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Abstract

An increasingly common technique for studying behavioral elasticities uses bunching estimation of the

excess mass in a distribution around a price or policy threshold. This paper shows how serial dependence

of the choice variable and extensive-margin responses may bias these estimates. It then proposes new

bunching designs that take greater advantage of panel data to avoid these biases and estimate new

parameters. Standard methods over-reject in simulations using household income data and over-estimate

bunching in an application with charities. Designs exploiting panel data provide unbiased bunching

estimates, improved heterogeneity analysis, and the ability to estimate extensive-margin responses and

long-run effects.
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1 Introduction

Taxes, income eligibility limits, and other policies can change agents’ incentives at threshold values of a choice

variable. Some policies create a kink in the cost function at the threshold, while others create discontinuities,

or “notches” (Slemrod, 2010). If costs increase above the threshold, the incentive to locate at or below the

threshold can create “bunching” in the distribution of the choice variable. Saez (2010a) launched a bunching-

estimation literature by showing how the extent of bunching around a kink in the tax schedule can be used

to obtain an estimate of the tax price elasticity of income. The theory and technique of bunching estimation

have been developed by Kleven and Waseem (2013), and bunching has been estimated at many kinks and

notches in tax and regulatory schedules.1

This paper proposes and evaluates new “dynamic bunching estimation” designs for panel data. In the

extant literature, researchers with access to panel datasets have treated them as repeated cross sections

by pooling years. The methods proposed in this paper take greater advantage of the panel structure, and

they offer improved identification and the ability to quantify parameters that have not been estimated with

standard techniques. I examine two threats to identification for the standard design and show that the

dynamic alternatives rely on assumptions that are arguably more plausible, particularly in settings where

agents face a notch repeatedly. These designs can identify new parameters including long-run effects of a

notch, which provide evidence on whether bunching is driven by retiming or misreporting, and the extent of

extensive-margin responses to a notch. In addition, they offer new capabilities for analyzing heterogeneity

in the bunching response and concurrent responses in other variables.

I first study two identification issues for the standard, static approach. One issue is extensive-margin

responses, which have been discussed in the bunching literature but cannot be quantified with existing

methods. Another issue that has not been discussed as an identification concern arises from persistent

notches and serial dependence of the choice variable.2 To see the issue for identification, suppose there is a

tax notch that imposes a fixed cost when household income exceeds a threshold, and suppose that income

exhibits positive serial dependence, i.e. that reducing income in the present will also reduce income in the

future.3 When the notch is introduced, we would expect some households with potential incomes just above
1Recent papers estimating bunching have studied firms’ responses to taxes and regulations (Sallee and Slemrod 2012, De-

vereux et al. 2014, Best et al. 2015, Sallee and Ito 2018), individuals’ responses to taxes and benefits (Chetty et al. 2013a,
Burman et al. 2014, Kleven and Schultz 2014, Kleven et al. 2014, Kline and Tartari 2016, Rees-Jones 2018), consumer responses
to prices (Ito 2014, Grubb and Osborne 2015, Einav et al. 2017), saving (Ramnath 2013, Weber 2016), teacher responses to
testing incentives (Brehm et al. 2017, Dee et al. 2015), and corruption (Camacho and Conover 2014). Kleven (2016) provides
an extensive review of bunching research.

2Kleven and Waseem (2013) note that serial dependence should reduce bunching elasticities if agents are forward-looking
because they will not want to reduce future income, whereas I highlight the implication for identification.

3Serial dependence may be mechanical or formulaic, such as when the choice variable is assets (e.g., Seim 2017, Brülhart et
al. 2016). Other variables like income may also exhibit serial dependence, such as if agents receive raises that are a percentage
of the prior year’s wage.
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it to bunch below it, but households far above the notch would not be willing to reduce their income all

the way to the notch. This motivates an identifying assumption in bunching estimation, which is that the

notch will not affect the number of agents at values far from the threshold, and hence the density at these

values can be used to construct a counterfactual near the notch. However, agents in many settings face the

same notch repeatedly. If the running variable exhibits positive serial dependence, then reducing its value

today in order to bunch will lower its value tomorrow. This is true regardless of where that value lies in

tomorrow’s distribution, implying the potential for distortion far from the notch and excess curvature of

the true counterfactual distribution within the omitted region. When a notch is faced more than once and

income is serially dependent, the standard methodology describes accumulated effects but does not recover

the behavioral parameters governing these effects.

Dynamic bunching estimation follows the intuition of the static approach but extends it to dynamic pro-

cesses. In light of the concerns about the identifying assumption that the notch only affects the distribution

locally, I propose three variants that exploit panel data in differing ways. I present these methods in order

of increasing complexity. The first method is ideally suited to a notch that agents face only once, which

avoids concerns about serial dependence and repeated bunching. This method simply involves widening bins

to create one unselected “treatment” bin around the notch, and with panel data it provides estimates of

short- and long-run effects and of serial dependence. The second and third methods condition on income

in the year prior to the year that an agent approaches the notch, implying that the localness assumption is

applied not to the overall income distribution but only to the distribution of one-year growth rates. This

identification strategy can be applied even when agents face the same notch repeatedly. I first implement it

with bins and OLS, which provides transparent evidence of manipulation, improved heterogeneity analysis,

and tests of long-run effects. The OLS implementation is easy to execute and has already been employed,

based on an earlier draft of this paper, by St.Clair (2016). The final method uses maximum likelihood esti-

mation to implement the same identification strategy. Though more complicated, the MLE implementation

retains the flexibility of the binning approach while offering improved precision and the first estimates of

extensive-margin responses in the literature. R code is provided with this paper to facilitate adoption.

Simulations provide evidence on the performance of the static and dynamic estimation strategies. These

simulations use draws of household income profiles from the Panel Study of Income Dynamics (PSID). I first

provide graphical intuition for the less-studied issue of serial dependence of income. With serial dependence,

bunching in one year causes distortions throughout the distribution of incomes in later years, increasing

the mass far below the threshold and decreasing the mass far above. I then document the biases in static

estimates caused by each of (a) extensive-margin responses and (b) serial dependence in income. Both issues

cause the static estimates to reject a true null of no bunching in considerably more than 5 percent of draws.
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In contrast, simulations with dynamic estimators produce bias close to zero and coverage rates close to 0.05.

Benefits of each of the proposed methods are demonstrated by application to the bunching of charities

at a reporting threshold. Charities account for about 9 percent of all U.S. wages and salaries (Roeger et al.,

2012). Though exempt from taxes, these organizations must file an annual information return with the IRS.

I find that charities bunch below the income eligibility threshold for filing a simplified “EZ” form. A more

detailed analysis of this policy and its welfare implications appears in Marx (2018); here, I focus on how

the application exemplifies the benefits of each of the three proposed methods. Temporary-notch estimation

shows that bunching permanently reduces income, indicating positive serial dependence, an identification

concern for standard bunching estimation. Dynamic OLS estimation reveals significant heterogeneity in the

bunching response and shows that the notch permanently reduces the growth of some charities. Dynamic

MLE estimation finds significant extensive-margin responses (most likely non-filing or late filing) that appear

to be at least as important as the bunching response. Static estimates capture none of these phenomena and

overstate bunching by a factor of 2 or 3.

A few papers have studied dynamic aspects of bunching. For example, thresholds in time may induce

bunching in intertemporal decisions such as the choice of when to claim retirement (Manoli and Weber,

2016) or purchase a vehicle (Sallee, 2011). Others have documented how bunching at an income threshold

varies over time; Chetty et al. (2013b) and Mortenson and Whitten (2018) use income tax microdata to

study kinks in the tax code, and both studies find that the amount of bunching has increased several-fold

since 1996. Gelber et al. (2013) examine whether bunching persisted after elimination of the Social Security

earnings test, and Kleven and Waseem (2013) use panel data to estimate the share of taxpayers remaining

just above or below tax notches. The approach of le Maire and Schjerning (2013) augments the estimating

equation with estimated deviations from mean income, which a model of income-smoothing predicts will

distinguish income retiming from real income responses. In contrast to the existing research, I exploit panel

data to avoid selection bias even in settings where agents face repeatedly. Incorporating income dynamics

requires neither structural assumptions nor identification based on comparisons between agents who bunch

and agents who do not. The intuition is similar to that for the discrete-distribution application of Schivardi

and Torrini (2007), who estimate the effect of a 15-employee notch in Italian labor law on employment

growth by solving for the steady state of a counterfactual one-year transition matrix between employment

levels. The designs in this paper enable analysis of notches in continuous variables such as income.

The paper proceeds as follows. Section 2 provides information about the household and charity datasets.

In Section 3, I describe the standard estimation approach in the literature, discuss identification challenges,

and evaluate the standard approach with simulations. The next three sections each present a dynamic

estimation strategy that exploits panel data, evaluate the strategy with simulations, and show its benefits
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in application. The strategy of Section 4 exploits a temporary notch, that in Section 5 generalizes this to

an OLS regression that can be estimated for temporary or persistent notches, and Section 6 presents the

MLE implementation. Section 7 provides concluding remarks, including a summary list of diagnostics that

researchers can check when estimating bunching.

2 Data

I use two panel datasets to illustrate and evaluate each bunching estimation method. Unlike the adminis-

trative records that are required to estimate bunching in many settings, both of the datasets used in this

paper are publicly available, which will facilitate replication and extension of the proposed methods. One

of the datasets is the widely familiar Panel Study of Income Dynamics. The other dataset covers charitable

organizations, enabling an application of the methods to a federal reporting requirement for these charities.

Marx (2018) studies this application in greater detail, relating this notch to the broader question of optimal

regulation of information provision, and providing a general theoretical framework for evaluating welfare

effects of regulatory notches. Here, the setting provides a particularly useful application for the proposed

methods because there is publicly available panel data, variation in the location of the notch, and interesting

patterns in all of the dimensions in which dynamic bunching estimation provides new information.

The dataset for the charities application is provided by the National Center for Charitable Statistics

(NCCS), an initiative of the Urban Institute. This dataset is the union of all annual “Core Files,” which

provide digital records of the information returns that tax-exempt organizations are required to file with the

IRS. Large organizations must file IRS Form 990, while those with both total assets and gross receipts below

certain thresholds may file Form 990-EZ. Bunching is visible at the gross receipts threshold, which was held

at $100,000 from before the beginning of the panel in 1991 until 2008. Further details are provided by Marx

(2018). The variables used here are organization (Employer Identification Number), year, and gross receipts.

To conduct simulations, I use a panel of household taxable income from the Panel Study of Income

Dynamics. Use of real-world data from the PSID shows that results are not driven by a particular distribution

of known function form. I restrict attention to the nationally-representative sample within the PSID and

exclude the over-sample of low-income families. The sample covers years from 1967 through 2013, and I

inflate all amounts to 2013 dollars using the Consumer Price Index. The variable of interest is the household’s

taxable income.4 Where T ≥ 2 years of data are required for the analysis, I use all combinations in which

household income is observed T times in succession. For most of the analysis I need only two years of
4According to the PSID Data Custom Codebook generated with the data extract, “This variable is the sum of Head’s labor

income, Wife’s labor income, asset part of income from farm, business, roomers, etc., rental, interest and dividend income, and
Wife’s income from assets.”
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consecutive observations of household income, which I label the “base-year” income and “next-year” income.

Comparisons of bunching estimators requires the ability to create or eliminate bunching. I eliminate

bunching by estimating a smoothed version of the PSID distribution of consecutive-year incomes. To do so

I define rit as the log of realized base-year income and gi = rit+1 − rit as the growth rate from base-year

income to next-year income. I first bin the inverse cdf of gi and estimate it as a flexible function with range

[0, 1] so that I can generate random numbers ui from a uniform distribution and convert them to values of

gi.5 I then bin the joint distribution of rit and gi to estimate the condition cdf F−1 (rit|gi) as a flexible

function with range [0, 1] so that I can generate random numbers vi from a uniform distribution and convert

them to values of rit.6 This allows me to generate a sample of any size according to the smoothed joint

distribution of income and growth.

