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Introduction

How do economic agents perceive extreme values or outliers—so-called “black swans”

(Taleb, 2007)? This question is crucial given the ubiquity of tail risk in modern financial

markets, which has been long been established.1 Under tail risk, black swans are not rare

enough for the agents to be able to ignore them without negative consequences. In this

study, we conjecture that people are inherently hampered in the way they perceive black

swans because the human brain has been designed to devote neural activity to represent-

ing the most probable values at the expense of the improbable ones. We document strong

experimental evidence for this conjecture, which builds on a well-established theory from

neuroscience.

According to neuroscientists, devoting neural activity to representing probable values at

the expense of improbable values is one key aspect of minimizing uncertainty in perception

under the fundamental constraints imposed by Nature. The representational capacities

of the brain are indeed limited (we have a finite number of neurons and a finite number of

possible spike outputs of each neuron), and if a neuron’s limited outputs were allocated

evenly to represent the potentially infinite number of possible values of a stimulus, then

that neuron’s activity would allow for little if any discrimination between values. The

optimal solution to the problem—“efficient coding”—consists of ensuring that neurons

have access to information indicating that some values are more likely to occur than

others, and allocating most of their spike outputs to representing the most probable values

at the expense of the improbable values.2 This way of allocating neural activity may

generate an epiphenomenon, which we refer to as “outlier blindness,” in which economic

agents are unable to properly represent values that are highly improbable relative to the

range of values they are expecting.

Of course a prerequisite for the occurrence of outlier blindness is that the agents hold

expectations. From the perspective of the agents, the range of expected values is the

range to which the agents have been exposed—or, in the language of neuroscientists,

“adapted”—in the recent past. In our modern environments which are notoriously un-

stable owing to the frequent occurrence of regime shifts or jumps in values, a precondition

for outlier blindness is thus that the human brain learns sufficiently quickly the statistics

1For example, Mandelbrot (1957), Fama (1965), Gabaix et al. (2003), Gabaix et al. (2006), Kelly and
Jiang (2014).

2For example, Laughlin (1981), Tobler et al. (2005), Wei and Stocker (2015), and Ganguli and
Simoncelli (2016). Similar principles have been applied to models of imprecision in economic decision
making by Robson (2001), Netzer (2009), Woodford (2012), and Polania et al. (2019).
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of the environment, so that the agents hold expectations even though those expectations

are to change all the time.3 Whether the brain learns quickly and what “quickly” means

is an empirical question that we attempt to answer here.

To test our conjecture that efficient coding generates a phenomenon of outlier blind-

ness in economic decision-makers (henceforth, “outlier blindness hypothesis”), we ask

university students to perform for significant amounts of money a perceptual task in

which on each trial, they have to discriminate between two adjacent shades of grey. The

core of our experimental strategy consists of assessing the accuracy of subject perception

of outliers, which we define as shade values that fall at least three standard deviations

away from the range of values to which the subject has been exposed (adapted) in the

previous 40 trials, relative to subject accuracy in control test trials in which the subjects

are presented with the exact same shade values but this time they’re not outliers as they

fall within the range of values to which the subject has been adapted in the previous

40 trials. This way we control for important confounds inherent in the presentation of

extreme values. For instance, in light of the classical “Weber-Fechner’s law” of diminish-

ing sensitivity (in which a change in stimulus value is harder to perceive if it occurs at

a higher level), one expects perceptual accuracy to be inherently decreased for extreme

values simply because it is harder to discriminate between values located at the extremes

on the scale of grey. Therefore, merely comparing subject accuracy when discriminat-

ing between extreme shade values to their mean accuracy when discriminating between

the other possible shades of grey on the scale features an increased risk of Type I er-

ror. In contrast, our test, by controlling for the diminishing sensitivity phenomenon, is

specifically designed to isolate the outlier blindness effect caused by efficient coding.

An important aspect of the method used in the present study thus consists of designing

a non-economic task that involves the perception of a simple sensory stimulus in order

to learn about how economic agents perceive extreme values in the field. We refrain

from designing an economic task as our motivation is to isolate the nature of perception

per se, and in an economic task, separating purely perceptual factors from behavioral

factors related to risk attitude is impossible. Our design choice also reflects a growing

consensus in neuroscience that efficient coding is a universal neural principle.4 As such, it

is stimulus invariant, i.e., it applies similarly to the perception of a wide range of stimuli,

from simple sensory stimuli such as the one used in the present task, to complex stimuli

3Prior field research has identified the presence of regime shifts or jumps as a major feature of the
returns generating process. See Ang and Timmermann (2011) for a survey of the literature.

4For example, Carandini and Heeger (2012) and Glimcher (2014).
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such as the value of economic options (Khaw et al., 2017). This implies that one can

learn about how economic agents perceive financial returns from the findings obtained in

purely perceptual tasks involving simple stimuli.

