
ar
X

iv
:1

81
0.

10
98

7v
1 

 [
ec

on
.E

M
] 

 2
5 

O
ct

 2
01

8

Nuclear Norm Regularized Estimation of

Panel Regression Models ∗

Hyungsik Roger Moon‡§ Martin Weidner¶

October 26, 2018

Abstract

In this paper we investigate panel regression models with interactive fixed effects. We

propose two new estimation methods that are based on minimizing convex objective

functions. The first method minimizes the sum of squared residuals with a nuclear

(trace) norm regularization. The second method minimizes the nuclear norm of the

residuals. We establish the consistency of the two resulting estimators. Those estima-

tors have a very important computational advantage compared to the existing least

squares (LS) estimator, in that they are defined as minimizers of a convex objective

function. In addition, the nuclear norm penalization helps to resolve a potential iden-

tification problem for interactive fixed effect models, in particular when the regressors

are low-rank and the number of the factors is unknown. We also show how to construct

estimators that are asymptotically equivalent to the least squares (LS) estimator in Bai

(2009) and Moon and Weidner (2017) by using our nuclear norm regularized or mini-

mized estimators as initial values for a finite number of LS minimizing iteration steps.

This iteration avoids any non-convex minimization, while the original LS estimation

problem is generally non-convex, and can have multiple local minima.
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1 Introduction

In this paper we consider a linear panel regression model of the form

Yit =
K∑

k=1

β0,kXk,it +

R0∑

r=1

λ0,ir f0,tr + Eit , (1)

where i = 1 . . . N and t = 1 . . . T label the cross-sectional units and the time periods,

respectively, Yit is an observed dependent variable, Xk,it are observed regressors, β0 =

(β0,1, . . . , β0,K)
′ are unknown regression coefficients, f0,tr and λ0,ir are unobserved factors

and factor loadings, Eit is an unobserved idiosyncratic error term, R0 denotes the number

of factors, and K denotes the number of regressors. The factors and loadings are also called

interactive fixed effects. They parsimoniously represent heterogeneity in both dimensions of

the panel, and they contain the conventional additive error components as a special case.

We assume that R0 ≪ min(N, T ), and for our asymptotic results we will consider R0 as

fixed, as N, T → ∞. We can rewrite this model in matrix notation as

Y = β0 ·X + Γ0 + E, (2)

where β0 ·X :=
∑K

k=1Xkβ0,k and Γ0 := λ0f
′
0, and Y , Xk, Γ0 and E are N×T matrices, while

λ0 and f0 are N×R0 and T×R0 matrices, respectively. The parameters β0 and Γ0 are treated

as non-random throughout the whole paper, that is, all stochastic statements are implicitly

conditional on their realization. Without loss of generality we assume R0 = rank(Γ0).

One widely used estimation technique for interactive fixed effect panel regressions is the

least squares (LS) method,1 which treats λ and f as parameters to estimate (fixed effects).2

Let the Frobenius norm of an N × T matrix A be ‖A‖2 :=
(∑N

i=1

∑T
t=1A

2
it

)1/2
. Then, the

LS estimator for β reads

β̂LS,R := argmin
β∈RK

LR(β), LR(β) := min
{λ∈RN×R, f∈RT×R}

1

2NT
‖Y − β ·X − λf ′‖22 , (3)

where R is the number of factors chosen in estimation. A matrix Γ ∈ RN×T can be written

as Γ = λf ′, for some λ ∈ RN×R and f ∈ RT×R, if and only if rank(Γ) ≤ R. The profiled

1 The LS estimator in this context is also sometimes called concentrated least squares estimator, and was
originally proposed by Kiefer (1980).

2Other estimation methods of panel regressions with interactive fixed effects include the quasi-difference
approach (e.g., Holtz-Eakin, Newey, and Rosen 1988), generalized method of moments estimation (e.g.
Ahn, Lee, and Schmidt 2001, 2013), the common correlated random effect method (e.g., Pesaran 2006),
the decision theoretic approach (e.g., Chamberlain and Moreira 2009), and Lasso type shrinkage methods
on fixed effects (e.g., Cheng, Liao, and Schorfheide 2016, Lu and Su 2016, Su, Shi, and Phillips 2016).
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least square objective function LR(β) can therefore equivalently be expressed as

LR(β) = min
{Γ∈RN×T | rank(Γ)≤R}

1

2NT
‖Y − β ·X − Γ‖22 . (4)

It is known that under appropriate regularity conditions (including exogeneity of Xk,it with

respect to Eit), for R ≥ R0, and as N, T → ∞ at the same rate, the LS estimator β̂LS,R

is
√
NT -consistent and asymptotically normal, with a bias in the limiting distribution that

can be corrected for (e.g., Bai 2009, Moon and Weidner 2015, 2017).

The LS estimation approach is convenient, because it does not restrict the relationship be-

tween the unobserved heterogeneity (Γ0) and the observed explanatory variables (X1, ..., XK).

However, the calculation of β̂LS,R requires solving a non-convex optimization problem. While

‖Y − β ·X − Γ‖22 is a convex function of β and Γ the profiled objective function LR(β) is

in general not convex in β, and can have multiple local minima, as will be discussed in Sec-

tion 2.1 in more detail. The reason for the non-convexity is that the constraint rank(Γ) ≤ R

is non-convex.

In this paper we use a convex relaxation of this rank constraint. Let s(Γ) := [s1(Γ),

s2(Γ), . . . , smin(N,T )(Γ)] be the vector of singular values of Γ.3 The rank of a matrix is equal

to the number of non-zero singular values, that is, rank(Γ) = ‖s(Γ)‖0, where ‖·‖0 denotes

the ℓ0-norm. The nuclear norm of Γ is defined by ‖Γ‖1 := ‖s(Γ)‖1 =
∑min(N,T )

r=1 sr(Γ), that

is, the nuclear norm of the matrix Γ is simply the ℓ1-norm of the vector s(Γ).4 A convex

relaxation of (4) can then be obtained by replacing the non-convex constraint rank(Γ) ≤ R

by the convex constraint ‖Γ‖1 ≤ c, for some constant c. This gives

min{
Γ∈RN×T

∣∣ ‖Γ‖1≤cψ
}

1

2NT
‖Y − β ·X − Γ‖22

= min
Γ∈RN×T

[
1

2NT
‖Y − β ·X − Γ‖22 +

ψ√
NT

‖Γ‖1
]
=: Qψ(β), (5)

where in the second line we replaced the constraint on the nuclear norm by a nuclear-norm

penalty term. Choosing a particular penalization parameter ψ > 0 is equivalent to choosing

a particular value for c = cψ, and we find it more convenient to parameterize the convex

relaxation Qψ(β) of LR(β) by ψ instead of c. The normalizations with 1/(2NT ) and 1/
√
NT

3 The non-zero singular values of Γ are the square roots of non-zero eigenvalues of ΓΓ′. Singular values
are non-negative by definition.

4 The nuclear norm ‖Γ‖1 is the convex envelope of rank(Γ) over the set of matrices with spectral norm at
most one, see e.g. Recht, Fazel, and Parrilo (2010). The nuclear norm is also sometimes called trace norm,
Schatten 1-norm, or Ky Fan n-norm. Our index notation for the nuclear norm ‖Γ‖1, Frobenius norm ‖Γ‖2,
and spectral norm ‖Γ‖∞ = limq→∞ ‖Γ‖q is motivated by the unifying formula ‖Γ‖q =

∑min(N,T )
r=1 [sr(Γ)]

q
.
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in (5) are somewhat arbitrary, but turn out to be convenient for our purposes. For a given

ψ > 0 the nuclear-norm regularized estimator reads

β̂ψ := argmin
β∈RK

Qψ(β).

We also define β̂∗ = limψ→0 β̂ψ.
5 We will show in Section 2.2 that β̂∗ = argminβ ‖Y − β ·X‖1,

that is, β̂∗ can alternatively be obtained by minimizing the nuclear norm of Y − β ·X . The

main goal of this paper is to explore the properties of β̂ψ and β̂∗, that is, we want to

understand how these estimators can be used to help identify and estimate β0.

Those estimators have a very important computational advantage compared to the LS

estimator, in that they are defined as minimizers of a convex objective function. The LS

objective function in (4) is in general non-convex and can have multiple local minima.

This can become a serious computational obstacle if the dimension of the regression co-

efficients is large. If the underlying panel regression model is nonlinear (e.g., Chen 2014,

Chen, Fernandez-Val, and Weidner 2014), then optimizing a non-convex objective function

with respect to the high-dimensional parameters λ and f becomes even more challenging.

By contrast, under appropriate non-collinearity conditions on the regressors, the nuclear

norm penalized objective function in (5) is strictly convex and therefore has a unique local

minimum that is also the global minimum.

In addition to this computation advantage the nuclear norm penalization also helps to

resolve a potential identification problem for interactive fixed effect models. Namely, without

restrictions on the parameter matrix Γ0 in (2), we cannot separate β0 ·X and Γ0 uniquely,

because for any other parameter β we can write

Y = β0 ·X + Γ0 + E = β ·X + Γ(β,X) + E, where Γ(β,X) := Γ0 − (β − β0)X,

implying that (β0,Γ0) and (β,Γ(β,X)) are observationally equivalent. If any non-trivial

linear combination of the regressors Xk is a high-rank matrix, then the assumption that

R0 = rank(Γ0) is sufficient to identify β0, because rank[Γ(β,X)] will be large for any other

value of β. However, if some of the regressors Xk have low rank, and the true number

of factors R0 is unknown, then there is an identification problem, and some regularization

device is needed to resolve this. In Section 2 we show that nuclear norm regularization can

be very helpful for that purpose.

In this paper, we establish asymptotic results for β̂ψ and β̂∗ when both panel dimensions

5 Here, the limit ψ → 0 is for fixed N and T , and has nothing to do with our large N , T asymptotic
considerations.
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are large. Under appropriate regularity conditions we show
√

min(N, T )-consistency of these

estimators. We also show how to use them as initial values for a finite iteration procedure

that gives improved estimates that are asymptotically equivalent to the LS estimator.

Nuclear norm penalized estimation has been widely studied in machine learning and sta-

tistical learning literature. There, the parameter of interest is usually the matrix that we call

Γ in our model, in particular, there are many papers that use this penalization method in ma-

trix completion (e.g., Recht, Fazel, and Parrilo 2010 and Hastie, Tibshirani, and Wainwright

2015 for recent surveys), and for reduced rank regression estimation (e.g., Rohde and Tsybakov

2011). In the Econometrics literature Athey, Bayati, Doudchenko, Imbens, and Khosravi

(2017) apply nuclear norm penalization to treatment effect estimation in panel data models

with missing observations, and Bai and Ng (2017) use it to improve estimation in a pure

factor model. To the best of our knowledge, none of these existing papers contains any

inference results on the common regression coefficients β0, and the nuclear norm minimizing

estimator β̂∗ has also not been proposed previously.

The paper is organized as follows. Section 2 provides theoretical motivations of nuclear

regularization over the conventional rank restriction. In Section 3 and 4 we derive consistency

results on β̂ψ and β̂∗ under appropriate regularity conditions. In Section 5 we show how to use

these two estimators as a preliminary estimator to construct an estimator through iterations

that achieves asymptotic equivalence to the fixed effect estimator. Section 6 investigates

finite sample properties of the estimators. Section 7 concludes the paper. All the technical

derivations and proofs are presented in the appendix.

2 Motivation of Nuclear Norm Regularization

In this section we provide further motivation and explanation of the nuclear norm regularized

estimation method. This estimation approach comes with the computational advantage of

having a convex objective function, and it also provides a solution to the identification

problem of interactive fixed effect models with low-rank regressors.

2.1 Convex Relaxation

We have already introduced the profile LS objective function LR(β) and its convex relaxation

Qψ(β) in the introduction. Here, we explain those objective functions further. Firstly, we

want to briefly explain why Qψ(β) is indeed convex. We have introduced the nuclear norm

as ‖Γ‖1 :=
∑min(N,T )

r=1 sr(Γ), but it is not obvious from this definition that ‖Γ‖1 is convex

in Γ, because the singular values sr(Γ) themselves are generally not convex functions of Γ,

5



except for r = 1. A useful alternative definition of the nuclear norm is

‖Γ‖1 = max{
A∈RN×T

∣∣‖A‖∞≤1

}Tr(A
′ Γ), (6)

that is, the nuclear norm is dual to the spectral norm ‖ · ‖∞. From this it is easy to see

that ‖ · ‖1 is indeed a matrix norm, and thus convex in Γ.6 Therefore, the nuclear norm

regularized objective function 1
2NT

‖Y − β ·X − Γ‖22 + ψ√
NT

‖Γ‖1 as a function of (β,Γ) is

convex. Profiling with respect to Γ preserves convexity, that is, Qψ(β) is also convex.

By contrast, the least squares objective 1
2NT

‖Y − β ·X − λf ′‖22 is generally non-convex

in the parameters β, λ and f . However, the non-convexity of the LS minimization over λ

and f is actually not a serious problem in computing the profile objective function LR(β), as

long as the regression model is linear and one of the dimensions N or T is not too large.7 Let

sr(Y −β ·X) be the rth largest singular value of the matrix (Y −β ·X), for r = 1, ...,min(N, T ).

One can show that (see Moon and Weidner 2017)

LR(β) =
1

2NT

min(N,T )∑

r=R+1

[sr(Y − β ·X)]2, (7)

where the largest R singular values are omitted in the sum, because they were absorbed by

the principal component estimates λ̂ and f̂ . The remaining problem in calculating β̂LS,R is

the generally non-convex minimization of LR(β) over β.
8 To illustrate the potential difficulty

caused by this non-convexity, in Figure 1 we plot LR(β) for the simple example described in

Appendix A.1. In this example LR(β) is non-convex and has two local minima, one of which

(the global one) is close to the true parameter β0 = 2. The figure also shows that Qψ(β) is

convex and only has a single local minimum.

6 Let B and C be matrices of the same size. Then, by (6) there exists a matrix A of the same size with
‖A‖∞ ≤ 1 such that ‖B+C‖1 = Tr[A′ (B+C)] = Tr(A′B) +Tr(A′C) ≤ ‖B‖1+ ‖C‖1, which is the triangle
inequality for the nuclear norm. Together with absolute homogeneity of ‖·‖1 this implies convexity.

7The optimal λ̂ and f̂ are simply given by the leading R principal components of Y − β ·X . Calculating
them requires to find the eigenvalues and eigenvectors of either the N ×N matrix (Y −β ·X)(Y −β ·X)′ or
the T × T matrix (Y − β ·X)′(Y − β ·X), which takes at most a few seconds on modern computers, as long
as min(N, T ) / 5.000, or so. The non-zero eigenvalues of (Y −β ·X)(Y −β ·X)′ and (Y −β ·X)′(Y −β ·X)
are identical, and are equal to the square of the non-zero singular values of Y − β ·X .

8 In our discussion here we focus on the calculation of β̂LS,R via minimization of the profile objective

function LR(β). More generally, β̂LS,R can be obtained by any method that minimizes ‖Y − β ·X − λf ′‖22
over β, λ, f , see e.g. Bai (2009) or the supplementary appendix in Moon and Weidner (2015). For any
such method the non-convexity of the objective function is a potential problem, because the algorithm may
converge to a local minimum, or potentially even to a critical point that is not a local minimum.
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Figure 1: Plot of LR(β) and Qψ(β) for the example detailed in Appendix A.1. The true
parameter is β0 = 2.

