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Partial Moment Momentum 

 

Abstract 

Momentum profits benefit from persistent trends of the market, which can be predicted by market 

volatility. However, such strategies are unable to distinguish between upside and downside risk. We 

propose partial moments-based momentum trading strategies and find that they outperform plain 

momentum and volatility-scaled momentum strategies. We suggest that this greater profitability is 

due to the unexploited investment opportunities that arise from being able to distinguish between 

good and bad risk. We find strong outperformance for seven out of eight partial moments-based 

strategies during states of market downturn. The outperformance is robust across different time 

periods. 
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1. Introduction 

        Cross-sectional momentum strategies are employed by buying previous winners and selling 

previous losers1. The literature shows that cross-sectional momentum strategies (henceforth, plain 

momentum strategies) are profitable in different markets and asset classes across different sample 

periods2. Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) present evidence that 

scaling the weights of momentum portfolios increases the Sharpe ratio of the plain momentum 

strategy. It is well-known that volatility is larger when markets fall than when they rise. 

Furthermore, the economic consequences of volatility in falling or rising markets are not equal. 

Rather than scaling plain momentum portfolios, which does not distinguish between upside and 

downside risk, we construct two partial moments-based strategies, the partial moment momentum 

(PMM) strategy and the extended partial moment-decomposed (PMD) strategy. These two 

strategies use the partial moment decompositions of squared market returns to better capture market 

trends and reduce losses during market turbulence. We find that both strategies significantly 

outperform the plain momentum strategy. We further introduce an adapted Sortino ratio3 as a 

measure of performance, more suited to our different volatility regimes.  

        We give more details of these two strategies. The first is the PMM strategy, which involves 

switching positions of the winner and loser portfolios during the holding periods, depending upon 

                                                           
1 Jegadeesh and Titman (1993) find that momentum strategies are profitable in the US equities markets over 

the short to medium horizons (3 to 12 months) from 1965 to 1989. Jegadeesh and Titman (2001) continue to 

show similar results for the period 1990 to 1998. Israel and Moskowitz (2013) extend momentum evidence 

to two periods: from 1927 to 1965 and from 1990 to 2012.   
2 See Richards (1997) for evidence of momentum in stock market indexes; Asness, Liew, and Stevens (1997) 

for that in country indexes; and Rouwenhorst (1998, 1999) for that in emerging stock markets; Chan, 

Hameed, and Tong (2000) and Hameed and Yuanto (2002) for that in momentum in international equity 

markets. See Okunev and White (2003) for momentum in exchange rates; Erb and Harvey (2006) for that in 

commodities; and Moskowitz, Ooi, and Pedersen (2012) for that in futures contracts. Consistent with Asness, 

Moskowitz, and Pedersen (2013), Daniel and Moskowitz (2016) find momentum returns in markets across 

regions (European Union, Japan, UK, and US) and asset classes (fixed income, commodities, foreign 

exchange, and equity) from 1972 through 2013. For more detailed literature, see Daniel and Moskowitz 

(2016). 
3 The adapted Sortino ratio is defined in Appendix A.2. We also report a practitioner’s version of Sharpe 

ratio in which we divide the return of winners minus the return of losers by the portfolio standard deviation 

instead of using the version by Sharpe (1994), in which the excess return of the strategy is the numerator. We 

find this to be relatively less conservative than the Sharpe (1994) ratio. For more details, see Appendix A.1. 
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current estimates of partial moments. The second is the PMD strategy, which can be viewed as an 

extension of the dynamic volatility-based momentum strategy in Barroso and Santa-Clara (2015), 

who do not differentiate between upside and downside risk. We extend this class of strategies by 

tilting our strategy long or short towards favorable/ unfavorable volatility signals and holding an 

offsetting position in cash. We take particular care to use non-overlapping data in our estimations of 

volatility thereby avoiding the artificial autocorrelation evident in other authors’ volatility series. 

        We present strong evidence that our two partial moments-based strategies outperform 

benchmark plain momentum strategies4, particularly during financial turbulence. During our market 

downturn period, our results reveal higher annualized adapted Sortino ratios for the PMM strategies 

compared to the benchmark 11×1 plain momentum strategy. Our robustness test results for the 

unconstrained PMD strategy on a winners-minus-losers WML basis (11×1) from 2000 to 2016 

outperform those in Daniel and Moskowitz (2016) for dynamic WML strategies from 2000 to 2013, 

confirming the persistence of momentum returns beyond 2013. Further analyses show similar 

outperformance across four sub-periods within 1927 to 2016. Overall, five out of six PMM 

strategies and both PMD strategies (one with and another without leverage constraint) outperform 

the plain momentum benchmark strategy. The results suggest that partial moments-based strategies 

might be employed in the risk management of momentum-based strategies and, in particular, as an 

extension to the volatility-based risk management applications proposed by Barroso and Santa-

Clara (2015) and Daniel and Moskowitz (2016). 

        Supporting evidence for the relevance of partial moment effects on momentum is given by 

Chordia and Shivakumar (2002), who demonstrate that economic expansionary periods might be 

important in explaining profits in the US equities market, but the literature is inconclusive on 

                                                           
4 As the benchmark, we use an 11×1 plain momentum strategy, which represents an 11-month formation 

period and a 1-month holding period plain momentum strategy with a 1-month gap between formation and 

holding periods. We use this as the benchmark strategy to be consistent with Barroso and Santa-Clara (2015) 

and Daniel and Moskowitz (2016) for performance comparison. This plain strategy also yields the highest 

returns over the whole sample period among all five plain momentum strategies.  
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whether momentum profits are positive or negative during contractionary periods. Ali and 

Trombley (2006) find that the level of momentum returns of US stocks for the period from 1984 to 

2001 is positively related to short sales constraints, and that loser portfolios rather than winner 

portfolios drive this result. In contrast, Cooper, Gutierrez, and Hameed (2004) find that momentum 

profits depend “critically” on the state of the market. They show that a 6-month momentum strategy 

is profitable only following periods of gains in the US market during the sample period, from 1929 

to 1995, consistent with the predictions of overreaction models in Daniel, Hirshleifer, and 

Subrahmanyam (1998) and Hong and Stein (1999).  

        The literature has further shown that momentum returns are related to partial moments, 

especially lower partial moments [see Menkhoff and Schmeling (2006), Baltas and Kosowski 

(2012), and Daniel, Jagannathan, and Kim (2012)]. We employ the idea of downside realized partial 

moment (𝑅𝑃𝑀−) and upside realized partial moment (𝑅𝑃𝑀+) in the context of momentum trading 

strategies. We hypothesize that if volatility based momentum strategies, such as those in Barroso 

and Santa-Clara (2015) and Daniel and Moskowitz (2016), have been shown to counter extreme 

momentum losses in times of market crashes, then further momentum profits and better risk 

management can be achieved by utilizing the connection between 𝑅𝑆− and future volatility shown 

by Barndorff-Nielsen, Kinnebrock, and Shephard (2010). Other applications of partial moments to 

finance are included, for example, in Bali, Cakici and Whitelaw (2014). 

        Findings outside the US in Gao and Leung (2017) support asymmetric momentum 

performance. They show that momentum returns of Australian stocks are negatively correlated to 

short sale restrictions and were less profitable during the global financial crisis (GFC) period of July 

2007 through September 2009 compared to pre-GFC levels. The authors explain that the imposition 

of short selling restrictions by the Australian regulatory authority during the GFC might have 

moderated the ability of momentum traders to profit from the short sale of loser portfolios. This is 

supported by Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), who show that 
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momentum strategies experience extreme losses during periods of economic upheaval following 

market crashes and high market volatility. 

        Recent literature has introduced a number of volatility-scaled momentum strategies, in both a 

cross-sectional momentum setting [Barroso and Santa-Clara (2015) and Daniel and Moskowitz 

(2016)] and in a time-series momentum setting [Moskowitz, Ooi and Pederson (2012)]. Both cases 

involve the notion of the use of target volatility to scale the risk exposure of plain momentum 

returns to produce risk-managed momentum returns. For instance, Barroso and Santa-Clara (2015) 

reveal that gains in momentum returns can be wiped out by momentum crashes over short periods. 

What is more surprising is the high level of predictability of the risk of momentum returns. The 

authors proceed to scale the long–short WML momentum portfolio by its prior 6 months’ realized 

volatility to implement a constant volatility strategy that avoids forward-looking bias. This risk-

managed momentum strategy results in negligible negative returns during the crashes, a doubling of 

the Sharpe ratio, and a reduction in both excess kurtosis and left skewness. Daniel and Moskowitz 

(2016) implement a dynamic momentum strategy based on conditional moments (mean and 

variance) and achieve twice the alpha and Sharpe ratio compared to the traditional static WML 

strategy over multiple time periods and different equity markets5. This evidence suggests that 

momentum strategies, which dynamically account for past volatility, act as a hedging mechanism 

for the extreme momentum losses following sudden market downturns. However, the unconstrained 

leverage implicit in such strategies makes these strong results questionable as a practical investment 

strategy. We consider, in our analyses, leverage-constrained strategies to address this issue. 

        Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that future volatility is related 

more to past negative returns than past positive returns. In doing so, the authors develop a volatility 

measure called “realized semi-variance,” which decomposes the direction of the quadratic variation 

                                                           
5 Both Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) construct momentum portfolios 

with an 11-month formation period and a 1-month holding period. This strategy uses value-weighted holding 

period returns with a 1-month gap between the formation period and the holding period. We refer to this 

strategy in particular as (static) WML strategy.  
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in asset prices, termed “realized variance.” Andersen, Bollerslev, Diebold, and Ebens (2001) and 

Barndorff-Nielsen and Shephard (2002) define the realized variance as the sum of the squared 

returns to estimate the quadratic variation in high frequency asset prices. As such, the negative and 

positive returns of asset prices are used to compute a downside (𝑅𝑆−) and an upside (𝑅𝑆+) realized 

semi-variance, respectively. A review of the semi-variance literature is presented in Sortino and 

Satchell (2001). Further development of the economic theory underpinning this risk measure is set 

out in Pedersen and Satchell (2002). These directional volatility measures are found to capture the 

asymmetrical properties of volatility experienced by asset prices. Hedge funds might employ 

downside realized semi-variance in the context of risk management. These investors might have 

short positions in the market, and a drop in price therefore yields a positive return, with the 

corresponding measure of risk being RS-. Baruník, Kočenda, and Vácha (2016) extend this idea to 

construct asymmetric volatility spillover indexes and reveal high levels of asymmetrical spillover 

among the most liquid US stocks in seven sectors. Linkages between downside risk and momentum 

are explored by Min and Kim (2016). As we argue in Section 3, it is more appropriate that this 

semi-variance is called partial moments of order 2. Upper and lower partial moments are what has 

been termed upside and downside realized semi-variance, respectively.  

 

2. Momentum in the US equity market 

2.1 Data 

        The data used in this study are sourced from the Centre for Research in Security Prices (CRSP) 

and the Kenneth R. French Data Library6. The monthly and daily US equity data for the period 

January 1926 to December 2016 are sourced from the CRSP. Our sample includes common stocks 

(CRSP share code 10 or 11) of all firms listed on the NYSE, Amex, and Nasdaq (CRSP exchange 

code 1, 2 or 3). We use the value-weighted index of all listed firms in the CRSP and the 1-month 

                                                           
6 These data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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Treasury bill rate as the proxy for the market portfolio and the risk-free rate, respectively. We 

obtain the 1-month Treasury bill rate for the same period as that of the US equity data from the 

Kenneth R. French Data Library. 

2.2 Momentum portfolio construction 

        We follow a method similar to Jegadeesh and Titman’s (1993) J × K trading model to 

construct our momentum portfolio with a zero net position. First, in month t, all valid sample stocks 

are ranked based on their past J-month formation period adjusted returns from month t-J to t-1, and 

then sorted into ten decile portfolios according to the NYSE breakpoints as each decile portfolio 

contains an equal number of NYSE firms7. For any construction month t, we define a valid sample 

stock as one which has share price, number of shares outstanding, and a minimum of 2J/3 (rounding 

up to the nearest integer) monthly returns during the J-month formation period. For instance, for a 

momentum strategy with an 11-month formation period, we require a stock with at least eight 

monthly returns during this period. Subsequently, we buy the best-performing portfolio (winners) 

and short the worst-performing portfolio (losers) for the K-month holding period from month t to 

t+K. The value-weighted holding period logarithmic adjusted returns are calculated for computing 

our momentum profits. In the meantime, this strategy rebalances at the end of every month. Thus, in 

any month t, one certain strategy holds not only the winner and loser portfolios constructed in 

month t, but also those portfolios in the previous K-2 months. There is a 1-month lag between the 

formation period and the holding period to avoid short-term reversals [see Jegadeesh (1990) and 

                                                           
7 Using NYSE breakpoints rather than all-firm breakpoints can limit the side effects of small and illiquid 

stocks that are barely traded in practice. This is consistent with Barroso and Santa-Clara (2015) and how the 

Kenneth R. French Data Library constructs its “10 Portfolios Formed on Momentum.” Our ten decile 

portfolio returns are almost identical to those of (2-12) momentum returns on the Kenneth R. French Data 

Library. We note that Daniel and Moskowitz (2016) differ from us, as the authors constructed the decile 

portfolios using all-firm breakpoints rather than NYSE breakpoints. See http://www.kentdaniel.net/data.php 

for a detailed comparison of portfolio returns using these two breakpoints. 

http://www.kentdaniel.net/data.php
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Lehmann (1990)]. This allows us to be consistent with Barroso and Santa-Clara (2015) and Daniel 

and Moskowitz (2016), while noting that they differ from us in other respects8.  

2.3 Performance of plain momentum strategies in US equity markets 

        We report the performance of all momentum based strategies for four sample periods: P1, the 

whole sample period from January 1927 to December 2016; P2, the period from January 1965 to 

December 1989 covered in Jegadeesh and Titman (1993); P3, the market downturn period from 

August 2007 to December 2012; and P4, the era of turbulence from January 2000 to December 

2016. The starting point of the market downturn period of August 2007 represents the onset of 

financial market turbulence in the equity market and the intervention of the Federal Reserve for the 

first time since 2001. The end date of the market downturn period reflects the recovery of the DJIA, 

S&P 500, and Nasdaq to their pre-GFC levels.9  

[Insert Table 1 about here] 

        We adopt a practitioner’s version of the Sharpe ratio, where we define an appropriate 

formulation for a long–short portfolio as  

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝜇𝐿−𝜇𝑆

𝑠𝑑(𝐿𝑆)
                                                                                                                                     (1)    

where 𝜇𝐿 and 𝜇𝑆 are returns of a long portfolio and short portfolio, respectively. 𝑠𝑑(𝐿𝑆) is the 

standard deviation of the long–short portfolio.10 A justification is presented in Appendix A.1. 

