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 The Predictive Power of Tail Risk Premia on Individual Stock Returns 
 

 

I. Introduction 

Compensation for extreme, tail event risk is formally referred to in the academic finance 

literature as a “tail risk premium.”  Bollerslev, Todorov and Xu (2015) shows that a majority of 

the predictability in the variance risk premium is attributed to this premium for bearing jump tail 

risk, and that, specifically, it is negative tail risk and not positive tail risk that seems to be priced1. 

The impact of tail events on returns is well documented at the aggregate market level, but not so 

much is known about its impact at the individual stock level. One reason why is that out of the 

money call and put options are required to determine the tail risk in the risk neutral probability 

space. Although out of the money options are prevalent for an index such as the S&P500, they 

either do not exist or are illiquid for most stocks. For this reason, to date no paper has directly 

examined both the impact of tail risk and its premium on the cross section of individual stock 

returns. Given that the return distribution for individual stocks will likely exhibit a greater 

proclivity for extreme events than the return distribution for a diversified market portfolio (where 

extreme negative events in some securities might be tempered by extreme positive events in others) 

one would expect that tail risk should play a more prominent role in the returns for individual 

stocks than it would for a market portfolio. Consequently, a careful study of tail risk premia for 

individual stocks may yield new and heretofore unseen insights into their predictive power for 

future returns.  

Kelly and Jiang (2014) is the first to examine tail risk in the cross section of individual 

stock returns. This important paper employs an aggregate measure of time-varying tail risk that 

                                                
1 Variance risk premium of market index possesses return predictive power was first documented in Bollerslev, 
Tauchen and Zhou (2009). 
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relies on panel estimation from the cross section of stock returns. It then measures a stock’s 

sensitivity to this measure of tail risk by sorting portfolios into quintiles based on tail beta-

exposure, and documents that the lowest tail beta quintile is associated with the lowest future 

returns, while the highest tail beta quintile is associated with the highest future returns.  Although 

Kelly and Jiang provides strong evidence that tail risk is priced in individual stocks, it does not 

directly calculate the tail risk premium nor does it examine any asymmetry in the way positive and 

negative tail risk premia affect future returns. 

The current paper differentiates itself from Kelly and Jiang (2014) in three critical ways.  

First, rather than using an aggregate measure of tail risk and indirectly examining the sensitivity 

of a stock’s return to this aggregate measure, the current paper directly calculates the tail risk 

premium for individual stocks and examines how this premium varies across the cross-section of 

stock returns. Specifically, the paper introduces a novel, non-parametric approach to directly 

determine the tail risk premium.  The approach avoids the need for the use of liquid out of the 

money stock options (which don’t exist for most stocks). The second contribution is that this new 

approach allows stocks to be sorted by their exposure to tail risk, so that the impact of positive and 

negative tail risk premia on future returns can be examined separately.  Stocks with exposure to 

negative tail risk require a tail risk premium that is positive (investors demand a higher return 

today than otherwise expected for bearing negative tail risk) while those with positive tail risk 

require a tail risk premium that is negative (investors are willing to accept a lower return today 

when there is a chance for extreme positive events).   Third, this paper documents that almost all 

of the extreme jumps are concentrated in the first and tenth deciles; consequently, an analysis of 

deciles, and even percentiles, rather than the quintiles examined in prior studies, is necessary if 

researchers are to better understand how extreme jump tail risk is priced. 
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The results in this paper provide evidence on the differential pricing of information related 

to negative and positive tail risk. Bollerslev, Todorov and Xu (2015) and Kelly and Jiang (2014) 

find evidence of pricing for negative tail risk, but neither fully examines the extent to which 

positive tail risk is priced. The current paper documents the existence of a premium for bearing 

negative tail risk today is associated with significantly lower future monthly returns, but that the 

existence of a premium for positive tail risk does not have statistically significant predictive power 

in the cross section of individual stock returns.  In addition, the current paper presents evidence 

that it is not only the sign of the tail risk premium that matters in predicting future returns, but also 

its magnitude. The larger and more positive the current tail risk premium (that is, the greater the 

concerns about a big negative jump), the more negative and persistent will be the association with 

future returns.  

The paper’s empirical methodology controls for several explanations previously offered in 

the literature for the existence and pricing of tail risk including momentum (Lehman, 1990 and 

Jegadeesh, 1993), lottery effects (Barberis and Huang, 2008 and Bali, Cakci and Whitelaw 2011), 

idiosyncratic volatility (Ang, Hoderick, Xing, and Zhang, 2006), illiquidity (Amihud, 2002), 

market beta (Sholes and Williams, 1977 and Dimson 1979), maximum and minimum monthly 

return (Bali, Cakici and Whitelaw, 2011). The predictive power of the premium for bearing 

negative tail risk on future returns survives the inclusion of these control variables.  

This paper is organized as follows: Section II contains the literature review; Section III 

demonstrates individual stock level tail risk premium estimation and the data; Section IV contains 

the tail risk premium cross-sectional pricing characteristics and cross-sectional return tests; Section 

V includes robustness checks; and Section VI concludes the paper. 
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II. Literature Review 

In addition to the papers mentioned in the introduction, there are several recent papers that 

examine the pricing of downside risk which are related to the current paper. Ang, Chen and Xing 

(2006) finds that stocks that covary strongly with the market during periods of market decline tend 

to have higher average returns than other stocks. Investors are downside risk averse and therefore 

require a premium to hold these assets. Bali, Cakici and Whitelaw (2014) introduces a hybrid tail 

covariance risk measure that measures stock return tail covariance risk.  The measure is based on 

the basic form of lower partial moments.  The paper documents a significant positive premium for 

bearing negative tail risk captured in the cross section.  

This paper is also related to the literature on crash risk.  Kelly and Jiang (2014) is among 

the first papers that examine extreme crash risk on stock returns.  The paper find that stocks with 

high loadings on market tail risk earn higher abnormal returns. Chabi-Yo, Ruenzi and Weigert 

(2015) finds that investors are crash-averse; that is, they receive positive compensation for holding 

crash-sensitive stocks through the measure of “lower tail dependence” from individual stock price 

distributions. The findings in these papers are consistent with the downside risk literature (Ang, 

Chen and Xing (2006) and Bali, Cakici and Whitelaw (2014)) that investors are downside risk 

averse and require a positive premium for holding the crash risk sensitive stocks. 

Bali, Cakici and Whitelaw (2014) constructs a firm-specific tail risk measure based on 

lower partial moments of stock returns and finds that it negatively predicts future stock returns. 

Almeida et al. (2017) adopts a risk-neutral excess expected shortfall approach to construct a 

nonparametric tail risk measure.  The paper finds that the risk-neutral tail risk measure possesses 

negative predictive power for intermediate horizon stock returns. Lu and Murray (2017) constructs 

a proxy for bear-market risk and finds it to be negatively priced; that is, stocks with a high 

sensitivity to bear-market risk are found to underperform their low-sensitivity counterparts. 
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Our paper is also related to the asset pricing literature on higher moments. Traditional 

finance theory assumes a normal distribution of asset returns, for which mean and variance 

together are sufficient to characterize the entire return distribution. The capital asset pricing model 

(Sharpe (1964), Lintner (1965) and Mossin (1966)) predicts that market volatility is a determinant 

of the market equity premium. Contrary to this notion, Ang, et al. (2006) examines whether 

aggregate volatility innovation is priced in cross-section of stock returns, and concludes that high 

sensitivity stocks have subsequent lower average returns. Given this controversy, it is natural to 

ask is whether other return distributional characteristics are also priced in the cross section. Chang, 

Christofferson and Jacobs (2013) shows that the cross-section of stock returns has substantial 

exposure to higher moments. Cremers, Halling and Weinbaum (2015) finds that although both 

jumps and volatility are priced in cross section, jumps seem to have larger impact on returns than 

does volatility. Bali, Cakici and Whitelaw (2011) finds that stocks with maximum returns have a 

significant negatively return in the following month. These pricing findings are consistent with the 

erroneous probability weighting of investors as modeled in Barberis and Huang (2008) and optimal 

belief framework of economic agents modeled in Brunnermeier, Gollier and Parker (2007). 

