

for the independence axiom in standard expected utility theory, except that

here it applies to freedom rather than to preference.

The final axiom is due to Sher (2018b). Some machinery is required. A

permutation π of Z is a bijection π : Z → Z. Π is the set of permutations

on Z. For each ` ∈ ∆ (Z), and π ∈ Π, define `π ∈ ∆ (Z) by:

`πz = `π(z), ∀π ∈ Π,∀z ∈ Z.

So `π is the lottery over outcomes that results from permuting the probability

of outcomes in ` according to π: that is, `π assigns to z the same probability

that ` assigns to π (z). The menu Mπ is formed by permuting each lottery
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in M according to π. That is:

Mπ = {`π : ` ∈M} . (3)

Axiom 5 (Neutrality) M ∼Mπ, ∀M ∈M ,∀π ∈ Π.

The axiom asserts indifference between a menu and any permutation of that

menu. In other words, the evaluation of the menu is blind to the identity of

the particular items that feature in the menu’s lotteries, and depends only

on the structure of the menu. This axiom would be too strong as an axiom

for preference for flexibility, but it can be reasonable as a normative axiom

about freedom if we want the evaluation of freedom to capture only the scope

for choice and to be neutral about different alternatives. This is particularly

natural in the context of voting power : It is natural to define a voter’s power

in a way that is independent of the identity of the candidates. The most

commonly used voting power indices, including the Banzhaf and Shapley-

Shubik indices exhibit this kind of neutrality towards candidates. However,

I discuss relaxations of the neutrality axiom in Section 2.4 and footnote 14.

I refer to quasiorder, continuity, order monotonicity, independence, and

neutrality collectively as the freedom axioms.

2.3.2 The symmetry order

This section presents the symmetry order, which serves as the basis for my

proposed voting power order, and relates it to the freedom axioms. For any

M ∈ M , let co (M) be the convex hull of M . For any menu M , define the

symmetrization of M by

S (M) := co

[
1

m!

∑
π∈Π

Mπ

]
. (4)

S (M) is the Minkowski average (see (2)) of all m! permutations of M (see

(3)). This definition involves a lot of averaging: First, we take an (equal

weight) Minkowski average of all m! permutations of M ; then we take a
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convex hull of the resulting menu, which amounts to taking all weighted

averages of lotteries in 1
m!

∑
π∈Π M

π.

The symmetry order -∗ on M is defined by:

M -∗ M ′ ⇔ S (M) ⊆ S (M ′) , ∀M,M ′ ∈M . (5)

That is, the symmetry order ranks menu M ′ above menu M if the sym-

metrization of M ′ contains the symmetrization of M . ≺∗ is the asymmetric

part of the symmetry order. Sher (2018b) presents some diagrams that il-

lustrate the symmetrization of a menu (4) and the symmetry order (5) in

simple cases.

Say that one quasiorder - is coarser than another order -′ if ∀M,M ′ ∈
M ,M - M ′ ⇒ M -′ M ′. The symmetry order is justified by the following

proposition, due to Sher (2018b):

Theorem 1 The symmetry order is the coarsest quasiorder satisfying the

freedom axioms.

This means that M -∗ M ′ exactly when it is a consequence of the freedom

axioms that M ′ is ranked above M – that is, whenever all quasiorders satis-

fying the axioms rank M ′ above M . However, if it is merely consistent with

the axioms that M is ranked above M ′, but not implied by the axioms, then

M 6-∗ M ′. In this sense, -∗ is not like a subjective preference, but is rather

principle-based: It encodes what is implied by a certain set of principles.

2.4 From freedom to voting power

Recall that the electoral menu Mi (σ) is the set of candidate lotteries that

the voter can achieve by varying her vote in σ (see (1)). Let σ = (f, µ) and

σ′ = (f ′, µ′) be two elections. I define the symmetric power order -◦i on

elections in terms of the symmetry order -∗ on menus by a condition, which

I call the freedom-voting power translation:

σ -◦i σ
′ ⇔Mi (σ) -∗ Mi (σ

′) . (6)
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The symmetric power order -◦i , unlike the symmetry order -∗, is indexed by

a voter i. It is a voting power order for a single voter. One can also define

the average voting power order -◦ on elections:

σ -◦ σ′ ⇔ 1

n

n∑
i=1

Mi (σ) -∗
1

n

n∑
i=1

Mi (σ
′) , (7)

where (7) appeals to the notion of a Minkowski average (see (2)). The average

voting power in σ is the voting power that a voter would have if she were

selected to occupy the role of each voter i in σ with probability 1
n
.

My proposal bundles together two aspects: (i) that voting power is defined

by σ -◦i σ
′ ⇔ Mi (σ) - Mi (σ

′) for some menu order -, and (ii) that the

menu order in (i) is the symmetry order: -=-∗. These two aspects can be

separated. Appendix A provides alternative orders - that can be used to

define voting power in (i). Some of these alternatives are coarsenings of -∗

and others are refinements. One might prefer a coarsening if one thinks the

freedom axioms are too strong. Conversely, one might prefer a refinement if

one is concerned that the symmetry order, and hence the symmetric power

order, is incomplete and leaves too many pairs of elections unranked. Indeed

one may refine -∗ to the extent that the resulting voting power order is

complete. A virtue of refinements of -∗ is that they can be constructed to

satisfy all of the freedom axioms, which is desirable if one finds these axioms

to be normatively compelling.

Generalizing in another way, if one does not like the neutrality axiom

(Axiom 5), one could substitute for -∗ in (6) an arbitrary menu preference

- satisfying the Dekel et al. (2001) axioms (the axioms in Section 2.3.1 other

than neutrality, with the addition of a completeness axiom) or quasiorder

version of the Dekel Lipman Rustichini axioms (i.e., a version without the

completeness axiom) (Kochov 2007, Galaabaatar 2010). This would produce

a voting power order that is similar to the one studied here, but treats the

option to choose some candidates as more significant to voting power than

the option to choose others.14 A discussion of when the neutrality axiom is

14One might even explore a scheme whereby the preference -i used in (6) in place
of -∗ is personalized to i so that, e.g., options more likely to be chosen by µi would
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and is not reasonable (in settings more general than elections) can be found

in Section 3.3 of Sher (2018b).

I conclude this section by mentioning two types of elections under which

the symmetric power order simplifies. An election σ is anonymous ifMi (σ) =

Mi′ (σ) for all i, i′ ∈ I. An election σ is neutral for i if for all π ∈ Π,

[Mi (σ)]π = Mi (σ) (see (3)). An election σ is neutral if if is neutral for

all i. Intuitively, an election is anonymous if it treats all voters in the same

way, and it is neutral if it treats all candidates in the same way. Anonymity

and neutrality, as I have defined them, depend not only on f but also on

µ. Examples of neutral and anonymous elections are given in Section 5. For

anonymous elections, -◦=-◦i , ∀i ∈ I. That is, we only have to look at the

perspective of a single “representative” voter to gauge average voting power.

Proposition 1 If σ and σ′ are neutral, then σ -◦i σ
′ ⇔Mi (σ) ⊆ co [Mi (σ

′)].15

This proposition says that for neutral elections, to check whether σ -◦i σ
′,

we have to check only whether every lottery in the electoral menu Mi (σ) can

be formed as a weighted average of lotteries in Mi (σ
′).

3 Binary elections

This section applies the symmetric power order to binary elections, the most

extensively studied elections in the voting power literature. I show that

in “ordinary” elections – the sorts of elections that have been studied – the

symmetric power order coincides with the standard pivotality approach. This

provides a novel foundation for pivotality measures for binary elections: If

one accepts the freedom axioms (Section 2.3) and the freedom-voting power

translation (Section 2.4), then one should accept pivotality as a measure of

voting power. If one asks: “Why should I accept pivotality as the measure

of voting power?”, the freedom axioms provide the answer.

be more likely to considered valuable in the additive expected utility representation of
-i (see Definition 4 and Theorem 4 of Dekel et al. (2001)). Working this out properly
would require establishing a connection between voting behavior and evaluation of voting
institutions in terms of voting power that goes beyond the current paper, but would be
an interesting direction for future work.

15Observe that Mi (σ) ⊆ co [Mi (σ′)] is equivalent to co [Mi (σ)] ⊆ co [Mi (σ′)].

17



However, problems with pivotality are already inherent in the binary case.

When one considers “strange” elections, the symmetric power order deviates

from pivotality, and, on an intuitive level, the symmetry order seems to give

the right answer and pivotality the wrong answer. One might think that

these strange elections are just curiosities, and so carry no larger meaning.

However, Section 4 will show that the reasons that pivotality in general fails

to be a good measure in multicandidate elections are the same as the reasons

that pivotality fails to be a good measure for strange binary elections.

3.1 Monotonic elections

3.1.1 Monotonicity

Define a binary election to be an election with two candidates, C = {1, 2},
and for which the vote set is V = {1, 2}; that is, a vote is either a vote for 1

or for 2. Note that V = {1, 2} is part of the definition of a binary election.16

Recall that v−i is the vote profile consisting of the votes of all voters other

than i (including the tie-breaker). (1, v−i) is the vote profile in which i votes

for 1 and all other voters vote as in v−i. Similarly, (2, v−i) is the vote profile

in which i votes for 2, and all other voters vote as in v−i.

Definition 1 A voting rule f is monotonic if for all voters i in I and vote

profiles v−i ∈ V−i, f (1, v−i) = 2⇒ f (2, v−i) = 2.

That is, if candidate 2 wins when i votes for 1, and the only change is that i

changes her vote to 2, then 2 still wins. The definition implies symmetrically

that switching one’s vote from 2 to 1 can only shift the election to 1, if it has

any effect on the election at all.17 Monotonicity is a very natural condition.

Voting for a candidate should not cause the other candidate to win. It would

be strange if this happened. A notational caveat: monotonicity applied

to elections should not be confused with opportunity monotonicity axiom

(Section 2.3). This terminological clash arises from merging two literatures.

16An alternative definition of binary elections would assume that C = {1, 2} but would
allow V to be arbitrary. The definition I choose simplifies the presentation. Section 4
covers C = {1, 2} and V arbitrary as a special case.

17By contraposition, the conditional in Definition 1 is equivalent to f (2, v−i) = 1 ⇒
f (1, v−i) = 1.
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3.1.2 Pivotality

I now define pivotality in binary elections. I begin by defining the notion of

a pivotal event:

Pivotal Eventfi = {v−i ∈ V−i : f (1, v−i) 6= f (2, v−i)} . (8)

That is, the pivotal event Pivotal Eventfi is the set of vote profiles v−i for

voters other than i (including the tie-breaker) such that if i changes her vote,

the outcome of the election changes. That is, the pivotal event is the event

in which i’s vote makes a difference.

Define i’s pivotality probability Pivi (σ) in election σ by

Pivi (σ) = µ−i

(
Pivotal Eventfi

)
(9)

Pivi (σ) is the probability that i’s vote makes a difference σ. Whereas the

pivotal event (8) depends only on the voting rule f and not on voting behavior

µ, the pivotality probability (9) depends on both f and µ−i.

3.1.3 Equivalence of pivotality and the symmetric power order

I now relate pivotality to the symmetric power order:

Theorem 2 For monotonic binary elections, σ -◦i σ
′ ⇔ Pivi (σ) ≤ Pivi (σ

′) .

This result shows that in monotonic binary voting situations, voting power –

as measured by the symmetry order – coincides with pivotality. When voters

vote independently, and each voter is equally likely to vote for either candi-

date, pivotality is known as Banzhaf power, which is the most prominent

voting power index. So the approach of the current paper coincides with the

most prominent voting power index for binary elections.

Now I explain why Theorem 2 is true. When there are only two can-

didates, we can identify any lottery over candidates ` with the probabil-

ity `2 that the candidate gives to candidate 2. Thus a menu of lotteries

can be regarded as a set of numbers, or in other words, a subset of the

interval [0, 1]. In particular, for binary elections, we can write Mi (σ) =
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{[`i (1 |σ )]2 , [`i (2 |σ )]2}, where, recall, [`i (1 |σ )]2 is the probability that 2

wins if i votes for 1, and [`i (2 |σ )]2 is the probability that 2 wins if i votes for

2. Define ησi = [`i (2 |σ )]2−[`i (1 |σ )]2. Thus ησi is the increased probability of

a victory for 2 that results from i voting for 2 rather than 1. It is easy to see

that for binary monotonic elections Pivi (σ) = ησi . Moreover, regarding sets of

binary lotteries a subsets of [0, 1] as above, and using (4), a simple calculation

shows that for binary monotonic elections S (Mi (σ)) =
[

1
2
− ησi

2
, 1

2
+

ησi
2

]
.

That is, S (Mi (σ)) is an interval of length ησi , centered on 1
2
. Using (6) and

(5) it follows that

σ -◦i σ
′ ⇔Mi (σ) -∗i Mi (σ′)⇔ S (Mi (σ)) ⊆ S (Mi (σ′))

⇔
[

1
2 −

ησi
2 ,

1
2 +

ησi
2

]
⊆
[

1
2 −

ησ
′
i
2 ,

1
2 +

ησ
′
i
2

]
⇔ ησi ≤ ησ

′
i ⇔ Pivi (σ) ≤ Pivi (σ′).

This establishes Theorem 2.18

A notable feature of Theorem 2 is that whereas in general the symmetry

order, and hence also the symmetric power order, is only a quasiorder –

it is not complete – the symmetric power order is complete on the set of

monotonic binary voting situations. This is explained by the fact that when

there are only two outcomes (or candidates), -∗ is the unique order satisfying

all the freedom axioms. Note that Theorem 2 relies on all of the freedom

axioms. In the appendix, I display a weak order - that satisfies all of the

axioms except independence and a weak order -′ that satisfies all of the

axioms except neutrality such that if - or -′ were substituted for -∗ in the

definition (6) of -◦i , Theorem 2 would fail.

3.2 Nonmonotonic elections

The voting power literature has focussed almost exclusively on monotonic

elections. This is justified because nonmonotonic binary elections are strange.

However, it is interesting and – as we shall see – important to note that in

nonmonotonic elections the connection between pivotality and voting power

breaks down.

18I am grateful to an anonymous referee for suggesting that I explain the argument
along these lines.
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Proposition 2 There exist nonmonotonic binary elections σ in which

1. Voter i’s pivotality attains its maximum possible value: Pivi (σ) = 1,

while 2. Voter i has the minimum possible voting power: σ -◦ σ′ for all σ′.

This result shows not only that without monotonicity the relationship be-

tween pivotality and the symmetry order breaks down, but that the two can

be diametrically opposed. This result is established by the following example.

The matching pennies election

Suppose there are two candidates, 1 and 2, and two voters, Ann and Bob.

Each voter may vote for either 1 or 2. The voting rule is:

• If both voters vote for the same candidate, then candidate 2 wins.

• If both voters vote for different candidates, then candidate 1 wins.

This election is nonmonotonic: If, starting from a situation in which both

voters vote for 1, one voter switches her vote to 2, this change will cause 1 to

win. Voting behavior is as follows: Each voter votes for each candidate with

probability 1/2 and the votes of the two voters are independent.19 Refer to

this situation as the matching pennies election, denoted σmp.

