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Abstract

We document that information about the comovement of individual stocks, jointly
extracted from index options and individual stock options, can be used to predict
future market excess returns for horizons of up to 1 year, both in-sample and out-
of-sample. The predictive power is incremental to that of risk measures exclusively
based on the marginal distribution of the market, including (semi)variances and their
risk premiums. We attribute this predictability to the ability of expected correlation
to capture expected variations in idiosyncratic risk and in the cross-sectional disper-
sion in systematic risk. A novel extension of the contemporaneous-beta approach
significantly improves out-of-sample predictability.
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Option prices, by construction, reflect investors’ expectations about future price movements,

and, hence, measures of risk extracted from index options are natural candidates for predicting

future market returns. However, empirical evidence also suggests that information about the

comovement of individual stocks, jointly extracted from index options and the cross-section of

individual stock options, can be used to predict future market returns.1

The objective of this paper is to improve our understanding of the predictive power and the

information content of options-based measures of stock comovement and to study the underlying

economic sources explaining their return predictability. In particular, we carefully analyze the

implied correlation and the correlation risk premium, and we contrast their ability to predict

future market excess returns with that of variables exclusively based on the marginal distribution

of the aggregate stock market (i.e., inferred solely from index options).

We find that both the implied correlation and the correlation risk premium significantly pre-

dict future market excess returns for horizons of up to 1 year and that this predictability mostly

can be attributed to the forward-looking information encapsulated in option prices. Moreover,

their information content is incremental to that of variables exclusively extracted from index

options known to forecast future market returns.2 Even out-of-sample, we document a signifi-

cant predictive power for future market excess returns for horizons of up to 1 year; in particular

so when using our novel extension of the contemporaneous-beta approach that combines high-

frequency increments in option-implied variables with the respective risk premiums.

This strong and incremental return predictability is rather surprising. The implied corre-

lation reflects the relative pricing of individual and index options and, hence, is a function of

individual stocks’ expected variances and the expected market variance. However, there exists

hardly any empirical evidence supporting market excess return predictability by expected mar-

ket variance.3 Moreover, because the predictive power of implied correlation persists even after

1See, for example, the empirical evidence in Driessen, Maenhout, and Vilkov (2005, 2012), Cosemans (2011),
and Faria, Kosowski, and Wang (2016).

2For instance, Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011), and Bollerslev, Marrone,
Xu, and Zhou (2014) document market return predictability by the variance risk premium. Similarly, Feunou,
Jahan-Parvar, and Okou (2017) and Kilic and Shaliastovich (2017) show that the downside (“bad”) semivariance
risk premium predicts future market excess returns.

3See Goyal and Welch (2008) and Bollerslev, Tauchen, and Zhou (2009), among others. An exception is
the work by Ghysels, Santa-Clara, and Valkanov (2005), who document short horizon (1-month) market return
predictability using a mixed data sampling approach.
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controlling for index-options-based variables, the implied correlation does not simply act as a

proxy for these variables. Hence, the predictability must be related to information contained in

individual stocks’ expected variances.

In particular, in contrast to measures of risk exclusively based on the marginal distribution

of the market, the expected correlation is intimately linked to idiosyncratic risk and the cross-

sectional dispersion in systematic risk. Consequently, we hypothesize that temporal variations in

the amount of (priced) idiosyncratic risk and the cross-sectional dispersion in systematic risk are

largely responsible for the incremental return predictability by the expected correlation. That

is, if idiosyncratic risk is priced or the equity risk premium is affected by the cross-sectional

dispersion in systematic risk,4 the implied correlation will be able to capture fluctuations in

future market excess returns resulting from variations in these variables, whereas purely market-

based measures will not.

We provide substantial empirical evidence in favor of this hypothesis. First, we carefully

document the in-sample predictive power of the implied correlation. In univariate regressions,

we find that the implied correlation, extracted from options data, can predict future market

excess returns for horizons of up to 1 year. Its regression coefficient is always highly significantly

positive (with t-statistics consistently above 2), and its predictive power, measured in terms

of R2, is increasing from about 3.5% at the monthly horizon to around 5%–6% for 9- and 12-

month horizons.5 Indeed, excluding short horizons of up to one quarter, the implied correlation

delivers the strongest predictive power; dominating index-based variables, such as the implied

(semi)variances and their risk premiums. Moreover, even after controlling for these index-based

variables in multivariate regressions, the implied correlation significantly predicts future market

excess returns, with a consistently positive sign. We also relate the predictive power of the

implied correlation to the forward-looking information encapsulated in option prices; that is,

the predictive power of the historical realized correlation is much weaker.

4We discuss the empirical evidence and potential theoretical explanations for the pricing of idiosyncratic risk
and the cross-sectional dispersion in systematic risk in the literature review.

5The R2s are corrected for persistence in the predictors using the method suggested in Boudoukh, Richardson,
and Whitelaw (2008). In the absence of the correction, the explained variability goes beyond 20% for an annual
horizon.
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We then provide a conceptual framework for interpreting the documented return predictabil-

ity by implied correlation. Using a stylized model for individual stock returns, we study the

determinants of the average expected correlation and illustrate its relation to idiosyncratic risk

and the cross-sectional dispersion in systematic risk. Variations in the expected correlation can

be summarized in terms of (1) the amount of aggregate risk, (2) the amount of idiosyncratic

risk, and (3) the cross-sectional dispersion in systematic risk. Intuitively, an increase in ag-

gregate risk implies stronger comovement among the individual stocks, because it strengthens

the importance of aggregate shocks. Conversely, when idiosyncratic risk increases, the expected

correlation declines, because stock-specific shocks are, to a larger extent, responsible for fluc-

tuations in individual stock returns. Finally, we show that the expected correlation falls as

the cross-sectional dispersion in systematic risk rises. We then empirically study the relation

between the implied correlation and measures of the amount of future idiosyncratic risk and

the future cross-sectional dispersion in systematic risk. Consistent with our stylized framework,

we find that the implied correlation negatively predicts future idiosyncratic volatility and the

future cross-sectional dispersion in market betas. Importantly, the empirical evidence indicates

that these predictions are distinctly different from those of the implied (semi)variances.

In the next step, we present a variety of additional direct and indirect evidence for mar-

ket excess return predictability by implied correlation. First, we document that, consistent

with the intuition from the present-value relation (see, e.g., Campbell and Shiller (1988) and

Campbell (1991)), revisions in expected market returns, as predicted by the implied correlation,

are negatively correlated with contemporaneous market excess returns. Second, using a vec-

tor autoregression (VAR) model similar to that of Campbell (1991), we show that the implied

correlation predicts future market excess returns, even if controlling for “traditional” variables,

like dividend growth. This analysis also shows that, consistent with economic intuition, past

dividend growth negatively affects the implied correlation; that is, the implied correlation in-

creases in adverse economic conditions. Moreover, shocks to implied correlation propagate to

some of the index-based variables. Using the same model, we find that, within the set of options-

based variables, the implied correlation explains the largest fraction of the future market return

variance. Third, we demonstrate that the correlation risk premium, defined as the difference
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between the expected correlation under the risk-neutral and the objective probability measures,

can also significantly predict future market excess returns.

Lastly, we study out-of-sample return predictability. The implied correlation, the down-

side semivariance risk premium, and the correlation risk premium show similar out-of-sample

predictability for short horizons of up to one quarter, but only the implied correlation can pre-

dict future market excess returns at longer horizons of up to 1 year. However, we also find

that traditional out-of-sample regression techniques cannot fully exploit the predictive power

of many variables, because they require a long historical estimation window for the regression

coefficients. For example, in our applications, the out-of-sample predictability evaporates when

the estimation window is shortened to 5 years or less. In lieu of this evidence, we propose a

novel out-of-sample predictability approach that extends the contemporaneous-beta approach

(see, e.g., Cutler, Poterba, and Summers (1989) and Roll (1988)). This approach combines high-

frequency increments in option-implied variables with the variables’ risk premiums to predict

future market excess returns. For predictions based on correlation and downside semivariance

risk, the approach leads to out-of-sample R2s of around 8% for horizons of 3 to 6 months and of

about 7% for 12 months. Consistent with our initial motivation, we link the better performance

of our new approach to its stable and up-to-date regression coefficients.

Our work is related to several strands of the literature. First, it is related to the literature

on market return predictability using information extracted from option markets.6 Bollerslev,

Tauchen, and Zhou (2009), Drechsler and Yaron (2011), and Bollerslev, Marrone, Xu, and Zhou

(2014) show that the variance risk premium is a robust predictor of market returns for horizons

of up to one quarter. Longer-term predictability by various components of the variance risk

premium is presented in Fan, Xiao, and Zhou (2018), who rely on a decomposition into a pre-

mium for variance risk and one for higher-order risks, in Feunou, Jahan-Parvar, and Okou (2017)

and Kilic and Shaliastovich (2017), who use decompositions into upside (good) and downside

(bad) semivariance risk premiums, and in Bollerslev, Todorov, and Xu (2015), who focus on

jump components. These papers exclusively focus on information extracted from the marginal

distribution of the market, whereas we highlight the importance of information extracted from

6For an extensive literature survey, confer with Christoffersen, Jacobs, and Chang (2013). Goyal and Welch
(2008) carefully analyze and discuss market return predictability more generally.
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the joint distribution of the market and individual stocks. In particular, we demonstrate that

information from the cross-section of individual stock options, encapsulated in the implied cor-

relation, leads to incremental market return predictability. In that regard, we are related to

the extant literature studying market return predictability by correlation-related variables, such

as Driessen, Maenhout, and Vilkov (2005, 2012), Pollet and Wilson (2010), Cosemans (2011),

and Faria, Kosowski, and Wang (2016). Unlike these papers, we study not only in-sample mar-

ket return predictability but also out-of-sample return predictability. In addition, we carefully

analyze the economic rationale behind the predictive power of the implied correlation, tracing

it back to idiosyncratic risk and the cross-sectional dispersion in systematic risk. Methodolog-

ically, we also contribute to this literature by proposing a novel predictability technique that

improves out-of-sample return forecasts, particularly for option-implied variables. Finally, our

work is related to Martin and Wagner (Forthcoming), who document return predictability for

individual stock returns using a combination of expected market variance and a stock’s expected

(“excess”) variance, both of which are extracted from option prices.

