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Abstract

In an endowment economy, we analyze coexistence and competition be-

tween traditional fiat money (Dollar) and cryptocurrency (Bitcoin). Agents

can trade consumption goods in either currency or hold on to currency for

speculative purposes. A central bank ensures a Dollar inflation target, while

Bitcoin mining is decentralized via proof-of-work. We analyze Bitcoin price

evolution and interaction between the Bitcoin price and monetary policy which

targets the Dollar. We obtain a fundamental pricing equation, which in its sim-

plest form implies that Bitcoin prices form a martingale. We derive conditions,

under which Bitcoin speculation cannot happen, and the fundamental pricing

equation must hold. We explicitly construct examples for equilibria.
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1 Introduction

Cryptocurrencies, in particular Bitcoin, have received a large amount of attention

as of late. In a white paper, ’Satoshi Nakamoto’ (2008), the developer of Bitcoin,

describes Bitcoin as a ’version of electronic cash to allow online payments’ to be sent

directly from one party to another. The question of whether cryptocurrencies can be-

come a widely accepted means of payment, alternative or parallel to traditional fiat

monies such as the Dollar or Euro, concerns researchers, policymakers, and financial

institutions alike. The total market capitalization of cryptocurrencies reached nearly

400 Billion U.S. Dollars in December 2018, according to coincodex.com. This is a

sizeable amount compared to U.S. base money or M1, which both reached approx-

imately 3600 Billion U.S. Dollars as of July 2018. In the Financial Times on June

18th, 2018, the Bank of International Settlements (BIS) addresses ’unstable value’

as one major challenge for cryptocurrencies for becoming a major currency in the

long run. The price fluctuations are substantial indeed, see figure 1. The BIS fur-

ther relates this instability back to the lack of a cryptocurrency central bank. What,

indeed, determines the price of cryptocurrencies such as the Bitcoin, how can their

fluctuations arise and what are the consequences for monetary policy?
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Figure 1: The Bitcoin Price since 2010-07-18 and “zooming in” on one year 2017-09-01
to 2018-08-31. Data per coindesk.com.

This paper sheds light on these questions. For our analysis, we construct a novel

yet simple model, where a cryptocurrency competes with traditional fiat money for

usage. Our setting, in particular, captures the feature that a central bank controls

inflation of traditional fiat money while the value of the cryptocurrency is uncontrolled

and its supply can only increase over time. We assume that there are two types of

infinitely-lived agents, who alternate in the periods, in which they produce and in

which they wish to consume a perishable good. This lack of the double-coincidence



of wants then provides a role for a medium of exchange. We assume that there are

two types of intrinsically worthless1 monies: Bitcoins and Dollars. A central bank

targets a stochastic Dollar inflation via appropriate monetary injections, while Bitcoin

production is decentralized via proof-of-work, and is determined by the individual

incentives of agents to mine them. Both monies can be used for transactions. In

essence, we imagine a future world, where a cryptocurrency such as Bitcoin has

become widely accepted as a means of payments, and where technical issues, such as

safety of the payments system or concerns about attacks on the system, have been

resolved. We view such a future world as entirely within the plausible realms of

possibilities, thus calling upon academics to think through the key issues ahead of

time. We establish properties of the Bitcoin price expressed in Dollars, construct

equilibria and examine the consequences for monetary policy and welfare.

Our key results are propositions 1, 2 and theorem 1 in section 3. Proposition 1

provides what we call a fundamental pricing equation2, which has to hold in the fun-

damental case, where both currencies are simultaneously in use. In its most simple

form, this equation says that the Bitcoin price expressed in Dollar follows a martin-

gale, i.e., that the expected future Bitcoin price equals its current price. Proposition 2

on the other hand shows that in expectation the Bitcoin price has to rise, in case not

all Bitcoins are spent on transactions. In this speculative condition, agents hold back

Bitcoins now in the hope to spend them later at an appreciated value, expecting

Bitcoins to earn a real interest. Under the assumption 3, theorem 1 shows that this

speculative condition cannot hold and that therefore the fundamental pricing equa-

tion has to apply. The paper, therefore, deepens the discussion on how, when and

why expected appreciation of Bitcoins and speculation in cryptocurrencies can arise.

Section 4 provides a further characterization of the equilibrium. We rewrite the

fundamental pricing equation to decompose today’s Bitcoin price into the expected

price of tomorrow plus a correction term for risk-aversion which captures the corre-

lation between the future Bitcoin price and a pricing kernel. This formula shows,

why constructing equilibria is not straightforward: since fiat currencies have zero

1This perhaps distinguishes our analysis from a world of Gold competing with Dollars, as Gold
in the form of jewelry provides utility to agents on its own.

2In asset pricing, one often distinguishes between a fundamental component and a bubble com-
ponent, where the fundamental component arises from discounting future dividends, and the bubble
component is paid for the zero-dividend portion. The two monies here are intrinsically worthless:
thus, our paper, including the fundamental pricing equation, is entirely about that bubble compo-
nent. We assume that this does not create a source of confusion.
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dividends, these covariances cannot be constructed from more primitive assumptions

about covariances between the pricing kernel and dividends. Proposition 4 therefore

reduces the challenge of equilibrium construction to the task of constructing a pricing

kernel and a price path for the two currencies, satisfying some suitable conditions.

We provide the construction of such sequences in the proof, thereby demonstrating

existence. We subsequently provide some explicit examples, demonstrating the possi-

bilities for Bitcoin prices to be supermartingales, submartingales as well as alternating

periods of expected decreases and increases in value.

Section 5 finally discusses the implications for monetary policy. Our starting

point is the market clearing equation arising per theorem 1, that all monies are spent

every period and sum to the total nominal value of consumption. As a consequence,

the market clearing condition imposes a direct equilibrium interaction between the

Bitcoin price and the Dollar supply set by the central bank policy. Armed with

that equation, we then examine two scenarios. In the conventional scenario, the

Bitcoin price evolves exogenously, thereby driving the Dollar injections needed by

the Central Bank to achieve its inflation target. In the unconventional scenario, we

suppose that the inflation target is achieved for a range of monetary injections, which

then, however, influence the price of Bitcoins. Under some conditions and if the stock

of Bitcoins is bounded, we state that the real value of the entire stock of Bitcoins

shrinks to zero when inflation is strictly above unity. We analyze welfare and optimal

monetary policy and examine robustness. Section 6 concludes. Bitcoin production or

“mining” is analyzed in appendix B.

Our analysis is related to a substantial body of the literature. Our model can be

thought of as a simplified version of the Bewley model (1977), the turnpike model of

money as in Townsend (1980) or the new monetarist view of money as a medium of

exchange as in Kiyotaki-Wright (1989) or Lagos-Wright (2005). With these models as

well as with Samuelson (1958), we share the perspective that money is an intrinsically

worthless asset, useful for executing trades between people who do not share a double-

coincidence of wants. Our aim here is decidedly not to provide a new micro foundation

for the use of money, but to provide a simple starting point for our analysis.

The key perspective for much of the analysis is the celebrated exchange-rate

indeterminacy result in Kareken-Wallace (1981) and its stochastic counterpart in

Manuelli-Peck (1990). Our fundamental pricing equation in proposition 1 as well

as the indeterminacy of the Bitcoin price in the first period, see proposition 4, can
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perhaps be best thought of as a modern restatement of these classic result. The

speculative price bound provided in proposition 2 is a novel feature and does not

arise in their analysis, however, as we allow agents to live for infinitely many periods

rather than two. As a consequence, in our model, an agent’s incentive for currency

speculation competes with her incentive to use currency for trade.

The most closely related contribution in the literature to our paper is Garratt-

Wallace (2017). Like us, they adopt the Kareken-Wallace (1981) perspective to study

the behavior of the Bitcoin-to-Dollar exchange rate. However, there are a number of

differences. They utilize a two-period OLG model: the speculative price bound does

not arise there. They focus on fixed stocks of Bitcoins and Dollar (or “government

issued monies”), while we allow for Bitcoin production and monetary policy. Produc-

tion is random here and constant there. There is a carrying cost for Dollars, which

we do not feature here. They focus on particular processes for the Bitcoin price. The

analysis and key results are very different from ours.

The literature on Bitcoin, cryptocurrencies and the Blockchain is currently grow-

ing quickly. We provide a more in-depth review of the background and discussion of

the literature in the appendix section A, listing only a few of the contributions here.

Velde (2013), Brito and Castillo (2013) and Berentsen and Schär (2017, 2018a) pro-

vide excellent primers on Bitcoin and related topics. Related in spirit to our exercise

here, Fernández-Villaverde and Sanches (2016) examine the scope of currency compe-

tition in an extended Lagos-Wright model and argue that there can be equilibria with

price stability as well as a continuum of equilibrium trajectories with the property

that the value of private currencies monotonically converges to zero. Relatedly, Zhu

and Hendry (2018) study optimal monetary policy in a Lagos and Wright type of

model where privately issued e-money competes with central bank issued fiat money.

Athey et al. (2016) develop a model of user adoption and use of virtual currency such

as Bitcoin in order to analyze how market fundamentals determine the exchange rate

of fiat currency to Bitcoin, focussing their attention on an eventual steady state ex-

pected exchange rate. By contrast, our model generally does not imply such a steady

state. Huberman, Leshno and Moallemi (2017) examine congestion effects in Bitcoin

transactions and their resulting impediments to a Bitcoin-based payments system.

Budish (2018) argues that the blockchain protocol underlying Bitcoin is vulnerable

to attack. Prat and Walter (2018) predict the computing power of the Bitcoin network

using the Bitcoin-Dollar exchange rate. Chiu and Koeppl (2017) study the optimal
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design of a blockchain based cryptocurrency system in a general equilibrium mone-

tary model. Likewise, Abadi and Brunnermeier (2017) examine potential blockchain

instability. Sockin and Xiong (2018) price cryptocurrencies which yield membership

of a platform on which households can trade goods. This generates complementarity

in households’ participation in the platform. In our paper, in contrast, fiat money and

cryptocurrency are perfect substitutes and goods can be paid for with either currency

without incurring frictions. Griffin and Shams (2018) argue that cryptocurrencies are

manipulated. By contrast, we imagine a future world here, where such impediments,

instabilities, and manipulation issues are resolved or are of sufficiently minor con-

cern for the payment systems both for Dollars and the cryptocurrency. Makarov and

Schoar (2018) find large and recurrent arbitrage opportunities in cryptocurrency mar-

kets across the U.S., Japan, and Korea. Liu and Tsyvinksi (2018) examine the risks

and returns of cryptocurrencies and find them uncorrelated to typical asset pricing

factors. We view our paper as providing a theoretical framework for understanding

their empirical finding.

2 The model

Time is discrete, t = 0, 1, . . .. In each period, a publicly observable, aggregate random

shock θt ∈ Θ ⊂ IR is realized. All random variables in period t are assumed to be

functions of the history θt = (θ0, . . . , θt) of these shocks, i.e. measurable with respect

to the filtration generated by the stochastic sequence (θt)t∈{0,1,...} and thus known to

all participants at the beginning of the period. Note that the length of the vector

θt encodes the period t: therefore, functions of θt are allowed to be deterministic

functions of t.