In σmp, each voter is pivotal with probability 1: It is always true that if

either voter changes her vote, the winner changes. This is of course the max-

imum possible pivotality; it is not possible to be pivotal with a probability

greater than 1. However, despite this high level of pivotality, neither voter

has any meaningful control. Look at the situation from Ann’s point of view:

If Ann were to vote for candidate 1, then Ann knows only that candidate

1 will win with probability 1/2 (depending on whether Bob votes for 1 or

2). If Ann were to vote for candidate 2, then again candidate 1 will win

with probability 1/2. No matter how Ann votes, this will lead to each can-

didate winning with probability 1/2. Indeed, in this situation each voter has

the minimum possible voting power according to -◦i . To see this, observe

19The model does not formally assume that voters have preferences, but if voters did
have preferences, the behavior assumed here would be in equilibrium, whatever those
preferences might be.
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that the electoral menu for each voter contains only the single lottery ac-

cording to which each candidate wins with probability 1/2. Treating menus

of binary lotteries as subsets of [0, 1] as in Section 3.1.3, Mi (σ
mp) =

{
1
2

}
and S (Mi (σ

mp)) =
{

1
2

}
⊆
[

1
2
− |η

σ
i |
2
, 1

2
+
|ησi |

2

]
= S (Mi (σ)) for all binary

elections σ. (The absolute value |ησi | is used here because for nonmonotonic

elections, it is possible that ησi < 0.) It follows that σmp -◦i σ for all binary

elections σ.20 So while each voter has maximum pivotality, each voter has

minimum control. Thus the symmetry order gives the intuitive conclusion

that neither voter has any power in this election. In light of this example,

it is natural to conclude that in general voting power and pivotality are not

the same.

3.3 Pivotality vs influence

There is another way of looking at the results of the previous sections. Define

a voter’s influence by

Infi (σ) = |Prσ (2 wins |i votes for 2)− Prσ (2 wins |i votes for 1)| (10)

where Prσ is the probability measure induced by σ.21 In the voting power

literature, pivotality and influence are often conflated,22 and for good reason:

For monotonic elections, influence and pivotality are the same. The following

proposition – a variant of the preceding results – shows that for nonmonotonic

elections, pivotality and influence diverge.

20In fact, σmp -◦i σ for any election σ with any number of candidates (and any number
of voters). We can view σmp as a multicandidate election with n voters and m candidates
in which only Ann and Bobs’ votes have an impact and only candidates 1 and 2 can win.
Viewed in this way, Mi (σmp) contains only the lottery in which 1 wins with probability
1/2, 2 wins with probability 1/2, and all other candidates win with probability 0. Sher
(2018b)) establishes that singleton menus have minimal freedom according to the symmetry
order: {`} -∗ M for all lotteries ` and menus M . Hence viewing σmp as a multicandidate
election, σmp -◦i σ for all multicandidate elections σ.

21An equivalent way of defining Infi (σ) is as Infi (σ) = |ησi |.
22Some writers, such as Felsenthal and Machover (1998), distinguish these notions.

Their Theorem 3.2.12 is equivalent to Part 1 of Proposition 3 under the (stronger) as-
sumption that each voter is equally likely to vote for either candidate.
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Proposition 3 1. For monotonic binary elections, Infi (σ) = Pivi (σ).

2. For (possibly nonmonotonic) binary voting situations, Infi (σ) ≤ Pivi (σ).

Moreover, there exist nonmonotonic binary σ for which Pivi (σ) = 1 but

Infi (σ) = 0. 3. In all binary elections – monotonic or nonmonotonic – in-

fluence represents the symmetric power order: σ -◦i σ
′ ⇔ Infi (σ) ≤ Infi (σ

′).

When the two diverge, the symmetry order tracks influence, not pivotality.

4 Multicandidate elections

We have established that pivotality measures voting power for monotonic –

but not nonmonotonic – binary elections. This section establishes a similar

result for multicandidate elections. There is, however, an important differ-

ence. In the binary case, the most reasonable elections, such as majority

voting, are monotonic, and nonmonotonic elections can be dismissed as cu-

riosities. In contrast, in multicandidate elections, monotonicity becomes very

demanding so that the most reasonable elections are not monotonic. Hence,

it is in the multicandidate case that the symmetric power order – embodying

an idea distinct from pivotality – really comes into its own.

4.1 Defining pivotality in multicandidate elections

To proceed, we must generalize pivotality to multicandidate elections. This

is nontrivial: With multiple candidates, not all instances of pivotality are the

same. A voter may be pivotal over 2, 3 or more candidates. For example,

under plurality rule with k candidates tied for first place, each voter is pivotal

over k candidates. In a random dictatorship with m candidates, each voter

is pivotal over m candidates with probability 1
n
.

4.1.1 Pivotal events

We now define pivotal events – but unlike in the binary definition (8) – there

is not just one pivotal event, but a family of pivotal events, indexed by the

23



number of candidates over which the voter is pivotal:

Pivotal Eventfi (k) = {v−i ∈ V−i : |{f (vi, v−i) : vi ∈ V }| = k} . (11)

To understand the notation: For any finite set X, |X| is the number of

elements in X. Pivotal Eventfi (k) is set of votes v−i such that if the vote

profile of others is v−i, by varying her vote, i can bring it about that one of

exactly k candidates can win. In other words, Pivotal Eventfi (k) is the event

that i is pivotal over k candidates. Here k ranges between 1 and m, where

m is the number of candidates. Observe that Pivotal Eventfi (1) is the event

in which voter i is not pivotal; that is, Pivotal Eventfi (1) is the event such

that every vote by i will lead the same candidate to win the election. To be

pivotal over only a single candidate is not to be pivotal at all.

In principle, one could individuate pivotal events more finely: For exam-

ple, one could split Pivotal Eventfi (2) into
(
m
2

)
pivotal events, one for each

distinct pair of candidates: the event that i is pivotal exactly between can-

didates 1 and 2, the event that i is pivotal between 1 and 3, and so on. In

Section 4.1.4, I will explain why it is not necessary to individuate pivotal

vents more finely in this way.

4.1.2 Pivotality probabilities

As there is not just one pivotal event but a collection of pivotal events, one

for each number between 1 and m, there is not just one pivotality probability

but a collection of pivotality probabilities:

Pivi (k;σ) = µ−i

(
Pivotal Eventfi (k)

)
. (12)

Pivi (k;σ) is the probability that voter i is pivotal over k candidates.

Recalling that Pivotal Eventfi (1) is the event that voter i is not pivotal,

Pivi (1;σ) is the probability that i is not pivotal. Observe that Pivi (k;σ) ≥ 0

for all k, and
∑m

k=1 Pivi (k;σ) = 1, and define i’s pivotality distribution as

Pivi (σ) = (Pivi (1;σ) , . . . ,Pivi (k;σ) , . . . ,Pivi (m;σ)). Pivi (σ) is the prob-

ability distribution of the number of candidates over which i is pivotal in σ.
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4.1.3 The Pivotality Order

I now use the concepts of the preceding sections to (partially) rank multi-

candidate elections in terms of pivotality. For k between 1 and m, define the

deterministic menu

k = {δ1, δ2, . . . , δk} ,

where δc is the degenerate lottery that puts probability 1 on candidate c.

Thus k is the menu that effectively allows you to choose among the first k

candidates. For any election σ, define the pivotality lottery L σ
i for i in σ:

L σ
i =

m∑
k=1

Pivi (k;σ) k. (13)

L σ
i is the special case of the Minkowski average (2) in which pk = Pivi (k;σ)

andMk = k. L σ
i is the lottery according to which, with probability Pivi (1;σ),

the probability with which i would not have been pivotal in σ, the voter faces

menu 1 = {δ1}, or, in other words, the voter has no choice; with probability

Pivi (2;σ), the probability with which i would have been pivotal between

two candidates in σ, i faces menu 2 = {δ1, δ2}, so that i has a choice be-

tween two candidates; . . . ; and with probability Pivi (m;σ), i faces the menu

m = {δ1, . . . , δm}. Define the pivotality order -piv
i on elections by

σ -piv
i σ′ ⇔ L σ

i -∗ L σ′

i . (14)

I claim that the pivotality order is a natural generalization of pivotality to

multicandidate elections. That is, one can say that i is more pivotal in σ′

than in σ if σ -piv
i σ′. That this is the correct way of generalizing pivotality

is not obvious, so in the next section, I will provide some justification.

4.1.4 Justifying the Pivotality Order

First observe that the pivotality order is indeed a generalization:

Proposition 4 For binary elections, σ -piv
i σ′ ⇔ Pivi (2;σ) ≤ Pivi (2;σ′).
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But there are many ways to generalize. Why not in a different way? Wouldn’t

it be a more pure approach to individuate pivotal events more finely, as

suggested in the end of Section 4.1.1. We could have defined a pivotal event

and pivotal probability for each set S of candidates: Pivotal Eventfi (S) =

{v−i : {f (vi, v−i) : vi ∈ V } = S} and Pivi (S;σ) = µ−i

(
Pivotal Eventfi (S)

)
.

For each S ⊆ C, let S = {δc : c ∈ S}. Then we can re-define the notion of a

pivotality lottery (13) so that it does not collapse all sets of candidate S of size

k into the single set k. In particular, define L̂ σ
i :=

∑
S⊆C,S 6=∅ Pivi (S;σ) S.

Proposition 5 L̂ σ
i ∼∗ L σ

i . Consequently, σ -piv
i σ′ ⇔ L̂ σ -∗ L̂ σ′ .

Thus, to define the pivotality order, it makes no difference whether we in-

dividuate pivotality events finely to be of the form S or coarsely to be of

the form k; either way, we arrive at the same pivotality order. This is a

consequence of the independence and neutrality axioms.

An opposite idea is that because in large elections, at least ordinary large

elections, a voter is much more likely to be pivotal over exactly two candi-

dates than over any larger number of candidates, we should collapse all levels

pivotality, and represent pivotality just by the probability of being pivotal

over two candidates Pivi (2;σ) or the probability 1−Pivi (1;σ) of being piv-

otal over any number of candidates. The next proposition shows that the

pivotality order does indeed capture this idea, under appropriate conditions:

Proposition 6

If |Pivi (2;σ′)− Pivi (2;σ)| > (m− 1)
∑m

k=3 |Pivi (k;σ′)− Pivi (k;σ)|, then

σ -piv
i σ′ ⇔ 1− Pivi (1;σ) ≤ 1− Pivi (1;σ′) .23

Notice that what really matters for 1 − Pivi (1;σ) to be a good measure

of pivotality is that the magnitude of the difference between higher level

pivotalities is small relative to that of 2-pivotalities. In general, however,

pivotality over more than two candidates may matter. For example, does a

voter have more power if she participates in majority voting over 2 candidates

or if she participates in a random dictatorship over m candidates? How does

23It is interesting to note that 1 − Pivi (1;σ) ≤ 1 − Pivi (1;σ′) is always a necessary

condition for σ -piv
i σ′, but to be a sufficient condition, the inequality in the proposition

is required.
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the answer depend on m and the number of voters n? A further point is

that even when only pivotality over two candidates matters, we cannot in

general use the single number 1−Pivi (1;σ) to pose the question of whether

pivotality overestimates or underestimates voting power. In contrast, as will

be shown in Theorems 3 and 4, the pivotality lotteries
∑

k Piv (k;σ) k used

to define -piv
i can also be used to determine whether pivotality correctly

measures voting power.

A final thought might be that we should measure pivotality by comparing

pivotality distributions Pivi (σ) via first order stochastic dominance (FOSD).

This would be justified by the observation that being pivotal over a greater

number of candidates is superior to being pivotal over a small number. So,

in general, increasing the probability that one is pivotal over at least k can-

didates intuitively seems to increase one’s pivotality. That is precisely the

criterion that FOSD captures. The following proposition bears on this.

Proposition 7 1.

σ -piv
i σ′ ⇔

(
m−j∑
k=1

(
m−k
j

)
(Pivi (k;σ′)− Pivi (k;σ)) ≤ 0, for j = 1, . . . ,m− 1

)
.

2. If Pivi (σ
′) first order stochastically dominates Pivi (σ), then σ -piv

i σ′.

3. If Pivi (σ
′) second order stochastically dominates Pivi (σ), then σ -piv

i σ′.

Neither the converse of 2 nor of 3 hold in general, so that -piv
i is strictly

stronger than both first and second order stochastic dominance.

Part 1 provides a characterization of -piv
i in terms of a set of linear inequal-

ities. It follows from the fact that the set contains several inequalities that

-piv
i is only a quasiorder (i.e., it is not complete). Nevertheless, -piv

i provides

a stronger ranking than first order stochastic dominance, or even second or-

der stochastic dominance.24 It is a virtue of -piv
i that it captures FOSD, but

it is also a virtue that -piv
i is stronger than FOSD, because FOSD is too weak

of a criterion. To see this, suppose that in situation A (denoted σA), voter

i is a dictator who can simply decide whether candidate 1 or 2 wins. Voter

24Second order strochastic dominance is stronger than first order stochastic dominance.
For this reason, part 3 of the proposition actually implies part 2.

27



i is pivotal over this pair with probability 1. In situation B (denoted σBε ),

with probability 1 − ε, voter i has no influence. With probability ε, voter

i decides whether candidate 1, 2, or 3 wins. FOSD is unable to compare

these two situations, but, intuitively, if ε is sufficiently small, voter i is more

pivotal in σA. In contrast, Proposition 6 implies that if ε is sufficiently small,

σBε -piv
i σA. So -piv

i does not suffer from the same problem.

I hope that the above analysis has persuaded the reader that -piv
i is

the right way of generalizing pivotality to multicandidate elections; below,

I will argue that pivotality is not the right way to measure voting power in

multicandidate elections.

4.2 Monotonicity

Next I generalize monotonicity to multicandidate elections in the standard

way, although with an accommodation for the possibility that votes are not

rankings. I start with the case in which votes are rankings. Let R be the set

of rankings or total orders: That is, the set of antisymmetric, transitive, and

complete relations R on C.25 A total order R ranks all candidates in C from

best to worst. A total order does not allow ties. For two candidates c and

c′, cRc′ means that c is ranked above c′. Call a voting rule f preferential if

its vote set V is such that V = R. The term “preferential” is used because

the ranking R is typically interpreted as the voter’s preference. The term

ranked voting is also often used to refer to preferential voting systems.

Examples of preferential voting rules include instant runoff voting, the Borda

rule, and the Condorcet rule. For preferential rules, we express a vote profile

as R̄ = (v0, R1, . . . , Ri, . . . , Rn). Observe the R̄ includes the tie-breaker v0,

which is not assumed to be a ranking; that is, V0 6= R. We also write

R̄ = (Ri, R−i) where Ri is i’s preferential vote in the vote profile and R−i =

(v0, R1, . . . , Ri−1, Ri+1, . . . , Rn) is the vote profile that results from removing

i’s vote from the vote profile. Let R−i be the set of all such profiles R−i.

25Recall that a relation R on C is antisymmetric if and only if for all c, c′ ∈
C, (cRc′ and c′Rc)⇒ c = c′.
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Definition 2 Let i be a voter in I. A preferential voting rule f is mono-

tonic for i if ∀c ∈ C, ∀Ri, R
′
i ∈ R,∀R−i ∈ R−i,

[f (Ri, R−i) = c and ∀c′ ∈ C, (cRic
′ ⇒ cR′ic

′)]⇒ f (R′i, R−i) = c.

A voting rule is monotonic if it is monotonic for all voters i in I.

This sort of monotonicity is known as Maskin monotonicity or strong

positive association (Muller and Satterthwaite 1977). It says that when a

candidate c moves up in a voter’s ranking, this cannot cause c to lose when

c would have won otherwise.

Intuitively, monotonicity in Definition 2 generalizes monotonicity for bi-

nary elections (Definition 1) to multicandidate elections. To see this formally,

in a binary election with candidates 1 and 2, reinterpret a vote for 1 as the

ranking R1 such that 1R12, and a vote for 2 as the ranking R2 such that

2R21. Thus, we can think of vote for 1 as the claim, “I prefer candidate 1

to candidate 2”. Under this translation, we can write R = V , and then it is

easy to verify that Definition 1 coincides with Definition 2.

Not all mutlicandidate elections are preferential. For example, under

plurality voting, a vote just names a single candidate rather than providing

a ranking, under approval voting (Weber 1977, Brams and Fishburn 1978,

Brams and Fishburn 2007), a voter submits a set of candidates of which

the voter approves, and Balinski and Laraki (2011) have proposed a voting

system called majority judgement, under which voters assign grades to candi-

dates, akin to letter grades that students receive in schools. For my results to

apply also to nonpreferential voting rules, I generalize Definition 2. Say that

a subset V ′ of V is i -sufficient if ∀vi ∈ V, ∀v−i ∈ V−i,∃v′i ∈ V ′, f (vi, v−i) =

f (v′i, v−i).