I generate bunching over a heterogeneous distribution of abilities and elasticities. Saez (2010b) studies

bunching at kinks for individuals with ability n, consumption c, earnings z, earnings elasticity ε, and marginal

tax rate t, the quasi-linear utility function u (c, z) = c − n
1+1/e

(
z
n

)1+1/ε and linear budget constraint c =

(1− t) z + R. To this framework we can easily introduce a notch by assuming a discrete cost φ is incurred

when income exceeds a threshold ρ. Then the budget constraint becomes c = (1− t) z + R − φ · 1{z>ρ}.7 I

create a hypothetical notch with ρ = $40, 000 and φ = $1000. I assume that e = 0 for half of all households

(e.g., due to optimization frictions), and for the other half of households e ∼ Unif (0, 1).

3 Benchmark Static Bunching Estimation

Before presenting the dynamic bunching research design I follow the static approach used in the literature.

I describe the technique, discuss some concerns for identification, and evaluate these with simulations.

Throughout this section and the rest of the paper I will refer to bunching as occurring in “income,” as

it does in both datasets I analyze, as short-hand for “the variable in which costs change discretely at a

threshold value.” I will also minimize repetition by describing the notch as inducing a cost that increases

when income lies above the threshold, leaving implicit the straightforward adjustments for settings in which

costs decrease at the threshold.
5The flexible function includes the tangent of wi (transformed to have domain [0, 1]), which has the approximate shape of

the inverse cdf. I include a cubic function of tan (ui) as well as the interaction of this cubic function with a trend break where
gi = 0, which allows the pdf of gi to have a non-differentiable peak at zero, as appears in the raw data.

6The flexible function includes the tangent of vi (transformed to have domain [0, 1]), the level of vi, the level of gi, and the
log of gi. I include a quintic function of each vi variable, a cubic function of each gi variable, and all interactions of vi variables
with gi variables.

7Unless bunching, an individual chooses income of z∗ = n (1− t)ε. The utility obtained from choosing z = z∗ is
u (c (z∗) , z∗) = n (1− t)1+ε + R − φ · 1{z∗>ρ} − n

1+1/ε
(1− t)1+ε. The utility obtained from choosing z = ρ is u (c (ρ) , ρ) =

(1− t) ρ+R− n
1+1/ε

( ρ
n

)1+1/ε. Individuals will bunch if z∗ > ρ and u (c (z∗) , z∗) > u (c (ρ) , ρ).
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3.1 Description of Method

Bunching empirics can exploit distortions in distributions around thresholds at which income or prices change

discretely. By estimating the excess mass around a threshold one can obtain reduced-form estimates of policy-

relevant behavioral elasticities. Saez (2010a) introduced this insight by showing how kinks in marginal tax

rates produce a pattern of bunching in the income distribution that reveals the taxable income elasticity

without the need to specify a particular utility function. Individuals with incomes above a kink that raises

the marginal tax rate have an incentive to reduce reported income, and the greater the income elasticity, the

more bunching will be observed in the distribution around the kink. Similarly, those facing a notch at which

total expenses increase discontinuously have an incentive to stay below the notch. Bunching estimation,

both at kinks and at notches, quantifies the extent of bunching by comparing the observed distribution to

an estimate of the smooth counterfactual that would be expected in the absence of the threshold.

The key to bunching estimation is to construct the counterfactual distribution of income. Static bunching

estimates use parts of the density above and below a threshold to construct a counterfactual for the amount

of mass that should be at the threshold. Most studies approach the distribution as a histogram, constructing

bins and plotting the count of observations in each bin. The number of observations within some number of

bins of the threshold is compared to a counterfactual constructed using bins further away from the threshold.

That is, the researcher estimates the counterfactual density by omitting a certain number of bins around

the threshold (the “omitted region”) and then estimating a smooth function through the values of the other

bins. For a notch at which costs increase, there should be excess mass in the “bunching range” below the

notch and reduced mass in the “reduced range” above the notch.8 Both the excess mass and reduced mass

can be estimated by comparing the observed density to the counterfactual.9

Consider a notch that imposes a discrete cost on agents with income greater than ρ. Let the data on

agents i with income zi be collapsed into income bins of width ω and maximum value binb, giving bin counts

cb =
∑
i

1 [zi ∈ (binb − ω, binb]]. The standard estimating equation for bunching at a notch is

cb =

nE−1∑
h=0

βE,j · 1 [binb = ρ− ωh] +

nR∑
j=1

βR,j · 1 [binb = ρ+ ωh] +
K∑

k=0

αkbin
k
b + ei (1)

where nE and nR are the numbers of bins on either side of the threshold that are omitted from estimating the

counterfactual. The counterfactual is a polynomial of order K with parameters αk. This equation provides
8In the literature this is typically referred to as the “missing range.” I use the term “reduced” to distinguish between this

response and the mass that is missing because observations leave the data for reasons potentially including extensive-margin
responses to the notch.

9In the case of a kink, agents may bunch on either side of the threshold, so the bunching estimate is the sum of all excess
mass observed in the omitted region. Estimation of bunching at kinks requires the further step of raising or lowering the
counterfactual distribution on the side of the kink where prices are affected, but this step is not necessary for a notch at which
fixed costs are imposed because other than income effects there should be no responses far from the threshold.
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two measures of bunching:
nE−1∑
h=0

βE,j gives the excess mass of bunchers just below the notch, and
nR∑
j=1

βR,j

gives the reduction of mass just above the notch.

Visual examples of the standard approach are provided in Figure 2 for the charity and PSID datasets,

respectively. In both figures, a polynomial is fit to the counts of income bin to estimate the counterfactual

distribution, and mass is elevated in the bunching range just below the notch and reduced in the reduced

range above the notch. Assuming no extensive-margin responses, the excess mass in the bunching range

should equal the reduction of mass in the reduced range, and hence either of these can be used as the

measure of bunching. Often this mass is divided by the counterfactual level of the density at the notch, and

this bunching ratio gives an estimate of the amount by which the average buncher reduces income (Kleven

and Waseem 2013).

3.2 Identification Challenges

Extensive-margin responses present one concern for static bunching estimation. The standard approach

relies on the identifying assumption that in the absence of the bunching response there would be a smooth,

continuous distribution of income in the neighborhood of the threshold of interest. If agents who would be

above a notch are instead missing from the data, then this will reduce the mass found above the notch even

if there is no bunching.

Some bunching papers have considered the nature of extensive-margin responses and how they might be

detected or addressed. A point made by Kleven and Waseem (2013) and generalized by Best and Kleven

(2018) is that there should be no such responses just above the notch when agents can simply bunch at

very little cost relative to their preferred income level. This condition may not hold if frictions prevent

bunching, as studied in much of the literature, or if exceeding the threshold causes attrition from the sample

for reasons outside of the agents’ control, such as an increased probability of being audited and removed from

the sample. Kopczuk and Munroe (2015) note that even when the result holds in the limit, extensive-margin

responses may still occur close enough to the notch to affect estimation, and that it is not possible (with

the standard bunching design) to measure extensive-margin responses without making strong assumptions.

They suggest using only the data below the notch to estimate bunching and testing for the existence of

extensive-margin responses by comparing the excess mass below to the reduced mass above. In this paper

I measure the degree to which extensive-margin responses affect estimation, and I propose the first tool for

estimating their extent.

An issue that has not received attention in the literature is serial dependence in income. If income in

one year depends positively on income in the prior year, then bunching in one year lowers an agent’s income
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in later years. This distortion can affect incomes far from a notch and therefore violate the identifying

assumptions of static bunching estimation. In Appendix A, I mathematically demonstrate the issue for

discrete and discrete-continuous distributions. Here I provide a visual example using the first ten years of

earnings from each household in the PSID.10 To capture a situation without serially-dependent income I

simply impose bunching at the hypothetical $40,000 notch in each year. To capture serial dependence I

construct another version of the panel in which I impose bunching in each year before applying the growth

rates in the data to obtain potential income for the next year.

Figure 1 displays the distribution of income at different points in time. Panel A shows incomes at the

10-year horizon with and without serial dependence. With no serial dependence the distribution is, by

construction, consistent with the expected features of bunching: there is a spike below the threshold, a

trough above, and no distortion further from the threshold. The distribution with serial dependence also

appears to have these features, indicating that it may not be obvious whether or not an empirical distribution

has been influenced by serial dependence. By comparing this distribution to that without serial dependence,

however, we can see that the mass is relatively high everywhere below the threshold and relatively low

above it. This suggests the first diagnostic for researchers to evaluate, which is a “donut-RD” regression

discontinuity design that excludes the bunching region and tests whether the estimated counterfactuals meet

at the threshold. In the charity setting, annual RD estimates (not shown) reveal that the discontinuity

in the distribution of income at the notch has grown steadily over most of the sample period, and annual

bunching estimates fail to uncover this pattern. In Figure 1, Panel B shows how the difference between the

two distributions emerges over time, with large differences emerging within five years in this example. Going

beyond this example, the nature of this evolution will vary with the underlying dynamics.

For clarity, I will abstract from a variety of other potential complications with bunching estimation. For

example, this paper focuses on empirics and will not discuss the challenges of interpreting bunching estimates

in terms of the parameters of decision models (Einav et al. 2017, Blomquist and Newey 2017, Bertanha et

al. 2018). For the sake of clarity, I have eschewed some adjustments that have been made to basic bunching

estimation. For one, researchers have sometimes attempted to address complications such as income effects

by estimating the counterfactual separately on either side of the threshold or adjusting the counterfactual

above the threshold so as to equalize the excess- and reduced-mass estimates (e.g., Chetty et al. 2011). For

another, the mass in a strictly dominated region just above the notch can be used to estimate the number

of agents facing frictions that prevent bunching (Kleven and Waseem 2013). Optimization frictions have
10I make 300 copies of each household to increase the sample size and multiply initial income by a random number to

smooth its distribution. The random number was drawn from a gamma distribution with shape parameter equal to 0.3 and
scale parameter equal to 20. This gamma distribution has positive support and gives a base-year median household income
of $45,070.04, which is close to the U.S. median for 2013. I retained the original growth rates and multiplied these by the
smoothed base-year income to obtain income levels in later years.
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garnered increasing attention in the literature, and the methods proposed in this paper might find useful

application in studying the nature of such frictions in both the short and long run. These adjustments can

easily be incorporated into the dynamic designs in this paper, but I present versions without them to focus

attention on the identification issues addressed by dynamic methods and the new parameters that these

methods allow researchers to estimate.

3.3 Simulation

To examine the severity of this problem posed by extensive-margin responses I take 10,000 draws of 100,000

observations from the smoothed distribution of incomes in the PSID. I create a hypothetical notch at income

of $40,000 and impose that no households bunch but that a fraction whose incomes fall above the notch are

not observed. These missing observations represent responses on the extensive margin, and I vary the share of

responding households between 0 and 10 percent. I estimate the average income foregone by bunchers using

the standard, static approach. The response can be calculated using the estimates of either the excess mass

below the threshold or the reduction in mass above the threshold, which should be equal absent extensive-

margin responses, and I report the estimates from both approaches. Because the true amount of bunching

is zero, the average estimate gives the bias, and the percentage of statistically significant results gives the

coverage. I also report the root mean squared error (root-MSE).

