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1. Introduction

The financial crisis of 2007-2008 has revealed the need for better macro-
prudential policy in order to limit systemic risk and to enhance financial
stability. It is widely accepted in the literature that systemic risk is the
main threat to financial stability. Impairment of financial stability can
impose significant costs on the real economy in terms of economic growth
and social welfare. Thus, to protect the real economy from the financial
system, it is necessary to detect and to gauge potential sources of systemic
risk emerging at the system level. Meanwhile, to protect the financial sys-
tem from the real economy, it is necessary to assess the robustness of the
financial system to macroeconomic shocks. To this end, macroprudential

stress tests have been established as the main tool of macroprudential pol-
icy (Tarullo, 2016).

The current practice of macroprudential stress testing has improved in
the aftermath of the financial crisis. However, the underlying techniques
and models that have been developed prior to the crisis have remained
broadly the same and there are still some limitations that need to be ad-
dressed (Borio, Drehmann, and Tsatsaronis, 2014). In particular, a recent
report from the Basel Committee on Banking Supervision (BCBS) high-
lights two main limitations, namely considering liquidity and solvency in-
teractions and considering systemic risk (BCBS, 2015). The International
Monetary Fund (IMF) provides a similar recommendation in its 2014 Re-
view of the Financial Sector Assessment Program (FSAP). The review
stresses the need to strengthen the systemic focus of the financial stability
assessment and to deepen the analytical treatment of interconnectedness
(IMF, 2014).

In this paper, we develop and illustrate with an empirical application
an integrated macroprudential stress test of bank liquidity and solvency
risk. The proposed approach introduces, with the use of network theory, a
new measure of systemic distress that incorporates microprudential as well
as macroprudential risks in the banking system network. Our proposed
approach integrates liquidity risk and solvency risk and provides a conve-
nient method to identify the point at which liquidity risk becomes solvency
risk. In addition, the proposed stress testing framework is flexible as it
allows the stress tester to further use different stress scenarios to assess the
impact of liquidity shocks on solvency and vice versa. The framework also
provides a variety of output metrics that capture idiosyncratic as well as
systemic economic risks at the level of an individual bank and the banking
sector as a whole. Yet, the framework is tractable enough to be useful for
practical macroprudential monitoring and informative for policy-making.



An important strength of our approach is that it explicitly links lig-
uidity risk and solvency risk in order to incorporate their interactions in
the stress testing framework. These interactions have often been neglected
in existing stress-testing methodologies. We create this link by estimating
both the probability of a bank becoming illiquid and the probability of
a bank becoming insolvent based on the same factor, namely the bank’s
distress level. We estimate these probabilities using a Merton-type model
that is based on the seminal work of Black and Scholes (1973) and Merton
(1974). In so doing, we assume that bank distress is a continuous state
with varying levels that depend on both idiosyncratic and systemic risks
of each bank, whereas, illiquidity and insolvency occur at specific points of
highly elevated distress. The higher the distress level of a bank the closer
it gets to its illiquidity and insolvency points.

Another important strength of our approach is the way in which we
incorporate interconnectedness between banks into the stress test design.
Given that our purpose is assessing the vulnerability of banks, it is more
appropriate to focus on a bank’s systemic distress as compared to its sys-
temic importance. We approximate a bank’s systemic distress using a novel
measure named DistressRank. This measure fully incorporates the inter-
bank network topology. It is based on the notion that the distress level
of a bank is a function of its idiosyncratic risk as well as its systemic risk
stemming from being connected to counterparties through interbank assets
or liabilities. DistressRank also captures the dynamics on the network as
it changes with the change in banks’ distress level.

We construct stress scenarios in two different ways, where the first is
designed to assess the resilience of the banking system to macroeconomic
shocks, and the second is designed to assess the possibility of amplifying en-
dogenous shocks within the banking system and transmitting them to the
macroeconomy. The empirical application of the stress test framework to
the U.S. banking system shows how it can be effectively used to identify the
systemic vulnerability of individual banks and the resilience of the system
as a whole to economic risks. It also shows how the proposed approach can
be effective for monitoring and assessing systemic interdependencies among
banks. The proposed approach, thus, provides a tool for the banking sys-
tem supervisors to analyse the current state of the system stability and to
monitor the evolution of contagion and systemic risk within the system.

Our findings point out the importance of considering interconnected-
ness in designing macroprudential stress tests. At the system level, the
systemic loss due to feedback loops is shown to be significant compared to
the direct loss that results from the initial shock to the system. Ignoring



these feedback effects may lead to a significant underestimation of systemic
loss. At the bank level, the results confirm that interlinkages play a signifi-
cant role in identifying individual banks vulnerability. On this premise, we
use DistressRank as a measure of a bank’s systemic distress. The results
show that a bank’s DistressRank is associated with its systemic feedback
loss.

Our findings also provide insights into the possibilities of distress prop-
agation within the system. Applying the proposed framework to the U.S.
banking system enables us to identify banks that are most vulnerable to
system-wide shocks. In addition, we identify the liquidity distress depen-
dence and solvency default dependence between banks in the system. A
striking finding that is shown here is that banks that are not directly con-
nected through interbank assets or liabilities are still subject to distress
from each other through common counterparties.

The remainder of this paper is organised as follows. Section 2 provides
an overview of macroprudential stress testing in the literature. Section
3 develops an initial model for illiquidity distress propagation. Section 4
extends the model to link illiquidity to insolvency. Section 5 introduces
a framework for an integrated macroprudential stress test of liquidity and
solvency risk. Section 6 provides an overview of the data used in this paper
and presents the results of performing the stress test. Section 7 concludes
the paper.

2. Related Literature

We develop our stress testing framework based on a balance sheet set-
ting which is the natural approach to macroprudential stress testing. This
approach is specially useful in cases of limited or poor market data avail-
ability, as the main data required for the test is extracted from banks’
balance sheets (Ong and Cihak, 2014). Early models under this approach
provide a framework for an aggregate stress test of the financial system (e.g.
Blaschke et al., 2001; Bunn et al., 2005), however, they are fundamentally
financial simulations with no formal links to the macroeconomy (Buncic
and Melecky, 2013). More recent models attempt to establish this link by
using satellite models to link the macroeconomic variables to bank’s asset
quality (Cihdk, 2007). A more sophisticated, yet tractable, accounting-
based stress test is introduced by Drehmann et al. (2010), in which they
model assets and liabilities simultaneously. This model integrates credit
and interest rate risk in the banking book and provides a framework to as-
sess the impact of different investment strategies on the bank’s profitability.
Nevertheless, It is worth noting that the quality of any analysis that follows



a balance sheet approach to stress testing depends on the granularity and
availability of the data. Some models attempt to overcome this limitation
and provide sophisticated techniques to perform stress testing in cases of
limited data (e.g. Segoviano and Padilla, 2006; Ong, Maino, and Duma,
2010).