Definition 3 A voting rule f with vote set V has a monotonic interpre-

tation for i if there exists an i-sufficient subset V ′ of V and a surjective

function φi : R → V ′ such that ∀c ∈ C, ∀Ri, R
′
i ∈ R,∀v−i ∈ V−i,

[f (φi (Ri) , v−i) = c and ∀c′ ∈ C, (cRic
′ ⇒ cR′ic

′)]⇒ f (φi (R
′
i) , v−i) = c.
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Refer to φi as the interpretation for i. A voting rule is has a mono-

tonic interpretation if it has a monotonic interpretation for all voters i

in I.

A voting rule has a monotonic interpretation if we can reinterpret the votes as

rankings in such a way that the voting rule becomes monotonic. In a voting

rule with a monotonic interpretation, we can interpret the vote φi (Ri) as if it

were a claim that that the voter’s preference is Ri. Notice that the definition

allows for the possibility Ri 6= R′i but φi (Ri) = φi (R
′
i). In other words, a

single vote may have multiple interpretations. Some votes vi may have no

interpretations (if vi is not in the range of φi). However, the i-sufficiency of

the range of φi implies that the set of votes that do have an interpretation

is sufficiently rich.

4.3 A basic result on pivotality and voting power

We are now in a position to begin to assess whether and when pivotality

measures voting power in multicandidate elections.

Theorem 3 Let i ∈ I and σ = (f, µ). 1. For all voting situations σ,

Mi (σ) -∗
∑
k

Pivi (k;σ) k.

2. Suppose that µj (vj) > 0 for all j ∈ I0 \ i and vj ∈ V . Then

Mi (σ) ∼∗
∑
k

Pivi (k;σ) k

if and only if f has a monotonic interpretation for i.

Part 2 of the theorem says that in monotonic elections, the pivotality lottery

gives a voter the same voting power as participating in the election. Part 2

is the multicandidate analog of Theorem 2, which says that for monotonic

binary voting mechanisms, pivotality measures voting power. The following

is an immediate corollary of part 2.
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Corollary 1 Let σ = (f, µ) and σ′ = (f ′, µ′) be such that f and f ′ have

monotonic interpretations for i. Then σ -◦i σ
′ ⇔ σ -piv

i σ′.

In other words, the pivotality order and symmetric power order coincide on

elections with monotonic interpretations.

What can be said about elections that do not have monotonic interpreta-

tions? Part 1 says that pivotality is always weakly an overestimate of voting

power, and (by part 2) in the absence of monotonicity, a strict overestimate.

We’ll see why pivotality overestimates voting power below.

4.4 Some lemmas from social choice

An important question is whether part 2 of Theorem 3 is a positive or negative

result: Does it say that pivotality is usually or a good measure of voting power

or rarely a good measure? Those familiar with the social choice literature

may immediately see the answer. I now review a few basic results from social

choice that are relevant.

Definition 4 A preferential voting rule is strategyproof if

∀i ∈ I,∀Ri, R
′
i ∈ R,∀R−i ∈ R−i, f (Ri, R−i)Rif (R′i, R−i) .

In other words, a preferential voting rule is strategyproof if and only if no

voter ever has an incentive to lie to the rule (i.e., misrepresent her prefer-

ences) even if she knows how others have voted.26

Voting rule f is deterministic if it does not depend on the tie-breaker v0.27

Proposition 8 (Muller and Satterthwaite 1977) A deterministic preferential

voting rule is monotonic if and only if it is strategyproof.

I refer to this as the Muller Satterthwaite theorem, although that term is

often used to refer to a corollary of Proposition 8 instead.28 The analog of

26This version of the definition is slightly nonstandard because my definition of R−i is
such that R−i includes the tie-breaker v0.

27Formally, a voting rule is deterministic if for all v0, v
′
0, v−0, f (v0, v−0) = f (v′0, v−0).

28Often the Muller Satterthwaite theorem is used to refer to the proposition that If
there are three candidates, then every preferential voting rule that is monotonic and onto
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the Muller Satterthwaithe result for binary voting rules is that voting for

one’s favorite candidate is a dominant strategy for all voters if and only if

the voting rule is monotonic. Proposition 8 has a useful corollary.

Definition 5 Voting rule f has a strategyproof interpretation for i if

and only if ∀Ri ∈ R,∃vRii ∈ V, ∀vi ∈ V, ∀v−i ∈ V−i, f
(
vRii , v−i

)
Rif (vi, v−i) .

Corollary 2 Voting rule f has a monotonic interpretation for i if and only

if f has a strategyproof interpretation for i.

Next for any nonempty subset D of the set of candidates C and total order

R ∈ R, define ĉ (D,R) to be the candidate c ∈ D that is top ranked by R

among candidates in D. Call ĉ the choice function.29 Define the range of

a voting rule in the standard way: range (f) =
{
c ∈ C : ∃v ∈ V̄ , f (v) = c

}
.

The range of f is the set of candidates who can possibly win the election. A

preferential voting rule is dictatorial on its range if there exists i ∈ I such

that ∀Ri ∈ R,∀R−i ∈ R−i, f (Ri, R−i) = ĉ (range (f) , Ri). In other words,

a preferential voting rule is dictatorial on its range if one of the voters is a

“dictator” such that the voting rule always chooses the dictator’s favorite

candidate among those that are ever chosen by the voting rule; a dictatorial

voting rule simply ignores the votes of voters other than the dictator. I now

state the famous Gibbard Statterthwaite theorem.

Proposition 9 (Gibbard 1973, Satterthwaite 1975) Let f be a determinis-

tic preferential voting rule with at least three candidates in its range. f is

strategyproof if and only if it is dictatorial on its range.

(i.e., its range is C) is dictatorial. In fact, in Muller and Satterthwaite (1977), this latter
result is treated as a corollary, and the main result is Proposition 8. Indeed, in this section
I combine Proposition 8 with the Gibbard Satterthwaite theorem to derive (a variant of)
this corollary. I do this instead of working directly with the corollary because I want
to emphasize the connection to strategyproofness, which I believe will be important for
future work.

29Formally, ĉ (D,R) = c if and only if (i) c ∈ D and (ii) ∀c′ ∈ D, cRc′.
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4.5 Pivotality fails to measures voting power

4.5.1 The pivotality gap

This section uses the preceding results to show that pivotality is rarely a good

measure of voting power in multicandidate elections. I start with a definition.

For any voting rule f and v0 ∈ V , define the function fv0 : V I → C, the

section of f at v0, by fv0 (v1, . . . , vn) = f (v0, v1, . . . , vn) ,∀ (v1, . . . , vn) ∈
V I . Then observe that range (fv0) =

{
f (v0, v−0) : v−0 ∈ V I

}
.

Definition 6 A voting rule f is dictatorial when not binary if there

exist functions χ : V0 → I and ψ : I × R → V such that for all v =

(v0, v1, . . . , vi, . . . , vn) ∈ V̄ , i ∈ I, and R ∈ R,

1.
(
|range (fv0)| = 2 and ψ (i, R) = vi and v ∈ Pivotal Eventfi (2)

)
⇒

f (v) = ĉ (range (fv0) , R) .

2. (|range (fv0)| > 2 and ψ (i, R) = vi and χ (v0) = i)⇒
f (v) = ĉ (range (fv0) , R).

To understand this definition, observe first that ψ is similar to the interpre-

tations φi in Definition 3. ψ (i, R) = vi can be interpreted to mean that vote

vi is interpreted as a claim that i’s preference is R. The definition says that

when the “tie-breaker” selects a vote v0, there are two possibilities: either

the election is essentially binary conditional on v0 (only two winning candi-

dates are possible conditional on v0), in which case the election is essentially

a monotonic binary election conditional on v0; or, conditional on v0, the elec-

tion is essentially a dictatorship, with the dictator conditional on v0 being

χ (v0). There are various subtleties associated with this definition, which I

discuss in a footnote.30 Using the Gibbard Satterthwaite theorem, we obtain

the following result.

30This footnote discusses a few subtleties associated with Definition 6. First, note
that ψ (R, i) does not depend on v0, so that votes must have the same interpretations
independently of the tie breaker v0. Observe next that as in the case of Definition 3,
not all votes vi need have an interpretation as a preference Ri; on top of the votes with
interpretations, there can be some additional votes without interpretations. This means
that the dictator i = χ (v0), while she can get her preferred outcome by using vote ψ (i, Ri)
when her preference is Ri, she may also have the option to cede her power by using a vote
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Proposition 10 It f has a monotonic interpretation, then f is dictatorial

when not binary.

Interestingly the converse of this result does not hold. That is, there exist

voting rules f that are dictatorial when not binary, but that are not mono-

tonic. The appendix provides such a counterexample.

I now provide a theorem that highlights the failure of pivotality to mea-

sure voting power in multicandidate elections.

Theorem 4 Let σ = (f, µ), and assume that for all v ∈ V̄ , µ (v) > 0.

1. If f is not dictatorial when not binary, then there exists i ∈ I such that

Mi (σ) ≺∗
∑
k

Pivi (k;σ) k.

2. If f does not have a monotonic interpretation for i, then there exists

a voting rule f ′ such that for all µ′, (f ′, µ′) ≺piv
i (f, µ) but (f, µ) ≺◦i

(f ′, µ′).

Part 1 of the theorem says that whenever an election is non-trivially non-

binary – in the sense that there is a positive probability that the rule’s

random input v0 is such that conditional on v0, three candidates may win

and no voter has the dictatorial power to determine the winner – there will

be a pivotality gap: The pivotality lottery will be a strict overestimate

of voting power for some voter i. Pivotality and voting power are distinct.

As the property of being dictatorial when not binary is very restrictive, this

shows that for reasonable multicandidate elections, pivotality will never equal

voting power.

vi with no interpretation. For example, consider a voting rule such that voter 1 is the
dictator who may choose any candidate she wishes, but she also has a vote vi that cedes
here power and allows voter 2 to become the dictator. This is compatible with the formal
definition of the voting rule f being dictatorial when not binary.

A second subtlety is that for f to satisfy the formal definition of being dictatorial
when not binary, it must be monotonic when binary. Finally, if f is dictatorial when not
binary, it is also possible that conditional on some v0, the winning candidate is determined
independently of the voters’ votes so that |range (fv0)| = 1.
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Part 2 of the theorem shows that not only does pivotality overestimate

voting power, but it does not even provide a good ordinal measure of voting

power: σ may supply more pivotality to i than σ′ while σ′ gives i more voting

power.31 This part is essentially a converse of Corollary 1.

The next section presents an example that illustrates why the theorem

holds.32 It also illustrates the connection to the Muller Satterthwaite and

Gibbard Satterthwaite theorems. It is striking that while the model assumes

nothing about incentives – indeed voters are not even formally assumed to

have preferences – limits due to incentives – the Muller Satterthwaite and

Gibbard Satterthwaite theorems – translate into limits on voting power.

4.5.2 An Illustration of the Theorem

The illustration that pivotality overestimates voting power compares two

situations.
Situation A: An election

Ann participates in a plurality voting election in which
• With probability .1, in votes of other voters, candidates 1 and 2 are tied.

• With probability .1, in votes of other voters, candidates 1 and 3 are tied.

• With probability .1, in votes of other voters, candidates 2 and 3 are tied.

• With probability .7, the winner does not depend on Ann’s vote.

In this election, Ann must submit a vote for one of the three candidates.

When she submits her vote, Ann does not know which candidates the election

will come down to.
Situation B: A pivotality lottery

Ann participates in the pivotality lottery corresponding to Situation A:
• With probability .1, Ann is offered a choice between candidates 1 and 2.

• With probability .1, Ann is offered a choice between candidates 1 and 3.

• With probability .1, Ann is offered a choice between candidates 2 and 3.

• With probability .7, a candidate is installed and Ann has no choice.

This formulation of the pivotality lottery distinguishes the events of be-

ing pivotal over different pairs of candidates, but as shown by Proposition

31Observe that while the the antecedent in part 2 of the theorem is that f does not
have a monotonic interpretation, it follows from Proposition 10 that part 2 would continue
to hold if the antecedent were instead that f is not dictatorial when not binary.

32The section illustrates part 1 of the theorem, but as the proof of the theorem shows,
the two parts are closely related.
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5, Situation B is equivalent to the pivotality lottery
∑

k Pivi
(
k;σA

)
k =

(.7× 1) + (.3× 2) corresponding to σA, where σA is the election in Situation

A above.

The key difference between Situation A and Situation B is that in Sit-

uation A, Ann must vote before knowing who the election comes down to,

whereas in Situation B, Ann has the opportunity to make her choice after

it is determined who the election comes down to. In Situation A, Ann votes

simultaneously with all other voters. In Situation B, it is as if Ann votes

last, knowing how all other votes have been cast.

Intuitively, Ann has more power in Situation B than in Situation A. If

Ann votes for candidate 1, then Ann’s vote will make the difference if the

election comes down to 1 and 2 or to 1 and 3, but Ann will effectively have no

influence if the election comes down to 2 and 3. Still, Ann’s vote is pivotal if

there is a tie between 2 and 3 for first place (so that the tie-breaker settles the

election): Had Ann voted for 2 or 3, whichever of the two she had voted for

would have won, but, at the same time, the outcome in this case is the same

as if Ann had not participated in the election. So while Ann is pivotal when

the election comes down to 2 or 3, her actual vote for 1 has no influence. And

this circumstance is unavoidable, given the rules of the election: Whichever

candidate c Ann votes for, she will have no influence if the election comes

down to the other two candidates.

The above discussion clearly shows why Ann’s pivotality overstates her

voting power in the election. In contrast, in situation B, the pivotality lottery

corresponding to the election, Ann can always make full use of her pivotality.

Whenever Ann is pivotal among a collection of candidates, she is told who she

is pivotal among, and she may then simply choose among these candidates.

This allows us to see the relevance of the Gibbard Satterthwaite theorem

for Theorem 4. Suppose that instead of participating in the election, Ann

were allowed to submit a preference Ri, and whenever Ann would have been

pivotal over a collection S of candidates, Ann’s top choice in S according toRi

is determined to be the winner (and if Ann would not have been pivotal, the

election proceeds as if Ann had submitted an ordinary vote to the election).

36



This would be very much like having the opportunity to vote last.33

The ability to effectively submit a preference that determines the out-

come as described above is essentially equivalent to the voting rule’s having

a strategyproof interpretation, which by the Muller Satterthwaite theorem,

is equivalent to the rule’s having a monotonic interpretation. It is also equiv-

alent to fully realizing one’s pivotality. But by the Gibbard Satterthwaite

theorem, it is in general impossible for the voting rule be such that it has

a strategyproof interpretation for every voter at once. In other words, it is

impossible for everyone to effectively move last, knowing how others have

moved. But because not everyone’s opportunities can be given a strate-

gyproof interpretation – not everyone can effectively vote last – not everyone

can fully realize their pivotality. This explains Theorem 4.

Observe that in the above example, the probability of being pivotal over

more than two candidates is zero: Pivi
(
k;σA

)
= 0 for k ≥ 3. Among

such elections, Pivi (2;σ) measures pivotality. Yet if σB is an election corre-

sponding to Situation B in which Ann effectively moves last by submitting a

preference Ri as described in the paragraph before the preceding one,34 then

Pivi
(
2;σA

)
= Pivi

(
2;σB

)
but Ann has more voting power in σB than in σA.