        Table 1 shows performances of the plain momentum strategy on a WML basis (11×1) for the 

aforementioned four sample periods. During P1 and P2, the 11×1 (WML) strategy (with an 11-

month formation (J) period, a 1-month holding (K) period, and a 1-month gap between J and K) can 

                                                           
8 All analyses are repeated using all-firm breakpoints momentum returns as a robustness check. The results 

are consistent with those based on our original WML strategy. Our WML returns using NYSE breakpoints 

are moderately lower than momentum returns on the same basis using all-firm breakpoints.  
9 The GFC period classification by Bekaert, Ehrmann, Fratzscher, and Mehl (2014) covers the period August 

2007 to March 2009. 
10 A more conservative formulation for defining the Sharpe ratio for a long–short portfolio is 𝜇𝐿 − 𝜇𝑆 minus 

the riskless rate divided by the long–short portfolio standard deviation, which is shown in Sharpe (1994). 
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earn 15.15% and 21.60% annualized returns, respectively. We also construct four other plain 

momentum strategies, 3×3, 6×6, 9×9, and 12×12 following the same construction methods in 

Subsection 2.2. These four strategies also report positive returns during P1 and P2 as shown in 

Table B.1 of Appendix B. However, apart from the WML strategy, none of the other four plain 

strategies can generate profits during P3, the market downturn or during P4, the era of turbulence. 

        Consistent with the findings of Cooper, Gutierrez, and Hameed (2004), we find extreme losses 

occurring in plain momentum strategies constructed immediately after sharp market declines, such 

as in March 200911. One exception is the 11×1 (WML) strategy, which continues to yield positive 

returns. We observe that the momentum strategy with a long formation period and a short holding 

period is easier to turn around in the event of a momentum reversal.  

        In this study, we use the 11×1 (WML) plain momentum strategy as the benchmark to 

demonstrate the effectiveness of our partial moments-based strategies, since this strategy yields the 

highest and most significant return for all four sample periods among those five plain momentum 

strategies (see Table 1 and Table B.1). Thus, we set our benchmark as high as possible. Also, by 

using this benchmark, we maintain consistency with Barroso and Santa-Clara (2015) and Daniel 

and Moskowitz (2016) for our performance comparisons. 

 

3. Partial moment momentum 

        Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) present evidence that, by 

scaling the weights of momentum portfolios, this new scaling strategy increases the Sharpe ratio of 

the plain momentum strategy.  

        Rather than scaling plain momentum portfolios, we first construct a PMM strategy by 

switching positions of the winner and loser portfolios during the holding periods.  

                                                           
11 A counter-trend bear market rally began after the DJIA, S&P 500, and Nasdaq reached their troughs and 

started to rebound. 
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3.1 Partial moments and realized semi-variance 

        We can construct the sample realized volatility using equi-spaced data for [t-1, t], which we 

define as 𝑅𝑉. This is defined for n+1 prices or their logarithms to define n returns, 𝑟𝑖, i=1,…,n. We 

define 𝑅𝑉 as 

𝑅𝑉𝑡 = ∑ 𝑟𝑖,𝑡
2

𝑛

𝑖=1

                                                                                                                                                    (2)   

        We call this the realized variance for [t-1, t], which is known to be a consistent estimator of 

quadratic variation if we assume the prices are generated by a particular class of processes; see 

Baruník, Kočenda, and Vácha (2016) for more details. The properties of 𝑅𝑉 and related measures 

can be found in Andersen, Bollersley, Diebold, and Ebens (2001), Barndorff-Nielsen (2002) and 

Barndorff-Nielsen, Kinnebrock, and Shephard (2010). Following the literature, we define two 

statistics, negative semi-variance 𝑅𝑆− and positive semi-variance 𝑅𝑆+, as  

𝑅𝑆𝑡
− = ∑ 𝑟𝑖,𝑡

2𝑛
𝑖=1 𝐼(𝑟𝑖,𝑡 < 0)                                                                                                                               (3)  

and 

𝑅𝑆𝑡
+ = ∑ 𝑟𝑖,𝑡

2𝑛
𝑖=1 𝐼(𝑟𝑖,𝑡 ≥ 0)                                                                                                                               (4)   

where 𝐼() is the indicator function, these being sample lower and upper partial moments of order 2 

with truncation at zero in both cases, 𝑟𝑖,𝑡 is the return of stock i in day t, and 𝑛 is the number of valid 

sample stocks in day t. There is an identity, 

𝑅𝑉𝑡 = 𝑅𝑆𝑡
− + 𝑅𝑆𝑡

+                                                                                                                                             (5) 

        If the population has a mean of zero, then we might hope to treat these quantities as estimators 

of the unconditional population variance and the unconditional lower and upper semi-variances of 

the process over the interval [t-1, t], which we could denote by 𝜎2, 𝜎2−, and 𝜎2+, respectively. 

Hopefully, 𝜎2= 𝜎2− + 𝜎2+. However, the difficulty here is that, for example, 𝐸(𝑅𝑆+) is not equal 
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to 𝜎2+ but rather 𝜎2+ + 𝐸2[∑ 𝑟𝑖,𝑡
𝑛
𝑖=1 𝐼(𝑟𝑖,𝑡 ≥ 0)]. This means that descriptions in terms of partial 

moments seem more appropriate. Thus, we refer to these two statistics as upper and lower partial 

moments (𝑅𝑃𝑀+ and 𝑅𝑃𝑀−). This follows if we define 𝐸(𝑅𝑉) = 𝐸[∑ 𝑟𝑖,𝑡
2𝑛

𝑖=1 ],  𝐸(𝑅𝑃𝑀−) =

𝐸[∑ 𝑟𝑖,𝑡
2𝑛

𝑖=1 𝐼(𝑟𝑖,𝑡 < 0)], and 𝐸(𝑅𝑃𝑀+) = 𝐸[∑ 𝑟𝑖,𝑡
2𝑛

𝑖=1 𝐼(𝑟𝑖,𝑡 ≥ 0)]. 

        Barroso and Santa-Clara (2015) argue that momentum volatility is strongly forecastable 

relative to other styles (see in particular Table 2 of p. 114). This suggests that momentum volatility 

or momentum partial moments might be useful in forecasting momentum returns. The authors use 

126 days overlapping momentum returns to estimate volatilities [see Barroso and Santa-Clara (2015) 

and equations (5) and (6)]. There is also some theoretical support for the notion that momentum 

returns are volatility dependent; see, for example, He, Li, and Li (2016). We believe that part of the 

forecastability is artificial. To observe this, we oversimplify and assume that a momentum strategy 

can be described as a position in an asset where the “weight” of the asset is equal to the last period’s 

return, which is coined as a relative strength portfolio by Lo and Mackinlay (1990). This can be 

identified as a version of single variable time-series momentum. Thus, 𝑅𝑡, the return of the strategy, 

is equal to 𝑟𝑡 𝑟𝑡−1 . 

        We first show in Appendix A.3 that momentum is forecastable even when returns are 

independently and identically distributed (𝑖𝑖𝑑). We observe that, when underlying returns are white 

noise, the forecastability of momentum volatility is connected to underlying kurtosis, and the higher 

the kurtosis, the lower the forecastability. Thus, we do not use momentum volatility in guiding our 

strategies, but instead use a market index defined in Subsection 2.1. The lower partial moment 

𝑅𝑃𝑀− and the higher partial moment 𝑅𝑃𝑀+ are defined analogously to (3) and (4).  

        While we continue to report Sharpe ratios, we also provide a performance measure called the 

adapted Sortino ratio, defined in Appendix A.2.  
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3.2 Partial moments and reference points 

        We consider the medians of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− as the reference points for the upper and lower 

market partial moments. This reflects a more general case but our assumption follows from the most 

straight-forward method of median sorting and a prior belief based on a uniform distribution on [0, 

1]. We are agnostic about what our central point (𝐶𝑃+, 𝐶𝑃−) should be for our strategies. If we held 

a Bayesian prior consisting of a pair of independent uniform distributions, then we would choose 

the means of both variables. However, for reasons of robustness, we choose the medians, which in 

any case are equal to the means. 

[Insert Figures 1a and 1b about here] 

        Figures 1a and 1b show the histograms of upper and lower partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) 

with kernel density curves. Values of medians and maximum observations of both 𝑅𝑃𝑀𝑡
+ and 

𝑅𝑃𝑀𝑡
− are reported. For the upper partial moment (𝑅𝑃𝑀𝑡

+), the normal kernel estimate for c=0.7852 

has a bandwidth of 0.0002 and an approximate mean integrated square error (AMISE) of 2.1726. 

For the lower partial moment (𝑅𝑃𝑀𝑡
−), the normal kernel estimate for c=0.7852 has a bandwidth of 

0.0002 and an AMISE of 1.8252.  

[Insert Table 2a, 2b, and 2c about here] 

        Table 2a reports the distributions of monthly realized variance (𝑅𝑉𝑡) and upper and lower 

market partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) throughout the whole sample period from January 

1927 to December 2016.  

        Table 2b presents the joint distribution of upper and lower market partial moments (𝑅𝑃𝑀𝑡
+ and 

𝑅𝑃𝑀𝑡
−) quartiles for the four sample periods. Of particular interest is the fact that the probability 

that both upper and lower market partial moments are relatively large or small increases 

dramatically over the two sub-periods of market turbulence. We note that, if the average frequency 

of a 4×4 table is 6.25%, then in all cases, 𝑃(𝑅𝑃𝑀𝑡
+ (4)

, 𝑅𝑃𝑀𝑡
− (4)

), where 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

) is 
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the joint frequency of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− and in which 𝑖 and 𝑗 stand for the four quartiles of the 

upper and lower partial moments, from the lowest quartile to the highest quartile, is two to three 

times greater. Likewise, the frequencies in 𝑃(𝑅𝑃𝑀𝑡
+ (1)

, 𝑅𝑃𝑀𝑡
− (1)

) are obviously higher. 

        Table 2c shows the correlation between pairs of variables from among the upper and lower 

market partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) and the skewness of returns of plain momentum 

(winner-minus-loser), winner, and loser portfolios (𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡, 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡, and 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡) for 

the four sample periods. In all cases, 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− are positively correlated, especially in P3 

and P4 where they exceed 0.9 and are highly significant. Overall, the skewness of momentum, 

winner, or loser portfolios is correlated much more with 𝑅𝑃𝑀𝑡
+ than 𝑅𝑃𝑀𝑡

−. 

        The previous approach analyzed in Subsection 3.1 used the past month 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− 

based on daily data as our forecast of partial moments. An alternative to this approach would be to 

assume that the partial moments satisfy a statistical model, such as a vector-autoregressive process 

of order p (𝑉𝐴𝑅(𝑝)), which is discussed in Appendix C.1. In Table C.1, based on a 𝑉𝐴𝑅(1) model, 

we observe that both the past upper and lower partial moments forecast the current partial moments, 

as all coefficients are significant and positive. We note also that the estimated unconditional means 

are positive. 

3.3 Rules and performance of partial moment momentum strategies 

 [Insert Table 3 about here] 

        The idea behind our switching strategies is to change momentum strategies depending upon 

our current estimates of partial moments (𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−). We refer to it simply as a PMM strategy.  

        The switching methods are shown in Table 3 and Figure 2a. Panel A of Table 3 shows four 

conditions of upper and lower partial moments based on their reference points. It presents the 

corresponding switching method(s) during the holding periods for each of these four conditions. 

Panel B illustrates the actions and returns for different holding periods for each of the four 
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conditions presented in Panel A of our six PMM strategies, which we call PMM strategies 1 to 6, 

represented by PMM_S1 to PMM_S6. 

 [Insert Figures 2a and 2b about here] 

        Figure 2a illustrates the four PMM strategy conditions in the coordinate plane. The origin point 

represents the reference points for both the upper partial moment, 𝑅𝑃𝑀𝑡
+, and the lower partial 

moment, 𝑅𝑃𝑀𝑡
−, in month t. Each quadrant represents a PMM condition based on the upper and 

lower partial moments and their reference points. In particular, the combination of condition 1, in 

which both 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− are greater than the reference points, represents an environment of 

high market volatility, which is not conducive to momentum trading profits. On the other hand, 

condition 3 contains 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−, which are less than the reference points. This reflects an 

environment in which market trends tend to persist in the same direction. In this case, we expect 

high profitability as the outcome of momentum-based strategies. 

        Figure 2b reports the actual possibility of occurrence of each of these four PMM strategy 

conditions when the medians of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− are used as reference points for 𝑅𝑃𝑀𝑡
+ and 

𝑅𝑃𝑀𝑡
−, respectively. If the two processes are independent, the probability that each of these four 

conditions occurs is exactly the same, at 25%. However, the actual possibilities reveal that the upper 

and lower partial moments are not independent. Condition 1 (3), in which both 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− 

are higher (lower) than the reference points, shows a higher chance of occurrence at 34.91% than 

condition 2 or 4. This result is supported by the significant positive correlations between 𝑅𝑃𝑀𝑡
+ and 

𝑅𝑃𝑀𝑡
− in Table 2c. The same possibility of condition 1 and 3 as well as condition 2 and 4 reflects 

their complementary relationship when medians are used as reference points. In the coordinate 

plane, this relationship appears as the combined possibility of occurrence of any two adjacent 

quadrants, equal to 50%. 

[Insert Figure 3 about here] 
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        Figure 3 demonstrates the timeline of an 11×1 partial moment momentum (PMM) strategy 

constructed at time t. In any month t, all sample stocks are ranked and sorted into deciles based on 

their past 11-month formation period returns from month t-11 to t-1 (owing to a 1-month gap, 

month t to t+1, between the formation and holding periods for returns). Then, we classify holding 

strategies into four conditions based on partial moments determined in the period month t-1 to t and 

their reference points analyzed in Subsection 3.2. Then, during the 1-month holding period from 

month t to t+1, we compare monthly upper and lower partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) during 

the period [t-1, t] with their reference points and switch positions of winners, losers, and cash assets 

to maintain a zero net position based on Panel A of Table 3. In other words, for any of these six 

PMM strategies, we keep rebalancing and switching positions of all assets held.  

