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Many war-of-attrition-like races, such as online crowdsourcing challenges, online penny auctions, lobbying,

R&D races, and political contests among and within parties involve more than two contenders. An important

strategic decision in these settings is the timing of escalation. Anticipating the possible event in which another

rival is to compete with the current frontrunner, a trailing contender may delay its own escalation effort,

and thus avoid the instantaneous sunk cost, without necessarily conceding defeat. Such a free-rider effect, in

the n-player dynamic war of attrition considered here, is shown to outweigh the opposite, competition effect

intensified by having more rivals. Generalizing the dollar auction framework we construct subgame perfect

equilibria where more than two players participate in escalation and, at critical junctures of the process,

free-ride one another’s escalation efforts. These equilibria generate larger total surplus for all rivals than the

equilibrium where only two players participate in escalation.
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1. Introduction

In recent years crowdsourcing R&D through open online challenges has become a popular busi-

ness innovation strategy. The first and most celebrated of such initiatives was the 2006 Netflix

Prize, where the online movie streaming company offered one million dollars to the best performing

movie recommendation algorithm.1 Like an ascending bidding process, the online challenge openly

updated the submissions and their performances (“bids”) so that contenders could dynamically up

their efforts to outperform each others and most importantly the frontrunner. A key element in the

Netflix Prize—and most online challenges—was that Netflix retained exclusive rights to all sub-

missions thereby becoming the beneficiary of all contenders’ sunk cost efforts. Other examples of

escalation and rivalry dynamics among multiple players includes conflicts/contests between nation-

states (O’Neill 1986), political rivals (Dekel et al. 2009, Gul and Pesendorfer 2012), oligopolists

(Fudenberg and Tirole 1986, Bulow and Klemperer 1999), species (Smith 1974), bargaining parties

(Damiano et al. 2012, 2017), jurors (Meyer-ter-Vehn et al. 2017), college athletics departments
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(Murphy 1996), and online penny auctions (Platt et al. 2013, Kakhbod 2013, Ødegaard and Ander-

son 2014, Augenblick 2016, Hinnosaar 2016).2 The motivation of this paper is to analyze escalation

dynamics with sunk costs in settings with multiple rivals.

Traditionally, the extant literature considers dynamic escalation in the realm of war-of-attrition

stopping games (c.f. Hendricks et al. 1988) or all-pay clock auctions (c.f. Krishna and Morgan

1997), where players continuously make sunk-cost investments, as long as they stay in the game,

and dropout decisions are irrevocable. While this framework suitably mimics escalation rivalry

among two players—which much of the literature assumes—it is not innocuous when considering

three or more rivals. There, the timing for a rival to make the next escalation investment becomes a

strategic consideration. Whereas in the two-rival case not making the investment means immediate

concession, with multiple rivals a contender may stay put without conceding to his rivals and

instead free-ride the other rivals’ escalation efforts for a while until the time comes for him to try

leapfrogging to the lead. Thus, at certain junctures of the game the incentive for escalation might

be lessened. That of course needs to be squared with the opposite effect of intensified competition

caused by having more rivals. The question is: in escalation dynamics where rivals at equilibrium

can strategize on the timing of the next escalation investment, can having more rivals make all

rivals better-off than the equilibrium with only two rivals?

To answer this question, we consider an n-player dynamic game with complete information in

which each player’s strategic decision is whether to make his escalation effort immediately or to

wait for a later period. The complete-information assumption is to sharpen the contrast between

bilateral and multilateral rivalries: In a bilateral rivalry, with the value of the contested prize

identical and commonly known, the total surplus for the two rivals is nearly zero. With more than

two players, by contrast, this paper presents equilibria that not only generate larger total surplus

but also Pareto dominate bilateral rivalry for all players.

In this dynamic game of n-player, each round starts with a ranked order of the players. Those

positioned behind the frontrunner choose whether to escalate or stay put. If no one escalates then

the frontrunner wins the contested prize, without making any further payment, and the game ends.

Otherwise, one of those who escalate is randomly selected to be the next frontrunner through

bearing a sunk cost proportional to his distance from the current frontrunner; and then the game

continues to the next round, with the ranked positioning updated so that the new frontrunner is

just one step ahead the previous frontrunner and all other players are one step further behind the

lead (the new frontrunner). Such one-step restriction, as explained later, is to rule out artificial

shortcuts whereby rivals avoid detrimental escalation.

To focus on the stochastic, recursive dynamics of escalation, our solution concept is subgame

perfect equilibrium (SPE) subject to three conditions: Markov, symmetry and independence of non-

participants. Given Markov and symmetry, a player’s equilibrium action in each subgame depends
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not on his name or identity but rather on the positioning of the players, and his own location in

the positioning, at the start of the subgame. Given independence of nonparticipants, a player’s

equilibrium strategy does not vary with the increasing distance between the frontrunner and those

who no longer escalate to compete for the prize.

Our analysis compares bilateral equilibria, where only two players escalate along the path, with

multiple-rivalry equilibria, where more than two players do so. Capturing the detrimental and

surplus-dissipating feature of escalation is the bilateral equilibrium, where only the player imme-

diately following the frontrunner escalates. Given any positioning on the players, the equilibrium

exists and is unique; the players’ total surplus it generates is merely 2δ, the sunk cost that the

follower needs to pay in order to top the frontrunner (Section 2.1). By contrast, when a cohort of

ranked players are positioned close to one another, there is an m-rivalry equilibrium, where the

top m players endogenously take turn to escalate. A striking feature of this equilibrium is that

the players’ total surplus it generates is mδ, which goes up to just a δ shy of the entire value of

the prize when m is sufficiently large (Proposition 1). Such a large surplus is achieved through a

free-rider effect, suggested earlier, which gets accumulated by the large number of rivals in closely

ranked positions.

The above contrast, stark as it is, requires that the game start with a consecutive positioning

of at least the top three players, one immediately following the other. Without this condition, say

the third-ranked player is more than one step behind the second-ranked player (called follower ,

who is always one step behind the frontrunner), then the m-rivalry equilibrium coincides with

the detrimental, bilateral equilibrium. Thus, we investigate the possibility of improving upon the

bilateral equilibrium by a multilateral equilibrium that is robust in the sense that the third-ranked

player is willing to escalate despite his at least two steps behind the follower. We prove existence

of robust, trilateral equilibria, where the top three players escalate against one another despite the

third-ranked player’s often lagging further behind (Theorem 2). Furthermore, not only does any

such trilateral equilibrium generate larger total surplus, but it also makes the top three players each

better-off, than the bilateral one (Theorems 3). Interestingly, each robust trilateral equilibrium

corresponds to an even number, measuring the minimal lag of the third-ranked player—called

underdog—at which he no longer escalates in the equilibrium (Theorem 1).

Such normative advantage of multilateral over bilateral rivalries has policy implications. For

instance, in de facto two-party systems such as the United States, and contrary to the massive

criticism against the Independence Party due to the Year-2000 United States Presidential Election,

having a vibrant third political party could mitigate the escalating partisan conflict between the

two sides.3 On the flip side, applied to industrial organization situations where oligopolists struggle

to survive in a market (c.f. Fudenberg and Tirole 1986), the policy implication is that having
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more than two competing firms is more conducive to their collusion than having only two firms.

Additional real-world examples of sunk cost dynamics among multi-player rivalries include lobbying

by cities to host large sporting events, like the Olympics and World Cup, or facility locations for

large corporations. For instance, the 2017 open call by online retail behemoth Amazon for cities

to “bid” on becoming their second North American headquarter initially involved 238 cities and

subsequently reduced to 20 selected finalists (Wingfield 2018, Streitfeld 2018). Finally leapfrogging

in the form of market-leadership rotation is also observed, albeit in a longer time frame, in R&D-

intensive industries, e.g., the cold war era “Concorde fallacy” or more recently the global cell-phone

market.

In addition to the literature listed above, the non-simultaneous incurrence of sunk costs has been

considered in escalation dynamics by Shubik (1971), O’Neill (1986), Leininger (1989), Demange

(1992), Dekel et al. (2009), Hörner and Sahuguet (2011), Gul and Pesendorfer (2012). Two key

differentiating factors is that they all assume only two rivals and introduce exogenous features to

deter escalation, while we allow for more rivals and with no exogenous constraints allow escalation

to go on indefinitely. A related but different literature is on races, initiated by Harris and Vickers

(1987), with Clark and Nilssen (November 10, 2017) a recent work, considers a finite sequence of

static contests. Different from dynamic war-of-attrition-type contests, this literature assumes an

exogenous finish line so that competition cannot escalate for indefinitely long. They also assume to

have only two players. Another more tangential literature, which considers the sunk cost feature but

not the dynamics of contest escalation, is the all-pay auction models, e.g. Baye et al. (1993, 1996),

Siegel (2009). In contrast to dynamic war-of-attrition these models settle the static “escalation”

through one-shot simultaneous bids. Finally, in addition to the theory literature on the all-pay and

war-of-attrition-type dynamics, there is an empirical and behavioral literature, including Teger

et al. (1980), Haupert (1994), Murnighan (2002), Liu et al. (2014), Waniek et al. (2015), Morone

et al. (2017), where escalation is attributed to psychological factors such as bounded rationality

and spiteful bidding.

The remaining paper is organized as follows: Section 2 defines the game, the equilibrium con-

cept, and constructs the surplus-dissipating bilateral and a surplus-enhancing m player rivalry

equilibria. The stark contrast between the two equilibria, and the latter’s reliance on a tightly

packed positioning among the top three players, lead to the questions whether there exist multilat-

eral equilibria robust to other kinds of positioning and whether such robust equilibria can Pareto

dominate the bilateral equilibrium. Section 3 presents existence of such equilibria, which exhibit

trilateral rivalry on path. Section 4 discusses two model extensions and finally Section 5 concludes.

Supporting formal results are available in the online companion Appendix.
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2. Multiplayer Rivalries
2.1. Dynamic Escalation With Ranked Players

Let there be n≥ 3 players, indexed by i ∈ I := {1,2, . . . , n}. The state of the game is an n-vector

x := (xi)i∈I ∈ {0,1,2,3, . . .}n with the following properties:

a. there exists exactly one i∈ I for which xi = 0; this i is called frontrunner at x;

b. there exists exactly one j ∈ I for which xj = 1; this j is called follower at x;

c. k 6= k′ implies xk 6= xk′ .

At any state x of the game, xi is interpreted as the gap between player i and the frontrunner. The

rule of the game is: given any state x, every player other than the frontrunner chooses, simulta-

neously, whether to escalate or not; if no one escalates, then the game ends with the frontrunner

getting a payoff equal to v; else one of those who chooses to escalate is randomly selected with

equal probability; if player j is the selected one, then j pays a sunk cost equal to (xj + 1)δ and has

his gap changed to zero (i.e., xj := 0) and the gap of everyone else is bumped up by one (xi := xi+1

for all i ∈ I \ {j}), with those who choose to escalate but are not selected incurring no cost; then

the game continues given the updated state. Note that the updated state satisfies Properties (a),

(b) and (c). In order for an equilibrium to exists we assume the per increment cost δ satisfies

0< δ < v/2.

In the proposed setup, the game assumes players start with different ranked positions. Alterna-

tively, one can have the players start with equal footing and let gaps and ranked order emerge as

some players choose to escalate, so that the above game corresponds to subgames. The analysis in

such an alternative setup is identical to that in this paper, except for an additional multiplicity of

equilibrium escalation probabilities at the initial rounds. We opt for the current model to abstract

away from the start game coordination problem and focus on the escalation dynamics. However,

illustrations are provided in the two model extensions discussed in Section 4; a formal discourse is

provided in Ødegaard and Zheng (2018).

In our model, should a rival choose to escalate, he can only surpass the current frontrunner by

an exogenous, small increment δ. This assumption, as explain in the Introduction, rules out the

trivial outcome where escalation is preempted by a jump near to the value of the contested prize

or slowed down to a stop by diminishing increments of escalation.

2.2. Markov Perfection, Symmetry, and Independence

By equilibrium we mean subgame perfect equilibrium subject to three conditions: Markov, sym-

metry and independence of nonparticipants. We add these conditions to exploit the stochastic

recursive structure of the game.

The Markov condition means that the equilibrium strategy depends only on the state of the

game, and reflects that any previously incurred escalation cost is sunk and does not affect the
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optimal strategy going forward. Furthermore, this highlights the time inconsistency issue players

face. Unlike static or one-shot analysis of war-of-attrition games, where players determine the total

amount they are willing to spend, in dynamic settings the cost to stay active is sunk and as such a

trailing rival may have an incentive to spend incremental resources in hope of winning the payoff v.

Consequently, an equilibrium is in the form of (σi)i∈I such that each player i’s behavior strategy σi

associates to any state x of the game where i is not the frontrunner a probability σi(x) with which

player i escalates in the current round of the game that starts with state x.

The symmetry condition means that a player’s equilibrium strategy depends not on his name

or identity but rather on his relative position with respect to other players. To formally state

this condition, we need to define two notions. First is the ranking on the players: Given any

state x := (xi)i∈I of the game, by Properties (a)–(c) listed above, there exists a unique bijection

rx : I→{1,2, . . . , n} such that

0 = xr−1
x (1) < 1 = xr−1

x (2) <xr−1
x (3) < · · ·<xr−1

x (n).

The bijection rx is called ranking at x. For each i∈ I, player i’s rank at state x is rx(i). Note that

the frontrunner and follower have ranks 1 and 2, respectively.

Second is the ordered vector of a state: Given any state x := (xi)i∈I , with rx the ranking bijection

at state x, for each k = 1,2, . . . , n, let x̂(k) denote the kth-smallest component of the vector x,

i.e., x̂(k) := xr−1
x (k); and the vector x̂ := (x̂(k))

n
k=1 is called ordered state of the game. Thus, at any

ordered state x̂, the gap between the kth-ranked player and the frontrunner is equal to x̂(k). Note

that for the follower, the gap is always one (x̂(2) = 1), while for any other player with rank k ≥ 3,

the gap x̂(k) ≥ k−1. Furthermore, the distance between two consecutively ranked players need not

be one: for any k ∈ {3, . . . , n}, x̂(k−1)− x̂(k) ≥ 1 and the inequality can be strict.

Now we state the symmetry condition for an equilibrium (σi)i∈I : for any two states x and y of

the game and any k= 2, . . . , n,

x̂= ŷ=⇒ σr−1
x (k)(x) = σr−1

y (k)(y).

In other words, given the same configuration of gaps across players, if players i and j switch their

positions then they simply switch their equilibrium probabilities of escalation.

With symmetry, we can index equilibrium behavior strategies by players’ ranks rather than by

the their identities: For any k = 2, . . . , n, and any ordered state x̂ of the game, pick any state y

with ŷ= x̂ and denote

σ̃k (x̂) := σr−1
y (k) (y) .

With (σi)i∈I symmetric, σ̃k (x̂) is identical across all states y such that ŷ= x̂. Thus, an equilibrium

can be equivalently expressed in the form of (σ̃k)
n
k=2 such that σ̃k associates to each ordered state x̂
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of the game a probability with which the kth-ranked player in x̂ escalates in the current round

of the game that starts with x̂. The profile (σ̃k)
n
k=2 excludes k = 1 because the frontrunner, the

first-ranked player, has no available move.

