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1. Introduction

Approximate factormodels have been a heavily researched topic in finance andmacroeconomics in
the last years (see Bai and Ng (2008), Stock andWatson (2006) and Ludvigson and Ng (2010)). Themost
popular technique to estimate latent factors is Principal Component Analysis (PCA) of a covariance or
correlation matrix. It estimates factors that can best explain the co-movement in the data. A situation
that is often encountered in practice is that the explanatory power of the factors is weak relative to
idiosyncratic noise. In this case conventional PCA performs poorly (see Onatski (2012)). In some cases
economic theory also imposes structure on the first moments of the data. Including this additional
information in the estimation turns out to significantly improve the estimation of latent factors, in
particular for those factors with a weak explanatory power in the variance.

We suggest a new statistical method to find the most important factors for explaining the varia-
tion and the mean in a large dimensional panel. Our key application are asset pricing factors. The
fundamental insight of asset pricing theory is that the cross-section of expected returns should be
explained by exposure to systematic risk factors.1 Hence, asset pricing factors should simultaneously
explain time-series covariation as well as the cross-section of mean returns. Finding the “right” risk
factors is not only the central question in asset pricing but also crucial for optimal portfolio and risk
management.2 Traditional PCA methods based on the covariance or correlation matrices identify fac-
tors that capture only common time-series variation but do not take the cross-sectional explanatory
power of factors into account.3 We generalize PCA by including a penalty term to account for the
pricing errors in the means. Hence, our estimator Risk-Premium PCA (RP-PCA) directly includes the
object of interest, which is explaining the cross-section of expected returns, in the estimation. It turns
out, that even if the goal is to explain the covariation and not the mean, the additional information
in the mean can improve the estimation significantly.

This paper develops the asymptotic inferential theory for our estimator under a general approx-
imate factor model and shows that it dominates conventional estimation based on PCA if there is
information in the mean. We distinguish between strong and weak factors in our model. Strong fac-
tors essentially affect all underlying assets. The market-wide return is an example of a strong factor
in asset pricing applications. RP-PCA can estimate these factors more efficiently than PCA as it ef-
ficiently combines information in first and second moments of the data. Weak factors affect only
a subset of the underlying assets and are harder to detect. Many asset-pricing factors fall into this
category. RP-PCA can find weak factors with high Sharpe-ratios, which cannot be detected with PCA,
even if an infinite amount of data is available.

We build upon the econometrics literature devoted to estimating factors from large dimensional
panel data sets. The general case of a static large dimensional factor model is treated in Bai (2003)

1Arbitrage pricing theory (APT) formalized by Ross (1976) and Chamberlain and Rothschild (1983) states that in an
approximate factor model only systematic factors carry a risk-premium and explain the expected returns of diversified
portfolios. Hence, factors that explain the covariance structure must also explain the expected returns in the cross-section.

2Harvey et al. (2016) document that more than 300 published candidate factors have predictive power for the cross-
section of expected returns. As argued by Cochrane (2011) in his presidential address this leads to the crucial questions,
which risk factors are really important and which factors are subsumed by others.

3PCA has been used to find asset pricing factors among others by Connor and Korajczyk (1988), Connor and Korajczyk
(1993) and Kozak et al. (2017). Kelly et al. (2017) and Fan et al. (2016) apply PCA to projected portfolios.
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and Bai and Ng (2002). Forni et al. (2000) introduce the dynamic principal component method. Fan
et al. (2013) study an approximate factor structure with sparsity. Aït-Sahalia and Xiu (2017) and Pelger
(2018) extend the large dimensional factor model to high-frequency data. All these methods assume
a strong factor structure that is estimated with some version of PCA without taking into account the
information in expected returns, which results in a loss of efficiency. We generalize the framework of
Bai (2003) to include the pricing error penalty and show that it only effects the asymptotic distribution
of the estimates but not consistency.

Onatski (2012) studies principal component estimation of large factor models with weak factors.
He shows that if a factor does not explain a sufficient amount of the variation in the data, it cannot be
detected with PCA. We provide a solution to this problem that renders weak factors with high Sharpe-
ratios detectable. Our statistical model extends the spiked covariance model from random matrix
theory used in Onatski (2012) and Benaych-Georges and Nadakuditi (2011) to include the pricing error
penalty. We show that including the information in the mean leads to larger systematic eigenvalues of
the factors, which reduces the bias in the factor estimation and makes weak factors detectable. The
derivation of our results is challenging as we cannot make the standard assumption that the mean
of the stochastic processes is zero. As many asset pricing factors can be characterized as weak, our
estimation approach becomes particularly relevant.

Our work is part of the emerging econometrics literature that combines latent factor extraction
with a form of regularization. Bai and Ng (2017) develop the statistical theory for robust principal
components. Their estimator can be understood as performing iterative ridge instead of least squares
regressions, which shrinks the eigenvalues of the common components to zero. They combine their
shrinked estimates with a clean-up step that sets the small eigenvalues to zero. Their estimates have
less variation at the cost of a bias. Our approach also includes a penalty which in contrast is based on
economic information and does not create a bias-variance trade-off. The objective of finding factors
that can explain co-movements and the cross-section of expected returns simultaneously is based
on the fundamental insight of arbitrage pricing theory. We show theoretically and empirically that
including the additional information of arbitrage pricing theory in the estimation of factors leads to
factors that have better out-of-sample pricing performance. Our estimator depends on a tuning pa-
rameter that trades off the information in the variance and the mean in the data. Our statistical theory
provides guidance on the optimal choice of the tuning parameter that we confirm in simulations and
in the data.

Our work is closely related to the paper by Fan and Zhong (2018) which allows estimating latent
factors based on an over-identifying set of moments. We combine the first and second moments to
estimate factors while their approach allows the inclusion of additional moments. Their analysis is
based on a generalized method of moment approach under the assumption of a finite cross-section.
Our strong factor model formulation can be similarly related to a general method of moment problem.
We consider a large number of assets and include the additional perspective of a weak factor model
which we think is particularly relevant in the context of asset pricing factors.

We apply our methodology to monthly returns of 370 decile sorted portfolios based on relevant
financial anomalies for 55 years. We find that five factors can explain very well these expected returns
and strongly outperforms PCA-based factors. The maximum Sharpe-ratio of our five factors is more
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than twice as large as those based on PCA; a result that holds in- and out-of-sample. The pricing
errors out-of-sample are sizably smaller. Our method captures the pricing information better while
explaining the same amount of variation and co-movement in the data. Our companion paper Lettau
and Pelger (2018) provides a more in-depth empirical analysis of asset-pricing factors estimated with
our approach.

The rest of the paper is organized as follows. In Section 2 we introduce the model and provide
an intuition for our estimators. Section 3 discusses the formal objective function that defines our
estimator. Section 4 provides the inferential theory for strong factors, while 5 presents the asymptotic
theory for weak factors. Section 6 provides Monte Carlo simulations demonstrating the finite-sample
performance of our estimator. In Section 7 we study the factor structure in a large equity data set.
Section 8 concludes. The appendix contains the proofs.

2. Factor Model

We assume that excess returns follow a standard approximate factor model and the assumptions
of the arbitrage pricing theory are satisfied. This means that returns have a systematic component
captured by 𝐾 factors and a nonsystematic, idiosyncratic component capturing asset-specific risk.
The approximate factor structure allows the non-systematic risk to be weakly dependent. We observe
the excess4 return of 𝑁 assets over 𝑇 time periods:5

𝑋𝑡,𝑖 = 𝐹⊤
𝑡 Λ𝑖 + 𝑒𝑡,𝑖 𝑖 = 1, ..., 𝑁 𝑡 = 1, ..., 𝑇.

In matrix notation this reads as

𝑋⏟
𝑇×𝑁

= 𝐹⏟
𝑇×𝐾

Λ⊤⏟
𝐾×𝑁

+ 𝑒⏟
𝑇×𝑁

.

Our goal is to estimate the unknown latent factors 𝐹 and the loadings Λ. We will work in a large
dimensional panel, i.e. the number of cross-sectional observations 𝑁 and the number of time-series
observations 𝑇 are both large and we study the asymptotics for them jointly going to infinity.

Assume that the factors and residuals are uncorrelated. This implies that the covariance matrix
of the returns consists of a systematic and idiosyncratic part:

Var(𝑋𝑡) = ΛVar(𝐹𝑡)Λ⊤ + Var(𝑒𝑡).

Under standard assumptions the largest eigenvalues of Var(𝑋) are driven by the factors. This moti-
vates Principal Component Analysis (PCA) as an estimator for the loadings and factors. Essentially all
estimators for latent factors only utilize the information contained in the second moment, but ignore
information that is contained in the first moment.

Arbitrage-Pricing Theory (APT) has a second implication: The expected excess return is explained
by the exposure to the risk factors multiplied by the risk-premium of the factors. If the factors are

4Excess returns equal returns minus the risk-free rate.
5In this paper we adopt the notation that all vectors are column vectors.
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excess returns APT implies

𝐸[𝑋𝑡,𝑖] = 𝐸[𝐹𝑡]⊤Λ𝑖.

Here we assume a strong form of APT, where residual risk has a risk-premium of zero. In its more
general form APT requires only the risk-premium of the idiosyncratic part of well-diversified portfo-
lios to go to zero. As most of our analysis will be based on portfolios, there is no loss of generality
by assuming the strong form.

Factors constructed by PCA explain as much common time-series variation as possible. Conven-
tional statistical factor analysis applies PCA to the sample covariance matrix 1

𝑇𝑋
⊤𝑋 − 𝑋̄𝑋̄⊤ where

𝑋̄ denotes the sample mean of excess returns. The eigenvectors of the largest eigenvalues are pro-
portional to the loadings Λ̂PCA. Factors are obtained from a regression on the estimated loadings. It
can be shown that conventional PCA factor estimates are based on the time-series variation objective
function, where 𝑋̃𝑡 = 𝑋𝑡 − 𝑋̄ and ̃𝐹𝑡 = 𝐹𝑡 − ̄𝐹 denotes the demeaned returns respectively factors:

min
Λ, ̃𝐹

1
𝑁𝑇

𝑁

∑
𝑖=1

𝑇

∑
𝑡=1

(𝑋̃𝑡𝑖 − ̃𝐹𝑡Λ⊤
𝑖 )2

We call our approach Risk-Premium-PCA (RP-PCA). It applies PCA to a covariance matrix with
overweighted mean

1
𝑇
𝑋⊤𝑋+ 𝛾𝑋̄𝑋̄⊤

with the risk-premium weight 𝛾. The eigenvectors of the largest eigenvalues are proportional to the
loadings Λ̂RP-PCA. We show that RP-PCA minimizes jointly the unexplained variation and pricing error:

min
Λ,𝐹

1
𝑁𝑇

𝑁

∑
𝑖=1

𝑇

∑
𝑡=1

(𝑋̃𝑡𝑖 − ̃𝐹𝑡Λ⊤
𝑖 )2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
unexplained variation

+(1 + 𝛾) 1
𝑁

𝑁

∑
𝑖=1

(𝑋̄𝑖 − ̄𝐹Λ⊤
𝑖 )

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
pricing error

,

where ̄𝐹 denotes the sample mean of the factors. Factors are estimated by a regression of the returns
on the estimated loadings, i.e. ̂𝐹 = 𝑋Λ̂ (Λ̂⊤Λ̂)

−1
.

We develop the statistical theory that provides guidance on the optimal choice of the key param-
eter 𝛾. There are essentially two different factor model interpretations: a strong factor model and a
weak factor model. In a strong factor model the factors provide a strong signal and lead to exploding
eigenvalues in the covariance matrix relative to the idiosyncratic eigenvalues. This is either because
the strong factors affect a very large number of assets and/or because they have very large variances
themselves. In a weak factor model the factors’ signals are weak and the resulting eigenvalues are
large compared to the idiosyncratic spectrum, but they do not explode.6 In both cases it is always

6Arbitrage-Pricing Theory developed by Chamberlain and Rothschild (1983) assumes that only strong factors are non-
diversifiable and explain the cross-section of expected returns. As pointed out by Onatski (2012), a weak factors can be
regarded as a finite sample approximation for strong factors, i.e. the eigenvalues of factors that are theoretically strong
grow so slowly with the sample size that the weak factor model provides a more appropriate description of the data.
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optimal to choose 𝛾 ≠ −1, i.e. it is better to use our estimator instead of PCA applied to the covari-
ance matrix. In a strong factor model, the estimates become more efficient. In a weak factor model
it strengthens the signal of the weak factors, which could otherwise not be detected. Depending on
which framework is more appropriate, the optimal choice of 𝛾 varies. A weak factor model usually
suggests much larger choices for the optimal 𝛾 than a strong factor model. However, in strong factor
models our estimator is consistent for any choice of 𝛾 and choosing a too large 𝛾 results in only minor
efficiency losses. On the other hand a too small 𝛾 can prevent weak factors from being detected at
all. Thus in our empirical analysis we opt for the choice of larger 𝛾’s.

We derive the statistical theory separately for the strong and the weak factor model. In a model
that contains both, strong and weak factors, we can first consistently estimate the strong factors and
project them out. The residuals from the strong factor model can then be described by a weak factor
model.

The empirical spectrum of eigenvalues in equity data suggests a combination of strong and weak
factors. In all the equity data that we have tested the first eigenvalue of the sample covariance matrix
is very large, typically around ten times the size of the rest of the spectrum. The second and third
eigenvalues usually stand out, but have only magnitudes around twice or three times of the average
of the residual spectrum, which would be more in line with a weak factor interpretation. The first
statistical factor in our data sets is always very strongly correlated with an equally-weighted market
factor. Hence, if we are interested in learning more about factors besides the market, the weak factor
model might provide better guidance.

3. Objective Function

This section explains the relationship between our estimator and the objective function that is
minimized. We introduce the following notation: 1 is a vector 𝑇 × 1 of 1’s and thus 𝐹⊤

1/𝑇 is the
sample mean of 𝐹. The projection matrix 𝑀Λ = 𝐼𝑁 − Λ(Λ⊤Λ)−1Λ⊤ annihilates the 𝐾−dimensional
vector space spanned by Λ. 𝐼𝑁 and 𝐼𝑇 denote the 𝑁- respectively 𝑇-dimensional identity matrix. The
projection matrix 𝑀1 = 𝐼𝑁 − 1

𝑇11
⊤ demeans the time-series, i.e. 𝑋̃ = 𝑋𝑀1 and ̃𝐹 = 𝐹𝑀1.

The objective function of conventional statistical factor analysis is to minimize the sum of squared
errors for the cross-section and time dimension, i.e. the estimator Λ̂ and ̂𝐹 are chosen to minimize
the unexplained variance. This variation objective function is

min
Λ, ̃𝐹

1
𝑁𝑇

𝑁

∑
𝑖=1

𝑇

∑
𝑡=1

(𝑋̃𝑡𝑖 − ̃𝐹𝑡Λ⊤
𝑖 )2 = min

Λ

1
𝑁𝑇

trace ((𝑋̃𝑀Λ)⊤(𝑋̃𝑀Λ)) with ̃𝐹 = 𝑋̃Λ⊤(Λ⊤Λ)−1.

The second formulationmakes use of the fact that in a large panel data set the factors can be estimated
by a regression of the assets on the loadings, 𝐹 = 𝑋(Λ⊤Λ)−1Λ⊤, and hence the demeaned residuals
equal 𝑋̃ − ̃𝐹Λ⊤ = 𝑋𝑀Λ. This is equivalent to choosing Λ̂ proportional to the eigenvectors of the first
𝐾 largest eigenvalues of 1

𝑁𝑇𝑋̃
⊤𝑋̃ = 1

𝑁𝑇𝑋̃𝑀1𝑋̃ = 1
𝑁𝑇𝑋

⊤ (𝐼𝑇 − 11
⊤

𝑇 )𝑋.7

7Factor models are only identified up to invertible transformations. Therefore there is no loss of generality to assume
that the loadings are orthonormal vectors and that the inner product of factors is a diagonal matrix.
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Arbitrage-pricing theory predicts that the factors should price the cross-section of expected excess
returns. This yields a pricing objective function which minimizes the cross-sectional pricing error:

min
Λ,𝐹

1
𝑁

𝑁

∑
𝑖=1

( 1
𝑇
𝑋⊤

𝑖 1− 1
𝑇
𝐹⊤
𝑖 1Λ⊤

𝑖 )
2
= min

Λ

1
𝑁

trace(( 1
𝑇
1
⊤𝑋𝑀Λ)( 1

𝑇
1
⊤𝑋𝑀Λ)

⊤
) .