For any ψ > 0 define the functions ℓψ : [0,∞) 7→ [0,∞) and qψ : [0,∞) 7→ [0,∞) by

ℓψ(s) :=

{
1
2
s2, for s < ψ,

0, for s ≥ ψ,
qψ(s) :=

{
1
2
s2, for s < ψ,

ψs− ψ2

2
, for s ≥ ψ.

(8)

For an N × T matrix A let ℓψ(A) :=
∑min(N,T )

r=1 ℓψ(sr(A)) and qψ(A) :=
∑min(N,T )

r=1 qψ(sr(A)).

We can then rewrite (7) as

LR(β) = ℓψ(β,R)

(
Y − β ·X√

NT

)
, (9)

where ψ(β,R) satisfies

sR+1

(
Y − β ·X√

NT

)
< ψ(β,R) ≤ sR

(
Y − β ·X√

NT

)
. (10)

Here, the normalization with 1/
√
NT is natural, because under standard assumptions the

largest singular value of Y − β · X is of order
√
NT , as N and T grow. The formulation

(9) is interesting for us, because the following lemma shows that we have a very similar

representation for Qψ(β).

Lemma 1. For any β ∈ RK and any ψ > 0 we have

Qψ(β) = qψ

(
Y − β ·X√

NT

)
.
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Figure 2: Plot of the functions qψ(s) and ℓψ(s) for ψ = 1.

The proof is given in the appendix. Figure 2 shows the functions qψ(s) and ℓψ(s) for real

valued arguments s and ψ = 1. For values s < ψ the functions are identical, but at s = ψ

the function ℓψ(s) has a non-continuous jump, implying that ℓψ(s) is non-convex, while qψ(s)

continues linearly for s ≥ ψ, thus remaining convex.

Comparing LR(β) and Qψ(β) we see that the parameter R that counts the number of

factors is replaced by the parameter ψ that characterizes the magnitude at which the singular

values of (Y − β · X)/
√
NT are considered to be factors. Large R corresponds to small ψ,

and vice versa. Fixing ψ as opposed to fixing R already changes the functional form of the

profile objective function, because according to (10) their relationship depends on β.

In addition, the objective function is convexified by replacing the function ℓψ(s) that is

applied to the singular values of (Y − β · X)/
√
NT with the function qψ(s), as defined in

(8). The function qψ(s) provides a convex continuation of ℓψ(s) for s ≥ ψ.

Using the closed-form expression for Qψ(β) in Lemma 1, and noticing that it is convex

in β, one can compute the minimizer β̂ψ of Qψ(β) using various optimizing algorithms for a

convex function (see chapter 5 of Hastie, Tibshirani, and Wainwright 2015). If the dimension

of β is small, then one may even use a simple grid search method to find β̂ψ.

2.2 Unique Matrix Separation

When estimating the interactive fixed effect model (1) in practice both β0 and R0 are un-

known. Showing that β0 and R0 can be consistently estimated jointly is a difficult problem

in general.9 Within the interactive fixed effects estimation framework this joint inference

problem has only been successfully addressed when both of the following assumptions are

9The problem of joint identification of β0 and R0 is often avoided in the literature. Some papers (e.g.
Bai 2009, Li, Qian, and Su 2016, Moon and Weidner 2017) assume that the number of factors R0 is known
when showing consistency for an estimator of β0. Alternatively, Lu and Su (2016) allow for unknown R0,
but assume consistency of their estimator for β0.

8



satisfies:10

(C1) There is a known upper bound Rmax such that R0 ≤ Rmax.

(C2) All the regressors Xk are “high-rank regressors”, that is, rank(Xk) is large for all k.

Under those assumptions (and other regularity conditions) the consistency proofs of Bai

(2009) and Moon and Weidner (2015) are applicable to the LS estimator for β that used

R = Rmax ≥ R0 factors in the estimation, and one can also show the convergence rate result∥∥β̂LS,Rmax − β0
∥∥ = OP

(
min(N, T )−1/2

)
, as N, T → ∞. To obtain a consistent estimator for

R0 one can then apply inference methods from pure factor models without regressors (e.g.

Bai and Ng 2002, Onatski 2010, Ahn and Horenstein 2013) to the matrix Y − β̂LS,Rmax ·X .

The condition (C2) above is particularly strong, because “low-rank regressors” are quite

common in practice. If we can write Xk,it = wk,ivk,t, then we have rank(Xk) = 1, and the

condition (C2) is violated. For example, Gobillon and Magnac (2016) estimate an inter-

active fixed effects model in a panel treatment effect setting, where the main regressor of

interest indeed can be multiplicatively decomposed in this way, with wk,i being the treat-

ment indicator of unit i, and vk,t being the time indicator of treatment.11 Interactive fixed

effects models for panel treatment effect applications have grown very popular recently,

and are closely related to the synthetic control method (Abadie and Gardeazabal 2003,

Abadie, Diamond, and Hainmueller 2010, Abadie, Diamond, and Hainmueller 2015; see also

Hsiao, Ching, and Wan 2012).

When R0 is unknown, then the presence of low-rank regressors creates an identification

problem, as illustrated by the following example.

Example 1. Consider a single (K = 1) low-rank regressor X1 = vw′, with vectors v ∈ RN

and w ∈ RT . Let R⋆ = R0 + 1, λ⋆ = [λ0, v], and f⋆ = [f0, (β0,1 − β⋆,1)w]. Then, model

(1) with parameters β0, R0, λ0, f0 is observationally equivalent to the same model with

parameters β⋆, R⋆, λ⋆, f⋆, because we have β0,1X1 + λ0f
′
0 = β⋆,1X1 + λ⋆f

′
⋆. Thus, β0 is

observationally equivalent to any other value β⋆ if the true number of factors is unknown.

The example shows that regression coefficients of low-rank regressors are not identified if

R0 is unknown, because β ·X could simply be absorbed into the factor structure λf ′, which

is also a low-rank matrix. Therefore, without some additional assumption or regularization

10 Some existing estimation methods avoid specifying R when estimating β0, but always at the cost of
some additional assumptions on the data generating process. For example, the common correlated effects
estimator of Pesaran (2006) avoids choosing R, but requires assumptions on how the factors f0 enter into
the observed regressors Xk, and requires all regressors of interest to be high-rank.

11 Other recent applications in the same vein are Chan and Kwok (2016), Powell (2017),
Gobillon and Wolff (2017), Adams (2017), Piracha, Tani, and Tchuente (2017), Li (2018), to list just a few.
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device, the two low-rank matrices β0 · X and Γ0 = λ0f
′
0 cannot be uniquely disentangled,

which is what we mean by “unique matrix separation” in the title of this section.

Nuclear Norm Minimizing Estimation

In the following we explain how the nuclear norm minimization approach overcomes the

restrictions (C1), that is, how to estimate regression coefficients when R0 is unknown. We

already introduced β̂∗ = limψ→0 β̂ψ in Section 1. Using Lemma 1 we can now characterize

β̂∗ differently. It is easy to see that limψ→0 ψ
−1qψ(s) = s, for s ∈ [0,∞), and therefore

limψ→0 ψ
−1qψ(A) = ‖A‖1, for A ∈ RN×T . Lemma 1 thus implies that limψ→0 ψ

−1Qψ(β) =

‖(Y − β ·X)/
√
NT‖1. Notice that for ψ = 0 we trivially have Q0(β) = 0, but the rescaled

objective function ψ−1Qψ(β) has a non-trivial limit as ψ → 0. Since rescaling the objective

function by a constant does not change the minimizer we thus find that

β̂∗ = argmin
β∈RK

‖Y − β ·X‖1 , (11)

that is, the small ψ limit of the nuclear norm regularized estimator β̂ψ is a nuclear norm

minimizing estimator. The objective function ‖Y − β ·X‖1 is convex in β.

According to (10) the limit ψ → 0 corresponds to choosing R very large. However, we

do not expect the LS estimator β̂LS,R to have good properties (in particular consistency)

if we choose R equal to or close to its maximum possible value min(N, T ). It is therefore

somewhat surprising that β̂ψ has a well-defined limit as ψ → 0, and that we are able to

show consistency of the limiting estimator β̂∗ under appropriate regularity conditions in the

following sections, because the resulting estimator for Γ is certainly not consistent for Γ0 in

that limit.12

The main significance of β̂∗ is that it provides an estimator for β that does not require

any choice of “bandwidth parameter”, because neither R nor ψ needs to be specified. It

thus provides a method to estimate β0 consistently without requiring knowledge of an upper

bound on R0 as in the condition (C1) above. In a second step we can then estimate R0

consistently by applying, for example, the Bai and Ng (2002) method for pure factor models

without regressors to the matrix Y − β̂∗ ·X .

12 The ψ → 0 limit (for fixed N , T ) of the optimal Γ in (5) is Y − β̂∗ ·X , which as N and T grow converges

to λ0f
′
0 + E for consistent β̂∗, that is, the estimator for Γ that corresponds to β̂∗ is not consistent for λ0f

′
0.
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Nuclear Norm Penalization Approach for Matrix Separation

Next, we explain how the nuclear norm regularization approach helps to overcome the re-

strictions (C2) above, that is, how to estimate regression coefficients for low-rank regressors

when R0 is unknown. The goal is to provide conditions on the regressors Xk under which

the nuclear norm penalization approach indeed solves the matrix separation problem for

low-rank regressors and interactive fixed effects.

We first want to answer this in a simplified setting, where the objective function is

replaced by the expected objective function, that is, we consider

β̄ψ := argmin
β

min
Γ

{
1

2NT
E

[
‖Y − β ·X − Γ‖22

∣∣∣X
]
+

ψ√
NT

‖Γ‖1
}
. (12)

Here, the expectation is conditional on all the regressors (X1, . . . , XK), and also implicitly

on all the parameters β0 and Γ0, because those are treated as non-random.13

For a matrix A, let PA := A(A′A)−1A′ and MA := I − PA be the projectors onto

and orthogonal to the column span of A, where I is the identity matrix of appropriate

dimensions, and † refers to the Moore-Penrose generalized inverse. Remember also our

notation α · X :=
∑K

k=1 αkXk for α ∈ RK . For vectors v we write ‖v‖ for the Euclidian

norm.

Proposition 1. Let E(Eit | X) = 0, and E (E2
it | X) <∞, for all i, t. For all α ∈ RK \ {0}

assume that

‖Mλ0(α ·X)Mf0‖1 > ‖Pλ0(α ·X)Pf0‖1 . (13)

Then,
∥∥β̄ψ − β0

∥∥ = O(ψ), as ψ → 0.

The proof is given in the appendix. The proposition considers fixed N , T , with only ψ →
0.14 The statement of the proposition implies that limψ→0 β̄ψ = β0. Thus, the proposition

provides conditions under which the nuclear norm regularization approach identifies the true

parameter β0. The proposition does not restrict the rank of the regressors, so the result

is applicable to both low-rank and high-rank regressors. The assumption E(Eit | X) = 0

requires strict exogeneity of all regressors, but we also allow for pre-determined regressors in

Section 4 below.

The beauty of Proposition 1 is that it provides a very easy to interpret non-collinearity

condition on the regressors Xk. It requires that for any linear combination of the regressors

13 β̄ψ can be viewed as a population version of β̂ψ for an appropriately defined population distribution
of Y conditional on X . But independent of this interpretation, β̄ψ is a convenient tool of discussing the
necessary non-collinearity condition on the regressors without requiring asymptotic analysis, yet.

14 Display (A.6) in the appendix provides a bound on ‖β̄ψ − β0‖ for finite ψ, but the limit ψ → 0 is what
matters most to us, because that limit allows to identify β0.
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the part Mλ0(α ·X)Mf0, which cannot be explained by neither λ0 nor f0, is larger in terms

of nuclear norm than the part Pλ0(α ·X)Pf0, which can be explained by both λ0 and f0. For

a single (K = 1) regressor with X1,it = viwt, as in Example 1, the condition simply becomes

‖Mλ0v‖‖Mf0w‖ > ‖Pλ0v‖‖Pf0w‖. Here, ‖Mλ0v‖2 and ‖Pλ0v‖2 are the residual sum of

squares, and the explained sum of squares of a regression of vi on the λ0,i, and analogously

for ‖Mf0w‖2 and ‖Pf0w‖2. In Example 1 we obviously have ‖Mλ⋆v‖ = 0 and ‖Mf⋆w‖ = 0,

that is, the parameters R⋆, β⋆, λ⋆, f⋆ are ruled out by the condition on the regressors in

Proposition 1.

Related to the regularity condition (13) of Proposition 1, it is possible to show (see Bai

2009, Moon and Weidner 2017) that the weaker condition Mλ0(α ·X)Mf0 6= 0 for any linear

combination α 6= 0 is sufficient for local identification of β in a sufficiently small neighborhood

around β0. However, that weaker condition is not sufficient for global identification of β0,

as illustrated by the examples in the supplementary appendix S.3 of Moon and Weidner

(2017). The stronger condition (13) in Proposition 1 guarantees global identification of β0

when using the nuclear norm penalization approach as a regularization device.

Providing such global identification conditions for interactive fixed effect models with

low-rank regressors and unknown R0 is a new contribution to the interactive fixed effects

literature.15 Our approach here is similar to the “Identification via a Strict Convex Penalty”

proposed in Chen and Pouzo (2012).

The following sections investigate the sample properties of the estimators β̂ψ and β̂∗.

3 Consistency Results for Low-Rank Regressors

Here, we consider a special case where the regressors X1, ..., XK are of low rank. This section

is short, because the results here are relatively straightforward extensions of Section 2.2. The

more general case that allows both high-rank and low-rank regressors will be discussed in

the following section.

The following theorem establishes consistency of the nuclear norm regularized estimator

β̂ψ, and the nuclear norm minimization estimator β̂∗. We consider asymptotic sequences

with N, T → ∞ and ψ = ψNT → 0, but we do not usually make the dependence of ψ on the

sample size explicit. We always consider R0 and K to be fixed constants in the asymptotic

15 If the model would not have any idiosyncratic errors (i.e. E = 0), then Y − β ·X = (β0 − β) ·X + Γ0,
and a natural solution to this identification problem would be to choose β as the solution to the rank
minimization problem minβ∈RK rank (Y − β ·X) , where at the true parameters we have rank (Y − β0 ·X) =
rank(Γ0) = R0, that is, we are minimizing the number of factors required to describe the data. However,
once idiosyncratic errors E are present, then this rank minimization does not work, because Y − β ·X is of
large rank for all β.
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analysis.

Theorem 1. Consider N, T → ∞ with ψ → 0, and assume that

(i) There exists a constant c such that

min
{α∈RK : ‖α‖=1}

∥∥∥∥
Mλ0(α ·X)Mf0√

NT

∥∥∥∥
1

−
∥∥∥∥
Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

≥ c > 0, (14)

for all sample sizes N, T .

(ii) ‖E‖∞ = OP (
√
max(N, T )), and

∑K
k=1 rankXk = OP (1).

Then we have

∥∥∥β̂ψ − β0

∥∥∥ = OP (ψ) +OP

(
1√

min(N, T )

)
,

∥∥∥β̂∗ − β0

∥∥∥ = OP

(
1√

min(N, T )

)
.

Various examples of DGP’s for E that satisfy the assumption ‖E‖∞ = OP (
√
max(N, T ))

can be found in the supplementary appendix S.2 of Moon and Weidner (2017). Loosely

speaking, that condition is satisfied as along as the entries Eit have zero mean, some ap-

propriately bounded moments, and are not too strongly correlated across i and over t. The

condition
∑K

k=1 rankXk = OP (1) requires all regressors to be low-rank. The interpretation of

condition (14) is the same as for condition (13) in Proposition 1, and Theorem 1 is a sample

version of that proposition.