In a Markov and symmetric equilibrium a player’s probability of escalation may depend not

only on his rank but also on his gap, and other players’ gaps, from the frontrunner. That includes

the gaps of those who no longer escalate, which keep widening as the game continues. Since such

players are no longer part of the competition, their gaps become the sunspot dimensions of the

state. For simplicity and intuitive appeal, we introduce the next condition to rule out such sunspot

effect.

The condition of independence of nonparticipants means that a player’s equilibrium strategy

does not vary with the gaps of those players who no longer escalate in the equilibrium. To formally

state the condition, define a notation ≥k: for any k ∈ {2, . . . , n} and any two ordered states x̂ and ŷ,

write ŷ ≥k x̂ to mean ŷ(j) ≥ x̂(j) for all j = k, k+ 1, . . . , n. Thus, the positions of ranks k, . . . , n are

further behind the frontrunner in ŷ than in x̂. Given any equilibrium (σ̃k)
n
k=2, call any k ∈ {2, . . . , n}

nonparticipant rank starting from order state x̂ if and only if σ̃k (ŷ) = 0 for all ordered states ŷ such

that ŷ≥k x̂. Note: if k, k+1, . . . , n are each nonparticipant ranks starting from ordered state x̂, then

the player currently on the kth rank will no longer escalate in equilibrium, as any future ordered

state ŷ on the equilibrium path necessarily satisfies ŷ≥k x̂. (By induction, those ranked behind the

kth-ranked player will not escalate. Hence the kth-ranked player will remain in this rank and hence

will not escalate according to σ̃k.)

Now we state the “independence of nonparticipants” condition for equilibrium (σ̃k)
n
k=2: for any

m∈ {2, . . . , n}, if all k ∈ {m+1, . . . , n} are nonparticipant ranks starting from ordered state x̂, then

for any two ordered states ŷ and ẑ such that ŷ≥m+1 x̂ and ẑ ≥m+1 x̂,

∀k ∈ {2, . . . ,m}
[
ŷ(k) = ẑ(k)

]
=⇒∀k ∈ {2, . . . ,m} [σ̃k (ŷ) = σ̃k (ẑ)] .

In other words, if the nth-ranked player no longer escalates once his gap has reached x̂(n) (and

hence remaining being ranked n from now on), then his widening gap thereafter has no effect on

any other player’s equilibrium probability of escalation; if the (n− 1)th- and nth-ranked players no

longer escalate once their gaps have reached x̂(n−1) and x̂(n) respectively (and hence remaining in

the ranks of n− 1 and n thereafter), then any other player’s equilibrium probability of escalation

is independent of their gaps thereafter; etc.

2.3. Bilateral, Trilateral and m-Rivalry Equilibria

Roughly speaking, an m-rivalry equilibrium is an equilibrium on the path of which up to m different

players escalate, though not necessarily simultaneously. More precisely, a player is said active in
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an equilibrium conditional on state x of the game if and only if, in the subgame starting from the

state x, on the path of the equilibrium there exists a state of the game at which the player escalates

with positive probability. For any m ∈ {2, . . . , n}, an m-rivalry equilibrium conditional on state x

is an equilibrium such that the set of active players in the equilibrium conditional on x consists

exactly of the players with ranks 2, . . . ,m. By the independence condition of nonparticipants, for

any m-rivalry equilibrium (σ̃k)
n
k=2, the domain of the equilibrium strategies σ̃k can be restricted

to the set of truncated ordered states (x̂(k))
m
k=1, each consisting of the first m components of an

ordered state x̂.

By definition, a bilateral rivalry (m = 2) equilibrium is in the form (σ̃k)
n
k=2 such that σ̃k(·) =

0 for all k ≥ 3. Thus, by independence of nonparticipants, the domain of σ̃k can be restricted

to the set of truncated ordered states (x̂(1), x̂(2)), which by definition of states is the singleton

{(0,1)}. Thus, at any bilateral equilibrium (σ̃k)
n
k=2, the equilibrium strategy σ̃2 of the follower is a

constant probability, and σ̃k(·) = 0 for all k ≥ 3. Specifically, it can be verified that strategy σ̃2 =

1− 2δ/v constitutes a unique subgame perfect bilateral equilibrium, with continuation values for

the frontrunner and the follower equal to 2δ and zero, respectively (Ødegaard and Zheng 2018).

This unique characterization of the surplus-dissipating bilateral equilibrium is in line with the

usual intuition about two-player wars of attrition with complete information: the total surplus for

the players is almost completely dissipated, leaving them merely 2δ. However, it begs the question

whether the game admits other equilibria that Pareto dominate the bilateral one for the players?

By unicity of the bilateral equilibrium, the only possible way to generate larger total surplus for

the players is to have more than two players escalate against one another. To see why a third rival

may help, pick any m∈ {3, . . . , n} such that m≤ v/δ. Suppose for the moment that the state x of

the game satisfies x̂(m) =m− 1, i.e.,

x̂(1) = 0, x̂(2) = 1, x̂(3) = 2, · · · , x̂(m) =m− 1.

That is, the top-m players are consecutively positioned, one immediately following the other, such

that the gap x̂(k) of the kth-ranked player is equal to k − 1 for each k ∈ {1,2, . . . ,m}. Then the

following can be verified to constitute an equilibrium for the game thereafter:

(i) If x̂(m) = m− 1, then the mth-ranked player escalates with probability σ̃m = 1−mδ/v and

all other players stay put (σ̃k(·) = 0, 2 ≤ k < m); if the mth-ranked player does escalate, then

x̂(m) =m− 1 holds at the next state, and the subgame is played by repeating this step; else the

game ends with the current frontrunner getting the prize v.

(ii) If x̂(m) >m− 1, then find the largest m′ ∈ {2, . . . ,m− 1} for which x̂(m′) = m′ − 1 (which

exists because x̂(2) = 1 by definition of states), and the subgame thereafter is played according to

step (i) with m′ replacing the m there.
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This constructed m-rivalry equilibrium generates a total surplus mδ for the players, with the

current frontrunner getting the entire mδ and everyone else getting zero. Note that the only condi-

tion the above construction requires about m is that m≤ v/δ. That leads to a striking implication:

despite complete information and the restriction to symmetric equilibria, the total surplus for the

players can be almost as large as v:

Proposition 1 If n≥ bv/δc, then at any state x of the game such that

x̂(bv/δc) = bv/δc− 1,

the subgame thereafter admits a bv/δc-rivalry equilibrium generating total surplus bv/δcδ; where

the byc operator denotes the largest integer less than or equal to y ∈R.

The m-rivalry equilibrium achieves the larger surplus through having the mth-ranked player be

the only one to decide whether or not to escalate, with others avoiding the current escalation

cost. In the bilateral equilibrium, the decision is made by the follower, who, almost neck and neck

with the frontrunner, needs only pay 2δ to become the next frontrunner; thus the condition for

an equilibrium, which has to be in mixed strategies, requires that any follower escalate with such

a high probability that shrinks a frontrunner’s continuation value to just 2δ. By contrast, when

the escalation decision is made by the mth-ranked player, it costs a larger amount mδ to become

the next frontrunner; thus, the equilibrium condition requires that any mth-ranked player escalate

with such a low probability that enlarges a frontrunner’s continuation value to mδ.

The contrast between multilateral and bilateral equilibria in Proposition 1 relies on the condition

that there is some m≥ 3 for which the state of the game satisfies x̂(m) =m− 1. In other words,

to enlarge the players’ total surplus through such a multilateral equilibrium, we need at least

the top three players to form a concentrated cohort within which the distance between any two

consecutively ranked players is only one step. Whereas, if the game starts with a less concentrated

positioning, say x̂(3) > 2 (hence the third-ranked player is at least two steps behind the follower, c.f.

property (b) in the game setup), then provision (ii) above implies that the m-rivalry equilibrium

coincides with the bilateral equilibrium. Thus we ask: Is there any m-rivalry equilibrium that is

robust in the sense that it remains distinct from the bilateral equilibrium at some state of the

game such that x̂(3) > 2? Do such equilibria outperform the bilateral one in generating players’

total surplus?

Without further investigation, the answers to these questions are not intuitively obvious. Even

if one manages to construct a robust m-rivalry equilibrium, it is not obvious that the equilibrium

would outperform the bilateral one, because robustness may intensify the competition among

players. To see that, recall the trilateral rivalry (m= 3) equilibrium above, where the follower stays
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put and the third-ranked player escalates with a low probability. Note how it keeps the follower

from escalating: Should he escalate and become the next frontrunner, the follower would widen the

distance between the next follower and the third-ranked player, so that x̂(3) > 2; consequently, the

equilibrium not robust, the subgame equilibrium would collapse to the bilateral equilibrium, giving

the deviator merely 2δ, no more than his escalation cost. Thus competition is suppressed by non-

robustness. By contrast, in a robust trilateral equilibrium, if a follower escalates and overtakes the

frontrunner, the widened gap for the third-ranked player need not collapse the subgame equilibrium

into the detrimental bilateral one, hence the follower may escalate as well, competing away the total

surplus. That, in turn, makes it harder to have a robust trilateral equilibrium, because robustness

requires that the third-ranked player be willing to escalate despite wider gaps between him and

the frontrunner and hence larger costs to escalate; it is not obvious that the larger costs of his

escalation can be recovered by the continuation value of being the next frontrunner, given the

competition pressure from the follower.

Despite such complications, the answers to both questions are Yes given a nonempty set of states

of the game, and the robust m-rivalry equilibria we shall construct to demonstrate both answers

are trilateral ones (m= 3): In the next section we characterize the set of such states in which robust

trilateral equilibria exist and outperform the bilateral equilibrium.

3. Robust Trilateral Equilibria

The symmetry and Markov conditions together imply that there is no loss of generality to identify

a player with the rank he belongs to currently. Therefore, at any ordered state x̂, denote the player

of rank one (frontrunner) by α, the player of rank two (follower) by β, and that of rank three by γ,

whom we from now on call underdog . As explained in Section 2.3, any trilateral equilibrium is in

the form (σ̃k)
n

k=2 such that σ̃k = 0 for all k > 3, and (σ̃2, σ̃3) can vary only with x̂(3). In other words,

for any two ordered states x̂ and ŷ, σ̃k(x̂) = σ̃k(ŷ) if
(
0,1, x̂(3)

)
=
(
0,1, ŷ(3)

)
. Hence we’ll slightly

abuse notation and write

σ̃k(x̂(3)) := σ̃k(x̂).

Furthermore, for any ordered state x̂, denote

s := x̂(3),

which we also call within this section the state for trilateral equilibria, or state for short. Note that

s∈ {2,3,4, . . .}. For any such s, denote

πβ,s := σ̃2 (s) and πγ,s := σ̃3 (s) .



Ødegaard and Zheng: Dynamic Escalation
11

Thus, πβ,s denotes the equilibrium probability for the follower β to escalate, and πγ,s that for the

underdog γ to escalate, when the gap between the frontrunner α and γ is equal to s. Hence any

trilateral equilibrium is equivalently in the form

(πβ,s, πγ,s)
∞
s=2

.

Given any trilateral equilibrium (πβ,s, πγ,s)
∞
s=2

, for every s≥ 2 and each i∈ {β,γ}, let qi,s denote

the probability with which the player currently in the role i becomes the α in the next round. By

the equal-probability tie-breaking rule, we have at any s≥ 2

qi,s = πi,s (1−π−i,s/2) , (1)

with −i being the element of {β,γ}\{i}. Given this equilibrium and any state s, Let Vs denote the

expected payoff for the current frontrunner α, Ms the expected payoff for the current β, and Ls

that for the current γ. The law of motion is: for each s≥ 2,4

Vs −→

 v prob. 1− qβ,s− qγ,s
Ms+1 prob. qβ,s
M2 prob. qγ,s;

(2)

Ms −→

 0 prob. 1− qβ,s− qγ,s
Vs+1− 2δ prob. qβ,s
L2 prob. qγ,s;

(3)

Ls −→

 0 prob. 1− qβ,s− qγ,s
Ls+1 prob. qβ,s
V2− (s+ 1)δ prob. qγ,s.

(4)

3.1. The Dropout State

Since v is finite, at any trilateral equilibrium V2 is finite and hence V2 < sδ for all sufficiently large s.

Thus, for any trilateral equilibrium

s∗ := max{s∈ {2,3, . . .} : V2 ≥ sδ}

exists and is unique. Call s∗ the dropout state of the equilibrium. For example, the dropout state of

the equilibrium constructed in Section 2.3, when m= 3, is equal to three. The next lemma, which

follows from (4) coupled with the definition of s∗, justifies the appellation.

Lemma 1. At any trilateral equilibrium with dropout state s∗, the γ-player (i) stays put for sure

at state s if and only if s≥ s∗, and (ii) escalates for sure at state s if 2≤ s < s∗− 1.

Proof Lemma 1 By definition of Ls, the equilibrium expected payoff for an underdog whose

lag from the frontrunner is s, we know that Ls = 0 for all s ≥ v/δ. Starting from any such s

and use backward induction towards smaller s, together with the law of motion (4) and the fact



Ødegaard and Zheng: Dynamic Escalation
12

V2− (s+ 1)δ < 0 for all s≥ s∗ due to the definition of s∗, we observe that Ls = 0 for all s≥ s∗. At

any state s≥ s∗, by (4), an underdog gets zero expected payoff if he does not escalate; if he escalates

then by Eq. (1) there is a positive probability with which he gets a negative payoff V2− (s+ 1)δ;

hence his best response is uniquely to stay put. Hence

s≥ s∗ =⇒ Ls = 0 and πγ,s = qγ,s = 0, (5)

which proves Claim (i) of the lemma. Apply backward induction to (4) starting from s= s∗ and

we obtain

2≤ s≤ s∗− 1 =⇒ V2− (s+ 1)δ≥Ls ≥Ls+1 ≥ 0, (6)

with the inequality Ls ≥Ls+1 being strict whenever s < s∗− 1. Thus, for any s < s∗− 1, Vs− (s+

1)δ > Ls+1 ≥ 0; hence Eqs. (1) and (4) together imply that an underdog’s best response is uniquely

to escalate for sure:

2≤ s < s∗− 1 =⇒ Ls > 0 and πγ,s = 1, (7)

which proves Claim (ii) of the lemma. �

By Lemma 1, once the game enters the dropout state or beyond, the player currently in the γ

position will never catch up and only the frontrunner and follower may remain active. This has two

immediate implications. First, the dropout state of a trilateral equilibrium is greater than or equal

to three, as s∗ = 2 means that the equilibrium coincides with the bilateral one. Second, starting

from s ≥ s∗, the unicity observation in Section 2.3 implies that the surplus-dissipating bilateral

equilibrium is the only on-path outcome in the subgame thereafter. Thus, the dropout state of

a trilateral equilibrium can be viewed as the endogenous terminal node of the game, giving an

expected payoff 2δ to the frontrunner, and zero expected payoff to everyone else (Lemma EC.1).