Table 1 shows the effect of extensive-margin responses on static bunching estimates. Estimates using the

reduced mass above the notch show small biases, as well as coverage rates close to 0.05, when 2 percent of

the sample or less responds on the extensive margin. When these responses are more prevalent, the reduced-

mass estimates falsely attribute them to bunching and reject too frequently. The pattern is similar for the

excess-mass estimates, though these show inflated rejection rates even for small shares of extensive-margin

responders. This may be surprising, given that the extensive-margin response occurs entirely above the

notch and not in the bunching range. Even so, these estimates are biased because the reduced mass above

the omitted range lowers the counterfactual mass within the omitted range, including below the notch.

Table 2 quantifies the bias in the static estimates arising from serial dependence of income. I impose

bunching in the base year but estimate bunching in the next year when there is no bunching. I vary the degree

of serial dependence by applying empirical growth rates to a weighted average of the preceding potential

income and actual income. When the weight η on potential income is zero there is perfect serial dependence,

and when the weight is one there is no serial dependence. I also consider weights larger than one, which

could arise if bunching simply represents retiming of income into the future. When income exhibits no

serial dependence (η = 1), static estimates have coverage rates close to 0.05 and relatively small bias. With

10



positive serial dependence (η < 0), both estimates show a positive bias, and coverage rates rise rapidly. With

negative serial dependence (η > 0), the bias in the excess-mass estimates becomes negative, while coverage

rates are again high for both estimates. Based on the graphical evidence in Figure 1, these biases would

likely grow over time.

3.4 Application

Static bunching estimates for charities appear in Table 3.11 I use the sample of charities in years up to

2007 (before the notch was moved) that also appear in the prior year (for maximum comparability with the

dynamic estimates that follow). The first row of the table shows estimates of excess mass below the notch.

An estimate of .1 would indicate .1 percent of all charities in that year’s sample are below the notch and

should be above it. The results from the basic specification indicate that the share of charities appearing

below the notch is .148 percentage points greater than predicted by the counterfactual. In the second row

this number is divided by the value of the density at the notch to give the bunching ratio, which can be

interpreted as the average amount by which agents are willing to reduce income to bunch.12 The bunching

ratio is reported with the density in log scale, and it indicates that the number of bunching charities is

roughly equal to the number of charities that should be above the notch by up to $600 (=$100,000*.00592).

If all income responses are real (and not simply reporting responses), then this estimate would imply the

average charity is willing to pay $600 to file Form 990-EZ instead of Form 990. The third row displays the

estimated reduction of mass above the notch, which is nearly 70 percent larger than the estimate of the

excess mass below.

The estimates in Table 3 raise the question of why the reduction in the number of charities above the

notch is significantly larger than the increase in number below the notch. The “Basic” specification suggests

the excess is only about 60 percent of the reduction, and the size of the reduction suggests charities may be

willing to pay as much as $1000 to avoid Form 990. The second and third columns present the results of

more flexible specifications motivated by regression discontinuity designs, but these do not reconcile the two

results. The (“Discontinuous”) specification in the second column allows for a discontinuity at the notch.

This reduces the estimate on both sides by a very small amount, leaving the asymmetry in the estimates.

The (“Two-Sided”) specification in the third column estimates separate polynomials on each side of the

notch. This gives a negative point estimate for the reduced mass, which would imply bunching in the range

where mass should be reduced, and again failing to reconcile excess- and reduced-mass estimates.
11I use charities with receipts of $50-200,000 and a polynomial of degree 3, which minimizes the Akaike information criterion.
12With a homogeneous elasticity, there will be no mass in the missing range. With no extensive-margin responses, the reduced

mass in this “hole” will equal the excess mass below the notch. With a constant density, the width of the hole will equal its
mass divided by its height, which is the bunching ratio. Kleven and Waseem (2013) show that this interpretation generalizes
to cases with heterogeneous elasticities.
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These findings suggest the comparison of excess-mass estimates and reduced-mass estimates as a diagnos-

tic. As noted above, Kopczuk and Munroe (2015) use this diagnostic to test for extensive-margin responses,

then focus on the one-sided estimate of the excess mass. In the charity setting, the excess-mass estimate is

more robust to the choice of specification in Table 3. However, as the simulations have shown, it may still be

biased by serial dependence. I will provide further evidence of this by comparing the static estimate to the

dynamic MLE estimate in Section 6. In settings for which a lack of panel data would make dynamic methods

impossible, researchers can still compare the static excess- and reduced-mass estimates. Researchers should

also be cautious about constraining estimation so as to require that the excess mass equal the reduced mass,

as this equality need not hold in the presence of extensive-margin responses or serial dependence.

It should also be noted that the literature has done little to exploit panel data for heterogeneity analysis.

It is straightforward to split a sample by pre-determined categorical variables, such as gender, and obtain

static estimates for each subsample. It is less clear how to incorporate continuous and time-varying covariates

into the static design. Some researchers have estimated the share of agents who remain in a bin over time,

but slower growth by those in bunching bins could reflect either negative selection into current bunching or

a greater likelihood of future bunching. A more dynamic approach is required to assess causation and to

more fully exploit panel data to learn about heterogeneity in responses to the notch.

4 Dynamic Bunching Estimation: Temporary Notches

I now propose and evaluate designs that exploit panel data. I present these in order of abstraction from the

static design. The design in this section makes a small adjustment that provides an alternative estimate of

responses in the year of bunching. With panel data and a temporary notch, it also yields information about

the dynamic effects of bunching. The design offers a test for serial dependence, which may provide evidence

about whether bunching is driven by real income responses or misreporting.

4.1 Description of Method

The small adjustment I propose to the standard bunching estimate is to widen the bins to identify an

unselected “treatment group” of agents with incomes near the notch. If the response to the notch is only

local, then it will be possible to identify a range around the notch that includes all responders, i.e. that

includes both the bunching range and reduced range. If one takes the entire omitted range as a bin, rather

than using smaller bins on either side of the notch, then the sample within the bin is not selected because it

contains both agents who respond and agents who don’t.

Here, the observation i is now an individual agent, rather than a bin. Agent i has realized income ri
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measured in logs, so that estimates can be interpreted as percentage changes.13 Let the bunching region

and reduced region have respective widths ωE and ωR, and bins will now have width ωE + ωR. To simplify

notation, rather than denoting the maximum value in the bin, bini will now be defined by the bin straddling

the notch, with ri ∈ (ρ− ωE , ρ+ ωR] ⇔ bini = ρ ⇔ NearNotchi = 1. The following equation can then be

estimated with either cross-sectional or panel data.

ri = β · 1 [bini = ρ] +

K∑
k=0

αkbin
k
i + ei (2)

As in Equation 1, the parameters αk describe the counterfactual distribution using a polynomial of order

K. The parameter β gives the average deviation from this counterfactual of the observations in the bin that

surrounds the notch.14

Identification is similar but not identical to that in the standard bunching design. Both rely on an

identifying assumption that a polynomial can approximate a counterfactual function of bin level. Here, that

function describes conditional mean income of agents in the bin, rather than the count of agents in the bin.

Neither design’s assumption implies that of the other.15 Thus, researchers may wish to test robustness by

estimating bunching using both Equation 1 and Equation 2. Moreover, this approach becomes particularly

useful with panel data and with a temporary notch that only exists in one period. Panel data make it

possible to replace the outcome of Equation 2 with later years’ values of income (or other variables). A

temporary notch simplifies interpretation because these later outcomes should not be affected by whether

notch-year income was close to the notch unless the induced bunching in that year had persistent effects

on these later outcomes. That is, if there is only a notch in the base year, then there should be no active

bunching in the next year. A temporary notch also makes identification more credible because the treated

group of agents with income near the notch should not be a selected sample, whereas a long-standing notch

might have accumulated a selected sample of long-term bunchers. With panel data, researchers can test

exogeneity of 1 [bini = ρ] by estimating “effects” on outcomes determined before the year of the notch.

Figure 3 demonstrates how the approach provides an alternative estimate of bunching. In each panel,

observations are binned by log income relative to the threshold in the base year, when the notch is imposed.

As with the standard approach, I use data generated from the smoothed distribution of incomes in the PSID
13Static estimation can be performed with log income; this transformation does not account for the differences in results

between static and dynamic estimates.
14Diamond and Persson (2016) use a similar design to estimate long-run effects of test score manipulation by teachers. They

allow for a discontinuity in the counterfactual density; for simplicity and comparability with the standard estimator I assume
a continuous counterfactual density.

15As a counterexample in one direction, suppose that income is uniformly distributed in all bins and that the bin count takes
one value below the notch and another value above it. As a counterexample in the other direction, suppose the the bin count
is constant but that below the notch all agents are at the minimum value of their bins and above the notch they all take the
maximum value of their bins.
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and generate bunching at a notch at an income threshold of $40,000. Unlike the figures employed for the

standard approach, which plot the counts in each of the bins, this figure displays conditional means. Panel

A displays mean log income relative to a “bin threshold” that corresponds to the location of the notch in the

treatment bin. Here the bin width is 0.2 and width of the bunching range is 0.05, so the bin threshold for

each bin is a log income of 0.05 above the minimum log income in the bin.16 Panel A shows that bunching

in the (red) treatment bin has reduced its mean log income relative to the counterfactual mean predicted by

surrounding bins. Changing the outcome of the regression to an indicator for having income above the bin

threshold provides an estimate of the share of bunchers in the bin. The ratio of these two estimates should

equal the average amount by which bunchers reduce income, the usual quantity of interest in bunching

estimation.

The great advantage of this approach lies in the ability to estimate effects on future outcomes occurring

after the notch is removed. Panel B of Figure 3 plots income in the year after the notch. Importantly,

outcomes are again examined as a function of base-year income, which should not be influenced by the notch

except in the treatment bin. For this illustration I have assumed perfect serial dependence, which implies

that base-year bunchers’ incomes should be reduced one-for-one in the next year. Panel B of Figure 3 shows

that this is the case, with next-year incomes reduced in the treatment bin by about the same amount that

they were in the base year. Because having income near the notch in the base year was not endogenous to

the notch, these figures show the causal effect of bunching on later income. Moreover, the treatment bin

should have no effect on next-year income except through base-year income and can therefore be used as an

instrument to estimate the degree of serial dependence in income. Additional outcomes can include functions

of next-year income, including indicator variables for having income above the base-year bin threshold, above

either of the minimum or maximum income levels in the bin, or in between the two.

4.2 Simulation

I perform two types of simulation to evaluate the temporary-notch design. First, I estimate bunching in

base-year distributions in which there is no bunching. Second, I generate bunching in base-year distributions

and estimate next-year outcomes, which I do for several degrees of serial dependence. For comparability with

the corresponding static estimates I again use the smoothed distribution of annual taxable incomes from the

PSID and draw 10,000 samples of size 100,000 for each of these simulations.

Table 4 quantifies the bias in the temporary-notch base-year estimates. The truth in this simulation

is that there is no bunching, and hence all estimates should be close to zero. The results are as desired;
16The normalization of log income by subtracting the bin threshold level is irrelevant for estimation but makes the figure

easier to read; one could alternatively plot mean log income relative to the minimum value in the bin.
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on average, I estimate an income reduction of 0.017 percent, and the share of households in the treatment

bin that bunch is 0.00033. The bunching ratio, which is expressed in thousands, indicates that the average

household in the treatment bin reduces income by $6, in contrast with the static approach estimates in Table

2 that approach $1000 on average in some simulations. Coverage rates are also appropriate with roughly

five percent of the estimates reject the true null of no bunching.

Table 5 displays the accuracy of the estimator under various degrees of serial dependence. Each cell of

the table gives the average of the estimates for a particular outcome and simulation. The standard error in

parentheses is the standard deviation of the estimates. As in Table 2 for the standard approach, I vary the

weight of potential income relative to observed income. A weight of 0 indicates perfect serial dependence, 1

indicates no serial dependence, and 2 indicates that bunching households’ income rebounds in the next-year,

as it would if base-year income was retimed. This weight is unrelated to the amount of bunching in the

base year, and hence all base-year estimates of the reduction in income and share of households above the

notch are similar. Moving to next-year outcomes, there should be no significant effects if there is no serial

dependence, and this is indeed what I find when the weight on potential income is 1. With positive serial

dependence (weight on potential income less than one), bunching has negative effects on next-year income.