 

III. Calculation of the Tail Risk Premium in the Cross Section of Individual 

Stock Returns  

A. Methodology 

This section discusses the construction of the tail risk premium associated with jumps in 

returns for individual stocks.  The methodology is an innovation on the well-established notion - 

Bollerslev, Todorov and Xu (2015), Carr and Wu (2009) and others - that the jump tail risk 

premium can be calculated as the difference between the expectation of the tail variation in the 
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physical probability space (ℙ-space) and its counterpart in the risk-neutral probability space (ℚ-

space).   

To this end, we define the infinite-order polynomial variation of log returns, which captures 

not only the second-order (quadratic) variation (see Carr and Wu, 2009), but also the higher-order 

(third-order and up) variations, which Jiang and Oomen (2008) has shown to be associated with 

jumps in stock returns. We denote the simple return #$%& =
()*+,()

()
 and logarithmic return -$%& =

ln 0
()*+

()
1  over a period from 	3  to 	3 + 1 . Formally, based on Merton (1976)’s jump diffusion 

process, the realized infinite-order polynomial variation (ℙ6) for individual asset 7 at time 3 + 1 

can be expressed as follows: 
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, with  j  as the jump intensity. ℂ6 is the 

integral of the continuously instantaneous variance (often referred to as the integrated volatility), 

and hℙ6  represents the realized jump component of the infinite-order polynomial variation. 

Analogously, the second-order polynomial variation (the realized quadratic variance, denotes	ℚ6) 

can be written by the following equation: 
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By subtracting Equation 2 from Equation 1, we then have the realized tail-jump variation 

at time t such that  

t68,[$,$%&] = 2=#8,$%& − -8,$%&? − -8,$%&
C = ℙ68,[$,$%&] − ℚ68,[$,$%&]  

 =`
2

G!

a

HbE
] ] c8

H

ℝe

$%&

$

f(_c8, _3). (3) 

 

Now that we have the unconditional realized tail-jump variation, we next present the 

conditional ex-ante estimation of the tail-jump variation and then will develop a proxy for the tail-

risk premium.  

 Following Bollerslev, Tauchen and Zhou (2009), under the assumption that t6  is a 

martingale2, the ℙ-space expected tail-variation of returns at time 3 can be expressed as follows:  

u$
ℙ=t68,[$,$%&]? = 2=#8,$ − -8,$? − -8,$

C . (4a) 

Then, the difference between expected t6 in the ℙ-space and that in the risk-neutral ℚ-space, 

u$
ℙ=t68,[$,$%&]? − u$

ℚ
=t68,[$,$%&]?, serves as a proxy for the tail-risk premium.  The advantages of 

using	u$ℙ=t68,[$,$%&]? as a tail risk measure in the physical space are threefold.  First, it is non-

parametric, i.e., it does not require the estimation of a cutoff value as in Kelly and Jiang (2014) or 

Bollerslev and Todorov (2011b). Second, it does not require the estimation of a jump compensator 

in order for the instantaneous arithmetic stock return to be a semi-martingale process as in 

Bollerslev and Todorov (2011a), Bollerslev and Todorov (2015), or Bollerslev, Todorov and Xu 

                                                
2 Under Merton (1976) jump diffusion model assumption, the compensated compound Poisson process f(_c8, _3), 

with compensator j
&

√Clmn
o p

,
+

o
(qrs)

o
, is a martingale process; consequently, ℙ68,[$,$%&] is also a martingale.  Todorov 

and Tauchen (2011) provides empirical evidence that the VIX index is a pure-jump process without a continuous 
component, which supports the notion that ℙ68,[$,$%&] is a martingale process. (Du and Kapadia (2012) demonstrates 
that ℙ68,[$,$%&] is the underlying process of the VIX index). Furthermore, it is widely accepted in both theory and 
practice that ℚ68,[$,$%&] is a martingale process, consequently, the claim that t68,[$,$%&] is a martingale process has 
both theoretical and practical support. 
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(2015). Third, u$
ℙ=t68,[$,$%&]?  only relies on stock price information and can be easily calculated 

using databases such as the WRDS CRSP database and the TAQ database. Thus, relative to the 

measures used in the afformentioned papers, our measure not only lessens estimation error, but 

also shortens the calculation time, and because it only relies on prices, it is broadly applicable to 

other asset classes.  Once the ℙ-space tail risk measure is calculated, then one can examine the 

innovations in this measure 

∆u$
ℙ=t68,[$,$%&]? = ∆[2=#8,$ − -8,$? − -8,$

C ] (4b) 

In contrast to the ℙ -space tail variation measure which is easy to calculate, the 

corresponding calculation of Equation 4a in the ℚ-space for individual stocks is much more 

problematical, since the necessary data is not readily available.  If, instead of examining individual 

stocks, one were interested in calculating the ℚ-space tail variation of the market as a whole, then 

the methodology would be relatively easy to implement.  For example, Carr and Wu (2009) shows 

that the CBOE VIX index is a measure of moment combinations, and therefore a polynomial 

variation in the risk neutral probability space. Specifically, that paper argues that the VIX index 

measures the risk-neutral expectation of the polynomial variation process for the S&P 500 market 

index,3 

u$
ℚ
=ℙ6w,[$,$%&]? = xyz$

C (5) 

Once Equation 5 has been calculated, Du and Kapadia (2012) and Chow, Jiang and Li (2014) show 

that the ℚ-space measure of tail variation for the market can be calculated as the difference 

                                                
3 Note that, Equation 5 clearly indicates that the literature-prevalent variance risk premium estimation methodology, 
which takes the difference between the VIX index and physical probability space quadratic variation is biased. 
Specifically, the VIX, because it includes higher order moments, undervalues (overvalues) volatility when the market 
return is expected to be negatively (positively) skewed. 
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between the square of the VIX and the centralized Bakshi, Kapadia, and Madan’s (2003) volatility 

measure, x{|w
} 	such that 4 

u$
ℚ
=t6w,[$,$%&]? = xyz$

C − x{|w,$
}  (6) 

It is important to note that the calculation of both the VIX and x{|w
}  rely on highly liquid out-of-

the-money put and call options5, which fortunately are prevalent on the S&P 500 index. Recent 

papers by Gao, Gao and Song (2018) and Gao, Lu and Song (2018) estimate tail risk based on the 

ℚ-space tail variation measure (in Equation 6) for the market index and portfolio of assets where 

there exists liquid option trading. Unfortunately, these options often either do not even exist for 

individual stocks or, if they do exist, are not frequently traded, and thus an analogue of the 

aforementioned methodology to calculate the ℚ -space tail variation for individual stocks is 

impossible to implement.  Consequently, an alternative is required. 

To this end, we propose a methodology for the estimation of the ℚ-space tail variation that 

is based on the groundbreaking work on tracking portfolios presented in Breeden, Gibbons and 

Litzenberger (1989) and Lamont (2001).  According to Lamont (2001), “A tracking portfolio for 

any variable y can be obtained as the fitted value of a regression of y on a set of base asset returns.  

The portfolio weights for the economic tracking portfolio for y are identical to the coefficients of 

an OLS regression.” Ang, et al. (2006) applies the tracking portfolio technology and uses returns 

to capture innovations in the VIX index. We employ a modified version of Ang, et al. (2006); 

specifically, we use first-order difference in the	ℚ-space tail variation measures, rather than the 
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]} as in Bakshi, Kapadia, and 

Madan (2003). 
5 Demeterfi, Derman, Michael and Zou (1999) present a methodology for estimating the ℚ-space measure of implied 
volatility for individual securities that is based on the variance swap concept, which requires highly liquid out of the 
money put and call options.   
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raw measures themselves, in order to capture innovations in ℙ-space tail variation measures. 