Reasoning backward from the dropout state s∗, we see that the game does not end if it is in

any state s ≤ s∗ − 2, because according to Lemma 1.ii the current underdog escalates for sure

trying to catch up with the frontrunner. Thus the minimum state at which the game need not

continue to the next round is the critical state s∗ − 1, at which the underdog need not escalate

for sure. Furthermore, one can show that the follower at the critical state s∗− 1 would rather be

the underdog in the next round, should the game continue, than top the frontrunner right now,

which would crowd out the underdog and get himself into the detrimental, bilateral equilibrium

thereupon. Thus, the next lemma observes that, at the critical state s∗ − 1, the underdog solely

determines whether the competition should continue or cease. Consequently, as the underdog has to

mix between the two choices at equilibrium, his continuation value V2 of being the next frontrunner

is necessarily s∗δ.
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Lemma 2. In any robust trilateral equilibrium with dropout state s∗: (i) at the critical state s∗−1

the β player stays put while the γ player escalates with a probability in (0,1); and (ii) V2 = s∗δ.

Proof of Lemma 2 We begin with some observations. By (4) and (6), L2 is a convex combination

between L3 and V2− 3δ, with V2− 3δ≥L3 when s∗ ≥ 3. Thus,

s∗ ≥ 3 =⇒L2 ≤ V2− 3δ. (8)

Lemma EC.1, combined with (3) and (4), implies

Ms∗−1 = qγ,s∗−1L2

(8)

≤ (V2− 3δ)
+
. (9)

As explained immediately after Lemma 1, s∗ ≥ 3 for any trilateral equilibrium. If s∗ = 3, then

Lemma 1.i implies that an underdog stays put at all states s≥ 3, i.e., whenever his gap x̂(3) > 2,

and hence the trilateral equilibrium is not robust. Thus, robustness implies s∗ ≥ 4. Now that s∗ ≥ 4,

L2 > 0 by Lemma EC.2. Thus, for the β player at s= s∗−1, according to (3), the fact Vs∗ −2δ= 0

(Lemma EC.1) and the fact that L2 > 0 and πγ,s∗−1 > 0 (Lemma EC.3), it is the unique best

response to not escalate at all, i.e., πβ,s∗−1 = 0. Thus, the β player stays put for sure at state s∗−1,

as the lemma asserts.

Next we show that 0 < πγ,s∗−1 < 1. The first inequality is implied by Lemma EC.3 since s∗ ≥

4. To prove πγ,s∗−1 < 1, suppose to the contrary that πγ,s∗−1 = 1. Then by the fact πβ,s∗−1 = 0

and (2) applied to the case s = s∗ − 1, we have Vs∗−1 = M2. Consequently, by (3) applied to the

case s = s∗ − 2, Ms∗−2 ≤max{M2 − 2δ,L2} ≤M2, with the last inequality due to Lemma EC.2.

The supposition πγ,s∗−1 = 1 also implies Ms∗−1 = L2, which in turn implies, via (2) in the case

s = s∗ − 2, that Vs∗−2 ≤max{L2,M2} ≤M2, with the last inequality again due to Lemma EC.2.

Then (3) for the case s= s∗− 3 implies Ms∗−3 ≤max{M2− 2δ,L2} ≤M2, and (2) implies Vs∗−3 ≤

max{Ms∗−2,M2} ≤M2. Repeat the above reasoning on smaller s and we prove that Vs ≤M2 for all

s ∈ {2,3, . . . , s∗ − 1}. Hence V3 ≤M2, which contradicts Lemma EC.2. Thus we have proved that

πγ,s∗−1 < 1.

With πγ,s∗−1 < 1, escalating is not the unique best response for the γ player at state s∗ − 1,

hence V2 ≤ s∗δ (otherwise the bottom branch of (4) in the case s= s∗− 1 is strictly positive and,

by (5), is strictly larger than the middle branch, so the γ player would strictly prefer to escalate).

By definition of s∗, V2 ≥ s∗δ. Thus V2 = s∗δ. �

3.2. Robust Dropout States Can Only Be Even

Lemma 2 implies that on the path of any trilateral equilibrium the game ends only when the state

is s∗−1, at which only the underdog γ may escalate: If he escalates (thereby becoming the next α)

then the state returns to s = 2, else the game ends and the current α wins the good. Thus, in
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Figure 1 The law of motions and equilibrium winning path if: s∗ = 7 (left) and s∗ = 6 (right).

order to win, a player needs to be in the α position at the critical state s∗ − 1. Consequently, if

the dropout state s∗ is an odd number, then on the path to winning a player must in the previous

rounds have been the β player for all odd states s < s∗ − 1, and the α player for all even states

s≤ s∗ − 1. The left panel in Figure 1 illustrates the case of s∗ = 7. Solid lines represent possible

transitions if one escalates, and dashed lines if he does not escalate. The extra thick gray states

and arrows indicate the winning path.

Thus, when s∗ is odd, a player who happens to be in the β position at any even state s < s∗− 1

would in order to reach the winning path rather become the γ player in state s = 2 (through

staying put) than become the superfluous α player in the odd state s+1 at the cost of 2δ (through

escalating). In particular, in state s= 2, the β player would never escalate while the γ player would

always escalate; hence the state s = 2 repeats itself, with the players switching roles according

to γ→ α→ β→ γ, thereby trapped in an infinite escalation loop. This contradiction, after being

formalized, implies—

Theorem 1 There does not exist any robust trilateral equilibrium whose dropout state s∗ is an odd

number.

Proof of Theorem 1 Suppose, to the contrary, that there is a robust trilateral equilibrium

whose dropout state s∗ is an odd number. Since s∗ > 3 by the robustness condition, s∗ ≥ 5. By

Lemma EC.2, L2 ≤M2 ≤ V3− 2δ. Consider (2) in the case s= s∗− 2 together with the facts that

πγ,s∗−2 = 1 (thereby ruling out Vs∗−2 → v) due to Lemma 1.ii and s∗ ≥ 5, that Ms∗−1 ≤ L2 due

to (9), and that M2 ≤ V3− 2δ. Thus we have Vs∗−2 ≤ V3− 2δ. Then consider the decision of the β

player at state s = s∗ − 3, depicted by (3), to observe that Ms∗−3 is between L2 and V3 − 4δ.

Thus, by (2) applied to the case s= s∗− 4, together with the facts πγ,s∗−4 = 1 and M2 ≤ V3− 2δ,

we have Vs∗−4 ≤ V3 − 2δ. Since s∗ is an odd number and s∗ ≥ 5, this procedure of backward

reasoning eventually reaches V3, i.e., 3 = s∗−2m for some positive integer m. Hence we obtain the

contradiction V3 ≤ V3− 2δ. �
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When the dropout state s∗ is an even number, by contrast, a β player is not in the predicament

as in the previous case. First, in any even state s < s∗− 1 the β player wants to escalate in order

to stay on the winning path and become the α in the odd state s+ 1. Second, in any odd state

s < s∗−1 the β player would rather escalate and become the α in the even state s+1 than stay put

thereby becoming the γ player in state 2. With the former option, it takes a cost of 2δ (to become α

in s+ 1) and two rounds for the player to have a chance to become the β player in state s = 2

thereby landing on the winning path. With the latter option, it takes a cost of 3δ and three rounds

for him to have such a chance of reaching the winning path. In the right panel of Figure 1, with

s∗ = 6, the situation of this odd-state β player is illustrated by the node M3, from which the former

option (becoming the next α) reaches the winning path state M2 via M3→ V4→M2, while the

latter option (being the next γ) reaches M2 via the more roundabout route M3→L2→ V2→M2.

Formalization of the above heuristic is based on the next observation, interesting in its own right,

saying that when the top three players are consecutively positioned, the follower is a better position

than the frontrunner (which also explains why a player going through the more roundabout route

would like to carry out its last step, from V2 to M2):

Lemma 3. At any equilibrium with any even number dropout state s∗ ≥ 4, M2 >V2 + δ/2.

Proof of Lemma 3 Let m := min{k ∈ {0,1,2 . . .} : V2k+4− 2δ≤L2}. Note that m is well-defined

because s∗/2−2 belongs to the set, as Vs∗−2δ= 0≤L2 (Lemma EC.1). At any odd state 2k+ 1≤
2m+ 1 (hence k− 1<m) we have V2k+2 − 2δ = V2(k−1)+4) − 2δ > L2, with the last inequality due

to the definition of m; hence by (2) in the state s = 2k + 1 the β player escalates for sure, i.e.

πβ,2k+1 = 1. Thus, (EC.1) implies that qβ,s = qγ,s = 1/2 at any such odd state. Coupled with (EC.2),

that means the transition at every state s from 2 to 2m+ 2 is that the current β and γ players

each have probability 1/2 to become the next α player. Thus,5

V2 =M2

m∑
k=0

2−2k−1 +L2

(
m∑
k=0

2−2k−2 + 2−2m−2zm

)
− 2δ

m∑
k=1

2−2k, (10)

where zm := 1 if 2m+ 2< s∗−2, and zm := 2πγ,s∗−1−1 if 2m+ 2 = s∗−2; and the last series
∑m

k=1

on the right-hand side uses the summation notation defined to be zero when m= 0.

To understand the term for M2 on the right-hand side, note that M2 enters the calculation of V2

at the even states s= 2,4,6, . . . ,2m−2, and upon entry at state s and in every round transversing

from states s to 2, the M2 is discounted by the transition probability 1/2. The term for L2 is

similar, except that L2 enters at the odd states s = 3,5,7, . . . ,2m − 1, and that the transition

probability for the L2 at the last state 2m− 1 is equal to one if 2m− 1 < s∗ − 1, and equal to

πγ,s∗−1 if 2m− 1 = s∗− 1. That is why the last two terms within the bracket for L2 are

2−2m−2 + 2−2m−2zm =

{
2−2m−2 + 2−2m−2 = 2−2m−1 if zm = 1
2−2m−2 + 2−2m−2 (2πγ,s∗−1− 1) = 2−2m−1πγ,s∗−1 if zm = 2πγ,s∗−1− 1.
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The term for −2δ is analogous to that for M2.

With s∗ ≥ 4, V2− 4δ≥ 0. Thus, by the above-calculated transition probabilities,

L2 =
1

2
(L3 +V2− 3δ)≤ 1

2
(V2− 4δ+V2− 3δ) = V2−

7

2
δ.

This, combined with Eq. (10) and the fact zm ≤ 1 due to its definition, implies that

V2 ≤ M2

m∑
k=0

2−2k−1 +

(
V2−

7

2
δ

)( m∑
k=0

2−2k−2 + 2−2m−2

)
− 2δ

m∑
k=1

2−2k

< M2

m∑
k=0

2−2k−1 +V2

(
m∑
k=0

2−2k−2 + 2−2m−2

)
− 7

8
δ.

Thus, the lemma is proved if

1−

(
m∑
k=0

2−2k−2 + 2−2m−2

)
=

m∑
k=0

2−2k−1, (11)

as the left-hand side of this equation is clearly strictly between zero and one. To prove (11), we

use induction on m. When m= 0, (11) becomes 1− 2−2 − 2−2 = 2−1, which is true. For any m=

0,1,2, . . ., suppose that (11) is true. We shall prove that the equation is true when m is replaced

by m+ 1, i.e.,

1−

(
m+1∑
k=0

2−2k−2 + 2−2(m+1)−2

)
=

m+1∑
k=0

2−2k−1. (12)

The left-hand side of (12) is equal to

1−

(
m∑
k=0

2−2k−2 + 2−2m−2

)
+ 2−2m−2− 2−2(m+1)−2− 2−2(m+1)−2

=
m∑
k=0

2−2k−1 + 2−2m−2− 2−2(m+1)−1 (the induction hypothesis)

=
m∑
k=0

2−2k−1 + 2−2m−3,

which is equal to the right-hand side of (12). Thus (11) is true in general, as desired. �

3.3. Existence of Robust Trilateral Equilibria

Lemmas 1–3 together have mostly pinned down the strategy profile for any robust trilateral equi-

librium with dropout state s∗:

(A) The dropout state s∗ is an even number greater than two; at each s ∈ {2,3, . . . , s∗ − 2} the

β- and γ-players each escalate for sure; at state s∗ − 1, β does not escalate and γ escalates with

probability πγ,s∗−1; should the game continue to any state s ≥ s∗, β escalates with probability

1− 2δ/v, and everyone else stays put for sure.
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Next we pin down the strategy in the off-path event where a fourth player deviates to join the

trilateral rivalry. Suppose that a player with rank k≥ 4 deviates to escalation and becomes the next

frontrunner. By the Markov and symmetry conditions in our equilibrium concept, the subgame

equilibrium thereafter is purely based on the starting state of the subgame or, more precisely,

the positioning of players defined by that state, regardless of the history that the state has just

resulted from a deviation or that the current frontrunner was a deviator. Thus, the deviation cannot

alter the trilateral equilibrium strategy profile, hence the following provision is necessary for any

trilateral equilibrium:

(B) No player with rank k ≥ 4 escalates; if any such a player deviates and becomes the next

frontrunner, then the top three players at the new state play the subgame according to the same

trilateral equilibrium, with the same dropout state s∗.

Provisions (A) and (B) together define a set of strategy profiles of the game. In the following we

locate a necessary and sufficient condition for any such a profile to constitute a robust trilateral

equilibrium. Based on that condition, we obtain existence of such equilibria.

First, any trilateral equilibrium, by definition, needs to reach with positive probability an event

where the underdog escalates. Thus, it is necessary that in the starting state of the game the

underdog’s gap be less than the dropout state:

x̂(3) ≤ s∗− 1, (13)

otherwise he never escalates (Lemma 1.i) so the equilibrium coincides with the bilateral one.

Second, we find a necessary and sufficient condition for players with ranks k ≥ 4 to abide by

Provision (B). If such a player deviates and becomes the next frontrunner, then the new state is a

trilateral rivalry consisting of the deviator, the previous frontrunner and the previous follower such

that the third is only two steps behind the new frontrunner, i.e., s= 2. Hence the deviator, after

paying the escalation cost (x̂(k) + 1)δ, gets a continuation value V2. Thus, a necessary condition for

such players to not escalate is V2 ≤
(
x̂(4) + 1

)
δ, otherwise the fourth-ranked player would deviate to

escalation. This inequality, coupled with another necessary condition V2 = s∗δ (Lemma 2), implies

s∗ ≤ x̂(4) + 1. (14)

Conversely, for any state x of the game, if (14) holds, then not only is it a best response for each

player with rank k≥ 4 to not escalate currently, it is also his best response in any state y thereafter

because ŷ(k) ≥ ŷ(4) > x̂(4) provided that he abides by (B) now.

Third, we find a necessary and sufficient condition for players β and γ to each abide by Provi-

sion (A). By (A), Eq. (1), and the equal-probability tie-breaking rule,

2≤ s≤ s∗− 2 =⇒ qβ,s = qγ,s = 1/2. (15)
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Given any πγ,s∗−1 ∈ [0,1], the value functions (Vs,Ms,Ls)s associated to any strategy profile satisfy-

ing Provision (A) can be calculated based on Eq. (15) and the law of motion, (2)–(4). The question

is whether such a strategy profile constitutes an equilibrium. The crucial step in answering this

question is to verify that, given (A) and (B), escalation is a best response for the β player at every

state below s∗− 1. Verification for all such states might sound cumbersome, but it turns out that

we need only to check two inequalities: V3− 2δ≥L2, and Vs∗−2− 2δ≥L2 (Lemma EC.8).