The theorem shows that both β̂∗ and β̂ψ, for ψ = ψNT = O
(
1/
√
min(N, T )

)
, converge to

β0 at a rate of at least
√
min(N, T ). The proof of the theorem is provided in the appendix,

and is a relatively easy generalization of the proof of Proposition 1. This is because the

assumption that all the regressors Xk are low-rank allows to easily decouple the contribution

of the high-rank matrix E and the low-rank matrix β · X + Γ to the penalized objective

functionQψ(β). However, dealing with the contribution of the idiosyncratic errorsE becomes

more complicated once high-rank regressors are present, as will be explained in the following.

4 Consistency Results for General Regressors

The previous section considered the case where all regressor matrices Xk are low-rank. We

now study situation where all or some of the regressor matrices Xk are high-rank.
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4.1 Consistency of β̂ψ and Γ̂ψ

Applying Lemma 1 and the model for Y we have

Qψ(β) = qψ

(
E + Γ− (β − β0) ·X√

NT

)
=

min(N,T )∑

r=1

qψ

(
sr

(
E + Γ− (β − β0) ·X√

NT

))
.

The proof strategy in Section 3 is to use that both Γ and Xk are assumed to be low-rank,

which allows to (approximately) separate off E in this expression for Qψ(β). But if one of

the regressors Xk is a high-rank matrix that proof strategy turns out not to work anymore,

because the singular value spectrum of the sum of two high-rank matrices E and Xk does

not decompose (or approximately decompose) into a contribution from E and from Xk, but

instead all singular values depend on both of those high-rank matrices in a complicated

non-linear way.

We therefore now follow a different strategy, where instead of studying the objective

function after profiling out Γ, we now explicitly study the properties of the estimator for Γ.

Let

(β̂ψ, Γ̂ψ) =

[
argmin

β,Γ

1

2NT
‖Y − β ·X − Γ‖22 +

ψ√
NT

‖Γ‖1
]
.

For the results in Section 4.1 we are going to first show consistency of Γ̂ψ, and afterwards

use that to obtain consistency of β̂ψ. This is a very different logic than in the preced-

ing section, where consistency of Γ̂ψ is usually not achieved, because we do not impose

any lower bound on ψ. In order to achieve consistency of Γ̂ψ one requires ψ not be too

small. The approach here is much more similar to the machine learning literature (e.g.,

Negahban, Ravikumar, Wainwright, and Yu 2012), where the matrix that we call Γ is usu-

ally the object of interest, and correspondingly a lower bound on the penalization parameter

is required. We also follow that literature here by imposing a so-called “restricted strong

convexity” condition below, which is critical to show consistency of Γ̂ψ and consequently of

β̂ψ is the following.

It is convenient to introduce some additional notation: Let vec(A) be the vector that

vectorizes the columns of A. Denote mat(·) as the inverse operator of vec(·), so for a = vec(A)

we have mat(a) = A. We use small letters to denote vectorized variables and parameters.

Let y = vec(Y ), xk = vec(Xk), γ0 = vec(Γ0), and e = vec(E). Define x = (x1, ..., xk). Using

this, we express the model (2) as y = xβ0 + γ0+ e, where all the summands are NT -vectors.

Assumption 1 (Restricted Strong Convexity).

Let C =
{
Θ ∈ RN×T | ‖Mλ0ΘMf0‖1 ≤ 3‖Θ−Mλ0ΘMf0‖1

}
. We assume that there exists
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µ > 0, independent from N and T , such that for any θ ∈ R
NT with mat(θ) ∈ C we have

θ′Mxθ ≥ µ θ′θ, for all N , T .

This condition assumes that the quadratic term, 1
2NT

(γ − γ0)
′Mx(γ − γ0), of the profile

likelihood function, minβ L(β,Γ), is bounded below by a strictly convex function, µ
2NT

(γ −
γ0)

′(γ − γ0), if Γ − Γ0 belongs in the cone C. Notice that without any restriction on the

parameter γ, we cannot find a strictly positive constant µ > 0 such that minΓ(γ−γ0)′Mx(γ−
γ0) ≥ µ(γ − γ0)

′(γ − γ0). Assumption 1 assumes that if we restrict the parameter set to

be C, then we can find a strictly convex lower bound of the quadratic term of the pro-

file likelihood. Assumption 1 corresponds to the restricted strong convexity condition in

Negahban, Ravikumar, Wainwright, and Yu (2012), and it plays the same role as the re-

stricted eigenvalue condition in recent LASSO literature (e.g., see Candes and Tao (2007)

and Bickel, Ritov, and Tsybakov (2009)).

Notice that for R0 = 0 we have Mλ0 = IN and Mf0 = IN , and therefor C = {0N×T},
implying that Assumption 1 is trivially satisfied for any µ > 0.

The requirement in Assumption 1 is to take a lower bound of θ′Mxθ with strictly convex

function. To have some intuition, suppose that the regressor is scalar and assume that

‖X‖2 = (x′x)1/2 = 1 without loss of generality because the projection operator Mx is

invariant to the scale change. Also assume that θ 6= 0. Then,

θ′Mxθ = θ′θ − (θ′x)2 = (θ′θ)

(
1− (θ′x)2

θ′θ

)
= (θ′θ)

(
x′x− x′θ(θ′θ)−1θ′x

)

≥ (θ′θ)min
θ∈C

‖x− θ‖2.

In this case, if the limit of the distance between the regressor and the restricted parameter

set is positive, Assumption 1 is satisfied if µ := lim infN,T minθ∈C ‖x − θ‖2, the distance of

the normalized regressor x and convex cone C is positive. An obvious necessary condition

for this is that the normalized regressor does not belong in the cone C, that is,

‖Mλ0XMf0‖1 > 3‖X −Mλ0XMf0‖1.

For example, if X has an approximate factor structure

X = λxf
′
x + Ex,

with Ex,it ∼ i.i.d.N (0, σ2), then we can use random matrix theory results to show that

Assumption 1 is satisfied.
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Lemma 2 (Convergence Rate of Γ̂ψ). Let Assumption 1 holds and assume that

ψ ≥ 2√
NT

‖mat(Mxe)‖∞. (15)

Then we have
1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ 3

√
2R0

µ
ψ.

The lemma shows that once we impose restricted strong convexity and a lower bound on

ψ, then we can indeed bound the difference between Γ̂ψ and Γ0. This lemma is obviously

key to obtain a consistency results for Γ̂ψ. Notice furthermore that

β̂ψ − β0 = (x′x)−1x′ (y − γ̂ψ) = (x′x)
−1

[x′e− x′(γ̂ψ − γ0)] ,

that is, once we have a consistency result for Γ̂ψ (or equivalently γ̂ψ), then we can also show

consistency of β̂ψ. However, we first require some further regularity conditions.

Assumption 2 (Regularity Conditions).

(i) ‖E‖∞ = OP

(
max(N, T )1/2

)
,

(ii) 1√
NT

e′x = OP (1),

(iii) 1
NT

x′x →p Σx > 0,

(iv) ψ = ψNT → 0 such that
√

min(N, T )ψNT → ∞.

The conditions in Assumption 2 are weak and quite general. As mentioned before, various

examples of E that satisfy Assumption 2(i) can be found in the supplementary appendix S.2

of Moon and Weidner (2017); these include weakly dependent errors, and nonidentical but

independent sequences of errors. Assumption 2(ii) is satisfied if the regressors are exogenous

with respect to the error, E(xiteit) = 0, and xiteit are weakly correlated over t and across i so

that 1
NT

∑N
i,j=1

∑T
t,s=1E(xk,itxl,jseitejs) is bounded asymptotically. Assumption 2(iii) is the

standard full rank condition of the regressors. Assumption 2(iv) restricts the choice of the

regularization parameter ψ. Assumption 2(i) and (iv) are sufficient regularity conditions for

(15). To see this in more detail, since mat(Mxe) = E−∑K
k=1 Êk with Êk = Xk(x

′
kxk)

−1(x′ke),

we have

‖mat(Mxe)‖∞ =

∥∥∥∥∥E −
K∑

k=1

Êk

∥∥∥∥∥
∞

≤ ‖E‖∞ +

K∑

k=1

‖Êk‖∞

= ‖E‖∞ +

K∑

k=1

∥∥∥∥
Xk√
NT

∥∥∥∥
∞

(
x′kxk
NT

)−1 ∣∣∣∣
x′ke√
NT

∣∣∣∣ ≤ ‖E‖∞
(
1 +

OP (1)

‖E‖∞

)
.
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Then, choosing ψ ≥ 2√
NT

‖E‖∞
(
1 + OP (1)

‖E‖∞

)
makes ψ satisfy (15) with probability approach-

ing one, and the rate condition in Assumption (iv) guarantees this.

The following theorem shows consistency of Γ̂ψ and β̂ψ.

Theorem 2. Under Assumption 1 and 2 we have, as N, T → ∞,

1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ OP (ψ).

∥∥∥β̂ψ − β0

∥∥∥ ≤ OP (ψ).

According to Assumption 2(iii) we require ψ = ψNT to grow faster than 1/
√
min(N, T ).

By choosing ψ appropriately we can therefore obtain a convergence rate of β̂ψ that is just

below
√

min(N, T ), which is essentially the same convergence rate that we found in Section 3

for the case of only low-rank regressors.

For the special case R0 = 0 we have Γ0 = 0N×T , and if ψNT then satisfies (15), one can

show that

‖Γ̂ψ − Γ0‖1 = 0, (16)

wpa1, see the appendix for a proof of this. In this case, the regularized estimator of β

becomes the pooled OLS estimator, β̂ψ = (x′x)−1x′y, wpa1.

4.2 Consistency of β̂∗

Here, we establish consistency of the nuclear norm minimization estimator β̂∗ for high-rank

regressors. For simplicity we only discuss the case of a single regressor (K = 1) in the main

text, and we simply write X for the N × T regressor matrix X1 in this subsection. The

general case of multiple regressors (K > 1) is discussed in Appendix A.7.

Remember that β̂∗ is the minimizer of the objective function ‖Y − β ·X‖1 = ‖E + (β0 −
β)X + Γ0‖1 =

∑
r sr (E + (β0 − β)X + Γ0). Asymptotically separating the contribution of

the low-rank matrix Γ0 to the singular values of the sum E + (β0 − β)X + Γ0 is possible

under a strong factor assumption.16 However, characterizing the singular values of the sum

of two high-rank matrices E + (β0 − β)X requires results from random matrix theory that

are usually only shown under relatively strong assumptions on the distribution of the matrix

entries. We therefore first provide a theorem under high-level assumptions, and afterwards

discuss how to verify those assumptions using results from random matrix theory. We write

SVD for “singular value decomposition” in the following.

Theorem 3. Suppose that K = 1, and assume that as N, T → ∞, with N > T , we have

(i) ‖E‖∞ = OP (
√
N), and ‖X‖∞ = OP (

√
NT ).

16 In Moon and Weidner (2015, 2017) we use the perturbation theory of linear operator to do exactly that.
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(ii) There exists a finite positive constant cup such that 1
T
√
N
‖E‖1 ≤ 1

2
cup, wpa1.

(iii) Let UESEV
′
E be the SVD of Mλ0EMf0.

17 We assume Tr (X ′UEV
′
E) = OP (

√
NT ).

(iv) There exists a constant clow > 0 such that T−1N−1/2‖Mλ0XMf0‖1 ≥ clow, wpa1.

(v) Let UxSxV
′
x = Mλ0XMf0 be the SVD of the matrix Mλ0XMf0. We assume that there

exists cx ∈ (0, 1) such that Tr (U ′
EUxSxU

′
xUE) ≤ (1− cx)Tr(Sx), wpa1.

We then have
√
T
(
β̂∗ − β0

)
= OP (1).

The theorem considers the case N > T . Alternatively, we could consider T < N , but

then we also need to swap N and T , and replace X by X ′ and E by E ′ in all the assumptions

(the case T = N is ruled out here for technical reasons). For both N > T and T < N the

statement of theorem can be written as
√

min(N, T )
(
β̂∗ − β0

)
= OP (1), that is, we have

the same convergence rate result here for β̂∗ as in Theorem 1 above.

Condition (i) in the theorem is quite weak, we already discussed the rate restriction

on ‖E‖∞ above, and we have ‖X‖∞ ≤ ‖X‖2 =
√∑

i

∑
tX

2
it = OP (

√
NT ) as long as

supit E(X
2
it) is finite. Condition (ii) almost follows from ‖E‖∞ = OP (

√
N), because we have

‖E‖1 ≤ rank(E) ‖E‖∞ ≤ T‖E‖∞ = OP (T
√
N), and the assumption is only slightly stronger

than this in assuming a fixed upper bound with probability approaching one, which can also

be verified for many error distributions. Condition (iii) is a high level condition and will be

satisfied if

sup
r

E|V ′
E,rX

′UE,r| ≤ M (17)

for some finite constant M , where UE,r and VE,r are the rth columns of UE,r and VE , re-

spectively. An example of DGP’s of X and E that satisfies condition (17) is given by

Assumption LL (i) and (ii) in Moon and Weidner (2015). Condition (iv) rules out “low-rank

regressors”, for which we typically have ‖Mλ0XMf0‖1 = OP (
√
NT ), but is satisfied generi-

cally for “high-rank regressors”, for which Mλ0XMf0 has T singular values of order
√
N , so

that ‖Mλ0XMf0‖1 is of order T
√
N . It is not surprising that we need to rule out low-rank

regressors here, because the estimator β̂∗ does not use any information of R0, so that Γ0

cannot be distinguished from a low-rank regressor. Condition (v) requires that the singular

vectors of Mλ0XMf0 are sufficiently different from the singular vectors Mλ0EMf0 . If X and

E are independent, then we expect that assumption to hold quite generally, but actually

verifying it may be difficult.

17That is, UESEV
′
E = Mλ0

EMf0 and UE is an N × rank(Mλ0
EMf0) matrix of singular vectors, SE is a

rank(Mλ0
EMf0)× rank(Mλ0

EMf0) diagonal matrix, and VE is an T × rank(Mλ0
EMf0) matrix of singular

vectors.
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5 Post Nuclear Norm Regularized Estimation

In Sections 3 and 4 we have shown that β̂ψ and β̂∗ are consistent for β0 at a
√

min(N, T )-

rate, which is a slower convergence rate than the
√
NT -rate at which the LS estimator β̂LS,R

converges to β0 under appropriate regularity conditions. In this section we investigate how to

establish an estimator that is asymptotically equivalent to the LS estimator, and yet avoids

minimizing any non-convex objective function. Our suggestion is to use either β̂ψ or β̂∗ as a

preliminary estimator and iterate estimating Γ0 = λ0f
′
0 and β0 a finite number of times.

However, the conditions that are needed to show that the global minimizer β̂LS,R of the

objective function LR(β) is consistent for β0 (i.e. Assumption A in Bai 2009, or Assumption 4

in Moon and Weidner 2017) are not required here, because we have already shown consis-

tency of β̂ψ or β̂∗ under different conditions here (our discussion in Section 2.2 highlights

those differences). It is therefore convenient to introduce a local version of the LS estimator

in (3) as

β̂ local
LS,R := argmin

β∈B(β0,rNT )
LR(β), B(β0, rNT ) :=

{
β ∈ R

K : ‖β − β0‖ ≤ rNT
}
, (18)

where rNT is a sequence of positive numbers such that rNT → 0 and
√
NT rNT → ∞. Those

rate conditions guarantee that β̂ local
LS,R is an interior point of B(β0, rNT ), wpa1, under the

assumptions of Theorem 4 below. If the global minimizer β̂LS,R is consistent, then we have

β̂LS,R = β̂ local
LS,R wpa1, but β̂ local

LS,R is consistent by definition even if β̂LS,R is not. Our goal in

the following is to obtain an estimator that is asymptotically equivalent to β̂ local
LS,R.