        In particular, all six PMM strategies switch to the same positions if condition 2 or 3 occurs but 

act differently if condition 1 or 4 occurs. Moreover, we hold cash long or short to keep our PMM 

strategies in net zero positions. 𝑟𝑤,𝑡+1, 𝑟𝑙,𝑡+1, and 𝑟𝑓,𝑡+1 represent the returns of winners, losers, and 

risk-free assets in month t+1, respectively. For example, for PMM strategy 4 (PMM_S4), if 

condition 1 applies during the period [t-1, t] in which the upper and lower partial moments are all 

higher than their reference points, then we close out our positions in both winners and losers. The 

PMM return for month t+1 is 0; if condition 2 applies during the period [t-1, t] in which the upper 

partial moment is lower than its reference point and the lower partial moment is higher than its 

reference point, then we short losers only, liquidating our long positions and holding cash long. The 

PMM return for month t+1 is 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1; if condition 3 applies during the period [t-1, t] in 

which upper and lower partial moments are all lower than their reference points, then we carry on 

the momentum strategy by buying winners and short-selling losers. The PMM return for month t+1 

is 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1; if condition 4 applies during the period [t-1, t] in which the upper partial moment 

is higher than its reference point and the lower partial moment is lower than its reference point, then 

we buy winners only and short cash. The PMM return for month t+1 is 𝑟𝑤,𝑡+1 − 𝑟𝑓,𝑡+1. 
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        The key characteristic of our PMM strategies is that we change positions of winners, losers, 

and cash assets based on market partial moments during holding periods. For instance, if we 

construct PMM strategy 4 (PMM_S4) on a J×K basis with a zero net position in month t, we rank 

all sample stocks and sort into deciles based on their past J-month formation period returns from 

month t-J to t-1. Then, during the K-month holding period from month t to t+K, we compare the 

upper and lower partial moments with their reference points in each month and switch positions of 

winners, losers, and cash assets to maintain a zero net position based on Panel A of Table 3. 

However, if the current partial moment condition persists over consecutive months, then we hold 

the same positions based on this condition’s method and keep rebalancing until other conditions 

apply. Assume that in month t, this J × K based PMM strategy 4 (PMM_S4) meets condition 4; then, 

we buy winners only and short cash. If in month t+1 condition 4 still holds, then we hold current 

positions and rebalance the winners’ portfolio based on the past J-month performance from month t-

1 to t, which is the same rebalancing method as our plain momentum strategy in Subsection 3.2. If 

condition 1 holds in month t+2, then we close out long positions by selling winners and close out 

short positions in cash for the month. This process continues repeatedly. 

 [Insert Table 4a and 4b about here] 

        Table 4a compares the performances of six PMM strategies on an 11×1 basis and the 

benchmark strategy for four sample periods. The results show that PMM strategies 1 and 4 

(PMM_S1 and PMM_S4) persistently outperform the benchmark for the two sub-periods of market 

downturn, P3 and P4, by generating higher Sharpe ratios and adapted Sortino ratios as well as 

yielding significant positive returns. Even during P4, the era of turbulence, PMM strategy 4 

(PMM_S4) generates the most significant return and the highest Sharpe ratio (0.33) among all seven 

strategies, including the benchmark.  

        Table 4b presents decomposed returns of PMM strategies for the four conditions in the whole 

sample period. As Panel B shows, results support our expectations that momentum-based strategies 
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are highly profitable when condition 3 applies as market trends tend to persist in the same direction 

but are almost unprofitable when condition 1 applies as high market turbulence is not conducive to 

momentum trading profits. In particular, condition 1 applies 34.91% of the time but contribute less 

than 12% (1.87/15.65) to the total return of the plain momentum strategy.  

4. An extended partial moment-decomposed momentum strategy 

        PMM strategies, by switching positions of winner and loser portfolios, do not work well when 

the market is calm. Thus, we propose a different type of partial moments-based momentum strategy, 

named the extended partial moment-decomposed momentum strategy. 

        Recent studies have enhanced momentum strategies by weighting the momentum positions 

using volatility in various ways [see Barroso and Santa-Clara (2015) and Daniel and Moskowitz 

(2016)]. These methods do not differentiate between upside or downside risk and typically are, by 

construction, net zero funds. Practitioner methods based on optimization, however, scale 

momentum mean forecasts by their standard deviations. We extend this class of strategies by tilting 

our strategy long or short toward favorable/unfavorable volatility signals and holding an offsetting 

position in cash.  

        We define a ( 𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−), 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) ) strategy as a net zero portfolio long 

𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) in winners and short 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) in losers with an offsetting position of 

𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) − 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) in cash; we call this portfolio p. We denote its return at 

time t+1 as  

𝑟𝑝,𝑡+1 = 𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−)𝑟𝑤,𝑡+1 − 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−)𝑟𝑙,𝑡+1 

                +(𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−)) − 𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−))  𝑟𝑓,𝑡+1                                                               (6) 

where 𝑟𝑤,𝑡+1, 𝑟𝑙,𝑡+1, and 𝑟𝑓,𝑡+1 are the returns at time t+1 to the winners, losers, and “cash” 

portfolios, respectively.  
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        There is no obvious guidance as to the functional form of  𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) and 

𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−), but we might expect 𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) to be increasing in its first argument 

and decreasing in its second argument and 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) to have the opposite properties.  

Furthermore, we might want to normalize them, as in Barroso and Santa-Clara (2015), in terms of 

some target volatility, 𝜎𝑡𝑎𝑟. We pick the same target annualized volatility of 12% to maintain 

consistency. With these considerations in mind, we might require the constraint to be 

𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) + 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) =
2𝜎𝑡𝑎𝑟

√𝑅𝑉𝑡

                                                                                   (7) 

which is broadly in accord with Barroso and Santa-Clara (2015). We choose 𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) 

and 𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) as follows: 

𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) =
2𝜎𝑡𝑎𝑟

√𝑅𝑉𝑡

(
𝑅𝑃𝑀𝑡

+

𝑅𝑃𝑀𝑡
+ + 𝑅𝑃𝑀𝑡

−)                                                                                        (8) 

𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) =
2𝜎𝑡𝑎𝑟

√𝑅𝑉𝑡

(
𝑅𝑃𝑀𝑡

−

𝑅𝑃𝑀𝑡
+ + 𝑅𝑃𝑀𝑡

−)                                                                                        (9) 

If 𝑅𝑃𝑀𝑡
+ = 𝑅𝑃𝑀𝑡

−, then we have a conventional long–short portfolio with scaling 
𝜎𝑡𝑎𝑟

√𝑅𝑉𝑡
, as in 

Barroso and Santa-Clara (2015, p. 115, formula (5)).12 

        There are many alternative ways to specify our strategy; Formulas (7) to (9) could be criticized 

in that we might want to shrink our exposure on the downside when 𝑅𝑃𝑀𝑡
− is large. Such an 

approach would be more consistent with the empirical result that momentum profits mainly result 

from the long side of a portfolio.13 Furthermore, it might be argued that in choosing functions that 

are homogeneous of degree zero, some of the partial moment information is lost. The argument in 

                                                           
12 We note that actual choices of 𝜎𝑡𝑎𝑟, 𝑅𝑉𝑡, etc., may differ in our application from those of other authors.  
13 Jegadeesh and Titman (1993) state that “the abnormal performance of the zero-cost (momentum) portfolio 

is due to the buy side of the transaction rather than the sell side” (p. 77). Moskowitz and Grinblatt (1999) 

argue that “industry momentum strategies appear to profit mostly on the buy side” (p. 1272). See, for 

instance, Chan, Jegadeesh, and Lakonishok (1996), Jegadeesh and Titman (2001), and Israel and Moskowitz 

(2013) for further evidence. 
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favor of increasing one’s exposure on the downside is that, in prospect theory, agents are usually 

deemed risk-loving on the downside.14 

        In practice, leverage is an issue in long–short portfolios. Many institutional hedge funds have 

strict restrictions on leverage, with 200% leverage being a typical upper bound. The previous 

popularity of 130-30 funds provides evidence that leverage is not unconstrained in practice15. 

Leverage is defined as the sum of absolute value of long and short weights (ignoring cash positions) 

so that our abovementioned strategies have a leverage as in Formula (7). 

        If the leverage as in Formula (9) exceeds the upper bound, to rescale our weights to obey the 

200% leverage condition, we need to change our scaling to 

𝜑1(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) = 2 (
𝑅𝑃𝑀𝑡

+

𝑅𝑃𝑀𝑡
+ + 𝑅𝑃𝑀𝑡

−)                                                                                             (10) 

𝜑2(𝑅𝑃𝑀𝑡
+, 𝑅𝑃𝑀𝑡

−) = 2 (
𝑅𝑃𝑀𝑡

−

𝑅𝑃𝑀𝑡
+ + 𝑅𝑃𝑀𝑡

−)                                                                                             (11) 

with corresponding positions in cash. 

[Insert Table 5 about here] 

        Table 5 shows the performance of two PMD strategies, with and without the 200% leverage 

constraint, for the four sample periods. Both PMD strategies significantly outperform the plain 

momentum strategy for all four sample periods by generating higher positive returns and having 

larger Sharpe ratios and adapted Sortino ratios. Even during financial turbulence (P3 and P4) when 

holding a plain 11×1 momentum strategy only earns insignificant low returns, the unconstrained 

                                                           
14 Ang, Chen, and Xing (2006) conclude that “the behavioural framework of Kahneman and Tversky’s (1979) 

loss aversion preferences and the axiomatic approach taken by Gul’s (1991) disappointment aversion 

preferences allow agents to place greater weights on losses relative to gains in their utility functions” (p. 

1192). The authors also argue that “agents who place greater weight on downside risk demand additional 

compensation for holding stocks with high sensitivities to downside market movements” (p. 1191). 
15 “130-30” represents a leveraged long–short mutual fund strategy that allows fund managers to hold short 

positions up to 30% of the initial investment and to use the corresponding funds to take long positions. Other 

popular strategies of this type include but are not limited to “150-50” and “120-20.” 
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PMD strategy (PMD) persistently yields positive returns. In particular, during P4, this strategy 

earns an annualized Sharpe ratio of 1.62 and an annualized adapted Sortino ratio of 1.00. The 200% 

leverage-constrained PMD strategy (PMD_C) reveals similar good performance even though it 

slightly underperforms the unconstrained strategy.  

 [Insert Table 6 about here] 

        Table 6 provides a summary of the performance of two PMD strategies, the best and the worst 

PMM strategy with the plain momentum strategy for the four sample periods. PMM_S4 and 

PMM_S3 are chosen as the best- and worst-performing PMM strategies based on their 

performances during the whole sample period and market downturn period (see Table 5). To check 

the normality of returns of these five momentum strategies, we also conduct the Jarque-Bera 

normality test16. Results show that during the whole sample period, apart from the underperforming 

PMM Strategy 3, all the other three partial moments-based momentum strategies reduce skewness 

and kurtosis and increase both the Sharpe ratio and the adapted Sortino ratio compared to the 

benchmark. In particular, the skewness of PMM_S4 is reduced and turns positive for all four 

sample periods compared to that of the plain momentum strategy. We also note that, in almost all 

cases, the relatively small p-values of the Jarque-Bera normality test suggest rejection of the null 

hypothesis; that is, strategy returns are not normally distributed. This is consistent with the theory 

where Kwon and Satchell (2017) show that the returns of the cross-sectional momentum strategy 

are generically non-normally distributed. However, the Jarque-Bera statistic of four partial 

moments-based momentum strategies are reduced in most cases. This suggests that our partial 

moments-based momentum strategies help in managing momentum risk. 

                                                           
16 The Jarque-Bera statistic follows (asymptotically) the chi-squared distribution with two degrees of 

freedom. Under the null hypothesis of normality, the expected value of the skewness is zero and the excess 

kurtosis is zero (which is equivalent as a kurtosis of three).  The test statistic is defined as [
𝑠𝑘𝑒𝑛𝑒𝑠𝑠2

6/𝑛
+

(𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠−3)2

24/𝑛
] ~𝜒2(2), where n is the number of observations. See Jarque and Bera (1980, 1987) for further 

details. 
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5. Out-of-sample analysis and rolling window PMM 

        The PMM performance in Section 3 is conditional on the realized semi-variance reference 

points for our whole sample period from January 1927 to December 2016. There may be concerns 

that this involves using out-of-sample information and lacks realism. 

        To strengthen the effectiveness of our PMM model and to provide practical investment 

insights for momentum investors, we further construct PMM strategies using parameters and 

reference points computed within an in-sample period from January 1927 to December 1999. We 

call the out-of-sample period from January 2000 to December 2016 the era of turbulence, since it 

contained the IT bubble of the early 2000s, the hedge fund crisis of 2006, the GFC since late 2007, 

and the European debt crisis since late 2009. Therefore, it might be more convincing if our selected 

PMM and PMD strategies outperform plain momentum during this period.  

[Insert Table 7 about here] 

        Table 7 shows the use of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− during in-sample periods for the vector 

autoregression of upper and lower partial moments, respectively, in order to maintain consistency 

with previous sections (see Appendix C.1 for further details). In common with Table C.1, we 

observe that the forecastability of past upper and lower partial moments remains strong, as all 

coefficients are significant and positive. We note also that the stationarity conditions are satisfied 

and the unconditional means are positive. 

[Insert Table 8 about here] 

        Table 8 presents the frequencies of the four PMM switching conditions based on in-sample 

partial moments for the whole out-of-sample period, the era of turbulence, from January 2000 to 

December 2016. The table shows that in any given month t during the out-of-sample period, there is 

a high probability that condition 1 or 4 occurs. Panel B presents the out-of-sample frequencies of 

PMM conditions based on in-sample estimates. Compared to the estimated frequencies, the major 
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variation is that the frequency of condition 1 almost doubled during the era of turbulence (actual 

frequency of 61.08% compared to an expected frequency of 32.53% based on the in-sample 

periods). A possible explanation is that this period contains a lower proportion of periods of market 

upturn compared to periods of market downturn, in contrast to the in-sample period from January 

1927 to December 1999. Thus, condition 1, in which upper and lower partial moments are greater 

than the in-sample reference points, is fulfilled more frequently during this period.  