Conversely, with negative serial dependence (weight on potential income greater than one), bunching has

positive effects on next-year income. Using the treatment-bin dummy as an instrument for base-year income

provides an estimate of its effect on next-year income, and one minus this coefficient gives an estimate of the

weight on potential income. The estimated weights are all slightly greater than the true weights, but they

are all within one standard error of the true values.

The simulations provide evidence that the temporary-notch estimator has good properties. This approach

can be used as an alternative to the standard approach in the cross-section, and with panel data it can be

used to estimate dynamic effects.

4.3 Application

Variation in the IRS reporting notch for public charities makes it possible to estimate effects of a temporary

notch. After decades with a notch at a nominal value of $100,000, the notch was moved to $1,000,000 for

2008, $500,000 for 2009, and $200,000 thereafter. The 2008 and 2009 notches were therefore only temporary

(one-year) phenomena that should not have induced either repeated bunching or manipulation at incomes

far from the level of the notch. I exploit this temporary nature, focusing on the 2009 notch, which fell at an

income level affecting many more charities than the 2008 notch.

I estimate Equation 2 using 2009 log receipts as the binning variable.17 I examine three different functions
17The results depicted in this section are obtained with a simple quadratic function of bin level, a range starting at receipts
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of income as outcomes. The first is simply income (log gross receipts), which is expected to be negatively

affected in 2009 by the opportunity to bunch. The second, labeled “Cross 2009 Threshold,” is an indicator

for whether an organization’s current receipts are above the level in its bin that correspond to the notch.18

Bunching should also have a negative effect on the probability that treated observations cross the 2009

threshold in 2009. Finally, I construct an indicator for current receipts that lie within the same bin that

the charity occupies in 2009. This dummy takes the value of one for all observations in 2009 but provides

another useful measure of pre-trends or long-term effects. Marx (2018) presents figures akin to Figure 3, and

these provide visual support for the continuity assumption.

Results of the temporary-notch regressions for charities appear in Table 6. Each cell of the table reports

the estimate of the parameter β for a different outcome and year. In the first row the outcome is log receipts,

which is negatively impacted in 2009, as expected. The coefficient for this year implies that the average

charity near the notch reduces log income by .003, i.e. reducing income by roughly $1500 ($500,000*.003).

Estimated deviations from expectation are negative for subsequent years, but standard errors are large

because in this setting (as will also be seen for the PSID), the distribution of year-over-year income growth

has fat tails. The alternative income measures, which focus on more central moments, can therefore offer

evidence that is more precisely estimated. In the second row, one can see that the probability of being above

the notch in 2009 is reduced by 10.1 percentage points among the treatment group. These charities are

not significantly different in this regard prior to 2009, but bunching in 2009 appears to cause a permanent

2 percentage-point reduction in the probability that treated charities ever achieve receipts greater than

$500,000. Similarly, the third row shows that while these charities were no more or less likely to be in their

year-2009 income bin in years before 2009, the probability that they remain in this bin (rather than growing

out of it) is permanently increased by at least .4 percentage points.

Permanent effects of a temporary notch provide evidence of positive serial dependence of income. Marx

(2018) discusses the apparent implication that manipulation in the charity setting was not entirely carried

out by misreporting income. Here I will emphasize the implication, taking into account the simulation results

in Section 3.3, that there is likely to be bias in static estimates of bunching at the repeated notch that was

in place for all sample years before 2008. That the static estimates are biased is consistent with the evidence

that follows.
greater than $100,000 to avoid lingering effects of the original notch, and log receipts bins of width .155, the width of the smallest
omitted range that provides robust static bunching estimates. This approach is still potentially susceptible to extensive-margin
responses, but for the temporary notch of 2009 this does appear to be a problem: the static estimate of excess mass below
the notch is not statistically different from the static reduced-mass estimate or from the dynamic estimate obtained from the
methodology described in Section 6, and the dynamic estimate of extensive-margin responses is not significantly different from
zero.

18This dummy variable indicates that the charity has receipts greater than .065 plus the level of the minimum income in the
bin that it occupies in 2009, since the minimum income in the treatment bin is .065 log points below the notch.
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5 Dynamic Bunching Estimation: Ordinary Least Squares Esti-

mation

This section describes another easily-implemented dynamic extension of the ordinary-least-squares binning

approach to bunching estimation. This extension can be applied to settings in which a notch is faced

repeatedly. Serial dependence is addressed by conditioning on past income.

5.1 Description of Method

Consider agents observed in a base year and the next year, with a notch existing in the next year and possibly

the base year as well. Figure 4 depicts such a situation using the smoothed PSID distribution. Panel A

of the figure shows the distribution of log income in the next year for two illustrative levels of base-year

income. Because modal growth is roughly zero, each conditional distribution of next-year income is centered

around the level of current income. For each group, the distribution of next-year income is distorted around

the notch as one would expect, with excess mass just to the left and reduced mass just to the right. Panel

B shows the distribution of growth rates for each group. Because income is logged, the growth rates are a

simple translation of the group’s next-year income that subtracts base-year income.

Panel B of Figure 4 conveys the intuition for a dynamic bunching estimation identification strategy.

Households with different levels of base-year income have similarly-shaped growth distributions, except that

each has a bunching distortion at growth rates that would take the household close to the notch. Because

the depicted groups are starting from different income levels, each approaches the notch at a different level

of growth, and hence the distortions lie in different parts of the two groups’ growth distributions. The extent

of the distortions can therefore be estimated by comparing the shape of one group’s growth distribution

around its notch to the corresponding, undistorted section of the growth distribution among households in

the other group. This insight can then be extended from two levels of base-year income to all levels, with

each providing a counterfactual distribution for the rest.

The dynamic bunching identification strategy can be implemented in a variety of ways. In theory, one

could estimate the entire multivariate density of income in all available years, but allowing for such generality

would be computationally expensive. I propose two implementations that focus on pairs of base-year log

income (rit) and growth to next-year income (git = rit+1 − rit). Section 6 presents an implementation using

MLE, while this Section adheres to a faster and more familiar approach of binning and using OLS. The

binning approach provides transparent evidence of whether agents manipulate income when approaching a

notch. If these income responses are local to the notch, then it is possible to construct treatment groups
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and control groups for a permanent notch in much the same way as for a temporary notch, as described in

Section 4. Also like the temporary-notch approach, outcomes of interest will be means of income or growth

conditional on falling within each bin.

To develop intuition before considering the full OLS implementation, consider restricting a dataset to

agents’ whose growth rate from any base year to the next year falls within a particular range. As an

illustration using the empirical application, Figure 5 plots the mean growth rate by bins of base-year income.

The sample includes all observations of charities growing log income by .1 to .2 between the base year and

the next year. For some bins of base-year income, this range of growth implies next-year income that is

near the notch but mostly or entirely to one side of it; these bins may therefore include a selected sample of

bunchers or non-bunchers, and hence they are depicted with light gray markers and excluded from estimation.

However, for the bin with base-year income between −0.18 and −.013, growth of .1 to .2 translates to a

range of future income that straddles the notch. Thus, agents in this bin should provide a sample that is

not selected based on whether an agent would bunch. This bin can therefore be labeled as the group treated

with the opportunity to bunch, as in the temporary-notch estimation. It is represented in the figure by the

filled circle with standard error bands. Empty circles display the growth rates of charities with higher or

lower base-year income, and the curve with standard error bands illustrates a quadratic fit to these control

bins. The interpolated counterfactual implies that average growth, conditional on growth in the range of .1

to .2, should be nearly .147 for charities nearing the notch, but the estimate for this group is instead less

than .145. The difference provides an estimate of the effect of nearing the notch on observed income.

A more general design incorporates multiple ranges of growth rates by stacking estimates for each of γ

different growth-rate bins of width ωg and maximum value labeled gbinit of equal width. Again, denote by

rit agent i’s log income in base year t, and label the growth rate to the next year’s income git = rit+1 − rit.

Bins of base-year income can be selected with width ωr and maximum value labeled rbinit. To estimate the

effect of nearing the notch on outcome Yit+1, I propose estimating equations of the form

Yit+1 = β ·NearNotchit +

K∑
k=0

∑
γ

αkγr
k
it · 1 [gbinit = γ] . (3)

Here, the “treatment” variable isNearNotchit = 1 [rbinit − ωr + gbinit − ωg < ρt+1 < rbinit + gbinit], which

indicates pairs of income and growth-rate bins that produce a range of next-year income that straddles the

notch ρt+1. As in previous methods, the α coefficients describe the counterfactual, which now varies in

two dimensions by allowing for a separate polynomial of base-year income for each bin of growth. As in

temporary-notch estimation, β gives the difference between the conditional mean of the outcome and what

is predicted by the counterfactual. If the outcome is either git or rit+1, then bunching would imply that
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β < 0. Note that base-year characteristics should not be affected by nearing the notch in the next year, and

hence interactions with these characteristics can be used to describe heterogeneity in the bunching response,

even if these characteristics are continuous variables.

Appendix B provides additional details. As Figure 5 indicates, some care is required in constructing the

treatment bins and choosing omitted bins. In the Appendix B propose the use of bin count as an outcome

to test the exogeneity of the treatment bin. I also describe the construction of a useful outcome variable

that provides a direct estimate of the share of agents who bunch.

5.2 Simulation

I evaluate the dynamic OLS approach with the same type of simulations used for the static and temporary-

notch approaches. Using the smoothed PSID income distribution, I generate 10,000 random samples of

100,000 observations in each. I induce bunching at the hypothetical notch at base-year income of $40,000,

then apply an observation’s growth rate to its (potentially bunching) base-year income to obtain next-year

income. I then estimate bunching in next-year income, for which the true value is zero, and examine the

bias, mean squared error, and coverage rates.19

Table 7 presents the results of the dynamic OLS simulation. The first row presents results for log income,

which would be reduced in the treated bins approaching the notch if households in these bins chose to bunch.

The coverage rate is close to 0.05, and the bias and root-MSE are very small. These magnitudes can be

evaluated more easily for levels than for logs because the static estimates offer a comparison in levels. The

second row of the table transforms the estimates to levels by exponentiating the direct estimates, which

changes the bias and root-MSE but not the coverage rage. The relevant comparison among the simulations

of static estimation is the top row of Table 2, in which the setup is identical because serial dependence is

perfect. Compared to the dynamic OLS estimates, the excess-mass static estimates (which performed better

than the reduced-mass estimates) have a coverage rate this is three times larger, root-MSE that is nearly 8

times larger, and absolute bias that is 2000 times larger. Moreover, the dynamic approach provides a direct

estimate of the effect of approaching the threshold on the probability of crossing it. The last row of Table 7

shows that for this outcome the absolute bias is half of one percentage point, and the coverage rate is less

than 0.06.
19The estimation uses base-year log-income bins of width 0.05, growth rate bins of width 0.1, and an omitted range of base-year

income of 10.55 to 10.65 (around the notch at log (40, 000) ≈ 10.6).
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5.3 Application

Dynamic OLS estimation can be performed with nearly the same ease as static estimation, and it can offer

several improvements. For one, it can address the identification issue posed by serial dependence, as shown

by the simulation. Another benefit is the opportunity to study heterogeneity in agents’ responsiveness to the

notch, particularly when this heterogeneity relates to time-varying characteristics. Such characteristics can

be made time-invariant, such as by defining them as having their value in the base year, and then interacting

them with the treatment-group dummy and potentially other variables. Using this approach, Marx (2018)

estimates that the responses of charities to the reporting notch are related to both size and staffing, providing

evidence describing the nature of the compliance cost and induced avoidance behavior.