However, the cross-sectional objective function does not identify a set of factors and loadings and
the problem admits an infinite number of solutions. Specifically, any Λ such that 𝑋⊤

1 belongs to the
space spanned by Λ will be a solution.

We propose to combine these two objective functions with the risk-premium weight 𝛾. The idea
is to obtain statistical factors that explain the co-movement in the data and produce small pricing
errors:

min
Λ,𝐹

1
𝑁𝑇

trace (((𝑋̃𝑀Λ)⊤(𝑋̃𝑀Λ)) + (1 + 𝛾) 1
𝑁

trace(( 1
𝑇
1
⊤𝑋𝑀Λ)( 1

𝑇
1
⊤𝑋𝑀Λ)

⊤
)

=min
Λ

1
𝑁𝑇

trace(𝑀Λ𝑋⊤ (𝐼 + 𝛾
𝑇
11

⊤)𝑋𝑀Λ) with 𝐹 = 𝑋Λ⊤(Λ⊤Λ)−1.

Here we have made use of the linearity of the trace operator. The objective function is minimized
by the eigenvectors of the largest eigenvalues of 1

𝑁𝑇𝑋
⊤ (𝐼𝑇 + 𝛾

𝑇11
⊤)𝑋. Hence the factors and load-

ings can be obtained by applying PCA to this new matrix. The estimator for the loadings Λ̂ are the
eigenvectors of the first 𝐾 eigenvalues of 1

𝑁𝑇𝑋
⊤ (𝐼𝑇 + 𝛾

𝑇11
⊤)𝑋 multiplied by √𝑁. ̂𝐹 are 1

𝑁𝑋Λ̂. The
estimator for the common component 𝐶 = 𝐹Λ is simply ̂𝐶 = ̂𝐹Λ̂⊤. The estimator simplifies to PCA
of the covariance matrix for 𝛾 = −1.

In practice conventional PCA is often applied to the correlation instead of the covariance matrix.
This implies that the returns are demeaned and normalized by their standard-deviation before apply-
ing PCA. Hence, factors are chosen that explain most of the correlation instead of the variance. This
approach is particularly appealing if the underlying panel data is measured in different units. Usu-
ally estimation based on the correlation matrix is more robust than based on the covariance matrix
as it is less affected by a few outliers with very large variances. From a statistical perspective this
is equivalent to applying a cross-sectional weighting matrix to the panel data. After applying PCA,
the inverse of the weighting matrix has to be applied to the estimated eigenvectors. The statistical
rationale is that certain cross-sectional observations contain more information about the systematic
risk than others and hence should obtain a larger weight in the statistical analysis. The standard de-
viation of each cross-sectional observation serves as a proxy for how large the noise is and therefore
down-weighs very noisy observations.

Mathematically, a weighting matrix means that instead of minimizing equally weighted pricing
errors we apply a weighting function 𝑄 to the cross-section resulting in the following weighted com-
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bined objective function:

min
Λ,𝐹

1
𝑁𝑇

trace(𝑄⊤(𝑋̃ − ̃𝐹Λ⊤)⊤(𝑋̃ − ̃𝐹Λ⊤)𝑄)

+ (1 + 𝛾) 1
𝑁

trace( 1
𝑇
1
⊤(𝑋 − 𝐹Λ⊤)𝑄𝑄⊤(𝑋 − 𝐹Λ⊤)⊤1 1

𝑇
)

= min
Λ

1
𝑁𝑇

trace(𝑀Λ𝑄⊤𝑋⊤ (𝐼 + 𝛾
𝑇
11

⊤)𝑋𝑄𝑀Λ)

with 𝐹 = 𝑋Λ⊤(Λ⊤Λ)−1.

Therefore factors and loadings can be estimated by applying PCA to 𝑄⊤𝑋⊤ (𝐼 + 𝛾
𝑇11

⊤)𝑋𝑄. In our
empirical application we only consider the weighting matrix 𝑄 which is the inverse of a diagonal
matrix of standard deviations of each return. For 𝛾 = −1 this corresponds to using a correlation
matrix instead of a covariance matrix for PCA.

There are four different interpretations of RP-PCA:
(1) Variation and pricing objective functions: Our estimator combines a variation and pricing error

criteria function. As such it only selects factors that are priced and hence have small cross-sectional
alpha’s. But at the same time it protects against spurious factors that have vanishing loadings as it
requires the factors to explain a large amount of the variation in the data as well.8

(2) Penalized PCA: RP-PCA is a generalization of PCA regularized by a pricing error penalty term.
Factors that minimize the variation criterion need to explain a large part of the variance in the data.
Factors that minimize the cross-sectional pricing criterion need to have a non-vanishing risk-premia.
Our joint criteria is essentially looking for the factors that explain the time-series but penalizes factors
with a low Sharpe-ratio. Hence the resulting factors usually havemuch higher Sharpe-ratios than those
based on conventional factor analysis.

(3) Information interpretation: Conventional PCA of a covariance matrix only uses information
contained in the secondmoment but ignores all information in the first moment. As using all available
information in general leads to more efficient estimates, there is an argument for including the first
moment in the objective function. Our estimator can be seen as combining two moment conditions
efficiently. This interpretation drives the results for the strong factor model in Section 4.

(4) Signal-strengthening: The matrix 1
𝑇𝑋

⊤𝑋+ 𝛾𝑋̄𝑋̄⊤ should converge to9

Λ(Σ𝐹 + (1 + 𝛾)𝜇𝐹𝜇⊤
𝐹 )Λ⊤ + Var(𝑒),

where Σ𝐹 = Var(𝐹𝑡) denotes the covariance matrix of 𝐹 and 𝜇𝐹 = 𝐸[𝐹𝑡] the mean of the factors. After
normalizing the loadings, the strengths of the factors in the standard PCA of a covariance matrix

8A natural question to ask is why do we not just use the cross-sectional objective function for estimating latent factors,
if we are mainly interested in pricing? First, the cross-sectional pricing objective function alone does not identify a set of
factors. For example it is a rank 1 matrix and it would not make sense to apply PCA to it. Second, there is the problem
of spurious factor detection (see e.g. Bryzgalova (2017)). Factors can perform well in a cross-sectional regression because
their loadings are close to zero. Thus “good” asset pricing factors need to have small cross-sectional pricing errors and
explain the variation in the data.

9In this large-dimensional context the limit will be more complicated and studied in the subsequent sections.
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are equal to their variances. Larger factor variances will result in larger systematic eigenvalues and a
more precise estimation of the factors. In our RP-PCA the signal of weak factors with a small variance
can be “pushed up” by their mean if 𝛾 is chosen accordingly. In this sense our estimator strengthens
the signal of the systematic part. This interpretation is the basis for the weak factor model studied
in Section 5.

4. Strong Factor Model

In a strong factor model RP-PCA provides a more efficient estimator of the loadings than PCA.
Both RP-PCA and PCA provide consistent estimator for the loadings and factors. In the strong factor
model, the systematic factors are so strong that they lead to exploding eigenvalues relative to the
idiosyncratic eigenvalues. This is captured by the assumption that 1

𝑁Λ⊤Λ → ΣΛ where ΣΛ is a full-
rank matrix.10 This could be interpreted as the strong factors affecting an infinite number of assets.

The estimator for the loadings Λ̂ are the eigenvectors of the first𝐾 eigenvalues of 1
𝑁 ( 1

𝑇𝑋
⊤𝑋+ 𝛾𝑋̄𝑋̄⊤)

multiplied by√𝑁. Up to rescaling the estimators are identical to those in the weak factor model setup.
The estimator for the common component 𝐶 = 𝐹Λ is ̂𝐶 = ̂𝐹Λ̂⊤.

Bai (2003) shows that under Assumption 1 the PCA estimator of the loadings has the same asymp-
totic distribution as an OLS regression of 𝑋 on the true factors 𝐹 (up to a rotation). Similarly, the
estimator for the factors behaves asymptotically like an OLS regression of 𝑋⊤ on the true loadings
Λ (up to a rotation). Under slightly stronger assumptions we will show that the estimated loadings
under RP-PCA have the same asymptotic distribution up to rotation as an OLS regression of 𝑊𝑋 on
𝑊𝐹 with 𝑊2 = (𝐼𝑇 + 𝛾11

⊤

𝑇 ). Surprisingly, estimated factors under RP-PCA and PCA have the same
asymptotic distribution.

Assumption 1 is identical to Assumptions A-G in Bai (2003) and some additional weak assump-
tions related to the mean. More specifically, we add assumptions about the time-series mean in D.2,
E.1, E.2 and E.4 to Bai (2003)’s assumptions and slightly modify A, C.3 and F. The Supplementary
Appendix provides a detailed comparison between our and Bai (2003)’s assumptions. We denote by
̄𝐹𝑡 = 1

𝑇 ∑𝑇
𝑡=1 𝐹 and ̄𝑒𝑖 = 1

𝑇 ∑𝑇
𝑡=1 𝑒𝑡,𝑖 the time-series mean of the factors and idiosyncratic component.

The correlation structure in the residuals can be more general in the strong model than in the weak
model. This comes at the cost of larger values for the loading vectors. The residuals still need to
satisfy a form of sparsity assumption restricting the dependence. The strong factor model provides
a distribution theory which is based on a central limit theorem of the residuals.

Assumption 1: Strong Factor Model

A: Factors: 𝐸[‖𝐹𝑡‖4] ≤ 𝑀 < ∞ and 1
𝑇 ∑𝑇

𝑡=1 𝐹𝑡
𝑝
→ 𝜇𝐹 and 1

𝑇 ∑𝑇
𝑡=1 𝐹𝑡𝑀1𝐹⊤

𝑡
𝑝
→ Σ𝐹 + (1+ 𝛾)𝜇𝐹𝜇⊤

𝐹 which

is a 𝐾×𝐾 positive definite matrix.

B: Factor loadings: ‖Λ𝑖‖ < ∞, and ‖Λ⊤Λ/𝑁− Σ𝜆‖ → 0 for some 𝐾×𝐾 positive definite matrix ΣΛ.

10In latent factor models only the product 𝐹Λ is identified. Hence without loss of generality we will normalize ΣΛ to the
identity matrix 𝐼𝐾 and assume that the factors are uncorrelated.
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C: Time and cross-section dependence and heteroskedasticity: There exists a positive constant𝑀 < ∞
such that for all 𝑁 and 𝑇:

1. 𝐸[𝑒𝑡,𝑖] = 0, 𝐸[|𝑒𝑡,𝑖|8] ≤ 𝑀.

2. 𝐸[𝑁−1 ∑𝑁
𝑖=1 𝑒𝑠,𝑖𝑒𝑡,𝑖] = 𝜉(𝑠, 𝑡), |𝜉(𝑠, 𝑠)| ≤ 𝑀 for all 𝑠 and for every 𝑡 ≤ 𝑇 it holds∑𝑇

𝑠=1 |𝜉(𝑠, 𝑡)| ≤
𝑀

3. 𝐸[𝑒𝑡,𝑖𝑒𝑠,𝑗] = 𝜏𝑖𝑗,𝑡𝑠 with |𝜏𝑖𝑗,𝑡𝑠| ≤ |𝜏𝑖𝑗| for some 𝜏𝑖𝑗 and for all 𝑠, 𝑡 and for every 𝑖 ≤ 𝑁 it

holds ∑𝑁
𝑖=1 |𝜏𝑖𝑗| ≤ 𝑀.

4. 𝐸[𝑒𝑡,𝑖𝑒𝑠,𝑗] = 𝜏𝑖𝑗,𝑡𝑠 and (𝑁𝑇)−1 ∑𝑁
𝑖=1 ∑𝑁

𝑗=1 ∑𝑇
𝑡=1 ∑𝑇

𝑠=1 |𝜏𝑖𝑗,𝑠𝑡| ≤ 𝑀.

5. For every (𝑡, 𝑠), 𝐸[|𝑁−1/2 ∑𝑁
𝑖=1(𝑒𝑠,𝑖𝑒𝑡,𝑖) − 𝐸[𝑒𝑠,𝑡𝑒𝑡,𝑖]|4] ≤ 𝑀.

D: Weak dependence between factors and idiosyncratic errors:

1. 𝐸[ 1
𝑁 ∑𝑁

𝑖=1 ‖ 1
√𝑇 ∑𝑇

𝑡=1 𝐹𝑡𝑒𝑡,𝑖‖2] ≤ 𝑀.

2. 𝐸[ 1
𝑁 ∑𝑁

𝑖=1 ‖√𝑇 ̄𝐹 ̄𝑒𝑖‖2] ≤ 𝑀.

E: Moments and Central Limit Theorem: There exists an 𝑀 < ∞ such that for all 𝑁 and 𝑇:

1. For each 𝑡, 𝐸[‖ 1
√𝑁𝑇 ∑𝑇

𝑠=1 ∑𝑁
𝑘=1 𝐹𝑠(𝑒𝑠,𝑘𝑒𝑡,𝑘 − 𝐸[𝑒𝑠,𝑘𝑒𝑡,𝑘])‖

2
] ≤ 𝑀 and

𝐸[‖√𝑇
√𝑁 ∑𝑁

𝑘=1 ̄𝐹 ( ̄𝑒𝑘𝑒𝑡,𝑘 − 𝐸[ ̄𝑒𝑘𝑒𝑡,𝑘])‖
2
] ≤ 𝑀.

2. The 𝐾×𝐾 matrices satisfy 𝐸[‖ 1
√𝑁𝑇 ∑𝑇

𝑡=1 ∑𝑁
𝑖=1 𝐹𝑡Λ⊤

𝑖 𝑒𝑡,𝑖‖2] ≤ 𝑀 and

𝐸[‖√𝑇
√𝑁 ∑𝑁

𝑖=1 ̄𝐹Λ⊤
𝑖 ̄𝑒𝑖‖2] ≤ 𝑀.

3. For each 𝑡 as 𝑁 → ∞:

1
√𝑁

𝑁

∑
𝑖=1

Λ𝑖𝑒𝑡,𝑖
𝑑
→ 𝑁(0, Γ𝑡),

where Γ𝑡 = lim𝑁→∞
1
𝑁 ∑𝑁

𝑖=1 ∑𝑁
𝑗=1 Λ𝑖Λ⊤

𝑗 𝐸[𝑒𝑡,𝑖𝑒𝑡,𝑗]

4. For each 𝑖 as 𝑇 → ∞:

⎛
⎝

1
√𝑇 ∑𝑇

𝑡=1 𝐹𝑡𝑒𝑡,𝑖
1

√𝑇 ∑𝑇
𝑡=1 𝑒𝑡,𝑖

⎞
⎠

𝐷
→ 𝑁(0,Ω𝑖) Ω𝑖 = ⎛

⎝

Ω11,𝑖 Ω12,𝑖

Ω21,𝑖 Ω22,𝑖
⎞
⎠

where Ω𝑖 = 𝑝 lim𝑇→∞
1
𝑇 ∑𝑇

𝑠=1 ∑𝑇
𝑡=1 𝐸⎡

⎣
⎛
⎝

𝐹𝑡𝐹⊤
𝑠 𝑒𝑠,𝑖𝑒𝑡,𝑖 𝐹𝑡𝑒𝑠,𝑖𝑒𝑡,𝑖

𝐹⊤
𝑠 𝑒𝑠,𝑖𝑒𝑡,𝑖 𝑒𝑠,𝑖𝑒𝑡,𝑖

⎞
⎠
⎤
⎦
.

F: The eigenvalues of the 𝐾×𝐾 matrix ΣΛ(Σ𝐹 + (𝛾 + 1)𝜇𝐹𝜇⊤
𝐹 ) are distinct.

Assumption A and B are standard in the literature and require the factors and loadings to be
systematic. Assumption C is essentially identical to Bai (2003) and restricts the time-series and cross-
sectional correlation in the residuals. It requires a form of sparsity in the residuals covariance and
autocorrelation matrices that allows for example for an ARMA-type time-series correlation and block-
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correlation structure in the cross-section. Assumption D allows the factors and residuals to depend
weakly on each other and does not require independence. Assumption E is only needed for the asymp-
totic distribution. It assumes the existence of central limit theorems and the boundedness of the
necessary higher moments. As mentioned before we add assumptions related to the mean to E.1 and
E.2 compared to the standard framework of Bai (2003). These assumptions are very weak and not re-
quired if for example the factors and residuals are independent. The additional central limit theorem
in E.4 related to 1

√𝑇 ∑𝑇
𝑡=1 𝑒𝑡,𝑖 is satisfied for any appropriate martingale difference sequence.