[Insert Table 9 about here] 

        Table 9 presents a comparison of the performances of six PMM strategies and the benchmark 

strategy over the whole out-of-sample period and the market downturn period. Four out of six PMM 

strategies outperform the benchmark strategy during the market downturn period. In particular, 

PMM strategy 4 (PMM_S4) earns significant positive returns during the period of market downturn. 

In addition to Table 4a, these results provide further evidence that PMM strategies outperform plain 

momentum during financial turbulence. However, even though PMM strategy 4 doubles both the 

Sharpe ratio and adapted Sortino ratio of the plain momentum strategy during the whole out-of-

sample period, it does not generate higher-than-benchmark returns. In this instance, the plain 

momentum strategy has higher returns. However, PMM_S4 has much better risk-adjusted returns as 

evidenced by the higher Sharpe ratio and adapted Sortino ratio. Furthermore, we can improve our 

PMM strategies by updating our reference points sequentially rather than fixing them at the start of 

the out-of-sample period. 

        By using the estimated coefficients for the in-sample periods from Table 7, we generate a 

dynamic out-of-sample PMD strategy. During the out-of-sample periods, we employ estimated 

partial moments using formulas (14) and (15) in the models developed in Section 4. The estimated 

model is 

𝑅𝑃𝑀𝑡
+ = 0. 00041 + 0.45557 ∗ 𝑅𝑃𝑀𝑡−1

+ + 0.17777 ∗ 𝑅𝑃𝑀𝑡−1
−                                                         (12) 

𝑅𝑃𝑀𝑡
− = 0. 00052 + 0.28695 ∗ 𝑅𝑃𝑀𝑡−1

+ + 0.24295 ∗ 𝑅𝑃𝑀𝑡−1
−                                                         (13) 
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        While the results presented in Table 7 show that the partial moments are forecastable, we find 

the returns of two PMD strategies based on these forecasts do not improve. This is possibly due to 

estimation errors swamping any forecasting benefits. However, two PMD strategies more than 

doubled the Sharpe ratio and adapted Sortino ratio of the plain momentum strategy during both 

sample periods.  

[Insert Table 10 about here] 

        Furthermore, to avoid the look-ahead bias issue, we use the 20-year rolling window medians of 

𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− for the period [t-240, t-1], rather than the medians for the whole sample period as 

reference points to construct PMM strategies17. Table 10 presents the performances of six PMM 

strategies using rolling window medians as reference points. Compared to Table 4a, results show 

robustness as five out of six PMM strategies generate both higher holding returns and risk-adjusted 

returns during market downturns.  

 

6. Robustness check and performance comparison 

        Following Jegadeesh and Titman (1993), we also use a 6×6 strategy as a robustness check 

since this strategy is the best-performing strategy among four plain momentum strategies during all 

four periods by having the highest returns and Sharpe ratios (see Table B.1). 

6.1 Partial moments-based momentum strategies on a 6×6 basis 

        We follow the switching rules presented in Table 3 and construct six PMM strategies on a 6×6 

basis for the whole sample period (January 1927 to December 2016). Results are presented in Table 

10. 

                                                           
17 As robustness checks, all analyses are repeated using rolling window medians of 𝑅𝑃𝑀𝑡

+ and 𝑅𝑃𝑀𝑡
− on two 

different bases: a 10-year rolling window during the period [t-120, t-1] and a whole sample rolling window 

during the period [i, t-1], where i represents January 1927, the first month of our whole sample period. Both 

methods show similar results. 
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[Insert Table 11 about here] 

        From Table 11, all six PMM strategies outperform the benchmark strategy (M66) for both 

periods: P3, the market downturn and P4, the era of turbulence. In particular, PMM strategy 4 

(PMM_S4) on a 6×6 basis earns an annualized return of 9.23%, which is significant at the 1% level 

during P4, the era of turbulence, while the benchmark strategy causes plain momentum investors to 

lose approximately 7.63 basis points a month. Interestingly, four out of six PMM strategies on a 

6×6 basis outperform the benchmark strategy during the whole sample period, 1927-2016, and 

show better performances than the PMM strategies on an 11×1 basis (see Table 4a). Nevertheless, 

the results, especially the risk-adjusted ones, in Table 10 show the effectiveness of our PMM 

strategies. The mechanism of this profitability, however, requires further investigation.  

        We then conduct two PMD strategies, with and without the 200% leverage condition, on a 6×6 

basis, also shown in Table 11. Like the results in Table 5, both unconstrained and leverage-

constrained PMD strategies on a WML basis consistently outperform the plain momentum strategy 

(WML) in all sample periods, including periods of financial turbulence (P3 and P4).  

        The robustness checks reveal that our partial moments-based momentum strategies are robust 

across strategy construction and multiple time periods. While we do not claim that investors could 

earn these returns in practice, we suggest that partial moments-based strategies seem a good way to 

manage momentum risk. 

6.2 Comparison between partial moment-decomposed strategies and Barroso and Santa-

Clara (2015) volatility-scaled momentum strategy 

[Insert Table 12 about here] 

        Table 12 presents a comparison of the performance of two PMD strategies and the volatility-

scaled momentum strategy constructed by Barroso and Santa-Clara (2015). We construct a 12% 

constant volatility-scaled momentum portfolio consistent with the risk-managed momentum 
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strategy in Barroso and Santa-Clara (2015). The authors term their volatility-scaled momentum 

strategy the “risk-managed momentum” [see Barroso and Santa-Clara (2015, p. 115, Section 4)]. In 

particular, we also construct a Barroso and Santa-Clara (2015) volatility-scaled momentum 

portfolio with a 200% leverage constraint (BSC_C)18. The results reveal that our two PMD 

strategies outperform the Barroso and Santa-Clara (2015) volatility-scaled momentum strategy for 

all four sample periods, including periods of financial booms (P2) and financial turbulence (P3 and 

P4). In particular, our unconstrained PMD strategy (PMD) earns an annualized return of 13.78%, 

which is significant at the 1% level, with an annualized adapted Sortino ratio of 1.00 during the era 

of turbulence, compared to an annualized return of 6.39%, which is significant at the 10% level, 

with an annualized adapted Sortino ratio of 0.22 for the Barroso and Santa-Clara (2015) volatility-

scaled momentum strategy during the same period. This suggests our PMD strategy might be useful 

as an alternative tool in the management of momentum risk, in particular, the downside risk during 

market downturns. 

        In conclusion, we find that our extended PMD momentum strategy tilted long or short towards 

favorable/unfavorable volatility signals is more efficient and profitable than a constant volatility 

strategy, during both good and bad times.  

7. Conclusion 

        We have demonstrated good performance for cross-sectional momentum strategies, using 

information in past partial moments. We investigate two types: first, a portfolio choice based on the 

region in which the upper and lower partial moments lie; second, a portfolio choice based on partial 

moment scaling whereby we load up on long positions if upper partial moments are forecast to be 

relatively large or we load up on short positions when lower partial moments are forecast to be 

relatively large. 

                                                           
18 Apart from very few cases, we also observe that the weights of the Barroso and Santa-Clara (2015) 

volatility-scaled momentum strategy do not exceed a value of 2 over our whole sample period. Thus, the 

BSC_C strategy shows almost identical performances as those of BSC. For a detailed distribution of the 

weights, see Barroso and Santa-Clara (2015, p. 116, Figure 4). 
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        Our approach, relative to what a fund manager might do, is conservative in the sense of using 

minimal calculation. While we use CRSP data, which involve many stocks too small or illiquid to 

be considered by a fund of reasonable size, we do not update our models, estimating them once 

based on in-sample data and using them, with fixed parameters, when we carry out our out-of-

sample model evaluation.  

        We leave open the question of whether partial moments are fully or partially priced by markets. 

Linking partial moments to expected utility has been examined by numerous authors; see Fishburn 

(1977) and references therein. 

        The success of our strategies occurs because of the forecastability of partial moments (see 

Table 3). This immediately raises the question whether this evidences market inefficiency? We can 

best answer this by quoting Timmermann and Granger (2004, p. 25): 

“There is now substantial evidence that volatility of asset returns varies over time in a way 

that can be partially predicted. For this reason, there has been considerable interest in 

improved volatility forecasting models in the context of option pricing; see, for example, 

Engle, Hong, Kane, and Noh (1993). Does this violate market efficiency? Clearly the 

answer is no unless a trading strategy could be designed that would use this information in 

the options markets to identify under- and over-valued options.” 

        While we note possible subtleties in that options are priced directly off volatility, we also note 

that partial moments are barely traded at all. Thus, it seems, to us at least, that the presentation of a 

trading strategy that generates significant returns by forecasting partial moments is an argument 

against market efficiency. The source of this inefficiency, whether it be behavioral or predictable 

risk premia or investors’ unwillingness to embrace a more challenging measure of risk, such as 

partial moments, awaits further research. 

        Overall, we have derived strategies that both complement and extend recent literature that uses 

volatility measures to enhance a cross-sectional momentum. Extensions of our analysis include 
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applications of our procedures to other momentum strategies, including time-series momentum and 

relative strength strategies. Further applications such as applying the techniques to other asset 

classes can also be implemented. 
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Appendix A. Performance ratios and some theoretical consideration 

A.1 Practitioner’s version of Sharpe ratio 

        Suppose that 𝑤𝑖 is the weight of stock i in the portfolio, ∑ 𝑤𝑖 = 0𝑛
1=1  and ∑ 𝜇𝑖𝑤𝑖 = 𝜇𝑝

𝑛
1=1 . If 

the Capital Asset Pricing Model (CAPM) for long-only portfolios 𝜇𝑖 − 𝑟𝑓 = 𝛽𝑖(𝜇𝑚 − 𝑟𝑓) holds for 

stock i, then the CAPM for the net zero portfolio is 𝜇𝑝 = 𝛽𝑝(𝜇𝑚 − 𝑟𝑓), where 𝛽𝑝 = ∑ 𝛽𝑖𝑤𝑖
𝑛
1=1 . 

Thus, 𝜇𝑝 − 𝑟𝑓 = 𝛽𝑝(𝜇𝑚 − 𝑟𝑓) − 𝑟𝑓 does not seem correct.  

        Alternatively, suppose we view the Sharpe ratio as 100% cash plus a long–short portfolio. 

Then, the 𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝜇𝐿−𝜇𝑆

𝑠𝑑(𝐿𝑆)
 as the riskless rates cancel out, which is consistent with the 

CAPM for long–short portfolios, 𝜇𝑝 = 𝜇𝐿 − 𝜇𝑆. 

A.2 Adapted Sortino ratio 

        We define the adapted Sortino ratio as 

𝐴𝑑𝑎𝑝𝑡𝑒𝑑 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑟𝑎𝑡𝑖𝑜

=
𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛

2 ∗ 𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑆𝑒𝑚𝑖𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                                                                   (14) 

where 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛𝑡 = 𝑅𝑡 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑡                                                                               (15) 

Sortino and Price (1994), for example, define sample downside semi-deviation as19 

𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑆𝑒𝑚𝑖𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

= √
∑ (𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛𝑖 − 𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 𝑁

𝑖=1

𝑁
 𝐼(𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛𝑖 < 0)                                      (16) 

                                                           
19 See, in particular Sortino and Price (1994, p. 61, third paragraph). Sortino and Price (1994) refer to this 

“downside risk” measure as downside deviation, but we consider downside semi-deviation to be more 

appropriate. 
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where 𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛 is the portfolio’s excess return on the 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑒𝑡𝑢𝑟𝑛, for which 

we use a 1-month Treasury bill. 𝐼() is the indicator function, this being a sample target excess 

return lower than zero. Our adaptation differs from the standard Sortino ratio with target return 

equal to the riskless rate as, in the event that downside and upside standard deviations are equal, we 

recover the Sharpe ratio. Thus, we place our version of the Sortino ratio into a broadly similar scale 

to the Sharpe ratio. 

A.3 Momentum forecastability 

        Under the assumption that 𝑟𝑡  is 𝑖𝑖𝑑 (𝜇, 𝜎2), it follows by elementary calculation that 

 𝑉𝑎𝑟(𝑅𝑡) = 𝐸(𝑟𝑡
2𝑟𝑡−1

2 ) − 𝐸2(𝑟𝑡 𝑟𝑡−1 )                                                                                                         (17) 

and 

𝐶𝑜𝑣(𝑅𝑡, 𝑅𝑡−1) = 𝐸(𝑟𝑡 𝑟𝑡−1
2 𝑟𝑡−2 ) − 𝐸(𝑟𝑡 𝑟𝑡−1 )𝐸(𝑟𝑡−1 𝑟𝑡−2 )                                                                  (18) 

        This leads to an autocorrelation coefficient as 𝜌 =
𝜇2𝜎2

𝜎4+2𝜇2𝜎2. If we interpret the signal-to-noise 

ratio of the strategy as 𝑆𝑁 =
𝜇

𝜎
, then 𝜌 =

𝑆𝑁2

1+2𝑆𝑁2. Thus, if the strategy has a signal–to-noise ratio of 

0.5, then the returns will appear to have an autocorrelation coefficient of 0.17 although the 

underlying data are pure white noise. 

        Furthermore, as SN becomes large, we reach an upper bound for 𝜌 of ½. Assuming that 

𝐸(𝑟𝑡 ) = 0, we now turn to  

𝑉𝑎𝑟(𝑅𝑡
2) = 𝐸(𝑟𝑡

4𝑟𝑡−1
4 ) − 𝐸2(𝑟𝑡

2𝑟𝑡−1
2 )                                                                                                          (19) 

and                                   

𝐶𝑜𝑣(𝑅𝑡
2, 𝑅𝑡−1

2 ) = 𝐸(𝑟𝑡
2𝑟𝑡−1

4 𝑟𝑡−2
2 ) − 𝐸 ((𝑟𝑡

2𝑟𝑡−1
2 )𝐸((𝑟𝑡−2

2 𝑟𝑡−1
2 )))                                                          (20) 

Let 𝜇𝑗 = 𝐸(𝑟𝑡
𝑗
). Then 𝜌 =

1
𝜇4

𝜇2
2+1

. 
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        This shows that when underlying returns are white noise, the lower the forecastability of 

momentum volatility, the higher the kurtosis. If we take this to be the kurtosis of semi-annual index 

returns, we might expect a number near 5, and the (spurious) autocorrelation might thus be of a 

similar magnitude to that seen before. 