Here I focus on the effect of the notch on long-run growth, which also cannot be estimated with the

standard design. The last row of Table 7 showed simulation results for a binary outcome indicating growth

exceeded that required to be above the notch at time t+1. Corresponding indicators can be defined for any

horizon h to estimate effects of approaching the notch at time t + 1 on crossing it at time t + h. 20 Table

8 displays the results of regressions with h varying from 1 to 12.21 For charities in the bins approaching

the notch in year t+1, the estimated counterfactual is that 40 percent should have income greater than the

notch at t+1, and 75 percent should have income above the notch in year t+10. The estimates in the table

suggest that bunching reduces these probabilities in both the short- and long-run. I find the largest effect, a

5.3 percentage point reduction, in the year that the notch is first approached. I then find effects of around

1.5 to 2 percentage points at all other horizons, implying that the notch permanently reduced the growth of

a significant number of charities.

6 Dynamic Bunching Estimation: Maximum Likelihood Estima-

tion

Dynamic OLS estimation is straightforward and provides a number of potential advantages over static OLS

estimation. However, as in static bunching estimation, this design will not account for extensive-margin

responses without additional assumptions. Moreover, the OLS estimates are unlikely to be efficient because

binning the data treats observations within a bin as equivalent, and throughout the literature, the choices

of bin widths and locations have been ad-hoc. To address these limitations, I now propose a maximum
20For the group with NearNotchit = 1, this outcome indicates exceeding the level of growth that would be required to cross

the notch at t+ 1. For those with NearNotchit = 0 it indicates a corresponding growth rate depending on position in the bin
of base-year income.

21Counterfactual estimated as a quadratic function of current receipts, controlling for growth-rate bins of width .1. The
sample includes charities within one log point of the notch in any starting year from 1990 to 1997 and growing by 0 to 1 log
points.
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likelihood bunching estimator.

6.1 Description of Method

Dynamic bunching estimation with MLE retains the flexibility of OLS estimation. This is because identifi-

cation is obtained by comparing parts of the joint distribution of income in multiple years, as was described

in Section 5 and depicted in Figure 4. OLS estimation involves choosing a functional form (the polynomial)

and then adding parameters as needed to flexibly fit the data. MLE estimation proceeds similarly, starting

from a functional form that reflects the fact that the researcher is estimating a probability distribution.22

As before, rit is a agent i’s log income in a base-year t, and growth to the next year is git = rit+1 − rit. A

researcher can first choose a functional form with parameters Θ for F ∗ (git|rit,Θ), the latent cdf that would

be observed if no observations were bunching or going missing from the data. Bunching and extensive-margin

parameters Ω can then be incorporated to construct the distribution F (git|rit,Θ,Ω) that is fit to the data.

Laplace (or “double exponential”) distributions offer a natural choice for the basic form of F ∗ (git|rit,Θ).

These distributions have been used extensively to model financial data and are described by Kotz et al. (2001)

as “rapidly becoming distributions of first choice whenever ’something’ with heavier than Gaussian tails is

observed in the data.”23 I estimate a flexible version of the Laplace cdf by allowing for flexible functions

Pl (g, r,Θ) and Pu (g, r,Θ) to enter the lower and upper pieces of the distribution:24

F ∗ (git|rit,Θ) =


exp (Pl (git, rit,Θ)) git < θ

1− exp (Pu (git, rit,Θ)) git ≥ θ

, (4)

where θ is a location parameter that I set equal to zero based on the shapes of the distributions in both

datasets. Appendix B motivates the focus on the cumulative distribution function and provides details of the

specification and implementation, including derivation of parameter restrictions that for flexible choices of

Pl (g, r,Θ) and Pu (g, r,Θ) while ensuring that the resulting function satisfies the properties of a probability

distribution. R code for implementation is available online.

Figure 6 provides a visual example using draws from the smoothed PSID distribution. The figure focuses

on illustrative base-year log income level of 0.2 less than the hypothetical notch at log ($40, 000). The

empirical density of growth rates conditional on this level of receipts (and others) is non-Normal, with

a sharper peak around zero growth and fatter tales, motivating the use of a Laplace distribution, as in
22Kopczuk and Munroe (2015) use MLE to estimate bunching within the static framework.
23See Kozubowski and Nadarajah (2010) for other applications.
24The symmetric Laplace distribution with location parameter θ and scale parameter σ has this form with Pl (g, r,Θ) =

Pu (g, r,Θ) =
∣∣∣ g−θ

σ

∣∣∣− log (2).
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Equation 4. It is also not well approximated by the basic, two-parameter Laplace distribution, requiring

higher-order functions for Pl (git, rit,Θ) and Pu (git, rit,Θ). The estimated functions, listed with other details

in the following Subsection on simulation, provide a counterfactual (dark curve) that approximates the PSID

distribution (circular markers). The notch for this level of base-year income occurs at a growth rate of 0.2,

and the omitted range is drawn around this. Using two other illustrative levels, the figure also displays how

the counterfactual varies with base-year income.

Responses to the notch are estimated by maximizing the likelihood of the observed data according to a

censored version, F (git|rit,Θ,Ω) , of the latent distribution F ∗ (git|rit,Θ). The added parameters Ω describe

bunching and attrition. The censoring occurs in the omitted region, which varies with rit, as depicted for one

level of rit in Figure 6. F ∗ (git|rit,Θ) determines the probabilities, for a given level of rit, that an observation

will appear in its bunching region or reduced region. Outside of this region, one can use the pdf derived

from F ∗ (git|rit,Θ). Attritors can be assigned a specific, fill-in value of git, and then attrition can also be

estimated with censoring. For example, in the simulation I treat all attritors as having rit+1 = log (10, 000),

with corresponding git, and then estimate a probability mass for this level of git that can vary with rit and

git. In this way, I capture extensive-margin responses of households whose next-year income would exceed

the notch-level growth ρit if they were observed. I do so by incorporating a parameter that shifts mass from

(1− F (ρit|rit,Θ)) to Pr (rit+1 = log (10, 000)).

6.2 Simulation

The simulation of MLE dynamic bunching estimation follows the earlier simulations. Again, observations

are generated from the bivariate PSID distribution. I draw 10,000 random samples of 10,000 observations, a

smaller sample size because the time required to obtain each MLE estimate is many times that for the OLS

estimates. As in previous simulations, I impose bunching in the base year but no bunching or notch-related

extensive-margin responses in the next year. I randomly select observations to attrit at a rate of about four

percent, matching the attrition rate among high-income households in the raw data. I estimate extensive-

margin responses of households that should cross the notch (as in the application below). I also allow for

attrition that is a flexible function of base-year income.25

Table 9 presents results from the simulation. I report estimates describing bunching and extensive-margin

responses, both of which have a true value of zero. The top row describes estimates of the share of bunchers

among the total number of households that should move to the reduced region. The second row reflects the
25Estimation uses base-year log incomes within 0.5 of the notch at log (40, 000) ≈ 10.6, with omitted range of next-year log

incomes of 10.5 to 10.9. The flexible functions Pl (git, rit,Θ) and Pu (git, rit,Θ) include a number of subfunctions of git, each
multiplied by a quadratic function of base-year log income. These subfunctions are quintic, exponential, and the arc-tangents
of each of 1, 2, and 3 times git. Attrition is estimated as a quartic and logarithmic function of rit.
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estimated effect on the income of these households, and the third row represents estimates of the percentage

of those that should cross the notch that instead exit the sample. Despite the imperfect specification of the

counterfactual, as seen in Figure 6, all of these estimates exhibit a bias close to zero and a coverage rate

close to 5 percent.

6.3 Application

For the charity application, I estimate functions similar to those used for the simulation.26 The latent

distributions are similar to the PSID distributions in Figure 6, but attrition is more common in the charity

data. Attrition could be due to late filing, earning income below the level at which filing is required, shutting

down, merging, or simply failing to comply with the reporting requirement. I estimate types of attrition

that vary with rit and may or may not be systematically related to the notch.27

Table 10 displays maximum likelihood dynamic bunching estimates. The first column provides static

bunching estimates for comparison with the dynamic bunching estimates in the second column. The top

panel of Table 10 shows estimates of parameters governing bunching and systematic attrition. The first

parameter gives the bunching propensity among charities that have base-year receipts below the notch. An

estimated 2.6 percent of the charities that should enter the reduced range from below are instead bunching.

The second row shows this bunching propensity is lower for those with current receipts above the notch (who

have already filed Form 990 in the base year).

The third and fourth rows in the table show that attrition is systematically related to the notch. The

estimated parameters indicate the share of charities that should be crossing the notch from below but instead

go missing from the sample. This is estimated separately for those that would have entered the reduced

range and those that would have grown to a point further above the notch. These estimates turn out to be

similar and highly significant, revealing extensive-margin responses by 8 or 9 percent of charities that should

cross the notch. Comparing the attrition and bunching propensities, a combined 10.6 percent of charities

avoid filing when first crossing the notch to the reduced range, and the number of charities doing so by

bunching is dwarfed by the number responding on the extensive margin. The static approach provides no

such estimates of these extensive-margin responses.

The lower panel of Table 10 reveals the estimated excess share of charities below the notch and reduction
26The charity notch occurs at ρ = log (100, 000) ≈ 11.51, and I include in the sample all observations with rit < 14. The

omitted range of next-year log incomes is (log (95, 000) , log (130, 000)). The flexible functions Pl (git, rit,Θ) and Pu (git, rit,Θ)
again include a number of subfunctions of git, each multiplied by a quadratic function of base-year log income. These subfunc-
tions are linear, exponential, the exponent of the square, and the arc-tangent. The argument of the arctangent is also multiplied
by a quadratic function of base-year log income. I adjust F (git|rit,Θ,Ω) to account for truncation of the sample due to the
fact that agents with income below $25,000 do not have to report.

27Baseline attrition is estimated as a quadratic function of rit. I allow this attrition rate to have additional slope and intercept
terms for rit > ρ. As explained in the description subsection for this method, I also estimate extensive-margin responses of
charities that should cross from below the notch to either the reduced range or to even higher levels of income.
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in the share above it. The excess and reduction are found by aggregating the bunching and attrition

propensities across all observations in the base year according to their counterfactual probability of moving

to the reduced region in the next year. The dynamic estimates of the share of charities that appear in the

bunching range exceeds by .103 percentage points (or roughly 200 charities per year) the quantity that would

have been found in the absence of a response. Consistent with the difference in estimated magnitudes of

the propensities to bunch or leave the sample, the reduction of mass in the range just above the notch is

significantly greater at .366 percentage points. Applying the static approach gives estimates of the excess

and reduced mass that are much closer to each other, and both are significantly different from the dynamic

estimates. Finally, the bunching ratio gives the ratio of excess bunching mass to the counterfactual density

at the notch, here reported for the density in levels so that the ratio can be interpreted as a dollar amount.

This ratio gives an estimate of average willingness to forego income to bunch, and as with the non-normalized

excess-mass estimates, the result of static estimation appears to be biased upward by a factor of nearly two.

Finally, Figure 7 provides a depiction of the difference between the two estimation approaches. The figure

plots the density of receipts in the next year and estimated counterfactual densities. The MLE counterfac-

tual is what Kleven and Waseem (2013) refer to as “a ’partial’ counterfactual stripped of intensive-margin

responses only.” Due to serial dependence of income and extensive-margin responses, the counterfactual is

not smooth at the notch. That is, even if charities did not bunch in these years, the density would not be a

smooth function of income as assumed in the static approach. The static approach estimates a smooth curve

connecting the discontinuous pieces of the density, and as can be seen in the figure, this will underestimate

the density below the notch and therefore overestimate the excess mass in the bunching region. Also, because

the density is reduced everywhere above the notch, treating it as unaffected by the notch assumes away some

of the true reduction above the reduced range and so underestimates the reduction in the reduced range.