We find that perception accuracy is markedly decreased for outliers, as predicted by

outlier blindness hypothesis. To strengthen the evidence for the latter and to rule out any

possibility that such decrease reflect some experimental artefact, we run a placebo test

in which the experimental task is the same as the original task except for the duration

of the adaptation phase prior to the presentation of the outliers, which lasts for only 3

trials in the placebo test (versus 40 trials in the original experiment). So by design, in

the placebo test the brain does not have time to learn which values are more likely to be

presented, and hence outlier blindness should not occur. Consistent with this prediction,

the original effect vanishes in the placebo test.

We further find that increasing the length of adaptation to 5 trials is enough for the

outlier blindness effect to reappear, which shows that prolonged adaptation is not a

prerequisite for the emergence of the effect. This finding suggests that the human brain

is a quick learner—put it differently, our perceptual system is quick to adapt—so in

relation to the foregoing note, one should not expect market instability to protect financial

decision-makers against the outlier blindness bias.

One striking aspect of our finding that people are unable to properly discriminate be-

tween extreme values owing to the outlier blindness bias is that this bias runs in opposite

direction to what one may consider the most standard effect associated with the per-

ception of improbable values, namely the classic “oddball effect.” In the oddball effect,

information processing of unexpected stimulus values is improved—and hence perception

accuracy is increased—relative to the perception of expected values because the unex-

pected is salient (“attention-grabbing”) per se due to its novelty or special significance to

the subject.5 Our findings show that the outlier blindness effect dominates the oddball

effect.

By changing stimulus distribution every 40 trials, our task is meant to capture the

instability of real-world financial markets which arises from the frequent occurrence of

regime shifts and the like, both at short and long timescales. While the short timescale

feature of our design (the imparted response time on each trial is 2 sec, see Section I.A.)

directly maps into contexts of short timescale economic decision-making such as intra-day

trading, there is a growing consensus in neuroscience that common principles apply over

5For example, Squires et al. (1975), Tse et al. (2004), Ferrari et al. (2010).
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different (short and long) timescales.6 Therefore, having the scale invariance feature of

human psychology in mind, one expects the phenomenon of outlier blindness to be similar

over different timescales, suggesting that our findings apply similarly to the perception

of jumps at short (intra-day or daily) horizons and the perception of black swans in a

macroeconomic context.

This paper relates to several strands of literature. First, a growing literature in neu-

roeconomics seeks to understand the implications for economic decision making of the

hypothesis that decisions are based on internal representations that, while imprecise,

are structured in a way that makes the best possible use of finite cognitive resources.

For instance, Steiner and Stewart (2016) show how imprecise perception exhibits a key

feature of Prospect Theory’s probability weighting function (namely, overweighting of

small probability events and corresponding underweighting of high probability events).

In the same vein, Gabaix and Laibson (2017) show how imprecise perception generates

apparent temporal discounting in perfectly patient agents. Within that literature and

closest to the present study, recent work attempts to understand the implications of ef-

ficient coding theory for economic decision-making. Khaw et al. (2017) provide direct

evidence that efficient coding applies not only to the perception of natural images (e.g.,

Simoncelli (2003)) but also to complex stimuli such as the value of economic options.

Payzan-LeNestour et al. (2018) report findings consistent with the idea that efficient

coding generates a perceptual bias (“after-effect”) in risk perception. Frydman and Jin

(2018) show that efficient coding provides an explanation for the variation of risk taking

across environments.

The outlier blindness effect described in this study is reminiscent of the well-known

phenomenon of “inattentional blindness” (Mack and Rock, 1998) in which the decision

maker fails to notice the unexpected (see Simons and Chabris (1999) for a classic ex-

ample). The source of the two biases is different: outlier blindness is a perceptual bias

generated by efficient coding whereas inattentional blindness is an attentional bias reflect-

ing sparse attention (e.g., Sims (2003), Mackowiak and Wiederholt (2009), and Gabaix

(2014)).

Last but not least, our study adds to the finance literature on tail risk. As stressed

above, tail risk has long been established as an essential feature of financial markets.

However, the focus on the implications of tail risk for the decision-making of financial

6See Brown et al. (2007) for a survey of the literature showing that many memory phenomena appear
similar over a wide range of timescales.
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agents is recent.7 Of particular importance, the literature on neglected risks provides

profound insights into how agents undestimate the probability of black swans as a result

of both the availability heuristic (extreme events that occurred far away are harder to

recall from memory; see, e.g., Gennaioli et al. (2012), Gennaioli et al. (2015), and Jin

(2015)) and the representativeness heuristic (upon receiving the news that an extreme

event has taken place, agents recall black swan outcomes that such news renders more

likely than before, i.e., the news is “diagnostic” of black swan outcomes; see Gennaioli

and Shleifer (2018)). By sheding light on how agents respond to regime shift news, our

study may help in building a narrative of the 2008 financial crisis within Gennaioli and