The two sufficient conditions, one can show, are also necessary for any robust trilateral equi-

librium. Thus the conditions, combined with the previous ones, imply a necessary and sufficient

condition for any robust trilateral equilibrium: that the escalation probability πγ,s∗−1 at the critical

state is determined by the equation V2 = s∗δ (Lemma 2.ii), with V2 as well as other value functions

derived from the law of motion (2)–(4) and Eq. (15), such that V3− 2δ≥L2, Vs∗−2− 2δ≥L2, and

Ineqs. (13) and (14) are each satisfied. From this condition we obtain a complete characterization

of robust trilateral equilibria (Lemma EC.12), which in turn provides a set of states of the game

in which robust trilateral equilibria exist:

Theorem 2 Starting from any ordered state x̂ of the game, there exists a robust trilateral equilib-

rium in the subgame thereupon if
{
x̂(3) + 1, x̂(3) + 2, . . . , x̂(4) + 1

}
contains an even number s∗ and

at least one of the following conditions is satisfied:

i. s∗ = 4 and v/δ > 35/2;

ii. s∗ = 6 and v/δ > 6801/120;

iii. s∗ ≥ 8 and v/δ≥
(
1
3
s2∗+ 5

3
s∗− 8

)
2s∗−3.

Proof of Theorem 2 Let an even number s∗ belong to
{
x̂(3) + 1, x̂(3) + 2, . . . , x̂(4) + 1

}
and sat-

isfy one of the three conditions, (i) or (ii) or (iii), in the theorem. That condition (i) or (ii) suffices

existence is implied by Lemma EC.18. To prove sufficiency of condition (iii), pick any even number

s∗ ∈ {8,10,12, . . .}. By Lemma EC.12.ii, s∗ constitutes an equilibrium if Eq. (EC.9) admits a solu-

tion for π ∈ [0,1] that satisfies Ineq. (EC.10). Denote φ(s∗, π) for the right-hand side of (EC.9), i.e.,

φ(s∗, π) := (2(1 +µ∗)− 3µ∗π) (3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗π)). By Lemma EC.17,

the left-hand side of (EC.9) is less than φ(s∗, π) when π = 1. Thus, it suffices to show that the

left-hand side is greater than φ(s∗, π) when π is equal to some number greater than or equal

to the right-hand side of Ineq. (EC.10). To that end, note from s∗ ≥ 8 that µ∗ = 2−s∗+3 ≤ 1/32,

hence 2− µ∗ ≥ 63/32 and 1 + µ∗ < 33/32; and recall that µ∗ = 2−s∗+3. Thus, the left-hand side

of (EC.9) is greater than 3µ∗v
δ

(1− π) 63
32

+
(
63
32

)2
(s∗− 6), and the right-hand side of Ineq. (EC.10),

1− 3(2−µ∗)
2(1−2µ∗)(s∗−4+µ∗) < 1− 3×63/32

2×1×(s∗−3) . Thus, it suffices, for s∗ to constitute an equilibrium, to have

3µ∗v

δ
(1−π)

63

32
+

(
63

32

)2

(s∗− 6)≥ φ(s∗, π)
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when π= π∗ := 1− 3×63
64(s∗−3) . Note, from 0<π < 1, that −1/32<µ∗(2− 3π)< 1/16. Hence

63

32
= 2− 1

32
< 2(1 +µ∗)− 3µ∗π < 2 +

1

16
=

33

16
,

15

16
= 1− 1

16
< 1− 2µ∗+ 3µ∗π < 1 +

1

32
=

33

32
.

Thus, the first factor 2(1 + µ∗)− 3µ∗π of φ(s∗, π) is positive for all π ∈ (0,1). If the second factor

of φ(s∗, π) is nonpositive when π = π∗ then φ(s∗, π∗) ≤ 0 and we are done, as the left-hand side

of (EC.9) is positive. Hence we may assume, without loss of generality, that 3s∗ + 2(1− 2µ∗)−
(s∗−4 +µ∗)(1−2µ∗+ 3µ∗π∗)> 0. Consequently, φ(s∗, π∗) can only get bigger if we replace its first

factor by the upper bound 33/16, and the term 1− 2µ∗ + 3µ∗π in the second factor by its lower

bound 15/16 (note that, in the second factor, s∗− 4 +µ∗ > 0 because s∗ ≥ 8). I.e., φ(s∗, π∗) is less

than

33

16

(
3s∗+ 2(1− 2µ∗)−

15

16
(s∗− 4 +µ∗)

)
=

33

16

(
33

16
s∗+

23

4
− 79

16
µ∗

)
<

33

16

(
33

16
s∗+

23

4

)
< 5s∗+ 12.

Therefore, the above observations put together, we are done if 3µ∗v
δ

(1− π∗) 63
32

+
(
63
32

)2
(s∗ − 6) ≥

5s∗+ 12. In other words, it suffices to have 3µ∗v
δ
· 3×63
64(s∗−3) ·

63
32

+
(
63
32

)2
(s∗− 6)≥ 5s∗+ 12, i.e.,

32µ∗v

δ
≥−2(s∗− 6)(s∗− 3) +

32× 64

632
(5s∗+ 12) (s∗− 3).

With 32×64
632
≈ 0.516, the above inequality holds if 32µ∗v

δ
≥ −2(s∗ − 6)(s∗ − 3) + (5s∗ + 12)(s∗ − 3),

i.e.,
9µ∗v

δ
≥ 3s2∗+ 15s∗− 72,

which is equivalent to the inequality v/δ≥
(
1
3
s2∗+ 5

3
s∗− 8

)
2s∗−3 in Condition (iii). �

Here, the condition that the set
{
x̂(3) + 1, x̂(3) + 2, . . . , x̂(4) + 1

}
contains s∗ is to guarantee

Ineqs. (13) and (14), so that the third-ranked player is willing to escalate and anyone ranked behind

him is not. Any of the three itemized conditions is to ensure V3− 2δ ≥L2 and Vs∗−2− 2δ ≥L2, so

that the follower is willing to escalate at both even and odd states.

According to Theorem 2, when the third- and the fourth-ranked players are not far apart, say

just one step between each other (x̂(4) = x̂(3) + 1), if the parameter v/δ is large enough for the even

integer in {x̂(3) + 1, x̂(4) + 1} to satisfy one of the three itemized conditions, then a robust trilateral

equilibrium exists. Alternatively, if the third- and the fourth-ranked players are far apart enough

for the set
{
x̂(3) + 1, . . . , x̂(4) + 1

}
to include an even number s∗ meeting one of the three conditions,

then again a robust trilateral equilibrium exists.
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Corollary 1 There are at most finitely many robust trilateral equilibria.

Proof Corollary 1 Since v/δ≥ s∗ for any dropout state of any equilibrium, there are only finitely

many equilibrium-feasible dropout states. Given any dropout state of any equilibrium, each player’s

action at every state is uniquely determined, according to Lemmas 1–EC.4, except the γ player’s

escalation probability πγ,s∗−1 at the critical state. Thus, it suffices to prove that for each dropout

state s∗ there are only finitely many compatible πγ,s∗−1 at the equilibrium. To that end, since πγ,s∗−1

is determined by Eq. (EC.9) given s∗, we need only to show that for each s∗ Eq. (EC.9) admits

at most two solutions for π, the shorthand for πγ,s∗−1. To show that, note that the left-hand side

of Eq. (EC.9) is a linear function of π, whereas the right-hand side is strictly convex in π: The

derivative of the right-hand side with respect to π is equal to

−3µ∗ (3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗π)) + (2(1 +µ∗)− 3µ∗π) (−(s∗− 4 +µ∗)3µ∗) ,

whose derivative with respect to π is equal to

3µ∗(s∗− 4 +µ∗)3µ∗+ 3µ∗(s∗− 4 +µ∗)3µ∗ = 18µ∗(s∗− 4 +µ∗)> 0,

with the inequality due to the fact that s∗ − 4 + µ∗ = s∗ − 4 + 2−s∗+4 > 0 as s∗ ≥ 4 (Theorem 1).

Thus, Eq. (EC.9) admits at most two solutions for π, as desired. �

The reason for this corollary is that the parameter v/δ implies an upper bound for equilibrium-

feasible dropout states s∗, which can only be integers (Lemma 1.ii). Given each dropout state the

Bellman equation corresponding to V2 = s∗δ admits at most two solutions for πγ,s∗−1, which in

turn determines the equilibrium strategy profile uniquely.

Numerical Illustration - Figure 2 shows the trilateral equilibria, with dropout states s∗ ∈

{4,6,8,10}, computed within the case where δ= $1 and v ranges from $0 to $1,000. Each curve in

the figure corresponds to one such equilibrium, graphing the γ-player’s (underdog’s) equilibrium

probability of escalation in the critical state s∗− 1 as a function of the underlying value v (or v/δ,

as δ= 1 here). The vertical lines indicate the points at which additional equilibria are admitted. For

instance, starting at v= $57 (≈ 6801/102) the equilibrium with dropout state s∗ = 6 becomes per-

missible. Note that, within each equilibrium, the bidding probability is increasing in the underlying

value v. On the other hand, when an equilibrium with a higher dropout state becomes permissi-

ble, had the players switched to the new one, the corresponding equilibrium bidding probability

would drastically reduce. Furthermore, each additional equilibrium requires an order of magnitude

increase in v, consistent with the inequalities in the three itemized conditions in Theorem 2.
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Figure 2 Equilibrium bidding probability for the underdog in the critical state s∗− 1; δ= 1.

3.4. Pareto Superiority of Robust Trilateral Equilibria

An equilibrium E is said Pareto superior to another equilibrium E ′ if and only if two conditions

are met: (i) at any state of the game where both equilibria are valid but different on their paths,

some players active in E are better-off in E than they are in E ′, and no player is worse-off in the

former than in the latter; and (ii) there exists a state of the game conditional on which every player

active in E is better-off in E than he is in E ′, and no player is worse-off in the former than in the

latter. We observe here that any robust trilateral equilibrium, despite its intensified competition

between the follower and the underdog before the critical state is reached, is Pareto superior to

the bilateral equilibrium.

Theorem 3 Any robust trilateral equilibrium is Pareto superior to the bilateral equilibrium.

Proof Theorem 3 Note that the set of active players in any trilateral equilibrium consists of

the top three players: the frontrunner, follower and underdog. Recall that the bilateral equilibrium

gives a surplus 2δ to the frontrunner and zero surplus to everyone else. Now consider any robust
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trilateral equilibrium with dropout state s∗, described by Provisions (A) and (B), Section 3.3. If

the game continues to any state such that s ≥ s∗, the two equilibria do not differ in path. Thus

it suffices to consider only those states where s ≤ s∗ − 1. At any such a state, in the trilateral

equilibrium the frontrunner’s surplus, by (2), is equal to either (i) (M2 +Ms+1)/2 (if s < s∗−1) or

(ii) (1−πγ,s∗−1)v+πγ,s∗−1M2 (if s= s∗−1), the follower’s surplus is equal to a convex combination

between Vs+1 − 2δ and L2, and the underdog’s equal to Ls. If s ≤ s∗ − 1, then in Case (i), the

frontrunner’s surplus is (M2+Ms+1)/2>M2/2> (V2 + δ/2)/2≥ (4δ+ δ/2)/2> 2δ, with the second

inequality due to Lemma 3, and the third inequality due to V2 = s∗δ and s∗ ≥ 4, while in Case (ii),

his surplus is (1−πγ,s∗−1)v+πγ,s∗−1M2 > (1−πγ,s∗−1)2δ+πγ,s∗−14δ > 2δ, with the first inequality

due to v > 2δ by assumption, the fact M2 > V2 by Lemma 3, and the fact V2 ≥ 4δ as in Case (i).

Hence the frontrunner’s surplus in the trilateral equilibrium is greater than the bilateral equilibrium

surplus 2δ.

Only remain to show that Ms,Ls > 0 for any s≤ s∗ − 1. When s= s∗ − 1, Ms = πγ,s∗−1L2 > 0,

and Ls = πγ,s∗−1V2 > 0; where the inequalities holds due to Lemmas 2 and EC.2. If s≤ s∗−2, then

by Eq. (4) and Provision (A) in Section 3.3, Ls ≥ 1
2
(V2 − (s+ 1)δ) = 1

2
(s∗δ − (s+ 1)δ) > 0, with

the last inequality due to s ≤ s∗ − 2. By (3), the follower can secure an expected payoff no less

than L2, through staying put at s (while the underdog escalates for sure by Provision (A)), hence

M2 ≥ L2 > 0. By contrast, both players get zero surplus in the bilateral equilibrium in whatever

state. �

Theorem 3 implies that, at any state x of the game, the players can avoid the detrimental

bilateral rivalry if a robust trilateral equilibrium exists and has not reached the end of its path

(i.e., x̂(3) ≤ s∗−1). In other words, a third rival can help the players avoid the detrimental outcome

of bilateral escalation if the condition of Theorem 2 is satisifed.

4. Model Extensions

The above analysis is based on an initial ranked positioning of the players, complete information,

and equilibria where only trilateral rivalry emerges on path. While a comprehensive relaxation of

these and other restrictions is beyond the scope of this paper, this section presents partial extensions

of the listed restrictions individually. Subsection 4.1 considers a case of four players and constructs

a quadrilateral-rivalry equilibrium based on trilateral-rivalry ones. Subsection 4.2 considers a two-

player model with asymmetric information and constructs a perfect Bayesian equilibrium that

resembles a purification of the bilateral-rivalry equilibrium. In both extensions we also relax the

assumption of the initial ranked positioning, and instead, as in the dollar auction, let all players

start with equal footing, each having committed zero payment.6
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4.1. A Quadrilateral Rivalry Equilibrium

The analysis in Section 3 has highlighted two effects of adding a third rival to an otherwise bilateral

rivalry: first, once a play has reached the bilateral-rivalry subgame, it is Pareto dominated by

any trilateral-rivalry equilibrium (Theorem 3); second, participation of the third rival eliminates

the bilateral-rivalry in the sense that in any trilateral equilibrium, the bilateral rivalry can only

be an off-path event (Lemmas 1 and 2). But then would a trilateral-rivalry equilibrium become

fragile given the participation of a fourth rival, as the bilateral equilibrium being fragile given the

participation of a third rival? Here we construct an example to show that the answer is No.

Let there be four players, denoted as frontrunner (α), follower (β), underdog (γ1), and “bottom-

dog” (γ2) for the fourth-place bidder. Let t∈ {0,1,2,3, . . .} denote the gap between the bottomdog

and the frontrunner. In the quadrilateral-rivalry equilibrium constructed below, the dropout state

for the bottomdog is when t = 4. In the subgame once this dropout state is reached, the other

three players play the trilateral-rivalry equilibrium whose dropout state is s∗ = 4. Specifically, the

quadrilateral strategy profile is:

a. In the initial round (t= 0) when no one is the frontrunner, everyone bids for sure.

b. In the second round (t= 1), with one frontrunner, and third round (t= 2), with one frontrun-

ner and one follower, every non-frontrunner bids for sure.

c. In any round where t= 3 (and a ranked positioning has emerged):

i. if the current configuration is  α p
β p− δ
γ1 p− 2δ
γ2 p− 3δ

 (16)

for some p≥ 3δ, then β, γ1 and γ2 each bid for sure;

ii. else then it is the fourth round and the configuration is in the form α 3δ
β 2δ
∅ δ

{γ1, γ2} 0

 , (17)

then the play mimics the above-specified trilateral-rivalry equilibrium at the critical state s∗−1 = 3:

β stays put, and γ1 and γ2 each bid with probability 1− (1− πγ,3)1/2; where πγ,3, as defined by

Provision (A) in subsection 3.3, is the trilateral equilibrium probability that escalation continues.

d. If t≥ 4, then γ2 quits from now on, and the other players play the above-specified trilateral-

rivalry equilibrium; in the off-path event where γ2 leapfrogs to the top, then he and the previous

frontrunner and follower constitute a consecutive 3-player configuration, and the three play the

trilateral-rivalry equilibrium from now on, with γ1 the new bottomdog quitting from now on.
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Appendix EC.6 proves that the above strategy profile constitutes a subgame perfect equilibrium.