So in mutlicandidate elections, the problem for pivotality as a measure does

not arise because a voter may be pivotal over more than two candidates;

it arises because a voter may not know over which candidates she will be

33There is a subtle point here: Submitting a preference that determines the outcome as
described above is not exactly like being able to choose last. Consider Situation B above.
Suppose that if one were to move last, one would adopt the following strategy: if the
choice comes down to 1 and 2, choose 1; if the choice comes down to 2 and 3, choose 2; if
the choice comes down to 1 and 3, choose 3. There is no preference Ri such that choosing
the top ranked element from {1, 2} , {2, 3}, and {1, 3} leads respectively to choices of 1,
2, and 3. So in some sense, one would have more power if one were to choose last than
if one were to submit a preference to determine the choice on one’s behalf. However, the
symmetry order does not treat this additional freedom as significant: The symmetry order
treats the situation in which one submits a preference that “chooses last” on one’s behalf
and in which one really moves last as equivalent in terms of freedom. This is related to
the fact that the symmetry order satisfies the axioms for preference for flexibility (Dekel
et al. 2001) and so has a representation in terms of a collection of agents who value
flexibility (Sher 2018b); to value flexibility is not to value inconsistency.

34It is straightforward to extend this paper’s framework to dynamic elections so that
what I say here about σB also applies to the election in which Ann literally moves last.
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pivotal, and hence cannot take full advantage of her pivotality.35

5 Illustrations

This section illustrates the symmetric power order, focusing on techniques for

calculating whether one election provides more voting power than another.

In this section, it will be convenient to assume that there are n + 1 voters

instead of n, that n is divisible by 6 and that 1 ≤ n ≤ 10, 000.

5.1 Plurality voting vs random dictatorship

The introduction explained that with two candidates, assuming that vot-

ers independently vote for each candidate with probability 1
2
, voters achieve

greater pivotality under majority voting than under random dictatorship.

Since both majority voting and random dictatorship are monotone binary

elections, pivotality measures voting power (Theorem 2). So, as in the tra-

ditional analysis, according to the symmetric power order, majority voting

provides voters with more voting power than random dictatorship.

Does the above result extend to more than two candidates? In this case

pivotality no longer measures voting power. Suppose there are three candi-

dates. Under random dictatorship, each voter is selected with probability 1
n+1

and then may select any candidate she wishes. Ordinarily, to fully specify an

election, we must specify voting behavior. However, in random dictatorship,

each voter’s electoral menu is independent of others’ voting behavior, so that

to compare random dictatorship to other elections, we can leave voting be-

havior unspecified. Under plurality voting, the candidate receiving the most

votes wins, and if there is a tie, it is broken randomly. Assume that each

voter votes for each candidate with probability 1
3

and votes are independent.

Let σr3 and σ3 be, respectively, random dictatorship and plurality voting with

three candidates.

35This is closely related to the problem of “spoiler candidates” where a voter would
like to express a preference for a noncompetitive candidate but only if the election is
not competitive; her problem is that she does not know whether the election will be
competitive.
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Observe that both random dictatorship and plurality voting are anony-

mous and neutral elections in the sense of Section 2.4. Because of anonymity,

individual i’s voting power order -◦i coincides with the average voting power

order -◦. Because of neutrality, to establish that voters have more voting

power under plurality voting than under random dictatorship, it is necessary

and sufficient to establish that every lottery in Mi (σ
r
3) is a convex combi-

nation of lotteries in Mi (σ3) (Proposition 1). It is worth noting that this

criterion would still be sufficient – but not necessary – if either of the elec-

tions were not neutral. As I show in the appendix:

Pivi (2;σ3) =
1

3n

3

n
2∑

k=n
3

+1

(
n

k, k, n− 2k

)
+ 3

n
2∑

k=n
3

+1

(
n

k, k − 1, n− 2k + 1

)
Pivi (3;σ3) =

1

3n

(
n

n
3
, n

3
, n

3

)
(15)

Let Φn := 1
2
Pivi (2;σ3) + Pivi (3;σ3). Representing a lottery by a column

` =
 `1

`2

`3

, where `c is the probability of candidate c for c = 1, 2, 3, we have

Mi (σ
r
3) =




n+3
3n+3
n

3n+3
n

3n+3

 ,


n

3n+3
n+3
3n+3
n

3n+3

 ,


n

3n+3
n

3n+3
n+3
3n+3




Mi (σ3) =




1+2Φn

3
1−Φn

3
1−Φn

3

 ,


1−Φn

3
1+2Φn

3
1−Φn

3

 ,


1−Φn

3
1−Φn

3
1+2Φn

3




(16)

These menus are derived in the appendix. A simple calculation shows that

αn


1+2Φn

3
1−Φn

3
1−Φn

3

+ αn


1−Φn

3
1+2Φn

3
1−Φn

3

+ (1− 2αn)


1−Φn

3
1−Φn

3
1+2Φn

3

 =


n

3n+3
n

3n+3
n+3
3n+3

, (17)

where αn = (1+n)Φn−1
3(1+n)Φn

. αn ≥ 0 ⇔ Φn ≥ 1
n+1

. Direct calculation shows that

Φn ≥ 1
n+1

for all n in the range we are considering. Moreover, it is immediate

that αn ≤ 1
3
. So 1 − 2αn ≥ 0. It follows that the left hand side of (17) is

a convex combination of lotteries in Mi (σ3). The right hand side of (17)

is a lottery in Mi (σ
r
3). Similar equations hold for the other two lotteries in
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Mi (σ
r). So σr -◦ σ; in other words, with three candidates, voters have more

voting power under plurality voting than under random dictatorship.

5.2 Majority voting vs random majority voting

Let random majority voting be the preferential voting system according to

which voters submit rankings of candidates (with no ties). The tie-breaker

selects each pair of candidates with equal probability. If the tie-breaker se-

lects candidates c1 and c2, then the submitted rankings are used to determine

votes for c1 or c2: A vote is submitted on voter i’s behalf for c1 if i ranked c1

above c2 and for c2 if i ranked c2 above c1. The voter who receives the most

votes wins, with ties broken randomly.

We would like to compare random majority voting to standard majority

voting with two fixed candidates. We consider this comparison formally here

in part because it will be useful for the comparison of Section 5.3 below. To

make the two elections comparable, let us model standard majority voting as

an election with m candidates (like random majority voting), but in which

there are only two votes, a vote for 1 and a vote for 2. We can assume

formally that C = {1, . . . ,m} while V = {1, 2}. Whichever of candidates 1

and 2 receives more votes wins.

Suppose that under random majority voting, each voter submits each

possible ranking with the same probability, namely, 1
m!

, whereas under stan-

dard majority voting, each candidate submits each of the two votes, 1 and 2,

with probability 1
2
. In both cases, votes are independent. Let σ̂m be random

majority voting and σ2 be standard majority voting.

There are several ways of seeing that majority voting and random majorty

voting are equivalent in terms of voting power. Here is one way. Both stan-

dard majority voting and random majority voting are monotonic. Therefore

by Theorem 3, pivotality measures voting power in both of these elections.36

In both elections it is only possible to be pivotal over two candidates. So, for

both of these elections, voting power is measured by Pivi (2;σ). In standard

36Observe that Theorem 4 does not claim that in σ̂m, pivotality is a strict overestimate
of voting power because conditional on any “tie-breaker” v0 – which is a pair of candidates
c1 and c2 – only two candidates can win.
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majority voting, each voter is pivotal with probability 1
2n

(
n
n
2

)
. In random

majority voting, given any pair of candidates c1 and c2, conditional on the

tie-breaker selecting c1 and c2, voter i is pivotal with probability 1
2n

(
n
n
2

)
. So

overall, voter i is pivotal with probability 1
2n

(
n
n
2

)
. So random standard ma-

jority voting and random majority voting are equivalent in voting power.

5.3 Majority voting vs plurality voting

I now compare majority voting with two candidates – the election σ2 defined

in Section 5.2 – to plurality voting with three candidates – σ3 defined in

Section 5.1. Recall that σ2 and σ3 assume symmetric behavior toward the

candidates on the ballot. The substantive question is: Does adding candi-

dates increase voting power?

Recall that Pivi (2;σ2) = 1
2n

(
n
n
2

)
and that Pivi (2;σ3) and Pivi (3;σ3) are

given by (15). Direct calculation establishes that Pivi (2;σ2) ≤ Pivi (2;σ3) +

Pivi (3;σ3). Moreover, under σ3, it is possible to be pivotal for either two or

three candidates, whereas under σ2, it is only possible to be pivotal over two

candidates. So one is both more likely to be pivotal under σ3, and when one

is pivotal under σ3, one may be pivotal over a greater number of candidates.

It follows that σ2 ≺piv
i σ3. So if pivotality measured voting power, σ3 would

provide more voting power than σ2. However, because σ3 does not have

a monotonic interpretation, pivotality does not measure voting power with

regard to these elections (Theorem 3), so we must appeal to the symmetric

power order.

Proposition 1 tells us that the comparisons of voting power are especially

simple for neutral elections. Unfortunately, when m = 3, σ2 is not neutral,

because candidates 1 and 2 are treated differently from 3: 3 is not on the

ballot, and so cannot win. However σ̂3 – random majority voting – is neutral

when m = 3, and we have seen in the previous section that σ2 ∼◦ σ̂3. So

comparing σ2 and σ3 is equivalent to comparing σ̂3 and σ3. Proposition 1

now tells us that comparing σ̂3 and σ3 is equivalent to checking whether one

of co (Mi (σ̂3)) and co (Mi (σ3)) is contained in the other, and if neither is

contained in the other, the two are incomparable.
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Let U = RC be the set of utility functions on candidates u = (u (c) : c ∈ C).

For any utility function u and lottery `, let u · ` =
∑

c∈C u (c) `c be the ex-

pected utility of ` for utility function u. The following corollary follows

immediately from Proposition 1 using the separating hyperplane theorem.

Corollary 3 Let σ and σ′ be neutral elections. Then,

σ -◦i σ
′ ⇔ ∀u ∈ U,max`∈Mi(σ) u · ` ≤ max`∈Mi(σ′) u · `.

This corollary is remarkable because it gives a utilitarian interpretation to

voting power for neutral elections.37 To apply the corollary to our question,

consider two agents, Ann and Bob. Ann has a utility function on candidates

ua given by ua (1) = 1, ua (2) = ua (3) = 0. Ann wants to promote 1’s victory,

and if one does not win, she does not care who does. Bob’s utility function is

ub given by ub (1) = ub (2) = 1, ub (3) = 0. Bob wants to prevent 3’s victory.

He does not care who wins if 3 loses.

We now calculate Ann’s indirect expected utility Va (σ̂3) from having

access to the menu Mi (σ̂3), defined by Va (σ̂3) = max`∈Mi(σ̂3) ua · `. Va (σ̂3) is

what Ann’s expected utility would be if she were to participate in σ̂3, taking

voter i’s role. Note that we are not assuming that Ann literally participates

in the election. Ann is a hypothetical agent; she is not agent i, and her

behavior is not governed by µi. We simply imagine as a thought experiment

that Ann may vote however she wishes in place of i, and everyone else’s

behavior is held fixed at µ−i. If Ann were to participate in σ̂3, she would

submit a ranking with 1 on top. If the tie-breaker selects candidates 2 and

3 to participate in the election, Ann’s utility is automatically 0. If the tie-

breaker selects either 1 and 2 or 1 and 3 to participate in the election, then

Ann’s expected utility is slightly greater than 1
2

because – if say 1 and 2 are

selected – each wins with probability 1
2

when Ann is not pivotal and when

Ann is pivotal, which happens with probability 1
2n

(
n
n
2

)
, 1 wins, and Ann gets a

utility of 1. Using these facts, Va (σ̂3) = 1
3

+ 1
3
Pivi (2;σ2) (see the appendix).

Making similar calculations for both Ann and Bob for both elections, we

37This connects the analysis to the literature on utilitarian assessment of voting rules
(Beisbart, Bovens and Hartmann 2005, Barbera and Jackson 2006, Azrieli and Kim 2014).
As explained in Section 5.4, purely utilitarian considerations cannot capture voting power.
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attain Va (σ3) = 1
3

+ 1
3
Pivi (2;σ3) + 2

3
Pivi (3;σ3) , Vb (σ̂3) = 2

3
+ 1

3
Pivi (2;σ2) ,

and Vb (σ3) = 2
3

+ 1
2

[
1
3
Pivi (2;σ3) + 2

3
Pivi (3;σ3)

]
. It follows that

Va (σ̂3) ≤ Va (σ3)⇔ Pivi (2;σ2) ≤ Pivi (2;σ3) + 2Pivi (3;σ3)

Vb (σ̂3) ≤ Vb (σ3)⇔ Pivi (2;σ2) ≤ 1

2
[Pivi (2;σ3) + 2Pivi (3;σ3)]

Direct calculation shows that Va (σ3) > Va (σ̂3) and Vb (σ3) < Vb (σ̂3) for all n

in the range we are considering. In other words, if your goal were to promote

a single candidate, or in other words, bring it about that a single candidate

wins, you would prefer plurality to random majority voting, and if your goal

were to prevent a single candidate from winning, you would prefer random

majority voting. It follows from Corollary 3 that random majority voting

and plurality voting are unordered by the symmetric power order, and for

good reason: plurality voting gives you more power to cause someone to win

and random majority voting gives you more power to prevent someone from

winning. Since σ2 ∼∗ σ̂3, it follows that majority voting and plurality voting

are also unordered. So while pivotality orders majority voting with two

candidates and plurality voting with three candidates, and prefers plurality

voting, the two elections are unordered in voting power.

5.4 A final lesson

Let us generalize a little from the preceding example. Call a utility function

u ∈ U a justification for σ′ over σ if max`∈Mi(σ) u · ` ≤ max`∈Mi(σ′) u · `.
For any permutation π ∈ Π of candidates in C (see Section 2.3), let uπ ∈ U
be the utility function defined by uπ (c) = u (π (c)) for all c ∈ C. uπ is a

utility function that, relative to u, interchanges the utilities of the candidates

according to π. Call a justification u for σ′ over σ impartial if for all

permutations π, uπ is also a justification for σ′ over σ. We refer to such a

justification as impartial because it does not treat one candidate differently

than any other candidate. A justification is partial if it is not impartial.

Observation 1 For neutral elections, every justification is an impartial jus-

tification.
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For example, when comparing σ3 and σ̂3 both of the justifications of pro-

moting and of preventing a candidate were impartial. Viewed in this light,

Corollary 3 says that whenever there is an impartial justification for σ′ over

σ, σ′ 6≺◦i σ. An impartial justification for σ′ over σ – one in terms of a goal

that is not specific to a given candidate but to what one can achieve were

one to favor any candidate – is a good reason not to rank σ over σ′ in voting

power, and so provides an argument against refining the symmetric power

order to make more elections comparable.

In contrast to Observation 1, when considering non-neutral elections, a

partial justification for σ′ over σ is consistent with the possibility that σ pro-

vides more voting power than σ′. A partial justification refers to a particular

candidate and so may prefer an election because it favors that candidate

rather than because it grants a certain power to the voter. For example, if

u ranks candidate 1 highest, then u is a justification for the rigged election

according to which 1 wins independently of voting over any other election.

Clearly the rigged election gives each voter no voting power.38 Another way

of stating the point is that if the word “neutral” were taken out of Corollary

3, the corollary would cease to be true.

The question then arises as to whether it is possible to extend the notion

of an impartial justification to non-neutral elections and derive an analog of

Corollary 3 for all elections, neutral or non-neutral? The answer is yes.

Proposition 11 For any elections σ and σ′,

σ -◦i σ
′ ⇔ 1

m!

∑
π∈Π

max
`∈Mi(σ)

uπ · ` ≤ 1

m!

∑
π∈Π

max
`∈Mi(σ′)

uπ · `, ∀u ∈ U (18)

The expression
∑

π∈Π max`∈Mi(σ) u
π · ` gives your expected utility from par-

ticipating in election σ behind a veil of ignorance in which you forget which

utility you assign to which candidate, assuming that when you vote you will

no longer be behind the veil. This means that the symmetric power order

links voting power to expected utility with a twist. It is not the expected

utility of an actual voter, but of a hypothetical voter, who asks, “having

38This also shows why utilitarian evaluation of elections, without the qualification of
impartiality, cannot capture voting power.
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not yet formed my opinions on candidates, which election would I prefer to

participate in, assuming I form those opinions before I vote?” Election σ′ al-

lows more voting power than election σ precisely when this sort of impartial

reflection unambiguously favors σ′.