Shleifer (2018)’s diagnostic expectations framework. Diagnostic expectations theory can

readily account for both the tail risk neglect prior to the news of Lehman collapse in 2008,

and the investor panic that ensued from such news: the left tail of outcome distribution

was unrepresentative before Lehman and became representative thereafter. However, the

complete lack of reaction of investors to the regime shift news of the housing bubble burst

in 2006 and ensuing “domino effect” during the pre-Lehman period is puzzling at first

glance.8 During this period, which has been referred to as “the quiet period” (Gennaioli

and Shleifer, 2018), the evidence for a major regime shift was compelling, yet investors

ignored it and continued to neglect tail risk (including when daily realized volatility

started to rise above 20% from the summer of 2007, with peaks above 40%). There are

two explanations for this apparent paradox. The first is that investors chose to ignore

the regime shift news in 2006-2007 (Lo, 2017). A second explanation is that they missed

it, as a result of outlier blindness, because their perceptual system was not yet adapted

to the new regime. However they didn’t miss Lehman collapse news because the news

came after the aforementioned series of warning signs in 2006-2007, so the occurrence

of an extreme event such as Lehman collapse was not totally unexpected. This would

explain why Lehman collapse news was diagnostic of the left tail whereas the extreme

events that took place during the pre-Lehman period were not.

7For example, Gennaioli et al. (2012), Gennaioli et al. (2015), Jin (2015), Goetzmann et al. (2017),
Gennaioli and Shleifer (2018), Payzan-LeNestour (2018).

8In Chapter 9, Lo (2017) describes how the regime shift that started the financial crisis happened
as early as in June 2006, when home prices peaked and then started to fall. Rising interest rates
and decreasing prices led to defaults in homeowners, and the ensuing stop in the flow of money that
supported the pools of MBS securities was a disaster leading the “dominos” of the economy to fall one
by one, starting by the bankruptcy of risk-taking mortgage lenders.
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I. Lab experiment

A. Experimental Design

Task Description

The principle of the task is that on each of 1,128 trials, the subject is to discriminate

between the shades of grey of two rectangles by clicking within 2 seconds on the rectangle

that looks darker, or on an “= ” icon displayed in the middle of the screen if the rectangles

look of the same color (see Figure 1). We construct a scale of grey with 12 different shades

(1: very light; 12: extremely dark). In a typical trial, the shades of the two rectangles

are adjacent, i.e., shade values x and x + 1 are displayed, where x is randomly drawn

from the scale of grey as described next. The two shades are the same in 13% of the

trials. The subjects are told the frequency of same-shade trials in the task instructions

(see Appendix IV.A).

The logic of our design is to have each subject go through a 40-trial “adaptive se-

quence,” in which on each trial shade value x is drawn from a normal distribution with

mean m and standard deviation s (the values of m and s are randomly selected in the sets

{3, 4, ..., 10} and {1, 2} respectively),9 immediately followed by an “adaptive test trial”

in which the shade (x′) is randomly drawn in the range of values located at least three

standard deviations from m. So by design, the shade presented at the adaptive test trial

is an outlier as it falls outside the range of values to which the subject has been adapted

in the adaptive sequence. Each outlier value x′ defines a 40-trial “control sequence” in

which the shade value on each trial is normally distributed around x′ (standard deviation

is either 1 or 2; choice is random). The control sequence systematically ends with a

“control test trial” in which x′ is presented. So each adaptive sequence is paired with a

control sequence and both sequences are immediately followed by the same test trial.

There are 12 adaptive sequences (so 12 sequence pairs). The order of appearance of

all sequences is randomized. So generally, the adaptive and control sequences of a given

pair do not follow each other, and we do not impose either that the adaptive sequence

be presented before the control sequence.10

For each subject, we compute the mean accuracy level in the control test trials averaged

9The drawn value is rounded. For instance, if the number drawn is 4.3, the 4th-shade on our scale of
grey is chosen.

10The only constraints that we impose are that the means of two successive sequences be as close as
possible (to ensure the absence of outliers at the beginning of a sequence) and that each m value from
the set of possible values {3, 4, ..., 10} be used in at least two of the adaptive sequences.
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across the 12 sequence pairs, as well as the mean accuracy level in the adaptive test trials.

Accuracy is defined as the fraction of correct replies. Our main statistic of interest is the

difference between the accuracy level in the control vs. adaptive test trials. To double

the number of observations for our main statistic without increasing the total number of

sequence pairs, we add to our design a symmetrical feature whereby within each sequence

pair, the shade value presented at the last trial of the adaptive sequence is also presented

immediately after the control test trial. When presented within the adaptive sequence,

the value is not an outlier whereas when presented after the control test trial, it is an

outlier as by design it falls at least three standard deviations away from the mean value

to which the subject has been adapted during the control sequence. The last trial of the

adaptive sequence thus serves as a control test trial w.r.t the adaptive test trial that is

put immediately after the control test trial. So for each subject, we have 24 observations

for our main statistic of interest.

Outlier blindness hypothesis predicts a significantly decreased accuracy in the adaptive

test trials compared to the control test trials. The differential accuracy comes from the

fact that by design, the shade value presented at the adaptive test trial is improbable

from the perspective of the subject inasmuch as it is well outside the range of values the

subject is expecting, whereas when presented in the control test trial, the same shade

value is probable from the perspective of the subject (it is within the range of values the

subject is expecting). As explained in the introduction, efficient coding theory predicts

that perception accuracy is decreased for improbable values (e.g., Tobler et al. (2005)

and Woodford (2012)).