Note that trilateral rivalry occurs on path with positive probability in this equilibrium. Thus,

adding a fourth rival does not eliminate trilateral rivalry as adding a third rival does to bilateral

rivalry. To check if this quadrilateral equilibrium dominates any trilateral one, define, given the

consecutive configuration (16), let Wα,Wβ,Wγ1 ,Wγ2 denote the continuation value for the α,β, γ1,

and γ2 player, respectively. By Appendix EC.6,

4δ <Wα < 5δ, 5δ <Wβ < 6δ, 3δ/8<Wγ1 < 2δ/5, δ/9<Wγ2 < 5δ/27.

In the configuration (16), if the players stick to the trilateral-rivalry equilibrium with dropout

state s∗ = 4, then α gets V2 = 2δ, β getsM2, which by Eqs. (EC.15) and (EC.16) in Appendix EC.6 is

equal to
(
8− 1

2
πγ,3

)
δ, γ1 gets L2 = δ/2, and γ2, not supposed to participate, gets zero. By contrast,

if they switch to the quadrilateral-rivalry equilibrium from now on, α gets Wα > 4δ= V2, β gets Wβ,

γ1 gets Wγ1 , and γ2 gets Wγ2 > 0. While the change of equilibrium would make α and γ2 better-

off, it would make β and γ1 worse-off: By Eq. (EC.27) in Appendix EC.6, M2−Wβ > 2δ, and by

Eq. (EC.26) in Appendix EC.6, L2−Wγ1 > δ/10. Thus, given configuration (16), the quadrilateral

equilibrium does not Pareto dominate the trilateral one. In any other configuration where a γ2’s

leapfrogging is commonly seen as a deviation from the trilateral equilibrium, the position of γ2 can

only be lower (i.e., t≥ 4) and hence the leapfrog would cost him at least 5δ; since Wα < 5δ, it is an

unprofitable deviation for γ2 even if the deviation could switch the equilibrium to the quadrilateral

one. Thus, this quadrilateral equilibrium does not dynamically Pareto dominate the trilateral one.

The above example suggests that the effect of adding a third rival to bilateral rivalry might be

more critical than adding an (n+1)th rival to an n-bidder play: while the bilateral-rivalry subgame

equilibrium is surplus-dissipating, n-rivalry subgame equilibriums need not be so detrimental to

the bidders.

4.2. Asymmetric Information in Bilateral Rivalry

Here we relax both the complete-information assumption and the assumption that the game starts

with a ranked order among the players. For simplicity, assume that there are only two bidders.

For each i ∈ {1,2}, bidder i’s type is drawn from a commonly known distribution Fi, absolutely

continuous and strictly increasing on its support [ai, zi], with zi > ai ≥ 0. The realized type ti of

bidder i is i’s private information at the outset; if bi is the highest level among bidder i’s committed

bid, then i’s payoff from the game is equal to v− bi/ti if he wins the prize, and equal to −bi/ti if he

does not win it. Recall that δ denotes the exogenous increment price ascension. The tie-breaking

rule is: if no one bids in the initial round, then the game ends with the good not sold; if exactly

one player bids in the initial round, then the game ends with the good sold to the only bidder at

the price equal to δ; else one of the two bidders is selected randomly with probability 1/2 to be

the frontrunner in the second round, after which no tie will occur.
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A perfect Bayesian equilibrium: The idea is that at each round where a player is supposed to

make a move, he bids if and only if his type is above a cutoff in the support of the posterior belief

about his type, and the cutoff is so chosen that his opponent, now the frontrunner, would have been

indifferent about bidding in the previous round if the opponent’s type is equal to the opponent’s

cutoff in the previous round.

The cutoffs for the initial round: Let (s01, s
0
2)∈ (a1, z1)× (a2, zi) satisfy

∀i∈ {1,2} :
δ

vs0−i
= Fi(s

0
i ). (18)

For example, if Fi is the uniform distribution on [0,1] for each i, then s01 = s02 =
√
δ/v constitutes

such a pair.

The cutoffs for the second round: For each i∈ {1,2}, define s1i ∈ (s0i , zi) by

Fi(s
1
i )−Fi(s0i )

1−Fi(s0i )
=

δ

vs0−i
. (19)

The cutoffs for any round after the second one: For any (s1, s2) ∈ (a1, z1)× (a2, zi), if [si, zi] is

the support of the posterior distribution of i’s type at the start of this round for each i ∈ {1,2},

then define the cutoff s′i ∈ (si, zi) for each player i in this round by

Fi(s
′
i)−Fi(si)

1−Fi(si)
=

2δ

vs−i
. (20)

The equilibrium: Initialize si := ai for each i∈ {1,2}.

a. In the initial round, for each player i of type ti, i bids if and only if ti ≥ s0i . If player i bids then

the posterior about i becomes Fi(·)/(1−Fi(s0i )), hence his infimum type is updated to si := s0i ; else

the game ends, with the good either sold at price δ to the other bidder if the latter has bid, or not

sold if neither has bid, and hence there is no need for updating.

b. In the second round, with the frontrunner α selected among those who bid in the initial

round, the follower β of type tβ bids if and only if tβ ≥ s1β. If β does bid, then the posterior about

bidder β becomes Fβ(·)/(1−Fβ(s1β)), hence his infimum type is updated to sβ := s1β; else the game

ends and there is no need for updating. If β does not bid, the game ends and there is no need for

updating.

c. If the game continues to any round after the second round, with si denoting the updated

infimum type of player i at the start of the current round (hence the posterior distribution about i

is Fi(·)/(1−Fi(si))), the current follower β of type tβ bids if and only if tβ ≥ s′β, where s′β is derived

from (s1, s2) by Eq. (20). If β does bid then the posterior about bidder β becomes Fβ(·)/(1−Fβ(s′β)),

hence his infimum type is updated to sβ := s′β; else the game ends and there is no need for updating.
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This equilibrium exhibits two interesting features. First, the allocation is not ex post efficient,

as the winner need not be the bidder with the stronger realized type. Second, in the case where

z1 <a2, it is commonly known ex ante that bidder 1 is weaker than bidder 2, yet at the equilibrium

their bidding competition may escalate for many rounds, especially when their realized types are

near the corresponding supremums.

Verification of the equilibrium: At the start of any round after the initial one, let (s1, s2) denote

the pair of current updated type infimums of the two players and, for any i∈ {1,2}, let Mi(ti|si, s−i)

denote the expected payoff for player i of type ti if i is the current follower, given the continuation

equilibrium described above. Then

Mi(ti|si, s−i) = max

{
0,−2δ

ti
+Vi(ti|s′i, s−i)

}
, (21)

note that Vi(ti|s′i, s−i) denotes i’s expected payoff from being the frontrunner in the next round,

with his type infimum updated to s′i, derived from (si, s−i) by Eq. (20). In general, Vi(ti|si, s−i)

denotes the expected payoff for player i of type ti if i is the current frontrunner in any round after

the second one such that the updated type infimums at the start of the current round are si and s−i

respectively. Then

Vi(ti|si, s−i) =
F−i(s

′
−i)−F−i(s−i)

1−F−i(s−i)
v+

1−F−i(s′−i)
1−F−i(s−i)

Mi(ti|si, s′−i)

=
2δ

si
+

(
1− 2δ

si

)
Mi(ti|si, s′−i), (22)

where s′−i is derived from (s′i, s−i) by Eq. (20), and the second line follows from Eq. (20), with the

roles of i and −i switched. By contrast, if, after both players bid in the initial round, player i is

selected the frontrunner in the second round, then i’s expected payoff, viewed at the start of this

round, is equal to

V 0
i (ti|s0i , s0−i) =

F−i(s
1
−i)−F−i(s0−i)

1−F−i(s0−i)
v+

1−F−i(s1−i)
1−F−i(s0−i)

Mi(ti|s0i , s1−i)

=
δ

s0i
+

(
1− δ

s0i

)
Mi(ti|s0i , s1−i), (23)

where the second line follows from Eq. (19), with the roles of i and −i switched. Based on the

Bellman equations (21), (22) and (23), one can prove that the above-described bidding strategy

and updating rule constitute a perfect Bayesian equilibrium (Section EC.7).

5. Conclusion

War-of-attrition-like contests and conflicts, such as online crowdsourcing challenges, lobbying, R&D

races, arms races, online penny auctions, bargaining for technology standards, and contests among

and within political parties, often involve a multitude of contenders. Such multiplicity of rivals,
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despite the cutthroat competition it intensifies, also provides an opportunity for a player to preserve

its resources for a while, free-riding other contenders’ escalation efforts without conceding. To gain

insight into these opposite effects, this paper proposes and analyzes a new, stochastic and recursive

model for escalation among n ranked players.

In contrast to the extant literature, mostly based on two-rival assumptions, which coupled

with complete information would have predicted that war of attrition is detrimental to the rivals,

our results demonstrate that conflict escalations with more than two rivals result in surplus-

enhancement despite complete information. We demonstrate this first by constructing an m-rivalry

equilibrium that, when a large cohort of ranked players are closely positioned, generates a total

surplus near the full value of the contested prize. While this equilibrium is not robust to other

kinds of positioning, we further demonstrate the thesis by proving existence of other multilateral

equilibria that are robust, and Pareto superior to the bilateral equilibrium. These are the trilateral

equilibria, where the top three players escalate against one another despite the third-ranked player

often having to overcome a wider distance from the front. Such normative advantage of multiplayer

rivalry suggests, for instance, that adding a viable third political party to the United States de

facto two-party system may help mitigate the more and more acute partisan conflict.

The trilateral equilibria each exhibit three interesting, dynamic features. First, as the trilateral

escalation continues, the gap between the frontrunner and the third-ranked rival may collapse or

expand, depending on whether the third-ranked rival manages to overtake the frontrunner. Second,

the escalation can possibly end only when this gap reaches its maximum that the equilibrium can

sustain, at which point it is the third-ranked rival that decides, randomizing between leapfrogging

and staying put, whether the escalation shall continue. Third, at the onset of a trilateral rivalry

before any of the three rivals lag behind, the ideal position for a player is not to be the frontrunner

but rather be the follower, wedged in between the frontrunner and the third-ranked rival.

Our dynamic model of war-of-attrition-type escalation, with its stochastic yet tractable recursive

structure and generality in the number of rivals, is conducive to further investigations of multiplayer

attritional dynamics. First, it would be interesting to explore robust equilibria involving more than

three rivals. One could start by constructing m-rivalry equilibria based on a trilateral equilibrium:

Instead of restricting active rivals to the top three players, let any kth-ranked player escalate if his

gap from the frontrunner is sufficiently narrow; as the escalation continues, the gaps of those who

fail to leapfrog eventually become too wide for them to participate any more, hence the set of active

players eventually reduces to the top three, who then play the trilateral equilibrium thereafter. We

conjecture that such equilibria, like the trilateral ones, Pareto dominate the bilateral equilibrium.

An open question is how they compare to the trilateral ones in terms of the players’ welfare.
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Endnotes

1. There was a minimum requirement for the winning submission to outperform Netflix own

Cinematch algorithm by at least 10%; see: http://www.netflixprize.com. In May 2017, real estate

valuation firm Zillow initiated a similar challenge, focusing on home sales price predictions;

https://www.kaggle.com/c/zillow-prize-1. Accessed: 2018-10-27.

2. In online penny auctions bidders pay a fee to nominally increment the price (e.g. 70 cents to

increase the price with a penny), and the bidder who places the last bid wins the auction and

pays, in addition to the sunk bidding cost, the final auction price. Different from a dynamic war-

of-attrition-type escalation, in online penny auctions regardless of previous bidding activity all

contenders only have to pay the minimal incremental cost to assume leadership. Furthermore, the

winner has to pay, in addition to the sunk bidding cost, the final ending price of the good.

3. Leapfrogging phenomena and attritional wars is also displayed within US polical parties. For

instance, during the US presidential primary elections, where prospective candidates tend not to

spend their resources simultaneously to stay on the game but rather strategize on the timing of

spending—to figure out, along the sequence of state-wise primary elections, whether to spend big

on the state that comes next in the sequence. Such political candidates, ranked by the polls, are

often seen leapfrogging.

4. Note, similar to the analysis in Section 2.3, discounting is not required to ensure convergence

of the dynamic program. Therefore, as we are implicitly considering relative short time-intervals

between escalations, and without loss of generality, we omit discounting.

5. In the following, we extend the summation notation by defining, for any sequence (ak)
∞
k=1,

i > j =⇒
∑j

k=i ak := 0. In particular,
∑0

k=1 ak = 0 according to this notation.

6. Another interesting extension to consider is to relax the tie-breaking rule. For instance, rather

than ties broken randomly with equal probability, one may consider scenarios where in each round,

all bidders who simultaneously bid incur the sunk cost and all become co-frontrunners; with the

game ending once no more bids are submitted, but the prize awarded only if the frontrunner is

unique. A discussion for the bilateral and trilateral rivalry is provided in Ødegaard and Zheng

(2018).
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Proofs of Formal Results

EC.1. Lemmas EC.1, EC.2, and EC.3

Lemma EC.1. At any trilateral equilibrium with dropout state s∗, if s ≥ s∗ then Vs = 2δ and

Ms =Ls = 0.

Proof Lemma EC.1 Take any trilateral equilibrium, with dropout state s∗ and value func-

tions Vs, Ms and Ls. By Lemma 1.i, at any state s≥ s∗ the player who is the current underdog

stays put for all future rounds. This, combined with the property of trilateral equilibrium that

none of the players ranked behind the underdog would ever participate in escalation and the

“independence of nonparticipants” condition, implies that the subgame equilibrium thereafter is

the bilateral equilibrium characterized in Section 2.3. Thus, Vs = V∗ = 2δ and Ms =M∗ = 0. Since

s≥ s∗ implies Ls = 0 (Lemma 1), the lemma is proved. �

Lemma EC.2. At any trilateral equilibrium with dropout state s∗ ≥ 4, V3− 2δ≥M2 ≥L2 > 0.

Proof Lemma EC.2 Suppose that V3 − 2δ < L2. Then, by the fact πγ,2 = 1 (Lemma 1.ii and

s∗ ≥ 4) and Eq. (1), the β player at state s= 2 would rather stay put, to get L2, than escalate to

get V3− 2δ. Thus πβ,2 = 0. This, combined with (2) in the case s= 2 and the fact πγ,2 = 1, implies

that V2 = M2. Since V3 − 2δ < L2 coupled with (3) implies M2 ≤ L2, we have a contradiction

V2 ≤ L2 < V2, with the last inequality due to (4). Thus we have proved V3 − 2δ ≥ L2. Therefore,

with M2 a convex combination between V3−2δ and L2 (since πγ,2 = 1), V3−2δ≥M2 ≥L2. Finally,

to show L2 > 0, note from the hypothesis s∗ ≥ 4 and definition of s∗ that V2−3δ > 0. This positive

payoff the underdog at state s= 2 can secure with a positive probability through escalating. Hence

L2 > 0 follows from (4). �

Lemma EC.3. At any trilateral equilibrium with dropout state s∗ ≥ 4, πγ,s∗−1 > 0.