There is a consumption good which is not storable across periods. There is a

continuum of mass 2 of two types of agents. We shall call the first type of agents “red”,

and the other type “green”. Both types of agents j enjoy utility from consumption

ct,j ≥ 0 at time t per u(ct,j), as well as loathe providing effort et,j ≥ 0, where effort is

put to produce Bitcoins, see below. The consumption-utility function u(·) is strictly

increasing and concave. The utility-loss-from-effort function h(·) is strictly increasing

and convex. We assume that both functions are twice differentiable.

Red and green agents alternate in consuming and producing the consumption

good, see figure 2: We assume that red agents only enjoy consuming the good in
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odd periods, while green agents only enjoy consuming in even periods. Red agents

j ∈ [0, 1) inelastically produce (or: are endowed with) yt units of the consumption

good in even periods t, while green agents j ∈ [1, 2] do so in odd periods. This

creates the absence of the double-coincidence of wants, and thereby reasons to trade.

We assume that yt = y(θt) is stochastic with support yt ∈ [y, ȳ], where 0 < y ≤ ȳ. As

a special case, we consider the case, where yt is constant, y = ȳ and yt ≡ ȳ for all t.

We impose a discount rate of 0 < β < 1 to yield life-time utility

U = E

[
∞∑
t=0

βt (ξt,ju(ct,j)− h(et,j))

]
(1)

Formally, we impose alternation of utility from consumption per ξt,j = 1
t is odd

for j ∈ [0, 1) and ξt,j = 1t is even for j ∈ [1, 2].
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c

Figure 2: Alternation of production and consumption. In odd periods , green agents
produce and red agents consume. In even periods, red agents produce and green
agents consume. Alternation and the fact that the consumption good is perishable
gives rise to the necessity to trade using fiat money.

Trade is carried out, using money. More precisely, we assume that there are two

forms of money. The first shall be called Bitcoins and its aggregate stock at time t

shall be denoted with Bt. The second shall be called Dollar and its aggregate stock at

time t shall be denoted with Dt. These labels are surely suggestive, but hopefully not

overly so, given our further assumptions. In particular, we shall assume that there is

a central bank, which governs the aggregate stock of Dollars Dt, while Bitcoins can

be produced privately.
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The sequence of events in each period is as follows. First, θt is drawn. Next, given

the information on θt, the central bank issues or withdraws Dollars, per “helicopter

drops” or lump-sum transfers and taxes on the agents ready to consume in that

particular period. The central bank can produce Dollars at zero cost. Consider a

green agent entering an even period t, holding some Dollar amount D̃t,j from the

previous period. The agent will receive a Dollar transfer τt = τ(θt) from the central

bank, resulting in

Dt,j = D̃t,j + τt (2)

We allow τt to be negative, while we shall insist, that Dt,j ≥ 0: we, therefore, have

to make sure in the analysis below, that the central bank chooses wisely enough so

as not to withdraw more money than any particular green agent has at hand in even

periods. Red agents do not receive (or pay) τt in even period. Conversely, the receive

transfers (or pay taxes) in odd periods, while green agents do not. The aggregate

stock of Dollars changes to

Dt = Dt−1 + τt (3)
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Figure 3: Transfers: In each period, a central bank injects to or withdraws Dollars
from agents, before they consume, to target a certain Dollar inflation level. By this,
the Dollar supply may increase or decrease. Across periods, agents can put effort to
mine Bitcoins. By this, the Bitcoin supply can only increase.

The green agent then enters the consumption good market holding Bt,j Bitcoins

from the previous period and Dt,j Dollars, after the helicopter drop. The green agent
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will seek to purchase the consumption good from red agents. As is conventional, let

Pt = P (θt) be the price of the consumption good in terms of Dollars and let

πt =
Pt
Pt−1

denote the resulting inflation. We could likewise express the price of goods in terms

of Bitcoins, but it will turn out to be more intuitive (at the price of some initial

asymmetry) as well as in line with the practice of Bitcoin pricing to let Qt = Q(θt)

denote the price of Bitcoins in terms of Dollars. The price of one unit of the good

in terms of Bitcoins is then Pt/Qt. Let bt,j be the amount of the consumption good

purchased with Bitcoins and dt,j be the amount of the consumption good purchased

with Dollars. The green agent cannot spend more of each money than she owns but

may choose not to spend all of it. This implies the constraints

0 ≤ Pt
Qt

bt,j ≤ Bt,j (4)

0 ≤ Ptdt,j ≤ Dt,j (5)

The green agent then consumes

ct,j = bt,j + dt,j (6)

and leaves the even period, carrying

Bt+1,j = Bt,j −
Pt
Qt

bt,j ≥ 0 (7)

Dt+1,j = Dt,j − Ptdt,j ≥ 0 (8)

Bitcoins and Dollars into the next and odd period t+ 1.

At the beginning of that odd period t+ 1, the aggregate shock θt+1 is drawn and

added to the history θt+1. The green agent produces yt+1 units of the consumption

good. Define the aggregate effort level of one agent group for mining Bitcoin at time

t,

ēt =

∫
j∈[0,1]

et,j dj (9)

Then, an individual agent expands effort et+1,j ≥ 0 to produce additional Bitcoins

8



according to the production function

At+1,j = f(Bt+1)
et+1,j

ēt+1

(10)

where, as a result, the total number of newly minted coins per period

At+1 =

∫
j∈[0,1]

At+1,j dj = f(Bt+1) (11)

is deterministic, and independent of the aggregate effort level. This modeling choice

captures the idea, that in real world, by expanding more effort an individual miner

can only increase the likelihood with which she wins the proof-of-work competition.

In the aggregate, however, the number of mined blocks increases in deterministic

time increments no matter how much hash power (effort) the network provides.3

Note further, the fraction
et+1,j∫

j∈[0,1] et+1,j
is a probability. Thus, At+1,j takes the form

of an expected value which can be interpreted as individual agents mining in a pool

which captures 100% of market share and thus wins the proof-of work competition

for sure while individual miners obtain a fraction of the block reward according to

their individually excerted effort level, see the appendix in detail.4

Further, we assume that the effort productivity function f(·) is nonnegative and

decreasing. This specification captures the idea that individual agents can produce

Bitcoins at a cost or per “proof-of-work”, given by the utility loss h(et+1,j), and that

it gets increasingly more difficult to produce additional Bitcoins, as the entire stock of

Bitcoins increases. This captures the feature that in the real world, the block reward

declines over time. An example is the function

f(B) = max(B̄ −B; 0)

implying an upper bound for Bitcoin production. An extreme, but convenient case

is B0 = B̄, so that no further Bitcoin production takes place. We discuss Bitcoin

production further in appendix B. In odd periods, only green agents may produce

Bitcoins, while only red agents get to produce Bitcoins in even periods.

The green agent sells the consumption goods to red agents. Given market prices

Qt+1 and Pt+1, he decides on the fraction xt+1,j ≥ 0 sold for Bitcoins and zt+1,j ≥ 0

3This is achieved by regular adaption of the difficulty level of the proof of work competition.
4See also Cong, He, and Li (2018).
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sold for Dollars, where

xt+1,j + zt+1,j = yt+1

as the green agent has no other use for the good. After these transactions, the green

agent holds

D̃t+2,j = Dt+1,j + Pt+1zt+1,j

Dollars, which then may be augmented per central bank lump-sum transfers at the

beginning of the next period t+ 2 as described above. As for the Bitcoins, the green

agent carries the total of

Bt+2,j = At+1,j +Bt+1,j +
Pt+1

Qt+1

xt+1,j

to the next period.

The aggregate stock of Bitcoins has increased to

Bt+2 = Bt+1 +

∫ 2

j=0

At+1,jdj

noting that red agents do not produce Bitcoins in even periods.

The role of red agents and their budget constraints is entirely symmetric to green

agents, per merely swapping the role of even and odd periods. There is one difference,

though, and it concerns the initial endowments with money. Since green agents are

first in period t = 0 to purchase goods from red agents, we assume that green agents

initially have all the Dollars and all the Bitcoins and red agents have none.

While there is a single and central consumption good market in each period,

payments can be made with the two different monies. We therefore get the two

market clearing conditions ∫ 2

j=0

bt,jdj =

∫ 2

j=0

xt,jdj (12)∫ 2

j=0

dt,jdj =

∫ 2

j=0

zt,jdj (13)

where we adopt the convention that xt,j = zt,j = 0 for green agents in even periods

and red agents in odd periods as well as bt,j = dt,j = 0 for red agents in even periods

and green agents in odd periods.
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The central bank picks transfer payments τt, which are itself a function of the

publicly observable random shock history θt, and thus already known to all agents at

the beginning of the period t. In particular, the transfers do not additionally reveal

information otherwise only available to the central bank. For the definition of the

equilibrium, we do not a priori impose that central bank transfers τt, Bitcoin prices Qt

or inflation πt are exogenous. Our analysis is consistent with a number of views here.

For example, one may wish to impose that πt is exogenous and reflecting a random

inflation target, which the central bank, in turn, can implement perfectly using its

transfers. Alternatively, one may fix a (possibly stochastic) money growth rule per

imposing an exogenous stochastic process for τt and solve for the resulting Qt and

πt. Generally, one may want to think of the central bank as targeting some Dollar

inflation and using the transfers as its policy tool, while there is no corresponding

institution worrying about the Bitcoin price Qt. The case of deterministic inflation

or a constant Dollar price level Pt ≡ 1 arise as special cases. These issues require a

more profound discussion and analysis, which we provide in section 5.

So far, we have allowed individual green agents and individual red agents to make

different choices. We shall restrict attention to symmetric equilibria, in which all

agents of the same type end up making the same choice. Thus, instead of subscript

j and with a slight abuse of notation, we shall use subscript g to indicate a choice

by a green agent and r to indicate a choice by a red agent. With these caveats and

remarks, we arrive at the following definition.

Definition 1. An equilibrium is a stochastic sequence

(At, Bt, Bt,r, Bt,g, Dt, Dt,r, Dt,g, τt, Pt, Qt, bt, ct, dt, et, ēt, xt, yt, zt)t∈{0,1,2,...}

which is measurable5 with respect to the filtration generated by (θt)t∈{0,1,...}, such that

1. Green agents optimize: given aggregate money quantities (Bt, Dt, τt), produc-

tion yt, prices (Pt, Qt) and initial money holdings B0,g = B0 and D0,g = D0,

a green agent j ∈ [1, 2] chooses consumption quantities bt, ct, dt in even periods

and xt, zt, effort et and Bitcoin production At in odd periods as well as individual

5More precisely, Bt, Bt,g and Bt,r are “predetermined”, i.e. are measurable with respect to the
σ−-algebra generated by θt−1
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money holdings Bt,g, Dt,g, all non-negative, so as to maximize

Ug = E

[
∞∑
t=0

βt (ξt,gu(ct)− h(et))

]
(14)

where ξt,g = 1 in even periods, ξt,g = 0 in odd periods, subject to the budget

constraints

0 ≤ Pt
Qt

bt ≤ Bt,g (15)

0 ≤ Ptdt ≤ Dt,g (16)

ct = bt + dt (17)

Bt+1,g = Bt,g −
Pt
Qt

bt (18)

Dt+1,g = Dt,g − Ptdt (19)

in even periods t and

At = f(Bt)
et
ēt
, with et ≥ 0 (20)

yt = xt + zt (21)

Bt+1,g = At +Bt,g +
Pt
Qt

xt (22)

Dt+1,g = Dt,g + Ptzt + τt+1 (23)

in odd periods t.