Second, our work is related to the literature studying correlation risk. Buraschi, Porchia, and

Trojani (2010) study optimal portfolios in the presence of correlation risk. Leippold and Trojani

(2010) propose a multivariate framework in which stochastic volatilities, stochastic correlations,

and jumps can be consistently modeled. In Buraschi, Trojani, and Vedolin (2014), correlation

risk is endogenously priced due to differences-in-beliefs. Relatedly, in Piatti (2015), a correlation

risk premium arises from agents’ disagreement about the likelihood of systematic disasters.

Empirically, Buraschi, Kosowski, and Trojani (2014) relate correlation risk to a “no-place-to-

hide” state variable, Chang, Christoffersen, Jacobs, and Vainberg (2012) and Buss and Vilkov

(2012) use option-implied correlations to measure systematic risk, and Mueller, Stathopoulos,

and Vedolin (2017) study correlation risk in foreign exchange markets. Our contribution to this

literature is twofold. First, we carefully document that variations in the implied correlation

and the correlation risk premium can be used to predict future market excess returns and that

they are not redundant relative to market variance components. Second, we empirically link

variations in implied correlation to future variations in realized idiosyncratic risk and in the

realized dispersion in market betas.
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Accordingly, our analysis also relates to the literature on idiosyncratic risk. Ang, Hodrick,

Xing, and Zhang (2006, 2009) document a negative relation between idiosyncratic risk and the

cross-section of stock returns. Schneider, Wagner, and Zechner (2017) relate the pricing of id-

iosyncratic risk to (implied) skewness. Goyal and Santa-Clara (2003) document that average

variance (their proxy for idiosyncratic risk) positively predicts future market returns, whereas

Bali, Cakici, Yan, and Zhang (2005) cannot find a significant relationship between idiosyncratic

volatility and future market returns. Guo and Savickas (2006) show that, when combined with

aggregate stock market volatility, the value-weighted idiosyncratic volatility is significantly nega-

tively related to future market returns. We contribute to this literature by linking the predictive

power of the implied correlation to idiosyncratic risk. In particular, because the implied correla-

tion positively predicts future market returns but is negatively related to idiosyncratic volatility,

our evidence is suggestive of a negative price for idiosyncratic risk. Consistent with our concep-

tual framework for the expected correlation and our empirical findings, Kogan and Papanikolaou

(2012, 2013) demonstrate that the idiosyncratic volatility and the dispersion in market betas are

positively related to growth opportunities, which, in turn, are negatively related to the equity

risk premium. Similarly, in the model of Santos and Veronesi (2004), the equity risk premium

is low when the dispersion in systematic risk is high.

The rest of this paper is organized as follows: Section 1 documents the in-sample predictive

power of the implied correlation. Section 2 discusses the determinants of the expected corre-

lation, and Section 3 presents a variety of additional evidence for market return predictability

by implied correlation. Finally, Section 4 studies out-of-sample predictability and introduces a

novel forecasting approach based on contemporaneous betas. Section 5 concludes.

1 Implied Correlation: In-Sample Return Predictability

In this section, we first discuss the construction of the expected correlation using options data

only. After a brief description of the data, we then document the ability of the implied correlation

and other option-implied variables to predict future market excess returns in-sample.
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1.1 Implied Correlation

Computing the historical pairwise correlation among any two stocks is rather easy; however,

computing an expected pairwise correlation from options data is, in practice, not possible.

Doing so would require not only options on the two individual stocks but also options on a

basket comprising the two stocks. However, such options are not traded in financial markets.

Instead, we construct the implied correlation as the average expected correlation among the

stocks within an index.

To identify the average expected correlation among individual stocks, we rely on the obser-

vation that the index variance can be computed in two ways: (1) directly from the index and

(2) indirectly through the portfolio of its constituents. Formally, this yields the restriction that

the time-t-expected variance of the index, σ2
I,t, must be equal to the expected variance of the

portfolio of its constituents:

σ2
I,t ,

N∑
i=1

N∑
i′=1

wi,twi′,t σi,t σi′,t ρi,i′,t,

where N denotes the number of stocks in the index, σ2
i,t denotes the expected return variance

of stock i ∈ {1, . . . , N}, wi,t denotes the stock’s index weight, and ρi,i′,t denotes the correlation

between the returns of stocks i and i′. Under the assumption that all pairwise correlations are

the same (ρi,i′,t = ρj,j′,t, ∀i, i′, j, j′), the “equi-correlation” Corrt can be expressed as

Corrt =

σ2
I,t −

N∑
i=1

w2
i,t σ

2
i,t

N∑
i=1

∑
i′ 6=iwi,twi′,t σi,t σi′,t

. (1)

The implied variances for the index and individual stocks can be directly obtained from index

and stock options. Hence, the average expected correlation (1) under the risk-neutral measure

can be easily computed from index options and the cross-section of individual stock options. We

refer to it simply as the implied correlation, denoted by IC.
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Intuitively, the implied correlation is driven by the price of index options relative to that

of individual stock options. All else equal, an increase in the price of index options implies

an increase in the implied index variance, which, in turn, raises the implied correlation (1).

Conversely, an increase in the prices of individual stock options implies an increase in the

implied stock variances and, hence, leads to a lower implied correlation.

1.2 Data Description

Our analysis focuses on the S&P 500 for a sample period from January 1996 to December

2017. We use daily data on index and individual stock options from the Surface File of Ivy DB

OptionMetrics and data on the daily realized returns from CRSP.7 For the S&P 500, we also

obtain intraday returns from TickData. Data on the S&P 500 index composition and the stocks’

index weights (i.e., relative market capitalizations) are obtained from Compustat and CRSP.8

To compute the day-t implied variances (i.e., the expected variance under the risk-neutral

measure) for options with maturity T , IV (t, T ), we rely on simple variance swaps, like in Mar-

tin (2013, 2017).9 Implied correlation, IC(t, T ) is then constructed directly from the implied

variances of the index and the individual stocks, using expression (1). To build the risk-neutral

expectations of upside and downside semivariances, IV u(t, T ) and IV d(t, T ), we follow the corri-

dor variance methodology of Andersen and Bondarenko (2007) and Andersen, Bondarenko, and

Gonzalez-Perez (2015). Under the physical measure, we construct realized variance and semi-

variances following Andersen, Bollerslev, Diebold, and Ebens (2001) and Feunou, Jahan-Parvar,

and Okou (2017), respectively.10 The ex-ante variance risk premium, V RP (t, T ), is computed as

the difference between the day-t implied variance from options with maturity T and the realized

7We select options with 1 to 12 months to maturity and an (absolute) delta of less than or equal to 0.5. On
average, options data are available for 491 of the 500 index constituents.

8We merge the two datasets through the CCM Linking Table using GVKEY and IID to link to PERMNO.
The matching to options data is implemented through the historical CUSIP link, provided by OptionMetrics.

9Computing expected variances using log contracts, that is, model-free implied variances, like in Dumas (1995),
Britten-Jones and Neuberger (2000), and Bakshi, Kapadia, and Madan (2003), does not affect our results. These
results are available on request.

10Realized variance RV (t, T ) is computed as the sum of squared returns, whereas upside (downside) realized
semivariance RV u(t, T ) (RV d(t, T )) is computed as the sum of the squared positive (negative) returns, plus,
if positive (negative), the squared overnight return. For individual stocks, we rely on demeaned daily returns,
whereas, for the S&P 500, we use 5-minute intraday returns (as suggested by Liu, Patton, and Sheppard (2015)).
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1 3 6 9 12
Mean Std Skew Mean Std Skew Mean Std Skew Mean Std Skew Mean Std Skew

IC 0.378 0.129 0.546 0.417 0.114 0.164 0.444 0.105 -0.108 0.453 0.102 -0.170 0.459 0.097 -0.201√
IV 0.204 0.077 1.823 0.205 0.066 1.501 0.207 0.057 1.267 0.209 0.053 1.162 0.211 0.050 1.085√
IV u 0.130 0.047 1.563 0.129 0.040 1.141 0.131 0.034 0.852 0.132 0.032 0.742 0.133 0.031 0.674√
IV d 0.164 0.067 2.130 0.169 0.061 1.837 0.172 0.056 1.563 0.174 0.055 1.381 0.175 0.055 1.254

V RP 0.006 0.028 -7.706 0.006 0.027 -5.737 0.008 0.020 -3.236 0.009 0.023 -3.509 0.009 0.025 -2.782
V RP u -0.001 0.017 -8.265 -0.001 0.016 -6.162 0.000 0.012 -4.159 0.000 0.013 -3.818 -0.000 0.014 -2.974
V RP d 0.009 0.013 -0.653 0.011 0.013 0.204 0.012 0.012 2.347 0.012 0.014 1.493 0.013 0.015 1.486

Table 1: Summary statistics. This table reports summary statistics for the implied correlation (IC), the
implied volatility (

√
IV ), and the upside and downside semivolatilities (

√
IV u and

√
IV d) and the risk premiums

for the (semi)variances (V RP , V RPu, and V RP d). Statistics are reported for maturities of 1 to 12 months over
a sample period from January 1996 to December 2017 and, where applicable, in annual terms.

variance for the period from t− (T − t) + 1 to t. The same procedure is used to obtain upside

and downside semivariance risk premiums, V RP u(t, T ) and V RP d(t, T ).