Appendix B. Other four plain momentum strategies  

[Insert Table B.1 about here] 

        Table B.1 shows performances of four plain momentum strategies, 3×3, 6×6, 9×9, and 12×12, 

during the four sample periods. During P1 and P2, the 6×6 strategy, which represents a momentum 

strategy, has 6-month formation (J) and holding (K) periods with a 1-month gap between J and K, 

can earn 6.23% and 12.03% annualized returns, respectively. It is the best-performing plain 

momentum strategy during these two periods by having the highest Sharpe ratios.20 The other three 

strategies also report positive returns during P1 and P2. However, none of these four plain strategies 

can generate profits during P3, the market downturn, or P4, the era of turbulence. 

        We find that long-term momentum strategies, such as 9×9 and 12×12, report negative 

annualized returns of around 30% right after March 2009 when the market reaches its lowest level. 

This is possibly because the market declined persistently before it reached the bottom, and longer-

term momentum strategies with this negative information are more difficult to turn around. 

Appendix C. Some further analyses  

C.1 Vector-autoregressive process 

        We assume, for simplicity, that monthly partial moments satisfy a 𝑉𝐴𝑅(1) given by 

regressions (21) and (22)   

𝑅𝑃𝑀𝑡
+ = 𝛼1 + 𝛽11𝑅𝑃𝑀𝑡−1

+ + 𝛽12𝑅𝑃𝑀𝑡−1
− + 𝜀1𝑡                                                                                      (21) 

                                                           
20 Previous findings also reveal this phenomenon. See, for example, Jegadeesh and Titman (1993, 2001). 
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𝑅𝑃𝑀𝑡
− = 𝛼2 + 𝛽21𝑅𝑃𝑀𝑡−1

+ + 𝛽22𝑅𝑃𝑀𝑡−1
− + 𝜀2𝑡                                                                                     (22) 

        Suppose that the conditional properties of 𝜇2𝑡
+  and 𝜇2𝑡

− , the upper and lower partial moments of 

degree 2, respectively, can be described by the following equations: 

 𝜇2𝑡
+ = 𝛼1 + 𝛽11𝑅𝑃𝑀𝑡−1

+ + 𝛽12𝑅𝑃𝑀𝑡−1
−                                                                                                       (23) 

 𝜇2𝑡
− = 𝛼2 + 𝛽21𝑅𝑃𝑀𝑡−1

+ + 𝛽22𝑅𝑃𝑀𝑡−1
−                                                                                                      (24) 

        Formulas (23) and (24) can be interpreted as a matrix analogue of an 𝐴𝑅𝐶𝐻(1) model except 

that it is a model for conditional partial moments. Replacing population moments by sample 

counterparts together with the errors involved yields regressions (21) and (22). 

        Such a model has certain features we can exploit for analytic purposes. We can compute the 

conditional and unconditional means of the partial moments and use potentially better forecasts.  

Writing regressions (21) and (22) in terms of vectors and matrixes yields  

𝑅𝑃𝑀𝑡  = 𝛼 + 𝛽𝑅𝑃𝑀𝑡−1 + 𝜀𝑡                                                                                                                       (25) 

        Then, 𝐸(𝑅𝑃𝑀𝑡  ) = (𝐼 − 𝛽)−1 𝛼 is the unconditional mean, and the one-period-ahead forecast 

for time t+1 at time t is given by 𝛼 + 𝛽𝑅𝑃𝑀𝑡 . The stationarity condition is that all the roots of 𝛽 are 

less than one in absolute value.21 This is satisfied in all cases in this study, based on the estimated 𝛽. 

C.2 Distribution of days of positive and negative market returns per month 

 [Insert Table C.2 about here] 

        Monthly upper (lower) partial moment is the sum of daily market positive (negative) realized 

semi-variances. We compute the joint distribution of days of positive and negative market returns 

per month for the period 1927-2016. Results in Table C.2 imply that the distribution is close to a 

bivariate normalized one as, in most of the months, the number of days when the market return is 

                                                           
21 We run a standard unit root test on our vector autoregression (VAR) process given by regressions (21) and 

(22). We find that the VAR process is stationary.  
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positive and negative range between 6 and 13. This confirms that our definitions on the monthly 

upper and lower partial moments are appropriate.  

C.3 Conditional decomposed returns of PMM strategies on an 11×1 basis during the out-of-

sample period 

[Insert Table C.3 about here] 

        As shown in Table C.3, we compute the decomposed returns of six PMM strategies for four 

conditions in the out-of-sample period. Similar to the results in Table 4b, returns generated when 

condition 1 applies are much lower than expected. This relatively weak performance could result 

from the choice of sub-sample periods, as markets are more volatile in the out-of-sample period 

than in the in-sample period. 

C.4 Out-of-sample partial moments-based momentum strategies on a 6×6 basis 

        The partial moments-based momentum strategies are to change positions or to scale weights of 

plain momentum strategies. In addition to the original benchmark set in Section 2 as an 11×1 plain 

momentum strategy with a 1-month gap between the formation and holding periods, we repeat all 

analyses using a 6×6 plain momentum strategy with a 1-month gap as the benchmark.   

 [Insert Table C.4 about here] 

        We further test the 6×6-based PMM and PMD strategies on out-of-sample analyses, as in 

Section 5 (see Table C.4). These results show that all six 6×6-based PMM strategies outperform the 

plain WML strategy during Pb, the market downturn period, and four out of six PMM strategies 

show better performance during Pa, the whole out-of-sample period. Results also provide further 

evidence that PMD strategies outperform plain momentum during financial turbulence.   
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Figure 1a Histogram of upper partial moments with kernel density curves 

Figure 1a shows the histogram of upper partial moments (𝑅𝑃𝑀𝑡
+) with kernel density curves. The values of 

median and maximum observations of 𝑅𝑃𝑀𝑡
+, skewness, and kurtosis are reported. The normal kernel 

estimate for c = 0.7852 has a bandwidth of 0.0002 and an approximate mean integrated square error of 

2.1726. Since the distribution of upper partial moments has a fat tail, we combine all upper partial moments 

with values between the 95th percentile (0.00420) and the maximum observation (0.02765). The vertical line 

represents the median. 
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Figure 1b Histogram of lower partial moments with kernel density curves   

Figure 1b shows the histogram of lower partial moments (𝑅𝑃𝑀𝑡
−) with kernel density curves. The values of 

median and maximum observations of 𝑅𝑃𝑀𝑡
−, skewness, and kurtosis are reported. The normal kernel 

estimate for c = 0.7852 has a bandwidth of 0.0002 and an approximate mean integrated square error of 

1.8252. Since the distribution of lower partial moments has a fat tail, we combine all lower partial moments 

with values between the 95th percentile (0.00436) and the maximum observation (0.04299). The vertical line 

represents the median. 
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Figure 2a PMM strategy conditions in the coordinate plane 

Figure 2a illustrates the four PMM strategy conditions in the coordinate plane. The origin represents the 

reference points for both the upper partial moment, 𝑅𝑃𝑀𝑡
+, and the lower partial moment, 𝑅𝑃𝑀𝑡

−, in month t. 

Each quadrant represents a PMM condition based on the upper and lower partial moments and their 

reference points. For example, if in month t, both the upper and lower partial moments are higher than their 

reference points, this combination represents an environment of high market volatility, which is not 

conducive to momentum trading profits. Then, condition 1 applies in month t and the corresponding trading 

methods for condition 1 are employed as shown on Panel B of Table 3.  

 

 

Figure 2b PMM strategy conditions for 1927-2016 

Figure 2b reports the numbers and percentages (in parenthesis) of four PMM strategy conditions for the 

whole sample period when the medians of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

− are used as reference points for 𝑅𝑃𝑀𝑡
+ and 

𝑅𝑃𝑀𝑡
−, respectively. The numbers within parentheses indicate the actual possibility of occurrence of each of 

these four PMM strategy conditions. 

Condition Possibility of Occurrence 

1 377 (34.91) 

2 163 (15.09) 

3 377 (34.91) 

4 163 (15.09) 

Total 1080 (100.00) 
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Figure 3 Timeline of an 11×1 partial moment momentum strategy  

Figure 3 demonstrates the timeline of an 11×1 partial moment momentum (PMM) strategy constructed at time t. In any month t, all sample stocks are ranked and sorted into 

deciles based on their past 11-month formation period returns from month t-11 to t-1 (owing to a 1-month gap, month t to t+1, between the formation and holding periods for 

returns). Then, we classify holding strategies into four conditions based on partial moments determined in the period month t-1 to t and their reference points analyzed in 

Subsection 3.2. Then, during the 1-month holding period from month t to t+1, we compare monthly upper and lower partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) during the period 

[t-1, t] with their reference points and switch positions of winners, losers, and the cash assets to keep a zero net position based on Panel A of Table 3. In other words, for any 

of these six PMM strategies, we keep rebalancing and switching positions of all assets held.  
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Table 1 Performances of plain momentum strategies in the US equity markets 

Table 1 shows the performance of the plain momentum strategies on a WML basis (11×1) for the four 

sample periods. The Return column reports the annualized return of each strategy in percentage. The Sharpe 

ratio reports the annualized Sharpe ratio of each strategy. It is calculated according to formula (1), as the 

long–short portfolio return divided by its standard deviation. The adapted Sortino ratio reports the annualized 

adapted Sortino ratio of each strategy. It is calculated according to formulas (16) to (18), as the excess return 

divided by twice its downside semi-deviation. WML represents the 11×1 plain momentum strategies with 1-

month gap between formation and holding periods, respectively. The Newey–West (1987) t-test indicates 

significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

WML 15.65 4.96 (***) 0.52 0.20 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 

Panel C: P3, market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

Panel D: P4, era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 
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Table 2a Distributions of partial moments in the US equity market 

Table 2a reports the distributions of monthly realized variance (𝑅𝑉𝑡) and upper and lower partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) for the whole sample period from January 

1927 to December 2016. 10th Percentile, 25th Percentile, 75th Percentile, and 90th Percentile represent the 10th, 25th, 75th, and 90th percentiles of each variable. The median, 

mean, max, standard deviation, skewness, and kurtosis are also reported. Amounts in brackets represent annual standard deviation equivalent (in percentages) of monthly 

realized variance/partial moments. For example, 𝑅𝑉𝑡 with a mean average of 24.25 corresponds to an annual standard deviation of 17.06%. Values of all percentiles, medians, 

means, and standard deviations are in 0.0001. 
 

Variable 10th Percentile 25th Percentile Median 75th Percentile 90th Percentile Mean Max Standard Deviation Skewness Kurtosis 

𝑅𝑉𝑡 3.84 (6.79) 6.28 (8.68) 10.46 (11.20) 21.07 (15.90) 51.07 (24.75) 24.25 (17.06) 548.27 (81.11) 47.66 6.19 50.80 

𝑅𝑃𝑀𝑡
+ 1.87 (4.73) 3.11 (6.11) 5.80 (8.34) 10.85 (11.41) 22.97 (16.60) 12.12 (12.06) 276.48 (57.60) 24.02 6.09 47.36 

𝑅𝑃𝑀𝑡
− 0.87 (3.22) 2.02 (4.92) 4.75 (7.55) 11.23 (11.61) 25.12 (17.36) 12.13 (12.06) 429.88 (71.82) 27.84 7.64 82.48 

 

Table 2b Joint distribution of partial moments  

Table 2b presents the joint distribution of the upper and lower market partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) quartiles throughout four sample periods. 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

) 

is the joint probability of upper and lower market partial moments, where 𝑖, 𝑗 = 1,2,3,4. 𝑖 and 𝑗 stand for the four quartiles of the upper and lower partial moments from the 

lowest quartile to the highest quartile, respectively. Amounts reported represent the probability for each pair of 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

) during the sample period. All figures 

are in percentage. For example, during P1, the whole sample period, 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

) with an amount of 7.87 represents a 7.87% probability that in any month t during 

the whole sample period, the upper market partial moment (𝑅𝑃𝑀𝑡
+) falls in the lowest quartile (𝑅𝑃𝑀𝑡

+ (1)
) and the lower market partial moment (𝑅𝑃𝑀𝑡

−) falls in the second 

lowest quartile (𝑅𝑃𝑀𝑡
− (2)

), respectively.  
 