2. Red agents optimize: given aggregate money quantities (Bt, Dt, τt), production

yt, prices (Pt, Qt) and initial money holdings B0,r = 0 and D0,r = 0, a red agent

j ∈ [0, 1) chooses consumption quantities bt, ct, dt in odd periods and xt, zt,

effort et and Bitcoin production At in even periods as well as individual money

holdings Bt,r, Dt,r, all non-negative, so as to maximize

Ur = E

[
∞∑
t=0

βt (ξt,ru(ct)− h(et))

]
(24)

where ξt,r = 1 in odd periods, ξt,r = 0 in even periods, subject to the budget

12



constraints

Dt,r = Dt−1,r + τt (25)

0 ≤ Pt
Qt

bt ≤ Bt,r (26)

0 ≤ Ptdt ≤ Dt,r (27)

ct = bt + dt (28)

Bt+1,r = Bt,r −
Pt
Qt

bt (29)

Dt+1,r = Dt,r − Ptdt (30)

in odd periods t and

At = f(Bt)
et
ēt
, with et ≥ 0 (31)

yt = xt + zt (32)

Bt+1,r = At +Bt,r +
Pt
Qt

xt (33)

Dt+1,r = Dt,r + Ptzt + τt+1 (34)

in even periods t.

3. The central bank supplies Dollar transfers τt to achieve Pt

Pt−1
= πt, where πt

and P0 are exogenous

4. Markets clear:

Bitcoin market: Bt = Bt,r +Bt,g (35)

Dollar market: Dt = Dt,r +Dt,g (36)

Bitcoin denom. cons. market: bt = xt (37)

Dollar denom. cons. market: dt = zt (38)

Aggregate effort: et = ēt (39)

3 Analysis

For the analysis, proofs not included in the main text can be found in appendix C.

The equilibrium definition quickly generates the following accounting identities. The
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aggregate, deterministic evolution for the stock of Bitcoins follows from the Bitcoin

market clearing condition and the bitcoin production budget constraint,

Bt+1 = Bt + f(Bt) (40)

Bitcoin production is analyzed in appendix B. The aggregate evolution for the stock

of Dollars follows from the Dollar market clearing constraint and the beginning-of-

period transfer of Dollar budget constraint for the agents,

Dt = Dt−1 + τt (41)

The two consumption markets as well as the production budget constraint

yt = xt + zt

delivers that consumption is equal to production6

ct = yt (42)

We restrict attention to equilibria, where Dollar prices are strictly above zero and

below infinity, and where inflation is always larger than unity

Assumption A. 1. 0 < Pt <∞ for all t and

πt =
Pt
Pt−1

≥ 1 (43)

For example, if inflation is exogenous, this is a restriction on that exogenous

process. If inflation is endogenous, restrictions elsewhere are needed to ensure this

outcome.

It will be convenient to bound the degree of consumption fluctuations. The fol-

lowing somewhat restrictive assumption will turn out to simplify the analysis of the

Dollar holdings.

6Note that the analysis here abstracts from price rigidities and unemployment equilibria, which
are the hallmarks of Keynesian analysis, and which could be interesting to consider in extensions of
the analysis presented here.
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Assumption A. 2. For all t,

u′(yt)− β2Et[u
′(yt+2)] > 0 (44)

The assumption says that no matter how many units of the consumption good an

agent consumes today she will always prefer consuming an additional marginal unit

of the consumption good now as opposed to consuming it at the next opportunity

two periods later. The assumption captures the agent’s degree of impatience.

The following proposition is a consequence of a central bank policy aimed at

price stability, inducing an opportunity cost for holding money. This is in contrast

to the literature concerning the implementation of the Friedman rule, where that

opportunity cost is absent: we return to the welfare consequences in section 5. Note

further, that the across-time insurance motives present in models of the Bewley-

Huggett-Aiyagari variety are absent here, see Bewley (1977), Huggett (1993), Aiyagari

(1994) and may be tangential to the core issue of Bitcoin pricing.

Note that assumption (44) holds.

Lemma 1. (All Dollars are spent:) Agents will always spend all Dollars. Thus,

Dt = Dt,g and Dt,r = 0 in even periods and Dt = Dt,r and Dt,g = 0 in odd periods.

Lemma 2. (Dollar Injections:) In equilibrium, the post-transfer amount of total

Dollars is

Dt = Pt zt

and the transfers are

τt = Pt zt − Pt−1 zt−1

The following proposition establishes properties of the Bitcoin price Qt in the

“fundamental” case, where Bitcoins are used in transactions.

Proposition 1. (Fundamental pricing equation:)

Suppose that sales happen both in the Bitcoin-denominated consumption market as

well as the Dollar-denominated consumption market at time t as well as at time t+1,

i.e. suppose that xt > 0, zt > 0, xt+1 > 0 and zt+1 > 0. Then

Et

[
u′(ct+1)

Pt
Pt+1

]
= Et

[
u′(ct+1)

(Qt+1/Pt+1)

(Qt/Pt)

]
(45)
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In particular, if consumption and production is constant at t+1, ct+1 = yt+1 ≡ ȳ = y,

or agents are risk-neutral, then

Qt = Et
[
Qt+1

πt+1

]
· Et

[
1

πt+1

]−1

(46)

If further Qt+1 and 1
πt+1

are uncorrelated conditional on time-t information, then the

stochastic Bitcoin price process {Qt}t≥0 is a martingale

Qt = Et [Qt+1] (47)

If zero Bitcoins are traded, the fundamental pricing equation becomes an inequal-

ity, see lemma 3 in the appendix.

The logic for the fundamental pricing equation is as follows. The risk-adjusted real

return on Bitcoin has to equal the risk-adjusted real return on the Dollar. Otherwise,

agents would hold back either of the currencies.

The result can be understood as an updated version of the celebrated result in

Kareken-Wallace (1981). These authors did not consider stochastic fluctuations. Our

martingale result then reduces to a constant Bitcoin price, Qt = Qt+1, and thus their

“exchange rate indeterminacy result” for time t = 0, that any Q0 is consistent with

some equilibrium, provided the Bitcoin price stays constant afterwards. Our result

here reveals that this indeterminacy result amounts to a potentially risk-adjusted

martingale condition, which the Bitcoin price needs to satisfy over time while keeping

Q0 undetermined.

Our result furthermore corresponds to equation (14’) in Manuelli-Peck (1990) who

provide a stochastic generalization of the 2-period OLG model in Kareken-Wallace

(1981). Aside from various differences in the model, note that Manuelli-Peck (1990)

derive their results from considering intertemporal savings decisions, which then in

turn imply the indifference between currencies. While we agree with the latter, we do

not insist on the former. Indeed, it may be empricially problematic to base currency

demand on savings decisions without considering interest bearing assets. By contrast,

we obtain the indifference condition directly.

Equation (45) can be understood from a standard asset pricing perspective. As a

slight and temporary detour for illuminating that connection, consider some extension
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of the current model, in which the selling agent enjoys date t consumption with utility

v(ct). The agent would have to give up current consumption, marginally valued at

v′(ct) to obtain an asset, yielding a real return Rt+1 at date t + 1 for a real unit of

consumption invested at date t. Consumption at date t+1 is evaluated at the margin

with u′(ct+1) and discounted back to t with β. The well-known Lucas asset pricing

equation then implies that

1 = Et

[
β
u′(ct+1)

v′(ct)
Rt+1

]
(48)

One such asset are Dollars. They yield the random return of RD,t+1 = 1
Pt+1

units of

the consumption good in t+ 1 and require an investment of 1
Pt

consumption goods at

t. The asset pricing equation (48) then yields

1 = Et

[
β
u′(ct+1)

v′(ct)

Pt
Pt+1

]
(49)

Likewise, Bitcoins provide the real return RB,t+1 = (Qt+1/Pt+1)
(Qt/Pt)

, resulting in the asset

pricing equation

1 = Et

[
β
u′(ct+1)

v′(ct)

(Qt+1/Pt+1)

(Qt/Pt)

]
(50)

One can now solve (50) for v′(ct) and substitute it into (50), giving rise to equation

(45). The difference to the model at hand is the absence of the marginal disutility

v′(ct).

Finally, our result relates to the literature on uncovered interest parity. In that

literature, it is assumed that agents trade safe bonds, denominated in either currency.

That literature derives the uncovered interest parity condition, which states that

the expected exchange rate change equals the return differences on the two nominal

bonds. This result is reminiscent of our equation above. Note, however, that we

do not consider bond trading here: rates of returns, therefore, do not feature in our

results. Instead, they are driven entirely by cash use considerations.

The next proposition establishes properties of the Bitcoin price Qt, if potential

good buyers prefer to keep some or all of their Bitcoins in possession, rather than

using them in a transaction, effectively speculating on lower Bitcoin goods prices or,

equivalently, higher Dollar prices for a Bitcoin in the future. This condition establishes

an essential difference to Kareken and Wallace. In their model, agents live for two
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periods and thus splurge all their cash in their final period. Here instead, since agents

are infinitely lived, the opportunity of currency speculation arises which allows us to

analyze currency competition and asset pricing implications simultaneously.

Proposition 2. (Speculative price bound:)

Suppose that Bt > 0, Qt > 0, zt > 0 and that not all Bitcoins are spent in t,

bt < (Qt/Pt)Bt. Then,

u′(ct) ≤ β2Et

[
u′(ct+2)

(Qt+2/Pt+2)

(Qt/Pt)

]
(51)

where this equation furthermore holds with equality, if xt > 0 and xt+2 > 0.

A few remarks regarding that last proposition and the equilibrium pricing equa-

tion Proposition (1) are in order. To understand the logical reasoning applied here,

it is good to remember that we impose market clearing. Consider a (possibly off-

equilibrium) case instead, where sellers do not wish to sell for Bitcoin, i.e., xt = 0,

because the real Bitcoin price Qt/Pt is too high, but where buyers do not wish to

hold on to all their Bitcoin, and instead offering them in trades. This is a non-market

clearing situation: demand for consumption goods exceeds supply in the Bitcoin-

denominated market at the stated price. Thus, that price cannot be an equilibrium

price. Heuristically, the pressure from buyers seeking to purchase goods with Bitcoins

should drive the Bitcoin price down until either sellers are willing to sell or potential

buyers are willing to hold. One can, of course, make the converse case too. Suppose

that potential good buyers prefer to hold on to their Bitcoins rather than use them in

goods transactions, and thus demand bt = 0 at the current price. Suppose, though,

that sellers wish to sell goods at that price. Again, this would be a non-market clear-

ing situation, and the price pressure from the sellers would force the Bitcoin price

upwards.

