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Abstract

This article is motivated by the need to bridge some gap between modern asset pric-
10ing theory and recent developments in econometric methodology. While asset pric-

ing theory enhances the use of conditional pricing models, econometric inference of
conditional models can be challenging due to misspecification or weak identifica-
tion. To tackle the case of misspecification, we utilize the conditional Hansen and
Jagannathan (1997) (HJ) distance as studied by Gagliardini and Ronchetti (2016),

15but we set the focus on interpretation and estimation of the pseudo-true value
defined as the argument of the minimum of this distance. While efficient
Generalized Method of Moments (GMM) has no meaning for estimation of a
pseudo-true value, the HJ-distance not only delivers a meaningful loss function, but
also features an additional advantage for the interpretation and estimation of man-

20aged portfolios whose exact pricing characterizes the pseudo-true pricing kernel
(stochastic discount factor (SDF)). For conditionally affine pricing kernels, we can
display some managed portfolios which are well-defined independently of the
pseudo-true value of the parameters, although their exact pricing is achieved by the
pseudo-true SDF. For the general case of nonlinear SDFs, we propose a smooth

25minimum distance (SMD) estimator (Lavergne and Patilea, 2013) that avoids a focus
on specific directions as in the case of managed portfolios. Albeit based on kernel
smoothing, the SMD approach avoids instabilities and the resulting need of trim-
ming strategies displayed by classical local GMM estimators when the density func-
tion of the conditioning variables may take arbitrarily small values. In addition, the

30fact that SMD may allow fixed bandwidth asymptotics is helpful regarding the curse
of dimensionality. In contrast with the true unknown value for a well-specified
model, the estimated pseudo-true value, albeit defined in a time-invariant (uncondi-
tional) way, may actually depend on the choice of the state variables that define fun-
damental factors and their scaling weights. Therefore, we may not want to be overly

35parsimonious about the set of explanatory variables. Finally, following Antoine and
Lavergne (2014), we show how SMD can be further robustified to deal with weaker
identification contexts. Since SMD can be seen as a local extension of the method of
jackknife GMM (Newey and Windmeijer, 2009), we characterize the Gaussian
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asymptotic distribution of the estimator of the pseudo-true value using classical U-
statistic theorems.

Key words: misspecification, Hansen-Jagannathan distance, pseudo-true pricing kernel, local

factors
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1 Introduction

It has been known since Hansen and Richard (1987) that the empirical content of any asset

pricing model can be summarized by a stochastic discount factor (SDF). If one were always

10able to identify a SDF that could price all financial assets, any asset pricing model would be a

one factor model. While such a unique accurate factor is elusive, multifactor models are popu-

lar because they suggest a limited set of factors that may hopefully span an accurate SDF.

However, as stressed by Ludvigson (2013), all these factor models are “abstractions and

therefore by definition misspecified” so that “methods that permit statistical comparisons

15of the magnitude of misspecification among multiple competing models” are more practic-

ally relevant than “hypothesis tests of the null of correct specification against the alternative

of incorrect specification.”Hansen and Jagannathan (1997) (HJ hereafter) have precisely

developed some ways to answer the question: “How large is the misspecification of the sto-

chastic discount factor proxy?” They have also applied this measure of model performance

20to the cases where the SDF proxy is provided by a linear factor model when model factors

can only span a proxy of an accurate SDF.

The initial motivation of this article is a follow up on the above quotations: it is fine to

“permit comparisons of the magnitude of misspecification among multiple competing mod-

els,” but what next? Once we have concluded that one specific model, albeit misspecified,

25is our preferred one, what do we do with it? Following the logic that the empirical content

of an asset pricing model is encapsulated in some given SDF, one should normally associate

with their model choice a specific value of the SDF, picked among the set of possible SDFs

(in general indexed by a vector h 2 H � R
p of some free parameters). However, since all

models are misspecified, there is no such thing as a true SDF (“true” in the sense that it is able

30to price accurately all financial assets), so one can only elicit a pseudo-true SDF. In contrast

with the true unknown value of some well-identified parameters, the pseudo-true value is not

defined in an intrinsic way. Its definition can only be objective-driven; the elicited pseudo-true

value h� in the set H of possible values of the parameters is the one that does the best job in re-

spect to a specific application like pricing, hedging, forecasting, explaining, etc.