Proof Lemma EC.3 Suppose, to the contrary, that πγ,s∗−1 = 0 at equilibrium. Then Ms∗−1 =

0 according to (3), with s = s∗ − 1, and the fact Vs∗ − 2δ = 0 by Lemma EC.1. Consequently,

(2) applied to the case s = s∗ − 2, coupled with the fact πγ,s∗−2 = 1 (Lemma 1.i), implies that

Vs∗−2 ≤M2, which in turn implies, by (3) in the case s = s∗ − 3 and the fact πγ,s∗−3 = 1, that

Ms∗−3 ≤max{M2−2δ,L2} ≤M2, with the last inequality due to Lemma EC.2. That in turn implies

Vs∗−4 ≤M2 by (2) and the fact πγ,s∗−4 = 1. Thus Vs∗−2 ≤M2, Vs∗−4 ≤M2 and Ms∗−3 ≤M2.

The supposition πγ,s∗−1 = 0, coupled with the fact that πγ,s = 0 at all s > s∗ − 1 (Lemma 1.ii),

also implies that γ drops out of the race starting from the state s∗−1. Thus, by the “independence
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of nonparticipants” condition, Vs∗−1 = Vs∗ , hence Lemma EC.1 implies Vs∗−1 = 2δ. Then (3) applied

to the case s= s∗− 2, coupled with the fact πγ,s∗−2 = 1, implies Ms∗−2 ≤L2. Thus, by (2) and the

fact πγ,s∗−3 = 1, we have Vs∗−3 ≤max{L2,M2} ≤M2, the last inequality again due to Lemma EC.2.

With Vs∗−3 ≤ M2, (3) implies Ms∗−4 ≤ max{M2 − 2δ,L2} ≤ M2. Thus Vs∗−1 = 2δ, Vs∗−3 ≤ M2,

Ms∗−2 ≤L2 ≤M2 and Ms∗−4 ≤M2.

Repeat the above reasoning on (2) and (3) for smaller and smaller s and we obtain the fact that

Vs∗−1 = 2δ, Vs ≤M2 and Ms ≤M2 for all s ∈ {2, . . . , s∗− 2}. Thus, either V3 = 2δ (when s∗ = 4) or

V3 ≤M2 (when s∗ ≥ 5). Either case contradicts Lemma EC.2. �

EC.2. Lemmas EC.4, EC.5, EC.6, and EC.7

Lemma EC.4. At any robust trilateral equilibrium with dropout state s∗ being an even number

and s∗ ≥ 4, at any state s∈ {2, . . . , s∗− 2} the β player escalates for sure.

Lemma EC.4 follows from Lemmas EC.6 and EC.7, established in this section. The former shows

that escalation is a follower’s unique best response at even-number states; the latter shows that

for odd-number states. Lemma 3 is proved in Subsection EC.2.2 here. We start with—

Lemma EC.5. At any equilibrium with dropout state an even number s∗ ≥ 4, L2 <V2 ≤ V3− 2δ.

Proof Lemma EC.5 Since πβ,s∗−1 = 0 (Lemma 2), Ms∗−1 ≤ L2. Thus, since πγ,s∗−2 = 1

(Lemma 1.ii), Vs∗−2 is a convex combination between Ms∗−1, which is less than L2, and M2,

which is a convex combination between V3− 2δ and L2, as πγ,2 = 1. Thus Vs∗−2 is between L2 and

V3−2δ. Consequently, Ms∗−3, a convex combination between L2 and Vs∗−2−2δ (since πγ,s∗−3 = 1),

is between L2 and V3−2δ. Repeating this reasoning, with s∗ being an even number, we eventually

reach 2 = s∗ − 2m for some integer m ≥ 1, and obtain the fact that V2 is a number between L2

and V3 − 2δ. Thus, L2 < V3 − 2δ, otherwise the fact L2 < V2 by (4) would be contradicted. Hence

L2 <V2 ≤ V3− 2δ. �

EC.2.1. Escalation at Even States

Lemma EC.6. At any equilibrium with any even number dropout state s∗ ≥ 4, πβ,s = 1 if 2 ≤

s≤ s∗− 2 such that s is an even number.

Proof Lemma EC.6 First, by Lemma EC.5, L2 < V3 − 2δ. Thus at state s = 2 the β player

strictly prefers to escalate, i.e., πβ,2 = 1. Second, pick any even number s such that 4≤ s≤ s∗− 2

and suppose, to the contrary of the lemma, that πβ,s < 1, which means that the β player at state s

does not strictly prefer to escalate. Thus Ms ≤L2 (as the transition Ms→ 0 is ruled out by the fact

πγ,s = 1). Consequently, Vs−1, a convex combination between Ms and M2, is weakly less than M2,
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as L2 ≤M2 by Lemma EC.2. Furthermore, Ms−2, a convex combination between Vs−1−2δ and L2,

is less than M2, and that in turns implies Vs−3 ≤M2. Repeating this reasoning, with s an even

number, we eventually obtain the conclusion that V3 ≤M2, which contradicts Lemma EC.2. Thus,

πβ,s = 1. �

At any equilibrium with any even number dropout state s∗ ≥ 4, since πγ,s = 1 for all s≤ s∗− 2

(Lemma 1.ii), Eq. (1) and the equal-probability tie-breaking rule together imply

∀s∈ {2,3,4, . . . , s∗− 2} : [πβ,s = 1 =⇒ qβ,s = qγ,s = 1/2] . (EC.1)

By Lemma EC.6,

2≤ s≤ s∗− 2 and s is even =⇒ qβ,s = qγ,s = 1/2. (EC.2)

EC.2.2. Escalation at Odd States

Lemma EC.7. At any equilibrium with any even number dropout state s∗ ≥ 4 and at any state

1≤ s≤ s∗− 2 such that s is an odd number, πβ,s = 1.

Proof Lemma EC.7 Pick any odd number s such that s ≤ s∗ − 2. It suffices to prove that

Vs+1− 2δ > L2. Since s+ 1 is even, it follows from (EC.2) that

Vs+1 =
1

2
(M2 +Ms+2)≥

1

2
(M2 +L2) ,

with the inequality due to the fact Ms+2 ≥ L2, which in turn is due to the fact that the β player

at state s+ 2 can always secure the payoff L2 through not escalating at all. Thus,

Vs+1− 2δ−L2 ≥
1

2
(M2 +L2)− 2δ−L2

=
1

2
M2−

1

2
L2− 2δ

=
1

2
M2−

1

2

(
1

2
L3 +

1

2
(V2− 3δ)

)
− 2δ

≥ 1

2
M2−

1

2

(
1

2
(V2− 4δ) +

1

2
(V2− 3δ)

)
− 2δ

=
1

2
M2−

1

2
V2−

1

4
δ,

with the second inequality due to the definition of Ls and the fact V2 − 4δ ≥ 0 (s∗ ≥ 4). Since

1
2
M2− 1

2
V2− 1

4
δ > 0 by Lemma 3, Vs+1− 2δ−L2 > 0, as desired. �

EC.3. Lemmas EC.8, EC.9, EC.10, and EC.11

Lemma EC.8. For any even number s∗ ≥ 4 and any strategy profile satisfying (A) and (B),

escalation is a best response for the β player at state s∈ {2,3, . . . , s∗−2} if either (i) s is even and

V3− 2δ≥L2, or (ii) s is odd and Vs∗−2− 2δ≥L2.
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All lemmas in this subsection assume the hypotheses in Lemma EC.8, that s∗ ≥ 4 is an even

number and a strategy profile (πβ,s, πγ,s)
∞
s=2

satisfying Provision (A) is given, with the associated

value functions (Vs,Ms,Ls)s derived from (2)–(4) and Eq. (15).

Lemma EC.9. For any positive integer m such that 2m+ 1 ≤ s∗ − 1, if V2m+1 − 2δ ≤ L2 then

V3− 2δ < L2.

Proof Lemma EC.9 Pick any m specified by the hypothesis such that V2m+1−2δ≤L2. Suppose,

to the contrary of the lemma, that V3 − 2δ ≥ L2. Thus, the law of motion (2) in the case s = 2,

with πγ,2 = 1, implies that M2 is between L2 and V3− 2δ, hence V3− 2δ ≥M2 ≥L2. By the law of

motion (3) in the case s= 2m, M2m is a convex combination among zero, V2m+1−2δ and L2. Thus

the hypothesis implies that M2m ≤L2. Consequently, the law of motion (2) in the case s= 2m−1,

together with πγ,2m−1 = 1 and M2 ≥L2, implies that V2m−1 ≤M2 and hence V2m−1− 2δ≤M2− 2δ.

Then (3) in the case s= 2m− 2 implies M2m−2 ≤ L2. Repeating this reasoning backward, with 3

being odd, we eventually reach state s= 3 and obtain V3 ≤M2. But since V3− 2δ≥M2, we have a

contradiction V3− 2δ≥M2 ≥ V3. �

Lemma EC.10. Denote π := πγ,s∗−1. For any integer m such that 1≤m≤ s∗/2− 1,

Ms∗−(2m−1) = −δ
m−1∑
k=1

2−2k+2 +M2

m−1∑
k=1

2−2k +L2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)π

)
, (EC.3)

Vs∗−2m = −δ
m−1∑
k=1

2−2k+1 +M2

m∑
k=1

2−2k+1 +L2

(
m−1∑
k=1

2−2k + 2−2m+1π

)
, (EC.4)

Vs∗−(2m−1) = −δ
m−1∑
k=1

2−2k+1 + 2−2(m−1)(1−π)v+L2

m−1∑
k=1

2−2k (EC.5)

+M2

(
m−1∑
k=1

2−2k+1 + 2−2(m−1)π

)
,

Ms∗−2m = −δ
m−1∑
k=0

2−2k + 2−2m+1(1−π)v+L2

m∑
k=1

2−2k+1 (EC.6)

+M2

(
m−1∑
k=1

2−2k + 2−2m+1π

)
,

L2 = δ
(
s∗− 4 + 2−s∗+3

)
. (EC.7)

Proof Lemma EC.10 First, we prove Eqs. (EC.3) and (EC.4). When m= 1, Eq. (EC.3), coupled

with the summation notation defined in (??), becomes Ms∗−1 = πL2 = πγ,s∗−1L2, which follows

from (3) and the fact that Vs = 2δ and Ms = 0 for all s≥ s∗, due to Provision (A). This coupled

with Eq. (15) implies that

Vs∗−2 = (Ms∗−1 +M2)/2 =M2/2 +πL2/2,
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which is Eq. (EC.4) when m= 1 (using again the summation notation in (??)). Suppose, for any

integer m′ with 1 ≤m′ ≤ s∗/2− 2, that Eqs. (EC.3) and (EC.4) are true with m = m′. By the

induction hypothesis of (EC.4) and Eq. (15),

Ms∗−(2m′+1) =
1

2
(Vs∗−2m′ − 2δ+L2)

= −δ

1 +
1

2

m′−1∑
k=1

2−2k+1

+
M2

2

m′∑
k=1

2−2k+1 +
L2

2

1 +
m′−1∑
k=1

2−2k + 2−2m
′+1π

 ,

which is Eq. (EC.3) when m=m′+ 1. By the above calculation of Ms∗−(2m′+1) and Eq. (15),

Vs∗−(2m′+2) =
1

2

(
Ms∗−(2m′+1) +M2

)
= −δ

2

1 +
1

2

m′−1∑
k=1

2−2k+1

+
M2

2

1 +
m′∑
k=1

2−2k+1


+
L2

4

1 +
m′−1∑
k=1

2−2k + 2−2m
′+1π

 ,

which is Eq. (EC.4) in the case m=m′+ 1. Thus Eqs. (EC.3) and (EC.4) are proved.

Next we prove Eqs. (EC.5) and (EC.6). When m = 1, Eq. (EC.5), coupled with the notation∑0

k=1 ak = 0, becomes Vs∗−1 = (1−π)v+πM2, which is true by definition of π and the fact πβ,s∗−1 =

0 (Provision (A)). Then by Eq. (15)

Ms∗−2 = (Vs∗−1− 2δ+L2)/2 = ((1−π)v+πM2− 2δ+L2)/2,

which is Eq. (EC.6) when m= 1 (again using the notation
∑0

k=1 ak = 0). Suppose, for any integer m′

with 1 ≤ m′ ≤ s∗/2 − 2, that Eqs. (EC.5) and (EC.6) are true with m = m′. By the induction

hypothesis and Eq. (15),

Vs∗−(2m′+1) =
1

2
(Ms∗−2m′ +M2)

= −δ
2

m′−1∑
k=0

2−2k + 2−12−2m
′+1(1−π)v+

L2

2

m′∑
k=1

2−2k+1

+M2

2−1 + 2−1
m′−1∑
k=1

2−2k + 2−12−2m
′+1π

 ,

which is Eq. (EC.5) in the case m=m′+ 1. By the above calculation and Eq. (15),

Ms∗−(2m′+2) =
1

2

(
Vs∗−(2m′+1)− 2δ+L2

)
= −δ

1 +
1

2

m′∑
k=1

2−2k+1

+ 2−12−2m
′
(1−π)v

+L2

1

2
+ 2−1

m′∑
k=1

2−2k

+
M2

2

 m′∑
k=1

2−2k+1 + 2−2m
′
π

 ,
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which is Eq. (EC.6) in the case m=m′+ 1. Hence Eqs. (EC.5) and (EC.6) are proved.

Finally we prove Eq. (EC.7). Applying Eq. (15) to (4) recursively we obtain, for any integer

s∗ ≥ 4, that

L2 =
1

2

(
V2− 3δ+

1

2

(
V2− 4δ+

1

2

(
· · ·+ 1

2
(V2− (s∗− 1)δ)

)))
=
δ

2

(
s∗− 3 +

1

2

(
s∗− 4 +

1

2

(
· · ·+ 1

2
· 1
)))

= δ

(
1

2
(s∗− 3) +

1

22
(s∗− 4) +

1

23
(s∗− 5) + · · ·+ 1

2s∗−3

)
,

which is equal to the right-hand side of (EC.7). In the above multiline calculation, the first and

second lines are due to V2 = s∗δ (Lemma 2.ii). �

Lemma EC.11. Vs∗−2− 2δ≥L2 =⇒∀m∈ {1, . . . , s∗/2− 1} : Vs∗−2m− 2δ≥L2.

Proof Lemma EC.11 By the law of motion and Eq. (15), Eqs. (EC.3), (EC.4), (EC.5), (EC.6)

and (EC.7) hold. Denote

µ(m) := 2−2m+1,

µ∗ := 2−s∗+3.

With the fact
∑m−1

k=1 2−2k = (1− 2−2m+2)/3, Eq. (EC.4) becomes

Vs∗−2m =−δ · 2
3

(1− 2µ(m)) +M2

(
2

3
(1− 2µ(m)) +µ(m)

)
+L2

(
1

3
(1− 2µ(m)) +µ(m)π

)
.