Table 1 reports summary statistics for these variables. Focusing on the 1-month maturity,

the average implied correlation is about 0.38. It is highly persistent (with a first-order autocor-

relation of about 0.77)11 but still considerably varies over time, with fluctuations being almost

symmetric around the mean. The annualized S&P 500 option-implied index volatility is 20.4%,

a majority of which can be attributed to downside semivariance (in volatility terms, 16.4% rela-

tive to 13.0% for upside semivariance).12 The implied (semi)variances are also highly persistent

(with first-order autocorrelations between 0.78 and 0.82), substantially fluctuate over time, and

generally have positive skewness, with the largest skewness for implied downside semivariance.

The S&P 500 variance risk premium and downside semivariance risk premium are both signif-

icantly positive, whereas the risk premium for upside semivariance is not statistically different

from zero. All (semi)variance risk premiums are considerably less persistent (with the first-order

autocorrelations between 0.27 and 0.48) and negatively skewed. Table 1 also illustrates that the

implied correlation considerably increases with option maturity, from 0.38 at a 1-month maturity

to 0.46 at a 12-month maturity. The implied (semi)variances are also monotonically increasing

with option maturity, though the magnitudes are smaller. Similarly, the (semi)variance risk

premiums rise as option maturity increases.

11Tables A1 and A2 in Appendix C report the autocorrelations and the time-series correlations across variables.
12Upside and downside semivariances sum to the total variance if computed using the same methodology.

However, because we compute implied variances from simple variance swaps, whereas semivariances are based on
log contracts, the sum of the two semivariances is slightly different from total variance, with a value of 20.93% in
volatility terms.
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A: Implied correlation
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C: (Semi)Variance risk premiums
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D: Correlation risk premium
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Figure 1: Time-series dynamics of option-implied variables. The figure shows the time series of the
implied correlation (Panel A), the time series of the implied variance (IV ) and the upside and downside implied
semivariances (Panel B), the risk premiums for variance and semivariances (Panel C), and the correlation risk
premium (Panel D). The sample period spans from January 1996 to December 2017, with variables being computed
from 1-month options and sampled daily.

Panels A and B of Figure 1 depict the time-series dynamics of implied correlation, implied

(semi)variances, and their risk premiums, computed from options with a 1-month maturity. The

implied correlation, being a bounded variable, displays smaller fluctuations than do the implied

(semi)variances. Moreover, the most pronounced spikes in the implied correlation do not nec-

essarily coincide with those in the implied (semi)variances (which all behave in a very similar

way).13. Consistent with this, the time-series correlations between the implied correlation and

the implied (semi)variances are not that high; for example, the correlation with the implied vari-

ance is 0.58. Similarly, whereas the risk premiums on the (semi)variances display very similar

time-series behaviors (Panel C), the fluctuations in the implied correlation are distinctly differ-

13The time-series correlations among the implied (semi)variances are all above 0.97 (see Table A2 in Appendix C)

10



ent, with time-series correlations between −0.15 (between IC and V RP u) and 0.33 (between

IC and V RP d).

1.3 Return Predictability

To study the in-sample predictive power of the various variables, we rely on standard in-sample

predictive regressions of the following form:

rt→t+τr = γ +
∑
k∈K

βk PREDk(t, t+ τr) + εt, (2)

where rt→t+τr denotes the market excess return for a period from t to t+τr and PREDk(t, t+ τr),

k ∈ {1, . . . ,K} denotes a set of predictors (known at time t).14 We use market excess returns

from the end of each month in our sample period, and, when predicting returns for horizons

longer than 1 month, we use Newey and West (1987) standard errors to correct for autocorrela-

tion introduced by overlapping observations.

Figure 2 (graphically) reports the results. Panel A shows that, in univariate regressions,

the implied correlation has the strongest predictive power (in terms of R2) for future market

excess returns, except for the 1-month horizon. Its predictive power increases from about 3.5%

at the 1-month horizon to around 25% for the 9- and 12-month horizons. Moreover, its re-

gression coefficient is always highly significantly positive, with t-statistics consistently above 2

(Panel B). Comparing the return predictability of the implied correlation to that of past realized

correlation highlights the importance of using information implied by option prices.15 That is,

the predictability by the realized correlation is considerably weaker at all horizons, and it is, if

at all, only borderline significant. Hence, the forward-looking information encapsulated in the

option prices of the index and the individual stocks is critical for the ability of the expected

correlation to predict future market excess returns.

14In the regressions, we always rely on variables extracted from options with a maturity matching the forecasting
horizon.

15To be consistent, we also compute the expected correlation under the objective probability measure, RC,
from (1) using realized stock and index variances.
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A: Univariate regression: R2
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B: Univariate regression: t-statistics for β

1 3 6 9 12
horizon

2

0

2

4

6

8

t-s
ta

t

IC IV VRP IVd VRPd RC

C: Univariate regression: corrected R2
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D: Multivariate regression: t-statistics
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Figure 2: In-sample return predictability. The figure depicts the results of the in-sample market excess
return predictability analysis for horizons from 1 to 12 months. Panels A and B show the adjusted R2 and the
regressors’ t-statistics for univariate regressions of (2), respectively. Panel C shows the univariate R2s corrected
for the autocorrelation of the regressors. Finally, Panel D reports the t-statistic for the implied correlation in
multivariate regressions. The standard errors are corrected for autocorrelation using Newey and West (1987),
with the red dotted lines indicating 1.96 bounds around zero.

Panels A and B of Figure 2 also illustrate that other option-implied variables typically

perform worse compared with the implied correlation in predicting future market excess returns.

For example, the implied variance has no predictive power for future returns at any horizon,

and the implied downside semivariance is only significant at the long horizons. Also, whereas

the variance risk premium significantly predicts returns at short horizons with R2s around

5%, its predictive power and statistical significance quickly decline as the horizon lengthens.

The downside semivariance risk premium delivers a better predictability than does the total

variance risk premium, with R2s of 7%-11% at short horizons and around 5% at longer horizons

(consistent with Feunou, Jahan-Parvar, and Okou (2017) and Kilic and Shaliastovich (2017)).

Moreover, its regression coefficient is always significantly positive. Finally, similar to Kilic and
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Shaliastovich (2017), the predictability by the upside semivariance risk premium is considerably

weaker (data not shown).

Note that while the t-statistics are explicitly corrected for autocorrelation, one should treat

the in-sample R2s with caution. That is, as shown by Boudoukh, Richardson, and Whitelaw

(2008), for highly persistent regressors, the in-sample R2 mechanically increases with the pre-

dictability horizon. To understand the magnitude of the potential bias in our regressions,

Panel C depicts the univariate R2s adjusted for the autocorrelations of the predictors (using

the procedure outlined in Boudoukh, Richardson, and Whitelaw (2008)). Notably, the implied

correlation still delivers the strongest predictive power at longer horizons. To better understand

the potential biases resulting from overlapping predictions, we have also performed additional

tests based on the instrumental variable approach by Kostakis, Magdalinos, and Stamatogiannis

(2015).16 It turns out that, in most cases, our initial corrections for autocorrelation based on

Newey-West standard errors are stricter than the ones from the instrumental variable approach.

Consequently, the implied correlation and the down semivariance risk premium always remain

significant.

Panel D reports the regression coefficients for the implied correlation (βIC) in the multivariate

versions of the predictive regression (2). As is apparent, the implied correlation remains a

significant predictor of future market excess returns even after controlling for the index-based

variables. In contrast, when used jointly with the implied correlation, the downside semivariance

risk premium loses significance at the 6-month horizon, and, contrary to economic intuition, its

regression coefficient becomes significantly negative for 9 and 12 months (data not shown).

In summary, in-sample, the implied correlation is a robust predictor for future market excess

returns. In univariate regressions, it demonstrates a strong predictive power, dominating index-

based variables, such as the implied (semi)variances and their risk premiums for almost all

horizons. Moreover, even after controlling for these variables, the implied correlation significantly

predicts future market excess returns, with a consistently positive sign.

16We are grateful to the authors for providing the code on their web-site.
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2 Determinants of the Expected Correlation

To rationalize the predictive power of the implied correlation, we now present a stylized, con-

ceptual framework that illustrates the determinants of the expected correlation. We will then

empirically explore the implications of this framework.

2.1 Theoretical Framework

Our conceptual framework is based on that of Kelly, Lustig, and Van Nieuwerburgh (2016) and

relies on a discrete-time, one-factor structure for stock returns. In particular, we consider a

broad index (stock market) comprising a large number of stocks, denoted by i ∈ {1, . . . , N}.

The annual log-return of each individual stock, ri,t+1, is described by the following dynamics:

ri,t+1 = µi,t + βi,t εA,t+1 + εi,I,t+1, (3)

where εA,t+1 denotes an aggregate shock common to all stocks, and εi,I,t+1 denotes an idiosyn-

cratic (stock-specific) shock independent from the aggregate shock and from the idiosyncratic

shocks of the other stocks. Both aggregate and idiosyncratic shocks might comprise several com-

ponents, such as Gaussian shocks, jumps, or separate up and down jumps.17 Importantly, the

specific distribution of the aggregate and the idiosyncratic shocks is not important for our analy-

sis; what is relevant is the total expected variance of each shock, denoted by σ2
A,t ≡ V ar(εA,t+1)

and σ2
I,t ≡ V ar(εi,I,t+1). The exposures of the individual stocks to aggregate shocks (“mar-

ket betas”), βi,t, are assumed to be stochastic and distributed with time-varying variance σ2
β,t

around the natural mean of 1.0.