35Even if the goal is to minimize pricing errors, as in the logic of the measures of specifica-

tion errors proposed by HJ, these authors rightly note that “comparing the specification error

in two different proxies is not possible without taking a stand on the relative importance of

the various assets.” Our approach leads us to set the focus on a HJ pseudo-true SDF that is

characterized by the fact that it is able to price exactly the mimicking portfolios of the factors.

40We make this statement in a very general setting including not only linear factor models, but

also exponentially affine factor models, and even more generally local factors that can always

be defined in the neighborhood of the parameter value of interest. In doing so, we remain true

to the argument that Lettau and Ludvigson (2001b) present as the key motivation of their
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work: irrespective of some well-documented empirical shortcomings, “the reputation of the

theoretical paradigm” of some popular factor models “remain well preserved.”

Moreover, they stress that “an asset’s risk is determined not by its unconditional correl-

ation with the model’s underlying factor, but rather by its correlation conditional on the

5state of the economy.” We conclude then that we should elicit a pseudo-true SDF that is

characterized by its ability to price accurately the fundamental factors (or the mimicking

portfolios, including some actively managed ones) while taking into account the relevant

conditioning information set. More precisely, fundamental factors may come with time-

varying scaling weights that capture the relevant state variables.

10As far as technical results are concerned, the contribution of the article is three-fold.

First, it is often believed that it takes well-specified models to be able to apply the law of

iterated expectations to zero conditional expectations, and thus to get a parameter true

value whose definition does not imply that we take a stand on the conditional information

set used by investors. However, we show that our characterization of the pseudo-true SDF

15as the only one able to price properly the scaled fundamental factors implies that its defin-

ition is immune to any shrinking of the information set, insofar as the relevant scaling

weights are still included. Moreover, we are also able to characterize the pseudo-true SDF

as minimizing the so-called conditional HJ distance that is defined, following Gagliardini

and Ronchetti (2016), as the unconditional expectation of the conditional measure that one

20would have computed for a given information set.

Second, we propose several interpretations of this conditional HJ distance that comple-

ments the ones put forward by Gagliardini and Ronchetti (2016). A possible criticism

against this conditional HJ distance is that it takes the unconditional expectation of the

squared of the pricing errors on the most mispriced portfolios. We argue that, after all,

25when faced with a time series of conditional values of the HJ distance, the researcher must

take a stand on the relevant summary of this time series of conditional assessments. The

conditional HJ distance is mean squared error, meaning that it takes into account not only

the magnitude of pricing errors for the most mispriced portfolios for each possible value of

the conditioning information, but also the variance of these conditional pricing errors. It

30sounds sensible to elicit conditional asset pricing models whose level of misspecification is

controlled not only through its expectation, but also through its volatility. There are obvi-

ous concerns of parsimony and out-of-sample performance that justify this mean-variance

trade-off on conditional model misspecification. Moreover, we argue that there is no simple

alternative to this conditional HJ measure. While managed portfolios have often been put

35forward to be able to characterize conditional pricing errors while using unconditional

models, we document that this approach may be misleading in several respects. First, a set

of managed portfolios that would by chance capture the right pseudo-true value would lead

to an unconditional HJ measure that would, in contrast with the conditional measure, ne-

cessarily give no weight to the pricing errors on portfolios that are zero-beta with respect to

40the elicited managed portfolios. Moreover, in nonlinear models, these managed portfolios

depend on the unknown parameter value and do not provide a clear guidance for estima-

tion of the pseudo-true value. As documented by Hall and Inoue (2003), in case of misspeci-

fied moment conditions, there is no reason why iterated Generalized Method of Moments

(GMM) would deliver at each step a consistent estimator of the same pseudo-true value.