Of note, the proportion of same-shade trials is the same (13%, as noted above) across

all trial types (the trials within the adaptive sequences, the trials within the control se-

quences, and the test trials). This is important to allow comparisons across trial types,

as one expects the base rate accuracy to be decreased in the same-shade trials (irrespec-

tive of trial type) inasmuch as the subjects know that same-color trials occur with low

probability in this task, so in principle their replies should be biased against the “=”

reply.

Why the current task specification

As stressed in the Introduction, our motivation for designing a non-economic task

in order to study the perception of financial returns in economic agents is motivated

by a growing consensus in neuroscience that efficient coding applies similarly to the
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Figure 1. User interface of the experimental task. The task is a 3-choice discrimination task

in which on each trial the subject is to click on the rectangle that looks darker, or on an

“=” icon displayed in the middle of the screen if the rectangles look of the same color. The

time allowed to make a reply is 2 seconds (remaining time is indicated through a timer at the

bottom of the screen).

perception of simple sensory stimuli and the perception of complex stimuli including

economic valuations. This suggests that one can apply findings from the former context

to the latter. By using a simple perceptual task rather than an economic decision-making

task, we avoid potential confounds related to risk attitude which could not be easily

controlled for in an economic decision-making task (fully disentangling risk preferences

and beliefs is not possible).

Our main statistic of interest allows us to isolate the outlier blindness effect by ruling

out any confound related to the extreme-value effect as explained in the Introduction (the

fact that outliers are more likely to be located at the extremes of the scale, and it is harder

to discriminate between shade values located at the extremes). If accuracy is inherently

decreased when discriminating between extreme values, this affects both adaptive and

control test trials in the exact same way in this task, since adaptive and control test trials

feature the same shade value by design. Therefore, any differential accuracy between the

adaptive and control test trials cannot be attributed to the extreme-value effect.

Our main motivation for choosing the current task settings is to maximize statistical

power in the analysis. For instance, our choice of 2 seconds as the allowed time to make a

choice on each trial is to maximize the number of trials for each subject under the standard
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duration limits for this kind of task (30 minutes should not be exceeded), while keeping

in mind task feasibility (excessive time pressure leads to random choice in the subjects).

We tested different time parameter values in pilot sessions; both subject choice data and

subject oral reports on the task after the pilot suggest that allowing 2 seconds to make a

choice is a reasonable trade-off between sample size and task feasibility. Subject behavior

in the experiment also validates this parameter choice inasmuch as subjects usually reply

well within the allowed time, the frequency of missed trials is fairly low overall, and

doubling the allowed time to make a choice does not change our main findings (more in

the Results section). All this suggests time pressure is not an issue in this experiment.

Likewise, our motivation for designing a 3-choice discrimination task (the default would

be a 2-choice discrimination task with no same-color trials) is to maximize statistical

power by averting some “ceiling effect” in accuracy level which would emerge if the task

were too easy.11 Our choice of a 12-point scale for our scale of grey follows similar logic.

Using a coarser scale would potentially decrease our power by making the task too easy.

Using a finer scale would increase randomness in choice at the test trials (the finer the

scale, the harder it is to discriminate between extreme values). We tried different degrees

of coarseness in pilot sessions and arrived at the present scale.12

Last but not least, one important aspect of reducing noise in the data is to ensure

that the subjects do pay attention on each trial. To that purpose, we use a special

experimental procedure—spelled out next.

B. Experimental procedure

Sixty-nine undergraduate students from the University of New South Wales register

online to participate in the experiment.13 Upon arrival at the lab, they watch the online

instructions for the experiment for 15 minutes (see Appendix IV.A). At the very end

of the instructions, they complete a 3-minute training session in which they play a few

trials of the experimental task to familiarize themselves with the task interface (more on

this below), after which they are briefed again by the experimenter on the distinctive

nature of the experiment, the payment rule that is used in particular. The experimenter

re-emphasizes that each correct reply yields $0.1, each incorrect reply leads to a loss of

$0.25, each missed trial leads to a loss of $1, and that the subject receives at the end of the

11We ran a pilot session of the 2-choice variant of the task with no same-color trials and found the
overall accuracy was very high.

12We do not claim that our choice is optimal but our findings show it is good enough to identify the
outlier blindness effect which is our main focus in this study.

13Registration is done through the ORSEE recruitment system (http://www.orsee.org/web/).
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experimental session all the net accumulated outcomes from the task.14 The experimenter

also stresses that the luminance setting has been adjusted on each machine before the

beginning of the experimental session and that it has been locked so that luminance

cannot be changed during the experiment.15 Subsequently, the subjects complete one

run of the task, which lasts for approximately 25 minutes.