For simplicity, we first discuss the case where the number of factors R0 is known. For

unknown R0 we recommend to use a consistent estimate instead, and we discuss consistent

estimation of R0 in the end of this section. Starting from our initial nuclear norm regularized

or minimized estimators we consider the following iteration procedure to obtain improved

estimates of β:

Step 1: For s = 0 set β̂(s) = β̂ψ (or = β̂∗), the preliminary consistent estimator for β0.

Step 2: Estimate the factor loadings and the factors of the s−step residuals Y − β̂(s) ·X by

the principle component method:

(λ̂(s+1), f̂ (s+1)) ∈ argmin
λ∈RN×R0 ,f∈RT×R0

∥∥∥Y − β̂(s) ·X − λf ′
∥∥∥
2

2
.
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Step 3: Update the s-stage estimator β̂(s) by

β̂(s+1) = argmin
β∈RK

min
g∈RT×R0 ,h∈RN×R0

∥∥∥Y −X · β − λ̂(s+1) g′ + h f̂ (s+1)′
∥∥∥
2

2

=
(
x′
(
Mf̂(s+1) ⊗Mλ̂(s+1)

)
x
)−1

x′
(
Mf̂(s+1) ⊗Mλ̂(s+1)

)
y. (19)

Step 4: Iterate step 2 and 3 a finite number of times.

The following theorem shows that if the initial estimator β̂(0) is consistent, then β̂(s) gets

close to β̂ local
LS,R0

as the number of iteration s increases. This result is very similar to the

quadratic convergence result of a Newton-Raphson algorithm for minimizing a smooth ob-

jective function, and the above iteration step is indeed very similar to performing a Newton-

Raphson step to minimize LR0(β).

Theorem 4. Assume that N and T grow to infinity at the same rate, and that

(i) plimN,T→∞ (λ′0λ0/N) > 0, and plimN,T→∞ (f ′
0f0/T ) > 0.

(ii) ‖E‖∞ = OP

(
max(N, T )1/2

)
, and ‖Xk‖∞ = OP

(
(NT )1/2

)
, for all k ∈ {1, . . . , K}.

(iii) plimN,T→∞
1
NT

x′ (Mf0 ⊗Mλ0)x > 0.

(iv) 1√
NT

x′ (Mf0 ⊗Mλ0) e = OP (1).

Then, if the sequence rNT > 0 in (18) satisfies rNT → 0 and
√
NT rNT → ∞ we have

√
NT

(
β̂ local
LS,R0

− β0

)
= OP (1).

Assume furthermore that that ‖β̂(0) − β0‖ = OP (cNT ), for a sequence cNT > 0 such that

cNT → 0. For s ∈ {1, 2, 3, . . .} we then have

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N, T )

)s}
.

Here, assumption (i) is a strong factor condition, and is often used in the literature on

interactive fixed effects. The conditions in assumption (ii) of the theorem have been dis-

cussed in previous sections and are quite weak (remember that ‖Xk‖∞ ≤ ‖Xk‖2 =
√
x′kxk).

Assumption (iii) guarantees that LR(β) is locally convex around β0 – that condition can

equivalently be written as plimN,T→∞ ‖Mλ0(α · X)Mf0‖2 > 0 for any α ∈ RK \ {0}, which
connects more closely to our discussion in Section 2.2. This is a non-collinearity condition

20



on the regressors after profiling out both λ0 and f0. Only the true values λ0 and f0 appear

in that non-collinearity condition, and it is therefore much weaker than the correspond-

ing assumptions required for consistency of β̂LS,R0 in Bai (2009) and Moon and Weidner

(2017). Our results from the previous sections show that ‖β̂(0) − β0‖ = OP (cNT ) for both

β̂(0) = β̂ψ and β̂(0) = β̂∗, under appropriate assumptions, where cNT is typically either

cNT = 1/
√

min(N, T ) or slightly slower than this, if ψ = ψNT is chosen appropriately.

The following corollary is an immediate consequence of Theorem 4.

Corollary 1. Let the assumptions of Theorem 4 hold, and assume that cNT = o((NT )−1/6).

For s ∈ {2, 3, 4, . . .} we then have

√
NT

(
β̂(s) − β̂ local

LS,R0

)
= oP (1),

√
NT

(
β̂(s) − β0

)
= OP (1).

The first statement of the corollary shows that if the initial estimators β̂ψ and β̂∗ satisfy

typical convergence rates results derived in the previous sections, then the iterated estimator

β̂(s) is asymptotically equivalent to β̂ local
LS,R0

after s = 2 iterations or more. Remember that

if β̂LS,R0 is consistent, then we have β̂ local
LS,R0

= β̂LS,R0 wpa1, but by showing asymptotic

equivalence with β̂ local
LS,R0

here we avoid imposing conditions that require consistency of β̂LS,R0 .

From the results in Bai (2009) and Moon and Weidner (2017) we also know that β̂ local
LS,R0

is

asymptotically normally distributed, but potentially with a bias in the limiting distribution.

According to the corollary the same is therefore true for β̂(s) for s ≥ 2. Asymptotic bias

corrections could then also be applied to β̂(s), s ≥ 2, to eliminate the bias in the limiting

distribution and allow for inference on β0. See Bai (2009) and Moon and Weidner (2017) for

details.

Comments on the estimation of the number of factors

The results in this section so far assume that the number of factors R0 is known, but

Theorem 4 and Corollary 1 continue to hold if R0 in step 2 and 3 of the construction

of β̂(s) is replaced with a consistent estimate for the number of factors. There are many

ways to construct such consistent estimates, see e.g. Bai and Ng (2002), Onatski (2010) and

Ahn and Horenstein (2013) for the case of pure factor models (without regressors). In the

following we discuss one possible estimator for R0 that is natural in the current context

of nuclear norm regularization. Namely, motivated by the discussion in Section 2 and the

inequality (10) we consider, for ψ∗ = ψ∗
NT > 0, to estimate R0 by

R̂ψ∗ :=

min(N,T )∑

r=1

1

{
sr

(
Y − β̂(0) ·X

)
≥

√
NT ψ∗

}
, (20)
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where 1{·} denotes the indicator function, and β̂(0) is our preliminary consistent estima-

tor, either β̂ψ or β̂∗. Thus, R̂ψ∗ is simply the number of singular values of the matrix(
Y − β̂(0) ·X

)
that are larger than

√
NT ψ∗.

Lemma 3. Let the assumptions of Theorem 4 hold, and assume that ψ∗
NT → 0 and ψ∗

NT/cNT →
∞ and ψ∗

NT/
√

min(N, T ) → ∞. Then we have

P

{
R̂ψ∗ = R0

}
→ 1.

The lemma provides conditions under which R̂ψ∗ is consistent for R0. The problem of

choosing ψ∗ is similar to the problem of choosing the penalty term g(N, T ) in Bai and Ng

(2002), but it relates more closely to our nuclear norm regularization method, because the

choice of ψ∗ is closely related to the choice of penalty parameter ψ in the construction

of the preliminary estimator β̂(0) = β̂ψ. In particular, in Section 4.1 we explicitly assumed√
min(N, T )ψNT → ∞ and then found that

∥∥∥β̂ψ − β0

∥∥∥ ≤ OP (ψNT ), that is, we can set cNT =

ψNT , and then need ψ∗
NT to grow slightly faster than ψNT to satisfy the condition in Lemma 3.

For example, we could set ψNT = k
√

min(N, T ) log(N) and ψ∗
NT = k

√
min(N, T ) [log(N)]2

to satisfy all the rate conditions in Section 4.1 and Lemma 3, for some constant k > 0.

Of course, in practice, choosing ψ∗
NT (or the constant k) may be as difficult as choosing

R0. Applying the Ahn and Horenstein (2013) method for choosing R0 to the eigenvalues

of
(
Y − β̂(0) ·X

)′ (
Y − β̂(0) ·X

)
avoids this problem, and may be preferable in practice.

Notice also that our original choice of penalty parameter ψ was less problematic, because

we expect that even if we choose ψ very small (even ψ → 0 for fixed N, T ) we still expect to

obtain a consistent nuclear norm penalized estimator for β.

6 A Small Scale Monte Carlo Simulations

We consider a simple linear model with one regressor and two factors:

yit = β0 xit +
2∑

r=1

λ0,irf0,tr + eit,

xit = 1 + ex,it +
2∑

r=1

(λ0,ir + λx,ir)(f0,tr + f0,t−1 r),

where f0,tr ∼ iidN(0, 1) and λ0,ir, λx,ir ∼ iidN(1, 1), and ex,it, eit ∼ iidN(0, 1), and mutually

independent. We set (N, T ) = (50, 50), (200, 200) and ψNT = log(N)1/2
√

max(N,T )

NT
.

With this design, we report the finite sample properties of β̂LS,R, β̂ψ, β̂∗, and the post
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Table 1: Monte Carlo Results

(N, T ) POLS β̂LS,R β̂ψ β̂
(1)
ψ β̂

(2)
ψ β̂

(3)
ψ

(50,50)
bias 0.229 -0.007 0.135 0.014 -0.006 -0.007
s.d. (0.017) (0.011) (0.015) (0.011) (0.011) (0.011)

(200,200)
bias 0.229 -0.0017 0.099 0.008 -0.0015 -0.0017
s.d. (0.008) (0.003) (0.007) (0.003) (0.003) (0.003)

estimators β̂
(1)
ψ , β̂

(2)
ψ and β̂

(3)
ψ , based on β̂ψ as a preliminary estimator, in Table 1. As

expected from the previous section we find that the bias and standard deviation of β̂
(2)
ψ and

β̂
(3)
ψ are almost identical to those of β̂LS,R, where R = R0 = 2 is the true number of factors.

The results for the post estimates based on β̂∗ are very similar and we omit them.

7 Conclusions

In this paper we analyze two new estimation methods for interactive fixed effect panel regres-

sions that are based on convex objective functions: (i) nuclear norm penalized estimation,

and (ii) nuclear norm minimizing estimation. The resulting estimators can also be applied

in situations where the LS estimator may not be consistent, in particular when low-rank

regressors are present and the true number of factors is unknown. We provide consistency

and convergence rate results for the new estimators of the regression coefficients, and we

show how to use them as a preliminary estimator to achieve asymptotic equivalence to the

local version of the LS estimator. There are several ongoing extensions, including developing

a unified method to deal with heterogeneous coefficients, nonparametric sieve estimation,

high-dimensional regressors, and data dependent choice of the penalty term.
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A Appendix

A.1 An example of a non-convex LS profile objective function

As an example for a non-convex LS profile objective function we consider the following linear model

with one regressor and two factors:

yit = β0 xit +

2∑

r=1

λ0,irf0,tr + eit,

xit = 0.04ex,it + λ0,i1f0,t2 + λx,ifx,t,

where λ0,i =
(λ0,i1
λ0,i2

)
∼ iidN

((
0

0

)
,

(
1 0.5

0.5 1

))
, f0,t =

(f0,t1
f0,t2

)
∼ iidN

((
0

0

)
,

(
1 0.5

0.5 1

))
,

λx,i ∼ iid 2χ2(1), fx,t ∼ iid 2χ2(1), ex,it, eit ∼ iidN(0, 1), and {λ0,i}, {f0,t}, {λx,i}, {fx,t}, {ex,it}, {eit}
are independent each other. With (N,T ) = (200, 200), we generate the panel data (yit, xit) and

plot the LS objective function (3) in Figure 1.

A.2 Proofs for Section 2.1

For matrix A, let the singular value decomposition of A be given by A = UASAV
′
A, where SA =

diag(s1, . . . , sq), with q = rank(A).

Lemma A.1. For any ψ > 0 we have

min
Γ

(
1

2
‖A− Γ‖22 + ψ‖Γ‖1

)
= qψ(A),

argmin
Γ

(
1

2
‖A− Γ‖22 + ψ‖Γ‖1

)
= UAdiag((s1 − ψ)+, . . . , (sq − ψ)+)V

′
A,

where the minimization is over all matrices Γ of the same size as A and (s)+ = max(0, s).

Proof of Lemma A.1. The dependence of the various quantities on ψ is not made explicit in this

proof. Let Q(A) = minΓ

(
1
2 ‖A− Γ‖22 + ψ‖Γ‖1

)
. A possible value for Γ is Γ∗ = UAS

∗V ′
A, where

S∗ = diag(s∗1, . . . , s
∗
q) and s

∗
r = max(0, sr − ψ), and therefore we have

Q(A) ≤ 1

2
‖A− Γ∗‖22 + ψ‖Γ∗‖1 =

1

2
‖SA − S∗‖22 + ψ‖S∗

ψ‖1

=

q∑

r=1

[
1

2
(sr − s∗r)

2 + ψs∗r

]
=

q∑

r=1

qψ(sr) = qψ(A).

The nuclear norm satisfies ‖Γ‖1 = max‖B‖∞≤1 Tr(Γ
′B). A possible value for B is B∗ = UAD

∗V ′
A,

where D∗ = diag(d∗1, . . . , d
∗
q) and d∗r = min(1, ψ−1sr), which indeed satisfies ‖B∗‖∞ = ‖D∗‖∞ =
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maxr |d∗r | ≤ 1, and therefore we have

Q(A) ≥ min
Γ

[
1

2
‖A− Γ‖22 + ψTr(Γ′B∗)

]
=

1

2
‖A− (A− ψB∗)‖22 + ψTr[(A− ψB∗)′B∗]

= ψTr(A′B∗)− ψ2

2
‖B∗‖22 = ψTr(S′

AD
∗)− ψ2

2
‖D∗‖22

=

q∑

r=1

[
ψ srd

∗
r −

ψ2

2
(d∗r)

2

]
=

q∑

r=1

qψ(sr) = qψ(A),

where in the second step we found and plugged in the minimizing Γ = A− ψB∗. By combing the

above upper and lower bound on Q(A) we obtain Q(A) = qψ(A), which is the first statement of

the lemma. Since argminΓ

(
1
2 ‖A− Γ‖22 + ψ‖Γ‖1

)
is unique, we deduce that Γ∗ = UAS

∗V ′
A is the

minimizing value, which is the second statement in the lemma.

Proof of Lemma 1. The lemma follows from the first statement of Lemma A.1 by replacing A

and Γ in Lemma A.1 with Y−β·X√
NT

and 1√
NT

Γ, respectively.

A.3 Proofs for Section 2.2

The function qψ(s) that appears in Lemma A.1 was defined in (8). We now define a similar function

gψ : [0,∞) → [0,∞) by gψ(s) = ψ−1qψ(s) for ψ > 0, and gψ(s) = s for ψ = 0, that is, we have

gψ(s) :=

{
1
2ψ s

2, for s < ψ,

s− ψ
2 , for s ≥ ψ,

(A.1)

and for matrices A we define gψ(A) :=
∑rank(A)

r=1 gψ(sr(A)). Using Lemma A.1 and the definition of

the nuclear norm we can write

gψ(A) =





minΓ

(
1
2ψ ‖A− Γ‖22 + ‖Γ‖1

)
, for ψ > 0,

‖A‖1, for ψ = 0.
(A.2)

As already discussed in the main text, it is natural to rescale the profiled nuclear norm penalized

objective function by ψ−1, because it then has a non-trivial limit as ψ → 0. Using gψ instead qψ

therefore helps to clarify the scaling with ψ in various expressions. The following lemma summarizes

some properties of the function gψ(A), which are useful for the subsequent proofs.