We also wish to point out the subtlety of the right hand side of equations (45)

as well as (51): these are expected utilities of the next usage possibility for Bitcoins

only if transactions actually happen at that date for that price. However, as equation

(51) shows, Bitcoins may be more valuable than indicated by the right hand side of

(45) states, if Bitcoins are then entirely kept for speculative reasons. These consid-

erations can be turned into more general versions of (45) as well as (51), which take

into account the stopping time of the first future date with positive transactions on
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the Bitcoin-denominated goods market. The interplay of the various scenarios and

inequalities in the preceding three propositions gives rise to potentially rich dynamics,

which we explore and illustrate further in the next section.

If consumption and production are constant at t, t + 1 and t + 2, ct = ct+1 =

ct+2 ≡ ȳ = y, and if Qt+1 and 1
πt+1

are uncorrelated conditional on time-t information,

absence of goods transactions against Bitcoins xt = 0 at t requires

Et [Qt+1] ≤ Qt ≤ β2Et

[
Qt+2

1

πt+2 πt+1

]
(52)

per propositions 2 and Lemma 3. We next show that this can never be the case.

Indeed, even with non-constant consumption, all Bitcoins are always spent, provided

we impose a slightly sharper version of assumption 2.

Assumption A. 3 (Global Impatience). For all t,

u′(yt)− βEt[u′(yt+1)] > 0 (53)

Note, global impatience is always satisfied for risk-neutral agents if β < 1. With

the law of iterated expectations, it is easy to see that assumption 3 implies assump-

tion 2. Further, assumption 2 implies that (53) cannot be violated two periods in a

row.

Note that equation (53) compares marginal utilities of red agents and green agents.

For an interpretation, consider the problem of a social planner, assigning equal welfare

weights to both types of agents. Suppose that this social planner is given an additional

marginal unit of the consumption good at time t, which she could provide to the agent

consuming in period t or to costlessly store this unit for one period and to provide

it to the agent consuming in period t + 1. Condition (53) then says that the social

planner would always prefer to provide the additional marginal unit to the agent

consuming in period t. This interpretation suggests a generalization of assumption 3,

resulting from distinct welfare weights. Indeed, the proof of 1 works with such a

suitable generalization as well: we analyze this further in the technical appendix D.

Theorem 1. (No-Bitcoin-Speculation.) Suppose that Bt > 0 and Qt > 0 for all

t. Impose assumption 3. Then in every period, all Bitcoins are spent.

One way of reading this result is, that under assumption 3, the model endogenously
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reduces to a two period overlapping generations model.7

Proof. [Theorem 1] Since all Dollars are spent in all periods, we have zt > 0 in all

periods. Observe that then either inequality (88) holds, in case no Bitcoins are spent

at date t, or equation (45) holds, if some Bitcoins are spent. Since equation (45)

implies inequality (88), (88) holds for all t. Calculate that

β2Et[u′(ct+2)
Qt+2

Pt+2

] = β2Et
[
Et+1

[
u′(ct+2)

Qt+2

Pt+2

]]
(law of iterated expectation)

≤ β2Et
[
Et+1

[
u′(ct+2)

Pt+1

Pt+2

]
Qt+1

Pt+1

]
(per equ. (88) at t+ 1)

≤ β2Et
[
Et+1 [u′(ct+2)]

Qt+1

Pt+1

]
(per ass. 1)

< βEt
[
u′(ct+1)

Qt+1

Pt+1

]
(per ass. 3 in t+1)

≤ βEt
[
u′(ct+1)

Pt
Pt+1

]
Qt

Pt
(per equ. (88) at t)

≤ βEt [u′(ct+1)]
Qt

Pt
(per ass. 1)

< u′(ct)
Qt

Pt
(per ass. 3 in t)

which contradicts the speculative price bound (51) in t. Consequently, bt = Qt

Pt
Bt,

i.e. all Bitcoins are spent in t. Since t is arbitrary, all Bitcoins are spent in every

period.

4 Equilibrium: Price Properties and Construction

Since our equilibrium construction draws on a covariance characterization of the Bit-

coin price, we first show the characterization and then discuss equilibrium construc-

tion.

7In two-period OLG models, agents die after two time periods and thus consume their entire
endowment and savings at the end of their life. Here, agents do so endogenously. Thus, the time
period at which an agent earns her stochastic endowment can be interpreted as the agents birth,
since she carries no wealth from previous time periods.
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4.1 Equilibrium Pricing

The No-Bitcoin-Speculation Theorem 1 implies that the fundamental pricing equation

holds at each point in time. We discuss next Bitcoin pricing implications.

Define the pricing kernel mt per

mt =
u′(ct)

Pt
(54)

We can then equivalently rewrite equation (45) as

Qt = Et[Qt+1] +
covt(Qt+1,mt+1)

Et[mt+1]
(55)

Note that one could equivalently replace the pricing kernel mt+1 in this formula with

the nominal stochastic discount factor of a red agent or a green agent, given by

Mt+1 := β2(u′(ct+1)/u′(ct−1))/(Pt+1/Pt−1). For deterministic inflation πt+1 ≥ 1,

Qt = Et[Qt+1] +
covt(Qt+1, u

′(ct+1))

Et[u′(ct+1)]
(56)

With that, we obtain the following corollary to theorem 1 which fundamentally char-

acterizes the Bitcoin price evolution

Corollary 1. (Equilibrium Bitcoin Pricing Formula:)

Suppose that Bt > 0 and Qt > 0 for all t. Impose assumption 3. In equilibrium, the

Dollar-denominated Bitcoin price satisfies

Qt = Et[Qt+1] + κt · corrt

(
u′(ct+1)

Pt+1

, Qt+1

)
(57)

where

κt =

σu′(ct+1)

Pt+1
|t
· σQt+1|t

Et[u
′(ct+1)
Pt+1

]
> 0 (58)

where σu′(ct+1)

Pt+1
|t

is the standard deviation of the pricing kernel, σQt+1|t is the standard

deviation of the Bitcoin price and corrt(
u′(ct+1)
Pt+1

, Qt+1) is the correlation between the

Bitcoin price and the pricing kernel, all conditional on time t information.

Proof. With theorem 1, the fundamental pricing equation, i.e. proposition 1 and

equation (45) always applies in equilibrium. Equation (45) implies equation (55),
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which in turn implies (57).

One immediate implication of corollary 1 is that the Dollar denominated Bitcoin

price process is a supermartingale (falls in expectation) if and only if in equilibrium the

pricing kernel and the Bitcoin price are positively correlated for all t+1 conditional on

time t-information. Likewise, under negative correlation, the Bitcoin price process is

a submartingale and increases in expectation. In the special case that in equilibrium

the pricing kernel is uncorrelated with the Bitcoin price, the Bitcoin price process is

a martingale.

If the Bitcoin price is a martingale, today’s price is the best forecast of tomorrow’s

price. There cannot exist long up- or downwards trends in the Bitcoin price since

the mean of the price is constant over time. If Bitcoin prices and the pricing kernel

are, however, positively correlated, then Bitcoins depreciate over time. Essentially,

holding Bitcoins offers insurance against the consumption fluctuations, for which the

agents are willing to pay an insurance premium in the form of Bitcoin depreciation.

Conversely, for a negative correlation of Bitcoin prices and the pricing kernel, a risk

premium in the form of expected Bitcoin appreciation induces the agents to hold

them.

One implication of our pricing formula is, that the equilibrium evolution of the Bit-

coin price can be completely detached from the central bank’s inflation level. Consider

Pt ≡ 1 across time. Then the Bitcoin price can be all, a super- or a submartingale,

depending on its correlation with marginal utility of consumption. That is, the price

evolution across time may differ substantially although inflation is held constant.

If on the other hand agents are risk-neutral, then the distribution of the Dollar

price level and its correlation with Bitcoin determines the Bitcoin price path, see (46).

The following result is specific to cryptocurrencies which have an upper limit on

their quantity, i.e. in particular Bitcoin. Independently of whether all, some or no

Bitcoins are spent,

Proposition 3. (Real Bitcoin Disappearance:)

Suppose that the quantity of Bitcoin is bounded above, Bt ≤ B̄ and let πt ≥ π for all

t ≥ 0 and some π > 1. If marginal consumption is positively correlated or uncorrelated
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with the exchange rate Qt+1

Pt+1
, covt(u

′(ct+1), Qt+1

Pt+1
) ≥ 0, then

E0

[
Qt

Pt
Bt

]
→ 0, as t→∞ (59)

In words, the purchasing power of the entire stock of Bitcoin shrinks to zero over time,

if inflation is bounded below by a number strictly above one.

The assumption on the covariance is in particular satisfied when agents are risk-

neutral, or for constant output ct ≡ yt ≡ ȳ = y. Note also, that we then have

Qt

Pt
= Et

[
Qt+1

Pt+1

]
· Et

[
1

πt+1

]−1

≥ Et
[
Qt+1

Pt+1

]
(60)

that is, the real value of Bitcoin falls in expectation (is a supermartingale) by equation

(46).

Another way to understand this result is to rewrite the fundamental pricing equa-

tion for the case of a constant Bitcoin stock Bt ≡ B and a constant inflation πt ≡ π

as

Et

[
vt+1

vt

]
= −

covt

(
u′(ct+1), vt+1

vt

)
Et[u′(ct+1)]

+
1

π
(61)

where

vt =
Qt

Pt
Bt

is the real value of the Bitcoin stock at time t. The left hand side of (61) is the growth

of the real value of the Bitcoin stock. The first term on the right hand side (including

the minus sign) is the risk premium for holding Bitcoins. With a fixed amount of

Bitcoins and a fixed inflation rate, the equation says that the expected increase of

the real value of the stock of Bitcoins is (approximately) equal to the risk premium

minus the inflation rate on Dollars8. Should those terms cancel, then the real value

of the stock of Bitcoins remains unchanged in expectation.

Corollary 2. (Real Bitcoin price bound) Suppose that Bt > 0 and Qt, Pt > 0 for

all t. The real Bitcoin price is bounded by Qt

Pt
∈ (0, ȳ

B0
).

8Note that a Taylor expansion yields 1/π ≈ 1− (π − 1) for π ≈ 1, and that π − 1 is the inflation
rate.
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Proof. It is clear that Qt, Pt ≥ 0. Per theorem 1, all Bitcoins are spent in every

periods. Therefore, the Bitcoin price satisfies

Qt

Pt
=

bt
Bt

≤ bt
B0

≤ ȳ

B0

= Q̄ (62)

The upper bound on the Bitcoin price is established by two traits of the model.

First, the Bitcoin supply may only increase implying that Bt (the denominator) can-

not go to zero. This is a property only common to uncontrolled cryptocurrencies.