17For instance, a Merton jump setting similar to that used by Kelly, Lustig, and Van Nieuwerburgh (2016) can
be captured by decomposing the aggregate shock into a systematic Gaussian shock εA,t+1 as well as a systematic
jump JA,t+1 and by decomposing the idiosyncratic shock into an idiosyncratic Gaussian shock εi,I,t+1 as well as
an idiosyncratic jump Ji,I,t+1. The stock return dynamics then would become

ri,t+1 = µi,t + βi,t εA,t+1 + βi,t JA,t+1 + εi,I,t+1 + Ji,I,t+1.

Intuitively, the exposure with respect to the aggregate jump, βi,t, captures the stronger reaction of the high
beta stocks to systematic jumps and is equivalent to “scaling” the mean and the volatility of their jump size
distributions.
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The total expected return variance of stock i, σ2
i,t ≡ V ar(ri,t+1), is equal to

σ2
i,t = β2

i,t σ
2
A,t + σ2

I,t, (4)

and its expected return is µi,t, which is the sum of the expected return on the index and risk

adjustments.

The log return on the index is given by rt+1 ≡
∑N

i=1 ωi,t ri,t+1, where ωi,t denotes the index

weight of stock i. As the number of stocks becomes large (i.e., N → ∞), the idiosyncratic

shocks are diversified. Moreover, the weighted average of the market betas is, by construction,

1.0. Hence, the conditional expected variance of the index return is equal to σ2
A,t.

Within this stylized framework, we can now study the determinants of the expected corre-

lation. For ease of exposition, we thereby focus on the expected correlation under the objective

probability measure. As it follows from expression (4), the cross-sectional average expected stock

variance is given by (1 +σ2
β,t)σ

2
A,t+σ2

I,t. Consequently, within our setting, the key determinants

of the expected correlation are expected aggregate variance σ2
A,t, expected idiosyncratic variance

σ2
I,t, and the cross-sectional dispersion in market betas σ2

β,t.
18,19 To study the impact of these

three variables on the expected correlation, we rely on a comparative statics analysis. For each

combination of the parameters, we generate 1, 000 simulations of an index consisting of 500 in-

dividual stocks with equal weights, “drawing” their 500 betas from a normal distribution20 with

a mean of 1.0 and a variance of σ2
β. Consistent with our empirical analysis, we then compute

the average expected correlation using (1).

Figure 3 presents the results of the comparative statics analysis. Panel A illustrates that

the expected correlation is monotonically increasing in the expected aggregate variance σ2
A.

Intuitively, an increase in the expected aggregate variance leads to a relatively stronger increase

in index variance than in the individual stock variances (where aggregate variance is mixed with

idiosyncratic variance). Consequently, the expected correlation rises, as is apparent from (1).

18Overall, variations in the index weights over short periods of time, such as 1 month, are quite limited and,
hence, do not contribute much to variations in the expected correlation.

19Under the risk-neutral probability measure, risk premiums could also potentially matter, for example, in the
case of jumps, by altering the likelihood of jumps and the jump size distribution.

20The results are robust to the use of other distributions for the betas of the individual stocks.
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A: Variations in aggregate volatility
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B: Variations in idiosyncratic volatility
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C: Variations in beta dispersion
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Figure 3: Determinants of the expected correlation. This figure illustrates the impact of the three key
determinants of the expected correlation. Panel A shows the expected correlation as a function of expected
aggregate volatility for various levels of expected idiosyncratic volatility and σβ = 0.8. Panel B depicts the
expected correlation as a function of expected idiosyncratic volatility for various levels of expected aggregate
volatility and σβ = 0.8. Panel C shows how the expected correlation varies with the cross-sectional dispersion
in market betas for various levels of expected aggregate volatility and σI = 0.3. All graphs are based on an
equal-weighted index with 500 stocks and 1, 000 simulations.

For higher levels of expected idiosyncratic variance, the difference in the relative increase of index

and individual stock variances is even more pronounced, and, hence, the expected correlation

increases more strongly (in relative terms).

Conversely, the expected correlation is monotonically decreasing in the expected idiosyncratic

variance, σ2
I (Panel B). Intuitively, an increase in the expected idiosyncratic variance leads to an

increase in the expected variances of the individual stocks, whereas the expected variance of the

index remains unchanged. Hence, the expected correlation falls. Moreover, for lower levels of

expected aggregate variance, the relative increase in the individual stock variances is stronger,

and, thus, the relative decline in the expected correlation is more pronounced.
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Finally, as depicted in Panel C, the expected correlation is also decreasing in the cross-

sectional dispersion in market betas σ2
β. An increase in the cross-sectional beta dispersion implies

an increase in the average squared beta of the individual stocks, which, in turn, increases the

average stock return variance (4).21 Because the expected index variance is unchanged, the

expected correlation declines. For higher levels of expected aggregate variance, this effect is

stronger, and, hence, the relative decline in the expected correlation strengthens.

Note that variations in expected aggregate variance—one of the key determinants of the

expected correlation—(naturally) lead to changes in the expected (semi)variance of the index as

well. However, most importantly, variations in the other two key determinants, namely, expected

idiosyncratic variance and the cross-sectional beta dispersion, profoundly affect the expected

correlation but leave expected index (semi)variances unchanged. Consequently, if idiosyncratic

risk is priced or the equity risk premium is affected by the cross-sectional dispersion in market

betas,22 the expected correlation will be able to capture the resultant fluctuations in future

market excess returns, whereas index-based variance measures will not. This could explain the

incremental predictive power of the expected correlation for future market excess returns, as

documented in the empirical analysis in Section 1.

For ease of exposition, we have made a variety of simplifying assumptions: (1) a one-factor

structure for stock returns, (2) homogeneity in the variance of the idiosyncratic shocks, and

(3)a limiting behavior in the return variance of the index. Robustness tests show that the main

implications of our analysis are essentially unchanged when relaxing any of these assumptions.23

2.2 Empirical Analysis

For the implied correlation to predict future market excess returns through the channels outlined

in the preceding subsection, the implied correlation must be able to predict idiosyncratic risk

and the dispersion in market betas as realized in the future with the correct sign. Accordingly,

21A partially offsetting effect results from the fact that the product of the individual stock volatilities appears
in the denominator of the expected correlation in (1). For example, in the two-stock case, the product of two
stocks’ betas (1− ξ) (1 + ξ) (which is part of the product of two stocks’ expected volatilities) is decreasing in the
“dispersion” ξ.

22Confer with the literature review for a discussion of the empirical and theoretical literature on the price of
idiosyncratic risk and the impact of the cross-sectional dispersion in systematic risk.

23For brevity, we omit these experiments from the paper, but the results are available on request.
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1 month 3 months 6 months 9 months 12 months

β p-val R2 β p-val R2 β p-val R2 β p-val R2 β p-val R2

A: Realized market variance

IC 0.146 0.000 8.56 0.052 0.121 1.17 -0.028 0.326 0.38 -0.045 0.118 1.24 -0.031 0.242 0.62
IV 1.071 0.000 49.33 0.859 0.000 27.73 0.777 0.000 17.14 0.667 0.000 13.75 0.585 0.000 12.60
IV u 2.870 0.000 49.39 2.417 0.000 28.79 2.195 0.000 18.34 1.927 0.000 15.37 1.788 0.000 15.33
IV d 1.417 0.000 48.14 0.986 0.000 24.86 0.768 0.000 13.01 0.564 0.000 8.33 0.410 0.001 5.73

B: Idiosyncratic risk — market model

IC 0.004 0.427 0.38 -0.025 0.304 1.26 -0.153 0.001 11.75 -0.26 0.00 15.69 -0.320 0.003 13.07
IV 0.138 0.000 51.39 0.455 0.000 38.38 1.024 0.000 29.11 1.49 0.00 25.89 1.870 0.000 24.49
IV u 0.389 0.000 57.08 1.389 0.000 46.80 3.320 0.000 41.12 5.08 0.00 40.32 6.723 0.000 41.22
IV d 0.173 0.000 45.14 0.480 0.000 29.03 0.831 0.000 14.89 0.91 0.00 8.17 0.820 0.034 4.36

C: Idiosyncratic risk – 4-factor model

IC 0.003 0.461 0.32 -0.021 0.304 1.32 -0.136 0.001 12.40 -0.24 0.00 16.84 -0.294 0.003 14.07
IV 0.100 0.000 50.10 0.383 0.000 38.67 0.899 0.000 30.07 1.33 0.00 26.94 1.698 0.000 25.78
IVu 0.284 0.000 56.17 1.176 0.000 47.82 2.945 0.000 43.30 4.58 0.00 42.76 6.141 0.000 43.90
IVd 0.125 0.000 43.55 0.400 0.000 28.78 0.718 0.000 14.89 0.79 0.00 8.12 0.730 0.035 4.40

D: Dispersion of market betas – market model

IC -0.961 0.000 14.24 -0.499 0.000 12.19 -0.663 0.001 27.27 -0.656 0.004 30.57 -0.619 0.021 27.29
IV -0.571 0.076 0.52 1.141 0.010 5.52 1.639 0.000 9.20 1.994 0.000 14.31 2.271 0.000 20.23
IV u -0.865 0.365 0.15 3.939 0.004 8.63 5.832 0.000 15.64 7.094 0.000 24.29 7.943 0.000 32.21
IV d -1.000 0.011 0.90 1.022 0.035 3.00 1.139 0.005 3.44 1.135 0.014 3.93 1.178 0.017 5.03

E: Dispersion of market betas – 4-factor model

IC -1.639 0.000 4.19 -0.567 0.000 9.79 -0.420 0.000 19.92 -0.316 0.000 22.04 -0.242 0.002 18.65
IV -0.026 0.976 -0.02 0.691 0.201 1.25 1.008 0.084 6.31 0.977 0.070 10.65 0.925 0.057 14.96
IVu 3.221 0.278 0.22 3.806 0.048 5.01 4.753 0.009 18.87 4.447 0.004 29.61 4.088 0.002 38.06
IVd -1.333 0.150 0.15 0.104 0.825 0.00 0.215 0.629 0.21 0.108 0.765 0.09 0.062 0.830 0.04

Table 2: Risk predictability. This table reports the regression coefficients (with corresponding p-values) and
the R2s from regressions of future realized measures of risk on lagged option-implied variables (5) for horizons
of 1 to 12 months. Panel A reports the results for future realized market variance. Panels B and C report the
results for future idiosyncratic risk, computed as the average sum of squared residuals from the market model and
the 4-factor Carhart (1997) model, respectively. Panels D and E report the results for the future cross-sectional
dispersion in market betas for the market model and the 4-factor model, respectively. The data are sampled daily,
and we use Newey and West (1987) standard errors to adjust for autocorrelation.

we now study univariate predictive regressions of the form (2), but, instead of predicting future

market excess returns, we focus on predictability for various future realized measures of risk:

σ·,t→t+τr = γ + β PRED(t, t+ τr) + εt, (5)

where σ·,t→t+τr captures the various risk proxies, measured between date t and t+ τr.
24

24Consistent with our return predictability analysis in Section 1, we always use options with maturity matching
the forecasting horizon.
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Not surprisingly, Panel A of Table 2 documents that implied (semi)variances, exclusively ex-

tracted from index options, have a strong predictive power for future realized market variance—

at all horizons. In contrast, implied correlation, jointly extracted from individual stock and

index options, predicts future realized market variance only at the 1-month horizon.