Lemma A.2. Let A and B be N ×T matrices, λ be an N ×R1 matrix, and f be a T ×R2 matrix.

We then have

(i) gψ(A) ≥ ‖A‖1 − ψ
2 rank(A).

(ii) gψ(A+B) ≤ gψ(A) + ‖B‖1, and gψ(A+B) ≥ gψ(A)− ‖B‖1.

(iii) gψ(A) ≥ gψ(MλAMf ) + gψ(PλAPf ).
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Proof of Lemma A.2. # Part (i): From the definition of gψ(s) in (A.1) one finds gψ(s) ≥ s− ψ
2

for all s ≥ 0. We thus obtain

gψ(A) =

rank(A)∑

r=1

gψ(sr(A)) ≥
rank(A)∑

r=1

[
sr(A)−

ψ

2

]
= ‖A‖1 −

ψ

2
rank(A).

# Part (ii): For ψ = 0 this is just the triangle inequality for the nuclear norm. For ψ > 0 we

use (A.2) to write

gψ(A+B) = min
Γ

(
1

2ψ
‖A+B − Γ‖22 + ‖Γ‖1

)
= min

Γ

(
1

2ψ
‖A− Γ‖22 + ‖Γ +B‖1

)

≤ min
Γ

(
1

2ψ
‖A− Γ‖22 + ‖Γ‖1

)
+ ‖B‖1 = gψ(A) + ‖B‖1.

where in the second step we reparameterized Γ 7→ Γ+B in the minimization problem, in the third

step we used the triangle inequality for the nuclear norm, and in the final step we employed again

(A.2). We have thus shown the first statement of this part. The second statement is obtained from

the first statement by replacing B 7→ −B and A 7→ A+B.

# Part (iii): We first show the result for ψ = 0. Let MλAMf = U1S1V
′
1 and PλAPf = U2S2V

′
2

be the singular value decompositions of those N × T matrices. We then have ‖MλAMf‖1 =

Tr[V1(MλAMf )U
′
1] and ‖PλAPf‖1 = Tr[V2(PλAPf )U

′
2]. Furthermore, we have g0(A) = ‖A‖1 =

max‖C‖≤1 Tr(C
′A). By choosing C∗ = U1V

′
1 + U2V

′
2 we obtain

‖A‖1 ≥ Tr(C∗′A) = Tr[V1(MλAMf )U
′
1] + Tr[V2(PλAPf )U

′
2] = ‖MλAMf‖1 + ‖PλAPf‖1 ,

(A.3)

which is the statement of part (iii) of the lemma for ψ = 0. For ψ > 0 we find

gψ(A) = min
Γ

(
1

2ψ
‖A− Γ‖22 + ‖Γ‖1

)
≥ min

Γ

(
1

2ψ
‖A− Γ‖22 + ‖MλΓMf‖1 + ‖PλΓPf‖1

)

= min
Γ

[
1

2ψ

(
‖Mλ(A− Γ)Mf‖22 + ‖Pλ(A− Γ)Pf‖22 + ‖Pλ(A− Γ)Mf‖22 + ‖Mλ(A− Γ)Pf‖22

)

+ ‖MλΓMf‖1 + ‖PλΓPf‖1
]

= min
Γ

[
1

2ψ

(
‖Mλ(A− Γ)Mf‖22 + ‖Pλ(A− Γ)Pf‖22

)
+ ‖MλΓMf‖1 + ‖PλΓPf‖1

]

≥ min
Γ

(
1

2ψ
‖Mλ(A− Γ)Mf‖22 + ‖MλΓMf‖1

)
+min

Γ

(
1

2ψ
‖Pλ(A− Γ)Pf‖22 + ‖PλΓPf‖1

)

≥ min
Γ

(
1

2ψ
‖MλAMf − Γ‖22 + ‖Γ‖1

)
+min

Γ

(
1

2ψ
‖PλAPf − Γ‖22 + ‖Γ‖1

)

= gψ(MλAMf ) + gψ(PλAPf ),
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where in the first step we used (A.2); in the second step we used (A.3) with A replaced by Γ;

in the third step we decomposed ‖A− Γ‖22 into four parts; in the fourth step we used that the

minimization over Γ implies that ‖Pλ(A− Γ)Mf‖22 = 0 and ‖Mλ(A− Γ)Pf‖22 = 0 at the optimum,

because the components PλΓMf and MλΓPf of Γ appear nowhere else in the objective function,

so that choosing PλΓMf = PλAMf and MλΓPf = MλAPf is optimal; the fifth step is obvious

(it is actually an equality, which is less obvious, but not required for our argument); in the sixth

step we replaced MλΓMf and PλΓPf by an unrestricted Γ in the minimization problems, which

can only make the minimizing values smaller (again, this is actually an equality, but ≤ is sufficient

to show here); and the final step again employs (A.2). We have thus shown the desired result.

Before presenting the next lemma it is useful to introduce some further notation. For β ∈ R
K

let ∆β := β−β0. Let λX be an N×Rc matrix such that the column span of λX equals the columns

span of the N × TK matrix [X1, . . . ,XK ]. Analogously, let fX be an T ×Rr matrix such that the

column span of fX equals the columns span of the T ×NK matrix [X ′
1, . . . ,X

′
K ].

Lemma A.3. Let model (1) hold. Then, the penalized profiled objective function Qψ(β) defined in

(5) satisfied, for all β ∈ R
K , and all ψ > 0,

Qψ(β)−Qψ(β0)

ψ
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥
Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0)

−
∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥
E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

For ψ = 0 the same bound holds if one replaces ψ−1 [Qψ(β)−Qψ(β0)] by its ψ → 0 limit
∥∥(Y − β ·

X)/
√
NT

∥∥
1
−
∥∥(Y − β0 ·X)/

√
NT

∥∥
1
.

Proof of Lemma A.3. We have

gψ

(
Y − β ·X√

NT

)
= gψ

(
Γ0 −∆β ·X + E√

NT

)

≥ gψ

(
P[λ0,λX ](Γ0 −∆β ·X + E)P[f0,fX ]√

NT

)
+ gψ

(
M[λ0,λX ]EM[f0,fX ]√

NT

)

= gψ

(
Γ0 −∆β ·X√

NT
+

P[λ0,λX ]EP[f0,fX ]√
NT

)
+ gψ

(
M[λ0,λX ]EM[f0,fX ]√

NT

)

≥ gψ

(
Γ0 −∆β ·X√

NT

)
−
∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

+ gψ

(
M[λ0,λX ]EM[f0,fX ]√

NT

)
.

Here, we first plugged in the model for Y , then used part (iii) of Lemma A.2 with λ = [λ0, λX ] and
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f = [f0, fX ], and in the final step used part (ii) of Lemma A.2. In the same way we obtain

gψ

(
Γ0 −∆β ·X√

NT

)
≥ gψ

(
Pλ0(Γ0 −∆β ·X)Pf0√

NT

)
+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)

= gψ

(
Γ0√
NT

− Pλ0(∆β ·X)Pf0√
NT

)
+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)

≥ gψ

(
Γ0√
NT

)
−
∥∥∥∥
Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)

≥
∥∥∥∥

Γ0√
NT

∥∥∥∥
1

− ψ

2
rank(Γ0)−

∥∥∥∥
Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
,

where in the last step we also used part (i) of Lemma A.2. Furthermore, we find

gψ

(
Y − β0 ·X√

NT

)
= gψ

(
E + Γ0√
NT

)
= gψ

(
M[λ0,λX ]EM[f0,fX ] +

(
E −M[λ0,λX ]EM[f0,fX ]

)
+ Γ0√

NT

)

≤ gψ

(
M[λ0,λX ]EM[f0,fX ]√

NT

)
+

∥∥∥∥
E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

+

∥∥∥∥
Γ0√
NT

∥∥∥∥
1

,

where we used part (ii) of Lemma A.2 and the triangle inequality for the nuclear norm. Combining

the inequalities in the last three displays gives

gψ

(
Y − β ·X√

NT

)
− gψ

(
Y − β0 ·X√

NT

)
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥
Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0)

−
∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥
E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

The derivation so far was valid for all ψ ≥ 0. For ψ = 0 the left hand side of the last display simply

is
∥∥(Y − β ·X)/

√
NT

∥∥
1
−
∥∥(Y − β0 ·X)/

√
NT

∥∥
1
. For ψ > 0 we have, by (A.2),

Qψ(β)−Qψ(β0)

ψ
= gψ

(
Y − β ·X√

NT

)
− gψ

(
Y − β0 ·X√

NT

)
,

so that we have shown the statement of the lemma.

Lemma A.4. Let model (2) hold, and let E(Eit | X) = 0, and E
(
E2
it

∣∣ X
)
<∞, for all i, t. Then

we have, for all ψ > 0,

gψ

(
Mλ0(∆β̄ψ ·X)Mf0√

NT

)
−
∥∥∥∥
Pλ0(∆β̄ψ ·X)Pf0√

NT

∥∥∥∥
1

≤ ψ

2
rank(Γ0).
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Proof of Lemma A.4. Using the model and the assumptions on Eit in the proposition we find

E

[
‖Y − β ·X − Γ‖22

∣∣∣X
]
=

N∑

i=1

T∑

t=1

E

[(
Γ0,it − Γit −X ′

it∆β +Eit
)2∣∣∣X

]

=

N∑

i=1

T∑

t=1

(
Γ0,it − Γit −X ′

it∆β
)2

+

N∑

i=1

T∑

t=1

E
(
E2
it

∣∣X
)

= ‖Γ0 − Γ−∆β ·X‖22 + E

(
‖E‖22

∣∣∣X
)
,

where the expectation is also implicitly conditional on Γ0, because Γ0 is treated as non-random

throughout the whole paper. Because E

(
‖E‖22

∣∣∣X
)
is just a constant that does not depend on the

parameters β and Γ, we can thus rewrite the definition of β̄ψ in (12) as

β̄ψ = argmin
β

Qψ(β), Qψ(β) := min
Γ

{
1

2NT
‖Γ0 − Γ−∆β ·X‖22 +

ψ√
NT

‖Γ‖1
}
.

We can obtain Qψ(β) from the profiled objective function Qψ(β) that was defined in (5) by simply

setting E = 0 in the model (2). The bound on ψ−1 [Qψ(β)−Qψ(β0)] in Lemma A.3 is therefore

applicable to Qψ(β) if we just set E = 0 in that lemma. We thus have, for all β ∈ R
K ,

Qψ(β)−Qψ(β0)

ψ
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥
Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0).

We have Qψ(β̄ψ) −Qψ(β0) ≤ 0, because β̄ψ minimizes Qψ(β), and combining this with the result

in the last display gives the statement of the lemma.

Proof of Proposition 1. Let

c = min
{α∈RK : ‖α‖=1}

C(α), C(α) =
‖Mλ0(α ·X)Mf0‖1 − ‖Pλ0(α ·X)Pf0‖1√

NT
.

Using the absolute homogeneity of the nuclear norm this definition implies that for any α ∈ R
K

we have

c ‖α‖ ≤
∥∥∥∥
Mλ0(α ·X)Mf0√

NT

∥∥∥∥
1

−
∥∥∥∥
Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

. (A.4)

Since the ball
{
α ∈ R

K : ‖α‖ = 1
}
is a compact set, and C(α) is a continuous function there exists

a value α∗ ∈
{
α ∈ R

K : ‖α‖ = 1
}

where the minimum is attained, that is, c = C(α∗). By the

assumption on the regressors in Proposition 1 we thus have c = C(α∗) > 0.

Next, applying part (i) of Lemma A.2 we obtain

gψ

(
Mλ0(∆β̄ψ ·X)Mf0√

NT

)
≥
∥∥∥∥
Mλ0(∆β̄ψ ·X)Mf0√

NT

∥∥∥∥
1

− ψ

2
rank

[
Mλ0(∆β̄ψ ·X)Mf0

]
, (A.5)
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and also using Lemma A.4 we thus find that

∥∥∥∥
Mλ0(∆β̄ψ ·X)Mf0√

NT

∥∥∥∥
1

−
∥∥∥∥
Pλ0(∆β̄ψ ·X)Pf0√

NT

∥∥∥∥
1

≤ ψ

2

{
rank(Γ0) + rank

[
Mλ0(∆β̄ψ ·X)Mf0

]}

≤ ψ

2

{
rank(Γ0) + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}
.

From this and (A.4) with α = ∆β̄ψ we obtain for any ψ > 0 that18

∥∥β̄ψ − β0
∥∥ ≤ ψ

2c

{
rank(Γ0) + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}
, (A.6)

and therefore
∥∥β̄ψ − β0

∥∥ = O(ψ), as ψ → 0.

A.4 Proofs for Section 3

Lemma A.5. Let Rc := rank([X1, . . . ,XK ]) and Rr := rank([X ′
1, . . . ,X

′
K ]). Assume that

C := min
{α∈RK : ‖α‖=1}

∥∥∥∥
Mλ0(α ·X)Mf0√

NT

∥∥∥∥
1

−
∥∥∥∥
Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

satisfies C > 0. Then we have, for all ψ > 0,

∥∥∥β̂ψ − β0

∥∥∥ ≤ 1

C

[(
ψ

2
+

‖E‖∞√
NT

)
[R0 +min(Rc, Rr)] +

‖E‖∞√
NT

(2R0 +Rc +Rr)

]
,

and

∥∥∥β̂∗ − β0

∥∥∥ ≤ 1

C

‖E‖∞√
NT

[3R0 +Rc +Rr +min(Rc, Rr)] .

Proof of Lemma A.5. By definition we have Qψ(β̂ψ) − Qψ(β0) ≤ 0. Combining this with

Lemma A.3 and equation (A.5), and writing rank(Γ0) = R0, we obtain

0 ≥
∥∥∥∥∥
Mλ0(∆β̂ψ ·X)Mf0√

NT

∥∥∥∥∥
1

−
∥∥∥∥∥
Pλ0(∆β̂ψ ·X)Pf0√

NT

∥∥∥∥∥
1

− ψ

2

{
R0 + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}

−
∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥
E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

The definition of c in the theorem together with the absolute homogeneity of the nuclear norm

18 The bound (A.6) is sufficient for our purposes since we ultimately consider the limit ψ → 0 here, but
for a fixed value of ψ (and N, T ) this bound is potentially very crude if high-rank regressors Xk are present.
From Lemma A.4 one could then obtain a sharper bound on β̄ψ − β0 by not using part (i) of Lemma A.2 to

simplify gψ

[(
Mλ0

(∆β̄ψ ·X)Mf0

)
/
√
NT

]
.
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implies

c
∥∥∥∆β̂ψ

∥∥∥ ≤
∥∥∥∥∥
Mλ0(∆β̂ψ ·X)Mf0√

NT

∥∥∥∥∥
1

−
∥∥∥∥∥
Pλ0(∆β̂ψ ·X)Pf0√

NT

∥∥∥∥∥
1

.

We have

max
α∈RK

rank [Mλ0(α ·X)Mf0 ] ≤ max
α∈RK

rank(α ·X) ≤ min(Rc, Rr),

because we have α ·X = [X1, . . . ,XK ](α⊗ IT ), and therefore rank(α ·X) ≤ Rc, and also (α ·X)′ =

[X ′
1, . . . ,X

′
K ](α⊗ IN ), and therefore rank(α ·X) ≤ Rr.