Hence

Vs∗−2m− 2δ−L2 = −δ
(

2

3
(1− 2µ(m)) + 2

)
+M2

(
2

3
(1− 2µ(m)) +µ(m)

)
−L2

(
1− 1

3
(1− 2µ(m))−µ(m)π

)
= −4

3
(2−µ(m))δ+

1

3
(2−µ(m))M2

− (s∗− 4 +µ∗) δ

(
2

3
(1 +µ(m))−µ(m)π

)
,

with the second equality due to (EC.7). Thus, Vs∗−2m− 2δ≥L2 is equivalent to

1

3
(2−µ(m))M2 ≥ δ

(
4

3
(2−µ(m)) + (s∗− 4 +µ∗)

(
2

3
(1 +µ(m))−µ(m)π

))
,

i.e.,
M2

δ
≥ 4 +

2(1 +µ(m))− 3µ(m)π

2−µ(m)
(s∗− 4 +µ∗). (EC.8)
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Since s∗− 4≥ 0 by hypothesis, and

d

dµ(m)

(
2(1 +µ(m))− 3µ(m)π

2−µ(m)

)
=

(2−µ(m))(2− 3π) + 2(1 +µ(m))− 3µ(m)π

(2−µ(m))2

=
6(1−π)

(2−µ(m))2
≥ 0,

the right-hand side of (EC.8) is weakly increasing in µ(m), which in turn is strictly decreasing in m.

Thus the right-hand side of (EC.8) is weakly decreasing in m. Consequently, Vs∗−2m− 2δ−L2 ≥ 0

is satisfied for all m if the inequality holds at the minimum m= 1, i.e., if Vs∗−2 − 2δ−L2 ≥ 0, as

claimed. �

Proof of Lemma EC.8 Let s∈ {1,2, . . . , s∗−2}. If s is even and V3−2δ≥L2, then Lemma EC.9

implies Vs+1−2δ > L2; thus, by (3) and by the fact that πγ,s = 1 due to Provision (A), the β player

at s gets L2 if he does not escalate, and 1
2
(Vs+1 − 2δ) + 1

2
L2 if he does. Hence escalating is the

unique best response for β at s. If s is odd and Vs∗−2− 2δ ≥ L2, then Lemma EC.11 implies that

Vs+1 − 2δ ≥ L2; thus, by the same token as in the previous case, the β player at s weakly prefers

to escalate. �

EC.4. Lemmas EC.12, EC.13, EC.14, EC.15, and EC.16

Lemma EC.12. Starting from any state x, the game thereupon admits a robust trilateral equilib-

rium with dropout state s∗ if and only if all the following conditions hold: (a) s∗ is an even number

greater than two; (b) x̂(3) ≤ s∗− 1≤ x̂(4); and (c) one of the following holds:

i. either s∗ ≤ 6 and the equation

3µ∗v

δ
(1−π)(2−µ∗) + (2−µ∗)2(s∗− 6 +µ∗)

= (2(1 +µ∗)− 3µ∗π) (3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗π)) , (EC.9)

where µ∗ := 2−s∗+3, admits a solution for π ∈ [0,1];

ii. or s∗ ≥ 8 and Eq. (EC.9) admits a solution for π ∈ [0,1] such that

π≥ 1− 3(2−µ∗)
2(1− 2µ∗)(s∗− 4 +µ∗)

. (EC.10)

The proof consists of the following lemmas. The solution π to equation (EC.9) corresponds to the γ

player’s escalation probability πγ,s∗−1 in the critical state s∗−1. The bifurcation in Lemma EC.12.c

is due to an implication of the following lemmas that at the solution for V2 = s∗δ, neither V3−2δ≥

L2 nor Vs∗−2− 2δ ≥ L2 are binding when s∗ ≤ 6, and only one of the inequalities is binding when

s∗ ≥ 8.
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Lemma EC.13. Any integer s∗ ≥ 3 constitutes a robust trilateral equilibrium if and only if s∗ is

an even number and there exists (M2, π,L2)∈R3
+ satisfying the following conditions:

a. (M2, π,L2)∈R+× [0,1]×R+ and it solves simultaneously Eq. (EC.4) such that m= s∗/2−1,

Eq. (EC.6) such that m= s∗/2− 1 and V2 = s∗δ, and Eq. (EC.7);

b. M2 ≥ s∗δ;
c. Ineq. (EC.8) is satisfied in the case m= 1;

d. x̂(3) ≤ s∗− 1≤ x̂(4).

Proof of Lemma EC.13 The necessity that s∗ is even for an equilibrium follows from Theorem 1.

In Condition (a), the necessity of V2 = s∗δ follows from Lemma 2, and the rest from Lemma EC.10,

which in turn follows from Provision (A), necessary due to Lemmas 1–EC.4. With V2 = s∗δ, the

condition M2 ≥ s∗δ is equivalent to M2 ≥ V2; hence the necessity of Condition (b) follows from

Lemma 3. The necessity of Condition (c) follows from Lemma EC.4, which implies the necessity

of Vs∗−2m − 2δ ≥ L2, which as shown in the proof of Lemma EC.11 requires Ineq. (EC.8). The

necessity of Condition (d) has been explained immediately before Ineqs. (13) and (14).

To prove that these conditions together suffice an equilibrium, pick any even number s∗ ≥ 4

and assume Conditions (a)–(d). Consider the strategy profile according to provisions (A) and (B),

Section 3.3. This strategy profile implies Eq. (15), which allows calculation of the value functions

(Vs,Ms,Ls)
s∗
s=2 via the law of motions. The incentive for each player to abide by the strategy profile

at any state s≥ s∗ is the same as in the bilateral equilibrium. At the state s∗− 1, escalating with

probability π is a best response for the γ player because he is indifferent about escalation, since

V2− s∗δ= 0 =Ls∗ , and staying put is the best response for the β player because Vs∗ − 2δ= 0<L2.

At any state s with 2 ≤ s ≤ s∗ − 2, escalating is the best response for the γ player because

V2− (s+ 1)δ > Ls+1 (by Eq. (4)); Condition (c) by Lemma EC.11 suffices the incentive for the β

player at every odd state to escalate. To incentivize the β player at every even state s≤ s∗− 2 to

escalate, Lemma EC.9 says that it suffices to have V3 − 2δ ≥ L2, which is equivalent to M2 ≥ L2

since, by the law of motion and Eq. (15), M2 is the midpoint between V3 − 2δ and L2. Since

L2 < s∗δ by Eq. (EC.7), the condition M2 ≥L2 is guaranteed by Condition (b), M2 ≥ s∗δ. Finally,

by the explanation immediately after Ineq, (14), Condition (d) ensures that any player ranked

behind! γ has no incentive to deviate to escalate. �

Lemma EC.14. For any s∗ ≥ 4, Condition (c) in Lemma EC.13 implies Condition (b) in

Lemma EC.13.

Proof of Lemma EC.14 Condition (c) in Lemma EC.13 is Ineq. (EC.8) in the case m= 1, i.e.,

when µ(m) = 2−2m+1 = 1/2. Hence the condition is equivalent to

M2

δ
≥ 4 + (2−π)(s∗− 4 +µ∗). (EC.11)
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To prove that this inequality implies Condition (b), i.e., M2/δ≥ s∗, it suffices to show

4 + (2−π)(s∗− 4 +µ∗)> s∗,

i.e.,

(1−π)(s∗− 4) +µ∗(2−π)> 0,

which is true because s∗ ≥ 4, µ∗ = 2−s∗+3 > 0 and π≤ 1. �

Lemma EC.15. Condition (a) in Lemma EC.13 is equivalent to the existence of an π ∈ [0,1]

that solves Eq. (EC.9).

Proof of Lemma EC.15 Condition (a) requires existence of (M2, π,L2) ∈ R+ × [0,1]×R+ that

satisfies Eqs. (EC.4), (EC.6) and (EC.7) in the case of m= s∗/2−1 and V2 = s∗δ. Combine (EC.4)

with (EC.7) and use the notation µ∗ := 2−s∗+3 and the fact
∑m−1

k=1 2−2k = (1− 2−2m+2)/3 to obtain

s∗δ= V2 =−δ · 2
3

(1− 2µ∗) +M2

(
2

3
(1− 2µ∗) +µ∗

)
+ δ(s∗− 4 +µ∗)︸ ︷︷ ︸

L2

(
1

3
(1− 2µ∗) +µ∗π

)
,

i.e.,
M2

δ
=

1

2−µ∗
(3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗π)) . (EC.12)

By the same token, (EC.6) coupled with (EC.7) is equivalent to

M2

(
1− 1

3
(1− 2µ∗)−µ∗π

)
=−δ

(
1 +

1

3
(1− 2µ∗)

)
+(1−π)µ∗v+δ(s∗−4+µ∗)

(
2

3
(1− 2µ∗) +µ∗

)
,

i.e.,
M2

δ
(2(1 +µ∗)− 3µ∗π) =

3µ∗v

δ
(1−π) + (2−µ∗)(s∗− 6 +µ∗). (EC.13)

Plug (EC.12) into (EC.13) and we obtain Eq. (EC.9). �

Lemma EC.16. For any even number s∗ ≥ 4, suppose that Eq. (EC.12) holds. Then Condi-

tion (c) in Lemma EC.13 is equivalent to Ineq. (EC.10), which is implied by π ≥ 0 if and only if

s∗ ≤ 6.

Proof of Lemma EC.16 Condition (c) in Lemma EC.13 has been shown to be equivalent to

Ineq. (EC.11). Provided that Eq. (EC.12) is satisfied, Ineq. (EC.11) is equivalent to

4 + (2−π)(s∗− 4 +µ∗)≤
1

2−µ∗
(3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗π)) .

This inequality, given the fact 1− 2µ∗ ≥ 0, is equivalent to

π≥ 1

2(1− 2µ∗)

(
5− 4µ∗−

3(s∗− 2)

s∗− 4 +µ∗

)
,
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i.e., Ineq (EC.10). Given Condition (a) in Lemma EC.13, which implies π ≥ 0, Ineq. (EC.10) is

redundant if and only if the right-hand side of (EC.10) is nonpositive, i.e.,

3(2−µ∗)
2(1− 2µ∗)(s∗− 4 +µ∗)

≥ 1,

i.e.,

s∗ ≤ 4− 2−s∗+3 +
3(2− 2−s∗+3)

2 (1− 2−s∗+4)
.

This inequality is satisfied when s∗ ∈ {4,6}, as its right-hand side is equal to ∞ when s∗ = 4, and

61/8 when s∗ = 6. The inequality does not hold, by contrast, when s∗ ≥ 8, as

s∗ ≥ 8 ⇒ 2−s∗+2 ≤ 2−6 ⇒ 1− 2−s∗+2

1/4− 2−s∗+2
≤ 1− 2−6

1/4− 2−6
=

63

15

⇒ 4− 2−s∗+3 +
3(2− 2−s∗+3)

2 (1− 2−s∗+4)
< 4 +

3

2
· 2
4
· 63

15
< 8≤ s∗.

Thus, for all even numbers s∗ ≥ 4, Ineq. (EC.11) follows if and only if s∗ ≤ 6. �

Proof of Lemma EC.12 The theorem follows from Lemma EC.13, where Condition (a) has

been characterized by Lemma EC.15, Condition (b) by Lemmas EC.14 can be dispensed with,

and Condition (c), by Lemma EC.16, can be dispensed with when s∗ ≤ 6 (hence Claim (i) of the

theorem) and is equivalent to Ineq (EC.10) when s∗ > 6 (hence Claim (ii) of the theorem). Finally,

Condition (d) in Lemma EC.13 is the same as Condition (b) in Lemma EC.12. �

EC.5. Lemmas EC.17 and EC.18

Lemma EC.17. If π= 1, the left-hand side of (EC.9) is less than the right-hand side of (EC.9).

Proof of Lemma EC.17 When π= 1, the left-hand side of (EC.9) is equal to (2−µ∗)2(s∗− 6 +

µ∗), and the right-hand side equal to

(2(1 +µ∗)− 3µ∗) (3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗+ 3µ∗))

= (2−µ∗)
(
2s∗+ 6−µ∗−µ∗s∗−µ2

∗
)
.

Thus, the lemma follows if

(2−µ∗)(s∗− 6 +µ∗)< 2s∗+ 6−µ∗−µ∗s∗−µ2
∗,

i.e., 9µ∗ < 18, which is true because µ∗ = 2−s∗+3. �

Lemma EC.18. Starting at state x such that x̂(3) ≤ s∗ ≤ x̂(4), s∗ = 4 constitutes a robust trilateral

equilibrium if and only if v/δ > 35/2, and s∗ = 6 constitutes such an equilibrium if and only if

v/δ > 6801/120 (= 56.675).
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Proof of Lemma EC.18 By Lemma EC.12, given s∗ ≤ 6 and x̂(3) ≤ s∗ ≤ x̂(4), the necessary

and sufficient condition for equilibrium is that Eq. (EC.9) admits a solution for π ∈ [0,1]. By

Lemma EC.17, the left-hand side of that equation is less than its right-hand side when π= 1. Thus,

it suffices to show that the left-hand side is greater than the right-hand side when π= 0, i.e.,

3µ∗v

δ
(2−µ∗) + (2−µ∗)2(s∗− 6 +µ∗)> 2(1 +µ∗) (3s∗+ 2(1− 2µ∗)− (s∗− 4 +µ∗)(1− 2µ∗)) ,

which is equivalent to

v

δ
(2−µ∗)> s∗(4 +µ∗) + (6−µ∗)(2/µ∗− 2−µ∗).

Since µ∗ is equal to 1/2 when s∗ = 4, and equal to 1/8 when s∗ = 6, the above inequality is

equivalent to v/δ > 35/2 when s∗ = 4, and v/δ > 6801/120 when s∗ = 6. �

EC.6. Verification of the Quadrilateral Equilibrium in Section 4.1

First, from our characterization of trilateral-rivalry equilibria, one can obtain the associated value

function for the trilateral-rivalry equilibrium with dropout state s∗ = 4:

V2 = 4δ, (EC.14)

V3 = (16 + 3/2−πγ,3) δ, (EC.15)

M2 = V3/2− 3δ/4, (EC.16)

L2 = δ/2, (EC.17)

M3 = πγ,3L2 = πγ,3δ/2, (EC.18)

L3 = 0. (EC.19)

Second, recall the notation Wα, Wβ, Wγ1 and Wγ2 : In the consecutive configuration (16) such

that m = 2, let Wα denote the continuation value for α, Wβ the continuation value for β, Wγ1

for γ1, and Wγ2 for γ2. By Provision (c.i) of the proposed strategy profile, players β, γ1 and γ2 each

bid for sure, with others staying put and hence omitted. Thus the configuration in the next round

is one of the following three, each with probability 1/3:

[β,α,�, γ1, γ2], t= 4; (EC.20)

[γ1, α,β,�, γ2], t= 4; (EC.21)

[γ2, α,β, γ1], t= 3. (EC.22)

If it is (EC.20) or (EC.21), player γ2 quits and the other three play the trilateral-rivalry equilibrium

with s∗ = 4; if it is (EC.22) then each non-frontrunner bids for sure, as in (16).
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Given any consecutive configuration in the of (16), then

Wγ2 =
1

3
(Wα− 4δ) (EC.23)

because γ2 quits, thereby getting zero payoff, unless (EC.22) happens. Since (EC.20), (EC.21)

and (EC.22) each happen with probability 1/3,

Wα =
1

3
(M3 +M2 +Wβ), (EC.24)

Wβ =
1

3
((V3− 2δ) +L2 +Wγ1)

(EC.17)
=

1

3

(
V3−

3

2
δ+Wγ1

)
, (EC.25)

and

Wγ1 =
1

3
(L3 + (V2− 3δ) +Wγ2)

=
1

3

(
δ+

1

3
(Wα− 4δ)

)
by (EC.14), (EC.19) and (EC.23)

=
1

9

(
−δ+

1

3
(M3 +M2 +Wβ)

)
by (EC.24)

=
1

27

(
−3δ+

πγ,3
2
δ+

(
1

2
V3−

3

4
δ

)
+

1

3

(
V3−

3

2
δ+Wγ1

))
by (EC.18), (EC.16) and (EC.25).