More importantly, Panels B and C show that, consistent with our conceptual framework,

the implied correlation significantly negatively predicts future realized idiosyncratic risk, as

measured by the cross-sectional average of the sum of the squared residuals, from a one-factor

market model (Panel B) and a Carhart (1997) four-factor model (Panel C). The predictability is

particularly strong at the 9- and 12-month horizons, where the return predictability by the im-

plied correlation is also particularly strong. Implied (semi)variances also predict future realized

idiosyncratic risk but with the opposite sign.

Also consistent with the stylized framework, the implied correlation is negatively related

to the future realized dispersion in market betas. The relation is statistically significant at all

horizons and for market betas computed from both a one-factor market model (Panel D) and

the Carhart (1997) four-factor model (Panel E). Again, the predictability is particularly strong

at long horizons. Similar to the analysis for idiosyncratic risk, implied (semi)variances predict,

when statistically significant, the future dispersion in market betas with the opposite sign.

Overall, the empirical evidence indicates that the predictions of the implied correlation for

future realized measures of risk are distinctly different from those of implied (semi)variances.

That the regression coefficients for predicting both future realized idiosyncratic risk and the

future dispersion in market betas are of opposite signs has important implications for their

abilities to predict future market returns. In particular, in our sample period, realized market

returns are, contemporaneously, negatively related to idiosyncratic risk (at all horizons) and

the cross-sectional dispersion in market betas (for horizons of 3 months and longer). Conse-

quently, the fact that the implied correlation predicts future realized idiosyncratic risk and the

future cross-sectional dispersion in market betas with a negative sign is fully consistent with

the positive return predictability documented in Section 1. We interpret this as support for our

hypothesis that the return predictability of the implied correlation relates to temporal variations

in idiosyncratic risk and the cross-sectional dispersion of market betas.
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3 Additional Empirical Evidence

We now provide additional empirical evidence in favor of return predictability by option-implied

correlation. First, we document that, consistent with economic intuition, the revisions in return

forecasts based on implied correlation are negatively correlated with contemporaneous market

excess returns. Second, we demonstrate market excess return predictability by implied corre-

lation within a VAR model. Finally, we show that the correlation risk premium also predicts

future market excess returns.

3.1 Return Forecasts and Contemporaneous Returns

Economic theory provides a tight link between revisions in expected market excess returns and

contemporaneous market excess returns.25 In particular, using the Campbell and Shiller (1988)

log-linearization, one can relate contemporaneous, unexpected excess returns, et+1−Et[et+1] to

revisions in expected dividend growth rates and revisions in expected future excess returns:

et+1 − Et[et+1] = (Et+1 − Et)
∑
n

ρn−1∆dt+n − (Et+1 − Et)
∑
n

ρnrf,t+1+n

− (Et+1 − Et)
∑
n

ρnet+1+n, (6)

where et+1 denotes the time-t + 1 excess return, ∆dt denotes log dividend-growth, rf,t denotes

the time-t risk-free rate, and ρ denotes a parameter with a value slightly less than one.

All else equal, (6) implies that, because of the negative sign in front of revisions to fu-

ture expected excess returns, an increase in the forecasts of future market excess returns,

(Et+1 − Et) et+1+n, causes a lower contemporaneous excess return, et+1−Et[et+1]. Consequently,

to be consistent with economic theory, revisions in the forecasts of future market excess returns

from (2) (i.e., revisions in the “fitted values”) must negatively correlate with contemporaneous

excess returns.

25We are grateful to an anonymous referee for suggesting this line of reasoning.
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Empirically, we find that the correlation between increments in the predicted market excess

returns (as implied by univariate regressions (2) at the 1-month horizon) and contemporaneous

daily market excess returns is negative for all options-based variables. For example, the corre-

lation between daily excess returns and changes in forecasts based on the implied correlation is

−0.61. Comparably, the respective correlation for the (semi)variance risk premiums is between

−0.63 and −0.70. Moreover, even after controlling for total variance, upside and downside semi-

variances, their risk premiums or all variables together, the (partial) correlations for forecasts

based on the implied correlation are all negative. Hence, there is strong and robust empiri-

cal evidence that predictions based on the implied correlation are consistent with the relation

stipulated by economic theory in the form of the present value relation.

3.2 VAR Models

Studying the joint dynamics of the options-based variables and the market excess return can

also provide additional information on in-sample return predictability. In that regard, we follow

Campbell (1991) and estimate a variety of VAR models of the form

zt+1 = Azt + εt+1, (7)

where zt denotes a k−dimensional vector consisting of the market excess return (MKTRF ) and

the “predictors.” Consistent with the literature, we always include the “standard” predictor—

log dividend growth (DIV )—in addition to various combinations of options-based variables.

Table 3 summarizes the estimation results at the monthly frequency. The results are largely

consistent with those obtained from the in-sample regression analysis in Section 1. That is,

in most specifications only two options-based variables have significant predictive power: the

implied correlation and the downside semivariance risk premium. In univariate settings, the

coefficients on these variables are highly statistically significant, with R2s in the range of 3%-

4%. Overall, the best explanatory power for future market excess returns stems from a model

that features implied correlation as well as the upside and downside semivariance risk premiums,

together with dividend growth (leading to an R2 of 7.2%). The corresponding R2s for longer
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A: VAR coefficients

Model 1 2 3 4 5 6 7 8

IC 0.157 - 0.145 0.114 0.153 - - -
(0.013) - (0.030) (0.093) (0.058) - - -

IV u - -0.220 - - - - - -
- (0.406) - - - - - -

IV d - 0.276 - - - - - -
- (0.301) - - - - - -

CRP - - 0.041 - - - 0.027 0.027
- - (0.534) - - - (0.697) (0.698)

V RP - - - - - - - -
- - - - - - - -

V RP u - - - - 0.093 -0.015 - -0.015
- - - - (0.374) (0.865) - (0.868)

V RP d - - - 0.114 0.037 0.165 0.145 0.155
- - - (0.084) (0.731) (0.054) (0.031) (0.085)

DIV -0.017 -0.003 -0.019 -0.013 -0.016 -0.003 -0.005 -0.005
(0.781) (0.959) (0.761) (0.833) (0.796) (0.961) (0.939) (0.938)

MKTRF 0.130 0.121 0.119 0.107 0.101 0.080 0.073 0.076
(0.039) (0.076) (0.070) (0.093) (0.116) (0.210) (0.244) (0.243)

R2 3.952 1.024 4.536 6.376 7.177 5.544 5.802 5.643

B: Forecast-error variance decomposition

Model 1 2 3 4 5 6 7 8

IC 0.278 - 0.277 0.268 0.268 - - -
IVu - 0.499 - - - - - -
IV d - 0.002 - - - - - -
CRP - - 0.058 - - - 0.038 0.038
V RP u - - - - 0.009 0.067 - 0.044
V RP d - - - 0.040 0.041 0.055 0.016 0.079
DIV 0.006 0.006 0.011 0.006 0.004 0.004 0.013 0.005
MKTRF 0.716 0.493 0.654 0.686 0.678 0.874 0.933 0.835

Table 3: VARs. This table reports the results for various specifications of the VAR in (7). Panel A reports the
coefficients, together with p-values and the R2 for the market return equation. Panel B reports the forecast error
variance decomposition for the market return equation. The estimation results are based on monthly data from
January 1996 to December 2017.

horizons, depicted in Figure 4, confirm these conclusions. Quantitatively, models featuring

implied correlation can deliver R2s of up to 20% for 6 months and 12%-13% for 12 months.26

In contrast with the individual regressions (2), the VAR model also allows us also to un-

derstand how shocks to the various variables propagate through the system. Notably, in the

26The implied R2s are computed by regressing realized returns on VAR-implied forecasts for the market excess
return. Note that, as discussed above, R2s are potentially biased at longer horizons because of autocorrelation in
the predictive variables.
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Figure 4: VAR-implied R2 for market return forecasts. The figure shows the implied R2 (expressed as
a percentage) for predicting market excess returns based on various VAR(1) specifications of Equation (7) for
forecasting horizons ranging from 1 to 12 months. All specifications include the market excess return and the
log dividend-growth rate for the CRSP aggregate index. The implied R2 is based on regressing realized monthly
market excess returns on VAR-implied return forecasts for a sample period from January 1996 until December
2017.

model with the highest R2 (as described above), implied correlation positively affects the future

downside semivariance risk premium. Notably, implied correlation does not predict future divi-

dend growth, but (only) past dividend growth affects implied correlation, with a negative sign.27

That is, as intuition suggests, the implied correlation increases in adverse economic conditions.