We also have

∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

≤
∥∥∥∥
P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
∞
rank

(
P[λ0,λX ]EP[f0,fX ]

)

≤ ‖E‖∞√
NT

min
{
rank

(
P[λ0,λX ]

)
, rank

(
P[f0,fX ]

)}

=
‖E‖∞√
NT

min {R0 +Rc, R0 +Rr} =
‖E‖∞√
NT

[R0 +min(Rc, Rr)] ,

and similarly

∥∥∥∥
E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

=

∥∥∥∥
P[λ0,λX ]E√

NT
+

M[λ0,λX ]EP[f0,fX ]√
NT

∥∥∥∥
1

≤
∥∥∥∥
P[λ0,λX ]E√

NT

∥∥∥∥
1

+

∥∥∥∥
M[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

≤ ‖E‖∞√
NT

rank
(
P[λ0,λX ]

)
+

‖E‖∞√
NT

rank
(
P[f0,fX ]

)

=
‖E‖∞√
NT

(2R0 +Rc +Rr) .

Combining the above inequalities gives the finite sample bound in the theorem,

c
∥∥∥β̂ψ − β0

∥∥∥ ≤
(
ψ

2
+

‖E‖∞√
NT

)
[R0 +min(Rc, Rr)] +

‖E‖∞√
NT

(2R0 +Rc +Rr) ,

and the same bound holds for β̂∗ if we set ψ = 0, because all bounds above, including Lemma A.3

are applicable for ψ = 0 as well. Finally, the asymptotic statements in the theorem are immediate

corollaries of the finite sample bounds.

Proof of Theorem 1. The theorem follows immediately from Lemma A.5, because our assump-

tions guarantee that C ≥ c > 0 (and therefore 1/C = O(1)), R0 = OP (1), Rc = OP (1), Rr = OP (1),

and
‖E‖∞√
NT

= OP

(
1√

min(N,T )

)
.
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A.5 Proofs for Section 4.1

Lemma A.6. Suppose that A and B are two matrices with ranks of A and B are rank(A) and

rank(B), respectively.

(i) ‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1 ≤
√

rank(A)‖A‖2 ≤ rank(A)‖A‖∞.

(ii) ‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

(iii) ‖AB‖2 ≤ ‖A‖∞‖B‖2 ≤ ‖A‖2‖B‖2.

(iv) If AB′ = 0 and A′B = 0, then ‖A+B‖∞ = max(‖A‖∞, ‖B‖∞).

(v) If A′B = 0 (or equivalently B′A = 0), then ‖A+B‖2∞ ≤ ‖A‖2∞ + ‖B‖2∞.

Recall that the rank of Γ0 = λ0f
′
0 is R0, which is fixed. Throughout the rest of the appendix,

we use the following singular value decomposition of Γ0,

Γ0 = USV ′, (A.7)

where U ∈ R
N×R0 with U ′U = IR0 , V ∈ R

T×R0 with V ′V = IR0 , S is the R0 ×R0 diagonal matrix

of singular values of Γ0.

Suppose that f0 is normalized as 1
T f

′
0f0 = IR0 . Then, we have

f0 =
√
TV λ0 =

US√
T
.

Some further notation:

L(β,Γ) =
1

2NT
‖Y − β ·X − Γ‖22, Qψ(β,Γ) =

1

2NT
‖Y − β ·X − Γ‖22 +

ψ√
NT

‖Γ‖1.

Let

Qψ(Γ) := inf
β
Qψ(β,Γ), L(Γ) := inf

β
L(β,Γ).

These are the profile objective functions of Qψ(β,Γ) and L(β,Γ), respectively, which concentrate

out parameter the β. We also use the notation Θ := Γ− Γ0 and θ := vec(Θ).

Proof of Lemma 2.

# Step 1: Use (15) to show Θ̂ψ ∈ C
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By definition, we have

0 ≥ Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0)

= L(Γ0 + Θ̂ψ)− L(Γ0) +
ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)
,

where Θ̂ψ := Γ̂ψ − Γ0. Let θ̂ψ := vec(Θ̂ψ), Θ̂ψ,1 := MU0Θ̂ψMV0 and Θ̂ψ,2 := Θ̂ψ − MU0Θ̂ψMV0 .

Then

L(Γ0 + Θ̂ψ)− L(Γ0) =
1

2NT
θ̂′ψMxθ̂ψ − 1

NT
e′Mxθ̂ψ

≥ − 1

NT
e′Mxθ̂ψ

= − 1

NT
Tr(Θ̂′

ψmat(Mxe))

≥ −‖Θ̂ψ‖1√
NT

‖mat(Mxe)‖∞√
NT

≥ −ψ
2

‖Θ̂ψ‖1√
NT

≥ −ψ
2

‖Θ̂ψ,1‖1√
NT

− ψ

2

‖Θ̂ψ,2‖1√
NT

.

Here the first inequality holds since θ̂′ψMxθ̂ψ ≥ 0, the second inequality holds by the Hölder

inequality, the third inequality holds by (15), and the last inequality holds by the triangle inequality.

We furthermore have

ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)

=
ψ√
NT

(
‖Γ0 + Θ̂ψ,1 + Θ̂ψ,2‖1 − ‖Γ0‖1

)

≥ ψ√
NT

(
‖Γ0 + Θ̂ψ,1‖1 − ‖Γ0‖1

)
− ψ√

NT
‖Θ̂ψ,2‖1

=
ψ√
NT

‖Θ̂ψ,1‖1 −
ψ√
NT

‖Θ̂ψ,2‖1.

Therefore,

0 ≥ L(Γ0 + Θ̂ψ)− L(Γ0) +
ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)

≥ −ψ
2

‖Θ̂ψ,1‖1√
NT

− ψ

2

‖Θ̂ψ,2‖1√
NT

+ ψ
‖Θ̂ψ,1‖1√

NT
− ψ

‖Θ̂ψ,2‖1√
NT

=
ψ

2

1√
NT

(
‖Θ̂ψ,1‖1 − 3‖Θ̂ψ,2‖1

)
.
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Thus, we have

Θ̂ψ ∈ C :=
{
B ∈ R

N×T | ‖MUBMV ‖1 ≤ 3‖B −MUBMV ‖1
}
.

# Step 2: Also use Assumption 1 to show the final result: Using Assumption 1 and the

same derivation as above, we find

Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0) =
1

2NT
θ̂′ψMxθ̂ψ − 1

NT
e′Mxθ̂ψ +

ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)

≥ µ

2NT
‖Θ̂ψ‖22 +

ψ

2

1√
NT

(
‖Θ̂ψ,1‖1 − 3‖Θ̂ψ,2‖1

)

≥ µ

2NT
‖Θ̂ψ‖22 −

3ψ

2

1√
NT

‖Θ̂ψ,2‖1.

Because 0 ≥ Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0) we thus have

µ

2NT
‖Θ̂ψ‖22 −

3ψ

2

1√
NT

‖Θ̂ψ,2‖1 ≤ 0.

Since the rank of Θ̂ψ,2 is at most 2R0 (e.g., see Recht, Fazel, and Parrilo (2010)), we have

‖Θ̂ψ,2‖1 ≤
√

2R0‖Θ̂ψ,2‖2

and we also have

‖Θ̂ψ,2‖2 ≤ ‖Θ̂ψ‖2.

Therefore,

1

NT
‖Θ̂ψ‖22 −

3ψ
√
2R0

µ

1√
NT

‖Θ̂ψ‖2 ≤ 0,

and

‖Θ̂ψ‖2√
NT

≤ 3
√
2R0 ψ

µ
.

Proof of Theorem 2.

Part (i). Part (i) follows by Lemma 2 and the definition of ψ in Assumption 2.

Part (ii). Let β̂(Γ) = (x′x)−1x′(y − γ). Then, by definition we have

β̂ψ − β0 := β̂(Γ̂ψ)− β0 =

(
1

NT
x′x

)−1( 1

NT
x′e− 1

NT
x′(γ̂ψ − γ0)

)
.
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Under Assumption 2,
(

1
NT x

′x
)−1

= OP (1) and
1
NT e

′x = OP (
1√
NT

). Also, by Part (a) we have

∥∥∥∥
1

NT
x′(γ̂ψ − γ0)

∥∥∥∥
2

≤ 1√
NT

‖X‖2
1√
NT

‖Γ̂ψ − Γ0‖2

= OP (1)ψ.

Combining these, we can deduce the required result for Part (b).

Proof of (16).

Since Mx is positive semi-definite, |e′Mxγ̂ψ| ≤ ‖Γ̂ψ‖1‖mat(Mxe)‖∞ by Hölder inequality, and

Γ0 = 0, we have

0 ≥ Q(Γ̂ψ)−Q(Γ0)

=
1

2NT
(γ̂ψ − γ0)

′Mx(γ̂ψ − γ0)−
1

NT
e′Mx(γ̂ψ − γ0) +

ψ√
NT

‖Γ̂ψ − Γ0‖1

≥ − 1

NT
e′Mx(γ̂ψ − γ0) +

ψ√
NT

‖Γ̂ψ − Γ0‖1

≥ − 1√
NT

‖Γ̂ψ − Γ0‖1
1√
NT

‖mat(Mxe)‖∞ +
ψ√
NT

‖Γ̂ψ − Γ0‖1

=

(
ψ − ‖mat(Mxe)‖∞√

NT

) ‖Γ̂ψ − Γ0‖1√
NT

.

The required result follows since ψ − ‖mat(Mxe)‖∞ > 0.

A.6 Sufficient Conditions for Restricted Strong Convexity

In this section we discuss Assumption 1 in more detail. Define the distance H(A,C) between a

matrix A ∈ R
N×T and the cone C by

H(A,C) :=

[
min
B∈C

Tr(A−B)′(A−B)

]1/2
.

The following lemma provides an alternative formulation for our restricted strong convexity as-

sumption.

Lemma A.7. Let there exists a positive constant µ > 0 such that for any α ∈ R
K with α′

(
x′x
NT

)
α =

1, the regressors X1, ...,XK satisfy

H
(
α · X√

NT
,C

)2

≥ µ > 0, wpa1.

Then Assumption 1 holds.
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Proof of Lemma A.7. Recall the definition x = [x1, ..., xK ], (NT × K), where xk = vec(Xk).

Firstly, if θ = 0, then the required result holds for any constant µ > 0. Secondly, if θ′x = 0, then

the required result holds for µ = 1 because
(
θ′θ − θ′x(x′x)−1x′θ

)
= θ′θ. Thus, in the following we

only need to consider the case θ 6= 0 and θ′x 6= 0. Also let x 6= 0.

Define x̃θ =
Pxθ

‖Pxθ‖ , and X̃θ := mat(x̃θ). Then, for any Θ ∈ C and Θ 6= 0, we have

1

2NT

(
θ′θ − θ′x(x′x)−1x′θ

)

=
1

2NT

(
θ′θ − θ′x̃θx̃

′
θθ
)

(by the definition of x̃θ)

=
1

2NT
‖Θ‖22

(
1− θ′x̃θx̃′θθ

θ′θ

)
(since θ 6= 0)

=
1

2NT
‖Θ‖22

(
1− x̃′θ

θθ′

θ′θ
x̃θ

)
=

1

2NT
‖Θ‖22

(
x̃′θx̃θ − x̃′θ

θθ′

θ′θ
x̃θ

)

=
1

2NT
‖Θ‖22

(
‖x̃θ −Pθx̃θ‖22

)

≥ 1

2NT
‖Θ‖22

(
min
A∈C

‖x̃θ − vec(A)‖2
)

=
1

2NT
‖Θ‖22

(
H(X̃θ,C)

2
)
, (A.8)

where the inequality holds because mat(Pθx̃θ) ∈ C since Θ ∈ C and C is a cone. Notice that

x̃θ =
Pxθ

‖Pxθ‖2
=

x√
NT

α∗,

where α∗ =

(
x′x
NT

)−1
x′√
NT

θ
(
θ′ x√

NT

(
x′x
NT

)−1
x′√
NT

θ

)1/2 and α′
∗
(
x′x
NT

)
α∗ = 1. This implies

X̃θ = α∗ ·
X√
NT

with α′
∗α∗ = 1. Therefore, we have

(A.8) ≥ 1

2NT
‖Θ‖22


 min
α′

(
x′x
NT

)
α=1

H
(
α · X√

NT
,C

)2

 .

Then, the required result of the lemma follows by the assumptions in the lemma.

Lemma A.8. Consider K = 1. Let s1 ≥ s2 ≥ s3 ≥ . . . ≥ smin(N,T ) ≥ 0 be the singular values of

the N × T matrix Mλ0X1Mf0 . Assume that there exists a sequence qNT ≥ 2 such that

(i) 1√
NT

‖X1‖2 = OP (1).

(ii) 1
NT

∑min(N,T )
r=qNT

s2r ≥ c > 0 wpa1.
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(iii) 1√
NT

∑qNT−2
r=1 (sr − sqNT ) →P ∞.

Then Assumption 1 is satisfied with µ = c.

This lemma could be generalized to K > 1. We would then need to impose the conditions for

X1 in the lemma for all linear combination α ·X, in an appropriate uniform sense over all α with

‖α‖ = 1.

Proof of Lemma A.8. For given N × T matrix X, and N ×R0 matrix λ0, and T ×R0 matrix

f0, we want to find a lower bound on

νNT := NT H
(

X1√
NT

,C

)2

= NT min
Θ∈C

∥∥∥X1/
√
NT −Θ

∥∥∥
2

2

= min
Θ∈RN×T

‖X1 −Θ‖22 s.t. ‖Mλ0ΘMf0‖1 ≤ 3 ‖Θ−Mλ0ΘMf0‖1 .

By definition, we have

‖X1 −Θ‖22 = ‖Mλ0X1Mf0 −Mλ0ΘMf0‖22 + ‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖22 .

Also, rank(Θ −Mλ0ΘMf0) ≤ 2R0 (e.g., see Lemma 3.4 of Recht, Fazel, and Parrilo (2010)), and

therefore ‖Θ−Mλ0ΘMf0‖1 ≤
√
2R0 ‖Θ−Mλ0ΘMf0‖2. Using this we find

νNT ≥ min
Θ∈RN×T

{
‖Mλ0X1Mf0 −Mλ0ΘMf0‖22 + ‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖22

}

s.t. ‖Mλ0ΘMf0‖1 ≤ 3
√

2R0 ‖Θ−Mλ0ΘMf0‖2 .

Here, we have weakened the constraint (allowing more values for Θ), and the minimizing value

therefore weakly decreases. It is easy to see that for ω ≥ 0 we have

(
‖X1 −Mλ0X1Mf0‖2 − ω

)2
= min

Θ∈RN×T
‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖22

s.t. ‖Θ−Mλ0ΘMf0‖2 = ω,

because the optimal Θ−Mλ0ΘMf0 here equals X1−Mλ0X1Mf0 rescaled by a non-negative number.

We therefore have

νNT ≥ min
ω≥0

min
Θ∈RN×T

(
‖Mλ0X1Mf0 −Mλ0ΘMf0‖2

)2
+
(
‖X1 −Mλ0X1Mf0‖2 − ω

)2

s.t. ‖Mλ0ΘMf0‖1 ≤ 3
√

2R0 ω.