To minimize noise in our data by ensuring that the subjects do pay attention on each

trial, we take two steps. First we provide our subjects with high monetary incentives by

rewarding high performance in the task through high payoffs. As indicated above, each

correct reply yields $0.1 and the subject performs 1, 128 trials overall, so high performers

can potentially end up with more than $100. This feature of the experiment is well em-

phasized in the task instructions. Eight subjects earn more than $70, 32 earn more than

$50 (mean: 43.8; median: 50.10; mode: 45.65; std: 36.7; see Appendix IV.B). In addition

to rewarding high performance in the task through high payoffs, an important aspect of

incentivizing the subjects consists of using a “pay all” payment rule (we pay for the out-

come from every decision made) rather than the alternative “pay one” approach, which

pays for the outcome of only a subset of the choices made. The pay all approach averts

the issue of diluted incentives which arises if, for instance, the subjects are susceptible to

the “disjunction effect” or the like.16

The second key feature of the experimental procedure used in this experiment consists

of using the online instructions not only in the usual way (i.e., to acquaint the subjects

with the experimental task) but also as a screening device in order to screen out subjects

that are not suitable for the task. Specifically, at the very end of the online instructions,

the subjects are to decide whether they wish to do the aforementioned short training

session to get familiar with the task interface before proceeding to the test. The decision to

skip the training, which is implemented by clicking on a button “I wish to skip the training

session and go directly to the task” (see Appendix IV.A), results in being immediately

excluded from the experiment.17 The logic here is that the decision of a given subject to

skip the training session provides a reliable signal that the subject is not highly motivated

to do well in the task. Six subjects choose to skip the training and are therefore excluded

from the experiment.

14In case of negative earnings, the subject ends up with the $5 show-up reward which is given irre-
spective of task performance (as per the lab protocol).

15The monitors in the lab are the HP E272q. We used the factory default settings (brightness: 90;
contrast: 80; dynamic contrast: off; black stretch: off). To prevent participants from changing settings
during the experiment, the experimenter enabled the button lockout feature of the monitors beforehand.

16For example, Tversky and Shafir (1992), Shafir and Tversky (1992), Shafir (1994).
17The experimenter gives the excluded subjects the $5 show-up reward.



Outlier Blindness 12

II. Results

A. Findings of the Original Experiment

Across subjects, we find that accuracy is significantly lower in the adaptive test trials

than in the control test trials, as predicted by outlier blindness hypothesis. Our statistic

of interest (the accuracy difference between control and adaptive test trials, as explained

above) averaged across subjects is significantly positive according to our statistical tests

(e.g., paired t-test based on the individual statistics of interest as defined above: t = 11.7;

p ∼ 0, two-tailed); see Figure 2 and Figure 11 in Appendix IV.C. Strikingly, the statistic

is positive for almost all (60 out of 63) the subjects; see Figure 3.

The mean accuracy level across all subjects and trial types is 0.83. It is is markedly

decreased in the same-shade trials (0.44), which as explained above is expected given

the nature of the task. Accuracy is significantly higher on average within the adaptive

sequences than within the control sequences (0.87 vs. 0.81), which comes as no surprise

in light of the aforementioned extreme-value effect.18 The average response time in the

experiment is 0.9 sec (min: 0.66; max: 1.41; std: 0.14). There is a negative correlation

between accuracy and response time (one way Anova test: f = 1454; p < .00001, two-

sided). The percentage of missed trials is very low on average (0.005%). Appendix IV.B

provides more details on the main descriptive statistics related to missed trials, response

times, subject accuracy, and subject earnings. Appendix IV.C provides more details on

the main statistical tests.

B. Follow-Up Experiments

Placebo Experiment

An obvious prerequisite for the outlier blindness effect is that the agent holds expecta-

tions. An “outlier” is indeed defined with respect to the expectation held by the agent.

If the agent expects nothing in particular, the notion is meaningless (there are no outliers

from the perspective of the agent). According to efficient coding theory, expectations

are set through adaptation. Applied to the current experiment, what this means is that

following each 40-trial sequence, the subjects expect the range of shade values to which

18As explained above, the extreme-value effect refers to the fact that it is harder to discriminate
between shades located at the extremes of the scale. By design, the shades that are presented within
the control sequences are more extreme on average than those presented within the adaptive sequences.
So the extreme-value effect implies that accuracy be decreased on average within the control sequences.
See Figure 13 in Appendix IV.C for more details.
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Figure 2. Accuracy in adaptive test trials (left) and control test trials (right). Heights of

bars indicate the mean accuracy averaged across the 63 subjects. Accuracy is defined as the

fraction of correct replies. Line segments indicate sem. **** p < .00001.
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Figure 3. Comparative accuracy levels in adaptive versus control test trials. Each data

point corresponds to one subject (N=63; 24 observations per subject). x axis: accuracy in

the adaptive test trials. y axis: accuracy in the control test trials. Accuracy is defined as

the fraction of correct replies. Data points above the 45 degree line correspond to subjects

for whom accuracy is decreased in the adaptive test trials, as predicted by outlier blindness

hypothesis.
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they have been exposed during the sequence. Therefore, a litmus test of outlier blind-

ness hypothesis consists of suppressing adaptation in a follow-up “placebo experiment”

in which the length of each sequence is reduced to a very low level, so that the subjects

do not have time to form expectations about shade values, and hence there should be no

outlier blindness effect.

In the placebo experiment (N= 35; same cohort as in the original experiment: under-

graduate students at the University of New South Wales), each sequence lasts for only 3

trials. There are 160 sequences (960 trials overall), so 320 observations for our statistic of

interest. Except for sequence duration (and total number of sequences), the experimental

task is the same as the one used in the original experiment. Appendix IV.B reports the

main descriptive statistics with regard to response time, earnings, and accuracy per trial

type in the placebo experiment.