Accordingly, we estimate the following ordinary least squares regression for each stock in each 

month to obtain our portfolio weights, ä86 

∆[2=#8,$ − -8,$? − -8,$
C ] = ã8 + ä8 ∙ ∆=xyz$,CC

C − x{|w,$,CC
} ? + ç8,$ (7) 

Where xyz$,CC
C − x{|w,$,CC

}  represents the tail variation in the ℚ-space, as delineated in Equation 

6, and 2=#8,$ − -8,$? − -8,$
C  represents the tail variation in the ℙ-space, as shown in Equation 4a. 

Note that we follow the precedent set by Bekaert and Hoerova (2014) which estimates ℙ-spaced 

conditional realized variation utilizing a 22-day lag. Their approach is based on the notion that 

options-based ℚ-spaced measures, such as the VIX, are forward-looking, and thus there is a time 

lag error of one month (22 trading days) that must be corrected.    

 Once the ä8 coefficients have been obtained, then ä8 ∙ ∆=xyz$,CC
C − x{|w,$,CC

} ? represents 

the ℚ-space tracking portfolio that mimics innovations in tail variation that occur in the ℙ-space. 

Formally, 

∆u$
ℚ
=t68,[$,$%&]? = ä8 ∙ ∆=xyz$,CC

C − x{|w,$,CC
} ? (8) 

Now that the daily innovations in the 	ℙ -space and ℚ -space tail variation measures 

(Equations 4b and 8, respectively) have been obtained, then the daily tail risk premium for any 

asset can be estimated by taking their difference 

é#Ñ8,[$,$%&]
èS8PQ

= ∆u$
ℙ=t68,[$,$%&]? − ∆u$

ℚ
=t68,[$,$%&]? (9) 

Since there are 22 trading days in a month, the corresponding monthly tail risk premium 

for each individual stock can be estimated as  

é#Ñ8
wOH$êPQ = 22 ∙ é#Ñ8,[$,$%&]

èS8PQ  (10) 

                                                
6 Stocks must have at least 17 observations in any given month to be included in that month’s regression. 
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B. Data  

We run the baseline regression model in Equation 7 for all common stocks on AMEX, 

NASDAQ, and NYSE, with more than 17 daily observations in any given month. Daily stock 

returns come from the WRDS CRSP dataset, over the sample period from January 1990 to 

September 2014.  S&P index option data are obtained from IVolatility.com, which provides end-

of-day and high frequency option data on major stock market indices across countries.  

[Insert Table 1 Here] 

Table 1 reports the summary statistics for portfolios sorted into deciles by the tail risk 

premium.  Definitions for all the variables can be found in the Appendix. Panel A presents the 

decile portfolio firm-specific characteristics sorted by the tail risk premium.  Firms with a higher 

tail risk premium tend to have lower lagged 1-month returns (short-term return reversal effect).  

Firms that fall into the extreme first and 10th decile also tend to be smaller firms that have higher 

market betas, higher idiosyncratic volatility, more illiquidity, higher maximum monthly returns, 

lower minimum monthly returns, lower trading volumes and lower prices. 

To examine the correlation structure among the explanatory variables, we report in 

percentage form Pearson correlation coefficients of the variables in Table 2. 

[Insert Table 2 Here] 

Idiosyncratic volatility (Ang, et al. (2006)) is negatively correlated with size (correlation 

coefficient of -49.70%), which is consistent with the findings in Fu (2009). Moreover, 

idiosyncratic volatility is also correlated with maximum and minimum monthly returns (Bali, 

Cakici and Whitelaw (2011)), with correlation coefficients of 89.72% and 80.77%, respectively). 

Maximum and minimum monthly returns (Bali, Cakici and Whitelaw (2011)) are correlated with 

size, but to a much lesser extent (-37.24% and 39.00%, respectively).  

 



13 
 
 

IV. Predictive Power of the Tail Risk Premium on Future Returns 

A. Portfolios Sorted by the Tail Risk Premium 

To investigate the predictive power of the tail risk premium in the cross section, we first 

calculate the tail risk premium for each of the stocks in our sample, and then sort the stocks into 

decile portfolios by the magnitude of their monthly tail risk premium. We next calculate the one 

month forward buy and hold returns for each decile portfolio.  We term these returns as the 1/0/1 

(sort in one month, examine the one-month return for the following month) return.  The results are 

reported in Panel A of Table 3. 

[Insert Table 3 Here] 

The lowest (decile 1) tail risk premium portfolio earns the highest return of 2.02% in the 

following month, while the highest (decile 10) portfolio earns the lowest return of 0.27%. The 

difference between the lowest and highest quintile portfolio is 1.75% monthly, and has a 3-statistic 

of -11.26. After a Newey-West (1987) adjustment for heteroskedasticity and autocorrelation, the 

3-statistic is still strongly significant with a value of -7.30.  

We next examine the length of time it takes for the market to correct this pricing error, by 

comparing the results for the to 1/0/1 (sort in one month, examine the one-month return for the 

following month) portfolio strategy discussed in the previous paragraph with 1/1/1 and 1/2/1 

(sort in one month, examine the one-month return starting two months from now, and three months 

from now, respectively) portfolio strategies.   

These results are reported in Panels B and C of Table 3. The existence of a tail risk premium 

at time t possesses virtually no impact on future returns moving from the second-next month into 

the future. This suggests that the adjustment period for market perception of tail risk seems to be 

somewhere between one month and two months, after which the market fully incorporates 

information about tail risk into the price.  
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B. Cross-Sectional Return Test for the Predictive Power of the Tail Risk Premium 

The above evidence suggests that tail risk is priced at the individual stock level.  Consistent 

with prior studies, we perform a more thorough firm-level cross-sectional returns and examine 

whether the predictive power of the tail risk premium remains. Specifically, we estimate the 

following monthly regression: 

#8,$%& = ìÖ,$%& + ì&,$%& × é#Ñ8,$
wOH$êPQ

+ î$%&
ï × ñ8,$ + ç8,$%& (11) 

where #8,$%& is the monthly stock return for stock 7 in month 3 + 1. é#Ñ8,$
wOH$êPQ is the individual 

stock tail risk premium, delineated by Equation 10.  ñ8,$ represents a vector of characteristics and 

controls for firm 7  at the end of month 3  such as size, book-to-market ratio and market beta. 

Controls are also provided for illiquidity following Amihud (2002), idiosyncratic volatility 

following Ang, et al. (2006), lagged 1-month return for short-term return reversal effect following 

Jegadeesh (1990) and Lehmann (1990), lagged 12-month return accounting for the momentum 

effect, and maximum and minimum monthly return following Bali, Cakici and Whitelaw (2011).   

Table 4 reports the time-series average of ì  and î  coefficients for the cross-sectional 

regressions. 

 [Insert Table 4 Here] 

Column 1 provides univariate results and Column 2 adds firm-specific control variables.7  The 

coefficient for the tail risk premium is negative and is statistically significant in both the univariate 

and multivariate regressions, with coefficients of -0.801 and -1.155 and Newey-West (1987) 3-

statistic equal to -5.60 and -5.50, respectively. Specifically, stocks with tail risk require a premium 

in the current month, and this premium is associated with lower returns the following month.  

                                                
7 See Appendix for variable definitions. 
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The results for the impact of overall tail risk on one-month future returns are interesting, 

but tail risk involves concerns about both extreme positive events and extreme negative ones. 

Consequently, it may be of interest to examine, separately, the impact of positive and negative tail 

risk on future returns. 

1. The Monthly Predictive Power of Positive versus Negative Tail Risk Premia 

 To investigate the extent to which positive and negative tail risk may be priced 

differentially in the cross-section of returns, we again perform firm-level cross-sectional monthly 

regressions, but this time we include dummy variables to identify those stocks in the top and 

bottom deciles when sorted by their tail risk premia. The regression is specified in Equation 12. 