6 Conclusion

This paper has presented a new approach to voting power, founded in free-

dom of choice. The ideal of popular control is fundamental to democracy.

However, it is difficult to formalize popular control and to evaluate compet-

ing voting institutions in terms of this ideal. Popular control is distinct from

agreement. We can agree with the outcome of an election even if we had

no influence in shaping it. The voting power order presented here measures

the control that a voter has over electoral outcomes and it allows us to as-

sess whether one election is better than another in terms of the control it

provides.
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Appendix

Appendix A contains refinements of the symmetric power order and Appendix B contains proofs
of theorems and technical details.

A Alternative voting power orders

This section presents a coarsening and some refinements of the symmetry order -∗. The motivation
for introducing these orders was discussed in Section 2.4. Each one of these alternative orders - is
an ordering on M , the set of menus, or in other words, the set of closed subsets of ∆ (C). Each of
these orders can be substituted for -∗ in (6) to define an alternative voting power order.

First define the convex hull order -co by M -co M ′ ⇔ co (M) ⊆ co (M ′). -co is a coars-
ening of -∗. -co fails to satisfy the neutrality axiom. However, Proposition 1 implies that the
voting power order induced by the convex hull order agrees with the symmetric power order on all
neutral elections. For non-neutral elections, the convex hull order compares fewer elections than
the symmetric power order.

Next I parameterize the set of all refinements of -∗ that satisfy the freedom axioms. Let
U = RC be the set of all utility functions u = (u (c) : c ∈ C) on C. For any utility function
u ∈ U and permutation π ∈ Π of candidates in C, let uπ ∈ U be the utility function defined
by uπ (c) = u (π (c)) for all c ∈ C. For any subset E of U and permutation π ∈ Π, define
Eπ = {uπ : u ∈ E}. A probability measure p on U is symmetric if for all measurable E ⊆ U and
all π ∈ Π, p (E) = p (Eπ). Let ∆∗sym (U) be the set of symmetric probability measures on U with
compact support. Recall that for any u ∈ U and ` = (`c : c ∈ C) ∈ ∆ (C), u · ` =

∑
c∈C u (c) `c.

For any P ⊆ ∆∗sym (U), define -P by

M -P M ′ ⇔
(∫

U
max
`∈M

(u · `) dp ≤
∫
U

max
`∈M ′

(u · `) dp,∀p ∈ P
)
.

Such rankings have an interpretation in terms of an agent who has ex ante uncertainty about
which candidates she will prefer when she votes and hence values flexibility (Dekel, Lipman and
Rustichini 2001) and has symmetric uncertainty about which candidates will be desirable at the ex
ante stage (Sher 2018). See the preceding papers for an elaboration of this interpretation. It follows
from results in Sher (2018) that

{
-P : P ⊆ ∆∗sym (U) , P 6= ∅

}
is precisely the set of refinements of

-∗ that satisfy the freedom axioms. Because orders -P satisfy the freedom axioms, many of the
properties of the symmetric power order are shared by voting power orders induced by orders of
the form -P . For example, Theorem 2 holds for any voting power order defined by a refinement of
this form.

An advantage of the orders -P is that they can compare more elections than -∗. However,
there is a question of how these additional comparisons are to be justified. Section 5.4 suggests a
barrier – not necessarily insurmountable – to justifying them. At one extreme, we may want to
our voting power order to be a complete order and hence representable by a real valued voting
power index. Such an order could compare every pair of elections. We accomplish this by setting
P = {p}. We denote such orders by -p. A few special cases are worth discussing. Consider -p for
p ∈ ∆∗sym (U) such that for some u ∈ U , p puts probability 1

m! on uπ for each π ∈ Π. This leads to an
ordering, which we may denote -u, that is closely related to the generalized notion of an impartial
justification associated with Proposition 11. One interesting case arises for the utility function
u defined by u (c) = c for c = 1, . . . ,m. This utility function ranks the candidates and treats
successive candidates in the ranking as being equidistant. Because each uπ is equiprobable under
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p, this ranking embodies implicit ex ante uncertainty about how the candidates will be ranked, but
once ranked, each pair of successive candidates will be separated by the same distance. Another
interesting class of cases arises by selecting the utility function u to be uk defined by uk (c) = 1
for c = 1, . . . , k and uk (c) = 0 for c = k + 1, . . . ,m. We can denote the corresponding order by
-k. Elections that rank highly with respect to -k are elections that are desirable if one’s goal is to
bring it about that some candidate in a set S of size k wins (when there are m total candidates).
Special cases occur when k = 1, in which case highly ranked elections are those that are effective
with regard to the goal of promoting a singe candidate, and when k = m − 1, for which highly
ranked elections are those are effective with regard to preventing a singe candidate from winning.
The goals of promoting and preventing were discussed in Sections 5.3-5.4.

B Proofs of theorems

Theorem 1

The proof is in Sher (2018), which is available at SRRN at https://ssrn.com/abstract=2652913.

Proposition 1

If σ is neutral, then Mi (σ) = [Mi (σ)]π. So 1
m!

∑
π∈Π [Mi (σ)]π = 1

m!

∑
π∈ΠMi (σ) ⊆ co [Mi (σ)].

So, using (4), S (M) = co
[

1
m!

∑
π∈Π [Mi (σ)]π

]
= co [Mi (σ)]. It follows that if both σ and σ′

are neutral, then by (6) and (5), σ -◦i σ
′ ⇔ Mi (σ) -∗ Mi (σ′) ⇔ S (Mi (σ)) ⊆ S (Mi (σ′)) ⇔

co [Mi (σ)] ⊆ co [Mi (σ′)]. Observe finally that co [Mi (σ)] ⊆ co [Mi (σ′)] ⇔ Mi (σ) ⊆ co [Mi (σ′)].
This completes the proof.

Observe that the result only requires the assumption that σ and σ′ are neutral for i.

Theorem 2

Here I present a different proof than the one that was sketched in the text. The reason is that the
proof below appeals directly to the freedom axioms and thus applies not only to the symmetric
power order but to any voting power order that is induced by a refinement of -∗ that satisfies the
freedom axioms. It thus also establishes that any refinement of the symmetry order that satisfies
the freedom axioms coincides with pivotality on monotone binary elections.

Recall that in a monotone binary election the vote set is V = {1, 2} and that δj is the degenerate
lottery that puts probability 1 on candidate j. We have

Mi (σ) = {`i (1 |σ ) , `i (2 |σ )} = {[`i (1 |σ )]1 δ1 + [`i (1 |σ )]2 δ2, [`i (2 |σ )]1 δ1 + [`i (2 |σ )]2 δ2}
= [`i (2 |σ )]1 {δ1}+ [`i (1 |σ )]2 {δ2}+ ([`i (2 |σ )]2 − [`i (1 |σ )]2) {δ1, δ2}
∼∗([`i (2 |σ )]1 + [`i (1 |σ )]2) {δ1}+ ([`i (2 |σ )]2 − [`i (1 |σ )]2) {δ1, δ2}
= [1− ([`i (2 |σ )]2 − [`i (1 |σ )]2)] {δ1}+ ([`i (2 |σ )]2 − [`i (1 |σ )]2) {δ1, δ2}

(B.1)

For the third equality, observe that monotonicity of f and the fact that vote probabilities are
independent across voters imply that [`i (2 |σ )]2− [`i (1 |σ )]2 ≥ 0. The indifference follows from the
fact that all singleton menus are indifferent according to the symmetry order (see Proposition 4
of Sher (2018)) and the independence axiom. Let 1 [·] be the indicator function such that for any
condition ϕ, 1 [ϕ] = 1 if ϕ is true, and 1 [ϕ] = 0 if ϕ is false. Then

Pivi (σ) =
∑

v−i∈V−i

1 [f (1, v−i) 6= f (2, v−i)]µ−i (v−i)
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=
∑

v−i∈V−i

(1 [f (2, v−i) = 2]− 1 [f (1, v−i) = 1])µ−i (v−i)

= [` (2 |σ−i )]2 − [`2 (1 |σ−i )]2 ,

where again the second equality uses the monotonicity of f . It follows that

Pivi(σ) ≤ Pivi(σ
′)⇔ [`i (2 |σ )]2 − [`i (1 |σ )]2 ≤ [`i (2 |σ )]2 − [`i (1 |σ )]2
⇔ [1− ([`i (2 |σ )]2 − [`i (1 |σ )]2)] {δ1}+ ([`i (2 |σ )]2 − [`i (1 |σ )]2){δ1, δ2}
-∗
[
1−

([
`i
(
2
∣∣σ′ )]

2
−
[
`i
(
1
∣∣σ′ )]

2

)]
{δ1}

+ (
[
`i
(
2
∣∣σ′ )]

2
−
[
`i
(
1
∣∣σ′ )]

2
){δ1, δ2}

⇔Mi(σ) -∗ Mi(σ
′)⇔ σ -◦i σ

′.

(B.2)

where the second equivalence follows from the fact that the symmetry order strictly prefers all menus
that are not singletons to all singleton menus (Proposition 4 of Sher (2018)) and the independence
axiom (Section 2.3.1), and the last equivalence follows from (B.1). �

Finally, I present two orders - and -′ on M , each of which violate only one of the freedom
axioms but which induce voting power orders for which Theorem 2 fails. As we consider the binary
case, we can represent a lottery by the probability it gives to candidate 2. Thus M reduces to the
set of all closed subsets of [0, 1]. First consider - represented by the function

g (M) = max {max {`, 1− `} : ` ∈M} , ∀M ⊆ [0, 1] ,M closed.

where, above ` is the probability assigned to candidate 2. - satisfies all of the freedom axioms
except independence. - prefers a monotonic election with electoral menu {.5, .9} to a monotonic
election with electoral menu {.2, .7}, even though the latter yields a higher pivotality.

Next consider the preference -′ represented by

h (M) = max {` : ` ∈M} , ∀M ⊆ [0, 1] ,M closed.

This preference satisfies all freedom axioms except neutrality. It prefers an election in which
candidate 2 wins for sure – so that pivotality is zero – to majority voting.

Proposition 3

Recall that 1 [·] is the indicator function such that for any condition ϕ, 1 [ϕ] = 1 if ϕ is true, and
1 [ϕ] = 0 if ϕ is false.

First, I prove part 2. We have

Pivea
i (σ) =

∣∣∣∣∣∣
∑

v−i∈V−i

1 [f (2, v−i) = 2]µ−i (v−i)−
∑

v−i∈V−i

1 [f (1, v−i) = 2]µ−i (v−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

v−i∈V−i

(1 [f (2, v−i) = 2]− 1 [f (1, v−i) = 2])µ−i (v−i)

∣∣∣∣∣∣
≤

∑
v−i∈V−i

|1 [f (2, v−i) = 2]− 1 [f (1, v−i) = 2]|µ−i (v−i)

=
∑

v−i∈V−i

1 [f (1, v−i) 6= f (2, v−i)]µ−i (v−i)

= Pivi (σ) ,

(B.3)
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where the inequality is an instance of the triangle inequality. The election σ for which Pivi (σ) = 1
but Pivea

i (σ) = 1 is the matching pennies election (see Section 3.2). This establishes part 2.
Part 1 follows from the fact that for monotone voting rules,

1 [f (2, v−i) = 2]− 1 [f (1, v−i) = 2] ≥ 0,

so that the inequality in (B.3) becomes an equality.
I now prove part 3. A derivation similar to (B.1) shows that for all σ,

Mi (σ) ∼∗
[
1−

(
max

vi∈{1,2}
[`i (vi |σ )]2 − min

vi∈{1,2}
[`i (vi |σ )]2

)]
{δ1}

+

(
max

vi∈{1,2}
[`i (vi |σ )]2 − min

vi∈{1,2}
[`i (vi |σ )]2

)
{δ1, δ2}

(B.4)

Next, observe that

Pivea
i (σ) = max

vi∈{1,2}

∑
v−i∈V−i

1 [f (vi, v−i) = 2]µ−i (v−i)− min
vi∈{1,2}

∑
v−i∈V−i

1 [f (vi, v−i) = 2]µ−i (v−i)

= max
vi∈{1,2}

[`i (vi |σ )]2 − min
vi∈{1,2}

[`i (vi |σ )]2 .

(B.5)

Part 3 of the proposition now follow from (B.4) and (B.5), using a derivation similar to (B.2). �

Proposition 4

First assume that Pivi (2;σ) < Pivi (2;σ′). It then follows, using the independence axiom and the
fact that 1 ≺∗ 2 (which follows from Proposition 4 of Sher (2018)) that

Pivi
(
1;σ′

)
1 + Pivi (2;σ) 2 +

(
Pivi

(
2;σ′

)
− Pivi (2;σ)

)
1

≺∗ Pivi
(
1;σ′

)
1 + Pivi (2;σ) 2 +

(
Pivi

(
2;σ′

)
− Pivi (2;σ)

)
2.

Regrouping the probabilities, the preceding inequality is equivalent to

Pivi (1;σ) 1 + Pivi (2;σ) 2 ≺∗ Pivi
(
σ′
)
1 + Pivi

(
2;σ′

)
2,

which, in turn, is equivalent to σ -piv
i σ′ in the binary case. A similar derivation shows that

Pivi (2;σ′) ≤ Pivi (2;σ) implies σ′ -piv
i σ. �

Proposition 5

Observe that for any nonempty subset S of C with |S| = k, there exists π ∈ Π such that Sπ = k.
The neutrality axiom therefore implies S ∼∗ k. Next observe that

L̂ σ
i =

∑
S⊆C,S 6=∅

Pivi (S;σ) S =
m∑
k=1

∑
S⊆C,|S|=k

Pivi (S;σ) S ∼∗
m∑
k=1

∑
S⊆C,|S|=k

Pivi (S;σ) k

∼∗
m∑
k=1

∑
S⊆C,|S|=k

Pivi (S;σ) co (k) =
m∑
k=1

 ∑
S⊆C,|S|=k

Pivi (S;σ)

 co (k)

B.2



=

m∑
k=1

Pivi (k;σ) co (k) ∼∗
m∑
k=1

Pivi (k;σ) k = L σ
i ,

where the first indifference follows from the neutrality axiom, and the second and third indifferences
follow from the independence axiom and the fact that for all menus M , M ∼∗ co (M). This latter
fact follows from definition of -∗ and the properties of the Minkowski sum. �

Proposition 6

I assume that m ≥ 3, because otherwise the result follows immediately from the freedom axioms.
Assume that

∣∣Pivi
(
2;σ′

)
− Pivi (2;σ)

∣∣ > (m− 1)

m∑
k=3

∣∣Pivi
(
k;σ′

)
− Pivi (k;σ)

∣∣ (B.6)

Let j ∈ {1, . . . ,m− 2}. Some algebra and the fact that
∑m

k=1 Pivi (k;σ′′) = 1 for all elections σ′′,
imply that

m−j∑
k=1

(
m− k
j

)(
Pivi

(
k;σ′

)
− Pivi (k;σ)

)
≤ 0 (B.7)

⇔
(
Pivi

(
2;σ′

)
− Pivi (2;σ)

)
≥

m∑
k=3

αjk
(
Pivi (k;σ)− Pivi

(
k;σ′

))
, (B.8)

where αjk =


(m−1

j )−(m−k
j )

(m−1
j )−(m−2

j )
if 3 ≤ k ≤ m− j,

(m−1
j )

(m−1
j )−(m−2

j )
if m− j + 1 ≤ k ≤ m,

for j ∈ {1, . . . ,m− 2}. Observe that for k

such that 3 ≤ k ≤ m− j, 0 <
(m−1

j )−(m−k
j )