Panel A: P1, whole sample period: January 1927 to December 2016 Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

)  𝑅𝑃𝑀𝑡
+ (1)

 𝑅𝑃𝑀𝑡
+ (2)

 𝑅𝑃𝑀𝑡
+ (3)

 𝑅𝑃𝑀𝑡
+ (4)

 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

) 𝑅𝑃𝑀𝑡
+ (1)

 𝑅𝑃𝑀𝑡
+ (2)

 𝑅𝑃𝑀𝑡
+ (3)

 𝑅𝑃𝑀𝑡
+ (4)

 

𝑅𝑃𝑀𝑡
− (1)

 10.28 8.61 5.28 0.83 𝑅𝑃𝑀𝑡
− (1)

 8.33 6.00 7.67 3.00 

𝑅𝑃𝑀𝑡
− (2)

 7.87 8.15 6.57 2.41 𝑅𝑃𝑀𝑡
− (2)

 8.33 7.00 6.67 3.00 

𝑅𝑃𝑀𝑡
− (3)

 5.93 6.11 7.50 5.46 𝑅𝑃𝑀𝑡
− (3)

 6.33 8.33 4.00 6.33 

𝑅𝑃𝑀𝑡
− (4)

 0.93 2.13 5.65 16.30 𝑅𝑃𝑀𝑡
− (4)

 2.00 3.67 6.67 12.67 

Panel C: P3, market downturn: August 2007 to December 2012 Panel D: P4, era of turbulence: January 2000 to December 2016 

𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

)  𝑅𝑃𝑀𝑡
+ (1)

 𝑅𝑃𝑀𝑡
+ (2)

 𝑅𝑃𝑀𝑡
+ (3)

 𝑅𝑃𝑀𝑡
+ (4)

 𝑃(𝑅𝑃𝑀𝑡
+ (𝑖)

, 𝑅𝑃𝑀𝑡
− (𝑗)

)  𝑅𝑃𝑀𝑡
+ (1)

 𝑅𝑃𝑀𝑡
+ (2)

 𝑅𝑃𝑀𝑡
+ (3)

 𝑅𝑃𝑀𝑡
+ (4)

 

𝑅𝑃𝑀𝑡
− (1)

 14.22 7.84 2.45 0.49 𝑅𝑃𝑀𝑡
− (1)

 15.15 7.58 3.03 0.00 

𝑅𝑃𝑀𝑡
− (2)

 8.82 8.33 6.37 1.47 𝑅𝑃𝑀𝑡
− (2)

 6.06 10.61 6.06 1.52 

𝑅𝑃𝑀𝑡
− (3)

 1.96 7.35 11.27 4.41 𝑅𝑃𝑀𝑡
− (3)

 4.55 6.06 10.61 4.55 

𝑅𝑃𝑀𝑡
− (4)

 0.00 1.47 4.90 18.63 𝑅𝑃𝑀𝑡
− (4)

 0.00 0.00 6.06 18.18 
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Table 2c Correlation between partial moments and the skewness of plain momentum profits 

Table 2c shows the correlation between the upper and lower market partial moments (𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−) and the skewness of returns of momentum (winner-minus-loser), 

winner, and loser portfolios (𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡, 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡, and 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡) throughout four sample periods, respectively. 𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡, 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡, and 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡 report the 

skewness of plain momentum, winner, and loser portfolios on a WML basis (11×1) constructed on each trading day in any month t, respectively. The Newey–West (1987) t-

test indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Panel A: P1, whole sample period: January 1927 to December 2016 Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

 
𝑅𝑃𝑀𝑡

+ 𝑅𝑃𝑀𝑡
− 𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡   𝑅𝑃𝑀𝑡

+ 𝑅𝑃𝑀𝑡
− 𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡 

𝑅𝑃𝑀𝑡
+ 1.00 

    
𝑅𝑃𝑀𝑡

+ 1.00 
    

𝑅𝑃𝑀𝑡
− 0.69 (***) 1.00 

   
𝑅𝑃𝑀𝑡

− 0.71 (***) 1.00 
   

𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 -0.05 (*) -0.03 1.00 
  

𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 -0.12 (**) -0.00 1.00 
  

𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 0.18 (***) -0.01 0.24 (***) 1.00 
 

𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 0.13 (**) -0.09 0.24 (***) 1.00 
 

𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡 0.17 (***) -0.02 -0.28 (***) 0.47 (***) 1.00 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡 0.09 -0.10 (*) -0.24 (***) 0.45 (***) 1.00 

Panel C: P3, market downturn: August 2007 to December 2012 Panel D: P4, era of turbulence: January 2000 to December 2016 

 
𝑅𝑃𝑀𝑡

+ 𝑅𝑃𝑀𝑡
− 𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡   𝑅𝑃𝑀𝑡

+ 𝑅𝑃𝑀𝑡
− 𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡 

𝑅𝑃𝑀𝑡
+ 1.00 

    
𝑅𝑃𝑀𝑡

+ 1.00 
    

𝑅𝑃𝑀𝑡
− 0.92 (***) 1.00 

   
𝑅𝑃𝑀𝑡

− 0.90 (***) 1.00 
   

𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 -0.13 -0.12 1.00 
  

𝑆𝑘𝑒𝑤_𝑚𝑜𝑚𝑡 -0.01 -0.04 1.00 
  

𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 0.10 0.01 0.06 1.00 
 

𝑆𝑘𝑒𝑤_𝑤𝑖𝑛𝑡 0.14 (**) 0.07 0.14 (**) 1.00 
 

𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡  0.10  0.06  -0.29 (**) 0.54 (***)  1.00 𝑆𝑘𝑒𝑤_𝑙𝑜𝑠𝑡  0.08 0.04  -0.33 (***)  0.43 (***)  1.00 
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Table 3 Partial moment momentum strategy construction 

Table 3 shows how partial moment momentum (PMM) strategies are constructed. Panel A presents four conditions of the upper and lower partial moments based on their 

reference points: medians of 𝑅𝑃𝑀𝑡
+ and 𝑅𝑃𝑀𝑡

−. In any given month t, we classify holding strategies into four conditions based on partial moments in the period [t-1, t] (there 

is a 1-month gap between the formation and holding periods for returns) and their reference points analyzed in Subsection 3.2. Correspondingly, switching methods during 

holding periods under each of these four conditions are presented. Panel B illustrates the actions and returns for different holding periods on each of the four conditions 

presented in Panel A of our six PMM strategies, which we call PMM strategies 1 to 6, represented by PMM_S1 to PMM_S6. In particular, all six PMM strategies switch to the 

same positions if conditions 2 or 3 occur, but act differently if conditions 1 or 4 occur. Moreover, we hold cash long or short to keep our PMM strategies in net zero positions. 

𝑟𝑤,𝑡+1, 𝑟𝑙,𝑡+1, 𝑟𝑓,𝑡+1 represent the returns of winners, losers, and risk-free assets in month t+1, respectively. For example, for PMM strategy 4 (PMM_S4), if condition 1 

applies during the period [t-1, t], in which the upper and lower partial moments are all higher than their reference points, then we close out our positions in both winners and 

losers. The PMM return for month t+1 is 0. If condition 2 applies during the period [t-1, t], in which the upper partial moment is lower than its reference point and the lower 

partial moment is higher than its reference point, then we short losers only, liquidating our long positions and holding cash long. The PMM return for month t+1 is 𝑟𝑓,𝑡+1 −

𝑟𝑙,𝑡+1. If condition 3 applies during the period [t-1, t], in which upper and lower partial moments are all lower than their reference points, then we carry on with the 

momentum strategy by buying winners and short selling losers. The PMM return for month t+1 is 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1. If condition 4 applies during the period [t-1, t], in which the 

upper partial moment is higher than its reference point and the lower partial moment is lower than its reference point, then we buy winners only and short cash. The PMM 

return for month t+1 is 𝑟𝑤,𝑡+1 − 𝑟𝑓,𝑡+1. 

 

Panel A:  Four conditions of partial moments based on their reference points 

Condition 1 If 𝑅𝑃𝑀𝑡
+ ≥ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

+) and if 𝑅𝑃𝑀𝑡
− ≥ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

−) then 

Method 1.1: Close out 

Method 1.2: Go contrarian  

Method 1.3: Short losers only 

Condition 2 
 

𝑅𝑃𝑀𝑡
+ < 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

+)  𝑅𝑃𝑀𝑡
− ≥ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

−)  Method 2:    Short losers only 

Condition 3   𝑅𝑃𝑀𝑡
+ < 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

+)   𝑅𝑃𝑀𝑡
− < 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

−)   Method 3:    Go momentum 

Condition 4   𝑅𝑃𝑀𝑡
+ ≥ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

+) 
  

𝑅𝑃𝑀𝑡
− < 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑅𝑃𝑀𝑡

−) 
  Method 4.1: Go momentum 

Method 4.2: Buy winners only 

Panel B: Methods and returns of six PMM strategies (in any given month t, conditions are classified based on partial moments in the previous month t-1 due to a 1-month gap between the 

formation and holding periods; 𝒓𝒘,𝒕+𝟏, 𝒓𝒍,𝒕+𝟏, 𝒓𝒇,𝒕+𝟏  represent returns of winners, losers, and the risk-free assets in month t+1, respectively. Correspondingly, returns of momentum and 

contrarian strategies are 𝒓𝒘,𝒕+𝟏- 𝒓𝒍,𝒕+𝟏 and 𝒓𝒍,𝒕+𝟏- 𝒓𝒘,𝒕+𝟏, respectively.) 

PMM Strategies 
Condition 1 Condition 2 Condition 3 Condition 4 

Method Return Method Return Method Return Method Return 

PMM_S1 1.1 0 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.1 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 

PMM_S2 1.2 𝑟𝑙,𝑡+1 − 𝑟𝑤,𝑡+1 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.1 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 

PMM_S3 1.3 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.1 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 

PMM_S4 1.1 0 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.2 𝑟𝑤,𝑡+1 − 𝑟𝑓,𝑡+1 

PMM_S5 1.2 𝑟𝑙,𝑡+1 − 𝑟𝑤,𝑡+1 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.2 𝑟𝑤,𝑡+1 − 𝑟𝑓,𝑡+1 

PMM_S6 1.3 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 2 𝑟𝑓,𝑡+1 − 𝑟𝑙,𝑡+1 3 𝑟𝑤,𝑡+1 − 𝑟𝑙,𝑡+1 4.2 𝑟𝑤,𝑡+1 − 𝑟𝑓,𝑡+1 
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Table 4a Performance of partial moment momentum strategies  

Table 4a shows the performance of partial moment momentum (PMM) strategies on a WML basis (11×1) 

for four sample periods. Partial moment reference points are computed for the whole sample period P1. 

WML represents an 11×1 plain momentum strategy with a 1-month gap between the formation and holding 

periods. PMM_S1 to PMM_S6 represent six PMM strategies on a WML basis and are constructed according 

to the switching rules presented in Table 3. Return reports the annualized return of each strategy in 

percentage. The Sharpe ratio reports the annualized Sharpe ratio of each strategy. It is calculated according 

to formula (1), as the long–short portfolio return divided by its standard deviation. The adapted Sortino ratio 

reports the annualized adapted Sortino ratio of each strategy. It is calculated according to formulas (16) to 

(18), as the excess return divided by twice its downside semi-deviation. The Newey–West (1987) t-test 

indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

WML 15.65 4.96 (***) 0.52 0.20 

PMM_S1 10.02 6.14 (***) 0.65 0.31 

PMM_S2 8.23 2.58 (**) 0.27 0.13 

PMM_S3 7.73 2.00 (**) 0.21 0.06 

PMM_S4 10.15 6.24 (***) 0.66 0.32 

PMM_S5 8.37 2.62 (***) 0.28 0.13 

PMM_S6 7.87 2.04 (**) 0.21 0.06 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 

PMM_S1 14.75 4.46 (***) 0.89 0.33 

PMM_S2 10.80 2.49 (**) 0.50 0.13 

PMM_S3 13.77 2.94 (***) 0.59 0.18 

PMM_S4 13.06 3.92 (***) 0.78 0.26 

PMM_S5 9.16 2.12 (**) 0.42 0.07 

PMM_S6 12.08 2.58 (**) 0.52 0.14 

Panel C: P3, market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

PMM_S1 2.47 0.77 0.33 0.17 

PMM_S2 0.37 0.02 0.01 -0.01 

PMM_S3 4.68 0.24 0.10 0.05 

PMM_S4 4.71 1.34 0.57 0.33 

PMM_S5 2.56 0.15 0.06 0.05 

PMM_S6 6.96 0.35 0.15 0.07 

Panel D: P4, era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 

PMM_S1 2.66 0.88 0.21 0.06 

PMM_S2 2.37 0.30 0.07 0.02 

PMM_S3 0.67 0.08 0.02 -0.02 

PMM_S4 3.86 1.37 0.33 0.16 

PMM_S5 3.57 0.45 0.11 0.05 

PMM_S6 1.85 0.21 0.05 0.00 
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Table 4b Conditional decomposed returns of PMM strategies 

Table 4b presents the decomposed returns of six PMM strategies for the four conditions in the whole sample 

period. Panel A reports the actual possibility of occurrence of each of these four PMM strategy conditions, 

shown and discussed previously in Figure 2b. Return reports the annualized equivalent return and frequency-

weighted return (in parenthesis) per each condition in percentage. The combined return is the sum of the 

frequency-weighted return of each of the four conditions. 

  Condition 1 Condition 2 Condition 3 Condition 4 Combined 

Panel A: Possibility of occurrence 

 
34.91% 15.09% 34.91% 15.09% 100.00% 

Panel B: Returns per condition 

WML 5.36 (1.87) 42.10 (6.36) 14.06 (4.90) 16.65 (2.51) 15.65 

PMM_S1 0.00 (0.00) 17.23 (2.60) 14.06 (4.90) 16.65 (2.51) 10.02 

PMM_S2 -5.11 (-1.79) 17.23 (2.60) 14.06 (4.90) 16.65 (2.51) 8.23 

PMM_S3 -6.53 (-2.28) 17.23 (2.60) 14.06 (4.90) 16.65 (2.51) 7.73 

PMM_S4 0.00 (0.00) 17.23 (2.60) 14.06 (4.90) 17.56 (2.65) 10.15 

PMM_S5 -5.11 (-1.79) 17.23 (2.60) 14.06 (4.90) 17.56 (2.65) 8.37 

PMM_S6 -6.53 (-2.28) 17.23 (2.60) 14.06 (4.90) 17.56 (2.65) 7.87 
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Table 5 Performance of partial moment-decomposed strategies  

Table 5 shows the performance of two partial moment-decomposed (PMD) strategies on a WML basis (11 × 

1) for four sample periods. WML represents an 11 × 1 plain momentum strategy with a 1-month gap between 

formation and holding periods. PMD and PMD_C represent an unconstrained PMD strategy and a 200% 

leverage-constrained PMD strategy, respectively. Both strategies are on a WML basis and are constructed 

according to the methods described in Section 4. Return reports the annualized return of each strategy in 

percentage. The Sharpe ratio reports the annualized Sharpe ratio of each strategy. It is calculated according 

to formula (1), as the long–short portfolio return divided by its standard deviation. The adapted Sortino ratio 

reports the annualized adapted Sortino ratio of each strategy. It is calculated according to formulas (16) to 

(18), as the excess return divided by twice its downside semi-deviation. The Newey–West (1987) t-test 

indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

WML 15.65 4.96 (***) 0.52 0.20 

PMD 26.13 24.39 (***) 2.57 2.27 

PMD_C 19.94 24.69 (***) 2.60 1.93 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 

PMD 31.66 14.83 (***) 2.97 2.65 

PMD_C 23.31 15.84 (***) 3.17 2.00 

Panel C: P3, market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

PMD 13.84 4.35 (***) 1.86 1.08 

PMD_C 13.15 4.28 (***) 1.82 1.03 

Panel D: P4, era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 

PMD 13.78 6.68 (***) 1.62 1.00 

PMD_C 12.25 6.65 (***) 1.61 1.00 
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Table 6 Comparison of performance of partial moments-based momentum strategies versus the plain momentum strategy 

Table 6 compares the performance of two PMD strategies, the best and the worst PMM strategy with the plain momentum strategy for four sample periods. All momentum 

portfolios are constructed on a WML basis. WML represents an 11×1 plain momentum strategy with a 1-month gap between the formation and holding periods. PMD and 

PMD_C represent an unconstrained PMD strategy and a 200% leverage-constrained PMD strategy, respectively. Both strategies are constructed according to the methods 

described in Section 4. PMM_S4 and PMM_S3 represent the best- and worst-performing PMM strategies, respectively, during periods of market downturn (see Table 4a). 