Theorem 1 provides the inferential theory for the strong factor model.

Theorem 1: Asymptotic distribution in strong factor model
Assume Assumption 1 holds. Then:

1. If min(𝑁,𝑇) → ∞, then for any 𝛾 ∈ [−1,∞) the factors and loadings can be estimated consis-

tently pointwise.

2. If √𝑇
𝑁 → 0, then the asymptotic distribution of the loadings estimator is given by

√𝑇(𝐻⊤Λ̂𝑖 −Λ𝑖)
𝐷
→ 𝑁(0,Φ𝑖)

Φ𝑖 = (Σ𝐹 + (𝛾 + 1)𝜇𝐹𝜇⊤
𝐹 )

−1 (Ω11,𝑖 + 𝛾𝜇𝐹Ω21,𝑖 + 𝛾Ω12,𝑖𝜇⊤
𝐹 + 𝛾2𝜇𝐹Ω22,𝑖𝜇⊤

𝐹 ) (Σ𝐹 + (𝛾 + 1)𝜇𝐹𝜇⊤
𝐹 )

−1

𝐻 = (1
𝑇
𝐹⊤𝑊2𝐹)( 1

𝑁
ΛΛ̂)𝑉−1

𝑇𝑁

and 𝑉𝑇𝑁 is a diagonal matrix of the largest 𝐾 eigenvalues of 1
𝑁𝑇𝑋

⊤𝑊2𝑋 and 𝑊2 = (𝐼𝑇 + 𝛾11
⊤

𝑇 ).

3. If √𝑁
𝑇 → 0, then the asymptotic distribution of the factors is not affected by the choice of 𝛾.

4. For any choice of 𝛾 ∈ [−1,∞) the common components can be estimated consistently if

min(𝑁,𝑇) → ∞. The asymptotic distribution of the common component depends on 𝛾 if and only

if 𝑁/𝑇 does not go to zero. For 𝑇/𝑁 → 0

√𝑇( ̂𝐶𝑡,𝑖 −𝐶𝑡,𝑖)
𝐷
→ 𝑁(0, 𝐹⊤

𝑡 Φ𝑖𝐹𝑡) .

Note that Bai (2003) characterizes the distribution of √𝑇(Λ𝑖 −𝐻⊤−1Λ̂𝑖), while we rotate the
estimated loadings √𝑇(𝐻⊤Λ̂𝑖 −Λ𝑖). Our rotated estimators are directly comparable for different
choices of 𝛾. The proof is delegated to the Supplementary Appendix, where we show how to map our
problem into Bai’s (2003) framework. The key argument is based on an asymptotic expansion. Under
Assumption 1 we can show that the following expansions hold

1. √𝑇(𝐻⊤Λ̂𝑖 −Λ𝑖) = ( 1
𝑇𝐹

⊤𝑊2𝐹)
−1 1

√𝑇𝐹
⊤𝑊2𝑒𝑖 +𝑂𝑝 (√𝑇

𝑁 ) + 𝑜𝑝(1)

2. √𝑁(𝐻⊤−1 ̂𝐹𝑡 − 𝐹𝑡) = ( 1
𝑁Λ⊤Λ)

−1 1
√𝑁Λ⊤𝑒⊤𝑡 +𝑂𝑝 (√𝑁

𝑇 ) + 𝑜𝑝(1)

3. √𝛿( ̂𝐶𝑡,𝑖 −𝐶𝑡,𝑖) = √𝛿
√𝑇𝐹

⊤
𝑡 ( 1

𝑇𝐹
⊤𝑊2𝐹)

−1 1
√𝑇𝐹

⊤𝑊2𝑒𝑖 + √𝛿
√𝑁Λ⊤

𝑖 ( 1
𝑁Λ⊤Λ)

−1 1
√𝑁Λ⊤𝑒⊤𝑡 + 𝑜𝑝(1)

10



with 𝛿 = min(𝑁,𝑇).

We just need to replace the factors and asset space by their projected counterpart 𝑊𝐹 and 𝑊𝑋 in
Bai’s (2003) proofs. Conventional PCA, i.e. 𝛾 = −1 is a special case of our result, which typically
leads to inefficient estimation. In order to get a better intuition we consider an example with i.i.d.
residuals over time. This simplified model will be more comparable to the weak factor model in the
next section.

Example 1: Simplified Strong Factor Model

1. Rate: Assume that 𝑁
𝑇 → 𝑐 with 0 < 𝑐 < ∞.

2. Factors: The factors 𝐹 are uncorrelated among each other and are independent of 𝑒 and Λ and

have bounded first four moments.

𝜇̂𝐹 ∶= 1
𝑇

𝑇

∑
𝑡=1

𝐹𝑡
𝑝
→ 𝜇𝐹 Σ̂𝐹 ∶= 1

𝑇

𝑇

∑
𝑡=1

𝐹𝑡𝐹⊤
𝑡 − 𝜇̂𝜇̂⊤ 𝑝

→ Σ𝐹 =
⎛⎜⎜⎜
⎝

𝜎2
𝐹1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

𝐹𝐾

⎞⎟⎟⎟
⎠
.

3. Loadings: Λ⊤Λ/𝑁
𝑝
→ 𝐼𝐾 and all loadings are bounded. The loadings are independent of the

factors and residuals.

4. Residuals: The residual matrix can be represented as 𝑒 = 𝜖Σ with 𝜖𝑡,𝑖
𝑖.𝑖.𝑑.∼ 𝑁(0, 1). All elements

and all row sums of absolute values of Σ are bounded.

Corollary 1: Simplified Strong Factor Model:
The assumptions of example 1 hold. The factors and loadings can be estimated consistently. The

asymptotic distribution of the factors is not affected by 𝛾. The asymptotic distribution of the loadings

is given by

√𝑇(𝐻⊤Λ̂𝑖 −Λ𝑖)
𝐷
→ 𝑁(0,Ω𝑖),

where 𝐸[𝑒2𝑡,𝑖] = 𝜎2
𝑒𝑖 and

Ω𝑖 = 𝜎2
𝑒𝑖 (Σ𝐹 + (1 + 𝛾)𝜇𝐹𝜇⊤

𝐹 )
−1 (Σ𝐹 + (1 + 𝛾)2𝜇𝐹𝜇⊤

𝐹 ) (Σ𝐹 + (1 + 𝛾)𝜇𝐹𝜇⊤
𝐹 )

−1 .

The optimal choice for the weight minimizing the asymptotic variance is 𝛾 = 0. Choosing 𝛾 = −1, i.e.
the covariance matrix for factor estimation, is not efficient.

The estimator in the strong factor model can be formulated as a GMM problem. Up to a remainder
term that vanishes under appropriate rate conditions the loading estimator is given by

𝐻⊤Λ̂𝑖 = (𝐹⊤𝑊2𝐹)
−1

𝐹⊤𝑊2𝑋𝑖.
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This is equivalent to combining the OLS and the pricing moment conditions with a weight 𝛾. More
specifically, we define the following 𝐾+ 1 population and sample moments

Π(Λ𝑖) = 𝐸⎡
⎣
⎛
⎝

𝑋𝑡,𝑖 − 𝐹𝑡Λ⊤
𝑖 )𝐹𝑡 (𝐸[𝐹𝑡𝐹⊤

𝑡 ])−1/2

𝑋𝑖 − 𝐹𝑡Λ⊤
𝑖

⎞
⎠
⎤
⎦

Π̂(Λ𝑖) = ⎛
⎝

1
√𝑇 (𝑋𝑖 − 𝐹Λ⊤

𝑖 )
⊤ 𝐹 (𝐹⊤𝐹)−1/2

1
𝑇 (𝑋𝑖 − 𝐹Λ⊤

𝑖 )
⊤
1

⎞
⎠
.

The first 𝐾 moments are identical to the OLS first order condition of a regression of 𝑋 on 𝐹. The last
moment is the APT pricing moment equation. The GMM estimator

argmin Π̂⊤ ⎛
⎝

𝐼𝐾 0
0 𝛾

⎞
⎠
Π̂

has the solution 𝐻⊤Λ̂𝑖.

5. Weak Factor Model

If factors are weak rather than strong RP-PCA can detect factors that are not estimated by conven-
tional PCA. Weak factors affect only a smaller fraction of the assets. After normalizing the loadings,
a weak factor can be interpreted as having a small variance. If the variance of a weak factor is below
a critical value, it cannot be detected by PCA. However, the signal of RP-PCA depends on the mean
and the variance of the factors. Thus, RP-PCA can detect weak factors with a high Sharpe-ratio even
if their variance is below the critical detection value. Weak factors can only be estimated with a bias
but the bias will generally be smaller for RP-PCA than for PCA.

In a weak factor model Λ⊤Λ is bounded in contrast to a strong factor model in which 1
𝑁Λ⊤Λ is

bounded. The statistical model for analyzing weak factor models is based on spiked covariance mod-
els from random matrix theory. It is well-known that under the assumptions of random matrix the
eigenvalues of a sample covariance matrix separate into two areas: (1) the bulk spectrum with the
majority of the eigenvalues that are clustered together and (2) some spiked large eigenvalues sepa-
rated from the bulk. Under appropriate assumptions the bulk spectrum converges to the generalized
Marcĕnko-Pastur distribution. The largest eigenvalues are estimatedwith a bias which is characterized
by the Stieltjes transform of the generalized Marcĕnko-Pastur distribution. If the largest population
eigenvalues are below some critical threshold, a phase transition phenomena occurs. The estimated
eigenvalues will vanish in the bulk spectrum and the corresponding estimated eigenvectors will be
orthogonal to the population eigenvectors.11

The estimator of the loadings Λ̂ are the first 𝐾 eigenvectors of 1
𝑇𝑋

⊤𝑋+𝛾𝑋̄𝑋̄⊤. Conventional PCA
of the sample covariance matrix corresponds to 𝛾 = −1.12 The estimators of the factors are the
regression of the returns on the loadings, i.e. ̂𝐹 = 𝑋Λ̂.

11Onatski (2012) studies weak factor models and shows the phase transition phenomena for weak factors estimated with
PCA. Our paper provides a solution to this factor detection problem. It is important to notice that essentially all models in
random matrix theory work with processes with mean zero. However, RP-PCA crucially depends on using non-zero means
of random variables. Hence, we need to develop new arguments to overcome this problem.

12The properties of weak factor models based on covariances have already been studied in Onatski (2012), Paul (2007) and
Benaych-Georges and Nadakuditi (2011). We replicate those results applied to our setup. They will serve as a benchmark
for the more complex risk-premium estimator.
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5.1. Assumptions

We impose the following assumptions on the approximate factor model:

Assumption 2: Weak Factor Model

A: Rate: Assume that N/𝑇 → 𝑐 with 0 < 𝑐 < ∞.

B: Factors: The factors 𝐹 are uncorrelated among each other and are independent of 𝑒 and Λ and

have bounded first two moments.

𝜇̂𝐹 ∶= 1
𝑇

𝑇

∑
𝑡=1

𝐹𝑡
𝑝
→ 𝜇𝐹 Σ̂𝐹 ∶= 1

𝑇
𝐹𝑡𝐹⊤

𝑡 − 𝜇̂𝜇̂⊤ 𝑝
→ Σ𝐹 =

⎛⎜⎜⎜
⎝

𝜎2
𝐹1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

𝐹𝐾

⎞⎟⎟⎟
⎠
.

C: Loadings: Λ⊤Λ
𝑝
→ 𝐼𝐾 and the column vectors of the loadings Λ are orthogonally invariant (e.g.

Λ𝑖,𝑘 ∼ 𝑁(0, 1/𝑁) and independent of the factors and residuals.

D: Residuals: The matrix of residuals can be represented as 𝑒 = 𝜖Σ with 𝜖𝑡,𝑖
𝑖.𝑖.𝑑.∼ 𝑁(0, 1). The

empirical eigenvalue distribution function of Σ converges almost surely weakly to a non-random

spectral distribution function with compact support. The supremum of the support is 𝑏 and the

largest eigenvalues of Σ converge to 𝑏.

Assumption 2.C can be interpreted as considering only well-diversified portfolios as factors. It
essentially assumes that the portfolio weights of the factors are random with a variance of 1/𝑁.
The orthogonally invariance assumption on the loading vectors is satisfied if for example Λ𝑖,𝑘

𝑖.𝑖.𝑑.∼
𝑁(0, 1/𝑁). This is certainly a stylized assumption, but it allows us to derive closed-form solutions
that are easily interpretable.13 Assumption 2.D is a standard assumption in random matrix theory.14

The assumption allows for non-trivial weak cross-sectional correlation in the residuals, but excludes
serial-correlation. It implies clustering of the largest eigenvalues of the population covariance matrix
of the residuals and rules out that a few linear combinations of idiosyncratic terms have an unusually
large variation which could not be separated from the factors. It can be weakened as in Onatski
(2012) when considering estimation based on the covariance matrix. However, when including the
risk-premium in the estimation it seems that the stronger assumption is required. Many relevant
cross-sectional correlation structures are captured by this assumption e.g. sparse correlationmatrices
or an ARMA-type dependence.

13Onatski (2012) does not impose orthogonally invariant loadings, but requires the loadings to be the eigenvectors of
1
𝑇𝑒

⊤𝑒. In order to make progress we need to impose some kind of assumption that allows us to diagonalize the residual
covariance matrix without changing the structure of the systematic part.

14Similar assumptions have been imposed in Onatski (2010), Onatski (2012), Harding (2013) and Ahn and Horenstein
(2013).
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5.2. Asymptotic Results

In order to state the results for the weak factor model, we need to define several well-known
objects from random matrix theory. We define the average idiosyncratic noise as 𝜎2

𝑒 ∶= trace(Σ)/𝑁,
which is the average of the eigenvalues of Σ. If the residuals are i.i.d. distributed 𝜎2

𝑒 would simply
be their variance. Our estimator will depend strongly on the dependency structure of the residual
covariance matrix which can be captured by their eigenvalues. Denote by 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑁 the
ordered eigenvalues of 1

𝑇𝑒
⊤𝑒. The Cauchy transform of the limit of the empirical distribution of the

eigenvalues is the almost-sure limit:

𝐺(𝑧) = 𝑎.𝑠. lim
𝑇,𝑁→∞

1
𝑁

𝑁

∑
𝑖=1

1
𝑧 − 𝜆𝑖

= 𝑎.𝑠. lim
𝑇,𝑁→∞

1
𝑁

trace((𝑧𝐼𝑁 − 1
𝑇
𝑒⊤𝑒))

−1
.

This function is well-defined for 𝑧 outside the support of the limiting spectral distribution. This
Cauchy transform is a well-understood object in random matrix theory. For simple cases analytical
solutions exist and for general Σ it can easily be simulated or estimated from the data.

A second important transformation of the residual eigenvalues is

𝐵(𝑧) = 𝑎.𝑠. lim
𝑇,𝑁→∞

𝑐
𝑁

𝑁

∑
𝑖=1

𝜆𝑖

(𝑧 − 𝜆𝑖)2
= 𝑎.𝑠. lim

𝑇,𝑁→∞

𝑐
𝑁

trace(((𝑧𝐼𝑁 − 1
𝑇
𝑒⊤𝑒))

−2
( 1
𝑇
𝑒⊤𝑒)) .

For special cases a closed-form solution for the function 𝐵(𝑧) is available and for the general case it
can be easily estimated.

The crucial tool for understanding RP-PCA is the concept of a “signal matrix”𝑀. The signal matrix
essentially represents the largest true eigenvalues. For PCA estimation based on the sample covari-
ance matrix the signal matrix 𝑀PCA equals:15

𝑀PCA = Σ𝐹 + 𝑐𝜎2
𝑒 𝐼𝐾 =

⎛⎜⎜⎜
⎝

𝜎2
𝐹1 + 𝑐𝜎2

𝑒 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

𝐹𝐾 + 𝑐𝜎2
𝑒

⎞⎟⎟⎟
⎠

and the “signals” are the 𝐾 largest eigenvalues 𝜃PCA
1 , .., 𝜃PCA

𝐾 of this matrix. The “signal matrix” for
RP-PCA 𝑀RP-PCA is defined as

𝑀RP-PCA = ⎛
⎝

Σ𝐹 + 𝑐𝜎2
𝑒 Σ1/2

𝐹 𝜇𝐹(1 + 𝛾̃)
𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹 + 𝑐𝜎2

𝑒 )
⎞
⎠
.