The figure shows that static bunching estimation conflates multiple responses, including repeated bunching

and extensive-margin responses, and is not directly informative of the underlying behavior.

7 Conclusion

This paper proposes new tools for analyzing bunching and provides evidence on the behavior of charities.

Dynamic bunching estimation offers an identification strategy based on assumptions that are likely to hold

in more general settings than the assumptions required for static estimates. Simulations demonstrate the

robustness of dynamic estimators to factors that bias the static estimator. The differences in estimates

can be quite large, as seen in an application to bunching at a reporting threshold for charities. Dynamic

estimation also provides new opportunities to describe behavior by estimating extensive-margin responses,
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preference heterogeneity, long-run effects of approaching a notch, and the effect of bunching in one year on

income in subsequent years.

Data analysis suggests a number of diagnostics that researchers can use to test for potential bias in static

bunching estimates. Researchers studying notches can, even with only a single cross section of data, perform

a statistical test of whether the excess mass to one side of the notch equals the reduction in mass on the other

side. This test can be generalized by estimating the counterfactual distributions separately on each side of

the notch (Kopczuk and Munroe 2015). With repeated cross sections, the researcher can examine whether

bunching or donut-RD estimates vary by year, and in particular whether mass accumulates or discontinuities

grow over time. With panel data, the researcher can compare the static and dynamic OLS estimates to assess

whether estimation with dynamic MLE appears warranted. Finally, with a temporary notch, the researcher

can estimate the degree of serial dependence in income.

Dynamic bunching estimation can be used to learn from agents’ responses to a variety of thresholds.

Early bunching papers focused on tax and labor supply elasticities, but the design is being applied in a

widening array of settings. The tools presented in this paper apply to notches, which may induce responses

in such decisions as income choices around the eligibility limits of social welfare programs, housing choices

around school district and political boundaries, commerce around tolls and security checkpoints, product

pricing with quantity discounts, or charitable fundraising strategies that reward gifts above discrete size

thresholds. Future work could extend these methods to estimating bunching at kinks. Across settings,

dynamic bunching designs will offer researchers tools to take greater advantage of panel data.
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Figures and Tables

Figure 1: Bunching After Introduction of Notch with Serially-Dependent Incomes

A. 10 years later, w/ and w/o serial dependence
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Notes: The figure depicts distributions of income in years after the introduction of a notch that induces bunching. Income
growth follows all 10-year income profiles drawn from the PSID, with observations copied and base-year incomes smoothed
as described in Section 3.3. Income in years after the base year is either serially dependent, meaning that it grows from the
observed income in the prior year, or not, meaning that it grows from the potential income that would have been earned if a
household had not bunched. Panel A shows that the distribution of income 10 years after introduction of the notch depends
on whether income is serially dependent. Panel B shows the difference that serial dependence makes in the evolution of income
over time.

Figure 2: Standard bunching estimation
A. Charities
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Notes: The figure depicts standard bunching estimation with charity data (Panel A) and the smoothed PSID income distribution
described in Section 3.3 (Panel B). In both panels, the underlying data are represented by a histogram in blue circles, and each
bin is treated as an observation. Bin counts are regressed on a polynomial, which estimates the counterfactual distribution
depicted by the red curve, and a dummy variable for each bin in the omitted range indicated by the dashed lines. Excess
“bunching” mass is calculated as the sum of coefficients on dummy variables for each bin in the bunching region between the
first dashed line and the solid line at the notch. Similarly, the estimated reduction in mass above the notch is the sum of
coefficients on dummies for the bins between the solid line and second dashed line. For Panel A, the polynomial has degree 3,
the omitted range is $80-130,000, bin width=$1000, and N=264,770. For Panel B, the polynomial has degree 5, the omitted
range of $35-55,000, bin width=$2500, and N=100,000.
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Figure 3: Effect of a Temporary Notch on Income in Notch Year

A. Base-Year Income
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B. Next-Year Income
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Notes: The figure shows results of temporary-notch dynamic bunching estimation performed on data in the year of bunching.
The sample consists of 100,000 observations generated from the smoothed PSID income distribution described in Section 3.3.
Bins have width .2, and the width of the bunching range is .05, meaning that the notch lies .05 from the minimum income in
the range defining the treatment bin, and the bin threshold for each bin is its minimum plus .05. The outcome in Panel A
is the difference between log income and the bin threshold. The outcome in Panel B is a dummy variable for having income
above the bin threshold. The curve in each figure is a counterfactual estimated as a cubic polynomial through non-treatment
bins. Due to bunching, the average observation in the treatment bin surrounding the threshold has a lower income and lower
probability of being above the notch than it would have in the absence of bunching.
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Figure 4: Illustration of Identification in Dynamic Bunching Estimation
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Notes: The figure shows the distribution of next-year log income (Panel A) and growth from base-year income to next-year
income (Panel B) for households in two illustrative levels of base-year income. The sample is generated from the smoothed
PSID income distribution described in Section 3.3. Due to bunching, the distributions for each group exhibit a spike just below
the notch and a depression just above it. The growth distribution of each group is similar except around the notch, which
appears in a different part of each distribution. Because the growth distribution does not vary too much with current income,
growth distributions for varying levels of base-year income can be compared to estimate the extent of distortion to the rates of
growth that bring households close to the notch.
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Figure 5: Growth of Treated Charities vs. Counterfactual for an Illustrative Bin of Growth Rates
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Filled circle represents observations growing to the omitted range of −.08 to +.07.
Quadratic fit to those that stay fully below or above it (represented by dark empty circles).

Notes: The figure shows growth of income from the current year to the next year as a function of current income (recentered
around the reporting notch at $100,000). The figure sample consists of organizations in an illustrative growth bin that includes
are organizations with growth between .1 and .2 log points. The marker with a 95-percent confidence interval represents the
bin (defining the “near notchit” dummy described in the text) for which growth of .1 to .2 implies that future receipts lie in
the “omitted range” straddling the notch. The conditional average growth rate of these charities is just below .145, which is
significantly less than the counterfactual growth rate interpolated from charities with higher and lower current incomes. The
difference is interpreted as a measure bunching; some charities that approach the notch reduce their income to stay below it,
and therefore conditional average growth is less than predicted. N=152,191. Omitted range is -.08 to .07. Bin width = .05.

Figure 6: Estimation of the Distribution of Household Income Growth Rates
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Notes: The figure shows the density of growth in log income conditional on current income for an illustrative group of households.
The curve depicts the estimated counterfactual that has been fit to draws from the smoothed empirical density depicted by
circular markers, which was generated from the smoothed PSID income distribution described in Section 3.3. The figure sample
contains 30,000 households starting from a range of income levels 0.2 to 0.3 log points below the hypothetical notch at $40,000.
The notch for each household therefore lies at a growth rate of 0.2 to 0.3, and if households bunched there would be excess
mass in or below this range.
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Figure 7: Non-smooth Counterfactual Distribution of Charities’ Income
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Notes: The dynamic bunching estimation fits growth rates from each base year of data to the next year, and the figure shows
the density of log gross receipts in the next year. Details of the dynamic estimates are provided in Section 6 and Appendix B.
Both the dynamic and static estimates of the counterfactual fit the observed distribution fairly closely away from the notch.
The counterfactual estimated using the dynamic MLE strategy is not smooth around the notch because it allows for extensive
margin responses. The two estimation strategies imply different counterfactual distributions within the omitted range around
the notch and therefore give different estimates of the amount of bunching. N=2,815,026.

Table 1: Bias of Static Estimates in Simulation with Extensive-Margin Responses

Responder Reduced-Mass Estimates Excess-Mass Estimates

Share Bias Coverage Root-MSE Bias Coverage Root-MSE

0  -90 0.051 516   72 0.068 213

.01    2 0.049 506  103 0.078 227

.02  103 0.055 529  128 0.095 243

.05  438 0.132 690  207 0.166 295

.10 1023 0.450 1161  362 0.374 423

Notes: The table shows results of static bunching estimation performed on data with no bunching. Thus, the estimate for
each outcome should equal zero, and the coverage rate should be close to 0.05. Each row presents results for 10,000 random
samples of 100,000 observations generated from the smoothed PSID income distribution described in Section 3.3. The outcome
is the common bunching-ratio estimate of the average number of dollars of income foregone by bunchers: either the reduced or
excess number of observations, depending on column, divided by bin width and counterfactual number of observations. The
Responder Share is the percentage of observations with incomes above the threshold that exhibit extensive-margin responses,
i.e. are dropped from the data. Responders are drawn at random. Hypothetical notch at income of $40,000. Estimation using
5th-order polynomial with omitted range of $35,000 to $55,000.
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Table 2: Bias of Static Estimates in Simulation with Serially-Dependent Income

Weight on

Base-Year Reduced-Mass Estimates Excess-Mass Estimates

Potential Income Bias Coverage Root-MSE Bias Coverage Root-MSE

0  879 0.358 1040  210 0.161 306

.5  251 0.074 602  150 0.103 269

1.0   51 0.050 549   -7 0.051 222

1.5  250 0.074 606 -177 0.125 285

2  623 0.199 837 -315 0.289 387

Notes: The table shows results of static bunching estimation performed on data for the year after bunching. Thus, the estimate
for each outcome should equal zero, and the coverage rate should be close to 0.05. Each row presents results for 10,000 random
samples of 100,000 observations generated from the smoothed PSID income distribution described in Section 3.3. The outcome
is the common bunching-ratio estimate of the average number of dollars of income foregone by bunchers: either the reduced or
excess number of observations, depending on column, divided by bin width and counterfactual number of observations. The
weight on base-year potential income captures serial dependence; if the weight is ω and, in the base-year, observed income is Io
and potential income is Ip, then next-year income depends on ωIp + (1− ω) Io. Thus, ω = 1 implies no serial dependence on
observed income, ω = 0 implies that only observed income matters, and ω = 2 implies that agents who bunch in the base year
grow by more in the next year (e.g. if income is retimed from the base year to the next year). Hypothetical notch at income
of $40,000. Estimation using 5th-order polynomial with omitted range of $35,000 to $55,000.