Second, by assumption, we bound production fluctuation. However, even if we allow

the economy to grow over time, this bound continues to hold.9

Obviously, the current Bitcoin price is far from that upper bound. The bound

may therefore not seem to matter much in practice. However, it is conceivable that

Bitcoin or digital currencies start playing a substantial transaction role in the future.

The purpose here is to think ahead towards these potential future times, rather than

restrict itself to the rather limited role of digital currencies so far.

Heuristically, assume agents sacrifice consumption today to keep some Bitcoins as

an investment in order to increase consumption the day after tomorrow. Tomorrow,

these agents produce goods which they will need to sell. Since all Dollars change

hands in every period, sellers always weakly prefer receiving Dollars over Bitcoins as

payment. The Bitcoin price tomorrow can therefore not be too low. However, with

a high Bitcoin price tomorrow, sellers today will weakly prefer receiving Dollars only

if the Bitcoin price today is high as well. But at such a high Bitcoin price today, it

cannot be worth it for buyers today to hold back Bitcoins for speculative purposes, a

contradiction.

4.2 Equilibrium Existence: A Constructive Approach

We seek to show the existence of equilibria and examine numerical examples. The

challenge in doing so lies in the zero-dividend properties of currencies. In asset pricing,

one usually proceeds from a dividend process Dt, exploits an asset pricing formula

Qt = Dt + Et[Mt+1Qt+1] and “telescopes” out the right hand side in order to write

Qt as an infinite sum of future dividends, discounted by stochastic discount factors.

Properties of fundamentals such as correlations of dividends Dt with the stochastic

9Assume, we allow the support of production yt to grow or shrink in t: yt ∈ [y, yt], then Qt

Pt
≤ yt

B0
.
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discount factor then imply correlation properties of the price Qt and the stochastic

discount factor. This approach will not work here for equilibria with nonzero Bitcoin

prices, since dividends of fiat currencies are identical to zero. Something else must

generate the current Bitcoin price and the correlations. We examine this issue as

well as demonstrate existence of equilibria per constructing no-Bitcoin-speculation

equilibria explicitly. The next proposition reduces the task of constructing no-Bitcoin-

speculation equilibra to the task of constructing sequences for (mt, Pt, Qt) satisfying

particular properties.

Proposition 4. (Equilibrium Existence and Characterization:)

1. Every equilibrium which satisfies assumptions 1 and 3 generates a stochastic

sequence {(mt, Pt, Qt)}t≥0 which satisfy equation (55) and

mt − βEt
[
mt+1

Pt+1

Pt

]
> 0 for all t (63)

2. Conversely, let 0 < β < 1.

(a) There exists a strictly positive (θt)-adapted sequence {(mt, Pt, Qt)}t≥0 sat-

isfying assumption 1 as well as equations (55) and (63) such that the

sequences {Qt/Pt}t≥0 and {Ptmt}t≥0 are bounded from above and that

{Ptmt}t≥0 is bounded from below by a strictly positive number.

(b) Let {(mt, Pt, Qt)}t≥0 be a sequence with these properties. Let u(·) be an ar-

bitrary utility function satisfying the Inada conditions, i.e. it is twice differ-

entiable, strictly increasing, continuous, strictly concave, limc→0 u
′(c) =∞

and limc→∞ u
′(c) = 0. Then, there exists b̄0 > 0, such that for every

initial real value b0 ∈ [0, b̄0] of period-0 Bitcoin spending, there exists a

no-Bitcoin-speculation equilibrium which generates the stochastic sequence

{(mt, Pt, Qt)}t≥0 and satisfies mt = u′(ct)/Pt.

Part 2b of the proposition implies a version of the Kareken-Wallace (1981) re-

sult that the initial exchange rate Q0 between Bitcoin and Dollar is not determined.

The proposition furthermore relates to proposition 3.2 in Manuelli-Peck (1990). Part

2b reduces the challenge of constructing equilibria to the task of constructing (θt)-

adapted sequences {(mt, Pt, Qt)} satisfying the properties named in 2a. This feature
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can be exploited for constructing equilibria with further properties as follows. Sup-

pose we are already given strictly positive and (θt)-adapted sequences for mt and

Pt, satisfying assumption 1 as well as equation (63) such that mtPt is bounded from

above and below by strictly positive numbers. Suppose, additionally, that Pt as well

as Et[mt+1] are bounded from below by some strictly positive number and that the

conditional variances σmt+1|t are bounded from above. For example, mt ≡ 1 and

Pt ≡ 1 will work. Then, we can show how to construct a sequence for Qt such that

part 2b of the Proposition applies:

Pick a sequence of random shocks10 εt = ε(θt), such that Et−1[εt] = 0 and such

that both the infinite sum of its absolute values and the sum of its standard deviations

are bounded by some real number 0 < ζ, ζ̃ <∞,

∞∑
t=0

| εt |≤ ζ a.s. (64)

∞∑
t=0

σεt ≤ ζ̃ (65)

Pick an initial Bitcoin price Q0 satisfying

Q0 > ζ +
∞∑
t=0

covt(mt+1, εt+1)

Et[mt+1]
(66)

This choice guarantees that the entire price sequence of {Qt} we are about to generate

is strictly positive. Lemma 4 in the appendix shows that the right hand side of (66)

is smaller than infinity. Therefore, a finite Q0 satisfying (66) can always be found.

Recursively calculate the sequence Qt per

Qt+1 = Qt + εt+1 −
covt(εt+1,mt+1)

Et[mt+1]
(67)

The initial condition (66) implies that Qt > 0 for all t. With Lemma 4, and iterating

10Note that θt encodes the date t per the length of the vector θt. Therefore, we are formally
allowed to change the distributions of the εt as a function of the date as well as the past history.
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backwards via (67) we have

Qt = Q0 +
t∑

s=1

εs +
t∑

s=1

covt(mt+1, εt+1)

Et[mt+1]
(68)

< Q0 +
∞∑
s=1

| εs | +
∞∑
s=1

| covt(mt+1, εt+1)

Et[mt+1]
|<∞ (69)

By Lemma 4 and (64). Therefore, Qt is bounded from above. By assumption, Pt

is bounded from below by a strictly positive number. Thus, it follows that Qt/Pt

is bounded from above. Since the conditional covariance of mt+1 and εt+1 equals

the conditional covariance of mt+1 and Qt+1, equation (55) is now satisfied by con-

struction. Thus, we arrived at a strictly positive (θt)-adapted sequence (mt, Pt, Qt)

satisfying assumption 1 as well as equations (55) and (63) such that the sequences

Qt/Pt and Ptmt are bounded. Part 2(b) of proposition 4 shows how to obtain a

no-Bitcoin-speculation equilibrium with these sequences.

It is also clear, that this construction is fairly general. In any equilibrium, let

εt = Qt − Et−1[Qt] (70)

be the one-step ahead prediction error for the Bitcoin price Qt. Then, equation (55)

is equivalent to equation (67). The restrictions above concern just the various bound-

edness properties, which we imposed.

4.3 Equilibrium: Examples

For more specific examples, suppose that θt ∈ {L,H}, realizing each value with

probability 1/2. Pick some utility function u(·) satisfying the Inada conditions. For

a first scenario, suppose that inflation is constant Pt = π̄Pt−1 for some π̄ ≥ 1 and

that consumption is iid, c(θt) = cθt ∈ {cL, cH} with 0 < cL ≤ cH and such that

u′(cH) > β(u′(cL) + u′(cH))/2. For a second scenario, suppose that inflation is iid,

Pt/Pt−1 = πθt ∈ {πL, πH}, with 1 ≤ πL ≤ πH and that consumption is constant

ct ≡ c̄ > 0. It is easy to check that (63) is satisfied in both scenarios formt = u′(ct)/Pt.

For both scenarios, consider two cases for ε(θt) = εt(θt),

Case A: εt(L) = 2−t, εt(H) = −2−t

Case B: εt(L) = −2−t, εt(H) = 2−t
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We assume that the distribution for εt+1 is known is one period in advance, i.e., in

period t, agents know, whether εt+1 is distributed as described in “case A” or as

described in “case B”. Expressed formally, define an indicator ιt and let it take the

value ιt = 1, if we are in case A in t+ 1, and ιt = −1, if we are in case B in t+ 1: we

assume that ιt is adapted to (θt). The absolute value of the sum of the εt is bounded

by ξ = 2 which holds by exploiting the geometric sum. For the first scenario, calculate

covt(mt+1, εt+1)

Et[mt+1]
= 2−(t+1)u

′(cL)− u′(cH)

u′(cL) + u′(cH)
ιt (71)

which is positive for ιt = 1 and cL < cH but negative for ιt = −1. For the second

scenario, likewise calculate

covt(mt+1, εt+1)

Et[mt+1]
= 2−(t+1)

1
πL
− 1

πH
1
πL

+ 1
πH

ιt (72)

which is positive for ιt = 1 and πL < πH but negative for ιt = −1. With equation (66),

pick

Q0 > 2 +
u′(cL)− u′(cH)

u′(cL) + u′(cH)

for scenario 1 and

Q0 > 2 +
1
πL
− 1

πH
1
πL

+ 1
πH

for scenario 2. Consider three constructions,

Always A: Always impose case A, i.e. εt(L) = 2−t, εt(H) = −2−t.

Always B: Always impose case B, i.e. εt(L) = −2−t, εt(H) = 2−t

Alternate: In even periods, impose case A, i.e. εt(L) = 2−t, εt(H) = −2−t. In odd

periods, impose case B, i.e. εt(L) = −2−t, εt(H) = 2−t

For each of these, calculate the Qt sequence with equation (67) and the resulting

equilibrium with proposition 4. As third scenario, if both consumption and inflation

are constant, then all three constructions result in a martingale for Qt = Et[Qt+1].

Suppose that cL < cH in scenario 1 or πL < πH in scenario 2, i.e. suppose we have

nontrivial randomness of the underlying processes in either scenario. The “Always

A” construction results in Qt > Et[Qt+1] and Qt is a supermartingale. This can be
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seen by plugging in (71) respectively (72) into equation

Et[Qt+1] = Qt + Et[εt+1]− cov(εt+1,mt+1)

Et[mt+1]
(73)

where Et[εt+1] = 0 by construction. The “Always B” construction results in a sub-

martingale Qt < Et[Qt+1]. The “Alternate” construction results in a price process

that is neither a supermartingale nor a submartingale.

These examples were meant to illustrate the possibility, that supermartingales,

submartingales as well as mixed constructions can all arise, starting from the same

assumptions about the fundamentals. Sample paths of these price processes are un-

likely to look like the saw tooth pattern shown in figure 1, however. To get somewhat

closer to that, the following construction may help. Once again, let θt ∈ {L,H}, but

assume now that P (θt = L) = p < 0.5. Suppose that Pt ≡ 1 and ct ≡ c̄, so that

mt is constant and that Qt must be a martingale. Pick some Q ≥ 0 as well as some

Q∗ > Q. Pick some Q0 ∈ [Q,Q∗]. If Qt < Q∗, let

Qt+1 =

{
Qt−pQ

1−p if θt = H

Q if θt = L

If Qt ≥ Q∗, let Qt+1 = Qt. Therefore Qt will be a martingale and satisfies (55). If Q0

is sufficiently far above Q and if p is reasonably small, then typical sample paths will

feature a reasonably quickly rising Bitcoin price Qt, which crashes eventually to Q

and stays there, unless it reaches the upper bound Q∗ first. Further modifications of

this example can generated generate repeated sequences of rising prices and crashes.