In theory, liquidity and solvency risks interact and can cause each other
through the interactions between banks (Diamond and Rajan, 2005). How-
ever, empirical evidence on the nexus between liquidity and solvency risks
is scarce. Some studies have strived to establish the link between liquid-
ity and solvency in order to be incorporated into macroprudential stress
tests. In particular, Schmitz, Sigmund, and Valderrama (2017) suggest
that bank funding costs are correlated with bank capital as a result of
the interconnections between funding costs and market expectations about
bank solvency. Other studies suggest a significant impact of solvency on
bank funding costs (Hasan, Liu, and Zhang, 2016), which appears to be
nonlinear with higher sensitivity of funding cost at lower levels of bank
solvency (Aymanns et al., 2016). The relationship seems to be intuitive
when we consider the interactions between liquidity and solvency. When
a bank faces a liquidity shortage, it might be forced to sell its less liquid
assets. If other banks with similar conditions follow the same way of sell-
ing less liquid assets, the initial liquidity shortages may lead to fire sales
and consequently declines in asset prices, hence, causing solvency problems
(Lee, 2013). Similarly, concerns about bank insolvency can cause liquidity
shortages. Increased expectations about a bank insolvency (e.g. declines in
credit rating) can increase deposits withdrawal and interbank funding costs
as depositors and interbank counterparties, respectively, become less con-
fident about the bank creditworthiness, hence causing a liquidity shortage
for the bank (Pierret, 2015). Thus, propagation channels between liquidity
and solvency are common and, for macroprudential purposes, they should
be integrated within a unified stress testing framework. However, the focus
of macroprudential stress testing frameworks has usually been on solvency
risk, while liquidity risk is assessed using satellite models on a stand-alone
basis.

Our proposed methodology is closely related to the Macrofinancial Risk
Assessment Framework (MFRAF) that has been developed by the Bank
of Canada and integrates solvency and liquidity risk (Gauthier, Souissi,
et al., 2012b). In the framework, solvency risk is triggered by a macro
shock, whereas liquidity risk arises as a result of solvency concerns or de-
terioration in liquidity position. We use a similar framework that consid-
ers potential market liquidity risk and interbank counterparty credit risk
through a network model. Another macroprudential stress testing model



that integrates solvency and liquidity risk has been developed by the Hong
Kong Monetary Authority (Wong and Hui, 2009). Our methodology shares
some characteristics with this model with regard to combining elements of
balance sheet-based and market price-based approaches to stress testing.
In this model, solvency risk of an individual bank depends on the market
value of its total assets, calculated through a Merton-type model. In con-
trast, we estimate solvency and liquidity risks based on the volatility of
liquid assets instead of total assets. In this model, liquidity risk is assessed
by introducing an exogenous shock to asset prices which leads to increases
in the bank’s solvency risk and deposit outflow, and reduction in its liquid-
ity generation capability.

Our approach rests on the insight of the Merton-type models of default
risk that are based on the seminal work of Black and Scholes (1973) and
Merton (1974). In these models, equity of the firm can be viewed as a call
option held by owners on its total assets, where the strike price is equal
to the outstanding debt owed to creditors at maturity. In this context, a
market-implied probability of default can be estimated as the probability
that the market value of the firm’s assets falls below the book value of its
liabilities Bohn and Crosbie (2003). We use the same logic to estimate two
types of probabilities for each individual bank, namely the probability of
illiquidity and the probability of insolvency. We deviate, however, from the
standard approach in that we base the estimation of both probabilities on
liquid assets only instead of total assets. Our rationale is that, in the short
run the variability in assets are derived mainly by the variability of liquid
assets. This twist enables us to link liquidity and solvency risks directly as
both of them are estimated based on the same factor.

Our methodology is also related to the Contingent Claims Analysis
(CCA) that relies on a Merton-type framework to construct a risk-adjusted
balance sheet of individual banks (Gray and Malone, 2008; Gray and Jobst,
2010). The CCA model can be used for macroprudential stress testing by
applying a macroeconomic shock to the risk-adjusted balance sheet of in-
dividual banks and then estimating the change in banks’ market value of
equity and probability of default. However, the CCA model limits its fo-
cus to solvency risk and lacks the systemic view as it does not provide a
method to measure aggregated risk at the system level. Our methodol-
ogy also shares some characteristics with the distress dependence model
of (Segoviano and Goodhart, 2009) who investigate the effect of macroe-
conomic variables on bank losses where the joint probability distribution
of banks is constructed with Copulas. They model the financial system as
a portfolio of banks and use non-parametric statistical techniques to con-
struct a multivariate density function for the financial system. Then, they



estimate a joint probability of default and a banking stability index of the
whole banking system.

We base our stress test on a network model that provides a convenient
way to incorporate systemic risk and interconnectedness into the stress
testing framework. FEarly studies of financial contagion suggest that fi-
nancial networks can provide a better way to study the linkages among
financial institutions (e.g. Allen and Gale, 2000; Freixas, Parigi, and Ro-
chet, 2000). More recent studies support the same notion and emphasize
that financial networks can help provide better measurement of systemic
risk and financial instabilities (e.g. Gai, Haldane, and Kapadia, 2011; Gai
and Kapadia, 2010; Glasserman and Young, 2015; Elliott, Golub, and Jack-
son, 2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Glasserman and
Young, 2016). In this spirit, we depict the relationships within the banking
sector as a network in which banks represent the nodes and financial expo-
sures represent the edges between these nodes. This approach to studying
the financial markets, in general, enables us to better understand the inter-
connectedness and the propagation of distress. This is also the approach
followed by some regulatory (e.g. Gauthier, Souissi, et al., 2012b; Wong
and Hui, 2009; Sole and Espinosa-Vega, 2010) and academic (e.g. Gau-
thier, Lehar, and Souissi (2012a) and Levy-Carciente et al. (2015) ) stress
testing frameworks. Sole and Espinosa-Vega (2010) use a network setting
to simulate the impact of credit and funding shocks on a set of connected
banking systems. Levy-Carciente et al. (2015) use a bipartite bank-asset
network to design a solvency stress test of the Venezuelan banking system.
Gauthier, Lehar, and Souissi (2012a) use a network model to estimate a
bank’s macroprudential capital requirements as a function of its contribu-
tion to the system-wide risk.

3. Illiquidity Distress

This section provides a simple model of liquidity risk, where we use a
balance sheet approach to derive a measure of systemic illiquidity distress
of a bank in a financial system.