#8,$%H = ìÖ,$%H + ì&,$%H × é#Ñ8,$
wOH$êPQ

× y
[óYò8PY	&	ÄôNö,)

õúù)ûü†
]

+ ìC,$%H × é#Ñ8,$
wOH$êPQ

× y
[óYò8PY	&Ö	ÄôNö,)

õúù)ûü†
]
+ î$%H

� × ñ8,$ + ç8,$%H 
(12) 

Where   y
[óYò8PY	&	ÄôNö,)

õúù)ûü†
]
 is a dummy variable that equals 1  if  é#Ñ8,$

wOH$êPQ is in decile 1 and 

equals 0 otherwise, and  y
[óYò8PY	&Ö	ÄôNö,)

õúù)ûü†
]
	 is the corresponding dummy variable for decile 10. 

#8,$%H  is monthly stock return for stock 7  in month 3 + G , where ° = 1,2. é#Ñ8,$
wOH$êPQ  is the 

individual stock tail risk premium calculated in Equation 10.  ñ8,$  represents a vector of 

characteristics and controls for firm 7 at the end of month 3 such as size, B/M ratio, market beta, 

illiquidity, etc. 

[Insert Table 5 Here] 

Table 5 presents the results.  In the t+1 regression, the coefficient on the interacted variable 

é#Ñ8,$
wOH$êPQ

× y
[óYò8PY	&Ö	ÄôNö,)

õúù)ûü†
]
	 is statistically significant with ì  coefficient of -1.971 and 

Newey-West (1987) 3-statistic of -5.09.   The negative coefficient implies that the greater the tail 

risk premium today (i.e, the greater the negative tail risk) the more negative will be the next 
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month’s return.  The coefficient on the decile 1 interacted variable is also negative with a ì 

coefficient of -0.830, but is statistically significant at only the 10% level, thus we refrain from 

making any claims about its impact on future returns.  In the t+2 regression, neither the Decile 1 

nor the Decile 10 interracted dummies are significant different from zero.  

2. The Daily Predictive Power of Positive versus Negative Tail Risk Premia 

In order to more fully examine the relationship between negative tail risk premia and future 

returns, we replicate the study conducted in the previous section using daily returns. Specifically, 

we conduct a firm-level cross-sectional predictive regression as in Equation 13.  We add the caveat 

that, at the daily level, there is likely to be some noise in our estimates, thus any conclusions should 

be tempered somewhat. 

#8,$%H
óS8PQ

= ìÖ,$%H + ì&,$%H × é#Ñ8,$
óS8PQ

× y
[óYò8PY	&Ö	ÄôNö,)

¢£öü†
]
+ î$%H

� × ñ8,$ + ç8,$%H (13) 

 

[Insert Table 6 Here] 

Panel 1 of Table 6 presents the results of the regression of the relationship in Equation 13, 

day into the future.  The coefficient on the interacted variable for Decile 10 shows that the existence 

of a premium for bearing negative tail risk continues to have predictive power for about 10 days.  

Even on day 10, the coefficient for the interacted variable for decile 10 is -5.128 with NW t-stat -

2.43. The daily results corroborate the findings of the previous section and offer additional 

evidence on the way that concerns about extreme negative tail events impact future returns.  

C. Do Larger Tail Risk Premia Have More Predictive Power? 

The results in the previous section suggest that the larger the tail risk premium, the greater 

its impact on future returns. This suggests that using a finer grid to sort stocks, for example, sorting 

the stock by tail risk premia into percentiles rather than deciles, and then redoing the earlier 

analysis may yield interesting results.   To this end, we sort and then split the stocks contained in 
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deciles 1 and 10 into deciles once again; that is, we effectively create ten extreme high and low 

percentile porfolios, with percentiles 1-10 belonging to decile Portolio 1 and percentiles 91-100 

belonging to decile Porfolio 10.  We then apply the 1/0/1 (sort in one month, examine the one-

month return for the following month) portfolio strategy for percentile 1 and 100 porfolios, 2 and 

99 portolios and 3 and 98 porfolios and report the results in Table 7.  

 [Insert Table 7 Here] 

The results are consistent with the notion that there is a monotonic relationship between the 

magnitude of the tail risk premium and the impact on future returns.   The t+1 return difference is 

most negative when comparing the two most extreme (1 and 100) portfolios, and decreases 

monotonically thereafter. The return difference (in percentage) for the 100-1 portfolio is -3.91, for 

the 99-2 portfolio is -2.50, and the 98-3 portfolio is -2.44, respectively.  All are significant at the 

1% level.   

As a robustness check, we combine percentiles 98-100 into one portfolio and percentiles 

1-3 into another portfolio, and then do the same for percentiles 97-99 and 2-4. The t+1 return 

difference for the (98-100)-(1-3) portfolio is -2.95, for the (97-99)-(2-4) portfolio is -2.35, with 

both being significant at the 1% level, once again lending support to the notion that predictive 

power of the current premium for bearing negative tail risk should be directly related to its 

magnitude. 

 

 

 

V. Robustness Checks 

 We perform a variety of robustness checks in order to ensure that our results are not being 

driven by other factors.   
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A. Monte Carlo Analysis of Regression Beta  

The first robustness check is on the beta of the baseline regression model in Equation 7.  

There may be a concern that the beta may not be statistically different from zero both cross-

sectionally and in the time series.  The standard unidimensional t-test cannot capture this 

possibility.  Instead, to capture both the time series and cross-sectional properties of the regression 

beta, we use Monte Carlo simulation to test whether beta is statistically different from zero.  Monte 

Carlo simulation has two advantages. First, it is a distributional-free approach. Second, it allows 

us to make statistical inferences on both the cross sectional and time-series dynamics of the 

regression beta in Equation 7. 

In our sample, the number of firms that have more than 17 trading days in a given month 

ranges from 3626 to 7471. We denote sample size as §, number of random draws as °. For a given 

month in a given year, we perform the following simulation, 

1) Random draw (with placement) ä&, äC, äE, ⋯, ä( and compute the mean of ä&, äC, äE, ⋯, 

ä(, denote äH•••. 

2) Repeat 1) ° times and get ä&•••, äC•••, äE•••, ⋯, ä¶••••. 

3) Compute 3-statistic for ä&•••, äC•••, äE•••, ⋯, ä¶••••. 

We then compute the average of the (time series) year-month 3-statistic to get the simulated 

3-statistics. 

[Insert Figure 1 Here] 

From panels A through B in Figure 1, we observe that the bootstrapped 	3-statistic is 

statistically and significantly different from zero even if we limit to sample size to only 500 firms 

in each independent random draw8. This indicates that the beta of the baseline regression model in 

                                                
8 In figure 1 we limit the number of random draws to 10000. We also perform the Monte Carlo simulation by 
varying number of random draws from 1000 to 10000 and sample size 500 to 3000, results are similar. 



19 
 
 

Equation 7 is both statistically and economically important that carries important pricing 

information. In other words, our tail risk premium estimation methodology indeed captures the 

difference between the ℙ- and ℚ- spaced expectations of tail risk variation. 

B. Sensitivity to Market Aggregate Tail Risk Premium 

The second robustness check is to ensure that our results are not being driven by the 

sensitivity the individual stock’s loadings to the market tail risk premium.  To this end, we follow 

Ang, et al. (2006) which adopts a “beta approach.” They obtain an individual stock’s sensitivity 

(beta) to innovation in market aggregate volatility (specifically ∆xyz), and then determine whether 

this beta has predictive power for the next-month’s stock returns.  We run the following regression 

model, 

-$
8 = äÖ + äw|Ä

8 ßÉé$ + ä∆ÄôNõ£®©™)
8 ∆é#Ñ$

wSU´Y$ + ç$
8 (14) 

where ßÉé is the market excess return and ∆é#Ñ$
wSU´Y$ is estimated tail risk premium for the 

S&P 500, which is our proxy for innovations in the market aggregate tail risk compensation, that 

is, factor loading, ä
∆ÄôNõ£®©™)
8 , captures the sensitivity of individual stock monthly returns to the 

change in market aggregate tail risk premium. The results are reported in Table 8. 

[Insert Table 8 Here] 

The value weighted mean t+1 return for deciles 1 and 10 are 1.16 and 1.31, respectively.   