Table 3: Static Bunching Estimates for CharitiesTable 1: Static Bunching Estimates

Basic Discontinuous Two-Sided

Excess mass below the notch (*100) .148∗∗∗ .135∗∗∗ .152
(.020) (.029) (.093)

Bunching ratio (*100) .592∗∗∗ .537∗∗∗ .608∗

(.096) (.123) (.312)
Reduction in mass above the notch (*100) .250∗∗∗ .223∗∗∗ -.055

(.026) (.049) (.066)

Notes: The table shows deviations of the binned income distribution from a counterfactual estimated in the range of $50-200,000.
In the Basic specification, the counterfactual is a cubic in gross receipts. The Discontinuous specification allows for a disconti-
nuity at the notch, and the Two-Sided specification allows for a separate quadratic on each side of the notch. The excess mass
shows the estimated extra share of charities with incomes below the notch relative to the counterfactual, the bunching ratio
is the ratio of the excess mass to the counterfactual density at the notch, and the reduction above the notch is the difference
between the counterfactual and actual share above. The Basic specification indicates that .148 percent of charities appear below
the notch when they shouldn’t, which is roughly equal to the number of charities that should be above the notch by up to
$600 (=$100,000*.00592 because the bunching ratio is reported with the density in log scale). The reduction in the number of
charities above the notch is significantly larger than the addition below the notch, suggesting either misspecification or missing
observations, and the flexible specifications do not reconcile the two results. The sample includes observations in years up to
2007 for charities also appear in the prior year (for comparability with the dynamic estimates). Bin width = $250. N = 969,842
in the range used for estimation and 2,907,476 total. *** p<0.01, ** p<0.05, * p<0.1

Table 4: Simulation of Temporary Notch: No Bias with No Bunching
Variable Bias Coverage Root-MSE

Log Income -0.00015 0.07 0.001

Income -5.85 0.07 31.46

Cross -0.00005 0.06 0.003

Notes: The table shows results of temporary-notch dynamic bunching estimation performed on data with no bunching. Thus,
the estimate for each outcome should equal zero, and the coverage rate should be close to 0.05. 10,000 random samples of
100,000 observations were generated from the smoothed PSID income distribution described in Section 3.3. Each row presents
results for an outcome: “Income” is log taxable income, “Cross” is a dummy for having income above the level of the bin
corresponding to the notch, and the “Bunching Ratio” is the product of the Income effect and the counterfactual average
income level. Hypothetical notch at income of $40,000. Estimation using 3rd-order polynomial in log income with treatment
and other bins of width 0.2.
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Table 5: Temporary-Notch Simulations by Outcome and Degree of Serial Dependence of Income

Weight on Estimated Base-Year Base-Year Next-Year Next-Year

Potential Income Weight Log Income Cross Log Income Cross

0 0.06 -0.038 -0.419 -0.036 -0.419

(0.195) (0.001) (0.006) (0.008) (0.006)

0.5 0.605 -0.038 -0.419 -0.015 -0.004

(0.196) (0.001) (0.006) (0.008) (0.003)

1 1.116 -0.038 -0.419 0.004 -0.004

(0.197) (0.001) (0.006) (0.008) (0.003)

1.5 1.598 -0.038 -0.419 0.023 -0.004

(0.199) (0.001) (0.006) (0.008) (0.003)

2 2.049 -0.038 -0.419 0.04 -0.004

(0.202) (0.001) (0.006) (0.008) (0.003)

Notes: The table shows results of temporary-notch dynamic bunching estimation performed on data in the year with bunch-
ing (“Base-Year”) and the subsequent year (“Next-Year”). Each row presents results of 10,000 random samples of 100,000
observations generated from the smoothed PSID income distribution described in Section 3.3, with weights determining serial
dependence of income as described in the notes of Table 2. Outcomes across columns include the estimate of the weight on
base-year potential income, log income, and the “Cross” dummy for having income above the notch. Each cell contains the
average estimate of the effect of being in the treated range around the notch, and the standard deviation of the estimates
appears in parentheses. Bunching reduces income and crossing in Year 1, and if potential income does not have weight equal
to 1 then this affects income and crossing in year 2. Hypothetical notch at income of $40,000. Estimation using 3rd-order
polynomial in log income with treatment and other bins of width 0.2.

Table 6: Temporary-Notch Estimates for Charities

2007 2008 2009 2010 2011 2012

Log Receipts -0.001 0.009 -0.003 -0.007 -0.013 -0.018

(0.010) (0.008) (0.001)*** (0.008) (0.009) (0.012)

Cross 2009 Threshold 0.003 0.006 -0.104 -0.022 -0.020 -0.018

(0.008) (0.008) (0.007)*** (0.008)*** (0.008)** (0.010)*

Same Receipts as in 2009 -0.000 0.001 0.005 0.004 0.007

(0.001) (0.002) (0.002)** (0.002)* (0.003)***

Observations 48,716 107,579 105,160 127,855 115,601 104,760

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: The table shows the results of regressions of three different variables on a quadratic function of binned log receipts in
2009 and a “Near Notch” dummy for the bin that straddles the $500,000 notch for that year. The table shows the estimate of
the coefficient on the “Near Notch” dummy, which represents the causal effect of having income near the notch in 2009. The
first row shows that log receipts of charities near the threshold in 2009 are significantly lower than expected in that year, as
expected due to bunching. Point estimates remain negative in subsequent years but standard errors are large. The outcome in
the second row is a dummy for crossing the level of growth corresponding to the notch ("Cross" as defined in the text). The
coefficients indicate charities experience a significant, permanent reduction of at least one percentage point in the probability of
having income over $500,000 in any year after 2009. The outcome for the third row is an indicator equal to one if the charity is
in the same log receipts bin that it is in 2009, and the results indicate that charities are significantly less likely to have grown out
of their bin in 2009. In years before 2009 there are no significant differences between the treated charities and the interpolated
counterfactual. Robust Huber-White standard errors are displayed. Bins have width .155 and extend from 1.615 log points
below the notch to 3.19 log points above it (roughly $100,000 to $12 mil). These parameters give 35 control bins in addition to
the treatment bin, and bunching estimates are robust to changes in these parameter choices. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Dynamic OLS Estimates in Simulation with Serially-Dependent Income

Variable Bias Coverage Root-MSE

Log Income -0.000003 0.053 0.001

Income -0.105 0.053 38.46

Cross -0.005 0.059 0.017

Notes: The table shows results of OLS dynamic bunching estimation performed on data with bunching occurring in the base
year but no bunching and no extensive margin responses in the next. Thus, the estimate for each outcome should equal zero,
and the coverage rate should be close to 0.05. 10,000 random samples of 100,000 observations were generated from the smoothed
PSID income distribution described in Section 3.3. “Log Income” is the estimated effect of moving to the omitted range, which
will be negative if households bunch. “Cross” is a dummy for having income growth putting the household above the notch or
its equivalent for the household’s starting income and growth bin. Hypothetical notch at income of $40,000. Estimation using
log income, omitted base-year range of 10.55 to 10.65, and growth rate bins of width 0.1.

Table 8: Dynamic OLS Estimates for CharitiesTable 1: Share Having Crossed the Growth Rate Corresponding to the Notch, (t) Years Ahead

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Near Notch -0.053∗∗∗ -0.021∗∗∗ -0.018∗∗ -0.015∗∗ -0.016∗∗ -0.017∗∗∗ -0.016∗∗ -0.015∗∗ -0.017∗∗∗ -0.022∗∗∗ -0.012∗ -0.014∗∗∗

(0.009) (0.007) (0.007) (0.007) (0.007) (0.006) (0.008) (0.006) (0.005) (0.006) (0.007) (0.005)

N 307,526 260,209 261,771 256,548 252,669 247,364 245,228 240,193 234,728 231,303 225,570 221,296

Notes:
Near Notch indicates lead recentered log receipts of -.08 to .07.

Outcome is growth greater than the rate corresponding to the notch. (See text.).
Log receipts bin width = .05. Growth rate bin width = .1. Starting years up to 1997.

All regressions include quadratics in log receipts and growth bin.
Standard errors clustered by state.

Notes: The table shows the results of regressing a dummy for crossing the level of growth corresponding to the notch ("Cross"
as defined in the text) (t) years in the future on the “Near Notch” dummy for bins that straddle the notch in the next year,
controlling for bins of growth rate (of width .1) and a quadratic function of current receipts. The coefficients show charities
a significant reduction of at least one percentage point in the probability of crossing the notch at all horizons. The sample
includes charities within one log point of the notch in any starting year from 1990 to 1997 and growing by 0 to 1 log points.
Standard errors are clustered by state. *** p<0.01, ** p<0.05, * p<0.1

Table 9: Dynamic MLE Estimates in Simulation with Serially-Dependent Income

Variable Bias Coverage Root-MSE

Share Bunching -0.0003 0.049 0.008

Income Reduction -9.20 0.049 241.1

Share Exiting 0.0039 0.052 0.025

Notes: The table shows results of MLE dynamic bunching estimation performed on with bunching occurring in the base year
but no bunching and no extensive margin responses. Thus, the estimate for each outcome should equal zero, and the coverage
rate should be close to 0.05. 10,000 random samples of 10,000 observations were generated from the smoothed PSID income
distribution described in Section 3.3. “Bunching” is the percentage of households, of those that would have moved into the
reduced range, who instead bunch below the notch. “Extensive Margin” is the percentage of households, of those that would
have crossed from below the notch to above, who instead exit the sample. Hypothetical notch at income of $40,000. Estimation
using log income and omitted range of 10.5 to 10.9.
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Table 10: MLE Estimates for CharitiesTable 1: Maximum Likelihood Bunching Estimation Results

Static Dynamic Dynamic
1991-2007 1991-2007 2010 & 2011

Share bunching from below notch 0.026∗∗∗ 0.048∗∗∗

(.003) (.012)
Share bunching from above notch 0.005∗∗∗ 0.007∗∗

(.001) (.003)
Attrition of those crossing to reduced range 0.080∗∗∗ 0.036∗∗∗

(.004) (.011)
Attrition of those crossing to higher incomes 0.093∗∗∗ 0.001

(.005) (.011)

Excess mass just below the notch (*100) .194∗∗∗ 0.103∗∗∗ .105∗∗∗

(.017) (.007) (.017)
Reduction in mass in reduced range (*100) .293∗∗∗ 0.354∗∗∗ .193∗∗∗

(.019) (.012) (.025)
Bunching ratio 753.21∗∗∗ 404.92∗∗∗ 933.99∗∗∗

(67.04) (65.14) (150.56)

N 2,196,564 2,815,026 386,805

Notes: Standard errors in parentheses calculated using the Delta Method.
N = .

Notes: The table shows the results of maximum likelihood dynamic bunching estimation, along with static estimates on similar
sample for comparison. The top panel of the figure provides estimates from the dynamic design that cannot be obtained from the
static approach. The top two parameter estimates indicate that charities that approach the notch from below are significantly
more likely to manipulate receipts to remain below the notch in the next year. The next two parameter estimates imply that
significant share of the charities with current income below the notch should grow to an income level above the notch but
instead exit from the sample. The lower panel shows that the static approach overestimates the excess number of organizations
just below the notch and underestimates the number that should be just above it. All regressions allow for attrition that can
vary with current income as described in the text. The sample size for static estimation is smaller than that for dynamic
because the latter includes all charities appearing in the base year while the former excludes charities that were missing or far
above the notch in the next year, but static estimates are rescaled to have the same denominator as the dynamic estimates for
comparability. Standard errors for dynamic estimates are calculated numerically. *** p<0.01, ** p<0.05, * p<0.1
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Appendices, For Online Publication

Appendix A - Examples of Serial Dependence

First, consider a simple discrete income distribution d =

[
d1 d2 d3 d4

]
that is left-multiplied by a

transition matrix

T =



1 0 0 0

0 1 0 0

0 .05 .95 0

0 0 0 1


The matrix T provides a discrete-case example with perfect serial dependence and a stochastic compliance

cost that causes some bunching in the form of shifting of mass from d3 to d2. If the initial distribution is[
.4 .3 .2 .1

]
, then the distribution after one period is

[
.4 .31 .29 .1

]
. A counterfactual distri-

bution estimated from a linear combination of d1 and d4 will correctly recover the initial values of d2 and d3

and the amount of bunching that occurred. The limit distribution, however, is
[

.4 .5 0 .1

]
. The re-

searcher estimating the same linear counterfactual would obtain a bunching estimate of .2. Such an estimate

reflects the full accumulation of excess mass over numerous periods’ choices rather than a description of the

choice itself. If one were to generalize T to include positive probabilities of transition between each pair of

states then the empirical challenge would be even greater because today’s bunching would affect tomorrow’s

values of d1 and d4, and bunching estimation relies on the assumption that the distribution is unaffected at

levels sufficiently far from the notch. Static estimation would not identify the share of agents that will bunch

or the amount by which they will be willing to reduce income (respectively b and δ̄ in the model of Section 3)

but rather some unknown function of these parameters and the rates of transition between different income

levels.