3.1. A system of networked balance sheets

We model an interbank market that consists of a number of banks
N € {1,...,N}. The assets of each bank are divided into liquid assets
and illiquid assets denoted as AF and AF respectively. In addition, the

liabilities of each bank consist of short term obligations denoted as LY, and
long term obligations denoted as Lf. The net worth of bank i is E; and



is equal to the difference between its total assets and its total liabilities.
Thus, the balance sheet identity of bank ¢ can be represented as:

Ay AP = L7 + LF + E; (1)

Furthermore, we differentiate between two sources of liquid assets, namely
interbank liquid assets and other liquid assets denoted as AZ and A9 re-
spectively, where AF = AB + A9 Similarly, the short term obligations are
divided into interbank short term obligations, L?, and other short term
obligations, LY, where LY = LB + LY. The interbank liquid assets and
short term obligations represent assets and liabilities originating from the
interbank market (e.g. interbank repo or derivatives transactions), whereas
other liquid assets and other short term obligations are not related to the
interbank market and might include cash or short term securities.

The separation of interbank liquid assets and short term obligations
enables us to model the liquidity interlinkages across banks in the inter-
bank market as a weighted directed graph whose vertices represent banks
and edges represent interbank assets and liabilities. The assets, in mone-
tary units, of bank ¢ with bank j is denoted by A;;, which represents the
amount that bank ¢ should receive from bank j as a result of some financial
transaction (e.g a derivatives contract). Similarly, the interbank liabilities
of bank 7 to bank j is denoted by L;;, which represents the amount that
bank ¢ should pay to bank j. It then follows that, the interbank liquid as-
sets of bank ¢ are given by AP = ij\il A;j, whereas the interbank liabilities

of bank i are given by LF = YN, L;;.

3.2. Liquidity Coverage Matriz
Banks use their stock of liquid assets to cover their own liquidity re-
quirements. Thus, we can define a liquidity coverage ratio for a bank i as:

AL

which measures the ability of bank ¢ to meet its short term obligations,
whether within the interbank market or to outside counterparties. The
higher the liquid assets as compared to short term obligations, the higher
the liquidity coverage ratio, and the more liquid the bank is.

Furthermore, in order to measure the ability of bank 7 to cover its obli-
gation to another counterparty j within the interbank market, we introduce
l;; as the bank i’s relative liquidity coverage ratio to bank j, where:

5
0 - [Af - L ]L_ Aij + Lij )

ij

7



This ratio represents the ability of bank ¢ to cover its interbank obligation
to bank j using its net liquidity (AL— L), after paying all other obligations
and before exchanging any liquidity with bank j. This is why we adjust the
net liquidity stock of bank 7 in the numerator by subtracting the liquidity
exposure that is owed to bank ¢ by bank j and adding back the liquidity
exposure owed to bank j by bank i, to reflect a case before exchanging
liquidity.

3.3. Illiquidity Distress Matriz

It is clear from Equation 2 and Equation 3 that the better the liquidity
position of a bank as measured by its liquidity coverage ratios, the lower
the threat of distress due to illiquidity that the bank is exposed to. It is
also worth noting that ¢;; provides a proxy to the relative vulnerability of
bank j to the liquidity distress that might arise at bank ¢. In other words,
the lower this ratio is, the higher the probability that bank ¢ will fail to
honour its obligation to bank 7, and the higher the vulnerability of bank j.

We use this notion to develop an illiquidity distress matrix defined as
D = [d;;], where an element d;; represents the relative vulnerability of bank
1 to the illiquidity distress of bank 7, in other words the contribution of bank
J to the vulnerability of bank i. We then define d;; as:

Q5
dij = T (4)
where a;; is the respective element from the adjacency matrix A of inter-
bank network which is defined as A = [a;;], where a;; = 1 if banks ¢ and j
are connected and a;; = 0 otherwise.

3.4. DistressRank: A Measure of Systemic Distress

The network literature suggests that the centrality of a node in a given
network is a function of its interconnection with its neighbours. One
method to quantify this centrality is a measure called eigenvector-centrality,
which is based on the notion that the centrality of a node is proportional
to the sum of centralities of its neighbours (Newman, 2010). Applying this
notion to our financial network results in:

1 N
C; = X Z Qg5 Cj (5)
j=1

where ¢; is the eigenvector centrality of bank ¢, A # 0 is a constant. Thus,
the eigenvector centrality can provide a relative ranking of banks. One
advantage of this method is that it bases the ranking on both local infor-
mation related to direct neighbours and global information of the network



given that the ranking of neighbours is based on the ranking of their neigh-
bours, and so on (Scott, 2017).

However, eigenvector centrality is a purely topological measure that is
solely based on the adjacency matrix A. This limitation renders it subject
to two main disadvantages when it comes to ranking banks in a financial
network. First, it assumes equal contribution of all exposures in the net-
work in determining the centrality of a given bank. This assumption is not
valid as it ignores the state of the bank’s counterparty, i.e. its distress level.
A bank is more vulnerable to banks with high distress levels compared to
other banks. Second, eigenvector centrality ignores the dynamics in the net-
work as it is based on the mere existence of an exposure between two banks
rather than the weight of this exposure. Hence, it is time-independent as
it does not change in response to changes in the weights of exposure or the
states of banks.

Therefore, we propose DistressRank as an improvement on the standard
eigenvector centrality to overcome the disadvantages mentioned above. To
this end, we estimate DistressRank based on the distress matrix D, which
was introduced in Equation 4. Let p; be the DistressRank of bank ¢, which
can be defined as:

>

N
pi=7 2. dij pj (6)
j=1

where A\ # 0 is a constant. With some rearrangements, Equation 6 can be
rewritten in matrix notation as:

D-p=2Xp (7)

which is a standard eigenvector-eigenvalues problem where A is an eigen-
value and p is its corresponding 1 x N vector. Given that the matrix D
is non-negative and according to the Perron-Frobenius theorem (Meyer,
2000), the above eigenvector-eigenvalues problem has a unique solution at
A = Anaz- In other words, only the largest eigenvalue A, results in the
desired non-negative eigenvector p which represents the DistressRank vec-
tor of banks where the i*" entry corresponds to the DistressRank of the
i bank. Equation 7 can be solved iteratively using the power iteration
method (Newman, 2010).

DistressRank is more suitable as a measure of systemic distress of a
bank in a financial network because it assigns a rank to each bank in the
network based on the distress of its counterparties. Thus, it is more suited
to be used with dynamic networks where the states of banks and the weights
of exposures change during a distress propagation process. Here, we use
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Figure 1: From illiquidity to insolvency. The white area represents a healthy bank that
is both liquid and solvent. The grey area represents a stage in which the bank has
become illiquid, yet still solvent. The black area represents the stage in which the bank
has become both illiquid and insolvent.

DistressRank as one of the main metrics in our macroprudential stress test
that is introduced in section 5.

4. Illiquidity and Insolvency

Assessing at what point liquidity risk becomes solvency risk is, at best,
difficult. In this section, we attempt to disentangle these two risks, and
show how to express solvency risk in terms of liquidity risk.