This difference is not statistically significant, which implies that sensitivity to the market aggregate 

tail risk premium has no predictive power for these stocks.  Moreover, it implies that our tail risk 

premium estimation methodology captures an individual stock’s idiosyncratic tail risk premium, 

which provides pricing information beyond the individual stock’s loadings to the market tail risk 

premium.  
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C. Contemporaneous Regression 

Our paper uses a 22-day lag adjustment between the risk neutral and the physical 

probability space measures.  However, in the literature on the variance risk premium normally 

does not require a lag adjustment for the ℚ- spaced variables calculation in the baseline regression 

model in Equation 7.  For example, Bollerslev, Tauchen and Zhou (2009) is among the first to 

document the variance risk premium’s return predictability at the quarterly horizon. They compute 

the variance risk premium using a relatively “conventional” approach, where the risk premium of 

return variation is defined as the difference between the time series conditional expected future 

return variation in the (options based) risk-neutral (ℚ-spaced) framework and that in the physical 

probability (ℙ-) space in a contemporaneous manner; however, this approach is inherently biased 

in that it assumes the risk neutral measures are “backward-looking”.  

As a robustness check, we employ the non-lagged methodology of Bollerslev, Tauchen 

and Zhou (2009) and redo the analysis presented in Secion V.A.  We sort the stocks into ten equal 

groups (decile portfolios) by é#Ñ8
wOH$êPQ,HOPS¨ calculated on the following regression model, 

∆[2=#8,$ − -8,$? − -8,$
C ] = ã8 + ä8 ∙ ∆=xyz$

C − x{|w,$
} ? + ç8,$ (15) 

The results are reported in Table 9.  

[Insert Table 9 Here] 

As can be seen by comparing the results of Table 9 to those presented in Table 3, using 

contemporaneous rather than 22-day lagged ℚ-spaced measures makes little qualitative difference.  

 

VI. Conclusion 

This paper introduces a novel methodology to directly determine the tail risk premium for 

individual stocks, and then employs this measure to examine the impact of equity tail risk in the 

cross section of stock returns.  Bollerslev, Todorov and Xu (2015) and Kelly and Jiang (2014) find 
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evidence of pricing for negative tail risk, however, neither examines the pricing of positive tail 

risk, nor the impact on the magnitude of the tail risk on the predictive power of its associated 

premium.  The current paper controls for a variety of variables associated with positive and 

negative return skewness, and finds at the monthly level, the existence of a premium for bearing 

positive tail risk today holds no statistically significant power for lower future returns, while its 

counterpart for bearing negative tail risk has significant predictive power for lower future returns.  

At the daily level, the predictive power associated with a premium for bearing negative tail 

risk lasts for 10 trading days.  Moreover, the size of the current premium for bearing negative tail 

risk matters.  The larger the premium associated with exposure to negative tail risk, the more 

negative and longer lasting is its impact on expected future returns.    

 The methodology in this paper can be easily extended to other asset classes and to investor 

behavior in different countries, for example, bond markets, foreign exchange markets, commodity 

markets in both US and foreign markets.  As future research, it would be interesting to investigate 

how tail risk is priced in these other asset classes; especially in the presence of liquidity risk.   
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Appendix  Variable Definitions 

Tail risk premium: We compute tail risk premium as in Equation 10 in Section III A. 

Log (Size): Following Fama and French (1993), size is computed each June as stock price times 

number of shares outstanding (in hundreds). Size is measured in hundred thousand. We control for 

size effect by taking natural logarithm of Size. 

Log (B/M): Following Fama and French (1993), book-to-market is computed as the ratio of book 

common equity over market capitalization (size). Book common equity is calculated using 

Compustat’s book value of stockholders’ equity plus balance-sheet deferred taxes and investment 

tax credit minus the book value of preferred stock. The ratio is computed as the book common 

equity at the end of fiscal year over size as the December end of fiscal year end.9 

Market beta: We follow Sholes and Williams (1977) and Dimson (1979) to address 

nonsynchronous trading in beta estimation.  We run regression including lag, current and lead 

market risk premium as independent variables as in Equation 16, 

#8,$ − -T,$ = ã8 + ä&,8=#RSU´Y$,$,& − -T,$,&? + äC,8=#RSU´Y$,$ − -T,$?

+ äE,8=#RSU´Y$,$%& − -T,$%&? + ç8,$ 
(16) 

 

where #8,$ is return for stock 7 on day 3. #RSU´Y$,$ is market return on day 3 and -T,$ is risk free rate 

on day 3. We estimation the above equation for each stock using daily returns within each month. 

For each month, the market beta is estimated as follows in Equation 17 for each stock 7,  

ä≠Æ = ä&,≠Ø + äC,≠Ø + äE,≠Ø  (17) 

Idiosyncratic Volatility: Following Ang, Hodrick, Xing and Zhang (2006), idiosyncratic 

volatility is calculated as 

                                                
9 To avoid issues with extreme values, the book-to market ratios are winsorized at the 1% and 99% levels. 
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y_7∞±≤G≥-¥37≥	µ∞∂¥37∂73≤ = ∑µ¥-(ç$,$) (18) 

where ç$,$  is the error term from the three-factor Fama and French (1993) regression. The 

regression is estimated monthly with more than 17 daily observations in a month. 

Lagged 1-month return: Following Jegadeesh (1990) and Lehmann (1990), we use lagged 1-

month return to account for short-term return reversal effect, the reversal variable for each stock 

in month ∏ is defined as the return on the stock over the previous month, i.e., the return in month 

∏ − 1.  

Lagged 12-month return: Jegadeesh and Titman (1993) documented intermediate-term 

momentum effect, we use lagged 12-month return to account for momentum effect, it is defined 

as return ∏ − 12 for each stock in month ∏. 

Illiquidity: Following Amihud (2002), we compute stock illiquidity for each stock 7 in each month 

∏ as the ratio of the absolute monthly stock return to its dollar trading volume: 

y∂∂7π∫7_73≤8,R =
ª#8,Rª

|x∞∂∫∏GR × Ñ-7≥pR|
 (19) 

 

Maximum (Minimum) monthly return: Following Bali, Cakici and Whitelaw (2011), we 

control for maximum (minimum) monthly return for each stock 7 in month ∏ as the maximum 

(minimum) daily return within month ∏. 

	ß¥c7∏∫∏	∏∞G3ℎ∂≤	-p3∫-GR = max¡#8,$¬ , 3 = 1,⋯ , é (20) 

	ß7G7∏∫∏	∏∞G3ℎ∂≤	-p3∫-GR = min¡#8,$¬ , 3 = 1,⋯ , é (21) 

where é is the maximum number of daily observations in month ∏. These are estimated monthly 

with more than 17 daily observations in a month. 
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Log (trading volume): trading volume is the sum of the trading volumes during that month. We 

control for size effect by taking natural logarithm of Size. 

Price: the price on the last trading date of the month. 
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Table 1. Characteristics of Portfolios Sorted by Tail Risk Premium 
Each week, stocks in CRSP database are ranked by their respective tail risk premium. The equal-weighted characteristics of each quintile 
are computed over the same week. The procedure is repeated for every month from January 1990 to September 2014. Tail risk premium 
and illiquidity are in 10-6. Lagged 1-month return, Lagged 12-month return, Maximum monthly return, Minimum monthly return are in 
percentages. Log (Size), Log (B/M), Market beta, Idiosyncratic Volatility, Log (trading volume), Price are in absolute values. See 
Appendix for variable definitions. 
 