Figure 4 displays the distribution of accuracy in the adaptive and control test trials

across subjects, for both the original and placebo experiments. The main effect docu-

mented above for the original experiment is apparent on this graph (blue curves: the

mean accuracy level at the adaptive test trials is shifted to the left relative to the mean

accuracy at the control test trials). In contrast, the effect is absent in the placebo experi-

ment (red curves: the distributions of adaptive and control test trials accuracy overlap).19

One cannot reject the null hypothesis that in the placebo experiment, the mean accuracy

level is the same in the adaptive and control test trials, as predicted by outlier blindness

hypothesis (see Figure 11 in Appendix IV.C).

Shortened Adaptation

Our finding that the outlier blindness effect is suppressed in the placebo experiment

rules out the possibility that our statistic of interest in the original experiment be driven

by some hidden experimental artefact (since the task used in both experiments is the same

except for the adaptation length factor, as explained above). As such, it strengthens the

evidence for outlier blindness hypothesis.

Next we ask how long it takes for the human brain to hold expectations. On the basis

of prior work showing that adaptation is fairly quick in mammals,20 we conjecture that

it does not take long and that increasing adaptation length by a few trials is enough

19Note that variance is lower for the placebo experiment than for the original experiment (the density
width is lower for the placebo experiment, for each trial type). This is because sample size is much
higher, namely 320 observations per subject vs. only 24 in the original experiment (no time to do more
to ensure task duration does not exceed 30 minutes).

20For example, Ohzawa et al. (1985), Bayer and Glimcher (2005), Fairhall (2014).
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Figure 4. Density plot of accuracy in the adaptive test trials and control test trials, for both

the original experiment (blue) and the placebo experiment (red). The density is derived

across subjects, based on 63 subjects, 24 observations per subject (original experiment), and

35 subjects, 320 observations per subject (placebo experiment).
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to restore the outlier blindness effect. To test our conjecture, we thus run the “5-trial

adaptation experiment” (N=31; same cohort as in the original experiment: undergraduate

students at the University of New South Wales) in which each sequence lasts for 5 trials.

There are 100 sequences in that experiment (1,000 trials overall).21 Consistent with

our conjecture, we find the outlier blindness effect is significant in the 5-trial adaptation

experiment. The null hypothesis that accuracy is the same in the adaptive and control

test trials is rejected in each of our statistical tests (e.g., paired t-test: t = 4.2, p < .001,

two-tailed; see Figure 11 in Appendix IV.C).

This finding shows that prolonged adaptation is not a precondition for the emergence

of the outlier blindness effect. An adaptation length of five trials appears to be sufficient

for the agent to form expectations and hence for the outlier blindness effect to reappear.

Note that the original effect is only partially recovered: the outlier blindness effect is four

times stronger in the original experiment than in the 5-trial adaptation experiment (two

sample t test to compare the mean statistic of interest in the two experiments: t = 8.8,

p < .001; see Figure 12 in Appendix IV.C). This again conforms to efficient coding

theory which predicts that the magnitude of the outlier blindness effect increases with

adaptation length; adaptation length is eight times bigger in the original experiment than

in the 5-trial adaptation experiment.

Robustness Checks

We check that the foregoing findings are robust to excluding the data from the begin-

ning of the task, to account for the possibility that subjects need some time to become

familiar with the task interface.22 The main accuracy results are also unchanged when

we exclude from the analysis the missed trials. See the supplementary table in Appendix

14.

In the final stage of the study, we investigate whether the outlier blindness effect is

affected by time pressure. We run a final experiment (N= 33; same cohort as in the

original experiment: undergraduate students at the University of New South Wales) in

which the time allowed to provide a reply on each trial is doubled relative to the original

experiment (4 seconds vs. 2 seconds). The average response time in the experiment with

double response time is 1.20 seconds on average across subjects, which is significantly

21See Appendix IV.B for the main descriptive statistics regarding response time, earnings, and accuracy
per trial type in the 5-trial adaptation experiment.

22Note that a priori the subjects are familiar with the task interface from the start, since all of them
complete a 3-minute training session prior to the task as per the experimental procedure described in
Section I.B.
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above the mean response time in the original experiment (two sample t-test: p ∼ 0).23

However the magnitude of the outlier blindness effect is unchanged in the experiment

with double response time compared to that in the original experiment. This is already

apparent from Figure 5 which displays the distribution of accuracy in the adaptive and

control test trials across subjects, for both the original experiment and the experiment

with double response time. The distributions for each trial type look very similar across

the two experiments. Formal statistical tests confirm that doubling the response time

allowed on each trial does not affect the outlier blindness effect, which remains highly

significant (see Figure 11 in Appendix IV.C). We cannot reject the null hypothesis that

the outlier blindness effect is similar in the two experiments (two sample t-test to compare

the mean statistic of interest in the two experiments: t = 1.9; p = 0.056; see Figure 12

in Appendix IV.C).
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Density Plot: 
 Accuracy in Adaptive Test Trials and Control Test Trials 
 According to Allotted Response Time

Figure 5. Density plot of accuracy in the adaptive test trials and control test trials, for the

original experiment (blue) and the experiment with double response time (orange). The

density is derived across subjects, based on 63 subjects, 24 observations per subject (original

experiment), and 33 subjects, 24 observations per subject (placebo experiment).