5 Implications for Monetary Policy

Throughout the section, we impose assumption 3. The resulting No-Bitcoin-Speculation

Theorem 1 in combination with the equilibrium conditions implies interdependence

between the Bitcoin price and monetary policy of the central bank. Since all Dollars

and Bitcoins change hands in every period, the velocity of money equals one. In a

world with only one money, classical quantity theory yields that depending on the

exogenous realization of output, the central bank adjusts the dollar quantity such

that the desired Dollar price level realizes, i.e. according to
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yt =
Dt

Pt
(74)

In our model instead, with two monies, equilibrium market clearing imposes

yt =
Dt

Pt
+
Qt

Pt
Bt (75)

That is, there are now two endogenous variables, the Dollar quantity and the Bit-

coin price. To understand their relationship, first consider the price level Pt to be

endogenous as well. Think of the Dollar quantity as a policy choice, while keeping

yt = y and Bt = B as exogenously given. Without Bitcoins or with Bt = 0, equation

(74) implies the classic relationship between the quantity of money and the price

level. There, policy via the choice of the Dollar quantity Dt can pick a desired level

of prices Pt. With Bt > 0 and Qt endogenous, however, matters become a bit more

involved. Consider two different Dollar quantities Dt = D and Dt = D′. For each

Dollar quantity, there is now a set or line of equilibrium values for P = Pt and Qt = Q

satisfying the market clearing equation (75),

L = {(Q,P ) | P =
D

y
+Q

B

y
}, L′ = {(Q,P ) | P =

D′

y
+Q

B

y
}

These two lines are shown in the left panel of figure 4. Suppose we start from the

equilibrium at point A for the Dollar quantity D. What happens, as the central bank

issues the Dollar quantity D′ instead? Without further assumptions, any (Q,P )-pair

on line L′ may constitute the new equilibrium. Some additional equilibrium selec-

tion criterion would be required. One possibility, which we label the “conventional

scenario”, is to think of the Bitcoin price as moving exogenously: in the figure, we

fix it at Q = Q̄. In that case, we get a version of the classic relationship in that the

increase in the dollar quantity from D to D′ leads to a higher price level, moving the

equilibrium from point A to point B. Another possibility though, which we label the

“unconventional scenario”, is to instead fix the price level at some exogenously given

level P = P̄ : now, increasing the Dollar quantity reduces the Bitcoin price, moving

the equilibrium from point A to point C. Many other equilibrium selection criteria

can be introduced, in principle.

We have side-stepped these equilibrium selection issues per fixing πt as an exoge-

nous stochastic process along with P0. There is a large literature on the capability
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of central banks to influence the Dollar price level, and we have nothing new to con-

tribute to that: our assumption about the exogeneity of the price level encodes that

literature. The question of interest here is to what degree the central bank can in-

fluence the Bitcoin price. The relevant equilibrium relationship is then given by the

right panel of figure 4, where we have now fixed the price level P . The “conventional”

scenario now amounts to assuming exogenous fluctuations in Q, moving, say, from Q

to Q′, to which the central bank has to react per moving the Dollar quantity from D

to D′ in order for (75) to continue to be satisfied. The equilibrium then moves from

point A to point B. Conversely and for the “unconventional” scenario, one may wish

to think of the central bank as picking the Dollar quantity as D or D′ and thereby

picking the Bitcoin price to be Q or Q′. Both (and more) scenarios are consistent

with our definition of equilibrium. We proceed to examine the consequences of each

in greater detail.

P

Q

L’: for D’

L: for D
y/D

y/D’
A

B

C

Q

P

D

Q

Py

A

B

D

D’

QQ’

Figure 4: Examining equation (75), y = D
P

+ Q
P
B, taking y and B as given.

5.1 Conventional Scenario

The most conventional causality one may impose is, assume that Bitcoin prices move

independently of central bank policies. Then, we can explicitly characterize the im-

pact of the Bitcoin price on policy.

Corollary 3. (Conventional Monetary Policy:)

The equilibrium Dollar quantity is given as

Dt = ytPt −QtBt (76)
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The central bank’s transfers are

τt = ytPt −QtBt − Pt−1zt−1 (77)

The corollary follows since by equation (75) and Lemma 2, τt = Ptzt−Pt−1zt−1 =

Dt − Pt−1zt−1. Corollary 3 and the fundamental pricing equation provide a straight-

forward receipt for forecasting the dollar supply.

Application 1 (Forecasting the Dollar supply). Since Bt+1 is known at time t, using

Corollary 3, Corollary 1 and Bt+1 = Bt + At we obtain

Et[Dt+1] = Et[yt+1Pt+1]− (Bt + At) (Qt − κt · corrt(
u′(ct+1)

Pt+1

, Qt+1))

= Et[yt+1Pt+1]−Bt Qt − AtQt + κt (Bt + At) · corrt(
u′(ct+1)

Pt+1

, Qt+1)

= Dt − (ytPt − Et[yt+1Pt+1])− AtQt + κt (Bt + At) · corrt(u
′(ct+1), Qt+1)

where κt stems from Corollary 1.

5.2 Unconventional Scenario

A less conventional view to read equation (75) is as follows. Assume the central bank

can maintain the inflation level πt independently of the transfers she sets. Further,

assume that she sets transfers independently of production.11 The market clearing

condition implies that

Corollary 4. (Policy-driven Bitcoin price:) The equilibrium Bitcoin price satis-

fies

Qt =
ytPt −Dt

Bt

(78)

Intuitively, the causality is in reverse compared to scenario 1: now central bank

policy drives Bitcoin prices. However, the process for the Dollar stock cannot be

arbitrary. To see this, suppose that yt ≡ ȳ and πt ≡ π̄ are constant. We already

know that Qt must then be a martingale per equation (47). Suppose Bt is constant

as well. Equation (78) now implies that Dt must be a martingale too. Intuitively, the

11This may surely appear to be an unconventional perspective. The key here is, however, that
these assumptions are not inconsistent with our definition of an equilibrium. The analysis would
then be incomplete without the consideration of such an unconvential perspective.
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central bank has been freed from concerns regarding the price level, and is capable

to steer the Bitcoin price this way or that, per equation (78). But in doing so, the

equilibrium asset pricing conditions imply that the central bank is constrained in its

policy choice.

Under the unconventional scenario various applications are possible.

Application 2. (Bitcoin Price Distribution:)

Suppose that production yt is iid. with distribution function F , yt ∼ F . Assume Pt

is predetermined with, Pt = Et−1[Pt], i.e. Pt is known at time t. The distribution

Gt of the Bitcoin price conditional on time t− 1 information and conditional on the

realization of the Dollar supply Dt is then given by

Gt|t−1,Dt(s) = P(Qt ≤ s|t− 1, Dt) = F (
Bt s+Dt

Pt
). (79)

As a consequence, changes in expected production or production volatility translate

directly to changes in the expected Bitcoin price or price volatility. If Bitcoin quantity

or Dollar quantity is higher, high Bitcoin price realizations are less likely in the sense

of first order stochastic dominance. This holds since F (Bt s+Dt

Pt
) is increasing in both

Bt and Dt.

Intuitively, by setting the Dollar quantity, the central bank can control the Bitcoin

price. Further, a growing quantity of Bitcoins calms down the Bitcoin price.

Application 3. (Bitcoin price and Productivity)

Compare two economies which differ only in terms of their productivity distributions,

F1 vs F2. Say economy 2 is more productive than economy 1, if the productivity distri-

bution of economy 2 first order stochastically dominates the productivity distribution

of economy 1. Then, as economies become more productive, the Bitcoin price is higher

in expectation. Assume F2 first-order stochastically dominates F1. Let G2,t and G1,t
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be the resulting distributions for Bitcoin prices. Since the Bitcoin price is positive,

E[Qt,2] =

∫ ∞
0

x dG2,t(x)

=

∫ ∞
0

(1−G2,t(x)) dx

=

∫ ∞
0

(1− F2(
Btx+Dt

Pt
)) dx

≥
∫ ∞

0

(1− F1(
Btx+Dt

Pt
)) dx

= E[Qt,1]

Note, the application only requires second order stochastic dominance which is implied

by first order stochastic dominance.

5.3 Optimal Monetary Policy and Welfare

Analyzing welfare in this model is straightforward. Let 0 < λ < 1 be the welfare

weight on green agents and 1− λ be the welfare weight on red agents, assuming that

agents of the same type all receive the same weight. The overall welfare function is

then given by

W = λUg + (1− λ)Ur

where Ug and Ur are given in equations (14) and (24). Welfare is maximized, if

all output of the consumption good is always consumed and no Bitcoins are ever

produced. For this, note that the social planner cannot redistribute consumption

goods from even to odd periods, i.e., changing the welfare weight λ does not change

the welfare-maximal allocation.

In all our equilibria, all output of the consumption good is always consumed.

Therefore, the welfare arising from goods consumption is unaffected by monetary

policy or the price path for Bitcoins. This implies that low inflation, as well as high

inflation, all achieve the same goods consumption welfare. The only part of utility

possibly affected is the disutility from producing Bitcoin. The absence of Bitcoin

production is welfare optimal and feasible. Any production of Bitcoin is wasteful in

terms of welfare. This result should not surprise in this model. Anything that can

possibly be done with Bitcoin can be done with Dollar. Since Bitcoins are costly to
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produce, while Dollars can be produced costlessly, Dollars should be used, if otherwise,

Bitcoin production is necessary. It is a policy conclusion reached straight from the

assumption, that the government is better at doing something than the private sector,

and thus not very informative. It may also be interesting to note that the mining of

Bitcoins adds to the gross national product since the mined Bitcoins would need to be

evaluated at their market price. More Bitcoin production means more GNP, but less

welfare. In summary then, all equilibria, in which no Bitcoin production takes place,

are welfare optimal and minimize GNP. Needless to say, these results are unlikely to

remain true in generalizations of our model.

5.4 Robustness

We are next interested in the implications of our model should the No-Speculation

Theorem fail. For instance, assume, assumption 3 does not hold. Assume, not all

Bitcoins are spent. Then either some Bitcoins are spent, or no Bitcoins are spent.

Since all Dollars are spent in each period, by Lemma 1, if some Bitcoins are spent the

fundamental pricing equation 1 and therefore Corollary 1 still apply. If no Bitcoins

are spent, the fundamental condition holds with inequality, see Lemma 3. As a

consequence, the covariance formula in Corollary 1 becomes

Qt ≥ Et[Qt+1] + κt · corrt

(
u′(ct+1)

Pt+1

, Qt+1

)
(80)

which implies price bounds. Concerning monetary policy, if not all Bitcoins are spent

we have bt < (Qt/Pt)Bt. Market clearing and other equilibrium conditions yield

Pt yt = Pt (bt + zt) < QtBt +Dt

which implies bounds for monetary policy respectively the Bitcoin price.