Characteristics of Portfolios Sorted by Tail Risk Premium      
Deciles 1 2 3 4 5 6 7 8 9 10 

Tail risk premium -88.01 -4.33 -1.27 -0.44 -0.08 0.16 0.53 1.42 4.53 89.05 
Log (Size) 4.00 4.87 5.56 6.10 6.49 6.54 6.14 5.59 4.88 3.95 
Log (B/M) -0.53 -0.59 -0.60 -0.59 -0.57 -0.57 -0.60 -0.61 -0.59 -0.53 

Market beta 0.91 0.96 0.91 0.81 0.71 0.74 0.82 0.99 0.94 0.81 
Idiosyncratic volatility 6.15 3.73 2.76 2.10 1.66 1.66 2.12 2.77 3.76 6.35 

Lagged 1-month return 2.47 2.05 1.97 1.88 1.61 1.48 0.88 0.54 -0.23 -2.44 
Lagged 12-month return 0.18 0.96 1.51 1.20 1.50 1.34 1.34 1.27 1.11 0.37 

Illiquidity 123.92 28.31 19.43 9.67 7.85 5.32 10.36 15.29 37.74 125.65 
Maximum monthly return 15.11 8.93 6.64 5.05 4.04 4.10 5.17 6.81 9.30 16.71 
Minimum monthly return -12.19 -7.59 -5.74 -4.46 -3.60 -3.60 -4.48 -5.71 -7.51 -11.63 

Log (trading volume) 9.02 9.31 9.58 9.71 9.80 9.84 9.75 9.60 9.34 8.99 
Price 7.92 16.95 28.76 40.00 58.04 48.50 44.57 25.91 16.46 8.13 

Number of stocks 13749 14237 13977 13307 12515 12635 13221 14023 14273 13792 
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Table 2. Pearson Correlation Matrix 
Pearson correlation coefficients reported as percent for firm characteristics of all CRSP stocks from January 1990 to September 2014. 
See Appendix for variable definitions. 
 

   Tail risk 
premium Log (Size) Log (B/M) Market beta Idiosyncratic 

volatility 
Lagged 1-

month return 
Lagged 12-

month return Illiquidity 
Maximum 

monthly 
return 

Minimum 
monthly 

return 
Log (trading 

volume) 

  Tail risk 
premium 100.00 -0.09 -0.33 0.28 1.56 -2.55 0.26 -0.35 3.74 0.78 0.01 

Log (Size) 100.00 -27.87 12.54 -49.70 5.59 4.67 -2.82 -37.25 39.00 76.96 
Log (B/M) 100.00 -6.32 4.90 3.91 -7.55 1.62 3.72 -1.22 -28.95 

Market beta 100.00 -0.12 0.58 1.29 -0.38 3.44 -2.71 17.09 
Idiosyncratic volatility 100.00 -10.41 -5.05 3.27 89.72 -80.77 -19.94 

Lagged 1-month return 100.00 0.06 -0.58 -10.29 9.54 2.65 
Lagged 12-month return 100.00 -0.20 -4.20 4.19 1.61 

Illiquidity 100.00 2.53 -3.26 -2.46 
Maximum monthly return 100.00 -60.25 -11.99 

Minimum monthly return 100.00 11.32 
Log (trading volume) 100.00 
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Table 3.  Portfolios Returns Sorted into Deciles by Tail Risk Premium 
We form value-weighted decile portfolios every month by sorting stocks based on tail risk premium in Equation 10. Portfolios are 
formed every month, based on tail risk premium in Equation 10 computed using daily data over the previous month. Panel A displays 
the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month), Panel B for 1/1/1 portfolio 
strategy strategy (sort in one month, examine the one-month return starting two month from now) and Panel C for 1/2/1 portfolio strategy 
(sort in one month, examine the one-month return starting three month from now). Portfolio 1 (10) is the portfolio of stocks with the 
lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. are measured in monthly 
percentage terms and apply to the total, not excess, simple returns. Size reports the average log market capitalization for firms within 
the portfolio and B/M reports the average book-to-market ratio. The row "10-1" refers to the difference in monthly returns between 
portfolio 10 and portfolio 1. NW !-stat refers to robust Newey-West (1987) !-stat. Pre-formulation "#$	is reported in basis points. The 
sample period is January 1990 to September 2014. 
 

Panel A: Portfolios Sorted by Tail Risk Premium, 1/0/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 2.02 7.19 1.76% 4.03 0.94 -1.023 
2 1.70 6.25 4.45% 4.92 0.79 -0.042 
3 1.61 5.31 8.72% 5.53 0.73 -0.013 
4 1.49 4.52 14.48% 6.03 0.70 -0.004 
5 1.43 3.98 19.92% 6.40 0.70 -0.001 
6 1.31 4.10 19.73% 6.39 0.70 0.002 
7 1.22 4.71 15.20% 6.07 0.70 0.005 
8 1.09 5.48 9.44% 5.56 0.73 0.014 
9 1.02 6.47 4.40% 4.93 0.78 0.044 

10 0.27 7.39 1.88% 4.03 0.93 1.063 
10-1 -1.75      
!-stat (-11.26)           

NW !-stat (-7.30)      
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Panel B: Portfolios Sorted by Tail Risk Premium, 1/1/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 0.76 7.51 1.76% 4.05 0.94 -0.982 
2 0.97 6.36 4.45% 4.93 0.79 -0.042 
3 1.11 5.54 8.75% 5.53 0.73 -0.013 
4 1.12 4.62 14.46% 6.04 0.70 -0.004 
5 1.06 4.13 19.97% 6.40 0.70 -0.001 
6 1.06 4.19 19.75% 6.40 0.70 0.002 
7 1.06 4.66 15.22% 6.07 0.70 0.005 
8 1.06 5.48 9.41% 5.56 0.72 0.014 
9 0.97 6.52 4.37% 4.93 0.78 0.044 

10 0.84 7.28 1.85% 4.04 0.94 0.997 
10-1 0.08      
!-stat (0.73)           

NW !-stat (0.76)      
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Panel C: Portfolios Sorted by Tail Risk Premium, 1/2/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 0.96 7.58 1.72% 4.06 0.95 -0.934 
2 1.24 6.60 4.44% 4.93 0.79 -0.042 
3 1.16 5.60 8.78% 5.53 0.73 -0.013 
4 1.24 4.70 14.48% 6.04 0.70 -0.004 
5 1.16 4.18 19.96% 6.41 0.70 -0.001 
6 1.18 4.11 19.79% 6.40 0.70 0.002 
7 1.18 4.67 15.21% 6.08 0.70 0.005 
8 1.21 5.38 9.43% 5.57 0.73 0.014 
9 1.14 6.41 4.37% 4.94 0.78 0.044 

10 0.99 7.33 1.82% 4.06 0.94 0.969 
10-1 0.03      
!-stat (0.18)           

NW !-stat (0.18)      
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Table 4. Fama-MacBeth Cross-Sectional Regression 
Results of a Fama-MacBeth cross-sectional regression of stock returns for the following: 
 

#),+,- = /0,+,- + /-,+,- × "#$),+
345+678 + 9+,-: × ;),+ + <),+,- (11) 

#),+,-  is monthly stock return for stock = in month ! + 1. "#$),+
345+678  is individual stock tail risk premium for stock = in month !, 

calculated in Equation 10. ;),+ represents a vector of characteristics and controls for firm = at the end of month ! such as size, B/M ratio, 
market beta, illiquidity, etc. The control variables are described in the Appendix. The Newey-West (1973) HAC robust !-statistic is 
reported in parentheses.  Specification (1) is univariate regression, Specification (2) is multiple regression adding control variables. The 
sample period is from January 1990 to September 2014. 
 