23See Appendix IV.B for the main descriptive statistics regarding response time, earnings, and accuracy
per trial type in the experiment with double response time.
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III. Discussion

In this study we aim to test outlier blindness hypothesis, which is the novel idea that

humans have difficulties in perceiving extreme values because the human brain evolved to

draw sharper distinctions between magnitudes that occur more frequently, while making

only coarse distinctions (if any at all) between magnitudes that are improbable. To test

our hypothesis, we use a special experimental paradigm that allows us to separate the

extreme-value effect (which simply reflects the fact that it is harder to see at the extremes

on a scale of values, as described by the well-known Weber-Fechner law) from the outlier

blindness effect which is the novel focus in this study. Also, to ensure that our findings

are not related to some hidden factor related to risk preferences, we refrain from designing

an economic decision-making task and instead use a purely perceptual task that involves

the perception of a simple sensory stimulus.

We provide strong evidence that the outlier blindness phenomenon biases people’s per-

ception of outliers. Our findings further support the idea that the magnitude of the bias

is highly significant in stable environments and still significant in very unstable environ-

ments (in our setting, when payoff distributions shift every 5 trials). Only in extremely

unstable contexts where things change almost continuously does the bias vanish. In

regard to human psychology, these findings suggest that humans are quick to form ex-

pectations. In regard to practical implications for financial agents, our findings suggest

the outlier blindness phenomenon may be pervasive, prevailing over different kinds of

environments both in terms of timescale (cf. the scale invariance property mentioned in

the Introduction) and in terms of instability levels (no one should expect to be immune

to the bias including those operating in very unstable environments).

The neglect of rare events that arises from the outlier blindness phenomenon is mal-

adaptive in modern financial markets, where rare events are not rare enough for their

neglect to be innocuous for economic agents (Taleb, 2004).24 However it should be noted

that this same neglect was adaptive (“efficient”) in the ancestral human lifestyle, where

the distribution of payoffs was most often unimodal. As such, the efficient coding princi-

ple and corollary outlier blindness phenomenon reflect the fact that our brains evolved to

optimize survival chances in the environmental context in which they emerged. Taken out

of their proper environment, they become maladaptive (see Robson (2001) and Chapter

24An exception is the case of outliers that should be ignored altogether as they are pure aberrations
caused by leptokurtic noise (Bossaerts and d’Acremont, 2016). The 1987 stock market crash is one
example of such “aberrations.” Traders overreacted to it, thinking that something fundamental had
changed, which was not the case (within 1 year, the stock market had more than recovered).
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6 of Lo (2017)).
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IV. Appendix

A. Instructions for the Task

The reader will find below the text of the instructions provided to the subjects in the

original experiment. The text of the instructions for the placebo and 5-trial adaptation

experiments is the same except for the information concerning the total number of trials

(there are 960 trials in the placebo experiment and 1,000 trials in the 5-trial adaptation

experiment). The text of the instructions for the experiment with double response time

is the same except for the information about the time allowed to make a choice on each

trial (which is 4 seconds in the double-response time experiment).
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Figure 6. Instructions for the task.
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B. Descriptive Statistics for Each Experiment

Missed Trials Mean Standard Deviation Minimum Maximum
Experiment

Main Experiment 6.17 10.04 0 50

5-Trial Adaption Experiment 7.52 10.32 0 47

Placebo Experiment 9.29 5.82 0 27

Experiment with Double Response Time 1.52 1.89 0 7

Figure 7. Number of missed trials in each experiment. The mean, standard deviation, min

and max are derived across subjects, for each experiment.

Mean Accuracy
Experiment

Main Experiment 0.83 0.44 0.88 0.87 0.81 0.61 0.79
(0.01) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01)

5-Trial Adaption Experiment 0.80 0.41 0.83 0.86 0.84 0.72 0.75
(0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01)

Placebo Experiment 0.77 0.29 0.79 0.86 0.85 0.73 0.73
(0.01) (0.03 (0.01) (0.01) (0.01) (0.01) (0.01)

Experiment with Double Response Time 0.90 0.43 0.95 0.92 0.89 0.72 0.84
(0.01) (0.03) (0.01) (0.01) (0.01) (0.02) (0.01)

Adaptive 
Test Trials

Control 
Test Trials

Overall Same 
Color Trials

Different 
Color Trials

Adaptive 
Trials

Control 
Trials

Figure 8. Mean accuracy according to trial type. “Adaptive trials”: trials within the adap-

tive sequences. “Control trials”: trials within the control sequences. Numbers in paren-

thesis: sem.
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 Response Time   Overall Same Color Different Color Adaptive Control Adaptive Test Control Test 
Experiment                                       (sec) Trials Trials Trials Trials Trials Trials
Main Experiment 0.90 1.08 0.87 0.86 0.92 1.13 0.89

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
5-Trial Adaption Experiment 1.03 1.16 1.02 0.99 1.01 1.14 1.02

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Placebo Experiment 1.09 1.24 1.08 1.03 1.04 1.16 1.07

(0.03) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03)
Experiment with Double Response Time 1.20 1.81 1.12 1.15 1.23 1.59 1.21

(0.04) (0.07) (0.04) (0.04) (0.04) (0.05) (0.04)

  

Figure 9. Mean response time according to trial type. “Adaptive trials”: trials within

the adaptive sequences. “Control trials”: trials within the control sequences. Numbers in

parenthesis: sem.