We define 𝛾̃ = √𝛾 + 1 − 1 and note that (1 + 𝛾̃)2 = 1 + 𝛾. The RP-PCA “signals” are the 𝐾 largest
eigenvalues 𝜃RP-PCA

1 , .., 𝜃RP-PCA
𝐾 of 𝑀RP-PCA. Intuitively, the signal of the factors is driven by Σ𝐹 + (1 +

15The proof in the Appendix provides a rigorous argument why this is the correct signal matrix. Here we give a heuristic
argument. Note thatΛ is an orthonormalmatrix. The𝐾 largest eigenvalues of the systematic covariancematrixΛ𝑉𝑎𝑟(𝐹𝑡)Λ⊤

can be obtained by projecting on the loading space Λ⊤Λ𝑉𝑎𝑟(𝐹𝑡)Λ⊤Λ = 𝑉𝑎𝑟(𝐹𝑡). When we take into account the residual
covariance matrix we obtain Λ⊤ (Λ𝑉𝑎𝑟(𝐹𝑡)Λ⊤ +𝑉𝑎𝑟(𝑒𝑡))Λ ≈ 𝑉𝑎𝑟(𝐹𝑡) + 1

𝑁 trace(Σ)𝐼𝐾 as the Λ are orthogonally invariant
and satisfy a law of large numbers. For technical reasons we need to include the correction factor 𝑐.
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𝛾)𝜇𝐹𝜇⊤
𝐹 , which has the same 𝐾 largest eigenvalues as16

⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹)

⎞
⎠
.

This is disturbed by the average noise which adds the matrix ⎛
⎝

𝑐𝜎2
𝑒 𝐼𝐾 0
0 (1 + 𝛾)𝑐𝜎2

𝑒
⎞
⎠
. Note that the

disturbance also depends on the parameter 𝛾. The eigenvalues of𝑀RP-PCA are strictly larger than those
of 𝑀PCA, if 𝜇𝐹 ≠ 0. Hence, RP-PCA has a stronger signal from its systematic component than PCA. We
denote the corresponding orthonormal eigenvectors of 𝑀RP-PCA by 𝑈̃:

𝑈̃⊤𝑀RP-PCA𝑈̃ =
⎛⎜⎜⎜
⎝

𝜃RP-PCA
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃RP-PCA

𝐾+1

⎞⎟⎟⎟
⎠
.

Unlike the conventional case of the covariance matrix with uncorrelated factors we cannot link the
eigenvalues of 𝑀RP-PCA with specific factors. The rotation 𝑈̃ tells us how much the first eigenvalue
contributes to the first 𝐾 factors, etc.. We first derive the results for the special case Σ = 𝜎2

𝑒 𝐼𝑁 before
we treat the case of a general residual covariance matrix.

Theorem 2: Risk-Premium PCA under weak factor model
Assume Assumption 2 holds and Σ = 𝜎2

𝑒 𝐼𝑁. We denote by 𝜃1, ..., 𝜃𝐾 the first 𝐾 largest eigenvalues

of the signal matrix 𝑀 = 𝑀PCA or 𝑀 = 𝑀RP-PCA. The first 𝐾 largest eigenvalues ̂𝜃𝑖 𝑖 = 1, ..., 𝐾 of
1
𝑇𝑋

⊤ (𝐼𝑇 + 𝛾11
⊤

𝑇 )𝑋 satisfy

̂𝜃𝑖
𝑝
→

⎧
⎨⎩

𝐺−1 ( 1
𝜃𝑖
) if 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡 = lim𝑧↓𝑏

1
𝐺(𝑧)

𝑏 otherwise.

The correlation of the estimated with the true factors is defined as

Ĉorr(𝐹, ̂𝐹) = diag(1
𝑇
𝐹⊤ (𝐼 − 11

⊤

𝑇
)𝐹)

−1/2

(1
𝑇
𝐹⊤ (𝐼 − 11

⊤

𝑇
) ̂𝐹)diag(1

𝑇
̂𝐹⊤ (𝐼 − 11

⊤

𝑇
) ̂𝐹)

−1/2

and converges to

Ĉorr(𝐹, ̂𝐹)
𝑝
→ 𝑄

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 0 ⋯ 0
0 𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑅

16We denote the 𝐾 × 𝐾 + 1 matrix (Σ1/2
𝐹 (1 + 𝛾̃)𝜇𝐹) by 𝑍 and note that 𝑍𝑍⊤ = Σ𝐹 + (1 + 𝛾)𝜇𝐹𝜇⊤

𝐹 while 𝑍⊤𝑍 =

( Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹)

).
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with

𝜌2
𝑖 =

⎧⎪
⎨⎪⎩

1
1+𝜃𝑖𝐵(𝐺−1( 1

𝜃𝑖
))

if 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡

0 otherwise.

If 𝜇𝐹 ≠ 0, then for any 𝛾 > −1 RP-PCA strictly dominates PCA in terms of detecting factors, i.e. 𝜌𝑖 can

be positive for RP-PCA when it is zero for PCA (but not the other way around). 17

The two matrices 𝑄 and 𝑅 are sub-matrices of rotation matrices and satisfy 𝑄⊤𝑄 ≤ 𝐼𝐾 and 𝑅⊤𝑅 ≤
𝐼𝐾. Hence, the correlation 𝐶𝑜𝑟𝑟(𝐹𝑖, ̂𝐹𝑖) is not necessarily an increasing function in 𝜃. For 𝛾 > −1 the

matrices equal:

𝑄 = (𝐼𝐾 0) 𝑈̃1∶𝐾 𝑅 = 𝐷1/2
𝐾 diag(Σ ̂𝐹)−1/2,

where 𝑈̃1∶𝐾 are the first 𝐾 columns of 𝑈̃ and

Σ ̂𝐹 = 𝐷1/2
𝐾

⎛⎜⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜌𝐾

0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟
⎠

⊤

𝑈̃⊤ ⎛
⎝

𝐼𝐾 0
0 0

⎞
⎠
𝑈̃

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜌𝐾

0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜
⎝

1 − 𝜌2
1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1 − 𝜌2

𝐾

⎞⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟
⎠

𝐷1/2
𝐾

𝐷̂𝐾 = diag (( ̂𝜃1 ⋯ ̂𝜃𝐾)) and 𝐷𝐾 is the probability limit of 𝐷̂𝐾.

For PCA (𝛾 = −1) the two matrices simplify to 𝑄 = 𝑅 = 𝐼𝐾.

Theorem 2 states that the asymptotic behavior of the estimator can be explained by the signals
of the factors for a given distribution of the idiosyncratic shocks. The theorem also states that weak
factors can only be estimated with a bias. If a factor is too weak then it cannot be detected at all.
Weak factors can always be better detected using Risk-Premium-PCA instead of covariance PCA. The
phase transition phenomena that hides weak factors can be avoided by putting some weight on the
information captured by the risk-premium. Based on our asymptotic theory, we can choose the op-
timal weight 𝛾 depending on our objective, e.g. to make all weak factors detectable or achieving the
largest correlation for a specific factor. Typically the rotation matrices 𝑄 and 𝑅 are decreasing in 𝛾
while 𝜌𝑖 is increasing in 𝛾, yielding an optimal value for the largest correlation.

Theorem 2 assumes the special case of i.i.d. residuals with covariance matrix Σ = 𝜎2
𝑒 𝐼𝑁 as we

need to deal with the expression

1
𝑁

trace(Σ(𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑒)

−1
)

which simplifies to 𝜎2
𝑒 𝐺(𝜆) + 𝑜𝑝(1) for Σ = 𝜎2

𝑒 𝐼𝑁. This result is not true for general residual covari-

17In addition, for 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡 and 𝜃𝑖 sufficiently large, the correlation 𝜌𝑖 is strictly increasing in 𝜃𝑖.
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ance matrices. However, we are able to provide very close upper and lower bounds for the limiting
correlations using modified signal matrices. We denote by 𝜎2

𝑚𝑖𝑛 and 𝜎2
𝑚𝑎𝑥 the smallest respectively

largest eigenvalue of Σ. Then, it holds that

𝜎2
𝑚𝑖𝑛𝐺(𝜆) + 𝑜𝑝(1) ≤ 1

𝑁
trace(Σ(𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑒)

−1
) ≤ 𝜎2

𝑚𝑎𝑥𝐺(𝜆) + 𝑜𝑝(1)

It turns out that there exists tighter bounds for the upper and lower bounds. We define 𝜎2
𝑒,𝐺 to be the

largest value and 𝜎̄2
𝑒,𝐺 the smallest value such that

𝜎2
𝑒,𝐺 + 𝑜𝑝(1) ≤

1
𝑁 trace(Σ(𝜆𝐼𝑁 − 1

𝑇𝑒
⊤𝑒)

−1
)

1
𝑁 trace((𝜆𝐼𝑁 − 1

𝑇𝑒⊤𝑒)
−1

)
≤ 𝜎̄2

𝑒,𝐺 + 𝑜𝑝(1) for all 𝜆 ∈ (𝑏,∞).

There exists a solution with 𝜎2
𝑚𝑖𝑛 ≤ 𝜎2

𝑒,𝐺 ≤ 𝜎̄2
𝑒,𝐺 ≤ 𝜎2

𝑚𝑎𝑥, which can be obtained numerically from
the above inequality. The same problem arises with the function 𝐵(𝜆). We define by 𝜎2

𝑒,𝐵 and 𝜎̄2
𝑒,𝐵 the

largest respectively smallest value that satisfies

𝜎2
𝑒,𝐵 + 𝑜𝑝(1) ≤

1
𝑁 trace(Σ𝑒⊤ (𝜆𝐼𝑇 − 1

𝑇𝑒𝑒
⊤)

−2
𝑒)

1
𝑁 trace(𝑒⊤ (𝜆𝐼𝑇 − 1

𝑇𝑒𝑒⊤)
−2

𝑒)
≤ 𝜎̄2

𝑒,𝐵 + 𝑜𝑝(1) for all 𝜆 ∈ (𝑏,∞).

As before the solution exists with 𝜎2
𝑚𝑖𝑛 ≤ 𝜎2

𝑒,𝐵 ≤ 𝜎̄2
𝑒,𝐵 ≤ 𝜎2

𝑚𝑎𝑥 and can easily be calculated numeri-
cally.

Based on the four different “noise variances” we introduce the corresponding signal matrices
𝑀RP-PCA,𝐺, 𝑀̄RP-PCA,𝐺,𝑀RP-PCA,𝐵 and 𝑀̄RP-PCA,𝐵 which are defined analogously to 𝑀RP-PCA but replace 𝜎2

𝑒

by the different variance bounds; i.e. for example

𝑀RP-PCA,𝐺 = ⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹)

⎞
⎠

+𝜎2
𝑒,𝐺 ⋅ 𝑐⎛

⎝

𝐼𝐾 0
0 (1 + 𝛾)

⎞
⎠
.

The eigenvalues of these signal matrices are the signals 𝜃𝑖,𝐺, ̄𝜃𝑖,𝐺, 𝜃𝑖,𝐵 and ̄𝜃𝑖,𝐵 with the corresponding
eigenvectors 𝑈𝐺, 𝑈̄𝐺, 𝑈𝐵 and 𝑈̄𝐵, i.e. for example

𝑈⊤
𝐺 𝑀RP-PCA,G 𝑈𝐺 =

⎛⎜⎜⎜
⎝

𝜃1,𝐺 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1,𝐺

⎞⎟⎟⎟
⎠
.

Theorem 3: Risk-Premium PCA under weak factor model for general residual covariance matrix
Assume Assumption 2 holds. The first𝐾 largest eigenvalues ̂𝜃𝑖 𝑖 = 1, ..., 𝐾 of 1

𝑇𝑋
⊤ (𝐼𝑇 + 𝛾11

⊤

𝑇 )𝑋 satisfy

𝜃𝑖 ≤ ̂𝜃𝑖 + 𝑜𝑝(1) ≤ ̄𝜃𝑖
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with

𝜃𝑖 =
⎧⎪
⎨⎪⎩

𝐺−1 ( 1
𝜃𝑖,𝐺

) if 𝜃𝑖,𝐺 > 𝜃𝑐𝑟𝑖𝑡 = lim𝑧↓𝑏
1

𝐺(𝑧)

𝑏 otherwise.

̄𝜃𝑖 =
⎧⎪
⎨⎪⎩

𝐺−1 ( 1
̄𝜃𝑖,𝐺
) if ̄𝜃𝑖,𝐺 > 𝜃𝑐𝑟𝑖𝑡

𝑏 otherwise.

The correlation of the estimated with the true factors converges to

Ĉorr(𝐹, ̂𝐹)
𝑝
→ 𝑄̃

⎛⎜⎜⎜⎜⎜⎜
⎝

̃𝜌1 0 ⋯ 0
0 ̃𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 ̃𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑅̃

with

𝑄̃ = (𝐼𝐾 0𝐾×1)𝑉

𝑅̃ = diag

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐼𝐾 −
⎛⎜⎜⎜⎜⎜⎜
⎝

̃𝜌1 0 ⋯ 0
0 ̃𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 ̃𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑉⊤ ⎛
⎝

0𝐾×𝐾 0𝐾×1

01×𝐾 1
⎞
⎠
𝑉
⎛⎜⎜⎜⎜⎜⎜
⎝

̃𝜌1 0 ⋯ 0
0 ̃𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 ̃𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟
⎠

−1/2

and 𝑉𝑖 for 𝑖 = 1, ..., 𝐾 are the solutions to

⎛
⎝
𝐼𝐾+1 −⎛

⎝
⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹)

⎞
⎠
𝐺( ̂𝜃𝑖) + ⎛

⎝

𝐼𝐾 0
0 (1 + 𝛾)

⎞
⎠
𝑐 ⋅ ̃𝐺( ̂𝜃𝑖)⎞

⎠
⎞
⎠
𝑉𝑖 = 𝑜𝑝(1) for 𝑖 = 1, ..., 𝐾.

with 1
𝑁 trace(Σ(𝜆𝐼𝑁 − 1

𝑇𝑒
⊤𝑒)

−1
)

𝑝
→ ̃𝐺(𝜆). The correlation is bounded from below and above by

Corr(𝐹, ̂𝐹) = 𝑄̃
⎛⎜⎜⎜⎜⎜⎜
⎝

̄𝜌1 0 ⋯ 0
0 ̄𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 ̄𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑅̄, Corr(𝐹, ̂𝐹) = 𝑄̃
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 0 ⋯ 0
0 𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑅.

with 𝜌𝑖 ≤ ̃𝜌𝑖 ≤ ̄𝜌𝑖 and 𝑅 ≤ 𝑅̃ ≤ 𝑅̄:

𝜌2
𝑖 =

⎧⎪
⎨⎪⎩

1
1+ ̄𝜃𝑖,𝐵𝐵(𝐺−1( 1

𝜃𝑖,𝐺
))

if 𝜃𝑖,𝐺 > 𝜃𝑐𝑟𝑖𝑡

0 otherwise
̄𝜌2
𝑖 =

⎧⎪
⎨⎪⎩

1
1+𝜃𝑖,𝐵𝐵(𝐺−1( 1

̄𝜃𝑖,𝐺
))

if ̄𝜃𝑖,𝐺 > 𝜃𝑐𝑟𝑖𝑡

0 otherwise.
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𝑅 = diag

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐼𝐾 −
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 0 ⋯ 0
0 𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑉⊤ ⎛
⎝

0𝐾×𝐾 0𝐾×1

01×𝐾 1
⎞
⎠
𝑉
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜌1 0 ⋯ 0
0 𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 𝜌𝐾

⎞⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟
⎠

−1/2

and analogously for 𝑅̄ using ̄𝜌𝑖. If 𝜇𝐹 ≠ 0, then for any 𝛾 > −1 RP-PCA has strictly larger lower and

upper bounds for the signals 𝜃RP-PCA
𝑖,𝐺 and ̄𝜃RP-PCA

𝑖,𝐺 than PCA. For PCA (𝛾 = −1) the two matrices simplify

to 𝑄̃ = 𝑅̃ = 𝐼𝐾 and the lower and upper bounds collapse to the same numbers, i.e. 𝜃𝑖,𝐺 = ̄𝜃𝑖,𝐺 and

𝜌𝑖 = ̄𝜌𝑖.