4.1. From Illiquidity to Insolvency

Typically, a bank 7 is considered illiguid when ALX < L% in other words,
when the market value of its liquid assets is less than the face value of its
short-term obligations. The same logic can be extended to insolvency. A
bank is considered insolvent when the market value of its assets falls below
the face value of its obligations, where FE; <0.

Figure 1 illustrates the relation between illiquidity and insolvency. We
would expect a bank to be liquid and solvent as shown by the white area
in this figure. Nevertheless, a bank might become illiquid while still being
solvent as shown by the grey area. However, If the bank’s illiquidity prob-
lem is severe enough, it can lead to insolvency as shown by the black area
in the same figure.

Another way to consider insolvency is by limiting the focus to liquid as-
sets and short-term liabilities. Insolvency occurs when the decline in liquid
assets is severe enough to exceed the value of equity. In other words, the
bank becomes insolvent if the market value of its liquid assets deteriorates
to the extent that the net change in its liquidity at a given time is larger
than its equity. That said, we can introduce a new condition for insolvency
in terms of liquid assets by which a bank is considered insolvent if:

E;+AAF <0 (8)

10



where AAL is the net change in the bank’s liquidity position assuming that
short term liabilities are valued at face value.

Thus, one might argue that, in the short-run, both illiquidity and in-
solvency can be measured in terms of the change in liquid assets, assuming
that the change in illiquid assets is trivially small and liabilities are valued
at book value. That said, the illiquidity point for a bank is defined to be
the point at which AF = L7 as mentioned above. At the system level, the
system-wide illiquidity point is the point at which ¥, AL = ¥, LY. At this
point, we can estimate a system-wide liquidity coverage ratio, denoted as
(L that corresponds to the system-wide illiquidity point as :

AL
Y LY

Applying the same logic to insolvency, the insolvency point for a bank
can be defined as the point at which E; = ~AAF, as shown by Equation
8. At the system level, it is becomes straightforward that the system-wide
insolvency point is the point at which Y, E; = ¥, ~AAF. At this point,
we can also estimate a system-wide liquidity coverage ratio, denoted as ¢,

that corresponds to the system-wide insolvency point as:

Y AN-YLE
- on L

where ), E; represents the amount of liquid assets that, if depleted, the
system is considered to have reached the insolvency point.

€L

(9)

03 (10)

4.2. From Insolvency to Illiquidity

One way to measure insolvency risk is to determine how far away a
bank is from insolvency. This approach is called distance-to-default, which
is developed based on the structural model of corporate debt introduced
by Black and Scholes (1973). On this premise, we drive a measure of in-
solvency risk for individual banks in our system. We call this measure
distance-to-insolvency (6°) which is completely analogous to and based on
the distance-to-default measure in the Moody’s KMV model (see Bohn
and Crosbie, 2003). However, unlike distance-to-default, we estimate the
distance-to-insolvency using liquid assets and short term liabilities only,
instead of total assets and total liabilities, assuming that the change in
illiquid assets is trivially small and liabilities are valued at book value.
The idea here is to identify how deep into illiquidity a bank can be before
the condition in Equation 8 is satisfied and the bank becomes insolvent.

The first step to estimate distance-to-insolvency of a given bank i, de-
noted as 07, is to identify the bank’s insolvency point, which we derive

11



from Equation 10 above. On average, the insolvency point of a bank i is
(5L7. Thus, the distance-to-insolvency of bank i can be defined as:

() (s b )T
i = UAf\/T

where p4r and o4 are the mean and volatility of return on liquid assets,
and 7T is the time horizon. It is worth noting from equation Equation 11
that distance-to-insolvency is simply the number of standard deviations
that the bank is away form insolvency.

(11)

Furthermore, following the assumption in Black and Scholes (1973) that
the random component of a firm’s asset returns is normally distributed, we
can define the probability of insolvency of a specific bank as:

X§ = N[-67] (12)

where N(z) is the cumulative distribution function (CDF) of the standard
normal distribution N(0,1). Notice also that x* is similar to the probabil-
ity of default in standard credit risk models.

We now turn to estimating two measures of illiquidity risk; namely
distance-to-illiquidity and probability of illiquidity. Needless to say, these
two measures are analogous to those measures that we introduced above
to measure insolvency risk. Thus, in order not to repeat ourselves, we just
extend the same logic we used with insolvency. In so doing, we argue that
illiquidity can be viewed as a special case of insolvency in the short-run,
assuming that the change in illiquid assets is trivially small and liabilities
are valued at book value.

To estimate the distance-to-illiquidity of a given bank ¢, denoted as 0¥,
we start with identifying the average illiquidity point within the system
which can be derived from Equation 9 as ¢& L?. It then follows that the
distance-to-illiquidity of bank 7 is defined as:

in(72'5) + (e~ 4%y ) T
it - e (13

Similar to the distance to insolvency, we can interpret the distance to illig-
uidity as the number of standard deviations that the bank is away form
illiquidity. Additionally, let x* be the probability of illiquidity for bank 4.
It follows that:

Xi =N [-07] (14)

12



where N (z) is the cumulative distribution function (CDF) of the standard
normal distribution N(0,1).

The relationship between the illiquidity and insolvency measures that
we derive above can best be illustrated by Figure 2. Assuming a bank
i that operates in a system with a system-wide illiquidity point (¢%) and
insolvency point (¢°) of 100% and 50%, respectively. In panel (a), we es-
timate distance to insolvency (67) and distance to illiquidity (6%), and in
panel (b), the corresponding probabilities of insolvency (x7) and illiquidity
(xF) over a range of liquidity coverage ratios (¢;) from zero to 300%. The
figure shows that as the liquidity coverage ratio decreases, both §% and
67 decreases, while xI and x? increases in parallel. When ¢; reaches the
illiquidity point of 100%, 6% becomes zero, x reaches 1, and the bank is
considered to be illiquid. However, at the illiquidity point the bank is still
solvent as 07 is still higher than zero and x? is still lower than 1. As the
bank sinks more into illiquidity, its 67 moves towards the insolvency point
and its x7 converges to 1. At the insolvency point of 50%, J7 becomes
zero, x5 reaches 1, and the bank is considered to be insolvent.

5. A Macroprudential Stress Testing Framework

In this section we provide a framework for a macroprudential stress test
based on the measures that we introduced in sections 3 and 4. This frame-
work is illustrated in Figure 3. Also, in the subsections below, we outline
this framework in terms of its inputs (distress scenario), process (distress
propagation process) and outputs (DistressRank, Distress Dependence Ma-
trix, Default Dependence Matrix, and Systemic Risk Matrix) .