45Third, our characterization of the pseudo-true SDF as minimizer of the conditional HJ

distance paves the way for several estimation strategies. First, it would be possible to adapt

Antoine et al. j SDFs in Conditional Asset Pricing Model 3



the approach of Nagel and Singleton (2011) to the context of estimation of a pseudo-true

value. While these authors propose a nonparametric estimation of managed portfolios that

are optimal for the purpose of efficient GMM, one could apply a similar approach, albeit

with different managed portfolios, for the purpose of minimization of the HJ distance.

5However, as acknowledged by Nagel and Singleton (2011), their kernel-based nonparamet-

ric approach suffers from the curse of dimensionality that prevents them from including all

the relevant state variables in the set of explanatory variables for nonparametric regression.

Gagliardini and Ronchetti (2016) resort to the more promising approach of local GMM,

extending to their context the asymptotic theory of Hall and Inoue (2003) for estimation

10with misspecified moment conditions. However, they need to maintain a martingale differ-

ence sequence hypothesis that means that, in a way somewhat opposite to Nagel and

Singleton (2011), they must include all the needed state variables in the nonparametric re-

gression, irrespective of the curse of dimensionality. We propose to circumvent this quan-

dary by following Lavergne and Patilea (2013) to resort to a fixed bandwidth approach.

15Their smooth minimum distance (SMD) approach can be seen as a conditional extension of

the jackknife GMM proposed by Newey and Windmeijer (2009). This jackknife GMM is

quite convenient in that it allows us to resort to the asymptotic theory of U-statistics to re-

visit the theory of GMM under misspecification as developed by Hall and Inoue (2003), 15

years after the seminal work of Gallant and White (1988). Beyond the specific goal of this art-

20icle, there is some value added of general interest to be able to settle the asymptotic theory of

GMM under misspecification, including dynamic, conditional and SMD settings in a very

concise and transparent way thanks to the extant Central Limit Theorems for U-statistics.

The rest of this article is organized as follows. Throughout the article, the focus of inter-

est is a parametric family of sequences of SDFs mtþ1 hð Þ, h 2 H � R
p. In Section 2, we intro-

25duce the concept of “local factors” through the gradient @mtþ1 hð Þ=@hð Þ. They coincide with

the (possibly scaled) fundamental factors in the case of a conditionally affine SDF model

and to a discounted value of them in the case of an exponentially conditionally affine SDF

model. We note that minimizing a conditional HJ distance for each possible value of the

conditional information set (with a possibly time varying parameter h ¼ ht) would amount

30to price exactly the local factors in each state of the world. It is then natural to define a

pseudo-true value of the SDF parameters h by the accurate pricing on average of the local

factors. In Section 3, we show that this pseudo-true SDF can also be characterized as mini-

mizing the conditional HJ distance defined, following Gagliardini and Ronchetti (2016), as

the unconditional expectation (over possible values of conditioning information sets) of the

35time-varying conditional measures. We argue that this conditional HJ distance provides the

right mean-variance trade-off regarding the time series of conditional HJ distances for the

realized sequence of information sets at each date. In Section 4, we argue that the common

practice of analyzing conditional pricing errors through the unconditional HJ distance com-

puted for some specific actively managed portfolios may be misleading in several respects.

40First, the unconditional HJ distance underestimates the real level of conditional pricing

errors, by overlooking some other portfolios. Second, inference on the pseudo true value

may be flawed by the dependence on unknown parameters of the relevant actively managed

portfolios. In Section 5, we discuss the various aforementioned approaches to estimating a

pseudo-true SDF. In Section 6, we interpret a fixed bandwidth pseudo-true SDF in an i.i.d.

45setting and through a dynamic state-variable framework. In Section 7, we revisit the theory

of GMM under misspecification with a jackknife alternative, which leads to the derivation
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of the asymptotic distributional theory of the SMD estimator of a fixed bandwidth pseudo-

true value. In Section 8, we provide two numerical experiments: a finite sample comparison

of local GMM and SMD for estimating a misspecified option pricing model; and a finite sam-

ple comparison of local GMM, efficient GMM, and weighted minimum distance (WMD) for

5estimating a linear factor model with semi-strong factors. We also provide empirical evidence

for semi-strong identification in popular linear factor models. Section 9 concludes.