Let

Mλ0X1Mf0 =

min(N,T )−R0∑

r=1

sr vrw
′
r,
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be the singular value decomposition of Mλ0X1Mf0 with singular values sr ≥ 0 and normalized

singular vectors vr ∈ R
N and wr ∈ R

T . The optimal Mλ0ΘMf0 in the last optimization problem

has the form
min(N,T )−R0∑

r=1

max(0, sr − ξ) vrw
′
r,

for some ξ ≥ 0 (see Lemma A.1). Here, ξ = 0 occurs if the constraint is not binding, that is, if

‖Mλ0X1Mf0‖1 ≤ 3
√
2R0 ω. We therefore have

νNT ≥ min
ω≥0, ξ≥0

min(N,T )−R0∑

r=1

(sr −max(0, sr − ξ))2 +
(
‖X1 −Mλ0X1Mf0‖2 − ω

)2

s.t.

min(N,T )−R0∑

r=1

max(0, sr − ξ) ≤ 3
√

2R0 ω.

Here, the optimal ω equals max
{
‖X1 −Mλ0X1Mf0)‖2 , 1

3
√
2R0

∑min(N,T )−R0

r=1 max(0, sr − ξ)
}
, and

we thus have

νNT ≥min
ξ≥0

min(N,T )−R0∑

r=1

[
min(s2r, ξ

2)

+


max



0,

1

3
√
2R0




min(N,T )−R0∑

r=1

max(0, sr − ξ)


− ‖X1 −Mλ0X1Mf0‖2








2 ]
.

Let ∞ = s0 > s1 ≥ . . . ≥ smin(N,T )−R0
≥ smin(N,T )−R0+1 = 0. For any ξ ≥ 0 there exists q be such

that ξ ∈ [sq+1, sq]. We can therefore write

νNT ≥ min
q∈{0,1,2,...,min(N,T )−R0}

min
ξ∈[sq+1,sq]

[
q ξ2 +

min(N,T )−R0∑

r=q+1

s2r

+

(
max

{
0,

1

3
√
2R0

(
q∑

r=1

(sr − ξ)

)
1{q ≥ 1} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]

≥ min
q∈{0,1,2,...,min(N,T )−R0}

[(
min

ξ∈[sq+1,sq]
q ξ2
)
+

min(N,T )−R0∑

r=q+1

s2r

+

(
max

{
0,

1

3
√
2R0

(
min

ξ∈[sq+1,sq]

q∑

r=1

(sr − ξ)

)
1{q ≥ 1} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]

= min
q∈{0,1,2,...,min(N,T )−R0}

[
q s2q+1 +

min(N,T )−R0∑

r=q+1

s2r

+

(
max

{
0,

1

3
√
2R0

(
q−1∑

r=1

(sr − sq)

)
1{q ≥ 2} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]
.
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Shifting q 7→ q − 1 we can rewrite this as

νNT
NT

≥ min
q∈{1,2,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)
,

where

a(q) =
1

NT


(q − 1) s2q +

min(N,T )∑

r=q

s2r


 ,

b(q) =
1√
NT

[
1

3
√
2R0

(
q−2∑

r=1

(sr − sq)

)
1{q ≥ 3} − ‖X1 −Mλ0X1Mf0‖2

]
.

Notice that a(q) is nonnegative and weakly decreasing and b(q) is weakly increasing. Then, for any

integer valued sequence qNT between 1 and min(N,T )−R0 such that b(qNT ) > 0,

min
q∈{1,2,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)

= min

{
min

q∈{1,2,...,qNT }

(
a(q) + [max {0, b(q)}]2

)
, min
q∈{qNT+1,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)}

≥ min

{
min

q∈{1,2,...,qNT }
a(q), min

q∈{qNT+1,...,min(N,T )−R0}
[max {0, b(q)}]2

}

≥ min
{
a(qNT ), b(qNT + 1)2

}
.

The assumptions of the lemma thus guarantee that νNT /(NT ) ≥ c. The definition of νNT together

with Lemma A.7 thus guarantees that Assumption 1 is satisfied with µ = c.

Remarks

(a) When X is a“high-rank” regressor and sq’s are of an order OP (
√

max(N,T )), we can choose,

for example, qNT = ⌊min(N,T )/2⌋, for N,T converging to infinity at the same rate, where

⌊a⌋ is the integer part of a. Then, it is easy to verify those sufficient condition (i), (ii) and (iii)

for e.g. Xit ∼ i.i.d.N (0, σ2) from well-known random matrix theory results. More generally,

we can explicitly verify (i), (ii) and (iii) if X has an approximate factor structure

X = λxf
′
x + Ex,

where λxf
′
x is an arbitrary low-rank factor structure, and Ex ∼ i.i.d.N (0, σ2).

(b) For a low-rank regressor with rank(X) = 1, we have singular values s1 = ‖Mλ0XMf0‖2 and

sr = 0 for all r ≥ 2. In that case we find that a(1) = 1
NT s

2
1 and a(q) = 0 for q > 1, and we

have b(1) = b(2) = 0 and b(q) = b(3) = 1√
NT

[
1

3
√
2R0

s1 − ‖X −Mλ0XMf0‖2
]
for all q ≥ 3.
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Also, a(1) ≥ b(2). Therefore

min
q∈{1,2,...,min(N,T )}

[
a(q) + (max {0, b(q)})2

]
= min

{
a(1), (max{0, b(3)})2

}

Thus, the assumptions of Lemma A.8 are satisfied if wpa1 we have

1√
NT

[
‖Mλ0XMf0‖2 − 3

√
2R0 ‖X −Mλ0XMf0‖2

]
≥ c1 > 0

for some constant c1. This last condition simply demands that the part of X that cannot

be explained by λ0 and f0 needs to be sufficiently larger than the part of X that can be

explained by either λ0 or f0. This is a sufficient condition for Assumption 1. An analysis that

is specialized towards low-rank regressors will likely give a weaker condition for Assumption 1

in this case.

A.7 Proofs for Section 4.2

Proof of Theorem 3 . Remember the following singular value decompositions: Γ0 = USV ′,

Mλ0EMf0 = MUEMV = UESEV
′
E, and Mλ0XMf0 = MUXMV = UxSxV

′
x. The proof con-

sists of two steps. In the first step, we show that the local minimizer that minimizes the objective

function Q∗(β) in a convex neighborhood of β0 defined by

B :=

{
β :

cx clow
cup

|∆β| ≤ 1

}

is
√
T - consistent. In the second step, we show that the local minimizer is the global minimizer,

for which we use convexity of the objective function Q∗(β).

Step 1. By definition of the nuclear norm, we have

Q∗(β) = ‖Γ0 + E −∆β ·X‖1 = sup
{A : ‖A‖∞≤1}

Tr
[
(Γ0 + E −∆β ·X)′A

]
.

To obtain a lower bound on Q∗(β) we choose the following matrix A in the above minimization,

Aβ = UV ′ +
√

1− a2β UEV
′
E − aβ (sgn∆β) MUEUxV

′
x,

where MUE = IN − UEU
′
E and aβ ∈ [0, 1] is given by

aβ =
cx clow
cup

|∆β|.
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We have ‖Aβ‖∞ ≤ 1, because

‖Aβ‖2∞ = max

{∥∥UV ′∥∥2
∞ ,
∥∥∥
√
1− a2β UEV

′
E − aβ (sgn∆β) MUEUxV

′
x

∥∥∥
2

∞

}

≤ max
{∥∥UV ′∥∥2

∞ , (1 − a2β)
∥∥UEV ′

E

∥∥2
∞ + a2β

∥∥MUEUxV
′
x

∥∥2
∞

}

= 1.

Here, for the first line, we used that UV ′ is orthogonal to
√

1− a2β UEV
′
E − aβ (sgn∆β) MUEUxV

′
x

in both matrix dimensions (that is, U ′UE, U ′Uk, V ′VE, V ′Vx = 0) and applied Lemma A.6(iv). For

the second line, we used that the columns of UEV
′
E are orthogonal to the columns of MUEUxV

′
x since

U ′
EMUE = 0, and applied Lemma A.6(v). In the final line we used that ‖UV ′‖∞ = ‖UEV ′

E‖∞ = 1

and that ‖MUEUxV
′
x‖∞ ≤ 1.

With this choice of A = Aβ we obtain the following lower bound for the objective function; for

all β ∈ B,

Q∗(β) ≥ Tr
[
(Γ0 + E −∆β ·X)′Aβ

]

= ‖Γ0‖1 +Tr
(
E′UV ′)+Tr

[
(−∆β ·X)′ UV ′]

+
√

1− a2β ‖MUEMV ‖1 +
√

1− a2β Tr
[
(−∆β ·X)′ UEV

′
E

]

+ aβ |∆β|Tr
[
X ′MUEUxV

′
x

]
,

where we used the following:

Tr
(
Γ′
0UV

′) = Tr
(
V SU ′UV ′) = Tr(S) = ‖Γ0‖1,

Tr
(
E′UEV

′
E

)
= Tr

(
(E −MUEMV +MUEMV )

′UEV
′
E

)

= Tr((MUEMV )
′UEV

′
E)) = Tr(SE) = ‖MUEMV ‖1,

Tr
(
Γ′
0UEV

′
E

)
= Tr

(
V SU ′UEV

′
E

)
= 0,

Tr
[
Γ′
0MUEUxV

′
x

]
= Tr

[
V SUMUEUxV

′
x

]
= 0,

Tr
[
E′MUEUxV

′
x

]
= Tr

[
MVE

′MUMUEUxV
′
x

]
+Tr

[
(E′ −MVE

′MU )MUEUxV
′
x

]
= 0.

We furthermore have Q(β0) = ‖Γ0 +E‖1. Thus, applying the assumptions of the theorem and also
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using
√

1− a2β ≥ 1− 1
2a

2
β − 1

2a
4
β, we obtain for β ∈ B,

Q∗(β)−Q∗(β0) ≥ Tr
[
(Γ0 +E −∆β ·X)′Aβ

]
− ‖Γ0 + E‖1

≥ aβ |∆β|Tr
[
X ′MUEUxV

′
x

]

− 1

2
a2β ‖MUEMV ‖1 − (‖Γ0 + E‖1 − ‖Γ0‖1 − ‖MUEMV ‖1)

+ Tr
(
E′UV ′)− 1

2
a4β‖MUEMV ‖1

+
√

1− a2β Tr
[
(−∆β ·X)′ UEV

′
E

]
+Tr

[
(−∆β ·X)′ UV ′]

=: B1 −B2 −B3 +B4 −B5 +B6. (A.9)

Here we bound B1 from below by

B1 = aβ |∆β|Tr
(
X ′MUEUxV

′
x

)

= aβ |∆β|
[
Tr
(
MVX

′MUMUEUxV
′
x

)
− Tr

(
(X ′ −MVX

′MU )MUEUxV
′
x

)]

= aβ |∆β|Tr
(
VxSxU

′
xMUEUxV

′
x

)

= aβ |∆β| |∆β|
[
Tr (Sx)− Tr

(
U ′
EUxSxU

′
xUE

)]

≥ aβ cx |∆β| Tr (Sx) = aβ cx |∆β| ‖MUXMV ‖1
≥ aβ cx clow T

√
N |∆β| .

Here the first inequality holds by assumption (vi), and the second inequality holds by assumption

(v).

We bound B2 from above by

B2 =
1

2
a2β ‖MUEMV ‖1

≤ 1

2
a2β (‖E‖1 + ‖PUE‖1 + ‖EPV ‖1 + ‖PUEPV ‖1)

≤ 1

2
a2β (‖E‖1 + 3R0‖E‖∞)

≤ 1

2
a2β T

√
N

(
cup
2

+
1

T
OP (1)

)
wpa1

≤ 1

2
a2β T

√
N cup wpa1,

where the first inequality holds by the triangle inequality, the second inequality holds by Lemma A.6(i)

and the third and the fourth inequalities follow by assumption (i) and (ii).

45



We bound term B3 from above by

B3 = ‖Γ0 + E‖1 − ‖Γ0‖1 − ‖MUEMV ‖1
≤ ‖E −MUEMV ‖1 = ‖PUE + EPV −PUEPV ‖1
≤ ‖PUE‖1 + ‖EPV ‖1 + ‖PUEPV ‖1
≤ 3R0‖E‖∞
≤ OP (

√
N)

where the second inequality holds by the triangle inequality and the third inequality holds by

Lemma A.6(i).

For B4, by Hölder’s inequality we have

B4 = ‖Tr
(
E′UV ′) ‖ ≤ ‖E‖∞‖UV ′‖1 = OP (

√
N).

For B5, denoting OP+(·) as a stochastically strictly positive and bounded term and using similar

arguments for the bound of term B2, we obtain

B5 =
1

2
a4β‖MUEMV ‖1 = OP+(1)a

4
β T

√
N = OP+(1)(∆β)

4 T
√
N.

For B6, we have

B6 =
√

1− a2β Tr
[
(−∆β ·X)′ UEV

′
E

]
+Tr

[
(−∆β ·X)′ UV ′] = OP

(√
NT |∆β|

)
,

where the last equality holds since Tr(XkUEV
′
E) = OP (

√
NT ) by assumption (vi), and Tr(XkUV

′) ≤
‖X‖∞‖UV ′‖1 = OP (

√
NT ) under assumption (iii).

Notice that our choice for aβ above is such that aβ cx clow|∆β| − 1
2a

2
β cup is maximized, which

guarantees that B1 −B2 is positive, namely

B1 −B2

T
√
N

≥ c2xc
2
low

2 cup
|∆β|2.

Combining the above, for any β ∈ B, we have

1

T
√
N

{Q∗(β)−Q∗(β0)} ≥ c2xc
2
low

2 cup
|∆β|2 +OP

(
1√
T
|∆β|

)
+OP (T

−1) +OP+(1)|∆β|4,

which holds uniformly over β ∈ B (i.e. none of the constants hidden in the OP (.) notation depends

on β).

Let

β̃∗ := argmin
β∈B

Q∗(β)
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be the local minimizer in a convex neighborhoodB of β0. Notice that since β0 ∈ B, Q∗(β̂∗) ≤ Q∗(β0)

by definition. Therefore, we have

0 ≥ 1

T
√
N

(Q∗(β̃∗)−Q∗(β0))

≥ c2xc
2
low

2 cup
|β̃∗ − β0|2 +OP

(
1√
T
|β̃∗ − β0|

)
+OP

(
1

T

)
+OP+

(
|β̃∗ − β0|4

)
.

This implies

OP+

(
1

T

)
≥
(
c2xc

2
low

2 cup
+OP+(1)|β̃∗ − β0|2

)
|β̃∗ − β0|2 +OP

(
1√
T

)
|β̃∗ − β0|

≥ c2xc
2
low

2 cup
|β̃∗ − β0|2 +OP

(
1√
T

)
|β̃∗ − β0|.

From this we deduce

|β̃∗ − β0| = OP

(
1√
T

)
. (A.10)

Step 2. Let β̄ ∈ ∂B, that is, αβ̄ = 1. Write ∆β̄ := β̄− β0. From (A.9) with aβ̄ = 1, we can bound

Q∗(β̄)−Q∗(β0) from below by

1

T
√
N

(Q∗(β̄)−Q∗(β0))

≥ cx clow |∆β̄| − 1

2
cup +OP

(
1√
T
|∆β̄|

)
+OP

(
1

T

)
+OP+(1)|∆β̄|4

=
1

2
cup +OP

(
1

T

)
+OP

(
1√
T

)
cup

cx clow
+OP+(1)

(
cup

cx clow

)4

> 0 wpa1,

where the equality holds since |∆β̄| = cup
cx clow

.