Figure 10. Earning distribution across subjects in each experiment. For each subject the

earnings are computed as the net accumulated outcomes at the end of the task.
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C. Main Statistical Tests

Experiment Mean Accuracy in 
Adaptive Test Trials

Mean Accuracy in 
Control Test Trials

TWO TAILED 
PAIRED T TEST

WILCOXON    
SIGNED RANK TEST 

Main Experiment                                                        
(N=63)

0.61                            
(0.02)

0.79                          
(0.01)

t = 11.76,                              
p ~ 0

V = 1858.5,                             
p ~ 0

5-Trial Adaption Experiment                                   
(N=31)

0.72                         
(0.01)

0.75                         
(0.01)

t = 4.25,                             
p < 0.001

V = 330,                                    
p = 0.006

Placebo Experiment                                                   
(N=35)

0.73                            
(0.01)

0.73                          
(0.01)

t = 1.12,                              
p = 0.272

V = 396,                                    
p = 0.131

Experiment with Double Response Time                            
(N=33)

0.72                            
(0.02)

0.84                           
(0.01)

t = 6.27,                              
p < 0.0001

V = 390,                                    
p < 0.0001

Figure 11. Tests of the outlier blindness effect, for each experiment. The outlier blindness

effect is measured by the differential accuracy in the control test trials vs. adaptive test

trials as explained in the main text. Numbers in parenthesis: sem.

Experiment TWO SAMPLE T TEST

Main Experiment                                                  
(N=63)

Experiment with Double Response Time          
(N=33)

Main Experiment                                                  
(N=63)

5-Trial Adaption Experiment                                   
(N=31)

t = 1.94, p = 0.057

t = 8.89, p ~ 0

(Mean Accuracy in Control Test Trials)                
– (Mean Accuracy in Adaptive Test Trials)

0.18                                                                     
(0.02)

0.13                                                            
(0.02)

0.13                                                          
(0.02)

0.18                                                                     
(0.02)

Figure 12. Comparison of the magnitude of the outlier blindness effect across experiments.

Numbers in parenthesis: sem.
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Experiment Mean Accuracy in 
Adaptive Trials

Mean Accuracy in 
Control Trials TWO TAILED PAIRED T TEST

Main Experiment                                                        
(N=63)

0.87                       
(0.01)

0.81                          
(0.01)

t = 8.85,  p ~ 0

5-Trial Adaption Experiment                                   
(N=31)

0.86                       
(0..01)

0.84                            
(0.01) 

t = 2.75, p = 0.010

Placebo Experiment                                                  
(N=35)

0.86                       
(0.01)

0.85                         
(0.01)

t = 0.68, p = 0.502

Experiment with Double Response Time                            
(N=33)

0.92                        
(0.01)

0.89                          
(0.01)

t = 5.16, p < 0.0001

Figure 13. Measure of the extreme-value effect. “Adaptive trials”: trials within the adap-

tive sequences. “Control trials”: trials within the control sequences. The extreme-value

effect refers to discrimination being potentially hampered for values that are at the ex-

tremes of the scale relative to the other values. By design, the values presented during

the control sequences are on average more extreme than the values presented during the

adaptive sequences. (The mean shade value for the control sequences is either 3−4 or 9−10

in the majority of the cases whereas for the adaptive sequences, the mean shade value is

evenly distributed across all possible values {3, ..., 10}.) Therefore, one expects the average

accuracy to be higher in the adaptive sequences than in the control sequences. Numbers in

parenthesis: sem.
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D. Supplementary Table

M
ean Accuracy

O
verall

Sam
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Different Color 
Adaptive 

Control
Adaptive Test

Control Test 
Experim

ent
Trials

Trials
Trials

Trials
Trials

Trials
M

ain Experim
ent

Include
Include

0.83
0.44

0.88
0.87

0.81
0.61

0.79
(0.01)

(0.02)
(0.01)

(0.01)
(0.02)

(0.02)
(0.01)

5-Trial Adaption Experim
ent

Include
Include

0.80
0.41

0.83
0.86

0.84
0.72

0.75
(0.01)

(0.03)
(0.01)

(0.01)
(0.01)

(0.01)
(0.01)

Placebo Experim
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Include
Include

0.77
0.29

0.79
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Include
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Figure 14. Mean accuracy according to trial type for each experiment.“Adaptive trials”:

trials within the adaptive sequences. “Control trials”: trials within the control sequences.

Numbers in parenthesis: sem.
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