2 Pseudo-True SDF and Local Factors

2.1 General Framework

Let

Rt ¼ Ri;t

� �
1� i� n

10be the vector of gross returns for the primitive assets. We assume that all asset returns belong to

the linear space L2 I tð Þ½ � of real random variables with finite second moment and measurable

with respect to some r-field I(t). We dub an “I� admissible SDF” any stochastic process Mt;tþ1

that at any date t ¼ 1;2; . . . ; satisfies Mt;tþ1 2 L2 I t þ 1ð Þ½ � and the n no-arbitrage restrictions:

E Mt;tþ1Rtþ1jI tð Þ
� �

¼ 1n; (2.1)

where 1n is a vector in R
n whose components are all equal to 1. Note that we implicitly

maintain a stationarity assumption such that the no-arbitrage restriction (2.1) is independ-

15ent of the date t. We denote by M Ið Þ the set of I� admissible SDFs. As does most of the em-

pirical asset pricing literature, we overlook the positivity constraint on the SDF. This allows

us in particular to consider the example of linear factor models.

We consider the set Gtþ1jt Ið Þ of payoffs that can be obtained from I� actively managed

portfolios based on the primitive assets:

Gtþ1jt Ið Þ ¼ gtþ1 2 L2 I t þ 1ð Þ½ �; 9zi;t 2 L2 I tð Þ½ �; i ¼ 1; ::; n : gtþ1 ¼
Xn

i¼1

zi;tRi;tþ1

( )
:

20Note that I� actively managed portfolios are portfolios with weights zi;t; i ¼ 1; . . . ; n

that are updated at date t within the information set I(t). For any payoff gtþ1 2 Gtþ1jt Ið Þ, its

market price is given by:

gtþ1 ¼
Xn

i¼1

zi;tRi;tþ1 ) pt gtþ1ð Þ ¼
Xn

i¼1

zi;t:

25Let mtþ1 hð Þ; h 2 H � R
pf g stand for a parametric family of candidate SDFs. These candi-

date SDFs will be assessed through the associated vector of I� pricing errors on primitive assets:

e I tð Þ; h½ � ¼ E mtþ1 hð ÞRtþ1 � 1njI tð Þ½ �:

Obviously, this vector of pricing errors is not modified if the SDF mtþ1 hð Þ is replaced by

its L2 I t þ 1ð Þ½ � orthogonal projection on the closed subspace Gtþ1jt Ið Þ. Therefore, we can

30assume without loss of generality that:

mtþ1 hð Þ 2 Gtþ1jt Ið Þ;8h 2 H: (2.2)
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2.2 Local Factors

For a given parametric model mtþ1 hð Þ; h 2 H � R
pf g, assuming that the function h! mtþ1

hð Þ is differentiable for almost surely all sample paths, we can define p local factors as the

components of the vector:

FL
tþ1 hð Þ ¼ @mtþ1 hð Þ

@h
; h 2 Int Hð Þ; (2.3)

where Int Hð Þ stands for the interior set of H. From (2.2) (and an integrability assumption),

5we deduce that:

@mtþ1 hð Þ
@h

2 Gtþ1jt Ið Þ;8h 2 Int Hð Þ:

The terminology “local factor” is justified by the following examples.

2.2.1 Example 1: conditionally affine SDF model

Nagel and Singleton (2011) define a conditionally affine model of SDFs as:

mtþ1 hð Þ ¼ /0;F
t hð Þ þ /F

t hð Þ0Ftþ1; (2.4)

where Ftþ1 is a K�dimensional vector of observed priced risk factors and the ðKþ 1Þ coef-

10ficients ð/0;F
t ðhÞ;/

F
t ðhÞ

0Þ ¼ ð/0;F
t ðhÞ;/

1;F
t ðhÞ; . . . ;/K;F

t ðhÞÞ of the conditionally affine function

(2.4) are in the information set I tð Þ.
Typically, the K “fundamental factors” Ftþ1 may include not only a market portfolio re-

turn, but also consumption growth, labor income growth as advocated by Jagannathan and

Wang (1996), and/or two additional portfolio returns of Fama and French (1995, 1996),

15namely HML (long in value stocks) and SMB (long in small firms). Following Lettau and

Ludvigson (2001b), we call these factors “fundamental” in contrast with the additional

scaled factors (scaled value of a fundamental factor) that contribute due to stochastic time

variation in the affine function (2.4). Some of these factors will be considered in our numer-

ical experiments (Section 8) regarding the performance of our inference procedures in front

20of possible weak identification (due to factors that may feature some heterogeneous identi-

fication strengths).