5.1. Inputs: Distress Scenario

The distress scenario in our framework refers to the set of shocks applied
to individual banks, specific groups of banks or all banks in the system with
the aim to examine the systemic impact and vulnerability of individual
banks and the stability of the system as a whole. The framework is flexible
to include any plausible set of shock events. However, we limit the analysis
to two types of shocks, with each one designed to examine specific aspects
of the stability of the system.

A- The first scenario involves applying a uniform shock to all banks
in the system. The immediate effect of this shock is a proportional
reduction in all banks’ interbank assets leading to a reduction in
liquidity positions. This scenario is also flexible to investigate the
impact of a vector of heterogeneous shocks where each bank is affected
differently.

13



(b) Probability of Illiquidity & Probability of Insolvency

Figure 2: The relationship between insolvency measures and illiquidity measures of a
hypothetical bank i whose liquidity coverage ratio is denoted by £;. 6% is the distance to
illiquidity, and 6 is the distance to insolvency. xZ is the probability of illiquidity, and
Xf is the probability of insolvency. The system-wide illiquidity point (EZL) and insolvency
point (¢7) are 100% and 50%, respectively.
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B-

The second scenario involves shocking banks sequentially. In each
round a specific bank loses a given amount of its liquid assets and
therefore becomes illiquid. The immediate effect of this shock is that
the respective bank cross-defaults in all its interbank liabilities and
accordingly the write-off of the interbank assets of its counterparties.
This scenario is flexible to include a group of banks instead of a single

bank.

The feedback round effects and final results of each scenario are ex-
plained in more detail in sections 5.2 and 5.4, respectively.

5.2. Distress Propagation Process

The distress scenario that is developed in our stress test is assumed to
unroll in two rounds:

A-

During the first round, the initial effects of shocks to banks lig-
uidity positions are estimated by applying the shock to the respective
bank or banks. The total initial impact of the shock is equal to the
sum of the liquidity loss of all banks affected by the initial shock.

During the feedback round, the effects of the distress feedback
loops within the system are estimated. The change in liquidity po-
sitions of individual banks leads to a change in their liquidity risk
profiles. In other words, it leads to a change in each bank’s liquidity
coverage ratio as estimated by Equation 2 and the relative liquidity
coverage matrix as estimated by Equation 3. As the liquidity risk of
each bank changes, so does its ability to repay its obligations to its
counterparties. This ability is translated into the relative distress ma-
trix as estimated by Equation 4. The market values of the interbank
assets are re-estimated based on the expected value to be collected
from counterparties. We estimate this expected value using a distress
propagation factor that is directly derived from the relative distress
matrix as follows:

AB(t) = max lo, Ag(())(#((t)))] (15)
where Ag(t) and Ag(()) are the interbank assets of bank 7 with bank
7 at time steps t and 0 of the distress propagation process, respec-
tively; whereas d;;(t) and d;;(0) are the distress of bank i relative
to bank j at time steps t and 0 of the distress propagation process,
respectively. The idea is that, when the distress of bank j increases,
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bank 7’s exposure to bank j deteriorates proportionally, and if bank j
becomes insolvent, bank ¢ loses its assets with bank j. In fact, Equa-
tion 15 assumes a zero recovery rate, an assumption that is widely
followed in the financial contagion literature (see Gai and Kapadia,
2010; Markose, Giansante, and Shaghaghi, 2012). The mark to mar-
ket process is represented by the dashed lines in Figure 3. The change
in the interbank assets matrix leads to repeating the same sequence of
distress propagation in the system. This process continues until the
initial shock to the system decays when no further significant changes
in the system are expected.

After the second round of distress propagation concludes, the system
arrives at a new steady state. We then estimate a few metrics to examine
the stability of this system which we outline in section 5.4.

5.3. Default Propagation Process

The stress test framework that we provide is capable of bridging the
space between illiquidity and insolvency. This is possible due to the fact
that we model the evolution of insolvency in terms of illiquidity as explained
in detail in section 4 and outlined by the far left column in Figure 3. Under
each distress scenario, as the liquidity risk of each bank evolves, so does
its default risk. With every step in the unfolding of the distress scenario,
the solvency status of each bank changes in parallel with the changes in
its liquidity status. We monitor these changes be estimating for each bank
the absolute change in equity, the distance to insolvency (see Equation 11)
and the probability of default (see Equation 12).

5.4. Stress Test Output

The stress test framework presented here provides a variety of output
metrics that aim to depict the individual banks and the system’s stability.
These metrics are presented in the bottom row in Figure 3. We briefly
explain these metrics below.

A- DistressRank

DistressRank provides a convenient way to depict the systemic vul-
nerability of each bank in the system. It is estimated based on the
relative distress matrix and thus reflects the relative vulnerability of
each bank to the distress of its counterparties. Banks with higher
DistressRank measure are more vulnerable to system-wide shocks
than otherwise comparable banks.The exact method of estimating
DistressRank is explained in more detail in section 3.4.

B- Distress Dependence Matrix
The distress dependence matrix provides a more detailed method to
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examine the systemic vulnerability of each bank in the system. In
particular, for each pair of banks in the system, we estimate the
pairwise conditional probability of illiquidity. The matrix is row-
wise meaning that it shows the probability of illiquidity of the bank
specified in the row, given that the bank specified in the column has
become illiquid. Thus, it provides an indicator of distress contagion
possibilities within the system.

Default Dependence Matrix

The default dependence matrix is another way to depict the depen-
dency within the system in detail and at the same time linking illig-
uidity to insolvency. In particular, for each pair of banks in the
system, we estimate the probability of insolvency of a given bank
conditional on the other bank becoming illiquid. The matrix is also
row-wise as it provides the probability of insolvency of the bank spec-
ified in the row, given that the bank specified in the column has
become illiquid. Thus, it provides an indicator of default contagion
possibilities within the system.

Systemic Risk Matrix

The previous metrics provide a convenient way to depict the systemic
vulnerability and dependencies within the system. This is very im-
portant to assess the contagion possibilities in the system. The stress
test also provides another way to do this through a systemic risk ma-
trix which lends itself more to economic interpretation. In this matrix
we quantify systemic vulnerability and impact in terms of expected
economic loss. We explain the constituents of the systemic risk ma-
trix in detail here as it was not introduced elsewhere.

Similar to previous matrices, each row represents the vulnerability of
the bank in this row to the distress of other banks. Let V;; be the
expected loss of the bank in row ¢ due to the distress of the bank in
column j. This amount of expected loss can be estimated in terms
of percentage liquidity loss as:

Vij=min|1 |

£6(0) - 6(T)
~0) ] (16)

where ¢;(T") is the amount of liquidity remaining for i at time 7" after
J has become distressed. In dollar terms, the expected loss of bank
i relative to bank j is V;; = £;(0) — ¢;;(T") . Following the same logic,
we can estimate the systemic expected loss of bank i as:

Vi= X X(0) Vg (17)
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where XJL (0) is the probability of illiquidity of bank j at ¢ = 0. This
measure of systemic expected loss represents the systemic vulnerabil-
ity of bank ¢ measured as the probability-weighted expected loss of
bank ¢ due to the distress of any one of the other banks in the system.