The takeaways from the simple residual covariance case carry over to a general residual covariance
case. The correlation of the estimated factors with the population factors depends on the signals of
the factors which is strengthened for RP-PCA. The formulas for the lower and upper bounds of the
eigenvalues and correlations are analogous to the simple covariance case but use a modified signal
matrix. Simulations show that these bounds are very tight. In particular for weak factors the upper
bound for the correlation of PCA factors can be smaller than the lower bound for RP-PCA factors. In
particular, the PCA upper bound can be zero while the RP-PCA lower bound is positive, in which case
the phase transition phenomena hides the weak PCA factors which are detected by RP-PCA.

5.3. Example

In order to obtain a better intuition for the problem we consider the special case of only one factor
with cross-sectionally uncorrelated residuals.

Example 2: One-factor model with i.i.d. residuals
Assume that there is only one factor, i.e. 𝐾 = 1. We introduce the following notation

• Noise-to-signal ratio: Γ𝑒 = 𝑐⋅𝜎2
𝑒

𝜎2
𝐹

• Sharpe-ratio: 𝑆𝑅 = 𝜇𝐹
𝜎𝐹

.

• Ψ(𝜃1) ∶= 𝐵( ̂𝜃1(𝜃1)) = 𝐵(𝐺−1(1/𝜃1)).

The signal matrix 𝑀𝑅𝑃−𝑃𝐶𝐴 simplifies to

𝑀RP-PCA = 𝜎2
𝐹 ⎛
⎝

1 + Γ𝑒 𝑆𝑅√1 + 𝛾
𝑆𝑅√1 + 𝛾 (𝑆𝑅2 + Γ𝑒)(1 + 𝛾)

⎞
⎠

and has the largest eigenvalue:

𝜃1 =1
2
𝜎2

𝐹 (1 + Γ𝑒 + (𝑆𝑅2 + Γ𝑒)(1 + 𝛾) + √(1 + Γ𝑒 + (𝑆𝑅2 + Γ𝑒)(1 + 𝛾))2 − 4(1 + 𝛾)Γ𝑒(1 + 𝑆𝑅2 + Γ𝑒)) .

Corollary 2: One-factor model with i.i.d. residuals
Assume Assumption 2 holds, 𝐾 = 1 and 𝑒𝑡,𝑖 i.i.d. 𝑁(0,𝜎2

𝑒 ). The correlation between the estimated and
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true factor has the following limit:

Ĉorr(𝐹, ̂𝐹)2
𝑝
→ 1

1 + 𝜃Ψ(𝜃)⎛⎜
⎝

( 𝜃
𝜎2
𝐹
−(1+Γ𝑒))

2

𝑆𝑅2(1+𝛾) + 1⎞⎟
⎠

and the estimated Sharpe-ratio converges to

𝑆𝑅
𝑝
→

𝜃
𝜎2

𝐹
− (1 + Γ𝑒)

𝑆𝑅(1 + 𝛾)
Ĉorr(𝐹, ̂𝐹).

For 𝛾 → ∞ these limits converge to

Ĉorr(𝐹, ̂𝐹)2
𝑝
→ 1

1 + Γ𝑒 + Γ2𝑒
𝑆𝑅2

𝑆𝑅
𝑝
→ (𝑆𝑅+ Γ𝑒

𝑆𝑅
) 1

√1 + Γ𝑒 + Γ2𝑒
𝑆𝑅2

.

In the case of PCA, i.e. 𝛾 = −1 the expression simplifies to

Ĉorr(𝐹, ̂𝐹)2
𝑝
→ 1

1 + 𝜃Ψ(𝜃)

with 𝜃PCA = 𝜎2
𝐹(1 + Γ𝑒). The function 𝐺(.) and 𝐵(.) are given in closed form. The Cauchy transform

takes the form

𝐺(𝑧) =
𝑧 −𝜎2

𝑒 (1 − 𝑐) − √(𝑧 − 𝜎2𝑒 (1 + 𝑐))2 − 4𝑐𝜎2𝑒

2𝑐𝑧𝜎2𝑒
.

Themaximum residual eigenvalue converges to 𝑏 = 𝜎2
𝑒 (1+√𝑐)2. Hence, the critical value for detecting

factors is now 𝜃𝑐𝑟𝑖𝑡 = 1
𝐺(𝑏+) = 𝜎2

𝑒 (𝑐 + √𝑐). The inverse of the Cauchy transform and the B-function

are given explicitly by

𝐺−1 (1
𝑧
) = 𝑧⎛

⎝

1 + 𝜎2
𝑒 (1−𝑐)

𝑧

1 − 𝑐𝜎2𝑒
𝑧

⎞
⎠

𝐵(𝑧) = 𝑧 −𝜎2
𝑒 (1 + 𝑐)

2𝜎2𝑒 √𝑧2 − 2(1 + 𝑐)𝜎2𝑒 𝑧 + (𝑐 − 1)2𝜎4𝑒
− 1

2𝜎2𝑒
.

For the PCA case, i.e. 𝛾 = −1, the largest eigenvalue of the sample covariance matrix converges to18:

̂𝜃1
𝑝
→

⎧
⎨⎩

𝜎2
𝐹 + 𝜎2

𝑒
𝜎2

𝐹
(𝑐 + 1 +𝜎2

𝑒 ) if 𝜎2
𝐹 + 𝑐𝜎2

𝑒 > 𝜃𝑐𝑟𝑖𝑡 ⇔ 𝜎2
𝐹 > √𝑐𝜎2

𝑒

𝜎2
𝑒 (1 + √𝑐)2 otherwise.

18The results for PCA have already been shown in Onatski (2012), Paul (2007) and Benaych-Georges and Nadakuditi (2011).
We present them to provide intuition for the model.
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and the correlation between the estimated and true factor converges to 𝜌1:

𝜌2
1 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1− 𝑐𝜎4𝑒
𝜎4
𝐹

1+ 𝑐𝜎2𝑒
𝜎2
𝐹
+𝜎4𝑒

𝜎4
𝐹
(𝑐2−𝑐)

if 𝜎2
𝐹 + 𝑐𝜎2

𝑒 > 𝜃𝑐𝑟𝑖𝑡

0 otherwise.

A smaller noise-to-signal ratio Γ𝑒 and a larger Sharpe-ratio combined with a large 𝛾 lead to a more
precise estimation of the factors. In the simulation section we find the optimal value of 𝛾 to maximize

the correlation. Note that a larger value of 𝛾 decreases 𝜃Ψ(𝜃), while it increases
( 𝜃

𝜎2
𝐹
−(1+Γ𝑒))

2

𝑆𝑅2(1+𝛾) , creating
a trade-off. In all our simulations 𝛾 = −1 was never optimal. Note that for the factor variance 𝜎2

𝐹1

going to infinity, we are back in the strong factor model and the estimator becomes consistent.19

6. Simulation

Next, we illustrate the performance of RP-PCA and its ability to detect weak factors with high
Sharpe-ratios using a simulation exercise. We simulate factor models that try to replicate moments
of the data that we are going to study in section 7. The parameters of the factors and idiosyncratic
components are based on our empirical estimates. We analyze the performance of RP-PCA for differ-
ent values of 𝛾, sample size and strength of the factors. Conventional PCA corresponds to 𝛾 = −1.
In a factor model only the product 𝐹Λ⊤ is well-identified and the strength of the factors could be
either modeled through the moments of the factors or the values of the loadings. Throughout this
section we normalize the loadings to Λ⊤Λ/𝑁

𝑝
→ 𝐼𝐾 and vary the moments of the factors. The factors

are uncorrelated with each others and have different means and variances. The variance of the fac-
tor can be interpreted as the proportion of assets affected by this factor. With this normalization a
factor with a variance of 𝜎2

𝐹 = 0.5 could be interpreted as affecting 50% of the assets with an average
loading strength of 1. The theoretical results for the weak factor model are formulated under the
normalization Λ⊤Λ

𝑝
→ 𝐼𝐾. The PCA signal in the weak factor framework corresponds to 𝜎2

𝐹 ⋅ 𝑁 under
the normalization in the simulation.

The strength of a factor has to be put into relationship with the noise level. Based on our theo-
retical results the signal to noise ratio 𝜎2

𝐹
𝜎2𝑒

with 𝜎2
𝑒 = 1

𝑁 ∑𝑁
𝑖=1 𝜎2

𝑒,𝑖 determines the variance signal of a
factor.20 Our empirical results suggest a signal to noise ratio of around 5-8 for the first factor which
is essentially a market factor. The remaining factors in the different data sets seem to have a variance
signal between 0.04 and 0.8. Based on this insight we will model a four-factor model with variances
Σ𝐹 = diag(5, 0.3, 0.1,𝜎2

𝐹). The variance of the fourth factor takes the values 𝜎2
𝐹 ∈ {0.03, 0.1}. The

first factor is a dominant market factor, while the second is also a strong factor. The third factor
is weak, while the fourth factor varies from very weak to weak. We normalize the factors to be un-
correlated with each other. The Sharpe-ratios are defined as 𝑆𝑅𝐹 = (0.12, 0.1, 0.3, 𝑠𝑟), where the

19Given the analytical expression for the Cauchy transform and the eigenvalues and eigenvectors of the RP-PCA signal
matrix, it is possible to write out the analytical expression for the RP-PCA correlation. However, as the formula does not
simplify as nicely as in the PCA case we have left it out.

20Keeping everything else the same increasing the factor variance 𝜎2
𝐹 or decreasing the noise variance 𝜎2

𝑒 by the same
proportion yields the same asymptotic distribution for the PCA estimator in a weak factor model framework.
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Figure 1: Sample paths of the cumulative returns of the first four factors and the estimated factor processes. The fourth
factor has a variance 𝜎2

𝐹 = 0.03 and Sharpe-ratio 𝑠𝑟 = 0.5. 𝑁 = 74 and 𝑇 = 250.

Sharpe-ratio of the fourth factor varies between the following values 𝑠𝑟 ∈ {0.2, 0.3, 0.5, 0.8}. These
parameter values are consistent with our data sets.

The properties of the estimation approach depend on the average idiosyncratic variance and de-
pendency structure in the residuals. We normalize the average noise variance 𝜎2

𝑒 = 1, which implies
that the factor variances can be directly compared to the variance signals in the data.21 We use two
different set of residual correlation matrices.

First, the correlation matrix of our simulated residuals is set to the empirical correlation that
we observe in the data. In more detail, we have estimated the residual correlation matrix based
on 𝑁 = 25 size and value double-sorted portfolios, 𝑁 = 74 extreme deciles sorted portfolios and
𝑁 = 370 decile sorted portfolios as described in the empirical Section 7.22 In each case we have first
regressed out the systematic factors and then estimated the residual covariance matrix with a hard
thresholding approach setting small values to zero.23. This provides a consistent estimator of the

21For the empirical data sets with 𝑁 = 370 assets the average noise variance is around 𝜎2
𝑒 = 2.5. Instead of normalizing

𝜎2
𝑒 = 1 we could also multiply Σ𝐹 by 2.5 and obtain the same factor model that is consistent with the data.
22We use the same data set as Kozak, Nagel and Santosh (2017) to construct 𝑁 = 370 decile-sorted portfolios of monthly

returns from 07/1963 to 12/2017 (T=650). We use the lowest and highest decile portfolio for each anomaly to create a
data set of 𝑁 = 74 portfolios. The 𝑁 = 25 double-sorted portfolios are from Kenneth-French website for the same time
period.

23See Bickel and Levina (2008) and Fan, Liao and Mincheva (2013))
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Figure 2: 𝑁 = 370,𝑇 = 650: Correlation of estimated rotated factors in-sample and out-of-sample for different variances
and Sharpe-ratios of the fourth factor and for different RP-weights 𝛾. We use the empirical residual correlation matrix.

residual population covariance matrix. We have regressed out the first 3 PCA factors for the first data
set and the first 6 PCA factors for the last two data sets.24 The remaining correlation structure in the
residuals is sparse. In particular the estimated eigenvalues of the simulated residuals coincide with
the empirical estimates of the eigenvalues. Second, for 𝑁 = 370 assets we create a sparse residual
correlation matrix based on Σ = 𝐶𝐶⊤, where C is a matrix where the first 13 off-diagonal elements
take the value 0.7. The resulting covariance matrix is normalized to the corresponding correlation
matrix.

In the main part we consider only the cross-sectional dimension 𝑁 = 370 and time dimension
𝑇 = 650 for the empirical residual correlation matrix. The appendix includes the results for the
block-diagonal residual correlation matrix. In the online appendix we also study the combinations
{𝑁 = 74,𝑇 = 650} and {𝑁 = 25,𝑇 = 240} motivated by our empirical analysis and include results
for the pricing errors.

The loadings are i.i.d draws from a standard multivariate normal distribution. The factors are

24Our results remain unchanged when we calculate residuals based on more PCA factors or using RP-PCA factors. The
additional results are available upon request.
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Figure 3: 𝑁 = 370,𝑇 = 650: Sharpe ratios of estimated rotated factors in-sample and out-of-sample for different variances
and Sharpe-ratios of the fourth factor and for different RP-weights 𝛾. We use the empirical residual correlation matrix.

i.i.d. draws from a multivariate normal distribution with means and variances specified as above.
The idiosyncratic components are i.i.d. draws from a multivariate normal distribution with mean
zero and covariance matrix based on a consistent estimation of the empirical residual correlation
matrix respectively the parametric band-diagonal matrix.25 For each setup we run 100 Monte-Carlo
simulations. For the out-of-sample results we first estimate the loading vector in-sample and then
obtain the out-of-sample factor estimates by projecting the out-of-sample returns on the estimated
loadings.

Figure 1 provides some intuition for our estimator. It illustrates the sample path estimates for
different values of 𝛾. If the fourth factor is weak with a high Sharpe-ratio, then conventional PCA or
RP-PCA with a too small value of 𝛾 cannot detect it while RP-PCA with a sufficiently large 𝛾 is able to
detect the factor.

Figures 2 and 3 show correlations and Sharpe-ratios in the four-factor model for 𝑁 = 370 and
𝑇 = 650 based on the empirical residual correlation structure. The risk-premium weight 𝛾 has the
largest effect on estimating the fourth factor if it is weak (𝜎2

𝐹 = 0.03) and has a high Sharpe ratio

25I.e. the residuals are generated as 𝑒𝑡 = 𝜖Σ where 𝜖𝑡 are i.i.d. draws from a multivariate standard normal distribution.
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(𝑠𝑟 ≥ 0.3). The second takeaway is that the estimates of the strong factors are essentially not affected
by the properties of the weak factors and vice versa. Hence, one could first estimate the strong factors
and project them out and then estimate the weak factors from the projected data. Motivated by this
finding we will study a one-factor model in more detail and compare the prediction of our weak factor
model with Monte-Carlo simulations.
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Figure 4: 𝑁 = 370,𝑇 = 650: Upper and lower bounds for the correlations and parameter 𝜌 as a function of the RP-weight
𝛾 for different variances and Sharpe-ratios. The residuals have the empirical residual correlation matrix.

In Figures 4 and A.11 we first calculate the lower and upper bounds for the correlation between
estimated and population factors based on the weak factor model in Theorem 3. We also include the
parameter 𝜌 which drives the correlation. Although the residual covariance matrix takes a general
form here, we also include the predicted correlation based on Theorem 2. In this case which we
label as the “exact” model the signal matrix is based on 1

𝑁 trace(Σ) which corresponds to an average
noise level while the upper and lower bounds are based on a lower respectively higher noise variance.
Hence, the exact model is assumed to take values between the lower and upper bound which is exactly
what we observe. In fact, the bounds are very tight, in particular for higher Sharpe-ratios or variance
signals. Hence, for following simulations we will only report the exact results based on Theorem 2.

Figures 5 and A.10 compare the prediction of our weak factor model theory with a Monte-Carlo
simulation for the empirical and the band-diagonal residual correlation matrix. We consider a factor
variance 𝜎2

𝐹 ∈ {0.03, 0.1}. The online appendix collects the results for a wider range of values. The
risk-premium weight 𝛾 has the largest effect on correlations, Sharpe-ratios and pricing errors if the
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factors are weak (𝜎2
𝐹 = 0.03) and have a high Sharpe ratio (𝑠𝑟 ≥ 0.3). Note, that if there is not much

information in the mean, i.e. the Sharpe-ratio of the factor is low, a too high value 𝛾 > 10 can lead
to an overestimation of the Sharpe-ratio in-sample. This makes sense because if too much weight is
given to an uninformative mean, the estimator will pick up some of the non-zero residuals. Note, that
the out-of-sample results provide reliable estimates that are not affected by overfitting issues.
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Figure 5: 𝑁 = 370,𝑇 = 650: Correlations and Sharpe-ratios as a function of the RP-weight 𝛾 for different variances and
Sharpe-ratios. The residuals have the empirical residual correlation matrix.