Generally speaking, it is worth considering three cases, from specific to general.

Case 1

/0
t hð Þ;/F

t hð Þ0
� �

¼ h1; h2; . . . ; hp

� �
:

Then:

FL
tþ1 hð Þ0 ¼ @mtþ1 hð Þ

@h0
¼ 1;F0tþ1

� �
:

25
The local factors are nothing but the observed priced risk factors Ftþ1 augmented with

the constant payoff 1. Note, however, that we will not confuse this model with an uncondi-

tional factor model. On the contrary, this factor model provides conditional pricing:

1n ¼ h1 þ
Xp

j¼2

hjE Fj;tþ1jI tð Þ
� �" #

E Rtþ1jI tð Þ½ � þ
Xp

j¼2

hjCov Rtþ1;Fj;tþ1jI tð Þ
� �

: (2.5)

30
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Case 2 For stochastically time varying weights Wt ¼ ðwj;tÞ1� j� J that belong to L2½IðtÞ�
and deterministic time-invariant coefficients ðc0;k; c

0
1;kÞ;k ¼ 0;1; . . . ;K we define:

/k;F
t hð Þ ¼ c0;k þ

XJ

j¼1

cj
1;kwj;t ¼ c0;k þ c01;kWt;k ¼ 0;1; . . . ;K

h ¼ h00; h
0
1; . . . ; h0J; h

0
Jþ1

� �
h0 ¼ c0;k

� �
1�k�K

; hj ¼ cj
1;k

� �
1� k�K

; j ¼ 1; . . . ; J; h0Jþ1 ¼ c0;0; c
0
1;0

� �
:

Following the terminology introduced by Lettau and Ludvigson (2001b), this is the case of

a scaled multifactor model:

mtþ1 hð Þ ¼ c0;0 þ c01;0Wt þ
XK

k¼1

c0;k þ c01;kWt

h i
Fk;tþ1

¼ h00Ftþ1 þ
XJ

j¼1

h0jwj;tFtþ1 þ h0Jþ1 1;W 0
t

� �0
:

5
As noticed by Lettau and Ludvigson (2001b), we can then rewrite it as a model conform-

able to case 1 with an extended set FL
tþ1 hð Þ of factors defined by the constant and the com-

ponents of Wt, of Ftþ1, and of Wt � Ftþ1: The vector of local factors precisely gathers this

extended set of factors. It is worth noting that when rewriting this factor pricing model as

10in (2.5), we realize that this conditional factor model is somewhat observationally equiva-

lent to a model with conditional beta coefficients that are time-varying as an affine function

of underlying state variables Wt (see, e.g., Ferson and Harvey 1999).

Note, however, that only the components of Ftþ1 and of Wt � Ftþ1 are replicated by

risky portfolios and as such will have a priced risk. This is the reason why we will set the

15focus on the following local factors:

@mtþ1 hð Þ
@h0

¼ Ftþ1

@mtþ1 hð Þ
@hj

¼ wj;tFtþ1; j ¼ 1; . . . ; J:

Case 3 Local factors can be interpreted as rescaled factors in the general case (2.4), and

are then given by the components of
@/0

t hð Þ
@h and

@/k;F
t hð Þ
@h � Ftþ1; k ¼ 1; . . . ;K. The only differ-

ence with case 2 is that the rescaling of the factors is not necessarily defined as an affine

20function of some state variables.