6 Conclusions

This paper has analyzed the evolution of cryptocurrency prices and the consequences

for monetary policy in a model, in which a cryptocurrency (Bitcoin) coexists and

competes with a traditional fiat money (Dollar) for usage. A central bank targets

a stochastic inflation level for the Dollar via appropriate monetary injections, while
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Bitcoin production is decentralized via proof-of-work and Bitcoin supply may only

increase over time. Both monies can be used for transactions. We have derived a

“fundamental pricing equation” for Bitcoin prices when both currencies are simul-

taneously in use. It implies that Bitcoin prices form a martingale in a special case.

We have provided a “speculative price bound” when Bitcoins are held back in trans-

actions in the hope of a Bitcoin price appreciation. We have provided conditions,

under which no speculation in Bitcoins arises. We have provided a general method

for constructing equilibria, thereby demonstrating their existence. Specific examples

show that the Bitcoin price might appreciate or depreciate in expectation, or a mix

thereof. We have studied the implications for monetary policy under a “conven-

tional” as well as an “unconventional” scenario. In the conventional scenario, the

Bitcoin price evolves exogenously, thereby driving the Dollar injections needed by

the Central Bank to achieve its inflation target. In the unconventional scenario, we

suppose that the inflation target is achieved for a range of monetary injections, which

then, however, influence the price of Bitcoins.

The simple model environment considered here already gives rise to a rich set

of insights and results. Future research may examine the robustness of the results

obtained here as well as their general applicability to the market of digital currencies.
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A P P E N D I X

A Some background and literature

The original Bitcoin idea and the key elements of its construction and trading system

are described by the mysterious author Nakamoto (2008). They can perhaps be

summarized and contrasted with traditional central-bank issued money as follows:

this will be useful for our analysis. While there are many currencies, each currency

is traditionally issued by a single monopolist, the central bank, which is typically

a government organization. Most currencies are fiat currencies, i.e. do not have

an intrinsic value as a commodity. Central banks conduct their monetary operations

typically with the primary objective of maintaining price stability as well as a number

of perhaps secondary economic objectives. Private intermediaries can offer inside

money such as checking accounts, but in doing so are regulated and constrained by

central banks or other bank regulators, and usually need to obtain central bank money

to do so. By contrast, Bitcoin is issued in a decentralized manner. A Bitcoin is an

entry in an electronic, publicly available ledger or blockchain. Issuing or creating

(or “mining”) a Bitcoin requires solving a changing mathematical problem. Anyone

who solves the problem can broadcast the solution to the Bitcoin-using community.

Obtaining a solution is hard and becoming increasingly harder while checking the

correctness of the solution is relatively easy. This ”proof of work” for creating a

Bitcoin thus limits the inflow of new Bitcoins. Bitcoins and fractions of Bitcoins

can be transferred from one owner to the next, per broadcasting the transaction to

the community and adding that transaction to the ledger information or blockchain.

Transaction costs may be charged by the community, which keeps track of these

ledgers.

There is an increasing number of surveys or primers on the phenomenon, its

technical issues or its regulatory implications, often provided by economists working

for central banks or related agencies and intended to inform and educate the public

as well as policymakers. Velde (2013), as well as Brito and Castillo (2013) provide

early and excellent primers on Bitcoin. Weber (2013) assesses the potential of the

Bitcoin system to become a useful payment system, in comparison to current practice.

Badev and Chen (2014) provide an in-depth account of the technical background.

Digital Currencies have received a handbook treatment by Lee (2015), collecting
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contributions by authors from various fields and angles. Böhme et al. (2015) provide

an introduction to the economics, technology, and governance of Bitcoin in their

Journal-of-Economics-Perspective contribution. There is now a journal called Ledger,

available per ledgerjournal.org, devoted to publishing papers on cryptocurrencies and

blockchain since its inaugural issue in 2016. Bech and Garratt (2017) discuss whether

central banks should introduce cryptocurrencies, finding its echo in the lecture by

Carstens (2018). Borgonovo et al. (2017) examine this issue from a financial and

political economics approach. Chohan (2017) provides a history of Bitcoin.

The phenomenon of virtual currencies such as Bitcoin is increasingly attracting

the attention of serious academic study by economists. Rather than an exhaustive

literature overview, we shall only provide a sample. Some of the pieces cited above

contain data analysis or modeling as well.

Gandal and Halaburda (2014) empirically investigate competition between cryp-

tocurrencies. Yermack (2015), a chapter in the aforementioned handbook, concludes

that Bitcoin appears to behave more like a speculative investment than a currency.

Brandvold et al. (2015) examine the price discovery on Bitcoin exchanges. Fantazzini

et al. (2016, 2017) provide a survey of econometric methods and studies, examining

the behavior of Bitcoin prices, and list a number of the publications on the topic so far.

Fernández-Villaverde and Sanches (2016) examine the scope of currency competition

in an extended Lagos-Wright model and argue that there can be equilibria with price

stability as well as a continuum of equilibrium trajectories with the property that the

value of private currencies monotonically converges to zero. Bolt and Oordt (2016)

examine the value of virtual currencies, predicting that increased adoption will imply

that the exchange rate will become less sensitive to the impact of shocks to specu-

lators’ beliefs. This accords with Athey et al. (2016), who develop a model of user

adoption and use of a virtual currency such as Bitcoin in order to analyze how market

fundamentals determine the exchange rate of fiat currency to Bitcoin, focussing their

attention on an eventual steady state expected exchange rate. They further analyze

its usage empirically, exploiting the fact that all individual transactions get recorded

on Bitcoin’s public ledgers. They argue that a large share of transactions is related

to illegal activities, thus agreeing with Foley et al. (2018), who investigate this issue

in additional detail. Trimborn and Härdle (2016) propose an index called CRIX for

the overall cryptocurrency market. Catallini and Gans (2016) provide ”some simple

economics of the blockchain”, a key technological component of Bitcoin, but which
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has much broader usages. Schnabel and Shin (2018) draw lessons from monetary

history regarding the role of banks in establishing trust and current debates about

cryptocurrencies. Cong and He (2018) examine the role of the blockchain technology,

a key component of the Bitcoin technology, for “smart contracts”. The most closely

related contribution in the literature to our paper is Garratt-Wallace (2017), as we

discussed at the end of the introduction.

It is hard not to think of bubbles in the context of Bitcoin. There is a large

literature on bubbles, that should prove useful in that regard. In the original analysis

of Samuelson (1958), money is a bubble, as it is intrinsically worthless. We share that

perspective here for both the Dollar and the Bitcoin. It might be tempting to think

that prices for Bitcoin could rise forever, as agents speculate to receive even higher

prices in the future. Tirole (1982) has shown that this is ruled out in an economy

with infinite-lived, rational agents, a perspective which we share, whereas Burnside-

Eichenbaum-Rebelo (2015) have analyzed how bubbles may arise from agents catching

the “disease” of being overly optimistic. Our model shares some similarity with the

bubbles perspective in Scheinkman-Xiong (2003), where a bubble component for an

asset arises due to a sequence of agents, each valuing the asset for intermittent periods.

Guerrieri-Uhlig (2016) provides some overview of the bubble literature. The Bitcoin

price evolution can also be thought about in the context of currency speculation

and carry trades, analyzed e.g. by Burnside-Eichenbaum-Rebelo (2012): the three

perspectives given there may well be relevant to thinking about the Bitcoin price

evolution, but we have refrained from pursuing that here.

B Bitcoin Production

One interpretation of the Bitcoin production function in equation (11), which is close

to the institutional details, is to interpret effort et as “energy” or a combination of

energy and the appropriate acquisition of hardware. We have chosen the effort formu-

lation, in order to avoid some tedious terms of reducing overall goods consumption,

due to the diversion of output into Bitcoin production. To the degree that the re-

source costs of producing Bitcoins are still minor compared to global output, this

seems appropriate for the analysis.

Our modeling of individual Bitcoin production At,j in form of an expected value

avoids uneven distribution of Bitcoins across the population per the random outcome
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of mining. We effectively assume that mining effort is perfectly observable to all and

that a mutual insurance contract grants each agent a share of the Bitcoins mined by

the entire population in the appropriate proportion of energy or effort expended. One

might object to this assumption, that there is no such world-wide insurance across

Bitcoin miners. However, if large numbers of Bitcoins are mined each period, then

relatively large subgroups of agents, which are nonetheless small compared to the

entire population, can enter into such mutual insurance contracts and achieve near-

certain Bitcoin-mining outcomes, by the law of large numbers, see also Cong, He, and

Li (2018). Such subgroups can be thought of as Bitcoin mining farms, which indeed

are in existence now.

As for the production of Bitcoins, we obtain the following result.

Proposition 5. (Bitcoin Production Condition:) Suppose that Dollar sales are

nonzero, zt > 0 in period t. Then

h′(et,j) ≥ βEt

[
u′(ct+1)

Qt+1

Pt+1

]
f(Bt)

1

ēt
(81)

This inequality is an equality, if there is positive production At > 0 of Bitcoins and

associated positive effort et > 0 at time t as well as positive spending of Bitcoins

bt+1 > 0 in t+ 1.

Proof. This is a standard comparison of costs to benefits and can be derived formally,

using the usual Kuhn-Tucker conditions and some tedious calculations. Briefly, pro-

viding effort causes disutility of h′(et) at time t at the margin. Likewise, at the

margin, this effort generates f(Bt) Bitcoins. A Bitcoin buys Qt+1/Pt+1 units of the

consumption good at time t + 1, to be evaluated at marginal utility u′(ct+1). This

gives rise to condition (81) with equality, when Bitcoin production is positive as well

as bt+1 > 0. For that latter condition, note that the agent may value Bitcoins more

highly than Qt+1/Pt+1 at t+ 1, if she chooses to keep them all, i.e. bt+1 = 0.

Keep in mind that we are assuming in the proposition above, that Bitcoin pro-

duction can happen right away if this turns out to be profitable. In practice, capacity

such as computing farms together with programmers capable of writing the appro-

priate code may need to build up gradually over time. One could extend the model

to allow for such time-to-build of capacity, and it may be interesting to do so.
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C Proofs

Proof. [Lemma 1] Let D∞,g = lim inft→∞Dt,g. It is clear, that D∞,g = 0. By assump-

tion, it cannot undercut zero. Also, it cannot be strictly positive, since otherwise,

a green agent could improve his utility per spending D∞,g on consumption goods in

some even period, without adjusting anything else except reducing Dollar holdings

subsequently by D∞,g in all periods. Note that Dollar holdings for green agents in

odd periods are never higher than the Dollar holdings in the previous even period

since at best, they can choose not to spend any Dollars in the even periods. Consider

then some odd period, such that Dt+1,g > 0, i.e. suppose the green agent has not

spent all her Dollars in the previous even period t. Given θt, the agent can then

increase his consumption in t at the cost of reducing his consumption in t + 2, for a

marginal utility gain of

βt
(
u′(ct)− β2Et

[
u′(ct+2)

Pt
Pt+2

])
(82)

= βt
(
u′(ct)− β2Et

[
u′(ct+2)

Pt
Pt+1

Pt+1

Pt+2

])
(83)

This gain is strictly positive, since ct = yt in all periods, and per assumption 1 and

2. For red agents, this argument likewise works for all even periods t ≥ 2.

Proof. [Lemma 2] Assume, t+1 is even. The Dollar-denominated consumption market

clearing condition implies

Dt+1 = Dt+1,g +Dt+1,r = Dt+1,g = Ptzt + τt+1 (84)

where we used Dt+1,r = 0 = Dt,g. If t+ 1 is odd, then analogously Dt+1,g = 0 = Dt,r.