(m−1
j )−(m−2

j )
<

(m−1
j )

(m−1
j )−(m−2

j )
= m−1

j . It follows that

0 ≤ αjk ≤ m− 1, ∀j ∈ {1, . . . ,m− 2} , ∀k ∈ {3, . . . ,m} . (B.9)

To complete the proof, it is sufficient to establish the following three facts

1. If Pivi (2;σ′) > Pivi (2;σ), then Pivi (1;σ) > Pivi (1;σ′) and σ ≺piv
i σ′.

2. If Pivi (2;σ′) = Pivi (2;σ), then Pivi (1;σ′) = Pivi (1;σ) and σ ∼piv
i σ′.

3. If Pivi (2;σ′) < Pivi (2;σ), then Pivi (1;σ) > Pivi (1;σ′) and σ′ ≺piv
i σ.

So first assume

Pivi
(
2;σ′

)
> Pivi (2;σ) . (B.10)

Because for all σ′′,
∑m

k=1 Pivi (k;σ′′) = 1, we have

Piv1

(
1;σ′

)
< Piv1 (1;σ)⇔ Pivi

(
2;σ′

)
− Pivi (2;σ) >

m∑
k=3

(
Pivi (k;σ)− Pivi

(
k;σ′

))
(B.11)
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(B.6) and (B.10) imply that the inequality on the left hand side of biconditional (B.11) holds. It
follows that Pivi (1;σ) > Pivi (1;σ′).1 Next observe that for j ∈ {1, . . . ,m− 2},

Pivi
(
2;σ′

)
− Pivi (2;σ) =

∣∣Pivi
(
2;σ′

)
− Pivi (2;σ)

∣∣ > (m− 1)
m∑
k=3

∣∣Pivi
(
k;σ′

)
− Pivi (k;σ)

∣∣
≥

m∑
k=3

αjk
∣∣Pivi

(
k;σ′

)
− Pivi (k;σ)

∣∣ ≥ m∑
k=3

αjk
(
Pivi

(
k;σ′

)
− Pivi (k;σ)

)
,

where the equality follows from (B.10), the first inequality follows from (B.6),and the second and
third inequalities follow from (B.9). This establishes the inequality in (B.8). Using the biconditional
in (B.7)-(B.8), we have now established the established the inequalities (B.7) for j ∈ {1, . . . ,m− 2} .
Note that if j = m − 1, the inequality (B.7) is equivalent to Pivi (1;σ) ≥ Pivi (1;σ′), which we
have established above. It now follows from the inequalities (B.7) and part 1 of Proposition 7 that
σ -piv

i σ′. We have now established statement 1 above. The proof of statement 3 is similar. For
statement 2, observe that if Pivi (2;σ′) = Pivi (2;σ), then (B.6) implies that Pivi (k;σ′) = Pivi (k;σ)
for k ∈ {3, . . . ,m}. It follows from the fact that for any election, the pivotality probabilities for
different k sum to 1, that Pivi (1;σ′) = Pivi (1;σ) as well. This establishes 2, and completes the
proof. �

Proposition 7

I first prove part 1.I start with some preliminaries. Recall that M , the set of menus, is the
set of all closed subsets of the set ∆ (C) of lotteries on C. Let U = RC be the set of all utility
functions u = (u (c) : c ∈ C) on C. Recall that for any u ∈ U and ` = (`c : c ∈ C) ∈ ∆ (C),
u · ` =

∑
c∈C u (c) `c. For any utility function u ∈ U and permutation of candidates π ∈ Π of

candidates on C, let uπ ∈ U be the utility function defined by uπ (c) = u (π (c)) for all c ∈ C. For
any subset E of U and permutation π ∈ Π, define Eπ = {uπ : u ∈ E}. A probability measure p
on U is symmetric if for all measurable E ⊆ U and all π ∈ Π, p (E) = p (Eπ). Let ∆∗sym (U)
be the set of symmetric probability measures on U with compact support. Let D = {δc : c ∈ C},
where recall that δc is the degenerate lottery that puts probability 1 on candidate c. Observe that
for any u ∈ U , u · δc = u (c). Let Md be the set of all nonempty subsets of D. Md is the set of
deterministic menus. Recall that for k = 1, . . . ,m, k = {δ1, . . . , δk}. So k ∈Md. Observe that
Md ⊆M .

Lemma B.1 Let W : Md → R. Define w : {1, . . . ,m} → R by

w (k) := W (k) for k = 1, . . . ,m (B.12)

Define ∆w (k) := w (k)− w (k − 1) for k = 2, . . . ,m and ∆w (1) := w (1) . Then

∃µ ∈ ∆∗sym (U) ,∀M ∈Md, W (M) =

∫
U

(
max
δc∈M

u · δc
)
µ(du) (B.13)

if and only if

k∑
j=0

(−1)k−j
(
k

j

)
∆w(m− j) ≥ 0, for k = 0, . . . ,m− 2. (B.14)

1Recall that we are assuming that m ≥ 3.
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Proof. Consider W : Md → R. A slight modification of Proposition 1 in Nehring (1999) shows
that2

∃µ ∈ ∆∗ (U) , ∀M ∈Md, W (M) =

∫
U

(
max
δc∈M

uc

)
µ(du) (B.15)

if and only if there exists λ = (λS : S ∈Md) ∈ RMd such that:

∀M ∈Md, W (M) =
∑

S∈Md:S∩M 6=∅

λS , and

∀S ∈Md \ {D} , λS ≥ 0.

(B.16)

Observe that the difference between (B.13) and (B.15) is that the former assumes that µ ∈ ∆∗sym (U),
whereas the latter only assumes that µ ∈ ∆∗ (U). It is not difficult to modify Nehring’s proof to
show that W satisfies (B.13) if and only if there exists a λ ∈ RMd that satisfies (B.16) and

∀S, T ∈Md, |S| = |T | ⇒ λS = λT . (B.17)

Define the function η : {1, . . . ,m} × {1, . . . ,m} → N by η(k, j) := | {S ⊆ D : |S| = j,k ∩ S 6= ∅} |.
In other words, η(k, j) is the number of sets of cardinality j that intersect k = {δ1, . . . , δk}. It
is easy to see that there exists λ ∈ RMd satisfying (B.16) and (B.17) if and only if there exists
λ = (λj : j = 1, . . . ,m) ∈ Rm satisfying:

w(k) =
n∑
j=1

η(k, j)λj ∀k ∈ {1, . . . ,m} ,

λj ≥ 0, ∀j ∈ {1, . . . ,m− 1} .

(B.18)

If for each k = 2, . . . ,m, we subtract the equation for k − 1 from the equation for k in (B.18), we
arrive at the system:

∆w (m− (k − 1)) =

k∑
j=1

(
k − 1

j − 1

)
λj , ∀k ∈ {1, . . . ,m} (B.19)

λj ≥ 0, ∀j ∈ {1, . . . ,m− 1} , (B.20)

To see this derivation, observe that η (m− (k − 1) , j)− η ((m− (k − 1))− 1, j) is equal to
(
k−1
j−1

)
if

j ≤ k, and is equal to 0 otherwise. This is because
{
δ1, . . . , δ(m−(k−1))−1

}
⊆
{
δ1, . . . δ(m−(k−1))

}
, so

any set that intersects
{
δ1, . . . , δ(m−(k−1))−1

}
also intersects

{
δ1, . . . δ(m−(k−1))

}
, and, when j ≤ k,

the sets of cardinality j that intersect
{
δ1, . . . , δ(m−(k−1))−1

}
but not

{
δ1, . . . , δ(m−(k−1))−1

}
are the

sets that contain δm−(k−1) and j−1 elements of the set
{
δ(m−(k−1))+1, δ(m−(k−1))+2, . . . , δm

}
, which

has cardinality k − 1; if j > k, there are no sets of cardinality j that intersect
{
δ1, . . . δ(m−(k−1))

}
but not

{
δ1, . . . , δ(m−(k−1))−1

}
.3 Likewise, adding the equalities corresponding to ∆w(1) through

∆v(k) in (B.19), we recover the equality corresponding to w(k) in (B.18). So the systems (B.18)
and (B.19-B.20) are equivalent.

2A Nehring proved the equivalence for probability measures µ with finite support. A slight modification of the
proof shows that the equivalence continues to hold when we consider measures with compact support (i.e., measures
in ∆∗ (U)).

3Given that we define ∆w(1) = w(1), it is easy to see that the equation for w(1) in (B.18) is the same as the
equation for ∆v(m− (m− 1)) in (B.19).
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Inverting the system (B.19) amounts to inverting a Pascal’s matrix (see Call and Velleman
(1993)). So we can invert the system invert the system (B.19) and attain

λk =
k∑
j=1

(−1)k−j
(
k − 1

j − 1

)
∆w(m− (j − 1)), k = 1, . . . ,m.

It follows that there is a solution to (B.19)-(B.20) if and only if:

k∑
j=1

(−1)k−j
(
k − 1

j − 1

)
∆w(m− (j − 1)) ≥ 0, for k = 1, . . . ,m− 1, (B.21)

However (B.21) is equivalent to (B.14). This completes the proof of the lemma. �
Recall that C = {1, . . . ,m}. We can represent a function w : C → R by a point w =

(w (k) : k ∈ C) ∈ Rm. Let W be the set of functions w ∈ Rm that satisfy (B.14).

Lemma B.2 Let w ∈ Rm be such that w (m) = 0. w satisfies (B.14) if and only if w satisfies

m−1∑
j=m−k

(−1)k−(m−j)+1

(
k

m− j

)
w (j) ≥ 0, for k = 1, . . . ,m− 1. (B.22)

Proof. We have

k∑
j=0

(−1)k−j
(
k

j

)
∆w(m− j) =

k∑
j=1

(−1)k−j
(
k

j

)
(w (m− j)− w (m− j − 1))

=

 k∑
j=1

[
(−1)k−k

(
k

j

)
− (−1)k−j+1

(
k

j − 1

)]
w (m− j)

− (−1)k−k
(
k

k

)
w (m− (k + 1))

=

 k∑
j=1

(−1)k−j
[(

k

j − 1

)
+

(
k

j

)]
w (m− j)

− (−1)k−k
(
k

k

)
w (m− (k + 1))

=

 k∑
j=1

(−1)k−j
(
k + 1

j

)w (m− j) + (−1)k−(k+1)

(
k + 1

k + 1

)
w (m− (k + 1))

=

k+1∑
j=1

(−1)k−j+1

(
k + 1

j

)
w (m− j) =

m−1∑
i=m−(k+1)

(−1)k−(m−i)
(
k + 1

m− i

)
w (i) ,

where the second equality used w (m) = 0. It follows that w satisfies (B.14) if and only if w satisfies

m−1∑
i=m−(k+1)

(−1)k−(m−i)
(
k + 1

m− i

)
w (i) for k = 0, 1, . . . ,m− 2

or equivalently if and only if w satisfies (B.22). �
A vector p = (pc : c = 1, . . . ,m) ∈ Rm is a probability vector if pc ≥ 0 for all c ∈ {1, . . . ,m}

and
∑m

c=1 pc = 1. Let P be the set of all probability vectors in Rm. (Formally, P is the same as
∆ (C), but the interpretation is different.) For any p ∈P, define Mp =

∑n
k=1 pkk.

Lemma B.3 ∀p, q ∈P, (Mp -∗ M q ⇔ ∀w ∈ W ,
∑m

k=1 (qk − pk)w (k) ≥ 0).
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For any and M ∈M and µ ∈ ∆∗ (U) , define W̃ : M ×∆∗ (U)→ R by

W̃ (M ;µ) =

∫
U

max
`∈M

(u · `) dµ (u) .

It is east to see that

W̃ (Mp;µ) =
m∑
k=1

W̃ (k;µ) pk, ∀p ∈P, ∀µ ∈ ∆∗ (U) (B.23)

It follows that

Mp -∗ M q ⇔ W̃ (Mp;µ) ≤ W̃ (M q;µ) , ∀µ ∈ ∆∗sym (U)

⇔
m∑
k=1

(qk − pk) W̃ (k;µ) , ∀µ ∈ ∆∗sym (U)

⇔
m∑
k=1

(qk − pk)w (k) ≥ 0, ∀w ∈ W ,

where the first biconditional follows from Theorem 1 of Sher (2018), the second follows from (B.23),
and the third from Lemma B.1. �

Lemma B.4 ∀p, q ∈P,
(
Mp -∗ M q ⇔

(∑m−j
k=1

(
m−k
j

)
(qk − pk) ≤ 0, for j = 1, . . . ,m− 1

))
.

By Lemma B.3, Mp -∗ M q is equivalent to

∀w ∈ Rm,
k∑
j=0

(−1)k−j
(
k

j

)
∆w(m− j) ≥ 0, for k = 0, . . . ,m− 2⇒

m∑
j=1

(pj − qj)w (j) ≥ 0 (B.24)

Suppose that w = (w (k) : k = 1, . . . ,m) is a solution to the set of inequalities in the antecedent
of (B.24). Then w′ = (w′ (k) : k = 1, . . . ,m) = (w (k)− w (m) : k = 1, . . . ,m) is also a solution to
these inequalities. Likewise w is a solution to the set of inequality in the consequent of (B.24) if
and only if w′ is a solution to this inequality. Therefore, in evaluating the above conditional, we
may restrict attention to w ∈ Rm with w (m) = 0 and (B.24) is equivalent to:

∀w ∈ Rm,
k∑
j=1

(−1)k−j
(
k

j

)
∆w(m− j) ≥ 0, for k = 1, . . . ,m− 2 and w (m) = 0

⇒
m−1∑
j=1

(pj − qj)w (j) ≥ 0.

(B.25)

By Lemma B.22, this is equivalent to

∀w ∈ Rm−1,

m−1∑
j=m−k

(−1)k−(m−j)+1

(
k

m− j

)
w (j) ≥ 0, for j = 1, . . . ,m− 1⇒

m−1∑
j=1

(pj − qj)w (j) ≥ 0.

(B.26)
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Note that we did not have to include w (m) = 0 in the other inequalities in the antecedent contain
w (m), and the inequality in the consequent does not contain w (m) either. By the theorem of the
alternative (B.22) holds if and only if there exists a solution x = (xk : k = 1, . . . ,m− 1) to

m−1∑
k=m−j

(−1)k−(m−j)+1

(
k

m− j

)
xk = (pj − qj) , for j = 1, . . . ,m− 1, (B.27)

xk ≥ 0, for k = 1, . . . ,m− 1. (B.28)

Using calculations very similar to the proof of Theorem 1 in Call and Velleman (1993), we invert
(B.27), we attain:

xk =
m−k∑
j=1

(
m− j
k

)
(pj − qj) , for k = 1, . . . ,m− 1

Thus, (B.27)-(B.27) has a solution if and only if
∑m−k

j=1

(
m−j
k

)
(pj − qj) ≥ 0 for k = 1, . . . ,m−1. We

have now established that this condition is equivalent to Mp -∗ M q, which establishes the result.
�

Observe finally that when we set q = Pivi (σ′) and p = Pivi (σ), Mp -∗ M q is equivalent to
σ -i σ′, and Lemma B.4 establishes part 1 of Proposition 7.