Similarly, Let I;; be the relative impact of bank 7 on bank j which
represents the expected loss that the distress of bank 7 can induce in
bank j. We can estimate this amount as:

£,(0)= £,(1)
£;(0)

in dollar terms this amount would be I;; = ¢;(0)—¢;(T") = V};. Needless

to say is that this measure is exactly equal to the relative vulnerability

of bank j relative to bank i. We also estimate a measure for the

systemic impact of bank j as the total expected loss induced in all

other banks due to the distress of bank j, which is simply the weighted
sum of column j in the systemic risk matrix, and is estimated as:

400)
=2 s !

J

(19)

Finally, we provide a measure of the global system-wide expected loss
as:

¢ = ZXL(O) I; (20)

where ® is estimated as the probability-weighted average systemic
expected loss. This measure can also be used as an indicator of the
system-wide stability. The higher the systemic expected loss, the
lower the system stability.

6. Empirical Application

In this section, we provide an overview of the data used and the main
results of applying the stress test framework outlined in section 5 to the
U.S. banking system.

6.1. Data and Interbank Network Construction
The data used to implement the stress test is related to the largest 25
holding companies in the U.S.* For each holding company (bank hence-

4We use the term holding companies to refer to all types of holding companies under
the direct supervision of the Federal Reserve Board including domestic bank holding
companies (BHC), savings and loan holding companies (SLHC), U.S intermediate hold-
ing companies (IHC) and securities holding companies (SHC)
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forth), we obtain data about balance sheet holdings, liquidity coverage
ratios, and derivatives exposures. The balance sheet data is collected from
the Consolidated Financial Statements of banks (FR Y-9C reports) pro-
vided by the National Information Centre.> From these reports we extract
information about total assets, total liabilities, derivatives assets and li-
abilities, and equity. We use the Quarterly Report on Bank Derivatives
Activities from the Office of the Comptroller of the Currency to obtain
data about the interbank exposures of each bank.6 The data about liquid-
ity coverage ratio is hand collected from the annual and quarterly reports
of each bank. From these reports we collect the reported amounts of high
quality liquid assets, net cash outflows expected over the next 30 days, and
the liquidity coverage ratio of each bank. The data used to perform the
stress test is as of June 30, 2017. This is the most recently available and
complete set of data that includes disclosures about the liquidity coverage
ratio of the large U.S. banks.

We use the interbank derivatives exposures as they represent liquidity
flows between banks and are included in calculating the liquidity coverage
ratio that banks disclose in their reports (BCBS, 2013b). Any change
in the amounts of derivatives assets or liabilities leads to changes in the
estimated liquidity coverage ratio, and hence can be used as a way to
monitor distress propagation within the interbank market. The network
of derivatives assets and liabilities within the interbank market can be
represented by the following matrix:

Ap Ay Ain
AB = Ail e Az] c. A’LN
| Ani ... An; ... ANy

where A;; represents the derivatives assets of bank ¢ with bank j or the
derivatives liabilities of bank j to bank ¢. The matrix size is N x N where N
is the number of banks. The sum of a row represents the derivatives assets
of the respective bank where AP = > ; Aij and the sum of a column repre-
sents the derivatives liabilities of the respective bank where Lf =2 A
Unfortunately, the network of interbank derivatives exposures is not observ-

®Data is obtained from the Federal Financial Institutions Examination Council’s
(FFIEC) and is available at https://www.ffiec.gov/nicpubweb/nicweb /nichome.aspx

6Data is obtained from the Office of the Comptroller of the Currency
(OCC) and is available at https://www.occ.gov/topics/capital-markets/financial-
markets/derivatives/derivatives-quarterly-report.html
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able, as banks do not provide granular data about their bilateral exposures.

Since information on the the bilateral interbank exposures is essential
for our analysis, we estimate this data to fill in the interbank matrix. To
this end, we use the Minimum Density (MD) method suggested by Anand,
Craig, and Von Peter (2015). The idea behind MD is to distribute each
bank’s assets and liabilities among the lowest possible number of coun-
terparties. The economic rational for this is that the interbank network
appears to be constructed based on relationships and as a result is sparse
(Cocco, Gomes, and Martins, 2009) as banks aim to minimise the costs
of establishing and maintaining linkages including the costs of information
processing, and risk management. This rationale is supported by studies of
real world financial networks of the United States (Bech and Atalay, 2010)
and Germany (Craig and von Peter, 2014).

6.2. Results of the Stress Test

The proposed stress test provides a variety of metrics to assess the sys-
tem resilience. We provide here an overview of the system before applying
any stress scenarios. Then, we provide the results of applying the first and
second stress scenarios to assess the system stability and systemic interde-
pendencies, respectively.

6.2.1. System Profile

As discussed in section 3, DistressRank provides a relative rank of all
banks within a system with regard to their vulnerability to the distress of
other banks. In addition, DistressRank can be estimated before applying
any stress scenarios which provides the advantage of depicting the stability
of the system at any point of time. We use this indicator to provide an
overview of the current state of the U.S. banking system, as of 30 June
2017. Figure 4 shows the interbank market network which comprises the
25 individual banks included in our stress test. On this network, the size
of each bank is scaled proportionally to its DistressRank. As illustrated,
JPMorgan Chase is the most vulnerable bank, followed by Goldman Sacks.
While the two least vulnerable banks are HSBC North America Holdings
and PNC Financial Services Group. The other banks have comparable
ranks. The same result can be seen from Figure 5, which shows the exact
values of the DistressRank indicator for each bank.

There is a striking observation that can be noticed from Figure 4 about
banks’ DistressRank. The asset size of a bank does not entail its systemic
vulnerability. For example, Bank of America is the second largest bank
measured by total assets, however, its DistressRank is comparable to other
smaller banks such as US Bank Corporation and Citizens Financial Group.
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Moreover, even a bank’s interbank assets or liabilities alone do not com-
pletely determine its DistressRank. An example of this is Citi Group which
has the largest interbank assets but rank third based on DistressRank. In
fact, DistressRank is affected by the interconnectedness within the inter-
bank market in addition to the size of both interbank assets and liabilities.
This finding has some important implications for the methodology of iden-
tifying global systemically important banks (G-SIBs) (BCBS, 2013a). In
particular, the methodology should consider systemic distress as well as
systemic importance in measuring a bank’s interconnectedness as one of
the indicators used to identify G-SIBs.