 (1) (2) 
Intercept 0.009 0.021 

 (2.42) (6.16) 
Tail risk premium -0.801 -1.155 

 (-5.60) (-5.50) 
Log (Size)  0.000 

  (0.19) 
Log (B/M)  0.003 

  (3.52) 
Market beta  0.000 

  (0.74) 
Illiquidity  19.715 

  (1.11) 
Idiosyncratic volatility  -0.001 

  (-1.90) 
Lagged 1-month return  0.003 

  (0.85) 
Lagged 12-month return  -0.001 

  (-0.40) 
Maximum monthly return  -0.032 

  (-2.02) 
Minimum monthly return  -0.019 

  (-1.06) 
Log (trading volume)  -0.001 

  (-0.80) 
Adjusted R2 (%) 0.133 4.765 
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Table 5.  Fama-MacBeth Regression including dummy variables for Decile 1 and Decile 10 Tail Risk Premia 
 
Results of a Fama-MacBeth cross-sectional regression of stock returns for the following: 
 

#),+,5 = /0,+,5 + /-,+,5 × "#$),+
345+678 × ?[ABC)7B	-	DEFG,HIJKHLMN]

+ /P,+,5 × "#$),+
345+678 × ?[ABC)7B	-0	DEFG,HIJKHLMN]

+ 9+,5� × ;),+ + <),+,5 (12) 

Where   ?[ABC)7B	-	DEFG,HIJKHLMN]
 is a dummy variable that equals 1 if  "#$),+

345+678  is in decile 1 and equals 0 otherwise, and  

?[ABC)7B	-0	DEFG,HIJKHLMN]
	 is the corresponding dummy variable for decile 10. #),+,5  is monthly stock return for stock = in month ! + Q, 

where R = 1,2. "#$),+
345+678 is individual stock tail risk premium for stock = in month !, calculated in Equation 10.  ;),+ represents a 

vector of characteristics and controls for firm = at the end of month ! such as size, B/M ratio, market beta, illiquidity, etc. The control 
variables are described in the Appendix. The Newey-West (1973) HAC robust !-statistic is reported in parentheses.  Specification (1) is 
the multiple regression adding control variables for monthly return #),+,-, specification (2) is the multiple regression adding control 
variables for monthly return #),+,P. The sample period is from January 1990 to September 2014. 
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 (1) (2) 

Return t+1 t+2 
Intercept 0.020 0.022 

 (5.92) (6.51) 
"#$),+

345+678 × ?[ABC)7B	-0	DEFG,HIJKHLMN]
 -1.971 -0.022 
 (-5.09) (-0.05) 

"#$),+
345+678 × ?[ABC)7B	-	DEFG,HIJKHLMN]

 -0.803 -0.668 
 (-1.86) (-1.39) 

Log (Size) 0.000 0.001 
 (0.00) (0.63) 

Log (B/M) 0.003 0.003 
 (3.46) (3.19) 

Market beta 0.000 0.000 
 (0.55) (0.23) 

Illiquidity 21.788 14.994 
 (1.73) (1.33) 

Idiosyncratic volatility -0.002 -0.002 
 (-2.73) (-2.73) 

Lagged 1-month return 0.003 0.014 
 (0.91) (4.47) 

Lagged 12-month return -0.002 -0.004 
 (-0.97) (-1.72) 

Maximum monthly return -0.026 0.005 
 (-1.98) (0.40) 

Minimum monthly return -0.025 0.020 
 (-1.62) (1.58) 

Log (trading volume) -0.000 -0.001 
 (-0.52) (-1.41) 

Adjusted R2 (%) 4.063 3.947 
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Table 6. Fama-MacBeth Regression of Positive and Negative Tails using Daily Returns 
 
Results of daily Fama-MacBeth cross-sectional regression of stock returns for the following: 
 

#),!+Q
AU)78 = /0,+,5 + /-,+,5 × "#$),+

AU)78 × ?[ABC)7B	-0	DEFG,HVWGMN]
+ 9+,5� × ;),+ + <),+,5 (13) 

Where   ?[ABC)7B	-0	DEFG,HVWGMN]
	  is a dummy variable that equals 1 if  "#$),+

AU)78 is in decile 10 and equals 0 otherwise. #),+,5
AU)78 is one-day 

holding period return for stock = from day ! + Q − 1 to day ! + Q, where Q = 1,2⋯ , 18. A maximum of 18 days is used since we require 
stocks to have a minimum of 18 days to be included in the sample. "#$),+

AU)78 is individual stock tail risk premium for stock = in month 
!, calculated in Equation 10.  ;),+ represents a vector of characteristics and controls for firm = at the end of month ! such as size, B/M 
ratio, market beta, illiquidity, etc. The control variables are described in the Appendix. The table reports predictive regression using 
next-month daily return (day 1, 7, 10, 14, 18) as dependent variable. The Newey-West (1973) HAC robust !-statistic is reported in 
parentheses. Decile portfolio sort section, similar to table 3, reports decile 10 return minus decile 1 return difference in basis points, as 
well as t-statistic and Newey-West (1973) HAC robust !-statistic associated with it (see table 3 for detailed testing methodology). For 
ease of reading, significant coefficients are highlighted in bold.  
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 (1) (2) (3) (4) (5) 
Return Day 1 Day 7 Day 10 Day 14 Day 18 

Intercept -0.005 0.000 -0.000 0.001 0.001 
 (-5.92) (0.74) (-0.07) (2.05) (1.34) 

"#$),+
345+678 × ?[ABC)7B	-0	DEFG,HIJKHLMN]

 -23.931 -5.609 -5.91 0.531 4.511 
 (-5.80) (-2.34) (-2.68) (0.16) (1.53) 

Log (Size) 0.001 -0.000 0.000 -0.000 -0.000 
 (2.95) (-1.07) (1.68) (-1.88) (-0.24) 

Log (B/M) 0.001 0.000 0.000 0.000 0.000 
 (4.69) (1.54) (2.21) (2.59) (1.05) 

Market beta 0.000 -0.000 -0.000 -0.000 0.000 
 (0.30) (-0.64) (-0.06) (-2.26) (1.05) 

Illiquidity 12.796 5.576 12.852 4.756 -1.524 
 (3.12) (1.76) (2.67) (1.78) (-1.47) 

Idiosyncratic volatility 0.001 0.000 0.000 0.000 0.000 
 (1.62) (2.15) (2.02) (1.85) (1.52) 

Lagged 1-month return -0.001 -0.000 0.001 0.002 0.000 
 (-0.56) (-0.02) (0.82) (2.07) (0.58) 

Lagged 12-month return -0.001 -0.001 -0.001 -0.000 -0.000 
 (-1.11) (-1.73) (-1.15) (-0.03) (-0.16) 

Maximum monthly return -0.010 -0.004 -0.008 -0.008 -0.002 
 (-1.52) (-0.81) (-1.95) (-1.88) (-0.48) 

Minimum monthly return -0.017 0.002 0.001 0.001 0.001 
 (-2.37) (0.39) (0.12) (0.28) (0.21) 

Log (trading volume) 0.000 0.000 -0.000 -0.000 -0.000 
 (0.95) (0.02) (-0.98) (-0.49) (-0.10) 

Adjusted R2 (%) 3.989 2.360 2.115 2.095 1.832 
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Table 7.  Extreme Tail: Percentile Portfolio Returns Sorted by Tail Risk Premium 
We form value-weighted percentile portfolios every month by sorting stocks based on tail risk premium in Equation 10. Portfolios are 
formed every month, based on tail risk premium in Equation 10 computed using daily data over the previous month. The table displays 
the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month). Portfolio 1 (100) is the portfolio 
of stocks with the lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. are 
measured in monthly percentage terms and apply to the total, not excess, simple returns. Size reports the average log market 
capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The row "100-1" refers to the difference 
in monthly returns between portfolio 100 and portfolio 1, the row "99-2" refers to the difference in monthly returns between portfolio 
99 and portfolio 2, and the row "98-3" refers to the difference in monthly returns between portfolio 98 and portfolio 3. The row “98-100 
minus 1-3” stands for the difference between mean monthly returns of portfolio 98 through 100 and mean monthly returns of portfolio 
1 through 3. The row “97-99 minus 2-4” represents for the difference between mean monthly returns of portfolio 97 through 99 and 
mean monthly returns of portfolio 2 through 4. NW !-stat refers to robust Newey-West (1987) !-stat. Pre-formulation "#$ is reported 
in basis points. The sample period is January 1990 to September 2014. 
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Percentile Portfolio Returns Sorted by Tail Risk Premium Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 2.74 9.19 6.18% 3.28 1.10 -8.330 
2 2.20 8.54 6.68% 5.53 1.06 -1.072 
3 2.14 8.21 6.70% 3.74 1.01 -0.570 
4 2.32 7.97 8.25% 3.91 0.97 -0.368 
5 1.83 7.81 8.63% 4.04 0.93 -0.264 
∙ ∙ ∙ ∙ ∙ ∙ ∙ 
∙ ∙ ∙ ∙ ∙ ∙ ∙ 
∙ ∙ ∙ ∙ ∙ ∙ ∙ 