Figure 6 compares the prediction of our weak factor model theory with a Monte-Carlo simulation
as a function of the variance signal. We consider one factor with Sharpe-ratio 0.8, but increasing
variance. The prediction of our statistical model is confirmed by the Monte-Carlo simulation. It
convincingly shows how weak factors can be better estimated with RP-PCA with a large 𝛾 when the
Sharpe-ratio is high. In Figure 7 we plot the value of 𝜌2

𝑖 in the weak factor model which determines
the detection and correlation of the factors. We vary the signal 𝜃 which among others depends on the
choice of 𝛾. We compare uncorrelated residuals with our weak dependency structures. It is apparent
that increasing the signal strength for detecting weak factors becomes more relevant for correlated
residuals.
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Figure 6: Correlations between estimated and true factor based on the weak factor model prediction and Monte-Carlo
simulations for different variances of the factor. Left plots: The residuals have cross-sectional correlation defined by the
band-diagonal matrix. Right plots: The residuals have the empirical residual correlation matrix. The Sharpe-ratio of the
factor is 0.8, i.e. the mean equals 𝜇𝐹 = 0.8 ⋅ 𝜎𝐹. We have 𝑇 = 650 and 𝑁 = 370, i.e. the normalized variance of the factors
in the weak factor model corresponds to 𝜎2

𝐹 ⋅ 𝑁.
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Figure 7: Model-implied values of 𝜌2
𝑖 ( 1

1+𝜃𝑖𝐵( ̂𝜃𝑖))
if 𝜃𝑖 > 𝜎2

𝑐𝑟𝑖𝑡 and 0 otherwise) for different signals 𝜃𝑖. The average noise
level is normalized in both cases to 𝜎2

𝑒 = 1. Left plots: The residuals have cross-sectional correlation defined by the
band-diagonal matrix. Right plots: The residuals have the empirical residual correlation matrix.

The results for 𝑁 = 74 and 𝑁 = 25 are similar to the results for 𝑁 = 370. Actually, our estimator
has a larger effect for smaller values of 𝑁 as this implies a weaker signal for the factors and hence
RP-PCA can perform even better.26

26All simulation results in the online appendix are based on the empirical residual correlation matrix.
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7. Empirical Application

We apply our estimator to a large number of anomaly sorted portfolios. The same data is studied
in more detail in our companion paper Lettau and Pelger (2018). Based on the universe of U.S. firms in
CRSP, we consider 37 anomaly characteristics following standard definitions in Novy-Marx and Velikov
(2016), McLean and Pontiff (2016) and Kogan and Tian (2015). We use the same data set as Kozak,
Nagel and Santosh (2017)27 who have sorted the stock returns in yearly rebalanced decile portfolios.
This gives us a total cross-section of𝑁 = 370 portfolios of monthly returns from 07/1963 to 12/2017
(T=650).28 The risk-free rate to obtain excess returns is from Kenneth French’s website. We estimate
statistical factors for different choices of 𝛾 and evaluate the maximum Sharpe-ratio, average pricing
error and explained variation in- and out-of-sample.

Table 1 reports the results for 𝐾 = 3 and 𝐾 = 5 factors for RP-PCA with 𝛾 = 10 and PCA (𝛾 = −1).
𝑆𝑅 denotes the maximum Sharpe-ratio that can be obtained by a linear combination of the factors, i.e.
it combines the factors with the weights Σ−1

𝐹 𝜇𝐹. It measures how well the factors can approximate the
stochastic discount factor. The root-mean-squared pricing error (𝑅𝑀𝑆𝛼) equals √

1
𝑁 ∑𝑁

𝑖=1 𝛼2
𝑖 , where

the pricing error 𝛼𝑖 is the intercept of a time-series regression of the excess return of asset 𝑖 on the
factors. The idiosyncratic variation is the average variance of the residuals after regressing out the
factors. The in-sample analysis is based on the whole time horizon of 𝑇 = 650 months. The out-
of-sample analysis estimates the loadings with a rolling window of 20 years (𝑇 = 240). With these
estimated loadings including information up to time 𝑡 we predict the systematic return and obtain
a pricing error out-of-sample at 𝑡 + 1. This corresponds to a cross-sectional pricing regression with
out-of-sample loadings. The mean and variance of the out-of-sample errors are used to calculate the
average pricing error and the idiosyncratic variation. We use the optimal portfolio weights for the
maximum Sharpe-ratio portfolio estimated in the rolling window period to create an out-of-sample
optimal return giving us the maximum Sharpe-ratio portfolio out-of-sample.

In-sample Out-of-sample
SR RMS 𝛼 Idio. Var. SR RMS 𝛼 Idio. Var.

RP-PCA 3 factors 0.23 0.17 12.75% 0.18 0.15 14.57%
PCA 3 factors 0.17 0.17 12.68% 0.14 0.15 14.66%

RP-PCA 5 factors 0.53 0.14 10.76% 0.45 0.12 12.70%
PCA 5 factors 0.24 0.14 10.66% 0.17 0.14 12.56%

Table 1: Maximal Sharpe-ratios, root-mean-squared pricing errors and idiosyncratic variation for different number of
factors. RP-weight 𝛾 = 10.

RP-PCA and PCA differ the most in terms of the maximum Sharpe-ratio. For 𝐾 = 5 factors the
in- and out-of-sample Sharpe-ratio of RP-PCA is twice as large as for PCA. For 𝐾 = 3 factors there
is still a sizeable difference in Sharpe-ratios, but it is less pronounced than for a larger number of

27We thank the authors for sharing the data.
28Kozak, Nagel and Santosh (2017) create a data set based on 50 anomalies, but 13 of these anomalies are only available

for a significantly shorter time horizon. We choose only those anomalies that are available for the whole time horizon of
𝑇 = 650 observations.
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factors. A possible reason is that the 4th or 5th factor is weak with a high Sharpe-ratio and only
picked up by RP-PCA, while the first four factors are stronger and hence can be detected by PCA.
Surprisingly, the pricing errors and the unexplained variation are very close for the two methods.
Only the out-of-sample pricing error of RP-PCA is smaller than for PCA. It seems that RP-PCA selects
high Sharpe-ratio factors with smaller out-of-sample pricing errors without sacrificing explanatory
power for the variation.
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Figure 8: Deciles of 37 single-sorted portfolios from 07/1963 to 12/2016 (𝑁 = 370 and 𝑇 = 650): Maximal Sharpe-ratios,
root-mean-squared pricing errors and unexplained idiosyncratic variation for different values of 𝛾.

Figure 8 analyzes the effect of 𝛾 and the number of factors on the three criteria maximum Sharpe-
ratio, pricing error and variation. The Sharpe-ratio and pricing error change significantly when includ-
ing the 5th factor. This 5th factor is also strongly affected by the choice of 𝛾 and seems to require
𝛾 > 5 to be detected by RP-PCA. Adding the 6th factor has only a very minor effect on the three crite-
ria. That is why we opt for a 5-factor model.29 The figure illustrates that the amount of unexplained

29In Lettau and Pelger (2018) we provide more arguments why a 5 factor models seems to be appropriate for this data
set.

29



variation is insensitive to the choice of 𝛾. Hence, our factors capture more pricing information while
explaining the same amount of variation in the data.

PCA RP-PCA (𝛾 = 10) FF5

𝜎2
1 8.05 8.05 8.00

𝜎2
2 0.27 0.27 0.21

𝜎2
3 0.21 0.21 0.17

𝜎2
4 0.14 0.14 0.03

𝜎2
5 0.05 0.05 0.02

𝜎2
6 0.03 0.04 0.00

Table 2: Deciles of 37 single-sorted portfolios: Variance signal for different factors: Largest eigenvalues of ΛΣ𝐹Λ⊤ normal-
ized by the average idiosyncratic variance 𝜎2

𝑒 = 1
𝑁 ∑𝑁

𝑖=1 𝜎2
𝑒,𝑖.
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Figure 9: Deciles of 37 single-sorted portfolios from 07/1963 to 12/2016 (𝑁 = 370 and 𝑇 = 650): Largest normalized
eigenvalues of the matrix 1

𝑁 ( 1
𝑇𝑋

⊤𝑋+ 𝛾𝑋̄𝑋̄⊤) for different RP-weights 𝛾. Left plot: Eigenvalues are normalized by di-
vision through the average idiosyncratic variance 𝜎2

𝑒 = 1
𝑁 ∑𝑁

𝑖=1 𝜎2
𝑒,𝑖 estimated by the average of the non-systematic PCA

eigenvalues. Right plot: Eigenvalues are normalized by the corresponding PCA (𝛾 = −1) eigenvalues.

Table 2 shows that the variance signal for different factors suggests the existence of weak factors.
Here we extract the first 6 factors with RP-PCA (𝛾 = 10) and PCA. In addition, we include the pop-
ular Fama-French 5 factors (marke, size, value, profitability and investment) from Kenneth French’s
website. The variance signal is defined as the largest eigenvalues of ΛΣ𝐹Λ⊤. We normalize these
eigenvalue by the same constant 𝜎2

𝑒 = 1
𝑁 ∑𝑁

𝑖=1 𝜎2
𝑒,𝑖 based on the residuals from 6 PCA factors.30 This

makes the variance signals comparable to our simulation design. The 5th factor has a variance signal
around 0.05 which based on our simulation is well described by a weak factor model. The simu-
lations also predict that these weak factors can be better estimated by RP-PCA if they have a large

30The results do not change if we regress out more PCA or RP-PCA factors and are available upon request.
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Sharpe-ratio. This is exactly what we observe in the data.
The left plot in Figure 9 shows the eigenvalues of thematrix 1

𝑁 ( 1
𝑇𝑋

⊤𝑋+ 𝛾𝑋̄𝑋̄⊤) normalized by the
average idiosyncratic variance. Our weak factor model predicts that the signal of this matrix should
be larger for RP-PCA compared to PCA. The eigenvalue curves confirm that the signal for the weaker
factors clearly separates from the PCA signal. 𝛾 = 10 seems to be sufficient for strengthening the
signal. The right plot in Figure 9 normalizes the eigenvalues by the corresponding PCA eigenvalues.
In particular the signal for the 5th factor is strengthened.

8. Conclusion

We develop a new estimator for latent asset pricing factors from large data sets. Our estimator
is essentially a regularized version of PCA that puts a penalty on the pricing error. We derive the
asymptotic distribution theory under weak and strong factor model assumptions and show that our
estimator RP-PCA strongly dominates conventional PCA. We can detect weak factors with high Sharpe-
ratios which are undetectable with PCA. Strong factors are estimated more efficiently with RP-PCA
compared to PCA.
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Appendix A. Simulation
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Figure A.10: 𝑁 = 370,𝑇 = 650: Correlations and Sharpe-ratios as a function of the RP-weight 𝛾 for different variances and
Sharpe-ratios. The residuals have a cross-sectional correlation defined by the band-diagonal matrix.
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Figure A.11: 𝑁 = 370,𝑇 = 650: Upper and lower bounds for the correlations and the parameter 𝜌 as a function of
the RP-weight 𝛾 for different variances and Sharpe-ratios. The residuals have a cross-sectional correlation defined by the
band-diagonal matrix.
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Appendix B. Proofs for the Weak Factor Model

We only prove the statements for RP-PCA. The statements for the conventional PCA based on the
covariance matrix are a special case. Given an 𝑁 × 𝑁 matrix 𝐴 we denote the sorted eigenvalues by
𝜆1(𝐴) ≥ ... ≥ 𝜆𝑁(𝐴). Let 𝜙𝐴(𝑧) be the empirical eigenvalue distribution, i.e. the probability measure
defined as 𝜙𝐴(𝑧) = 1

𝑁 ∑𝑁
𝑖=1 𝛿𝜆𝑖(𝐴) where 𝛿𝑥 is the Dirac measure. In our case the probability measure

𝜙𝐴 converges almost surely weakly for 𝑇 → ∞ (and therefore also 𝑁 → ∞ as 𝑁
𝑇 → 𝑐 > 0 and 𝑁 and

𝑇 are asymptotically proportional). We first prove the results for Σ = 𝜎2
𝑒 𝐼𝑁. Then we show how to

modify the proof for a general Σ.
Proof of Theorem 2:
Instead of using 1

𝑇𝑋
⊤𝑊2𝑋 we study 1

𝑇𝑊𝑋𝑋⊤𝑊 with 𝑊 = 𝐼𝑇 + 𝛾̃
𝑇11

⊤ and 𝛾̃ = √𝛾 + 1− 1. Define the
orthonormal matrix 𝑈 = (𝑈1, 𝑈2) consisting of the 𝑇×𝐾+1 matrix 𝑈1 and the 𝑇×𝑇−𝐾−1 matrix
𝑈2 by

𝑈1 = ((𝐼𝑇 − 1
𝑇11

⊤) 𝐹
√𝑇

1

√𝑇)⎛
⎝

( 1
𝑇𝐹

⊤(𝐼𝑇 − 1
𝑇11

⊤)𝐹)
−1/2

0
0 1

⎞
⎠
𝑈̃,

where the 𝐾 + 1 × 𝐾 + 1 matrix 𝑈̃ consists of the orthonormal eigenvectors of the “signal matrix”
𝑀RP-PCA:

𝑈̃⊤ ⎛
⎝

Σ𝐹 + 𝑐𝜎2
𝑒 Σ1/2

𝐹 𝜇𝐹(1 + 𝛾̃)
𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹 + 𝑐𝜎2

𝑒 )
⎞
⎠
𝑈̃ =

⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠
.

𝑈2 are orthonormal vectors orthogonal to 𝑈1, i.e. 𝑈⊤
1 𝑈2 = 0 and 𝑈⊤

2 𝑈2 = 𝐼𝑇−𝐾−1.
We now analyze the spectrum of 𝑆 ∶= 1

𝑇𝑈
⊤𝑊𝑋𝑋⊤𝑊𝑈, which has the same non-zero eigenvalues

as 1
𝑇𝑋

⊤𝑊2𝑋.

𝑆 = ⎛
⎝

𝑆11 𝑆12

𝑆21 𝑆22
⎞
⎠

= ⎛
⎝

1
𝑇𝑈

⊤
1 𝑊(𝐹Λ⊤ + 𝑒)(𝐹Λ⊤ + 𝑒)⊤𝑊𝑈1

1
𝑇𝑈

⊤
1 𝑊(𝐹Λ⊤ + 𝑒)𝑒⊤𝑊𝑈2

1
𝑇𝑈

⊤
2 𝑊𝑒(Λ𝐹⊤ + 𝑒⊤)𝑊𝑈1

1
𝑇𝑈

⊤
2 𝑊𝑒𝑒⊤𝑊𝑈2

⎞
⎠
.

An eigenvalue of 𝑆 that is not an eigenvalue of 𝑆22 satisfies

0 = det(𝜆𝐼𝑇 − 𝑆) = det(𝜆𝐼𝑇−𝐾−1 − 𝑆22)det(𝜆𝐼𝐾+1 − 𝜅𝑇(𝜆))

with

𝜅𝑇(𝜆) = 𝑆11 + 𝑆12(𝜆𝐼𝑇−𝐾−1 − 𝑆22)−1𝑆21.

For sufficiently large 𝑇 it holds det(𝜆𝐼𝑇−𝐾−1 − 𝑆22) ≠ 0 for the first 𝐾+ 1 eigenvalues. Therefore the
first 𝐾+ 1 eigenvalues satisfy

det(𝜆𝐼𝐾+1 − 𝜅𝑇(𝜆)) = 0.
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We want to study the limiting behavior of 𝜅𝑇(𝜆) for 𝑇 → ∞.

𝜅𝑇(𝜆) = 1
𝑇

(𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒))(𝐼𝑁 + 1

𝑇
𝑒⊤𝑊𝑈2 (𝜆𝐼𝑇−𝐾−1 − 1

𝑇
𝑈⊤

2 𝑊𝑒𝑒⊤𝑊𝑈2)
−1

𝑈⊤
2 𝑊𝑒)

⋅ (𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒))⊤

=𝜆
𝑇

(𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒)) (𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒))⊤ ,

where we have used the identify that for 𝜆 ≠ 0 which is not an eigenvalue of 𝐴⊤𝐴 it holds 𝐼𝑁+𝐴(𝜆𝐼𝑇−
𝐴⊤𝐴)−1𝐴⊤ = 𝜆(𝜆𝐼𝑁 −𝐴𝐴⊤)−1.

