Time Series Forecasting using Functional Partial Least Square Regression with Stochastic Volatility, GARCH, and Exponential Smoothing

Jong-Min Kim¹ and Hojin Jung²

¹Full Professor, Statistics Discipline, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN, 56267; ²Chonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Korea

Abstract

Our approach is based on the functional partial least squares (FPLS) model, which is capable of avoiding multicollinearity in regression by efficiently extracting information from the high-dimensional market data.

We provide an empirical application of our proposed methodology in terms of its ability to predict the conditional average log return and the volatility of crude oil prices via exponential smoothing, Bayesian stochastic volatility, and GARCH models.

Empirical Results

Table 6: Volatility prediction performance via Bayesian SV and GARCH models							
	\mathbf{SV}			GARCH			
		MSE_1					
Forecasting horizons		FDA trace	PCR	LASSO	Observed returns	FDA traces	Observed returns
Brent	h = 3	36.341	26.295	21.654	37.071	32.925	34.222
	h = 5	22.761	19.182	18.963	23.125	21.205	21.742
	h = 10	12.999	12.759	14.809	13.156	12.416	12.569
	h = 20	8.863	8.902	11.119	8.974	8.417	8.563
	h = 50	6.678	7.814	10.711	6.730	6.523	6.543
	h = 117	7.066	9.520	13.176	7.069	7.304	7.054

We find evidence that the standard models with FDA traces significantly outperform our competing models. Our empirical results show that our new methodology significantly improves predictive ability of standard models in forecasting the latent average log return and the volatility of financial time series.

Introduction

Many financial data are also characterized by high frequency so that functional representations naturally arise from repeated observations. This feature substantially complicates econometric modeling and statistical analysis. Functional data analysis (FDA) recently has gained considerable importance in the literature (see Ramsay and Silverman 2005) for a comprehensive introduction to FDA to reduce the dimensionality.

Our proposed method enables researchers to take advantage of auxiliary variables in estimation. The multicollinearity issue that might be caused by the new method can be overcame by using the FPLS regression which is one of dimension reduction methods. We extract traces or smooth representations via the technique from raw observations of the return series frequently displaying large fluctuations. The extracted traces are themselves represented as a functional data set and called "FDA traces" in this article.

Our proposed method explores the performance of volatility forecasting in two crude oil markets: Brent and WTI. In particular, exchange rates for the 40 most actively traded currencies are used as auxiliary variables in forecasting.

		MSE_2					
Forecasting horizons		FDA trace	PCR	LASSO	Observed returns	FDA traces	Observed returns
	h = 3	9.300	5.182	4.589	9.764	7.711	8.326
	h = 5	5.805	4.900	6.520	6.039	5.102	5.337
Brent	h = 10	3.304	4.091	6.855	3.410	3.070	3.110
	h = 20	2.243	3.227	6.080	2.318	2.079	2.113
	h = 50	1.678	3.302	6.516	1.716	1.667	1.626
	h = 117	1.772	4.135	7.754	1.777	1.981	1.772
MSE_1							
Forecast	ting horizons	FDA trace	PCR	LASSO	Observed returns	FDA traces	Observed return
	h = 3	1.220	11.635	14.115	1.262	0.741	0.753
WTI	h = 5	3.066	12.880	15.188	3.094	2.674	2.682
	h = 10	2.927	7.692	9.269	2.965	3.058	3.0578
	h = 20	4.981	8.453	9.815	5.025	5.254	5.257
	h = 50	6.539	11.797	13.404	6.549	6.631	6.632
	h = 117	5.392	13.977	16.082	5.331	5.133	5.111
					MSE_2		
Forecasting horizons		FDA trace	PCR	LASSO	Observed returns	FDA traces	Observed return
	h = 3	0.180	7.475	9.488	0.222	0.037	0.040
WTI	h = 5	0.662	7.683	9.591	0.686	0.560	0.561
	h = 10	0.766	5.301	6.838	0.792	0.928	0.926
	h = 20	1.313	5.236	6.657	1.341	1.546	1.547
	h = 50	1.659	6.504	8.057	1.669	1.795	1.798
	h = 117	1.292	7.814	9.628	1.271	1.248	1.244

The volatility forecasts obtained from the Bayesian SV and GARCH models with FDA traces are compared to those acquired from the same SV and GARCH models with the observed oil returns, PCR and LASSO models.

Table 1: Descriptive statistics of the log-return series								
	\mathbf{Mean}	Median	Minimum	Maximum	St.D	Skewness	Kurtosis	
Brent	0.040	0.034	-3.827	3.953	1.079	0.111	3.687	
WTI	-0.004	0.054	-4.172	6.072	1.244	0.282	4.624	

The results exhibit better forecasting accuracy of our method than the alternative, especially in volatility forecasting over longer time horizons, such as twenty or fifty days.

Our empirical results provide strong empirical evidence that the use of FDA traces yields an improvement on the volatility models currently employed in the empirical literature.

We conduct more robust tests in order to evaluate whether an exhibited superiority in a forecasting performance of our method. Our proposed method significantly improve the predictive ability of the standard forecasting model currently being used in the literature.

	Bı	rent	WTI		
Forecasting horizon	RC $(p-value)$	SPA $(p-value)$	RC $(p-value)$	SPA $(p-value)$	
h = 3	0.031	0.038	1.000	1.000	
h = 5	0.047	0.064	1.000	1.000	
h = 10	0.113	0.114	1.000	1.000	
h = 20	0.303	0.304	1.000	1.000	
h = 50	0.269	0.282	1.000	1.000	
h = 117	0.258	0.304	1.000	1.000	

Conclusions

Economic Models

The formulation of the SV model in its centered parameterization is given by

 $y_t | h_t \sim \mathcal{N}(0, \exp(h_t)),$

 $h_t | h_{t-1}, \mu, \phi, \sigma_\eta \sim \mathcal{N}(\mu + \phi(h_{t-1} - \mu), \sigma_\eta^2),$

$h_0|\mu,\phi,\sigma_\eta \sim \mathcal{N}(\mu,\sigma_\eta^2/(1-\phi^2)),$

A GARCH(p,q) with constant in mean model is given by

$$\epsilon_t = \sigma_t e_t$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

Contact

Jong-Min Kim, Ph.D Division of Science and Mathematics, University of Minnesota-Morris Email: jongmink@morris.umn.edu Website: http://cda.morris.umn.edu/~jongmink/ Phone: 320-589-6341 We proposed a new method to improve the volatility forecasts by adopting the FPLS regression that allows us to incorporate useful auxiliary variables.

To do this, we extracted FDA traces via the FPLS regression from crude oil prices itself as well as exchange rates. Then, we used standard models such as an exponential smoothing method, Bayesian SV and GARCH models with FDA traces.

Our results indicated that standard forecasting models with FDA traces were statistically superior out-of-sample accuracy in terms of goodness-of-fit measures and a loss function.

References

 Ramsay, J. and Silverman, B. Functional Data Analysis, Springer, New York, (2005).