Since Q∗(β) is convex and has unique minimum, the local minimum at β̃∗ is also the global

minimum asymptotically. Therefore, asymptotically

β̃∗ = β̂∗ wpa1.

Combining this with the
√
T− consistency result of the local minimizer in (A.10) gives the statement

of the theorem.

A.7.1 Extension of Theorem 3

Theorem 3 is the special case of one regressors (K = 1). We can extend this to a more general case

with K regressors. The proof of the following general theorem is similar to that of Theorem 3, and

we skip it.
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Theorem A.1 (Generalization of Theorem 3 to multiple regressors). Let there exist sym-

metric idempotent T × T matrices Qk = Qk,NT such that QkV = 0, for all k ∈ {1, . . . ,K}, and
QkQℓ = 0, for all k, ℓ ∈ {1, . . . ,K}. Suppose that N > T . As N,T → ∞, we assume the following

conditions hold.

(i) ‖E‖∞ = OP (
√
N).

(ii) There exists a finite positive constant cup such that 1
T
√
N
‖E‖1 ≤ 1

2cup, wpa1.

(iii) ‖Xk‖∞ = OP (
√
NT ), for k ∈ {1, . . . ,K}.

(vi) Let UESEV
′
E be the singular value decomposition of Mλ0EMf0 . We assume Tr (X ′

kUEV
′
E) =

OP (
√
NT ) for all k ∈ {1, . . . ,K}.

(v) We assume that there exists a constant clow > 0 such that wpa1

T−1N−1/2‖MUXkMVQk‖1 ≥ clow,

for all k ∈ {1, . . . ,K}.

(vi) For k = 1, . . . ,K let UkSkV
′
k = MUXkMVQk(= MUXkQk) be the singular value decompo-

sition of the matrix MUXkMVQk. We assume that there exists cx ∈ (0, 1) such that wpa1

‖U ′
kUE‖2∞ ≤ (1− cx) for all k = 1, . . . ,K.

We then have
√
T
(
β̂∗ − β0

)
= OP (1).

Remark For t ∈ {1, 2, . . . , T}, let et be the t’th unit vector of dimension T . For k ∈ {1, . . . ,K},
let Ak = (e⌊(k−1)T/K⌋+1, e⌊(k−1)T/K⌋+2, . . . e⌊kT/K⌋) be a T × ⌊T/K⌋ matrix, and let PAk be the

projector onto the column space of Ak. Also define f0,k = PAkf0 and Bk = Mf0,kAk. Then, for

K > 1 one possible choice for Qk in assumption (vi) of Theorem A.1 is given by

Qk = PBk = Mf0,kPAk .

The discussion of assumption (vi) of Theorem A.1 is then analogous to the K = 1 case, except that

for the k’th regressor only the time periods ⌊(k−1)T/K⌋+1 to ⌊kT/K⌋ are used in the assumption,

that is, we need enough variation in the k’th regressor within those time periods. Other choices of

Qk are also conceivable.

A.8 Proofs for Section 5

For β ∈ R
K we define

{
λ̂(β), f̂ (β)

}
:= argmin

λ∈RN×R0 ,f∈RT×R0

‖Y − β ·X‖22 ,
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and the corresponding projection matrices

M
λ̂
(β) := IN − λ̂(β)

(
λ̂(β)′λ̂(β)

)−1
λ̂(β)′, M

f̂
(β) := IT − f̂(β)

(
f̂(β)′f̂(β)

)−1
f̂(β)′.

Lemma A.9. Under the assumptions (i) and (ii) of Theorem 4 we have

M
λ̂
(β) = Mλ0 +M

(1)

λ̂,E
+M

(2)

λ̂,E
−

K∑

k=1

(βk − β0,k)M
(1)

λ̂,k
+M

(rem)

λ̂,E
+M

(rem)

λ̂
(β) ,

M
f̂
(β) = Mf0 +M

(1)

f̂ ,E
+M

(2)

f̂ ,E
−

K∑

k=1

(βk − β0,k)M
(1)

f̂ ,k
+M

(rem)

f̂ ,E
+M

(rem)

f̂
(β) ,

where the spectral norms of the remainders satisfy for any series rNT → 0,

sup
β∈B(β0,rNT )

∥∥∥M(rem)

λ̂
(β)
∥∥∥
∞

‖β − β0‖2 + (NT )−1/2‖E‖∞‖β − β0‖
= OP (1) , sup

β∈B(β0,rNT )

∥∥∥M(rem)

λ̂,E

∥∥∥
∞

(NT )−3/2‖E‖3∞
= OP (1) ,

sup
β∈B(β0,rNT )

∥∥∥M(rem)

f̂
(β)
∥∥∥
∞

‖β − β0‖2 + (NT )−1/2‖E‖∞‖β − β0‖
= OP (1) , sup

β∈B(β0,rNT )

∥∥∥M(rem)

f̂ ,E

∥∥∥
∞

(NT )−3/2‖E‖3∞
= OP (1) ,

and the expansion coefficients are given by

M
(1)

λ̂,E
= −Mλ0 E f0 (f

′
0f0)

−1 (λ′0λ0)
−1λ′0 − λ0 (λ

′
0λ0)

−1 (f ′0f0)
−1 f ′0E

′ Mλ0 ,

M
(1)

λ̂,k
= −Mλ0 Xk f0 (f

′
0f0)

−1 (λ′0λ0)
−1λ′0 − λ0 (λ

′
0λ0)

−1 (f ′0f0)
−1 f ′0X

′
kMλ0 ,

M
(2)

λ̂,E
= Mλ0 E f0 (f

′
0f0)

−1 (λ′0λ0)
−1λ′0E f0 (f

′
0f0)

−1 (λ′0λ0)
−1λ′0

+ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1 f ′0E

′ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1 f ′0E

′ Mλ0

−Mλ0 EMf0 E
′ λ0 (λ

′
0λ0)

−1 (f ′0f0)
−1 (λ′0λ0)

−1 λ′0

− λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1 (λ′0λ0)

−1 λ′0EMf0 E
′ Mλ0

−Mλ0 E f0 (f
′
0f0)

−1 (λ′0λ0)
−1 (f ′0f0)

−1 f ′0E
′ Mλ0

+ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1 f ′0E

′Mλ0 E f0 (f
′
0f0)

−1 (λ′0λ0)
−1λ′0 ,
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analogously

M
(1)

f̂ ,E
= −Mf0 E

′ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1f ′0 − f0 (f

′
0f0)

−1 (λ′0λ0)
−1 λ′0EMf0 ,

M
(1)

f̂ ,k
= −Mf0 X

′
k λ0 (λ

′
0λ0)

−1 (f ′0f0)
−1f ′0 − f0 (f

′
0f0)

−1 (λ′0λ0)
−1 λ′0XkMf0 ,

M
(2)

f̂ ,E
= Mf0 E

′ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1f ′0E

′ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1f ′0

+ f0 (f
′
0f0)

−1 (λ′0λ0)
−1 λ′0E f0 (f

′
0f0)

−1 (λ′0λ0)
−1 λ′0EMf0

−Mf0 E
′ Mλ0 E f0 (f

′
0f0)

−1 (λ′0λ0)
−1 (f ′0f0)

−1 f ′0

− f0 (f
′
0f0)

−1 (λ′0λ0)
−1 (f ′0f0)

−1 f ′0E
′ Mλ0 EMf0

−Mf0 E
′ λ0 (λ

′
0λ0)

−1 (f ′0f0)
−1 (λ′0λ0)

−1 λ′0EMf0

+ f0 (f
′
0f0)

−1 (λ′0λ0)
−1 λ′0EMf0 E

′ λ0 (λ
′
0λ0)

−1 (f ′0f0)
−1f ′0 .

Proof. This lemma is a restatement of Theorem S.9.1 in the supplementary appendix of Moon and Weidner

(2017), and the proof is given there. However, in the presentation here we split the remainder terms

of the expansions into two components, e.g.M
(rem)

λ̂,E
+M

(rem)

λ̂
(β), whereM

(rem)

λ̂,E
summarizes all higher

order expansion terms depending on E only, and M
(rem)

λ̂
(β) summarizes all higher order terms also

involving β − β0. The reason for this change in presentation is that we will consider differences of

the form M
λ̂
(β1)−M

λ̂
(β2) below, and the remainder terms M

(rem)

λ̂,E
cancel in those differences.

Proof of Theorem 4. # The first statement of the theorem is an almost immediate consequence

of Theorem 4.1 in Moon and Weidner (2017). That theorem shows that, under the assumptions

we impose here, we have the following approximate quadratic expansion of the profile LS objective

function,

LR0(β) = LR0(β
0) − 1√

NT
(β − β0)′CNT +

1

2
(β − β0)′WNT (β − β0) +

1

NT
RNT (β) ,

where the remainder RNT (β) is such that for any sequence rNT → 0 we have

sup
β∈B(β0,rNT )

|RNT (β)|(
1 +

√
NT ‖β − β0‖

)2 = op (1) ,

and WNT = 1
NT x

′ (Mf0 ⊗Mλ0) x, and CNT = C
(1)
NT + C

(2)
NT , with C

(1)
NT = 1

NT x
′ (Mf0 ⊗Mλ0) x,

and the K-vector C
(2)
NT has entries, k = 1, . . . ,K,

C
(2)
NT,k = − 1√

NT

[
Tr
(
EMf0 E

′Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′

)

+Tr
(
E′Mλ0 EMf0 X

′
k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′
)

+Tr
(
E′Mλ0 XkMf0 E

′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′
) ]

.
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We have assumed that plimN,T→∞WNT > 0 and C
(1)
NT = OP (1), and using our assumptions (i) and

(ii) we also find that

∣∣∣C(2)
NT,k

∣∣∣ ≤ 3R0√
NT

‖E‖2∞ ‖Xk‖∞
∥∥λ0
∥∥
∞
∥∥f0

∥∥
∞
∥∥(λ0′λ0)−1

∥∥
∞
∥∥(f0′f0)−1

∥∥
∞ = OP (1),

and therefore CNT = 0. From this approximate quadratic expansion we conclude that LR0(β) has

indeed at least one local minimizer within B(β0, rNT ), and that any such local minimizer within

B(β0, rNT ) satisfied
√
NT

(
β̂ local
LS,R0

− β0

)
=W−1

NT CNT = OP (1).

# Next, we want to show the second statement of the theorem. Let λ̂ := λ̂
(
β̂ local
LS,R0

)
and

f̂ := f̂
(
β̂ local
LS,R0

)
. By definition we have λ̂(s+1) = λ̂

(
β̂(s)

)
and f̂ (s+1) = f̂

(
β̂(s)

)
, and

(
x′
(
M

f̂(s+1) ⊗M
λ̂(s+1)

)
x
)
β̂(s+1) = x′

(
M

f̂(s+1) ⊗M
λ̂(s+1)

)
y,

(
x′
(
M

f̂
⊗M

λ̂

)
x
)
β̂ local
LS,R0

= x′
(
M

f̂
⊗M

λ̂

)
y.

By taking the difference of those last equations we obtain

(
x′
(
M

f̂
⊗M

λ̂

)
x
)(

β̂(s+1) − β̂ local
LS,R0

)
= x′

(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

)(
y − x β̂(s+1)

)

= x′
(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

) [
e− x

(
β̂(s+1) − β0

)
+ (f0 ⊗ λ0)vec(IR)

]
,

where in the last step we plugged in the model for y. Applying Lemma A.9, the result from the

first part of the theorem, and our assumptions we find that

1

NT
x′
(
M

f̂
⊗M

λ̂

)
x =

1

NT
x′ (Mf0 ⊗Mλ0)x+ oP (1),

and since the probability limit of 1
NT x

′ (Mf0 ⊗Mλ0)x is assumed to be invertible we obtain

β̂(s+1) − β̂ local
LS,R0

=

[
1

NT
x′ (Mf0 ⊗Mλ0) x

]−1 1

NT
x′
(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

)

×
[
e− x

(
β̂(s+1) − β0

)
+ (f0 ⊗ λ0)vec(IR)

]
[1 + oP (1)].

Again applying Lemma A.9 and our assumptions one can show that

∥∥∥Mf̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

∥∥∥
∞

= OP

(∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
)
,
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and therefore

1

NT
x′
(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

)
e = OP

(‖E‖∞ maxk ‖Xk‖∞
NT

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
)

= OP




∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
√

min(N,T )


 ,

and

1

NT
x′
(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

)
x
(
β̂(s+1) − β0

)
= OP

(∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
∥∥∥β̂(s+1) − β0

∥∥∥
)

= OP



∥∥∥β̂(s) − β̂ local

LS,R0

∥∥∥
∥∥∥β̂(s+1) − β̂ local

LS,R0

∥∥∥+

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
√
NT


 ,

where in the last step we used that part of the theorem implies that β̂(s+1)−β0 = β̂(s+1)− β̂ local
LS,R0

+

OP (1/
√
NT ). Finally, using one more time Lemma A.9 and our assumptions we can also show that

1

NT
x′
(
M

f̂(s+1) ⊗M
λ̂(s+1) −M

f̂
⊗M

λ̂

)
(f0 ⊗ λ0)vec(IR)

= OP



∥∥∥β̂(s) − β̂ local

LS,R0

∥∥∥
2
+

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
√

min(N,T )


 .

Combining the above gives

β̂(s+1) − β̂ local
LS,R0

= OP

{∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
[∥∥∥β̂(s+1) − β̂ local

LS,R0

∥∥∥+
∥∥∥β̂(s) − β̂ local

LS,R0

∥∥∥+ 1√
min(N,T )

]}
[1 + oP (1)].

Starting from the assumptions ‖β̂(0) − β0‖ = OP (cNT ), for cNT → 0, we thus conclude that

∥∥∥β̂(1) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N,T )

)}
,

and then also
∥∥∥β̂(2) − β̂ local

LS,R0

∥∥∥ = OP



cNT

(
cNT +

1√
min(N,T )

)2


 ,

and by induction over s we conclude in this way that

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N,T )

)s}
.
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Proof of Lemma 3. By definition we have

Y − β̂ψ ·X = E −
(
β̂ψ − β0

)
·X + Γ0.

By Ky Fan’s singular value inequality (e.g., Moslehian 2012), we have

∣∣∣sr(Y − β̂ψ ·X)− sr (Γ0)
∣∣∣ ≤

∥∥∥E −
(
β̂ψ − β0

)
·X
∥∥∥
∞

≤ ‖E‖∞ + ‖β̂ψ − β0‖
(

K∑

k=1

‖Xk‖∞
)

for all r = 1, ...,min(N,T ). Since ‖E‖∞ = OP (
√

max(N,T )) and ‖Xk‖∞ ≤ OP (
√
NT ) under

condition (ii) of Theorem 4, if ‖β̂ψ − β0‖ ≤ OP (cNT ), then with probability approaching one,

sR0(Y − β̂ψ ·X)√
NT

≥ sR0(Γ0)√
NT

−OP

(
1√

min(N,T )

)
−OP (cNT )

> ψ∗
NT ,

where the last inequality holds since ψ∗
NT → 0 and plim

sR0
(Γ0)√
NT

> 0 under condition (i) of Theorem

4. Also, since rank(Γ0) = R0, we have

sR0+1(Y − β̂ψ ·X)√
NT

≤ sR0+1(Γ0)√
NT

+OP

(
1√

min(N,T )

)
+OP (cNT )

< ψ∗
NT ,

where the last inequality holds since ψ∗
NT /cNT , ψ

∗
NT /min(N,T ) → ∞. Therefore,

P{R̂ψ∗ 6= R0} → 0,

as required for the lemma.
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