6.2.2. System Stability

We turn now to assessing the stability of the banking system following
our proposed stress testing framework. To this end, we implement the first
stress scenario (as explained in section 5) in which a uniform shock is ap-
plied to all banks in order to assess the resilience of the banking system to
macroeconomic shocks. We use a vector of shocks that ranges from 1% to
25%, which are extreme enough, yet plausible. We can think of a shock as
resembling a sever change in risk free rates or widening in credit spreads
that affect all banks simultaneously. The initial shock leads to a propor-
tional reduction in the interbank assets of all banks leading to reductions
in their liquidity positions. Then, the distress propagation process unfolds.
The stress testing exercise provides a variety of output metrics, however,
we outline some of these metrics below.

Figure 6 shows the number of distressed banks that become illiquid or
insolvent following each shock. As would be expected, both numbers in-
crease with the the increase in the shock applied to the system. It is worth
noting that the increase in both numbers is not linear. This is due to the
fact that whether a distressed bank becomes illiquid or insolvent depends
not only on its liquidity position but also the liquidity position of its coun-
terparties and the severity of the shock. As illustrated, banks are resilient
to small shocks up to 4%, while they reach the illiquidity point starting
from shocks of as low as 5%. The insolvency point is reached much later
as the first time a bank becomes insolvent occurs at a shock level of 20%.

Figure 7 provides a decomposition of systemic loss into first round loss
due to the initial shock and feedback loss occurring during second and
upper rounds. Systemic loss is estimated at the system level as the to-
tal reduction in the value of banks’ liquid assets. A striking observation
that is shown in this figure is that the feedback loss can be as large as the
initial loss due to the systemic shock. It can also exceed the initial loss
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Figure 4: The distress network and DistressRank of individual banks in the system.
Nodes represent banks and links represent interbank exposures. The size and color of
each node are scaled proportionally to the value of its DistressRank. The width and
color of each link are scaled proportionally to the value of relative distress induced from
the bank at the start of the link to the bank at the end of the link. Number of banks
is 25. Banks’ names are coded from B1 to B25 where B1: Citi Group, B2: Goldman
Sachs Group, B3: JPMorgan Chase, B4: Bank of America, B5: Morgan Stanley, B6:
Wells Fargo, B7: HSBC North America, B8: Mizuho America, B9: State Street, B10:
RBC USA, B11: Credit Suisse USA, B12: Bank of NY Mellon, B13: Barclays US, B14:
PNC Group, B15: US Bancorp, B16: Northern Trust, B17: SunTrust Bank, B18: TD
Group US, B19: DB USA, B20: Capital One, B21: MUFG Americas, B22: KeyCorp,
B23: Citizens Financial Group, B24: BB&T Corp, B25: Regions Financial Group.
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Figure 5: The DistressRank of individual banks in the system. Number of banks is 25.
Banks’ names are coded from 1 to 25 where 1: Citi Group, 2: Goldman Sachs Group,
3: JPMorgan Chase, 4: Bank of America, 5: Morgan Stanley, 6: Wells Fargo, 7: HSBC
North America, 8: Mizuho America, 9: State Street, 10: RBC USA, 11: Credit Suisse
USA, 12: Bank of NY Mellon, 13: Barclays US, 14: PNC Group, 15: US Bancorp, 16:
Northern Trust, 17: SunTrust Bank, 18: TD Group US, 19: DB USA, 20: Capital One,
21: MUFG Americas, 22: KeyCorp, 23: Citizens Financial Group, 24: BB&T Corp, 25:
Regions Financial Group.

at high level of shocks. This observation highlights the need to consider
the feedback loss due to interconnectedness between banks while designing
macroprudential stress tests.

Another way to highlight the role of interconnectedness is to consider
the relationship between DistressRank and systemic feedback loss at the
bank level. We use DistressRank as a measure of systemic distress that
captures interconnectedness, while a bank’s systemic feedback loss is esti-
mated as its share in the total feedback loss at the system level due to a
specific shock. We limit the analysis here to a shock size of 10%. The result
of this exercise is shown in Figure 8. As illustrated, there seems to be a
positive relationship between the DistressRank of a bank and its systemic
feedback loss. To investigate this further, we run a simple regression of
systemic feedback loss on DistressRank. The results show a positive slope
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Figure 6: Number of Illiquid and Insolvent Banks due to a specific shock to the interbank
assets. Shock size ranges from 1% to 25% of interbank assets.

that is significant at a 95% significance level with adjusted R? of 61%. This
result confirms the importance of considering interconnectedness in design-
ing macroprudential stress tests.

Finally, we can illustrate the resilience of the system to shocks by tracing
the change in the probability of illiquidity and the probability of insolvency
of each bank following a specific shock. Figure 9 and Figure 10 show, for
each bank, the change in probability of illiquidity and the change in prob-
ability of insolvency, respectively. Again, we limit the analysis to a shock
size of 10% of interbank assets. As can be seen clearly from these figures,
both probabilities show remarkable increases with almost all banks having
higher probabilities of illiquidity and insolvency following the shock. While
some banks become illiquid following the shock, some of them have their
probability of insolvency nearly doubled following the shock.

6.2.3. Systemic Interdependencies
So far, our analysis of stability has focused on the resilience of the sys-
tem to a system wide shock that represents a macroeconomic shock. We
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Figure 7: Decomposition of systemic loss into first round loss due to the initial shock
and feedback loss occurring during second and upper rounds. Shock size ranges from
1% to 25% of interbank assets. Systemic loss is estimated at the system level as the
total reduction in the value of banks’ assets.

extend the analysis here to examine the interdependencies within the sys-
tem. To this end, we implement the second stress scenario which involves
shocking banks sequentially (see section 5 for more details). The results of
this exercise are shown below.

A- Systemic Distress Dependence

The distress dependence matrix provides insight into the interlinkages
between banks and how vulnerable they are to the distress of each other.
In particular, the output shown by this matrix can be viewed as the condi-
tional probability of illiquidity of the bank in the row relative to the bank
in the column. In Figure 11, we present the distress dependence matrix
estimated for the group of 25 U.S. banks included in the stress test. In this
matrix, each cell represents the change in the probability of illiquidity of
the bank in the row given that the bank in the column has become illiquid.
For better illustration, we provide the matrix as a heatmap.
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Figure 8: DistressRank and Systemic Feedback Loss. A bank’s systemic feedback loss
is estimated as its share in the total feedback loss at the system level due to a specific
shock. Shock size is 10% of interbank assets. Each circle in the figure represents a bank.