Alternatively, suppose the conditional distribution of income in the next period is discrete-continuous

with strictly positive mass at today’s income level. Say that income has observed distribution ft (yt)

in the current year, and the pre-bunching (counterfactual) cumulative distribution function (cdf) for the

following year is given by Ft+1 (yt+1) =
∫
Gt+1 (yt+1|yt) ft (yt) dy, with Gt (yt+1|yt) = α · 1{yt+1≥yt} +

(1− α)Ht (yt+1|yt) for some constant α ∈ (0, 1) and continuous cdf Ht (yt+1|yt). Say there is a notch

at yt = n and bunching at the notch in current year. Then lim
yt+1→n+

Ft+1 (yt+1) − lim
yt+1→n−

Ft+1 (yt+1)=

lim
yt+1→n+

∫ [
α · 1{yt+1≥yt} + (1− α)Ht (yt+1|yt)

]
ft (yt) dy− lim

yt+1→n−

∫ [
α · 1{yt+1≥yt} + (1− α)Ht (yt+1|yt)

]
ft (yt) dy=

α

[
lim

yt+1→n+
Ft (yt+1)− lim

yt+1→n−
Ft (yt+1)

]
6= 0.



Appendix B - Details of Dynamic Bunching Designs

1. Ordinary Least Squares

This appendix describes a useful outcome in binning designs and then bin selection. The useful outcome

provides a direct estimate of the share of agents that bunch. Consider a growth rate range/bin of [γ, γ + .1),

a notch ρit+1, a bunching (excess-mass) range of width ωE , and bins of current income rit with minimum

values denoted by rminit. The treatment bin of current income has minimum value rminit = ρit+1 − ωE −

γ. Agents with income at the minimum of this bin will cross the notch if they grow by γ + ωE . Other

agents in the bin will cross the notch if growth is greater than γ + ωE − (rit − rminit). Let crossγit =

1 [git > γ + ωE − (rit − rminit)]. This same outcome is relevant for all observations, regardless of bin, and

indicates whether the agent achieves growth at a rate that would correspond to the notch if the observation

were in the treatment bin. Because crossγit only has significance for the treatment bin, the probability that

crossγit = 1 should be reduced in the bin of interest by the share of agents that bunch, and it should not

be affected for other bins. This outcome for growth bin γ can then be generalized to all levels of growth by

defining crossit =
∑
γ
(crossγit ∗ 1 [γ ≤ growthit < γ + .1]).

One issue to be considered for any binning approach to bunching estimation is bin selection. In the

dynamic binning designs, the treatment bins with NearNotchit = 1 should be constructed so as not selected

on bunching status. Thus, for each growth bin γ, the treated bin (denoted here by indicator NearNotchγit)

should not differ in the number of agents from what would be predicted by a counterfactual constructed

from other bins. This suggests a test that the choice of bins is reasonable: estimate equation 3 separately

for each growth rate range, using the base-year bin count as the “outcome,” and then test the hypothesis

that ∀γ,NearNotchγit has no effect on bin count. In the charity application, this test fails to reject, with

p-value .1361. Marx (2018) provides a figure depicting this test for charities with growth of log receipts in

the range of [0.1, 0.2), which appears similar to Figure 5 here but shows that the count in the treatment

bin is in line with the counterfactual. The choice of bin width and location remains ad-hoc, as it has been

throughout the bunching literature; an econometric procedure for optimal bin construction remains a topic

for future research.

2. Maximum Likelihood Estimation

It is possible to perform maximum likelihood estimation by estimating a flexible function for the pdf and

constraining it to integrate to unity, but starting from the cdf offers several advantages. First, it is desirable

to estimate excess attrition among those who cross the notch or points of sample truncation, and the cdf gives



the probabilities of these occurrences. Second, the cdf makes it straightforward to constrain the reduced

mass to equal the bunching mass (except for differences due to systematic attrition). Third, truncation

requires integration of the likelihood between limits that vary with the level of current receipts, a practical

issue for programs performing multidimensional integration. A disadvantage of specifying the cdf is the need

for functions that appear more arbitrary than their derivatives. For example, I include inverse tangents to

allow for curvature at growth rates close to zero because the derivative of arctan (x) is 1
1+x2 .

As noted in equation 4, the latent cdf of conditional growth for the Laplace family of distributions can

be written as

F ∗ (git|rit,Θ) =


exp (Pl (git, rit,Θ)) git < θ

1− exp (Pu (git, rit,Θ)) git ≥ θ

.

To simplify notation slightly, I will hereafter omit the subscripts on git and rit. I am able to obtain a

reasonable fit for the both the PSID and charity data with slight variants of the following structure.

Pl (g, r, θ) = πl
0,0 + πl

0,1r + πl
0,2r

2 +
(
πl
1,0 + πl

1,1r + πl
1,2r

2
)
(g − θ) +

(
πl
2,0 + πl

2,1r + πl
2,2r

2
)
[exp (g − θ)− 1]

+
(
πl
3,0 + πl

3,1r + πl
3,2r

2
) [

exp
(
− (g − θ)

2
)
− 1

]
+
(
πl
4,0 + πl

4,1r + πl
4,2r

2
)
arctan

((
πl
5,0 + πl

5,1r + πl
5,2r

2
)
(g − θ)

)

Pu (g, r, θ) = h (r) +
(
πu
1,0 + πu

1,1r + πu
1,2r

2
)
(g − θ) +

(
πu
2,0 + πu

2,1r + πu
2,2r

2
)
[exp (− (g − θ))− 1]

+
(
πu
3,0 + πu

3,1r + πu
3,2r

2
) [

exp
(
− (g − θ)

2
)
− 1

]
+
(
πu
4,0 + πu

4,1r + πu
4,2r

2
)
arctan

((
πu
5,0 + πu

5,1r + πu
5,2r

2
)
(g − θ)

)
I now list, and impose as needed, conditions to constrain F ∗ (g|r,Θ) to have properties of a cumulative

distribution function. First, the function must have infimum 0 and supremum 1. The appropriate limits can

be achieved by two sets of restrictions on the parameters:

1.
(
πl
1,0 + πl

1,1r + πl
1,2r

2
)
< 0 ⇒ lim

g→−∞
Pl (g, r,Θ) = −∞ ⇔ lim

g→−∞
F ∗ (g|r,Θ) = 0

2.
(
πu
1,0 + πu

1,1r + πu
1,2r

2
)
< 0 ⇒ lim

g→∞
Pu (g, r,Θ) = −∞ ⇔ lim

g→∞
F ∗ (g|r,Θ) = 1

Both constraints are easily implemented by using exponentiated coefficients in the numerical maximization.



Second, F ∗ (g|r,Θ) must be nondecreasing. Because the posited functional form has one point of non-

differentiability at g = θ, the nondecreasing property requires lim
g→θ−

F ∗ (g|r,Θ) ≤ lim
g→θ+

F ∗ (g|r,Θ). I require

this relation to hold with equality, giving continuity of the cdf and ruling out point mass at a growth rate of

θ. This gives

exp (Pl (θ, r,Θ)) = 1− exp (Pu (θ, r,Θ))

exp
(
πl
0,0 + πl

0,1r + πl
0,2r

2
)
= 1− exp (h (r))

3. h (r) = log
(
1− exp

(
πl
0,0 + πl

0,1r + πl
0,2r

2
))

The implied latent density is

f∗ (git|rit,Θ) =


P ′
l (g, r,Θ) exp (Pl (g, r,Θ)) g < θ

−P ′
u (g, r,Θ) exp (Pu (g, r,Θ)) g ≥ θ

where P ′
l (g, r,Θ) = and P ′

u (g, r,Θ) are derivatives with respect to g. These derivatives can be assured

of the correct sign by exponentiating each of the relevant coefficients, but this would impose more than is

required because nonnegativity of the density does not necessitate that all the coefficients have the same

sign. In practice, I instead impose a prohibitive penalty on the value of the likelihood function if the pdf is

negative for any observations. Similarly, I do not impose conditions 1 and 2, which arise naturally during

the optimization, but I do impose condition 3, which has the added benefit of reducing the number of

parameters to be estimated. I set the location parameter θ = 0 for the PSID data, and doing so for the

charity application gives very similar results to using a nonparametric estimate of the mode, as detailed by

Marx (2018). One could also exclude observations with current receipts in the omitted region or allow the

density to be discontinuous in r at the threshold for the base-year notch.

This completes the specification of the latent distribution. The observed distribution F (g∗|r,Θ,Ω)

involves modifications for bunching and attrition through parameters Ω. I describe these modifications

in steps and then present the comprehensive function for F (g∗|r,Θ,Ω).

To measure bunching I estimate b, the share of mass from the reduced region that instead appears in the

bunching region. I estimate two parameters for b, allowing the bunching propensity to depend on whether

base-year income is above the notch, but require the bunching mass to equal the reduced mass regardless. I

define a notch ρ and allow agents to shift income from a reduced range of width ωR to a region of width ωE .

Thus, there is excess mass B in the bunching region g+r ∈ [ρ− ωE , ρ) that would otherwise lie in the reduced

region g + r ∈ [ρ, ρ+ ωR). Combining these ranges gives an omitted region of g + r ∈ [ρ− ωE , ρ+ ωR).



Agents moving to the omitted region are excluded from identification of the latent distribution. However,

these observations should be incorporated into the observed distribution to estimate bunching and attrition

parameters. To do this I generate a variable g∗ equal to (ρ+ ωR − r) for agents moving to the reduced range,

(ρ− r) for charities moving to the bunching range, and g for other charities. The fact that g∗ is assigned as

such is then incorporated into the likelihood function. Missing and bunching observations could be assigned

to any value of g∗; identification uses the count of missing and the count of omitted and not the location of

either.

Next, one must model attrition. I allow for 3 channels through which agents observed in the base year go

unobserved in the next year. First, I truncate the samples at a lower-bound growth rate ` because these take

agents far from the notch and because charities do not file any information return if log receipts are below

log (25, 000). I set the share of truncated observations equal to the value taken by the latent conditional cdf

at ` − r. Second, some share λ (r) of current filers will not appear in the next year’s data file regardless

of income. Third, I allow that an additional share δ (r, g) go missing when crossing ρ. In all three cases,

growth is unobserved, so for these observations I set the value of g∗ equal to the minimum observable growth

(`− r). The share exiting instead of crossing the notch, δ (r, g) is allowed to take different values depending

on whether growth takes the observation to the reduced range, where bunching offers an alternative to going

missing, or to income levels above the reduced range.

The observed conditional cdf is then

F (g∗|r,Θ,Ω) =



0

λ (r) + (1− λ (r))F (`− r|r) + δ (r, g) (1− F (ρ− r|r))

λ (r) + (1− λ (r))F (g∗|r) + δ (r, g) (1− F (ρ− r|r))

λ (r) + (1− λ (r))F (ρ− ωE − r|r) + δ (r, g) (1− F (ρ− r|r))

(1− λ (r)) [F (ρ− r + ωR|r)− F (ρ− r − ωE |r)]

+b (1− λ (r)− δ (r, g)) [F (ρ− r + ωR|r)− F (ρ− r|r)]

(1− b) (1− λ (r)− δ (r, g)) [F (ρ− r + ωR|r)− F (ρ− r|r)]

λ (r) + δ (r, g) + (1− λ (r)− δ (r, g)) (F (g∗|r))





for g∗ < `− r

for g∗ = `− r

for `− r < g∗ < ρ− r − ωE

for ρ− r − ωE ≤ g∗ < ρ− r

for g∗ = ρ− r

for g∗ = ρ− r + ωR

for ρ− r + ωR < g∗

and maximizing the likelihood function
N∑
i=1

log [f∗ (g∗i |ri)], where f∗ (g∗i |ri) is the discrete-continuous im-

plementation of the conditional likelihood implied by F (g∗|r,Θ,Ω), gives an estimate of the value of each

parameter. For any value of r one can then obtain counterfactual growth estimates by plugging the desired

value(s) of g into the estimated distribution function(s). Integrating over r gives the total counterfactual

mass for the next year.