Finally, Panel B of Table 3 reports variance decompositions of the forecast errors for the

market excess return. As expected and consistent with Campbell (1991), the largest fraction

of the market return variance can be attributed to news in expected excess returns (ranging

from 49% to 93%). However, implied correlation also helps to explain a substantial fraction of

the market return variance (up to 28%), whereas the contribution of any of the other variables

is typically below 5%. Overall, the results from the VAR models lend further support to the

in-sample predictability results.

27For the sake of brevity, we omit the impulse response functions here. Appendix B houses them.
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3.3 Predictability by the Correlation Risk Premium

The expected correlation captures investors’ expectations about stocks’ future comovement. In

contrast, the correlation risk premium, defined as the difference between the expected correlation

under the risk-neutral and the objective probability measure, captures the price of correlation

risk. Empirically, the correlation risk premium, CRP (t, T ), can be computed as the difference

between the day-t implied correlation for options with maturity T , IC(t, T ), and the correspond-

ing realized correlation for the period t− (T − t) + 1 to t, RC(t− (T − t) + 1, t).28

To motivate the pricing of correlation risk, Panel A of Table 4 contrasts the pricing of

variance risk in individual stocks and the index. Consistent with earlier studies, the average

variance risk premium for individual stocks is not significantly different from zero. At the

index level, however, the variance risk premium is significantly positive. Moreover, we find that

both upside and downside semivariance risk premiums are significantly different from zero for

individual stocks (with opposite signs); on the index level, however, the upside semivariance

risk premium is not significant. Because systematic variance risk is directly propagated from

individual stocks to the index level, the observed differences in the pricing of variance risk at

the stock and index levels only can be explained by a component that contributes to the index

variance and is absent from individual stock variances, for example, priced correlation risk, as

discussed in detail in Driessen, Maenhout, and Vilkov (2005, 2009).29

Consistent with this reasoning, Panel B demonstrates that the correlation risk premium is

significantly positive in the data. That is, the expected correlation under the risk-neutral mea-

sure is substantially higher than under the physical measure. Also, the correlation risk premium

considerably increases with option maturity. Relative to the (semi)variance risk premiums, the

correlation risk premium displays fewer abrupt jumps and has fewer “visual” outliers (compare

Panels C and D of Figure 1). Moreover, their dynamics are quite distinct, with time-series

28Our definition of the correlation risk premium closely follows that used in the literature. But, technically,
the definition of implied (realized) correlation does not allow for tradability using delta-hedged option payoffs.
However, as shown by Driessen, Maenhout, and Vilkov (2009) and Buraschi, Kosowski, and Trojani (2014), it
serves as a good proxy for a correlation risk premium computed from option strategies or correlation swaps.

29We remain agnostic about the source of priced correlation risk and merely document its properties. Confer
with the literature review for a discussion of potential explanations.
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A: Variance and variance risk premium

Months
√
IV

√
RV V RP p-val

√
IV u

√
RV u V RP u p-val

√
IV d

√
RV d V RP d p-val

Index
1 0.204 0.189 0.006 0.000 0.130 0.134 -0.001 0.269 0.164 0.134 0.009 0.000
3 0.205 0.189 0.006 0.007 0.129 0.134 -0.001 0.458 0.169 0.134 0.011 0.000
6 0.207 0.189 0.007 0.030 0.131 0.134 -0.001 0.673 0.172 0.134 0.012 0.000
9 0.209 0.189 0.008 0.039 0.132 0.134 -0.001 0.826 0.174 0.134 0.012 0.000
12 0.211 0.189 0.009 0.041 0.133 0.134 -0.000 0.934 0.175 0.134 0.013 0.000

Index Constituents
1 0.390 0.387 0.002 0.584 0.252 0.270 -0.009 0.000 0.306 0.277 0.017 0.000
3 0.372 0.386 -0.010 0.147 0.233 0.270 -0.019 0.000 0.304 0.276 0.016 0.000
6 0.364 0.384 -0.015 0.120 0.222 0.269 -0.023 0.000 0.302 0.275 0.016 0.000
9 0.361 0.384 -0.017 0.153 0.217 0.269 -0.026 0.000 0.301 0.274 0.016 0.000
12 0.358 0.383 -0.019 0.166 0.212 0.269 -0.028 0.000 0.300 0.274 0.015 0.002

B: Correlation and correlation risk premium

Months IC p-val RC p-val CRP p-val

1 0.378 0.000 0.319 0.000 0.059 0.000
3 0.417 0.000 0.318 0.000 0.099 0.000
6 0.444 0.000 0.321 0.000 0.126 0.000
9 0.453 0.000 0.322 0.000 0.134 0.000
12 0.459 0.000 0.324 0.000 0.136 0.000

Table 4: Correlation risk premium. This table reports summary statistics for implied variances and the
correlation risk premium for various option maturities. Panel A reports implied and realized variances, semivari-
ances, and their risk premiums (with p-values) separately for the index and for individual stocks (computed as a
cross-sectional average). Panel B provides the realized and implied correlations and the correlation risk premium,
together with p-values. Statistics are reported for a sample period from January 1996 to December 2017 and,
where applicable, annualized. p-values are computed with Newey and West (1987) adjustments for autocorrelation
and a number of lags equal to the number of overlaps.

correlations between the correlation risk premium and the (semi)variance risk premiums being

quite low (around 0.2).

Using standard in-sample predictive regressions (2), we find that the correlation risk premium

also predicts future market excess returns quite well. In univariate regressions, its regression

coefficient is highly statistically significant at all horizons, with R2s of up to 10%. At the 6-

and 9-month horizon, it outperforms the other (noncorrelation) variables.30 Jointly using the

implied correlation and the correlation risk premium (slightly) improves the R2 of the predictive

regression at longer horizons. Moreover, consistent with their low time-series correlations, the

30Predictions for future market excess returns by the correlation risk premium are also consistent with the
present value relation. That is, the correlation between daily market excess returns and increments in market
excess return forecasts based on the correlation risk premium is −0.49.
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information content of the correlation risk premium is incremental to that of the (semi)variance

risk premiums.

In summary, the correlation risk premium is also a robust predictor of future market excess

returns, providing nonredundant information relative to purely index-based predictors.

4 Out-of-Sample Predictability

Although many variables have strong predictive power in-sample, hardly any evidence supports

out-of-sample predictability, as convincingly shown by Goyal and Welch (2008). Accordingly, we

now concentrate on the out-of-sample performance of correlation and variance (risk premiums).

4.1 Methodology

To evaluate the different forecasting models, indexed by s, we compare their performance relative

to a model based on the historical mean of the market excess return (s = 0). This forecast serves

as a natural benchmark, because, as documented by Goyal and Welch (2008) and Campbell and

Thompson (2008), almost all predictive variables fail to beat it out-of-sample.

We rely on two performance criteria. First, we consider the out-of-sample R2 relative to the

forecasts from the (benchmark) historical average return model:

R2
s,τr = 1− MSEs,τr

MSE0,τr

, (8)

where MSEs,τr = 1
N

(
e>s,τr × es,τr

)
denotes the mean-squared error of model s. Second, we

consider the Diebold and Mariano (1995) loss function, that is, the average squared-error loss

relative to the predictions from the benchmark model:

δs,τr = MSEs,τr −MSE0,τr . (9)
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A particular model, s ≥ 1, outperforms the benchmark model based on the average historical

return if its out-of-sample R-squared, R2
s,τr , is significantly positive and if the average squared-

error loss, δs,τr , is significantly negative.

Because of the limited availability of options data, our sample period spans less than 20

years. As a consequence, asymptotic standard errors may not be accurate, so we resort to

bootstrapping. Specifically, we use the moving-block bootstrap procedure by Künsch (1989),31

to randomly resample with replacement from the time series of a model’s forecasts to construct

bootstrapped distributions for both performance measures.

4.2 Traditional Approach

Traditionally, out-of-sample predictions are based on rolling-window estimations of the predictive

regression (2):

rt−τr→t = γt +
∑
k∈K

βk,t PREDk(t− τr, t) + εt, (10)

using, at date t, only observations from the past to avoid any look-ahead bias. The estimated

coefficients βk,t, together with the time-t value of the “predictors” PREDk(t, t+ τr), then form

the out-of-sample return forecast rt→t+τ .

For our empirical analysis, we estimate regressions (10) using a 10-year rolling window of

historical data.32 Panel A of Figure 5 depicts the results for univariate predictability regressions

across various forecasting horizons. Although the out-of-sample R2 for predictions based on the

implied correlation is initially negative, it demonstrates a steady increase from 3.5% for 3 months

to about 11% for 9- and 12-month horizons, delivering the highest predictive power among the

predictors at horizons of 6 months or longer. These results are confirmed by the average squared-

error loss (cf. Appendix B for all figures on the squared-error loss). The correlation risk premium

31The moving-block bootstrap is shown (see, e.g., Lahiri (1999)) to be comparable in performance to other
widely used methods, for example, the stationary bootstrap by Politis and Romano (1994) and the circular block
bootstrap of Politis and Romano (1992). However, constant block sizes lead to smaller mean-squared errors
compared with random block sizes like in a stationary bootstrap. Specifically, we draw 10,000 random samples
of 200 blocks, with blocks of 12 observations (i.e., 1-year blocks) to preserve the autocorrelation in the data.