The evolution of the amount of Dollar is given as

Dt+1 = Dt + τt+1 (85)

Comparing (84) and (85), we have

Dt = Pt zt (86)

Likewise, Dt+1 = Pt+1zt+1. Plugging Dt+1 = Pt+1 zt+1 into (84) and using that
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equation for t rather than t+ 1 delivers

τt = Pt zt − Pt−1 zt−1 (87)

Proof. [Proposition 1] If xt > 0 and zt > 0, selling agents at time t must be marginally

indifferent between accepting Dollars and accepting Bitcoins. If they sell one marginal

unit of the consumption good for Dollars, they receive Pt Dollar with which they can

buy Pt

Pt+1
units of the consumption good at date t+1 and evaluating the extra consump-

tion at the marginal utility u′(ct+1). If they sell one marginal unit of the consumption

good for Bitcoin, they receive (Pt/Qt) Bitcoins and can thus buy (Pt/Qt)·(Qt+1/Pt+1)

units of the consumption good at date t+ 1, evaluating the extra consumption at the

marginal utility u′(ct+1). Indifference implies (45).

Proof. [Proposition 2] Market clearing implies that demand equals supply in the

Bitcoin-denominated consumption market. Therefore, bt < (Qt/Pt)Bt implies that

buyers choose not to use some of their Bitcoins in purchasing consumption goods.

For a (marginal) Bitcoin, they could obtain Qt/Pt units of the consumption good,

evaluated at marginal utility u′(ct) at time t. Instead, they weakly prefer to hold

on to the Bitcoin. The earliest period, at which they can contemplate purchasing

goods is t + 2, where they would then obtain Qt+2/Pt+2 units of the consumption

good, evaluated at marginal utility u′(ct+2), discounted with β2 to time t. As this is

the weakly better option, equation (51) results. If good buyers use Bitcoins both for

purchases as well as for speculative reasons, both uses of the Bitcoin must generate

equal utility, giving rise to equality in (51).

Lemma 3. (Zero-Bitcoin-Transactions Condition:)

Suppose that Bt > 0, Qt > 0, zt > 0 and that there is absence of goods transactions

against Bitcoins xt = bt = 0 at date t. Then

Et

[
u′(ct+1)

Pt
Pt+1

]
≥ Et

[
u′(ct+1)

(Qt+1/Pt+1)

(Qt/Pt)

]
(88)

If consumption and production is constant at t and t + 1, i.e. if ct = ct+1 ≡ ȳ = y,

and if Qt+1 and 1
πt+1

are uncorrelated conditional on time-t information, absence of
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goods transactions against Bitcoins at date t implies

Qt ≥ Et [Qt+1] (89)

Proof. If xt = bt = 0, it must be the case, that sellers do not seek to sell positive

amounts of goods against Bitcoin at the current price in Bitcoin Qt, and at least

weakly prefer to sell using Dollars instead. This gives rise to equation (88).

Proof. [Proposition 4]

1. For part 1 of the proposition, consider an equilibrium satisfying assumptions 1

and 3. Theorem 1 implies, that there will be no Bitcoin speculation, and that

therefore equation (55) holds. Equation (63) follows directly from equation (53),

the definition of mt and the equilibrium condition ct = yt.

2. (a) This is trivially true for the sequence (mt, Pt, Qt) ≡ (1, 1, 1) for all t.

(b) Fix the sequence {(mt, Pt, Qt)}t≥0 with the properties mentioned in (a),

that is assumption 1 and equations (55) and (63) hold. Further, there

exist bounds µ, υ,Υ > 0 such that 0 < Qt/Pt < µ and 0 < υ < Ptmt < Υ

for all t.

Let u(·) an arbitrary, twice differentiable, strictly increasing, concave util-

ity function. Pick b̄0 as the solution to the equation

u′
(
P0

Q0

µb̄0

)
= Υ (90)

Note, b̄0 > 0 is well-defined since u′(·) is invertible and since P0

Q0
µ,Υ > 0.

Let f(·) be the unique inverse of u′, i.e. f(u′(c)) = c for all c > 0. Define

the sequence {ct}t≥0 ≡ {yt}t≥0 := {f(Ptmt)}t≥0. Note, the choice of utility

function pins down the consumption sequence. Observe that yt ∈ [y, ȳ] for

all t, where y = f(Υ), ȳ = f(υ) since u′ and thus f are decreasing. Also,

{ct} and {yt} are θt-adapted. Since (63) holds by assumption for all t

and since we defined yt = ct for all t, assumption (3) is satisfied. Given

b0 ∈ [0, b̄0], let B0 := (P0/Q0)b0 be the initial quantity of Bitcoins resulting

in the real quantity b0 of spending in Bitcoins, if all Bitcoins are spent.

Note that by (90),

0 ≤ B0 ≤ y/µ (91)
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Pick a disutility-of-effort function such that Bitcoins are never produced,

see the appendix for details. Therefore, the quantity of Bitcoins Bt stays

constant at Bt ≡ B0. Note that by (91), and the existence of the upper

bound µ, the real value of Bitcoins is always strictly below the total value

of output,

(Qt/Pt)Bt < µBt ≤ y ≤ yt (92)

Solve for the quantity of dollars Dt = Ptyt − QtBt > 0 and thus the

monetary transfers τt = Dt −Dt−1. The remaining quantities follow from

the equilibrium definition in a straightforward manner and by this, it is

clear that the resulting sequences constitute an equilibrium. Since assump-

tions 1 and 3 are satisfied, the no-Bitcoin-speculation property holds per

theorem 1.

Lemma 4. Suppose εt satisfies Et−1[εt] = 0 for all t ≥ 1 and satisfies equation (64).

Suppose that Et[mt+1] are bounded from below by some strictly positive number and

that the conditional variances σmt+1|t are bounded from above. Then,

ψ :=
∞∑
t=0

| covt(mt+1, εt+1)

Et[mt+1]
|<∞ (93)

Proof. By (65), the sum of the conditional standard deviations of εt is bounded above

by some finite ζ̃,
∞∑
t=0

σεt+1|t ≤ ζ̃ (94)

Let m be a lower bound for the sequence {Et[mt+1]}t≥0 and let σ̄m be an upper bound

for the conditional standard deviations of mt. Note that

ψ =
∞∑
t=0

|corrt(mt+1, εt+1)| σ̄m σεt+1

|Et[mt+1]|

≤
∞∑
t=0

σ̄m
m
σεt+1|t

≤ σ̄m
m
ζ̃
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by corrt(mt+1, εt+1) ∈ (−1, 1) for all t.

Proof. [Proposition 3] Assume πt ≥ π for all t ≥ 0 and some π > 1. Assume

covt(u
′(ct+1), Qt+1

Pt+1
) ≥ 0. Then, with equations (45) and (88),

Qt

Pt
≥
Et[u

′(ct+1) Qt+1

Pt+1
]

Et[u′(ct+1) Pt

Pt+1
]

(95)

≥
Et[u

′(ct+1) Qt+1

Pt+1
]

Et[u′(ct+1)] 1
π

(96)

= π
covt(u

′(ct+1), Qt+1

Pt+1
) + Et[u

′(ct+1)]Et[
Qt+1

Pt+1
]

Et[u′(ct+1)]
(97)

= π

(
covt(u

′(ct+1), Qt+1

Pt+1
)

Et[u′(ct+1)]
+ Et

[
Qt+1

Pt+1

])
(98)

≥ π Et

[
Qt+1

Pt+1

]
(99)

Writing this equation in t = 0 and iterating yields

Q0

P0

≥ πE0

[
Q1

P1

]
≥ π2E0

[
E1

[
Q2

P2

]]
≥ · · · ≥ πtE0

[
E1

[
. . . Et−1

[
Qt

Pt

]]]
(100)

By the law of iterated expectations, find

E0

[
Qt

Pt
Bt

]
≤ E0

[
Qt

Pt

]
B̄ ≤ Q0

P0

B̄π−t → 0 for t→∞

demonstrating convergence in mean.
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Technical Appendix

D The No-Bitcoin-Speculation Theorem: A Slight

Generalization

Consider the following slightly more general version of assumption 3.

Assumption A. 4. Let α > 0. For all even t

u′(yt)− αβEt[u′(yt+1)] > 0 (101)

while for all odd t

αu′(yt)− βEt[u′(yt+1)] > 0 (102)

For α = 1, one obtains assumption 3. The assumption above arises, when consid-

ering welfare weights of λ on green agents and 1−λ on red agents, where λ = 1/(1+α).

Theorem 2. (No-Bitcoin-Speculation Generalized.) Suppose that Bt > 0 and

Qt > 0 for all t. Impose assumption 4. Then in every period, all Bitcoins are spent.

Proof. [Theorem 2] The proof closely parallels the proof of theorem 1. Since all

Dollars are spent in all periods, we have zt > 0 in all periods. Observe that then

either inequality (88) holds, in case no Bitcoins are spent at date t, or equation (45)

holds, if some Bitcoins are spent. Since equation (45) implies inequality (88), (88)
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holds for all t. Suppose first that t is an even period. Then

β2Et[u′(ct+2)
Qt+2

Pt+2

] = β2Et
[
Et+1

[
u′(ct+2)

Qt+2

Pt+2

]]
(law of iterated expectation)

≤ β2Et
[
Et+1

[
u′(ct+2)

Pt+1

Pt+2

]
Qt+1

Pt+1

]
(per equ. (88) at t+ 1)

≤ β2Et
[
Et+1 [u′(ct+2)]

Qt+1

Pt+1

]
(per ass. 1 )

< αβEt
[
u′(ct+1)

Qt+1

Pt+1

]
(per ass. 4 in t+1)

≤ αβEt
[
u′(ct+1)

Pt
Pt+1

]
Qt

Pt
(per equ. (88) at t)

≤ αβEt [u′(ct+1)]
Qt

Pt
(per ass. 1)

< u′(ct)
Qt

Pt
(per ass. 4 in t)

which contradicts the speculative price bound (51) in t. Consequently, bt = Qt

Pt
Bt,

i.e. all Bitcoins are spent in t. The same calculations obtain, if t is an odd period,

per replacing α with 1/α in the equations above. Since t is either even or odd, all

Bitcoins are spent in every period.
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