By Lemma A.2 in Benaych-Georges and Nadakuditi (2011) it holds first

𝜆
𝑇

(𝑈⊤
1 𝑊(𝐹Λ⊤)) (𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊(𝐹Λ⊤))⊤

=𝜆( 1
𝑇
𝑈⊤

1 𝑊𝐹𝐹⊤𝑊𝑈1)
1
𝑁

trace((𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

) + 𝑜𝑝(1),

and second by the law of large numbers

𝜆
𝑇

(𝑈⊤
1 𝑊𝑒)(𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊𝑒)⊤ (B.1)

=𝜆(𝑈⊤
1 𝑊𝑈1) ⋅ 𝜎2

𝑒
𝑁
𝑇

1
𝑁

trace((𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

) + 𝑜𝑝(1). (B.2)

Here, we made use of the following argument. Because of the orthonormality we have 𝑈⊤
2 𝑒 =∶ ̃𝑒 with

̃𝑒𝑡
𝑖.𝑖.𝑑.∼ 𝑁(0, Σ). Note that 𝑈2𝑊 = 𝑈2 by construction. For any matrix 𝐶 independent of 𝑈⊤

1 𝑊𝑒 we have

𝐸 [𝑈⊤
1 𝑊𝑒𝐶𝑒⊤𝑊𝑈1] = trace(Σ𝐶) ⋅ 𝑈⊤

1 𝑊𝑈1 = trace(Σ𝐶) ⋅ 𝑈̃⊤ ⎛
⎝

𝐼𝐾 0
0 1 + 𝛾

⎞
⎠
𝑈̃.

For Σ = 𝜎2
𝑒 𝐼𝑁 it holds that trace(Σ𝐶) = 𝜎2

𝑒 trace(𝐶) which is crucial for the result. This is the main
term that we need to treat differently for the case of a general residual covariance matrix.

Last but not least we have

𝜆
𝑇

(𝑈⊤
1 𝑊(𝐹Λ⊤)) (𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊𝑒))⊤ = 𝑜𝑝(1).

Note that 1
√𝑁𝜖⊤ has orthogonally invariant column vectors by the properties of the normal distribution

and hence Lemma A.2 in Benaych-Georges and Nadakuditi (2011) applies. In summary the limit value
of 𝜅𝑇 is described by

𝜅𝑇(𝜆) =𝜆𝑈̃⊤ ⎛
⎝
⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) 𝜇⊤
𝐹 𝜇𝐹(1 + 𝛾)

⎞
⎠

+ 𝑐 ⋅ 𝜎2
𝑒 ⎛
⎝

𝐼𝐾 0
0 1 + 𝛾

⎞
⎠
⎞
⎠
𝑈̃

⋅ 1
𝑁

trace((𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

) + 𝑜𝑝(1).
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As 𝑈2𝑊𝑒 = 𝑈2𝑒 = ̃𝑒 with ̃𝑒𝑡
𝑖.𝑖.𝑑.∼ 𝑁(0, Σ) for 𝑡 = 1, ..., 𝑇 − 𝐾− 1 we have

𝜅𝑇(𝜆)
𝑝
→ 𝜅(𝜆) = 𝜆𝑈̃⊤𝑀RP-PCA𝑈̃𝐺(𝜆).

Therefore 𝜆 is an eigenvalue of the matrix 𝜆
⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠
𝐺(𝜆) respectively 1 is an eigenvalue of

the matrix
⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠
𝐺(𝜆) which is equivalent to

𝐺(𝜆) = 1
𝜃𝑖

respectively 𝜆 = 𝐺−1 ( 1
𝜃𝑖

) for some 𝑖 = 1, ...𝐾 + 1.

If a solution outside the support of the spectrum of 𝑆22 exists, then it must satisfy the equation
𝐺(𝜆) = 1

𝜃𝑖
for some 𝑖 = 1, ..., 𝐾 + 1. Otherwise by Weil’s inequality and the same arguments as in

Benaych-Georges and Nadakuditi (2011) 𝜆
𝑏
→ 𝑏. For 𝑧 > 𝑏 we have 𝐺′(𝑧) < 0. Therefore if 𝜃𝑖 > 1

𝐺(𝑏)

then a solution exists. If 𝜃𝑖 < 1
𝐺(𝑏) then no solution exists and 𝜆

𝑝
→ 𝑏.

Recall that the estimators for the loadings and factors are defined as follows: Λ̂ are the first 𝐾
eigenvectors of 1

𝑇𝑋
⊤𝑊2𝑋 and ̂𝐹 = 𝑋Λ̂. For the proofs we will use an equivalent formulation. Denote

by 𝑃 the first 𝐾 eigenvectors of 1
𝑇𝑈

⊤𝑊𝑋𝑋⊤𝑊𝑈. Then Λ̂ = 𝑋⊤𝑊𝑈𝑃𝐷̂−1/2
𝐾 , where 𝐷̂𝐾 is a diagonal

matrix with the first 𝐾 largest eigenvalues of 1
𝑇𝑈

⊤𝑋⊤𝑊2𝑋𝑈, i.e.

1
𝑇
𝑃⊤𝑈⊤𝑊𝑋𝑋⊤𝑊𝑈𝑃 = 𝐷̂𝐾.

The factors estimator takes the form ̂𝐹 = 𝑋Λ̂ = √𝑇𝑊−1𝑈𝑃𝐷1/2
𝐾 .

We analyze the 𝐾+1 eigenvectors of 1
𝑇𝑈

⊤𝑊𝑋𝑋⊤𝑊𝑈. Assume 𝑝𝑖 is an eigenvector of 𝑆 associated
with 𝜆𝑖:

⎛
⎝

𝜆𝑖𝐼𝐾+1 − 𝑆11 −𝑆12

−𝑆21 𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22
⎞
⎠
⎛
⎝

𝑝𝑖,1

𝑝𝑖,2
⎞
⎠

= ⎛
⎝

0
0
⎞
⎠
,

where 𝑝𝑖,1 and 𝑝𝑖,2 are the first 𝐾+1 respectively last 𝑇−𝐾−1 components of the vector 𝑝𝑖. Hence

𝑝2,𝑖 = (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−1 𝑆21𝑝𝑖,1

0 = (𝜆𝑖𝐼𝐾+1 − 𝜅𝑇(𝜆𝑖)) 𝑝𝑖,1.

Assume that 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡, i.e. det(𝜆𝑖𝐼𝐾+1 − 𝜅𝑇(𝜆𝑖)) = 𝑜𝑝(1). Consequently

⎛⎜⎜⎜
⎝
𝐼𝐾+1 − 𝜃−1

𝑖
⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠

⎞⎟⎟⎟
⎠
𝑝𝑖,1 = 𝑜𝑝(1).
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Thus, the vector 𝑝𝑖,1 has all elements converging to zero in probability except at the 𝑖th position:

𝑝⊤
𝑖,1 = (0 ⋯0 ‖𝑝𝑖,1‖ 0 ⋯ 0) + 𝑜𝑝(1).

where ‖𝑝𝑖,1‖ denotes the length of the vector which is completely determined by the 𝑖th element. The
vector 𝑝𝑖,2 satisfies

𝑝⊤
𝑖,2𝑝𝑖,2 = 𝑝⊤

𝑖,1𝑆12 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑆21𝑝𝑖,1

= 𝑝⊤
𝑖,1

1
𝑇
𝑈⊤

1 𝑊(𝐹Λ𝑇 + 𝑒) (𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑈⊤
2 𝑊𝑒)(𝐹Λ𝑇 + 𝑒)

⊤
𝑊𝑈1𝑝𝑖,1.

By similar arguments as in the first part of the proof showing the convergence of 𝜅𝑇(𝜆) it follows that

𝑝⊤
𝑖,2𝑝𝑖,2 =𝑝⊤

𝑖,1
⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠
𝑝𝑖,1

⋅ 1
𝑁

trace(𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 1
𝑇
𝑈⊤

2 𝑊𝑒𝑒⊤𝑊𝑈2)
−2

𝑈⊤
2 𝑊𝑒)+ 𝑜𝑝(1).

Recall that 𝑈⊤
2 𝑊𝑒 = ̃𝑒 can be interpreted as 𝑇 − 𝐾 − 1 independent draws of a 𝑁(0, Σ). Denote

the eigenvalue distribution function of 1
𝑇 ̃𝑒⊤ ̃𝑒 by 𝜙𝑇(𝑧) and of 1

𝑇 ̃𝑒 ̃𝑒⊤ by 𝜙̃𝑇(𝑧). By assumption both
converge to limit spectral distribution functions that are related through 𝜙̃(𝑧) − 𝑐𝜙(𝑧) = (1 − 𝑐)𝛿0

where 𝛿0 is the Dirac-measure with point-mass at zero.31 By the properties of the trace operator

1
𝑁

trace(𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 1
𝑇
𝑈⊤

2 𝑊𝑒𝑒⊤𝑊𝑈2)
−2

𝑈⊤
2 𝑊𝑒) = ∫ 𝑧

(𝜆𝑖 − 𝑧)2
𝑑𝜙̃𝑇(𝑧)

which converges almost surely to

∫ 𝑧
(𝜆𝑖 − 𝑧)2

𝑑𝜙̃(𝑧) = ∫ 𝑧
(𝜆𝑖 − 𝑧)2

𝑑(𝑐𝜙(𝑧) + (1 − 𝑐)𝛿0)

= 𝑐∫ 𝑧
(𝜆𝑖 − 𝑧)2

𝑑𝜙(𝑧) = 𝐵(𝜆𝑖).

Consequently

1 = ‖𝑝𝑖,1‖2 + ‖𝑝𝑖,2‖2 = 𝑝⊤
𝑖,1𝑝𝑖,1 (1 + 𝜃𝑖𝐵(𝜆𝑖)) + 𝑜𝑝(1)

and therefore

‖𝑝𝑖,1‖2 𝑝
→ 1

1 + 𝜃𝑖𝐵(𝜆𝑖)
.

31See Chapter 2 in Yao et al. (2015).
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Assume that 𝜃𝑖 < 𝜃𝑐𝑟𝑖𝑡, i.e. det(𝜆𝑖𝐼𝐾+1 − 𝜅𝑇(𝜆𝑖)) does not converge to 0 asymptotically. It still holds

𝑝⊤
𝑖,2𝑝𝑖,2 = 𝑢⊤

𝑖,1
⎛⎜⎜⎜
⎝

𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1

⎞⎟⎟⎟
⎠
𝑢𝑖,1 lim

𝑧↓𝑏
𝐵(𝑧)

as 𝜆𝑖 converges in probability to 𝑏. If lim𝑧↓𝑏 𝐵(𝑧) = ∞, then ‖𝑝𝑖,1‖
𝑝
→ 0 and

𝑝⊤
𝑖,1 = (0 ⋯ 0) + 𝑜𝑝(1).

All we need to show is that 𝜃𝑖 < 𝜃𝑐𝑟𝑖𝑡 implies lim𝑧↓𝑏 𝐵(𝑧) = ∞. This follows for the largest eigenvalue
𝜆1 by the same argument as in the proof of theorem 2.3 in Benaych-Georges and Nadakuditi (2011). If
𝐾 > 1we need in addition eigenvalue repulsion to show the result for 𝜆𝑖 for 𝑖 = 2, ..., 𝐾 (see Nadakuditi
(2014), appendix 7). Assume that the distance between the largest eigenvalues of the matrix 1

𝑇𝑒
⊤𝑒

decays with a certain rate

|𝜆𝑖+1 (
𝑒⊤𝑒
𝑇

) − 𝜆𝑖 (
𝑒⊤𝑒
𝑇

)| ≤ 𝑂𝑝 (log(𝑁)
𝑁2/3 ) .

This is satisfied for normally distributed residuals as in our case (see Onatski (2010)). Hence,

𝐵(𝜆𝑖) = 𝑐∫ 𝑧
(𝜆𝑖 − 𝑧)2

𝑑𝜙̃𝑇(𝑧) + 𝑜𝑝(1)

≤ 𝑂𝑝 ( 1
𝑁

) ⋅ 1
(𝜆1(𝑆22) − 𝜆𝐾+1(𝑆22))2

+ 𝑜𝑝(1)

≤ 𝑂𝑝 ( 𝑁1/3

log(𝑁)2
) .

which satisfies the explosion condition.
We can now go back to the original problem: Define

𝜌𝑖 =
⎧
⎨⎩

1
√1+𝜃𝑖𝐵(𝐺−1(𝜃𝑖)) if 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡

0 otherwise.

The estimator for the factors can now be written as

̂𝐹 = √𝑇𝑊−1𝑈𝑃𝐷̂1/2
𝐾
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where 𝑃 = ⎛
⎝

𝑃1

𝑃2
⎞
⎠

with the (𝐾 + 1) × 𝐾 matrix 𝑃1 = (𝑝1,1 ⋯𝑝𝐾,1) and 𝑃2 = (𝑝1,2 ⋯𝑝𝐾,2) and

𝑃1
𝑝
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜌1 0 ⋯ 0
0 𝜌2 ⋯ 0
0 0 ⋱ ⋮
0 ⋯ 0 𝜌𝐾

0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝐷̂𝐾 =
⎛⎜⎜⎜
⎝

̂𝜃1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̂𝜃𝐾

⎞⎟⎟⎟
⎠

̂𝜃𝑖
𝑝
→

⎧
⎨⎩

𝐺−1 ( 1
𝜃𝑖
) if 𝜃𝑖 > 𝜃𝑐𝑟𝑖𝑡

𝑏 otherwise.

We divide the calculation of Ĉorr(𝐹, ̂𝐹) into two steps. First, we analyze the first two terms of the
expression. Recall, that we denote by 𝑀1 = 𝐼𝑇 − 1

𝑇11
⊤ the projection matrix that demeans the data

and 0 denotes a matrix of zeros of appropriate dimension.

( 1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
( 1
𝑇
𝐹⊤𝑀1 ̂𝐹)

=( 1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
(√𝑇

𝑇
𝐹⊤𝑀1𝑊−1𝑈𝑃𝐷̂1/2

𝐾 )

=(1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
( 1
√𝑇

𝐹⊤𝑀1 (𝑈1 𝑈2)𝑃𝐷̂1/2
𝐾 )

=(1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
((( 1

𝑇𝐹
⊤𝑀1𝐹( 1

𝑇𝐹
⊤𝑀1𝐹)

−1/2
0𝐾×1) 𝑈̃ 1

√𝑇𝐹
⊤𝑀1𝑈2)𝑃𝐷̂1/2

𝐾 )

=((𝐼𝐾 0𝐾×1) 𝑈̃ 0𝐾×𝑇−𝐾−1)𝑃𝐷̂1/2
𝐾

=(𝐼𝐾 0𝐾×1) 𝑈̃𝑃1𝐷̂1/2
𝐾 .

Here we have made used of the following results: As 𝑊−1 = 𝐼𝑇 − 𝛾̃
1+𝛾̃11

⊤ and (1 + 𝛾̃)2 = 1 + 𝛾 it
follows that 𝑊−1𝑀1 = 𝑀1. By orthogonality of 𝑈1 and 𝑈2 it holds that 𝐹⊤𝑀1𝑈2 = 0. Now we turn to
the second term in Ĉorr(𝐹, ̂𝐹):

1
𝑇

̂𝐹𝑀1 ̂𝐹 =𝐷̂1/2
𝐾 𝑃⊤𝑈⊤𝑊−1𝑀1𝑊−1𝑈𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾 𝑃⊤𝑈⊤𝑀1𝑈𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾 𝑃⊤ ⎛

⎝

𝑈⊤
1 𝑀1𝑈2 𝑈⊤

1 𝑀1𝑈2

𝑈2𝑀1𝑈1 𝑈⊤
2 𝑀1𝑈2

⎞
⎠
𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾 𝑃⊤ ⎛

⎝

𝑈⊤
1 𝑀1𝑈2 0𝐾+1×𝑇−𝐾−1

0𝑇−𝐾−1×𝐾+1 𝑈⊤
2 𝑈2

⎞
⎠
𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾 ⎛

⎝
𝑃⊤
1 𝑈̃⊤ ⎛

⎝

𝐼𝐾 0𝐾×1

01×𝐾 0
⎞
⎠
𝑈̃𝑃1 + 𝑃⊤

2 𝑃2⎞
⎠
𝐷̂1/2

𝐾 .