96 0.44 8.39 8.23% 4.02 0.93 0.268 
97 0.20 7.91 8.03% 3.89 0.96 0.373 
98 -0.30 7.84 7.05% 3.74 1.00 0.572 
99 -0.30 8.56 6.58% 3.54 1.04 1.074 

100 -1.17 8.81 6.29% 3.26 1.12 8.504 
100-1 -3.91      
!-stat (-8.34)            

NW !-stat (-7.21)      
99-2 -2.50      
!-stat (-7.14)      

NW !-stat (-7.24)      
98-3 -2.44      
!-stat (-7.01)      

NW !-stat (-6.35)      
98-100 minus 1-3 -2.95      

!-stat (-13.02)      
NW !-stat (-9.14)      

97-99 minus 2-4 -2.35      
!-stat (-12.11)      

NW !-stat (-9.58)      
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Table 8.  Portfolios Returns Sorted into Deciles by Sensitivity to Market Aggregate Tail Risk Premium 

We form value-weighted decile portfolios every month by sorting stocks based on sensitivity to market tail risk premium,	[3\D) , in 
Equation 14.  

]+) = [0 + [3\D) ^_"+ + [∆DEFIWabcH
) ∆"#$+3UdeB+ + <+) (14) 

Portfolios are formed every month, based on sensitivity to market tail risk premium,	[3\D) , in Equation 14 computed using daily data 
over the previous month. The table displays the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the 
following month), Portfolio 1 (10) is the portfolio of stocks with the lowest (highest) previous month tail risk premium. The statistics in 
the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to the total, not excess, simple returns. 
Size reports the average log market capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The 
row "10-1" refers to the difference in monthly returns between portfolio 10 and portfolio 1. NW !-stat refers to robust Newey-West 
(1987) !-stat. Pre-formulation "#$	is reported in basis points. The sample period is January 1990 to September 2014. 
 

 
 Factor Loadings 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 1.16 7.05 2.31% 4.20 0.90 -24.86 
2 1.34 5.71 6.73% 5.17 0.76 -10.00 
3 1.26 5.01 11.29% 5.65 0.73 -5.73 
4 1.35 4.66 14.23% 5.92 0.72 -3.08 
5 1.31 4.42 14.98% 6.03 0.72 -1.03 
6 1.33 4.37 15.28% 6.00 0.73 0.83 
7 1.33 4.58 14.54% 5.95 0.72 2.86 
8 1.38 5.06 11.41% 5.68 0.74 5.47 
9 1.45 5.83 6.89% 5.20 0.77 9.71 

10 1.31 6.84 2.34% 4.20 0.92 24.64 
10-1 0.15      
!-stat (1.08)      

NW !-stat (0.95)      
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Table 9. Portfolios Returns Sorted into Deciles by Contemporaneous Tail Risk Premium 
We form value-weighted decile portfolios every month by sorting stocks by tail risk premium estimated based on Equation 15. Portfolios 
are formed every month, based on tail risk premium in Equation 15 computed using daily data over the previous month. Panel A displays 
the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month), Panel B for 1/1/1 portfolio 
strategy strategy (sort in one month, examine the one-month return starting two month from now) and Panel C for 1/2/1 portfolio strategy 
(sort in one month, examine the one-month return starting three month from now). Portfolio 1 (10) is the portfolio of stocks with the 
lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. are measured in monthly 
percentage terms and apply to the total, not excess, simple returns. Size reports the average log market capitalization for firms within 
the portfolio and B/M reports the average book-to-market ratio. The row "10-1" refers to the difference in monthly returns between 
portfolio 10 and portfolio 1. NW !-stat refers to robust Newey-West (1987) !-stat. Pre-formulation "#$	is reported in basis points. The 
sample period is January 1990 to September 2014. 
 
 

Panel A: Portfolios Sorted by Tail Risk Premium, 1/0/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 2.00 7.23 1.83% 4.03 0.94 -1.006 
2 1.69 6.31 4.46% 4.92 0.79 -0.043 
3 1.59 5.23 8.89% 5.54 0.73 -0.013 
4 1.52 4.38 14.92% 6.05 0.70 -0.005 
5 1.40 4.02 19.56% 6.39 0.70 -0.001 
6 1.30 4.14 19.84% 6.39 0.70 0.001 
7 1.26 4.75 15.16% 6.07 0.70 0.005 
8 1.19 5.44 9.05% 5.55 0.72 0.014 
9 0.91 6.46 4.41% 4.92 0.78 0.045 

10 0.34 7.45 1.89% 4.03 0.94 1.108 
10-1 -1.66      
!-stat (-9.92)           

NW !-stat (-6.96)      
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Panel B: Portfolios Sorted by Tail Risk Premium, 1/1/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 0.72 7.60 1.82% 4.04 0.94 -0.973 
2 0.89 6.48 4.48% 4.93 0.79 -0.043 
3 1.13 5.54 8.91% 5.55 0.73 -0.013 
4 1.08 4.72 14.93% 6.06 0.70 -0.004 
5 1.06 4.13 19.62% 6.39 0.70 -0.001 
6 1.08 4.12 19.85% 6.39 0.70 0.001 
7 1.14 4.55 15.14% 6.07 0.70 0.005 
8 1.12 5.45 9.01% 5.55 0.72 0.014 
9 0.99 6.45 4.36% 4.92 0.78 0.045 

10 0.80 7.24 1.87% 4.05 0.94 1.030 
10-1 0.08      
!-stat (0.68)           

NW !-stat (0.73)      
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Panel C: Portfolios Sorted by Tail Risk Premium, 1/2/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 
Share 

Size B/M Pre-Formation &'( 

1 1.03 7.55 1.78% 4.06 0.94 -0.922 
2 1.27 6.70 4.46% 4.93 0.79 -0.043 
3 1.19 5.62 8.91% 5.55 0.73 -0.013 
4 1.23 4.78 14.96% 6.06 0.70 -0.005 
5 1.21 4.18 19.64% 6.40 0.70 -0.001 
6 1.20 4.07 19.85% 6.40 0.70 0.001 
7 1.18 4.62 15.15% 6.08 0.70 0.005 
8 1.11 5.30 9.03% 5.56 0.72 0.014 
9 1.11 6.37 4.37% 4.92 0.79 0.044 

10 0.99 7.31 1.86% 4.06 0.95 1.010 
10-1 -0.04      
!-stat (-0.33)           

NW !-stat (-0.37)      
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Figure 1.  Monte Carlo Analysis of Regression Beta 
 
The Monte Carlo analysis is performed to test whether the baseline regression (7) beta equal to zero. Denote sample size as f, number 
of random draws as R. For a given month in a given year, we perform the following, 
 

1) Random draw (with placement) [-, [P, [g, ⋯, [h and compute the mean of [-, [P, [g, ⋯, [h, denote [5iii. 
2) Repeat 1) R times and get [-iii, [Piii, [giii, ⋯, [jiiii. 
3) Compute !-statistic for [-iii, [Piii, [giii, ⋯, [jiiii. 

 
We then compute the average of the (time series) year-month !-statistic to get the simulated !-statistic. The sample period is January 
1990 to September 2014. The following graphs, panels A through C plots the Monte Carlo simulated regression beta values for different 
combinations sample size (S=500, 1000) and number of random draw values (N=10000). 
 
 
 
Panel A: Sample Size (f) = 500, Number of Random Draw (R) = 10000. Average !-statistic=3.684. 
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Panel B: Sample Size (f) = 1000, Number of Random Draw (R) = 10000. Average !-statistic=5.152. 
 

 
 
 
 