32We follow Kilic and Shaliastovich (2017), who use a 10-year window to show that decomposing the variance
risk premium into good and bad components improves the out-of-sample predictability of market returns.
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A: Traditional approach, 10 years, univariate
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B: Traditional approach, 10 years, multivariate
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C: Traditional approach, 3 years, univariate
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D: Traditional approach, 3 years, multivariate
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E: Contemp. approach, 3 years, univariate
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F: Contemp. approach, 3 years, multivariate
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Figure 5: Out-of-sample return predictability. This figure shows the out-of-sample R2 from (8) for various
model specifications, forecasting horizons, and predictability approaches. The results depicted in Panels A and
B are based on the traditional approach with a 10-year estimation window. The results shown in Panels C and
D are based on the traditional approach with a 3-year estimation window. Finally, the results in Panels E and
F are based on the contemporaneous-beta approach with a 3-year estimation window. The left panels show the
statistics for the univariate specifications, and the right panels show the statistics for the multivariate ones. In
all cases, predictions are made at a monthly frequency.
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performs even better than does the implied correlation at short horizons (with R2s of about 5%);

however, its predictive power steadily declines from there onward. The performance of the total

variance risk premium, excluding the 1-month horizon, is quite weak. The predictive power of

the downside semivariance risk premium is strong at short horizons, delivering the best predictive

power (with R2s around 11%). However, the predictability is not robust in the long term; the

out-of-sample R2 is negative at medium horizons before turning positive again for the 1-year

horizon. The results for multivariate regressions, shown in Panel B, are generally quite weak,

probably because of overfitting. In particular, the short horizon experiences some improvement,

but many out-of-sample R2s are negative, and the average squared-error losses are positive.

However, we also find that traditional out-of-sample regression techniques cannot fully exploit

the predictive power of many variables, because they require a long historical estimation window

for the regression coefficients.33 That is, in our applications, the out-of-sample predictability

evaporates when the estimation window is shortened. For example, as shown in Panels C and D,

the out-of-sample R2s with a 3-year estimation window are either very close to zero or negative

for both univariate and multivariate regressions.34 The squared-error loss function mirrors these

results. This has important implications: it implies that the approach is hardly applicable for

option markets or for new instruments because of limited data availability.

In addition to requiring a relatively long estimation window to fit the parameters, the tradi-

tional approach has another drawback. That is, to avoid any look-ahead bias, when forecasting

returns from t to t+ τr, the last observations of the predictors used in the estimation of the re-

gression coefficients in (10) are from time t− τr. For example, for an annual forecasting horizon,

this implies that the predictors and the estimated predictive relation will be 1 year old and, in

the case of changing economic conditions, severely outdated.

4.3 Contemporaneous-Beta Approach

We now propose a new approach for out-of-sample forecasts that relies on contemporaneous betas

and significantly improves out-of-sample return predictability.

33When choosing the estimation horizon for the rolling-window regressions (10), one typically faces a trade-off
between the precision of the coefficients βk,t and their ability to reflect the current economic conditions.

34We tried a variety of rolling-window horizons ranging from 1 to 5 years. The results are qualitatively the
same.
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4.3.1 Intuition

The approach effectively extends the contemporaneous-regression idea, introduced by Cutler,

Poterba, and Summers (1989) and Roll (1988). Their approach traditionally has been used to

study contemporaneous innovations in market excess returns and the respective variables (similar

to our VAR analysis in Section 3.2). In contrast, our objective is to combine the coefficients

obtained from the contemporaneous regressions with time-t risk premiums to efficiently forecast

future market excess returns.

Intuitively, the idea can be motivated by a simple linear framework within the arbitrage

pricing theory. For example, consider a setting in which the market excess return is described

by a linear factor model with (time-varying) factor exposures:35

rt+1 =

K∑
k=1

βk,t fk,t+1 + εt+1, (11)

where fk,t+1 denotes the return on factor k ∈ {1, . . . ,K}, and εt+1 denotes “noise.” Then the

equity risk premium is given by

ERP (t, t+ 1) =

K∑
k=1

βk,tRPk,t+1 + pt(εt+1), (12)

where RPk,t+1 denotes the risk-premium on the kth factor, and pt(εt+1) denotes the pricing

error, for example, because of omitted factors.36 Consequently, in this setting, to arrive at a

good estimate for the future market excess return, one needs precise estimates of the time-t

factor exposures βk,t and the corresponding risk premiums RPk,t+1.

Our approach relies on first estimating a regression of the type (11) using daily (or even

intraday) market excess returns and, at the same frequency, shocks to the variables (e.g., the

35A similar structure endogenously arises in Bollerslev, Tauchen, and Zhou (2009), Bollerslev, Todorov, and
Xu (2015), Kilic and Shaliastovich (2017), and Feunou, Jahan-Parvar, and Okou (2017).

36Although early applications of the arbitrage pricing theory (e.g., Ross (1976)) derived bounds on the pricing
errors by assuming the correct specification of a linear factor model, recent studies (e.g., Raponi, Uppal, and
Zaffaroni (2018)) show that the pricing errors are bounded even when the model is misspecified or when factors
are omitted.
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implied correlation or implied variance). This delivers accurate and up-to-date estimates of βk,t.

Intuitively, the higher frequency of the observations has two advantages: (1) it improves the

properties of the regression coefficients (betas), which are essentially functions of second mo-

ments, and (2) it allows us to shorten the estimation window so that betas quickly adjust to new

information. In the second step, one can then use the “pricing equation” (12) to predict future

market excess returns, by combining the estimated coefficients with the time-t risk premiums

on the respective variable (e.g., the correlation risk premium or the variance risk premium).

4.3.2 Implementation

For the estimation of regression (11), the contemporaneous-beta approach requires the estima-

tion of shocks in the variables, that is, estimates of the “factors.” In the case of option-implied

variables, these shocks can be proxied for using shocks to integrated expected variables. For

example, note that the time-t-expected integrated correlation obtained from options with ma-

turity T can be decomposed as follows:

IC(t, T ) = EQ
t

[
EQ
t+∆t

[∫ t+∆t

t
ρ(s)ds+

∫ T

t+∆t
ρ(s)ds

]]

= EQ
t

[∫ t+∆t

t
ρ(s)ds

]
+ EQ

t [IC(t+ ∆t, T )] ,

where ρ denotes the stochastic process of correlation, and Q denotes the risk-neutral probability

measure. Hence, increments to implied correlation are given by

∆IC(t+ ∆t, T ) = IC(t+ ∆t, T )− IC(t, T )

= IC(t+ ∆t, T )− EQ
t [IC(t+ ∆t, T )]︸ ︷︷ ︸

“true” shock to the state variable

−EQ
t

[∫ t+∆t

t
ρ(s)ds

]
. (13)

If the last term in equation (13)—the expected integrated correlation over a short period of time

∆t—is small, that is, if risk-neutral expected integrated correlation can be well approximated
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by a martingale,37 short-interval increments are indeed proxies for random shocks to correlation.

The same argument holds for shocks to (semi)variance.

Importantly, our approach allows us to use increments from any option maturity; in partic-

ular, one can use variables extracted from the most liquid options with short maturities. Doing

so reduces the potential bias in betas arising from nonlinearities in response to random shocks

in a variable.38 One only needs to correct the resultant betas for the difference in variability of

the regressors used for beta estimation (i.e., increments in variables) in (11) and the variability

of the risk premiums for the pricing equation (12). Appendix A derives a simple procedure that

does exactly that.

4.3.3 Results

To illustrate the advantages of the contemporaneous-beta approach relative to the traditional

approach, we now compare its performance for the case of a 3-year historical rolling-window

estimation period. Recall that for this case, the traditional approach essentially delivers zero

out-of-sample predictability.

We use daily market excess returns and daily increments in the implied correlation and

implied (semi)variances from options with 1-month maturity to estimate the contemporaneous

betas.39 To arrive at the out-of-sample predictions, we then combine these betas with the time-t-

expected risk premium on the predictors, that is, the correlation and the downside semivariance

risk premium, for an option maturity matching the forecasting horizon.

As shown in Panels E and F of Figure 5, the new approach leads to stable out-of-sample return

predictability for most horizons, despite the short estimation window. For univariate predictions

(Panel E), the correlation risk premium delivers the highest out-of-sample R2 for 3- to 9-month

horizons, whereas the downside semivariance risk premium performs best at the very short and

37Empirical evidence supports this approximation. For example, Filipović, Gourier, and Mancini (2016, p. 58)
find that a “martingale model provides relatively accurate forecasts for the one-day horizon variance.” Moreover,
integrated expected variance and the integrated expected correlation are highly persistent, with first-order auto-
correlations between 0.97 and 0.994 for variance and between 0.97 and 0.993 for correlation at various option
maturities in our sample period.

38We thank an anonymous referee for pointing out the potential effect of option maturity on the bias in betas.
39These are then adjusted by the ratio of the 3-year historical volatilities of the implied variables and the

respective risk premiums, as described in Appendix A.
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Figure 6: Dynamics of out-of-sample regression coefficients. This figure shows the time series of the
regressions coefficients in univariate models for out-of-sample market return forecasts for forecasting horizons of
1, 6, and 12 months. The panels on the left show the regression coefficients from the traditional approach, and
the ones on the right show the regression coefficients from the contemporaneous approach. For both approaches,
we use a 3-year historical estimation window.
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long horizons. Interestingly, even the variance risk premium displays a decent performance with

an R2 of 7% at a 1-month horizon, declining to 2.2% for 6 months. Combining the correlation

and the downside semivariance risk premium leads to improvements at some horizons (Panel F).

The results for the Diebold and Mariano (1995) loss function confirm these results.

To understand what drives the differences in the approaches’ predictive power, recall that

the pricing equation is the same for the traditional and the contemporaneous-beta approaches.

However, the two approaches considerably differ in the estimation of the regression coefficients

βk,t. Figure 6 depicts the estimated betas for the respective variables across various forecast-

ing horizons. As is apparent, the resultant betas show very different dynamics. That is, the

traditional betas are far more volatile (pay attention to the y-axis scales) and exhibit more

abrupt jumps in reaction to “extreme” observations. Also, whereas the traditional betas of-

ten change sign, the contemporaneous betas, though substantially fluctuating over time, always

stay positive. Moreover, the traditional betas fluctuate much more with the forecasting hori-

zon, with standard deviations across horizons that are 5 to 25 times larger than those of the

contemporaneous approach.