Because of the orthogonality of 𝑈1 and 𝑈2 and the special structure of 𝑈1 we have 𝑈⊤
1 𝑀1𝑈2 = 0.

38



Furthermore, it holds 𝑈⊤
2 𝑀1𝑈2 = 𝐼𝑇−𝐾−1. Finally, by the properties of 𝑝𝑖,2 proven before we have

𝑃⊤
2 𝑃2

𝑝
→

⎛⎜⎜⎜
⎝

1 − 𝜌2
1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1 − 𝜌2

𝐾

⎞⎟⎟⎟
⎠
.

This proves the limit expression for Ĉorr(𝐹, ̂𝐹). Note that the mean can be estimated by

𝜇̂ ̂𝐹 = 1
1 + 𝛾̃

(0𝐾×𝐾 1𝐾) 𝑈̃𝑃1𝐷̂1/2
𝐾 .

If 𝛾 > −1 and 𝜇𝐹 ≠ 0, then the first 𝐾 eigenvalues of 𝑀RP-PCA are strictly larger than the first 𝐾
eigenvalues of 𝑀PCA, i.e.

𝜃RP-PCA
𝑖 > 𝜃PCA

𝑖 .

This is a direct consequence of result (12) on page 75 in Lütkepohl (1996).
Proof for Cauchy transform with i.i.d. residuals:
For the special case where 𝑒𝑡,𝑖 i.i.d. 𝑁(0,𝜎2

𝑒 ), i.e. Σ = 𝜎2
𝑒 𝐼𝑁, the matrix 1

𝑇𝑒
⊤𝑒 follows the Marcĕnko-

Pastur law:

𝑑𝜙(𝑧) = 1
2𝜋𝑐𝜎2𝑒 𝑧√(𝑏 − 𝑧)(𝑧 − 𝑎)1{𝑧∈(𝑎,𝑏)}𝑑𝑧 +max(0, 1 − 1

𝑐
)𝛿0

with

𝑎 = 𝜎2
𝑒 (1 − √𝑐)2

𝑏 = 𝜎2
𝑒 (1 + √𝑐)2

𝑎 and 𝑏 are the smallest respectively largest eigenvalue. For simplicity take 𝑐 > 1, but the results
can be easily extended to the case 0 < 𝑐 < 1. The object of interest is the Cauchy transform of the
eigenvalue distribution function. Calculations as outlined in Bai and Silverstein (2010) lead to

𝐺(𝑧) =
𝑧 −𝜎2

𝑒 (1 − 𝑐) − √(𝑧 − 𝜎2𝑒 (1 + 𝑐))2 − 4𝑐𝜎2𝑒

2𝑐𝑧𝜎2𝑒
.

Simple but tedious calculations show that

𝐺−1(𝑧) = 𝑧𝜎2
𝑒 (1 − 𝑐) + 1
𝑧 − 𝑐𝜎2𝑒 𝑧2 .

Proof of Theorem 3:

The proof for a general residual covariance matrix Σ is identical to the special case of Σ = 𝜎2
𝑒 𝐼𝑁
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up to equation B.1. We want to study the limiting behavior of 𝜅𝑇(𝜆) for 𝑇 → ∞.

𝜅𝑇(𝜆) = 𝜆
𝑇

(𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒)) (𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊(𝐹Λ⊤ + 𝑒))⊤ .

By the law of large numbers we have

𝜆
𝑇

(𝑈⊤
1 𝑊𝑒)(𝜆𝐼𝑁 − 1

𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

(𝑈⊤
1 𝑊𝑒)⊤

=𝜆(𝑈⊤
1 𝑊𝑈1) ⋅

𝑁
𝑇

1
𝑁

trace(Σ(𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑊𝑈2𝑈⊤

2 𝑊𝑒)
−1

) + 𝑜𝑝(1),

which is different from the expression in the special case of Σ = 𝜎2
𝑒 𝐼𝑁. Hence, the limiting expression

of 𝜅𝑇 takes a more complicated form:

𝜅𝑇(𝜆) =𝜆𝑈̃⊤(⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) 𝜇⊤
𝐹 𝜇𝐹(1 + 𝛾)

⎞
⎠
𝐺(𝜆)

+ 𝑐⎛
⎝

𝐼𝐾 0
0 1 + 𝛾

⎞
⎠
. 1
𝑁

trace(Σ(𝜆𝐼𝑁 − 1
𝑇
𝑒⊤𝑊𝑒)

−1
))𝑈̃ + 𝑜𝑝(1).

Therefore we obtain asymptotic lower and upper bounds (in a positive definite sense):

𝜆𝑈̃⊤𝑀𝑅𝑃−𝑃𝐶𝐴,𝐺𝑈̃𝐺(𝜆) + 𝑜𝑝(1) ≤ 𝜅𝑇(𝜆) ≤ 𝜆𝑈̃⊤𝑀̄𝑅𝑃−𝑃𝐶𝐴,𝐺𝑈̃𝐺(𝜆) + 𝑜𝑝(1).

The arguments of the derivation still hold when we replace 𝑈̃ by 𝑈𝐺 or 𝑈̄𝐺, i.e. we use a different
rotation for defining 𝑈1 at the beginning of the proof, which then also results in a different rotation
of 𝜅𝑇(𝜆) in order to obtain a diagonal matrix for the bounds. Denote by 𝜅𝑇,𝑈𝐺(𝜆) and 𝜅𝑇,𝑈̄𝐺(𝜆) the
corresponding replacements of 𝑈̃. We have

⎛⎜⎜⎜
⎝

𝜃1,𝐺 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝐾+1,𝐺

⎞⎟⎟⎟
⎠
𝐺(𝜆) + 𝑜𝑝(1) ≤

𝜅𝑇,𝑈𝐺(𝜆)
𝜆

⎛⎜⎜⎜
⎝

̄𝜃1,𝐺 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̄𝜃𝐾+1,𝐺

⎞⎟⎟⎟
⎠
𝐺(𝜆) + 𝑜𝑝(1) ≥

𝜅𝑇,𝑈̄𝐺(𝜆)
𝜆

,

which implies 𝐺(𝜆)𝜃𝑖,𝐺 ≤ 1 and 𝐺(𝜆) ̄𝜃𝑖,𝐺 ≥ 1. Note that 𝐺(𝜆) = ∫ 1
𝜆−𝑧𝑑𝜙(𝑧) where 𝜙(𝑧) is the

eigenvalue distribution function of 1
𝑇𝑒

⊤𝑒 and hence the first derivative is always negative 𝜕𝐺(𝜆)
𝜕𝜆 =

−∫ 1
(𝜆−𝑧)2𝑑𝜙(𝑧) < 0 for 𝜆 > 𝑏. Thus, 𝜆 ≥ 𝐺−1 ( 1

𝜃𝑖,𝐺
) and 𝜆 ≤ 𝐺−1 ( 1

̄𝜃𝑖,𝐺
) if 𝜃𝑖,𝐺, ̄𝜃𝑖,𝐺 ≥ 𝜃𝑐𝑟𝑖𝑡. Otherwise

the bounds converge to 𝑏.
The proof for the correlation follows similar arguments as in the special case of Σ = 𝜎2

𝑒 𝐼𝑁. We
replace the rotation 𝑈̃ in the definition of 𝑈1 by 𝑈𝐵 and 𝑈̄𝐵 and obtain 𝜅𝑇,𝑈𝐵(𝜆) respectively 𝜅𝑇,𝑈̄𝐵(𝜆).
Here we present the proof for the lower bound but the arguments for the upper bound are analogously.
We analyze the 𝐾 + 1 eigenvectors of 1

𝑇𝑈
⊤𝑊𝑋𝑋⊤𝑊𝑈. Assume 𝑝𝑖 is an eigenvector of 𝑆 associated
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with 𝜆𝑖:

⎛
⎝

𝜆𝑖𝐼𝐾+1 − 𝑆11 −𝑆12

−𝑆21 𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22
⎞
⎠
⎛
⎝

𝑝𝑖,1

𝑝𝑖,2
⎞
⎠

= ⎛
⎝

0
0
⎞
⎠
,

where 𝑝𝑖,1 and 𝑝𝑖,2 are the first 𝐾+1 respectively last 𝑇−𝐾−1 components of the vector 𝑝𝑖. Hence

𝑝2,𝑖 = (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−1 𝑆21𝑝𝑖,1

0 = (𝜆𝑖𝐼𝐾+1 − 𝜅𝑇,𝑈̄𝐵(𝜆𝑖))𝑝𝑖,1.

Assume that 𝜃𝑖,𝐺 > 𝜃𝑐𝑟𝑖𝑡, i.e. 𝜆𝑖𝐼𝐾+1 − 𝜅𝑇,𝑈̄𝐵(𝜆𝑖) has the eigenvalue 0. Consequently

(𝐼𝐾+1 −
𝜅𝑇,𝑈̄𝐵(𝜆𝑖)

𝜆𝑖
)𝑝𝑖,1 = 0.

⎛
⎝
𝐼𝐾+1 − 𝑈̄⊤

𝐵 ⎛
⎝
⎛
⎝

Σ𝐹 Σ1/2
𝐹 𝜇𝐹(1 + 𝛾̃)

𝜇⊤
𝐹 Σ1/2

𝐹 (1 + 𝛾̃) (1 + 𝛾)(𝜇⊤
𝐹 𝜇𝐹)

⎞
⎠
𝐺(𝜆𝑖) + ⎛

⎝

𝐼𝐾 0
0 (1 + 𝛾)

⎞
⎠
𝑐 ⋅ ̃𝐺(𝜆𝑖)⎞

⎠
𝑈̄𝐵⎞

⎠
𝑝𝑖,1 = 𝑜𝑝(1)

and we define 𝑉𝑖 ∶= 𝑈̄𝐵𝑝𝑖,1/‖𝑝𝑖,1‖ as the rotated normalized vector 𝑝𝑖,1. The vector 𝑝𝑖,2 satisfies

𝑝⊤
𝑖,2𝑝𝑖,2 = 𝑝⊤

𝑖,1𝑆12 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑆21𝑝𝑖,1

= 𝑝⊤
𝑖,1

1
𝑇
𝑈⊤

1 𝑊(𝐹Λ𝑇 + 𝑒) (𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑈⊤
2 𝑊𝑒)(𝐹Λ𝑇 + 𝑒)

⊤
𝑊𝑈1𝑝𝑖,1.

By similar arguments as in the first part of the proof showing the convergence of 𝜅𝑇(𝜆) it follows that

1
𝑇
𝑈⊤

1 𝑊(𝐹Λ𝑇) (𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑈⊤
2 𝑊𝑒)(𝐹Λ𝑇)

⊤
𝑊𝑈1 = (𝑈⊤

1 𝑊𝐹𝐹⊤𝑊𝑈1) 𝐵(𝜆𝑖) + 𝑜𝑝(1)
1
𝑇
𝑈⊤

1 𝑊𝐹Λ𝑇 (𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑈⊤
2 𝑊𝑒)𝑒⊤𝑊𝑈1 = 𝑜𝑝(1)

1
𝑇
𝑈⊤

1 𝑊𝑒(𝑒⊤𝑊𝑈2 (𝜆𝑖𝐼𝑇−𝐾−1 − 𝑆22)−2 𝑈⊤
2 𝑊𝑒)𝑒⊤𝑊𝑈1 = (𝑈⊤

1 𝑊𝑈1)
𝑐
𝑁

trace(Σ𝑒⊤ (𝜆𝐼𝑇 − 1
𝑇
𝑒𝑒⊤)

−2
𝑒) + 𝑜𝑝(1).

We use the upper bound which is proportional to 𝐵(𝜆) for the last term und apply the rotation 𝑈̄𝐵 to
diagonalize the signal matrix 𝑀̄RP-PCA,𝐵. Therefore, ‖𝑝𝑖,2‖2 is asymptotically bounded by

𝑝⊤
𝑖,2𝑝𝑖,2 ≤𝑝⊤

𝑖,1
⎛⎜⎜⎜
⎝

̄𝜃1,𝐵 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̄𝜃𝐾+1,𝐵

⎞⎟⎟⎟
⎠
𝑝𝑖,1𝐵(𝜆𝑖) + 𝑜𝑝(1).

This implies

1 = ‖𝑝𝑖,1‖2 + ‖𝑝𝑖,2‖2 ≤ ‖𝑝𝑖,1‖2(1 + ̄𝜃𝑖,𝐵𝐵(𝜆𝑖)) + 𝑜𝑝(1) ≤ ‖𝑝𝑖,1‖2(1 + ̄𝜃𝑖,𝐵𝐵(𝐺−1(1/𝜃𝑖,𝐺))) + 𝑜𝑝(1),

where we have used that 𝜕𝐵(𝜆)
𝜕𝜆 < 0 for 𝜆 > 𝑏. Hence, ‖𝑝𝑖,1‖2 ≥ 1

1+ ̄𝜃𝑖,𝐵𝐵(𝐺−1(1/𝜃𝑖))
. We define ̃𝜌𝑖 = ‖𝑝𝑖,1‖

and its lower bound 𝜌𝑖 ∶=
1

1+ ̄𝜃𝑖,𝐵𝐵(𝐺−1(1/𝜃𝑖))
≤ ̃𝜌𝑖. Next, we turn to the correlation between the estimated
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and population factor, which follows similar arguments as in the case Σ = 𝜎2
𝑒 𝐼𝑁:

( 1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
( 1
𝑇
𝐹⊤𝑀1 ̂𝐹)

=( 1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
((( 1

𝑇𝐹
⊤𝑀1𝐹( 1

𝑇𝐹
⊤𝑀1𝐹)

−1/2
0𝐾×1) 𝑈̄𝐵

1
√𝑇𝐹

⊤𝑀1𝑈2)𝑃𝐷̂1/2
𝐾 )

=( 1
𝑇
𝐹⊤𝑀1𝐹)

−1/2
((( 1

𝑇𝐹
⊤𝑀1𝐹( 1

𝑇𝐹
⊤𝑀1𝐹)

−1/2
0𝐾×1) 𝑈̄𝐵 0)𝑃𝐷̂1/2

𝐾 )

=(𝐼𝐾 0𝐾×1) 𝑈̄𝐵𝑃1𝐷̂1/2
𝐾

=(𝐼𝐾 0𝐾×1)𝑉
⎛⎜⎜⎜
⎝

̃𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̃𝜌𝐾

⎞⎟⎟⎟
⎠
𝐷̂1/2

𝐾 .

and

1
𝑇

̂𝐹𝑀1 ̂𝐹 =𝐷̂1/2
𝐾 𝑃⊤𝑈⊤𝑊−1𝑀1𝑊−1𝑈𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾 𝑃⊤𝑈⊤𝑀1𝑈𝑃𝐷̂1/2

𝐾

=𝐷̂1/2
𝐾

⎛⎜⎜⎜
⎝

⎛⎜⎜⎜
⎝

̃𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̃𝜌𝐾

⎞⎟⎟⎟
⎠
𝑉⊤ ⎛

⎝

𝐼𝐾 0𝐾×1

01×𝐾 0
⎞
⎠
𝑉
⎛⎜⎜⎜
⎝

̃𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̃𝜌𝐾

⎞⎟⎟⎟
⎠

+𝐼𝐾 −
⎛⎜⎜⎜
⎝

̃𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̃𝜌𝐾

⎞⎟⎟⎟
⎠
𝑉⊤𝑉

⎛⎜⎜⎜
⎝

̃𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ̃𝜌𝐾

⎞⎟⎟⎟
⎠

⎞⎟⎟⎟
⎠
𝐷̂1/2

𝐾 .

The result for 𝑄̃ and 𝑅̃ follow from this.
Proof of Corollary 2: Plugging the eigenvalues and eigenvector formulas into Theorem 2 yields:

Ĉorr(𝐹, ̂𝐹)
𝑝
→ (1 0) 𝑈̃⎛

⎝

𝜌1

0
⎞
⎠

̂𝜃1/2
1 V̂ar( ̂𝐹)1/2

V̂ar( ̂𝐹)
𝑝
→ ̂𝜃1 (𝑈̃2

1,1‖𝑢1,1‖2 + ‖𝑢1,2‖2)

𝜇̂2 𝑝
→ 1

1 + 𝛾
𝑈̃2

1,2𝜌1 ̂𝜃1.

The proof for the limit for 𝛾 → ∞ is based on the insight that

lim
𝜃→∞

𝐵(𝜃)𝜃2 → 𝑐𝜎2
𝑒 .
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