Return reports the annualized return of each strategy in percentage. The Sharpe ratio reports the annualized Sharpe ratio of each strategy. It is calculated according to formula 

(1), as the long–short portfolio return divided by its standard deviation. The adapted Sortino ratio reports the annualized adapted Sortino ratio of each strategy. It is calculated 

according to formulas (16) to (18), as the excess return divided by twice its downside semi-deviation. Jarque-Bera reports the statistics and p-values (in parenthesis; for 

instance, the reference point when p = 0.05 is 5.991.) of the Jarque-Bera normality test in Jarque and Bera (1987). The null hypothesis states that the variable is normally 

distributed. Skewness and kurtosis of strategy returns are also reported. The Newey–West (1987) t-test indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio Skewness Kurtosis Jarque-Bera  

P1: whole sample period: January 1927 to December 2016 

WML 15.65 4.96 (***) 0.52 0.20 -2.34 17.46 10394.75 (<0.001) 

PMM_S3 7.73 2.00 (**) 0.21 0.06 -2.07 18.19 11159.07 (<0.001) 

PMM_S4 10.15 6.24 (***) 0.66 0.32 0.53 3.70 73.24 (<0.001) 

PMD 26.13 24.39 (***) 2.57 2.27 0.83 2.27 149.12 (<0.001) 

PMD_C 19.94 24.69 (***) 2.60 1.93 0.54 2.02 94.80 (<0.001) 

P2: Jegadeesh and Titman (1993): January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 -0.88 2.19 46.87 (<0.001) 

PMM_S3 13.77 2.94 (***) 0.59 0.18 -0.51 3.09 13.07 (0.001) 

PMM_S4 13.06 3.92 (***) 0.78 0.26 0.00 1.29 36.54 (<0.001) 

PMD 31.66 14.83 (***) 2.97 2.65 0.99 1.98 61.65 (<0.001) 

PMD_C 23.31 15.84 (***) 3.17 2.00 0.41 0.96 60.29 (<0.001) 

P3: market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 -1.91 5.69 60.06 (<0.001) 

PMM_S3 4.68 0.24 0.10 0.05 -1.12 3.28 13.97 (<0.001) 

PMM_S4 4.71 1.34 0.57 0.33 0.01 5.35 15.23 (<0.001) 

PMD 13.84 4.35 (***) 1.86 1.08 -0.27 2.01 3.47 (0.176) 

PMD_C 13.15 4.28 (***) 1.82 1.03 -0.36 2.18 3.29 (0.193) 

P4: era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 -1.38 5.76 129.58 (<0.001) 

PMM_S3 0.67 0.08 0.02 -0.02 -0.79 3.46 22.82(<0.001) 

PMM_S4 3.86 1.37 0.33 0.16 2.38 16.59 1762.93 (<0.001) 

PMD 13.78 6.68 (***) 1.62 1.00 -0.11 1.58 17.44 (<0.001) 

PMD_C 12.25 6.65 (***) 1.61 1.00 -0.06 1.45 20.52 (<0.001) 
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Table 7 Vector autoregression results of partial moments from January 1927 to December 

1999 

Table 7 reports the VAR (1) process results of partial moments throughout the in-sample period from 

January 1927 to December 1999. For Equation (14), the dependent variable is 𝑅𝑃𝑀𝑡
+, which represents the 

upper partial moments at month t. For Equation (15), the dependent variable is 𝑅𝑃𝑀𝑡
−, which represents the 

lower partial moments at month t. For each regression, 𝛼 represents the coefficient of the intercept; 𝑅𝑃𝑀𝑡−1
+  

and 𝑅𝑃𝑀𝑡−1
−  represent the value of the upper and lower partial moments at month t-1, respectively. 𝑅𝑎𝑑𝑗

2  

reports the adjusted R-squared value. The Newey–West (1987) t-test indicates significance at the 10% (*), 5% 

(**), and 1% (***) levels. 

 

Coefficient Variable Estimated coefficients (t-statistics) 

  
(12) (13) 

  𝑅𝑃𝑀𝑡
+ 𝑅𝑃𝑀𝑡

− 

𝛼1 
 

1 

 

0. 00041 

(5.89) *** 
 

𝛽11 
 

𝑅𝑃𝑀𝑡−1
+  

 

0.45557 

(13.26) ***  

𝛽12 
 

𝑅𝑃𝑀𝑡−1
−  

 

0.17777 

(6.13) ***  

𝛼2 
 

1 

  

0. 00052 

(5.59) *** 

𝛽21 
 

𝑅𝑃𝑀𝑡−1
+  

  

0.28695 

(6.21) *** 

𝛽22 
 

𝑅𝑃𝑀𝑡−1
−  

 
 

0.24295 

(6.23) *** 

𝑅𝑎𝑑𝑗
2   0. 3704 0. 1893 
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Table 8 Switching conditions for the out-of-sample periods 

Table 8 reports the frequencies of the four PMM switching conditions based on in-sample partial moments 

for the whole out-of-sample period, the era of turbulence from January 2000 to December 2016. Panel A 

shows the actual out-of-sample frequencies of PMM conditions based on in-sample estimates. The variable 

“Sab” represents a situation in which the condition in the current month t is a and the condition in the next 

month t+1 is b. N represents the numbers of each situation. Pct represents the percentage of each situation 

for each of the four conditions. Cond represents the total numbers of months when a condition applies to the 

whole out-of-sample period; there are 203 months during the 17-year period (there is no PMM in January 

2000 owing to the 1-month lag before the formation and holding periods). For example, Cond 1 equals 124, 

which means there are 124 months during the out-of-sample period when condition 1 applies. The N of S14 

is 15, which means there are 15 months in the out-of-sample period when condition 1 applies and, in the 

meantime, condition 4 applies in the next month. The Pct value of S14 is 7.39, which means that no matter 

what condition applies in the current month, there is a 7.39% chance that condition 4 will apply in the next 

month. Panel B compares the estimations of the four PMM strategies with the actual observations. Estimated 

probability reports the theoretical possibility of occurrence of each of these four PMM strategy conditions, 

which is consistent with Figure 2b.  

Panel A: Frequencies of the four PMM switching conditions  

Variable N Pct Variable N Pct Variable N Pct Variable N Pct 

S11 93 45.81 S21 13 6.40 S31 8 3.94 S41 9 4.43 

S12 3 1.48 S22 0 0.00 S32 8 3.94 S42 5 2.46 

S13 13 6.40 S23 3 1.48 S33 15 7.39 S43 5 2.46 

S14 15 7.39 S24 0 0.00 S34 4 1.97 S44 9 4.43 

Cond 1 124 61.08 Cond 2 16 7.88 Cond 3 35 17.24 Cond 4 28 13.79 

Panel B: Comparison of estimated and actual frequencies 

Condition Estimated probability Actual probability 

1 32.53 61.08 

2 17.47 7.88 

3 32.53 17.24 

4 17.47 13.79 

Total 100.00 100.00 
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Table 9 Out-of-sample performance of partial moments-based momentum strategies  

Table 9 shows the out-of-sample performance of six partial moment momentum (PMM) strategies and two 

partial moment-decomposed (PMD) strategies on a WML basis (11×1) for two sample periods. Partial 

moment reference points are computed for the in-sample sample period from January 1964 to December 

1999. WML represents an 11×1 plain momentum strategy with a 1-month gap between the formation and 

holding periods. PMM_S1 to PMM_S6 represent six PMM strategies on a WML basis and are constructed 

according to the switching rules presented in Table 3. PMD and PMD_C represent an unconstrained PMD 

strategy and a 200% leverage-constrained PMD strategy, respectively. Both strategies are on a WML basis 

and are constructed according to the methods described in Section 4. All partial moments-based momentum 

strategies follow the estimated partial moments. Return reports the annualized return of each strategy in 

percentage. The Sharpe ratio reports the annualized Sharpe ratio of each strategy. It is calculated according 

to formula (1), as the long–short portfolio return divided by its standard deviation. The adapted Sortino ratio 

reports the annualized adapted Sortino ratio of each strategy. It is calculated according to formulas (16) to 

(18), as the excess return divided by twice its downside semi-deviation. The Newey–West (1987) t-test 

indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: Pa, era of turbulence: January 2000 to December 2016 

WML 5.05 0.60 0.15 0.05 

PMM_S1 1.41 0.52 0.13 -0.02 

PMM_S2 -0.23 -0.04 -0.01 -0.05 

PMM_S3 1.49 0.16 0.04 0.00 

PMM_S4 3.22 1.36 0.33 0.12 

PMM_S5 1.57 0.18 0.04 0.00 

PMM_S6 3.30 0.36 0.09 0.03 

PMD 2.03 1.29 0.31 0.04 

PMD_C 2.03 1.29 0.30 0.04 

Panel B: Pb, market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

PMM_S1 3.20 1.23 0.52 0.43 

PMM_S2 2.16 0.13 0.06 0.04 

PMM_S3 5.96 0.30 0.13 0.06 

PMM_S4 5.45 1.83 (*) 0.78 0.61 

PMM_S5 4.39 0.26 0.11 0.11 

PMM_S6 8.26 0.41 0.18 0.09 

PMD 2.97 1.01 0.43 0.19 

PMD_C 2.97 1.01 0.43 0.19 
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Table 10 Performance of rolling window PMM strategies  

Table 10 shows the performance of six PMM strategies on a WML basis (11×1) for four sample periods. 

Partial moment reference points are computed on a 20-year rolling window basis. WML represents an 11×1 

plain momentum strategy with a 1-month gap between the formation and holding periods. PMM_S1 to 

PMM_S6 represent six PMM strategies on a WML basis and are constructed according to the switching rules 

presented in Table 3. Return reports the annualized return of each strategy in percentage. The Sharpe ratio 

reports the annualized Sharpe ratio of each strategy. It is calculated according to formula (1), as the long–

short portfolio return divided by its standard deviation. The adapted Sortino ratio reports the annualized 

adapted Sortino ratio of each strategy. It is calculated according to formulas (16) to (18), as the excess return 

divided by twice its downside semi-deviation. The Newey–West (1987) t-test indicates significance at the 10% 

(*), 5% (**), and 1% (***) levels. 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

WML 15.15 4.96 (***) 0.52 0.20 

PMM_S1 8.28 4.59 (***) 0.48 0.18 

PMM_S2 5.41 1.78 (*) 0.19 0.05 

PMM_S3 7.95 2.20 (**) 0.23 0.07 

PMM_S4 8.53 4.77 (***) 0.50 0.20 

PMM_S5 5.66 1.87 (*) 0.20 0.06 

PMM_S6 10.82 2.61 (***) 0.30 0.10 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 

PMM_S1 11.09 3.87 (***) 0.77 0.20 

PMM_S2 3.92 0.92 0.18 -0.11 

PMM_S3 14.05 2.85 (***) 0.57 0.18 

PMM_S4 10.75 3.80 (***) 0.76 0.19 

PMM_S5 3.59 0.85 0.17 -0.13 

PMM_S6 13.26 2.30 (**) 0.52 0.16 

Panel C: P3, market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

PMM_S1 8.81 2.08 (**) 0.89 0.70 

PMM_S2 11.76 0.67 0.29 0.29 

PMM_S3 9.60 0.47 0.20 0.10 

PMM_S4 8.49 2.02 (**) 0.86 0.61 

PMM_S5 11.43 0.65 0.28 0.29 

PMM_S6 6.42 0.29 0.13 0.06 

Panel D: P4, era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 

PMM_S1 6.04 1.69 (*) 0.41 0.22 

PMM_S2 7.30 0.88 0.21 0.14 

PMM_S3 3.57 0.4 0.10 0.03 

PMM_S4 6.83 2.00 (**) 0.49 0.31 

PMM_S5 8.10 0.99 0.24 0.17 

PMM_S6 3.36 0.35 0.09 0.03 
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Table 11 Performance of partial moments-based momentum strategies on a 6×6 basis 

Table 11 shows the performance of partial moment momentum (PMM) strategies and two partial moment-

decomposed (PMD) strategies on a 6×6 basis for four sample periods. Partial moment reference points are 

computed for the whole sample period, P1. M66 (strategy) represents a 6×6 plain momentum strategy with a 

1-month gap between the formation and holding periods. PMM_S1 to PMM_S6 represent six PMM 

strategies on a 6×6 basis; these are constructed according to the switching rules presented in Table 3. PMD 

and PMD_C represent an unconstrained PMD strategy and a 200% leverage-constrained PMD strategy, 

respectively. Both strategies are on a 6×6 basis and are constructed according to the methods described in 

Section 4. Return reports the annualized return of each strategy in percentage. The Sharpe ratio reports the 

annualized Sharpe ratio of each strategy. It is calculated according to formula (1), as the long–short portfolio 

return divided by its standard deviation. The adapted Sortino ratio reports the annualized adapted Sortino 

ratio of each strategy. It is calculated according to formulas (16) to (18), as the excess return divided by 

twice its downside semi-deviation. The Newey–West (1987) t-test indicates significance at the 10% (*), 5% 

(**), and 1% (***) levels. 
 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

M66 5.62 2.15 (**) 0.23 0.04 

PMM_S1 5.67 3.76 (***) 0.40 0.10 

PMM_S2 6.79 2.44 (**) 0.26 0.11 

PMM_S3 -1.78 -0.46 -0.05 -0.07 

PMM_S4 9.31 5.79 (***) 0.61 0.26 

PMM_S5 10.47 3.65 (***) 0.39 0.24 

PMM_S6 1.63 0.41 0.04 -0.02 

PMD 23.93 23.57 (***) 2.48 1.96 

PMD_C 21.92 20.06 (***) 2.11 1.37 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