In summary, the contemporaneous-beta approach delivers promising results for out-of-sample

market return predictability. Notably, even for an extremely short estimation window of 1 month,

the predictive performance is impressive. Moreover, because of its straightforward implemen-

tation, the contemporaneous beta approach naturally lends itself to many other settings and

subsequent work.

5 Conclusion

In this paper, we further explore the empirical evidence that information about the comove-

ment of individual stocks, extracted from option prices, can predict future market returns. In

particular, the objective is to improve our understanding of the predictive power as well as

the information content of options-based measures of stock comovement and to illustrate the

underlying economic sources explaining the return predictability.
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We document that both the implied correlation and the correlation risk premium, jointly

extracted from index options and the cross-section of individual stock options, have strong pre-

dictive power for future market excess returns. For example, in-sample, the implied correlation

predicts future market excess returns with impressive R2s for horizons of up to 12 months and,

except for the 1-month horizon, outperforms other option-implied predictors, such as implied

(semi)variances and their risk premiums. Moreover, the predictability is not subsumed by infor-

mation extracted from the risk-neutral marginal distribution of the aggregate stock market and

can be mostly attributed to the forward-looking nature of options. The predictability is even

robust out-of-sample, with the implied correlation and the correlation risk premium delivering

positive out-of-sample R2s at long horizons.

We provide evidence that temporal variations in idiosyncratic risk and the cross-sectional

dispersion in systematic risk are largely responsible for this predictability. In particular, in

contrast to measures of risk exclusively based on the marginal distribution of the market, the

expected correlation is intimately linked to these variables. Consequently, if idiosyncratic risk is

priced or the equity risk premium is affected by the cross-sectional beta dispersion, the implied

correlation will be able to capture the resulting fluctuations in future market returns, whereas

index-based variance measures will not. Consistent with this line of reasoning, we empirically

find that the implied correlation negatively predicts both future idiosyncratic volatility and the

future cross-sectional dispersion in market betas.

By highlighting the importance of information not spanned by the marginal distribution of

the market, our results have important implications for theoretical work trying built pricing

models from individual stock dynamics (see also Leippold and Trojani (2010)). Moreover, by

providing complementary evidence on the pricing of idiosyncratic risk at the aggregate level,

our work connects to the ongoing debate about the importance and pricing of idiosyncratic risk.

Although we exclusively focus on future market returns, option-implied information also should

be helpful in better understanding the price of idiosyncratic risk in the cross-section of expected

stock returns. Moreover, the use of (newly available) options data on sector indices could help
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relax the assumption of homogeneity in the correlations among all stocks and, hence, further

improve our understanding of the information content of the implied correlation.40

Methodologically, our extension of the contemporaneous-beta approach, which combines

high-frequency increments in option-implied variables with the respective risk premiums, can

help to improve out-of-sample return forecasts in many applications. In our case, the approach

generates considerably higher market return predictability than does the traditional approach

(with out-of-sample R2s of around 8% for horizons of 3 to 6 months and 7% for 12 months).

40For example, Kelly, Lustig, and Van Nieuwerburgh (2016) relate implied correlation extracted from the
financial sector index to the pricing of crash risk during the recent financial crises.
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Appendix

A “Normalizing” Variance and Correlation Betas

The variance and correlation betas, β∆IV,t and β∆IC,t estimated by regressing market excess

returns on increments in option-implied variables in (11), differ from the exposures βV,t and βρ,t

in the pricing equation (12). In particular, they need to be adjusted for the difference in the

variability of the regressors used for beta estimation (i.e., increments in risk-neutral expected

variance and correlation) and the variability of the predictors in the pricing equation (i.e., the

variance and correlation risk premium).

Intuitively, the variance beta in the pricing equation, βV,t, can be decomposed into (i) the

correlation between the market excess return and the variance risk premium, and (ii) the ratio

of their volatilities. Similarly, the variance beta in the estimation equation, β∆IV,t, can be

decomposed into (i) the correlation between the market excess return and the increments in

implied variance, and (ii) the ratio of their volatilities.

Consequently, if we assume that the correlation between returns and increments in im-

plied variance equals the correlation between returns and the variance risk premium, that is,

Corr (rt+τ , V RP (t, t+ τ)) = Corr (rt+τ ,∆IV (t, t+ τ)), one gets:

βV,t = Corr (rt+τ , V RP (t, t+ τ))× Vol (rt+τ )

Vol (V RP (t, t+ τ))

= Corr (rt+τ ,∆IV (t, t+ τ))× Vol (rt+τ )

Vol (∆IV (t, t+ τ))
× Vol (∆IV (t, t+ τ))

Vol (V RP (t, t+ τ))

= βDeltaIV,t ×
Vol (∆IV (t, t+ τ))

Vol (V RP (t, t+ τ))
.

Accordingly, one can simply adjust the variance beta, β∆IV,t, by the ratio of the volatility

of the increments in implied variance and the volatility of the variance risk premium. Both

variables are observable, so that the ratio can easily be estimated from the data. The same

principle works for up and down semivariance betas, and for correlation betas. For example,
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computations for the correlation risk premium lead to a comparable adjustment:

βρ,t = β∆IC,t ×
Vol (∆IC(t, t+ τ))

Vol (CRP (t, t+ τ))
.
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B Additional Figures

A: Traditional approach, 10 years, univariate
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B: Traditional approach, 10 years, multivariate
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C: Traditional approach, 3 years, univariate
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D: Traditional approach, 3 years, multivariate
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E: Contemp, approach, 3 years, univariate
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F: Contemp, approach, 3 years, multivariate
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Figure A1: Out-of-sample return predictability. The figure shows the Diebold and Mariano (1995) squared-
loss function (9); for various model specifications, forecasting horizons and predictability approaches. The results
depicted in Panels A and B are based on the traditional approach with a 10-year estimation window. The results
shown in Panels C and D are based on the traditional approach with a 3-year estimation window. Finally, the
results in Panels E and F are based on the contemporaneous-beta approach with a 3-year estimation window.
The left panels show statistics for univariate specifications and the right ones for multivariate specifications. In
all cases, predictions are made at a monthly frequency.
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A: IC to other variables. B: Other variables to IC.
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C: DIV to other variables. D: MKTRF to other variables.
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Figure A2: VAR impulse response functions. The figure shows a set of selected impulse response functions
for horizons of up to 12 months; based on a VAR(1) model featuring the market excess return, log dividend-
growth, the implied correlation and the up and down semi-variance risk premiums. The VAR(1) is estimated
using data from January 1996 to December 2017. The dotted lines indicate confidence bounds.
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C Additional Tables

1 3 6 9 12

IC 0.766 0.832 0.892 0.913 0.914
IV 0.808 0.857 0.898 0.904 0.917
IV u 0.826 0.876 0.918 0.927 0.938
IV d 0.782 0.831 0.880 0.884 0.902
CRP 0.152 0.648 0.835 0.867 0.881
V RP 0.378 0.705 0.871 0.897 0.924
V RPu 0.480 0.792 0.921 0.946 0.963
V RP d 0.266 0.444 0.687 0.745 0.808

Table A1: Autocorrelations. The table reports autocorrelations for options-based variables, computed for
several maturities (from one to 12 months) and sampled at the end of each month—for a sample period from
January 1996 to December 2017. The variables are the implied correlation (IC), implied variance (IV ), implied
upside and downside semi-variances (IV u and IV d), and the risk premiums for correlation (CRP ), variance
(V RP ) and two semivariances (V RPu and V RP d).

A: Levels

IC IV IV u IV d CRP V RP V RPu V RP d

IC 1.000 0.579 0.536 0.596 0.253 -0.011 -0.157 0.333
IV 0.579 1.000 0.992 0.994 -0.013 -0.377 -0.551 0.130
IV u 0.536 0.992 1.000 0.972 -0.015 -0.350 -0.518 0.134
IV d 0.596 0.994 0.972 1.000 -0.014 -0.412 -0.588 0.109
CRP 0.253 -0.013 -0.015 -0.014 1.000 0.362 0.308 0.408
V RP -0.011 -0.377 -0.350 -0.412 0.362 1.000 0.971 0.844
V RPu -0.157 -0.551 -0.518 -0.588 0.308 0.971 1.000 0.695
V RP d 0.333 0.130 0.134 0.109 0.408 0.844 0.695 1.000

B: Differences

IC IV IV u IV d CRP V RP V RPu V RP d

IC 1.000 0.636 0.625 0.615 0.233 0.064 0.001 0.220
IV 0.636 1.000 0.987 0.991 0.050 -0.172 -0.274 0.109
IV u 0.625 0.987 1.000 0.958 0.031 -0.129 -0.223 0.131
IV d 0.615 0.991 0.958 1.000 0.064 -0.223 -0.329 0.071
CRP 0.233 0.050 0.031 0.064 1.000 0.202 0.182 0.235
V RP 0.064 -0.172 -0.129 -0.223 0.202 1.000 0.981 0.938
V RPu 0.001 -0.274 -0.223 -0.329 0.182 0.981 1.000 0.858
V RP d 0.220 0.109 0.131 0.071 0.235 0.938 0.858 1.000

Table A2: Time-series correlations. The table reports time-series correlations between option-implied vari-
ables and the respective risk premiums. Panel A shows correlations in levels and Panel B in the first differences.
The variables include the implied correlation (IC), the implied variance (IV ), the implied upside and down-
side semi-variances (IV u and IV d), and the risk premiums for correlation (CRP ), variance (V RP ) and two
semivariances (V RPu and V RP d). All variables are computed from one-month options and are sampled daily.
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