I now prove part 2. Let q = (q1, . . . , qm) = Pivi (σ′) and p = (q1, . . . , pm) = Pivi (σ). Suppose
that q first order stochastically dominates p. Then

j∑
i=1

(qi − pi) ≤ 0, for j = 1, . . . ,m− 1. (B.29)

By part 1, to establish that σ -∗ σ′, it is sufficient to establish

.

m−j∑
i=1

(
m− i
j

)
(qi − pi) ≤ 0, for j = 1, . . . ,m− 1. (B.30)

Choose j ∈ {1, . . . ,m− 1}. Using the fact that
(
j−1
j

)
= 0, it follows that

m−j∑
i=1

(
m− i
j

)
(qi − pi) =

m−j∑
i=1

[(
m− i
j

)
−
(
j − 1

j

)]
(qi − pi)

=

m−j∑
i=1

m−j∑
k=i

[(
m− k
j

)
−
(
m− k − 1

j

)]
(qi − pi) =

m−j∑
k=1

k∑
i=1

[(
m− k
j

)
−
(
m− k − 1

j

)]
(qi − pi)

=

m−j∑
k=1

[(
m− k
j

)
−
(
m− k − 1

j

)] k∑
i=1

(qi − pi) ≤ 0

where the inequality follows from (B.29) and the fact that
(
m−k
j

)
−
(
m−k−1

j

)
≥ 0. This establishes

(B.30), as was desired, and establishes part 2.
Now I prove part 3: Again let q = Pivi (σ′) and p = Pivi (σ). Suppose that q second order

stochastically dominates p. Then

j∑
i=1

i∑
k=1

(qk − pk) ≤ 0, for j = 1, . . . ,m− 1. (B.31)
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Observe that
∑j

i=1

∑i
k=1 (qk − pk) =

∑j
k=1

∑j
i=k (qk − pk) =

∑j
k=1 (j − k + 1) (qk − pk) . It follows

that (B.31) can equivalently be written as

j∑
i=1

(j − i+ 1) (qi − pi) ≤ 0, for j = 1, . . . , n− 1. (B.32)

Again, by part 1, to establish that σ -◦ σ′, it is sufficient to establish (B.30).
First observe that

m−1∑
i=1

(
m− i

1

)
(qi − pi) =

m−1∑
i=1

(m− i) (qi − pi) ≤ 0,

because the inequality coincides with (B.32) with j = m− 1.
Next consider j ∈ {2, . . . ,m− 1}. We appeal to the following combinatorial equality:4

m−i−1∑
k=j−1

(m− i− k)

(
k − 1

j − 2

)
=

(
m− i
j

)
for j = 2, . . . ,m− i. (B.33)

Using (B.33), we get

m−j∑
i=1

(
m− i
j

)
(qi − pi) =

m−j∑
i=1

m−i−1∑
k=j−1

(m− i− k)

(
k − 1

j − 2

)
(qi − pi)

=

m−2∑
k=j−1

m−k−1∑
i=1

(m− i− k)

(
k − 1

j − 2

)
(qi − pi) =

m−2∑
k=j−1

(
k − 1

j − 2

)m−k−1∑
i=1

(m− i− k) (qi − pi) ≤ 0,

where the inequality follows from the fact that it is a weighted sum on inequalities of the form
(B.32) with positive weights. This establishes (B.30), as was desired. This establishes part 3.

To proof that the converses of parts 2 and 3 fail is omitted, but is available upon request. �

Theorem 3

It follows from Proposition 5 that Theorem 3 is equivalent to the following proposition.

Proposition B.1 Let i ∈ I.

1. For all voting situations σ, Mi (σ) -∗
∑

S∈C Pivi (S;σ) S.

2. Let σ = (f, µ). Suppose that µj (vj) > 0 for all j ∈ I0 \ i and vj ∈ Vj. Then, Mi (σ) ∼∗∑
S∈C Pivi (S;σ) S if and only if f has a monotonic interpretation for i.

Given the above-stated equivalence, to establish Theorem 3, it is sufficient to establish Proposition
B.1. Therefore, in this appendix, I prove Proposition B.1.

Let C be the set of all nonempty subsets of C. Throughout the proof, I fix election σ and voter
i. Therefore to simplify notation, define λS = Pivi (S;σ) for S ∈ C . It follows from the definition

4(B.33) can be derived from the following equality in Knuth (1997, p. 59, equation (25)):
∑r

h=0

(
r−h
t

)(
s+h
u

)
=(

r+s+1
t+u+1

)
for all nonnegative integers t, r, s, and u. Setting t = 1, r = m − i − 1, s = 0, and u = j − 2, this equation

becomes
∑m−i−1

h=0 (m− i− 1 − h)
(

h
j−2

)
=
(
m−i
j

)
. Using the change of variables k − 1 = h, the equation becomes∑m−i

k=1 (m− i− k)
(
k−1
j−2

)
=
(
m−i
j

)
. Observing finally that (m− i− k)

(
k−1
j−2

)
= 0 except when j − 1 ≤ k ≤ m − i − 1,

we arrive at (B.33).
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of Pivi (S;σ) (see Section 4.1.4) that λS ≥ 0 for all S ∈ C and
∑

S∈C λS = 1. Define a menu
strategy to be a function ζ : C → ∆ (C) satisfying

[ζ (S)]c > 0⇒ c ∈ S, ∀S ∈ C ,∀c ∈ C, (B.34)

where [ζ (S)]c is the probability that the lottery ζ (S) assigns to c. We can think of ζ as function
that assigns to each nonempty subset S a lottery over S. Condition (B.34) says that we can indeed
think of ζ (S) as a lottery over S rather than over the larger set C. For each menu strategy ζ,
define the induced lottery `ζ ∈ ∆ (C) to be the lottery defined by `ζ =

∑
S∈C λSζ (S). Thus `ζ is

the distribution of outcomes induced by the compound lottery in which, first, each set S is selected
with probability λS , and then a candidate is selected from S according to the lottery ζ (S). Recall
that for any S ∈ C ,S = {δc : c ∈ S}, where δc is the degenerate lottery that puts probability 1 on
c.

Lemma B.5 For any menu strategy ζ, `ζ ∈ co
[∑

S∈C λSS
]
.

Proof. Consider a two player extensive form game with perfect information in which first player 1
selects a nonempty subset S of C, and then player 2 selects a candidate c ∈ S. The outcome of the
game is then c. Suppose that player 1 selects each set S with probability λS . The set

∑
S∈C λSS can

be interpreted as the set of distributions over outcomes that player 2 can generate in this game by
choosing a pure strategy. The set co

[∑
S∈C λSS

]
can then be interpreted as the set of distributions

over outcomes that player 2 can generate by selecting a mixed strategy. ζ can be interpreted as
a behavior strategy in this game, and `ζ as the distribution of outcomes that ζ generates. The
Lemma now follows from Kuhn’s theorem (Kuhn 1953), which asserts the equivalence of behavior
and mixed strategies in extensive form games with perfect recall. �

Lemma B.6 Mi (σ) ⊆ co
[∑

S∈C λSS
]
.

Proof. Choose ` ∈ Mi (σ). Then there exists vi ∈ V such that ` = `i (vi |σ ) (see Section

2.2). For each c ∈ C, define the event Votefi (vi, c) = {v−i ∈ V−i : f (vi, v−i) = c}. Let C+ :=
{S ∈ C : λS > 0}. Define menu strategy ζ by

[ζ (S)]c =
µ−i

(
Votefi (vi, c) ∩ Pivotal Eventfi (S)

)
µ−i

(
Pivotal Eventfi (S)

) , ∀S ∈ C+, ∀c ∈ C.

For S ∈ C \C+, define ([ζ (S)]c : c ∈ C) arbitrarily so that (B.34) is satisfied. It is easy to see that
ζ, defined in this way, satisfies (B.34). Observe that for any c ∈ C,

∑
S∈C

λS [ζ (S)]c =
∑
S∈C+

λS [ζ (S)]c =
∑
S∈C+

λS
µ−i

(
Votefi (vi, c) ∩ Pivotal Eventfi (S)

)
λS

=
∑
S∈C+

µ−i

(
Votefi (vi, c) ∩ Pivotal Eventfi (S)

)
= µ−i

(
Votefi (vi, c)

)
= [`i (vi |σ )]c = `c

So ` =
∑

S∈C λS [ζ (S)]. Lemma B.5 implies that ` ∈ co
[∑

S∈C λSS
]
. �

Lemma B.7 For all menus M,N ∈M , if M ⊆ co (N), then M -∗ N .
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Proof. This follows from (4) and (5) and the properties of the Minkowski sum. �
Lemmas B.6 and B.7 imply that Mi (σ) -∗

∑
S∈C λSS, establishing Part 1 of Proposition B.1.

I now prove part 2. To this end, assume that σ = (f, µ) is such that f has a monotonic
interpretation for i. It will be useful to define

B (f, v−i) = {f (vi, v−i) : vi ∈ Vi} . (B.35)

B (f, v−i) is the set of candidates whose election i can bring about by varying her vote, holding
fixed the votes v−i of other voters (including the tie-breaker). Next observe that we can interpret
RC as the set of utility function u = (u (c) : c ∈ C) on C. Consider any u ∈ RC . Let Rui ∈ R be
such that

cRui c
′ ⇒ u (c) ≥ u

(
c′
)
, ∀c, c′ ∈ C. (B.36)

Since f has a monotonic interpretation for i, it follows from Corollary 2 that there exists vui ∈ V
such that for all v−i ∈ V−i and c ∈ B (f, v−i), f (vui , v−i)R

ui
i c.

5 Hence,

∀v−i ∈ V−i,∀c ∈ B (f, v−i) , u (f (vui , v−i)) ≥ u (c) . (B.37)

A few more preliminaries are required. A selection function is a function h : C → C satisfying
h (S) ∈ S,∀S ∈ C . For any ` ∈ ∆ (C), let u · ` =

∑
c∈C u (c) `c.

Lemma B.8 For all ` ∈
∑

S∈C λSS, u · `i (vui |σ ) ≥ u · `.

Choose ` ∈
∑

S∈C λSS. There exists a selection function h such that ` =
∑

S∈C λSδh(S). Observe
that

u · ` = u ·
∑
S∈C

λSδh(S) = u ·
∑
S∈C

µ−i ({v−i ∈ V−i : B (f, v−i) = S}) δh(S)

= u ·
∑
S∈C

 ∑
{v−i∈V−i:B(f,v−i)=S}

µ−i (v−i)

 δh(S) = u ·
∑

v−i∈V−i

µ−i (v−i) δh(B(f,v−i))

=
∑

v−i∈V−i

µ−i (v−i)u (h (B (f, v−i)))

≤
∑

v−i∈V−i

µ−i (v−i)u (f (vui , v−i)) =
∑
c∈C

µ−i ({v−i ∈ V−i : f (vui , v−i) = c})u (c) = u · `i (vui |σ ) .

In the above derivation, the inequality follows from (B.37). This establishes the lemma. �
The following is an immediate consequence of Lemma B.8.6

Corollary B.1 If σ = (f, µ) is such that f has a monotonic interpretation for i, then for all
u ∈ RC , max {u · ` : ` ∈Mi (σ)} ≥ max

{
u · ` : ` ∈

∑
S∈C Pivi (S;σ) S

}
.

It follows from the separating hyperplane theorem that when f has a monotonic interpretation
for i, co

(∑
S∈C λSS

)
⊆ co (Mi (σ)). So

∑
S∈C λSS -∗ Mi (σ). It now follows from part 1 of

Proposition B.1, which has been established above, that if f has a monotonic interpretation for i,

5I here use the notation vui , rather than the more cumbersome notation v
Ru

i
i , which would be more parallel to

the notation in Corollary 2.
6We can use max rather than sup in the inequality in Corollary B.1 because

∑
S∈C Pivi (S;σ)S and Mi (σ) are

finite. Mi (σ) is finite because V is finite.
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then Mi (σ) ∼∗
∑

S∈C Pivi (S;σ) S. This establishes the right-to-left direction in the biconditional
in part 2.

To complete the proof, we must establish the other direction, that is, that if f does not have a
monotonic interpretation for i, then Mi (σ) ≺∗

∑m
k=1 Pivi (S;σ) S. To this end, assume that f does

not have a monotonic interpretation for i. Assume, moreover that µj (vj) > 0 for all j ∈ I0 \ i. It
follows that µ−i (v−i) > 0 for all v−i ∈ V−i. Since f does not have a monotonic interpretation for
i, Corollary 2 implies that there exists Ri ∈ R such that

∀vi ∈ V,∃v′i ∈ V,∃v−i ∈ V−i, f
(
v′i, v−i

)
Pif (vi, v−i) , (B.38)

where Pi is the asymmetric part of Ri. Now consider a utility function u ∈ RC that represents Ri
in the sense that

u (c) ≥ u
(
c′
)
⇔ cRic

′, ∀c, c′ ∈ C. (B.39)

Lemma B.9 If f does not have a monotonic interpretation for i, then

max {u · ` : ` ∈Mi (σ)} < max

{
u · ` : ` ∈

∑
S∈C

λSS

}
.

Proof. Choose ` ∈ Mi (σ). There exists v′i ∈ V such that ` = `i (v′i |σ ) (see Section 2.2). (B.38)
and (B.39) imply that there exists v−i such that

u
(
f
(
v′i, v−i

))
< max

c∈B(f,v−i)
u (c) . (B.40)

(For the definition of B (f, v−i), see (B.35) above.) Observe that

u · ` = u · `i
(
v′i |σ

)
=

∑
v−i∈V−i

u
(
f
(
v′i, v−i

))
µ−i (v−i)

<
∑

v−i∈V−i

max
c∈B(f,v−i)

u (c)µ−i (v−i) =
∑
S∈C

∑
{v−i∈V−i:B(f,v−i)=S}

max
c∈S

u (c)µ−i (v−i)

=
∑
S∈C

max
c∈S

u (c) Pivi (S;σ) = max

{
u · ` : ` ∈

∑
S∈C

λSS

}
,

where the inequality in the above derivation follows from (B.40). Because ` was an arbitrary
element of Mi (σ), this establishes the lemma. �

Recall that Π is the set of permutations on C. For any utility function u ∈ RC and π ∈ Π,
define the utility function uπ ∈ RC by uπ := u ◦ π (where ◦ denotes function composition).

Lemma B.10 For all π ∈ Π, max {uπ · ` : ` ∈Mi (σ)} ≤ max
{
uπ · ` : ` ∈

∑
S∈C λSS

}
.

Proof. This is an immediate consequence of Lemma B.6. �
The following proposition is proven in the Appendix of Sher (2018).

Proposition B.2 For all M,M ′ ∈M , M 4∗ M ′ if and only if:

1

m!

∑
π∈Π

max
`∈M

(uπ · `) ≤ 1

m!

∑
π∈Π

max
`∈M ′

(uπ · `), ∀u ∈ RC .

Lemmas B.9 and B.10 and Proposition B.2 imply that if f does not have a monotonic interpretation
for i, then Mi (σ) ≺∗

∑
S∈C λSS. This completes the proof of the theorem. �
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Corollary 2

First, I generalize some definitions and results in the text. Consider a voting rule of the form
f ′ : R × V−i → C. We can interpret this as a voting rule in which voter i submits a ranking Ri
and all other voters i′ submit votes vi′ ∈ V (and the tie-breaker submits v0 ∈ V0). Call such a
rule a preferential for i.7 The main text only discusses voting rules for which all agents have the
same vote set.8 I now extend some definitions and results from the text to voting rules that are
preferential for i, and in which i may have a different vote set than the others. First, the analogs
of Definitions 2 and 4 for rules that are preferential for i is

Definition B.1 Let i be a voter in I. Let f ′ be a voting rule that is preferential for i.

1. f ′ is monotonic for i if ∀c ∈ C,∀Ri, R′i ∈ R,∀v−i ∈ V−i,[
f ′ (Ri, v−i) = c and ∀c′ ∈ C,

(
cRic

′ ⇒ cR′ic
′)]⇒ f ′

(
R′i, v−i

)
= c.

2. f ′ is strategyproof for i if

∀Ri, R′i ∈ R,∀v−i ∈ V−i, f ′ (Ri, v−i)Rif ′
(
R′i, v−i

)
.

Next I state an analog of the Muller Satterthwaite theorem (Proposition 8) for voting rules that
are preferential for i.

Proposition B.3 Let f ′ be voting rule that is preferential for i. f ′ is monotonic for i if and only
if f ′ is strategyproof for i.