Thus,

Wγ1 =
1

80

(
5

2
V3 +

(
−9 +

1

4
(6πγ,3− 15)

)
δ

)
(EC.15)

=
1

80

(
5

2

(
16 +

3

2
−πγ,3

)
δ+

(
−9 +

1

4
(6πγ,3− 15)

)
δ

)
=

1

80
(31−πγ,3) δ. (EC.26)

This plugged into Eq. (EC.25) gives

Wβ =
1

3

(
V3−

3

2
δ+

1

80
(31−πγ,3) δ

)
(EC.15)

=
1

3

((
16 +

3

2
−πγ,3

)
δ− 3

2
δ+

1

80
(31−πγ,3) δ

)
=

1

3

(
16 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ. (EC.27)

Plugging this into Eq. (EC.24), we have

Wα =
1

3

(
M3 +M2 +

1

3

(
16 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ

)
(EC.18),(EC.16)

=
1

3

(
πγ,3

2
δ+

(
1

2
V3−

3

4
δ

)
+

1

3

(
16 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ

)
(EC.15)

=
1

3

(
πγ,3

2
δ+

1

2

(
16 +

3

2
−πγ,3

)
δ− 3

4
δ+

1

3

(
16 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ

)
=

1

9

(
40 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ (EC.28)
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Then Eq. (EC.23) implies

Wγ2 =
1

27

(
4 +

31

80
−
(

1 +
1

80

)
πγ,3

)
δ. (EC.29)

Recall that 0<πγ,3 < 1, which plugged into Eqs. (EC.26), (EC.27), (EC.28) and (EC.29) implies

3
8
δ <Wγ1 <

32
80
δ= 2

5
δ, (EC.30)

5δ= 1
3
· 15δ <Wβ <

1
3
· 17δ < 6δ, (EC.31)

4δ < 1
9
· 39δ <Wα <

1
9
· 41δ < 5δ, (EC.32)

1
9
δ= 3

27
δ <Wγ2 <

5
27
δ. (EC.33)

We verify the equilibrium conditions through backward induction. Let us start with any subgame

with state t≥ 4. Expecting the trilateral-rivalry equilibrium to be played in the subgame (Provi-

sion (e)), the current frontrunner, follower and third-place bidder each finds it a best response to

abide by it, as verified in our paper. The lowest-place bidder γ2 cannot profit from the deviation of

leapfrogging to the top: being on the top gives him a continuation value equal to V2 = 4δ because

he and the previous frontrunner and follow form a consecutive trilateral configuration, while the

leapfrog costs him a payment at least as large as 5δ. Thus, the proposed strategy profile is an

equilibrium in this subgame.

Next consider any subgame with t = 3, i.e., the consecutive configuration (16). For player γ2:

if he does not bid then the state becomes t = 4 next round, in which he will quit and get zero;

whereas if he bids now and becomes the next frontrunner, he gets a payoff Wα−4δ, which is positive

by (EC.32); thus bidding is his best response. For player γ1: if he becomes the next frontrunner

(through bidding), then the next configuration becomes (EC.21), giving him a payoff equal to

V2−3δ= δ; whereas, if γ1 does not bid, the next round is either (EC.20), giving him a payoff L3 =

0, or (EC.22), giving him a payoff Wγ2 < 5δ/27 by (EC.33). Thus, bidding is the best response

for player γ1. For player β: if he bids and becomes the next frontrunner, the next configuration

is (EC.20), giving him a payoff equal to V3−2δ, which is larger than 14δ by Eq. (EC.15); whereas,

if β does not bid, then the next configuration is either (EC.21), giving him a payoff L2 = δ/2,

or (EC.22), giving him a payoff Wγ1 < 2δ/5 by (EC.30). Thus bidding is the best response for

player β. Therefore, the proposed strategy profile constitutes an equilibrium in any subgame that

starts with the consecutive configuration (16).

We next consider any subgame with t= 2, which means the third round, with configuration in

the form  α
β

{γ1, γ2}

 . (EC.34)
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For player β: if he becomes the next frontrunner, then according to Provision (c.ii) he gets

V3− 2δ
(EC.15)

=

(
16 +

3

2
−πγ,3

)
δ− 2δ=

(
14 +

3

2
−πγ,3

)
δ;

by contrast, if he does not bid then, since both of the γ players are bidding according to Provi-

sion (b), β in the next round will become the third-place bidder in the consecutive configuration

and hence gets payoff Wγ1 < 2δ/5 by (EC.30). Thus bidding is the best response for β. For each of

the γ players: if he does not bid then he becomes the fourth-place player in the next round thereby

getting only Wγ2 < 5δ/27 by (EC.33); whereas bidding and becoming the next frontrunner gives

him Wα − 3δ > δ by (EC.32); thus bidding is the best response for each of γ1 and γ2. Hence the

proposed strategy profile constitutes an equilibrium in any subgame with t= 2.

Next consider any subgame with t= 1, which means the second round, at which the configuration

is in the form [
α

{γ1, γ2, γ3}

]
. (EC.35)

If a γ player does not bid, he in the third round will become one of the two γ players in the

configuration (EC.34) and hence his payoff will be equal to

1

3
· 0 +

1

3
(Wα− 3δ) +

1

3
Wγ2

(EC.32),(EC.33)

<
1

3
(5δ− 3δ) +

5

81
δ=

59

81
δ < δ,

where the zero term on the left-hand side is his payoff in the event where the β player in the third

round gets to become the next frontrunner thereby starting the subgame equilibrium according to

Provision (c.ii), rendering zero expected payoff for both bottom-row players, this γ one of them.

By contrast, if this γ player bids and becomes the next frontrunner, then in the third round he

will be the α in configuration (EC.34), which in the fourth round will become one of the following,

each with probability 1/3:  β
α
∅

{γ1, γ2}

 ,
 γ1αβ
γ2

 ,
 γ2αβ
γ1

 ; (EC.36)

thus, when t= 1, his expected payoff from bidding and becoming the next frontrunner is

1

3
M3 +

2

3
Wβ − 2δ

(EC.31)

>
2

3
· 5δ− 2δ=

4

3
δ > δ.

Hence bidding is the best response for the player. Thus, the proposed strategy constitutes an

equilibrium in any subgame with t= 1.

Finally, consider t= 0, i.e., the initial round. Consider any bidder i. If i bids and becomes the

frontrunner (in the second round), then he will become the β in the configuration (EC.34) in the

third round, and then in the fourth round, his position one of the three configurations in (EC.36)
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occupied by the β there. Thus his payoff from bidding in the initial round and becoming the first

frontrunner is equal to

−δ+
1

3
(V3− 2δ) +

2

3
Wγ1

(EC.15)
= −δ+

1

3

((
16 +

3

2
−πγ,3

)
δ− 2δ

)
+

2

3
Wγ1 >

23

6
δ+

2

3
· 3
8
δ=

49

12
δ.

If i does not bid in the initial round, he becomes in the second round one of the γ players in the

configuration (EC.35); then he either (i) pays 2δ to become the frontrunner in the third round (and

become the second-place player in the fourth round to get either M3 or Wβ), or (ii) becomes one

of the two γ players in the configuration (EC.34) in the third round. In Case (ii), as shown in the

previous step on t= 2, the best outcome for the bidder is to get Wα−3δ. Since M3 < δ/2 by (EC.18)

and Wβ−2δ < 4δ by (EC.31), Case (i) renders less than 4δ for him; since Wα−3δ < 2δ by (EC.32),

Case (ii) gives him less than 2δ. Thus, either case in the alternative of not bidding produces less

than 4δ, while bidding and becoming the initial frontrunner yields more than 4δ. Thus, bidding is

the best response for each player i in the initial round. Therefore, the quadrilateral-rivalry strategy

profile is a subgame perfect equilibrium.

EC.7. Verification of the Perfect Bayesian Equilibrium in Section 4.2

First, consider any round after the second one, and let (s1, s2) be the current updated pair of

infimum types. Let i be the current follower. If i does not bid now, the game ends and he gets zero,

with the cost of the payment he has committed in the past already sunk. If i bids then he adds 2δ

to his committed payment and becomes the next frontrunner, with his infimum type updated to s′i;

thus, given type ti, his expected payoff from bidding is equal to

−2δ

ti
+Vi(ti|s′i, s−i)

(22)
= −2δ

ti
+

2δ

s′i
+

(
1− 2δ

s′i

)
Mi(ti|s′i, s′−i)

(21)
= −2δ

ti
+

2δ

s′i
+

(
1− 2δ

s′i

)
max

{
0,−2δ

ti
+Vi(ti|s′′i , s′−i)

}
, (EC.37)

where s′−i is derived from (s′i, s−i) by Eq. (20), and s′′i from (s′i, s
′
−i) analogously; and Eq. (22)

is applicable to the first line because Vi(ti|s′i, s−i) is player i’s expected payoff from being the

frontrunner in the next round, which is after at least the second round.

Claim: For any ti ∈ [ai, zi] there exists an integer Ni(ti) such that at the start of the Ni(ti)th

round Mi(ti|sNi(ti)
i , s

Ni(ti)
−i ) = 0, with (sni , s

n
−i) denoting the updated infimums at the start of the nth

round. Otherwise, Eq. (EC.37), applied iteratively, implies that for any n= 1,2,3, . . .

0<−2δ

ti
+Vi(ti|s′i, s−i) =−2δ

ti
n+

(
1− 2δ

sni

)
Mi(ti|sni , sn−i)≤−

2δ

ti
n+ v,

which is impossible given v a finite constant.
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The claim established above, coupled with the first line of (EC.37), implies that, at the start of

the Ni(ti)th round, if the updated infimums thereof are denoted by (s′i, s
′
−i), then

− 2δ

ti
+Vi(ti|s′i, s−i)

{
> 0 if ti > s

′
i

≤ 0 if ti ≤ s′i.
(EC.38)

Then, at the start of the (Ni(ti)− 1)th round, Eq. (21) implies

Mi(ti|si, s−i)
{
> 0 if ti > s

′
i

= 0 if ti ≤ s′i.
(EC.39)

In other words, in the (Ni(ti)− 1)th round, at the start of which the updated infimum types are

(si, s−i), and the current follower i would bid if and only if his type is above s′i (i.e., if and only if

the continuation value of currently being the follower is positive).

At the start of the (Ni(ti)− 2)th round, the updated infimum of player i, the frontrunner now

and soon to become the follower next, is still si, while that of player −i is some s−1−i such that her

updated infimum s−i at the (Ni(ti)− 1)th round is derived from (si, s
−1
−i ) by Eq. (20); by Eq. (22),

Vi(ti|si, s−1−i ) =
2δ

si
+

(
1− 2δ

si

)
Mi(ti|si, s−1−i )≥

2δ

si
,

with the inequality due to Eq. (21). Thus,

ti > si =⇒−2δ

ti
+Vi(ti|si, s−1−i )≥−

2δ

ti
+

2δ

si
> 0; (EC.40)

if ti ≤ si then ti < s
′
i, as si < s

′
i by Eq. (20), then Eq. (EC.39) implies Mi(ti|si, s−1−i ) = 0 and hence

ti ≤ si =⇒−2δ

ti
+Vi(ti|si, s−1−i ) =−2δ

ti
+

2δ

si
≤ 0. (EC.41)

Thus, (EC.38) is extended from the Ni(ti)th round to the (Ni(ti) − 2)th round. Thus, in the

(Ni(ti)− 3)th round, where the current follower i contemplates whether or not to bid, (EC.40)

and (EC.41) together imply that player i would bid if and only if his type is above si, as prescribed

by the proposed equilibrium.

We can repeat the above reasoning, thereby extending (EC.38) backward round by round, as

long as the value function Vi obeys Eq. (22). Hence by backward induction we extend (EC.38)

down to the third round, with (s′i, s−i) denoting the updated infimum types at the start of the

third round. That means, in the second round, the follower i finds it a best response to bid if and

only if his type is above s′i, as prescribed by the proposed equilibrium.

Thus we need only to justify the equilibrium strategy for the initial round. Consider the decision

of any player i ∈ {1,2} in the initial round. If player i bids and becomes the frontrunner in the

second round, then he commits the first increment δ; if the other player −i does not bid, then

player i wins and gets the payoff

− δ
ti

+ v;
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if player −i also bids in the initial round (and fails to be selected the frontrunner), player i’s

expected payoff is equal to

− δ

ti
+V 0

i (ti|s0i , s0−i)
(23)
= − δ

ti
+
δ

s0i
+

(
1− δ

s0i

)
Mi(ti|s0i , s1−i). (EC.42)

If player i bids but is not selected the frontrunner, then his expected payoff is equal to

Mi(ti|s0i , s0−i) = max

{
0,−2δ

ti
+Vi(ti|s1i , s0−i)

}
.

If player i stays put, then the game ends, either with no sale if player −i also stays put, or with −i

bidding and winning the good at price δ; in either case player i gets zero. Ineq. (EC.38), applied

to the case where (s′i, s−i) = (s1i , s
0
−i) in the third round, means

−2δ

ti
+Vi(ti|s1i , s0−i)

{
> 0 if ti > s

1
i

≤ 0 if ti ≤ s1i .

Thus, in the second round, Eq. (21) implies

Mi(ti|s0i , s0−i)
{
> 0 if ti > s

1
i

= 0 if ti ≤ s1i .

If ti ≤ s0i , ti < s1i and hence Mi(ti|s0i , s0−i) = 0, so Eq. (EC.42) implies

− δ
ti

+V 0
i (ti|s0i , s0−i) =− δ

ti
+
δ

s0i
+

(
1− δ

s0i

)
Mi(ti|s0i , s1−i) =− δ

ti
+
δ

s0i
≤ 0;

by contrast, if ti > s
0
i ,

− δ
ti

+Vi(ti|s0i , s0−i) =− δ
ti

+
δ

s0i
+

(
1− δ

s0i

)
Mi(ti|s0i , s1−i)≥−

δ

ti
+
δ

s0i
≥ 0.

Thus, as long as −δ/s0i + v ≥ 0, it is a best response for player i to bid in the initial round if and

only ti > s0i . Note that −δ/s0i + v ≥ 0 is equivalent to δ/s0i ≤ v, which is guaranteed by Eq. (18),

because Eq. (18), with the roles of i and −i switched, implies

δ

s0i
= vF−i(s

0
−i)≤ v.

Hence −δ/s0i + v ≥ 0 is true, so the strategy in the initial round prescribed by the proposed

equilibrium is a best response for i.
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