As can be seen from the matrix, distress dependence is higher among
banks that are located at the upper left quadrant of the matrix. Put dif-
ferently, large changes in the probability of illiquidity are associated with
banks that have large interbank exposures with each other. For example,
Citi Group is more vulnerable to the distress of Goldman Sachs, JP Mor-
gan and Bank of America compared to other banks in the sample. Another
interesting observation is that, the four most vulnerable banks, namely
Goldman Sachs, Morgan Stanley, Citi Group and Bank of America, stem
their vulnerability from each other. This is explained by the fact that the
exposure of these banks to each other represent a large portion of their
overall interbank assets. Any distress that arises with one of them will
definitely lead to a serious liquidity problem with the others. It is also
worth noting that banks in the lower right quadrant seem to be resilient
to the distress of each other mainly due to the fact that they have limited
exposures to each other.

B- Systemic Default Dependence
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Figure 9: Change in Probability of llliquidity for each bank in the system due to a specific
shock. Shock size is 10% of interbank assets. xZ(0) and xZ(T") are the probability of
illiquidity of bank ¢ before and after applying the shock to the system, respectively.
Each circle in the figure represents a bank.

The stress test output includes another interesting matrix called the
default dependence matrix. This matrix examines the possibility that illig-
uidity distress evolves to become insolvency default. It is also similar to the
distress dependence matrix in that it provides insight into the possibility of
contagion within the system. The default dependence matrix is illustrated
in Figure 12 where each row represents the change in the probability of
insolvency of the bank in the row given that the bank in the column has
become illiquid. Again, each cell can be viewed as the conditional probabil-
ity of insolvency of the bank in the row relative to the bank in the column.
For better illustration, the matrix is shown as a heatmap.

The same observations on the distress dependence matrix apply also
here. The default dependence seems to be higher among banks in the
upper left quadrant and lower among banks in the lower right quadrant.
Again, this is due to concentration of exposure between big banks and
each other or big banks and other smaller banks, while exposures between
smaller banks and each other are limited. For example, Goldman Sachs
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Figure 10: Change in Probability of Insolvency for each bank in the system due to
a specific shock. Shock size is 10% of interbank assets. x7(0) and x7(T) are the
probability of insolvency of bank ¢ before and after applying the shock to the system,
respectively. Each circle in the figure represents a bank.

appears to be the most vulnerable bank to shocks from its counterparties
and specially from Citi Group and Morgan Stanley. If Citi Group becomes
illiquid, the probability of insolvency of Goldman Sachs increase by a factor
of 3.78 times. Any distress that arises with Citi Group will definitely lead
to a serious liquidity problem with any one of its counterparties.

C- Systemic Risk Matrix

The systemic risk matrix provides an estimation of systemic expected
loss of each bank due to other banks distress. It provides another way to
study the interdependencies among banks by quantifying the systemic ex-
pected economic loss due to systemic distress between pairs of banks. Each
cell in the matrix represents the expected loss of the bank in the row given
that the bank in the column has become illiquid. The matrix is shown in
Figure 13. For better illustration, we provide the matrix as a heatmap.

The systemic risk matrix confirms the same results obtained by analysing
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Figure 14: The Systemic Impact and Systemic Vulnerability of banks. Systemic Impact
of individual banks is estimated as in Equation 19. Systemic Vulnerability of individual
banks is estimated as in Equation 17.

distress and default dependence matrices. As would be expected, systemic
loss is more concentrated in the upper left quadrant and limited among
banks in the lower right quadrant. Counterparties of large banks are more
vulnerable to systemic risk compared to others. If Citi Group becomes illig-
uid, it induces a 17.3% system wide expected loss. Goldman Sachs is the
most vulnerable bank with an expected loss of nearly 58%. The expected
systemic loss is 30% which represents a system wide stability measure. The
higher this indicator is the more fragile the system is, representing more
interconnectedness and/or higher probabilities of distress.

Another interesting finding from the systemic risk matrix is related to
the relationship between systemic impact (SysImpact row) and systemic
vulnerability (SysVul column) of each bank. We illustrate this relationship
in Figure 14. While most banks seem to be vulnerable to shocks from other
banks as measured by their expected loss, not all banks have significant sys-
temic impact as the systemic impact values of smaller banks seem to be
negligible. Only big banks have systemic impact levels that are significant
enough to be comparable to their systemic vulnerability. In addition, banks
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do not have the same ranking based on systemic impact and systemic vul-
nerability indicators. This finding has important implications for designing
a macroprudential stress test that aims to consider interconnectedness. In
particular, using measures of systemic impact is not sufficient to reveal the
vulnerabilities within a system. A comprehensive analysis of interconnect-
edness should consider systemic vulnerability as well as systemic impact of
the financial institutions in the system.

7. Conclusion

This paper proposes a macroprudential stress testing approach and il-
lustrates its empirical application on a data set of the U.S. banking system.
The innovative features of the proposed macroprudential stress test were
inspired by the recent regulatory recommendations to strengthen the sys-
temic focus and to more deeply consider the interactions between liquidity
and solvency risks in designing effective macroprudential stress tests.

The proposed approach provides a tool for the banking system super-
visors to analyse the current state of the system stability. The empirical
application of the stress test shows how it can be effectively used to identify
the systemic vulnerability of individual banks as well as the resilience of
the system as a whole to economic risks. The findings confirm the need to
consider interconnectedness in designing macroprudential stress tests. At
the bank level, the results confirm that interlinkages play a significant role
in identifying individual banks vulnerability. On this premise, we propose
DistressRank as a measure of the systemic distress of a bank. The results
show that a bank’s DistressRank is associated with its systemic feedback
loss. At the system level, the systemic loss due to feedback loops was shown
to be significant compared to the direct loss that results from the initial
shock to the system. Ignoring these feedback effects may lead to a signifi-
cant underestimation of systemic loss.

Moreover, the proposed approach provides a tool for the banking system
supervisors to monitor the evolution of contagion and systemic risk within
the system due to endogenous or exogenous shocks. Applying the stress
test framework to the U.S. banking system shows how it can be effective
for monitoring and assessing interdependencies among banks. Our findings
provide an insight into the possibilities of distress propagation within the
system. An important finding that is shown here is that banks that are
not directly connected together through interbank assets or liabilities are
still subject to distress from each other through common counterparties.
These findings can form the basis for intervention by policy makers in case
a specific bank has become distressed and there is a need to identify banks
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that will be affected the most.

In conclusion, the proposed macroprudential stress test is able to re-
veal the systemic vulnerabilities in a banking system, giving policymakers
insight into the system resilience. Although the framework demonstrated
here was applied using a reconstructed network of interbank exposures,
this data was sufficient to highlight the merit of the proposed stress test
framework. The availability of granular bank data would only increase
the robustness of the analysis. Extending the analysis to include addi-
tional banks would provide a tool for policymakers to more comprehen-
sively monitor and regulate the interdependencies in the banking system
and the resilience of the system as a whole. Another avenue for extending
the work done here is to consider the reactions of banks to shocks and the
possibilities of deleveraging and its impact on the magnitude of systemic
loss.
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