The proof is identical as that for the standard Muller Satterthwaite theorem.
With these preliminaries out of the way, first suppose that f : V0 × V I → C has a monotonic

interpretation for i. Then there exists a corresponding interpretation φi with i-sufficient range V ′

(see Definition 3). We want to show that f has a strategyproof interpretation for i. Now define
f ′ : R × V−i → C (a rule that is preferential for i) by

f ′ (Ri, v−i) = f (φi (Ri) , v−i) , ∀Ri ∈ R,∀v−i ∈ V−i.

Because φi is a monotonic interpretation for i, f ′ is monotonic for i. So by the Muller Satterthwaite
theorem (Proposition B.3), f ′ is strategyproof for i. Now set vRi = φi (Ri) , ∀Ri ∈ R. Choose

v′i ∈ V and v−i ∈ V−i. Then because V ′ is i-sufficient, there exists v
R′i
i ∈ V ′ such that f (v′i, v−i) =

f
(
vR
′
i , v−i

)
, and, because f ′ is strategyproof, we have

f
(
vRi , v−i

)
= f ′ (Ri, v−i)Rif

′ (R′i, v−i) = f
(
vR
′

i , v−i

)
= f

(
v′i, v−i

)
.

So f has a strategyproof interpretation for i.
Going in the other direction, suppose that f : V0 × V I → C has a strategyproof interpretation

for i. Now define f ′ : R × V−i → C by

f ′ (Ri, v−i) = f
(
vRi , v−i

)
, ∀Ri ∈ R, ∀v−i ∈ V−i.

7If V = R, then f ′ is not only preferential for i, but also preferential.
8Nothing essential depends on this.
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Then f ′ is strategyproof for i. So by the Muller Satterthwaite theorem (Proposition B.3), f ′ is
monotonic for i. Now let φi (Ri) = vRi ,∀Ri ∈ R, and let V ′ = φi (R), the range of φi. Then choose
Ri, R

′
i ∈ R, and c ∈ C such that f (φi (Ri) , v−i) = c and ∀c′, cRic′ ⇒ cR′ic

′. Then f ′ (Ri, v−i) = c.
So, since f is monotonic for i, f ′ (R′i, v−i) = c. So f ′ (φi (R′i) , v−i) = c.

To complete the proof that f has a monotonic interpretation for i, it is now sufficient to
show that V ′ is i-sufficient. So choose v−i ∈ V−i and c ∈ C such that there exists vi ∈ V with
f (vi, v−i) = c. Now choose the total order Ri ∈ R with cRic

′,∀c′ ∈ C. Then since f has a
strategyproof interpretation for i, f

(
vRi , v−i

)
Rif (vi, v−i) = c. It follows that f

(
vRi , v−i

)
= c.

This establishes that V ′ is i-sufficient, and completes the proof. �

Proposition 10

Assume that f has a monotonic interpretation. Then, by Corollary 2, for all i, f has a strategyproof
interpretation for i.

For each i ∈ I and Ri ∈ R, vRi
i is defined so as to satisfy the condition in Definition 4. Then

define ψ (i, Ri) = vRi
i for all i ∈ I and Ri ∈ R.

Next I define χ. To this end, for each v0 ∈ V0, define the deterministic preferential voting rule
f̃v0 : RI → C by

f̃v0 (R1, . . . , Rn) = f
(
v0, v

R1
1 , . . . , vRn

n

)
, ∀ (R1, . . . , Rn) ∈ RI . (B.41)

Observe that, given our assumptions, f̃v0 is strategyproof.

Lemma B.11 range
(
f̃v0

)
= range (fv0).

Proof. It is immediate that range
(
f̃v0

)
⊆ range (fv0). So we must only prove that range

(
f̃v0

)
⊇

range (fv0). To do so, choose v−0 ∈ V I . For each i ∈ I, choose Ri ∈ R such that f (v0, v−0)Ric,∀c ∈
C. Since Ri is a total order, and f has a strategyproof interpretation for 1, we have

f
(
v0, v

R1
1 , v2, . . . , vn

)
= f (v0, v−0) .

Now assume for the inductive hypothesis that

f
(
v0, v

R1
1 , . . . , v

Ri−1

i−1 , vi, vi+1, . . . , vn

)
= f (v0, v−0) .

Then by the same logic as in the base case,

f
(
v0, v

R1
1 , . . . , vRi

i , vi+1, . . . , vn

)
= f (v0, v−0) .

It follows that f
(
v0, v

R1
1 , . . . , vRn

n

)
= f (v0, v−0). Since

(
vR1

1 , . . . , vRn
n

)
∈ V ′I , it follows that

f (v0, v−0) ∈ range
(
f̃v0

)
, and hence range (fv0) ⊆ range

(
f̃v0

)
. �

It follows from the lemma that
∣∣∣range

(
f̃v0

)∣∣∣ > 2⇔ |range (fv0)| > 2. Choose any v0 ∈ V0 with

|range (fv0)| > 2. By the Gibbard Satterthwaite theorem (Proposition 8), f̃v0 is dictatorial on its
range. Let iv0 be the “dictator” in f̃v0 , and define χ (v0) = iv0 . If v0 is such that |range (fv0)| = 2,
then let χ (v0) be arbitrary.

Now choose v∗ = (v∗0, v
∗
1, . . . , v

∗
i , . . . , v

∗
n) ∈ V̄ , i ∈ I, and Ri ∈ R. First, suppose that the

antecedent in condition 2 holds with v∗ playing the role of v, that is
∣∣range

(
fv∗0
)∣∣ > 2, χ (i, Ri) = v∗i ,

and χ (v0) = i.

B.14



Lemma B.12 There exists R−i ∈ RI\i such that f̃v∗0 (Ri, R−i) = f (v∗).

The proof is almost identical to the proof of Lemma B.11. It now follows that

f (v∗) = f̃v∗0 (Ri, R−i) ∈ ĉ
(

range
(
f̃v∗0

)
, Ri

)
= ĉ

(
range

(
fv∗0
)
, Ri
)
,

where the first equality follows from Lemma B.12, the last equality from Lemma B.11, that the
middle ∈ relation follows from the fact that i = χ (v∗0) is a dictator (in the range of f̃v∗0 ).

Finally suppose that the antecedent in condition 1 of the proposition holds, with v∗ playing the
role of v. Then v∗i = vRi . It follows from the fact that f

(
vRi , v

∗
−i
)
Rf
(
vi, v

∗
−i
)
,∀vi ∈ Vi, that the

consequent of 1 holds (with v∗ playing the role of v). �

Example of a voting rule that is dictatorial when not binary but not monotonic

This section informally sketches an example of a class of voting rules that are dictatorial when
not binary but not monotonic. Suppose that there are 3 candidates. Voter 1 is the dictator, and
may choose her favorite candidate through her vote. However, voter 1has a vote that allows her to
abstain, effectively ceding his power. If voter 1 does this then the residual election among the other
voters is not monotonic. Such an election is dictatorial when not binary (it satisfies the conditions
in Definition 6), but it is not monotonic.

Theorem 4

Part 1 of the theorem is an immediate consequence of Theorem 3 and Proposition 10.
For part 2, let f be a voting rule that is not monotonic for some voter i. Choose µ satisfying

µ (v) > 0 for all v ∈ V̄ . Let σ = (f, µ). Now, for each ε ∈ [0, 1], I construct a mechanism f εi . f εi is
subscripted by i because f εi treats voter i in a special way. f εi has vote set R. f εi works as follows.
For k = 1, . . . ,m, with probability (1− ε) Pivi (k;σ), the winning candidate is the candidate that is
maximal in the menu k with respect to voter i’s vote Ri (i.e., with respect to i’s submitted ranking).
For j = 1, . . . , i− 1, i+ 1, . . . , n, with probability ε

n−1 , the winning candidate is the candidate who
is maximal (among all candidates) with respect to voter j’s vote Rj . Let µ′ be an arbitrary vote
profile distribution in ∆

(
V0 ×RI

)
of the form µ′ =

∏
j µ
′
j , and let σε = (f ε, µ′).

By construction,

Mi (σε) ∼∗i ε1 + (1− ε)
m∑
k=1

Pivi (k;σ) k (B.42)

(Observe that this does not depend on µ′.) We have9

Mi (σε)→
m∑
k=1

Pivi (k;σ) k as ε→ 0.

Because f is not monotone, it follows from Theorem 3 that

Mi (σ) ≺∗
m∑
k=1

Pivi (k;σ) k.

9Convergence is in the metric topology generated by the Hausdorff distance.
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By the continuity axiom (Axiom 2 in Section 2.3.1), if ε > 0 is sufficiently small,

Mi (σ) ≺∗ ε1 + (1− ε)
m∑
k=1

Pivi (k;σ) k (B.43)

It follows from the fact that f is not monotonic for i, that
∑m

k=1 Pivi (k;σ) k 6= 1. It follows from
the independence axiom that (Axiom 4) that for ε > 0,

ε1 + (1− ε)
m∑
k=1

Pivi (k;σ) k

≺∗i ε
m∑
k=1

Pivi (k;σ) k + (1− ε)
m∑
k=1

Pivi (k;σ) k

=

m∑
k=1

Pivi (k;σ) k

(B.44)

If follows from (B.42) and (B.43) that for sufficiently small ε > 0, f ≺◦i f εi . It follows from (B.44)

that f εi ≺
piv
i f . This completes the proof of part 2. �

Proposition 11

This proposition is an immediate consequence of (6) and Proposition B.2 (which is presented in
the proof of Theorem 3). �

Facts from Section 5

I begin by specifying the tie-breaker in σ3. I assume that V0 = R, where recall that R is the set of
total orders R0 over C, which in this case, is equal to {1, 2, 3}. The tie-breaker selects each R0 in
R with probability 1

6 . If there is a tie for first place, then the tied candidate that is ranked highest
by the tie-breaker wins.

Recall that there are n + 1 voters. We look at things from the perspective of voter i. In σ3 a
voter can be pivotal between two candidates in two different ways. First, within the two candidates

can be tied for first place in the votes of voters other than i. This can occur in 3×
∑n

2

k=n
3

+1

(
n

k,k,n−2k

)
ways. We multiply by 3 because there are three sets of 2 candidates that might be tied for first.
Note that because n is odd, the candidate not tied for first place must be losing by at least two
votes. So regardless of the tie-breaker, i cannot bring it about that this candidate wins. The
probability of each configuration of votes for voters other than i is 1

3n because each voter can
vote in three ways. So the probability that two candidates are tied for first place among voters

other than i is 1
3n × 3 ×

∑n
2

k=n
3

+1

(
n

k,k,n−2k

)
. There is a second way that i can be pivotal over two

candidates: That is if the candidate in first place is one vote ahead of the candidate in second
place in v−i and the tie-breaker favors the candidate in second place. This occurs with probability
1
2 ×

1
3n × 6 ×

∑n
2

k=n
3

+1

(
n

k,k−1,n−2k+1

)
, where we multiply by 1

2 because the tie-breaker favors the

candidate in second place over the candidate in first place with probability 1
2 .10 We multiply by

6 because there are six sequences of candidates in first, second, and third place. The previous

expression simplifies to 1
3n × 3 ×

∑n
2

k=n
3

+1

(
n

k,k−1,n−2k+1

)
. The above analysis accounts for the

expression for Pivi (2;σ2) in (15).

10Observe that because n is divisible by 6, k − 1 > n− 2k + 1.

B.16



Voter i is pivotal among all three candidates only if all three are tied for first place. (Recall
that because n is even, it is not possible that two voters are tied for first place in v−i, and the
third voter is one vote behind.) The probability that all three candidates are tied for first place is
1

3n

(
n

n
3
,n
3
,n
3

)
. This accounts for the expression for Piv (3;σ3) in (15).

Next I explain the menus in (16). First consider random dictatorship with with three candidates,
and consider the lottery induced by a vote for candidate 1. If voter i is selected to be dictator,
then candidate 1 will win. This occurs with probability 1

n+1 . If i is not selected dictator, which

happens with probability n
n+1 , candidate 1 wins 1

3 of the time. So the total probability that 1 wins

if i votes for 1 is 1
n+1 + 1

3
n
n+1 = 3+n

3n+3 . The remaining probability of 1 − 3+n
3n+3 = 2n

3n+3 is evenly
split among the other two candidates. This explains the first lottery in M (σr3). The other two
lotteries are explained similarly. Next consider plurality voting among three candidates. Suppose
that voter i votes for 1. Then when i is pivotal over all three candidates, 1 will win. This occurs
with probability Pivi (3;σ3). Also, when i is pivotal over 1 and 2 or 1 and 3, then 1 will win. This
occurs with probability 2

3Pivi (2;σ3). Note, however that when i is pivotal over 2 and 3, then 1
will lose. This happens with probability 1

3Pivi (2;σ3). When i is not pivotal at all, which occurs
with probability 1 − Pivi (2;σ3) − Pivi (3;σ3), 1 wins with probability 1

3 . Thus in total, if i votes
for 1, 1 will win with probability Pivi (3;σ3) + 2

3Pivi (2;σ3) + 1
3 (1− Pivi (2;σ3)− Pivi (3;σ3)) =

1
3 + 1

3Pivi (2;σ3) + 2
3Pivi (3;σ3) = 1+2Φn

3 . The remaining probability of 2
(

1−Φn
3

)
is evenly split

among the other two candidates. This explains the first lottery in Mi (σ3). The other two lotteries
are explained similarly.

Finally, I explain the expressions of the form Va (σ) and Vb (σ) in Section 5.3. First, I explain
Va (σ̂3). As explained in the text, if the tie-breaker selects candidates 2 and 3 to participate in the
election, Ann’s utility is 0. This happens with probability 1

3 . If the tie-breaker selects candidates 1
and 2 to participate in the election, which occurs with probability 1

3 , then if Ann is pivotal between
1 and 2, which happens with probability Pivi (2;σ2), then candidate 1 wins. When Ann is not
pivotal, 1 wins with probability 1

2 . Hence conditional on the tie-breaker selecting 1 and 2, Ann’s
expected utility is Pivi (2, σ2)+ 1

2 (1− Pivi (2, σ2)) = 1
2 + 1

2Pivi (2, σ2). Ann gets the same expected
utility conditional on the tie-breaker selecting 1 and 3. Hence Ann’s overall expected utility is
Va (σ̂3) = 1

3 × 0 + 2
3

[
1
2 + 1

2Pivi (2;σ2)
]

= 1
3 + 1

3Pivi (2;σ2).
Let us now calculate Vb (σ̂3). If the tie-breaker selects 1 and 2 to participate in the election,

which happens with probability 1
3 , then Bob gets a utility of 1. If the tie-breaker selects 1 and 3

to participate in the election, which also happens with probability 1
3 , then Bob gets a utility of

1
2 + 1

2Pivi (2;σ2). The same applies if the tie-breaker selects 2 and 3 to participate in the election.
So, overall, Bob gets a utility of Vb (σ̂3) = 1

3 + 2
3

[
1
2 + 1

2Pivi (2;σ2)
]

= 2
3 + 1

3Pivi (2;σ2).
Next, I calculate Va (σ3). Under plurality voting, Ann will vote for 1, and Ann’s expected

utility is equal to the probability that 1 wins, given that Ann votes for 1. We already calculated
this probability when calculating the menu Mi (σ3). Using that calculation, Ann’s expected utility
is Va (σ3) = 1

3 + 1
3Pivi (2;σ3) + 2

3Pivi (3;σ3).
Finally, I calculate Vb (σ3). Under plurality voting, Bob will vote for 1 or 2. He is indiffer-

ent between the two. So we may assume without loss of generality that he votes for 1. Then
Bob’s expected utility will be the probability that either 1 or 2 will win if he votes for 1. We
already calculated each of these two probabilities above. So Bob’s expected utility is Vb (σ3) =
1
3 + 1

3Pivi (2;σ3)+ 2
3Pivi (3;σ3)+ 1

3

[
1− 1

2Pivi (2;σ3)− Pivi (3;σ3)
]

= 2
3 + 1

6Pivi (2;σ3)+ 1
3Pivi (3;σ3).
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