M66 12.03 3.59 (***) 0.72 0.14 

PMM_S1 9.55 3.06 (***) 0.61 0.10 

PMM_S2 7.02 1.80 (*) 0.36 0.00 

PMM_S3 6.38 1.27 0.25 -0.01 

PMM_S4 12.10 3.44 (***) 0.69 0.19 

PMM_S5 9.51 2.25 (**) 0.45 0.08 

PMM_S6 8.87 1.67 (*) 0.33 0.04 

PMD 28.06 13.05(***) 2.61 3.44 

PMD_C 24.43 13.48(***) 2.70 2.03 

Panel C: P3, market downturn: August 2007 to December 2012 

M66 -8.98 -0.83 -0.35 -0.16 

PMM_S1 -0.07 -0.03 -0.01 -0.08 

PMM_S2 10.50 0.88 0.38 0.64 

PMM_S3 4.64 0.28 0.12 0.08 

PMM_S4 5.85 1.75 (*) 0.75 0.63 

PMM_S5 16.98 1.38 0.59 1.01 

PMM_S6 1.03 0.06 0.03 0.00 

PMD 12.46 3.74 (***) 1.59 1.19 

PMD_C 9.88 3.09 (***) 1.32 0.74 

Panel D: P4, era of turbulence: January 2000 to December 2016 

M66 -0.92 -0.12 -0.03 -0.04 

PMM_S1 3.30 1.31 0.32 0.12 

PMM_S2 8.96 1.12 0.27 0.21 

PMM_S3 6.04 0.62 0.15 0.10 

PMM_S4 9.23 3.41 (***) 0.83 0.71 

PMM_S5 15.19 1.85 (**) 0.45 0.37 

PMM_S6 -0.60 -0.06 -0.01 -0.03 

PMD 15.58 7.24 (***) 1.76 1.15 

PMD_C 14.07 5.66(***) 1.37 0.67 
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Table 12 Performance comparison of partial moment-decomposed strategies versus the 

Barroso and Santa-Clara (2015) volatility-scaled momentum strategy 

Table 12 compares the performance of two PMD strategies with the volatility-scaled momentum strategy 

introduced by Barroso and Santa-Clara (2015) for four sample periods. To maintain consistency with 

Barroso and Santa-Clara (2015), all momentum portfolios are constructed on a WML basis (11×1). WML 

represents an 11 × 1 plain momentum strategy with a 1-month gap between the formation and holding 

periods. BSC and BSC_C represent an unconstrained volatility-scaled momentum strategy constructed by 

Barroso and Santa-Clara (2015) and a similar strategy with 200% leverage constraint, respectively. PMD and 

PMD_C represent an unconstrained PMD strategy and a 200% leverage-constrained PMD strategy, 

respectively. Both strategies are constructed according to the methods described in Section 4. Return reports 

the annualized return of each strategy in percentage. The Sharpe ratio reports the annualized Sharpe ratio of 

each strategy. It is calculated according to formula (1), as the long–short portfolio return divided by its 

standard deviation. The adapted Sortino ratio reports the annualized adapted Sortino ratio of each strategy. It 

is calculated according to formulas (16) to (18), as the excess return divided by twice its downside semi-

deviation. The Newey–West (1987) t-test indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

P1: whole sample period: January 1927 to December 2016 

WML 15.65 4.96 (***) 0.52 0.20 

BSC 20.24 9.30 (***) 0.98 0.58 

BSC_C 19.26 8.73 (***) 0.92 0.51 

PMD 26.13 24.39 (***) 2.57 2.27 

PMD_C 19.94 24.69 (***) 2.60 1.93 

P2: Jegadeesh and Titman (1993): January 1965 to December 1989 

WML 21.60 5.12 (***) 1.02 0.40 

BSC 31.63 8.03 (***) 1.34 0.75 

BSC_C 26.73 7.17 (***) 1.23 0.60 

PMD 31.66 14.83 (***) 2.97 2.65 

PMD_C 23.31 15.84 (***) 3.17 2.00 

P3: market downturn: August 2007 to December 2012 

WML 5.65 0.33 0.14 0.06 

BSC 13.84 2.06 (**) 0.88 0.58 

BSC_C 11.67 1.85 (*) 0.76 0.48 

PMD 13.84 4.35 (***) 1.86 1.08 

PMD_C 13.15 4.28 (***) 1.82 1.03 

P4: era of turbulence: January 2000 to December 2016 

WML 4.83 0.60 0.15 0.05 

BSC 6.39 1.71 (*) 0.41 0.22 

BSC_C 5.20 1.60 0.35 0.17 

PMD 13.78 6.68 (***) 1.62 1.00 

PMD_C 12.25 6.65 (***) 1.61 1.00 
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Table B.1 Performances of plain momentum strategies in the US equity markets 

Table B.1 shows the performance of four plain momentum strategies for the four sample periods. Return 

reports the annualized return of each strategy in percentage. The Sharpe ratio reports the annualized Sharpe 

ratio of each strategy. It is calculated following the method in formula (1), as the long–short portfolio return 

divided by its standard deviation. The adapted Sortino ratio reports the annualized adapted Sortino ratio of 

each strategy. It is calculated according to formulas (16) to (18), as the excess return divided by twice its 

downside semi-deviation. M33, M66, M99, and M1212 represent the 3×3, 6×6, 9×9, and 12×12 plain 

momentum strategies with 1-month gap between formation and holding periods, respectively. The Newey–

West (1987) t-test indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: P1, whole sample period: January 1927 to December 2016 

M33 2.14 0.91 0.10 -0.02 

M66 5.62 2.15(**) 0.23 0.04 

M99 2.15 0.83 0.09 -0.02 

M1212 1.49 0.59 0.07 -0.03 

Panel B: P2, Jegadeesh and Titman (1993) period: January 1965 to December 1989 

M33 8.96 2.95(***) 0.59 0.06 

M66 12.03 3.59(***) 0.72 0.15 

M99 9.10 2.68(***) 0.54 0.06 

M1212 6.11 1.90(**) 0.38 0.05 

Panel C: P3, market downturn: August 2007 to December 2012 

M33 -6.08 -0.66 -0.28 -0.14 

M66 -8.98 -0.83 -0.35 -0.16 

M99 -10.19 -0.95 -0.40 -0.19 

M1212 -10.36 -1.00 -0.43 -0.21 

Panel D: P4, era of turbulence: January 2000 to December 2016 

M33 -0.88 -0.13 -0.03 -0.04 

M66 -0.92 -0.12 -0.03 -0.04 

M99 -6.17 -0.98 -0.24 -0.14 

M1212 -9.51 -1.68 -0.41 -0.24 
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Table C.1 Vector autoregression results of partial moments 

Table C.1 reports the 𝑉𝐴𝑅(1) process results of partial moments for the whole sample period, from January 

1927 to December 2016. For Equation (23), the dependent variable is 𝑅𝑃𝑀𝑡
+, which represents the upper 

partial moment at month t. For Equation (24), the dependent variable is 𝑅𝑃𝑀𝑡
−, which represents the lower 

partial moment at month t. For each regression, 𝛼 represents the coefficient of the intercept; 𝑅𝑃𝑀𝑡−1
+  and 

𝑅𝑃𝑀𝑡−1
−  represent, respectively, the upper and lower partial moment values at month t-1. 𝑅𝑎𝑑𝑗

2  reports the 

adjusted R-squared value. The Newey–West (1987) t-test indicates significance at the 10% (*), 5% (**), and 

1% (***) levels. 

 

Coefficient Variable Estimated coefficients (t-statistics) 

  
(21) (22) 

  𝑅𝑃𝑀𝑡
+ 𝑅𝑃𝑀𝑡

− 

𝛼1 
 

1 

 

0.00044 

(6.81) *** 
 

𝛽11 
 

𝑅𝑃𝑀𝑡−1
+  

 

0.40117 

(12.20) ***  

𝛽12 
 

𝑅𝑃𝑀𝑡−1
−  

 

0.23641 

(8.33) ***  

𝛼2 
 

1 

  

0.00051 

(6.17) *** 

𝛽21 
 

𝑅𝑃𝑀𝑡−1
+  

  

0.27294 

(6.47) *** 

𝛽22 
 

𝑅𝑃𝑀𝑡−1
−  

 
 

0.30533 

(8.38) *** 

𝑅𝑎𝑑𝑗
2   0.3861 0.2462 
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Table C.2 Joint distribution of days of positive and negative market returns per month 

Table C.2 presents the joint distribution of number of days when the market return is positive and negative in month t for the whole sample period, 1927-2016. (x, y) 

represents the number of months when there are x days when market return is negative and y days when market return is positive, where x=2, 3, …19 and y=3, 4, …19. The 

value-weighted index of all listed firms in the CRSP is chosen as the market proxy as defined in Subsection 2.1. The numbers represent the number of months for each (x, y) 

pair for the 90-year sample period, which is equivalent to a total of 1080 months. For instance, (8, 13) with a value of 56 represents 56 months during the period 1927-2016, 

when the market generates negative returns in 8 trading days and positive returns in 13 trading days. 

Number of days when the market 

return is positive in month t 

Number of days when the market return is negative in month t 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 Total 

3                 1 1 

4               1   1 

5         1 

 

 1 1 

 

3 

 

 6 

6         1 1  4 4 6 2 1  19 

7         2 7 6 11 11 10 1   48 

8        2 3 10 19 20 13 2 

 

  69 

9        2 21 24 56 25 5     133 

10     

  

6 18 26 35 24 7 

 

    116 

11     

 

2 20 30 44 37 15       148 

12     4 14 25 51 45 17        156 

13   

 

3 7 22 56 40 18 

 

       146 

14 

 

1 1 5 22 28 33 17          107 

15 2 

 

1 14 20 21 8 

 

         66 

16  1 3 13 10 5            32 

17  6 5 11 4 

 

           26 

18  2 2 1              5 

19  1                1 

Total 2 11 12 47 67 92 148 160 161 131 120 68 34 18 7 1 1 1080 
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Table C.3 Conditional decomposed returns of partial moment momentum strategies for the 

out-of-sample period 

Table C.3 presents the decomposed returns of partial moment momentum (PMM) strategies on an 11×1 

basis for four conditions in the out-of-sample period. Panel A reports the actual possibility of occurrence of 

each of these four PMM strategy conditions, shown and discussed previously in Panel B of Table 8. Return 

reports the annualized equivalent return and frequency-weighted return (in parenthesis) for each condition, in 

percentage. The combined return is the sum of the frequency-weighted return for each of the four conditions. 

  Condition 1 Condition 2 Condition 3 Condition 4 Combined 

Panel A: Possibility of occurrence 

 
61.08% 7.88% 17.24% 13.79% 100.00% 

Panel B: Returns per condition 

WML 2.76 (1.69) 32.44 (2.56) 8.22 (1.42) -4.44 (-0.61) 5.05 

PMM_S1 0.00 (0.00) 7.72 (0.61) 8.22 (1.42) -4.44 (-0.61) 1.41 

PMM_S2 -2.69 (-1.65) 7.72 (0.61) 8.22 (1.42) -4.44 (-0.61) -0.23 

PMM_S3 0.13 (0.08) 7.72 (0.61) 8.22 (1.42) -4.44 (-0.61) 1.49 

PMM_S4 0.00 (0.00) 7.72 (0.61) 8.22 (1.42) 8.63 (1.19) 3.22 

PMM_S5 -2.69 (-1.65) 7.72 (0.61) 8.22 (1.42) 8.63 (1.19) 1.57 

PMM_S6 0.13 (0.08) 7.72 (0.61) 8.22 (1.42) 8.63 (1.19) 3.30 
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Table C.4 Out-of-sample performance of partial moments-based momentum strategies on a 

6×6 basis 

Table C.4 shows the out-of-sample performance of six partial moment momentum (PMM) strategies and two 

partial moment-decomposed (PMD) strategies on a 6×6 basis over two sample periods, respectively. Partial 

moment reference points are computed for the in-sample period from January 1964 to December 1999. M66 

(strategy) represents a 6×6 plain momentum strategy with a 1-month gap between the formation and holding 

periods. PMM_S1 to PMM_S6 represent six PMM strategies on a 6×6 basis constructed according to the 

switching rules presented in Table 3. PMD and PMD_C represent an unconstrained PMD strategy and a 200% 

leverage-constrained PMD strategy on a 6×6 basis, respectively. Both strategies are on a 6×6 basis and are 

constructed according to the methods described in Section 4. Return reports the annualized return of each 

strategy in percentage. The Sharpe ratio reports the annualized Sharpe ratio of each strategy. It is calculated 

according to formula (1), as the long–short portfolio return divided by its standard deviation. The adapted 

Sortino ratio reports the annualized adapted Sortino ratio of each strategy. It is calculated according to 

formulas (16) to (18), as the excess return divided by twice its downside semi-deviation. The Newey–West 

(1987) t-test indicates significance at the 10% (*), 5% (**), and 1% (***) levels. 

 

Strategy Return t-value Sharpe ratio Adapted Sortino ratio 

Panel A: Pa, era of turbulence: January 2000 to December 2016 

M66 -0.92 -0.12 -0.03 -0.04 

PMM_S1 2.92 1.43 0.35 0.11 

PMM_S2 8.10 1.03 0.25 0.19 

PMM_S3 -5.16 -0.53 -0.13 -0.09 

PMM_S4 7.09 3.12 (***) 0.76 0.52 

PMM_S5 12.46 1.54 0.37 0.30 

PMM_S6 -1.29 -0.13 -0.03 -0.04 

PMD 1.27 0.94 0.23 -0.04 

PMD_C 1.18 0.93 0.21 -0.04 

Panel B: Pb, market downturn: August 2007 to December 2012 

M66 -8.98 -0.83 -0.35 -0.16 

PMM_S1 0.10 0.05 0.02 -0.08 

PMM_S2 11.85 1.00 0.42 0.74 

PMM_S3 -4.47 -0.27 -0.11 -0.08 

PMM_S4 6.02 2.07 (**) 0.88 1.24 

PMM_S5 18.41 1.50 0.64 1.12 

PMM_S6 1.20 0.07 0.03 0.01 

PMD -2.59 -0.16 -0.07 -0.13 

PMD_C -2.30 -0.16 -0.06 -0.11 

 