2.2.2 Example 2: exponentially conditionally affine SDF model

This case can be described as:

mtþ1 hð Þ ¼ exp ~mtþ1 hð Þ½ �;

where ~mtþ1 hð Þ is conformable to the conditionally affine structure described in example 1

above. The exponential affine structure is well suited to ensure positivity of the SDF.
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Since this feature is especially important for option pricing, we will perform in Section 8

some numerical experiments with a discrete time exponentially affine option pricing model

for which fundamental factors are the return on the underlying asset jointly with a factor

driving its stochastic volatility process. It is worth noting that the exponential transform-

5ation of a conditionally affine function of the fundamental factors preserves a large part of

the financial interpretation of local factors still defined as the components of:

@mtþ1 hð Þ
@h

¼ mtþ1 hð Þ @ ~mtþ1 hð Þ
@h

:

In other words, local factors can now be seen as discounted values of local factors with

a functional form conformable to example 1. Therefore, example 2 can be treated in a way

10similar to example 1, up to a preliminary discounting of the local factors.

2.3 Pseudo-True SDF

To compute a pseudo-true SDF, it is worth revisiting in a conditional setting the Hansen

and Jagannathan (1997) assessment of specification errors in the SDF model. We are then

led to compute a conditional stochastic (squared) HJ-distance defined by:

d2 hð Þ I tð Þ½ � ¼ inf
Mt;tþ12M

Ið ÞE Mt;tþ1 �mtþ1 hð Þ
� �2jI tð Þ
n o

: (2.6)

15Even though they have been derived in an unconditional framework, the formulas of

Hansen and Jagannathan (1997) can be applied for each conditioning value, leading to the

solution:

M�
t;tþ1 hð Þ ¼ mtþ1 hð Þ � k hð Þ I tð Þ½ �f g0Rtþ1

k hð Þ I tð Þ½ � ¼ X�1 I tð Þ½ �e I tð Þ; h½ �

X I tð Þ½ � ¼ E Rtþ1R0tþ1jI tð Þ
� �

e I tð Þ; h½ � ¼ E mtþ1 hð ÞRtþ1 � 1njI tð Þ½ �

and, by plugging into (2.6), to:

d2 hð Þ I tð Þ½ � ¼ e I tð Þ; h½ �0X�1 I tð Þ½ �e I tð Þ; h½ �:

20A state-dependent pseudo-true SDF mtþ1 htð Þ could then be defined as minimizer of the

state-dependent conditional HJ distance; that is as a solution of the first-order conditions:

E
@mtþ1 htð Þ

@h
R0tþ1jI tð Þ

� 	
�X�1 I tð Þ½ �E mtþ1 htð ÞRtþ1 � 1njI tð Þ½ � ¼ 0: (2.7)

A similar use of a state dependent SDF parameter ht has also been promoted by

Gagliardini, Gourieroux, and Renault (2011) (see also Fang, Ren, and Yuan, 2011).

25However, for several reasons detailed below, we will set more focus on the minimization of

an averaged state dependent conditional HJ distance:

d2 hð Þ ¼ E d2 hð Þ I tð Þ½ �

 �
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whose minimization leads to the definition of a fixed pseudo-true value h� of the SDF

parameters as solution of:

E E
@mtþ1 h�ð Þ

@h
R0tþ1jI tð Þ

� 	
X�1 I tð Þ½ �E mtþ1 h�ð ÞRtþ1 � 1njI tð Þ½ �

� 

¼ 0: (2.8)

In order to interpret these pseudo-true values ht; t ¼ 1; . . . ;T and h�, it is first worth real-

5izing that the conditional stochastic HJ distance is invariant by actively recombining port-

folios. More precisely, let us define a vector of gross returns on n actively managed portfolios:

~Rtþ1 ¼ AtRtþ1;

where At is a nonsingular matrix of size n, whose stochastically time varying coefficients be-

long to L2 I tð Þ½ � and are such that:

At1n ¼ 1n:

Then, if we define:

~e I tð Þ; h½ � ¼ E mtþ1 hð Þ ~Rtþ1 � 1njI tð Þ
� �

~X I tð Þ½ � ¼ E ~Rtþ1
~R
0
tþ1jI tð Þ

h i
~d

2
hð Þ I tð Þ½ � ¼ ~e I tð Þ; h½ �0 ~X�1

I tð Þ½ �~e I tð Þ; h½ �:

we obviously have:

~d
2

hð Þ I tð Þ½ � ¼ d2 hð Þ I tð Þ½ �:

10This invariance property will help us to interpret the pseudo-true of the SDF parameters

ht that we can define from the state-dependent conditional HJ distance d2 hð Þ I tð Þ½ �. More

precisely, for any of the factor models defined above, since the local factors FL
tþ1 htð Þ belong

to Gtþ1jt Ið Þ, it is always possible to exhibit a q� dimensional subvector ~F
L

tþ1 htð Þ and a non-

15singular matrix At such that ~Rtþ1 ¼ AtRtþ1 can be written:

~Rtþ1 ¼
~F

L

tþ1 htð Þ
Xtþ1

" #
(2.9)

with:

E ~F
L

tþ1 htð ÞX0tþ1jI tð Þ
h i

¼ 0:

Of course, a similar construction is possible with ~F
L

tþ1 h�ð Þ. Note that we have isolated a

subvector ~F
L

tþ1 htð Þ of FL
tþ1 htð Þ (resp. ~F

L

tþ1 h�ð Þ of FL
tþ1 h�ð Þ) in order to discard the factor val-

ues that may be known at time t and to set the focus on factors ~F
L

tþ1 htð Þ (resp. ~F
L

tþ1 h�ð Þ)
20that are mimicked by risky assets at time t. Then, with a notation that overlooks the differ-

ence between primitive asset returns Rtþ1 and returns ~Rtþ1 on actively managed portfolios,

we can assume without loss of generality that the vector Rtþ1 of primitive asset returns can

be written as (2.9) (or similarly with ~F
L

tþ1 h�ð Þ) so that:

X I tð Þ½ � ¼ E Rtþ1R0tþ1jI tð Þ
� �

¼
E ~F

L

tþ1 htð Þ~F
L0
tþ1 htð ÞjI tð Þ

h i
0

0 E Xtþ1X0tþ1jI tð Þ
� �

24 35: (2.10)
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The decomposition (2.10) allows us to simplify the expression of first-order conditions

(2.7) and (2.8) by setting the focus on the pricing of factors:

E mtþ1 htð Þ~F
L

tþ1 htð ÞjI tð Þ
h i

¼ 1q (2.11)

E mtþ1 h�ð Þ~FL

tþ1 h�ð Þ
h i

¼ 1q: (2.12)

Equations (2.11) and (2.12) can be interpreted as pricing equations for the local factors.

5Note that our simplification has allowed us to get conditional pricing Equations (2.11) which,

as standard Euler equations, remain true when the econometrician underestimates the infor-

mation set I(t) used by investors. As far as the time-invariant pseudo-true value h� is con-

cerned, its characterization (2.12) does not even depend on the specific definition of any

information set I(t). To clarify this statement, we will document it below within the frame-

10work of case 2 of conditionally affine SDF models. However, all the factor models described

in Section 2.2 could be accommodated similarly, up to possibly heavier notations.

Example 1: Case 2 (continued)

In the context of the conditionally affine model with scaled factors described above, we

15obviously have:

@mtþ1 hð Þ
@h0

¼ Ftþ1

@mtþ1 hð Þ
@hj

¼ xj;tFtþ1; j ¼ 1; . . . ; J

so that:

~F
L

tþ1 hð Þ ¼
1

Wt

" #
� Ftþ1:

In other words, the pricing Equations (2.12) can be written as:

E mtþ1 h�ð Þ
1

Wt

" #
� Ftþ1

( )
¼ 1q; q ¼ K J þ 1ð Þ: (2.13)

This formula generalizes to a conditional multifactor model a result that Pe~naranda and

20Sentana (2015) (see their Lemma 1 and subsequent comments, end of page 417) have re-

cently put forward for an unconditional factor model: the exact pricing of the factors (both

fundamental factors Ftþ1 and scaled factors wj;tFtþ1; j ¼ 1; . . . ; J) leads to “minimize the

sample counterpart of the HJ distance, irrespective of the distribution of returns and

the validity of the asset pricing model,” since this minimization is by definition achieved by

25the pseudo-true value h�.

Moreover:

mtþ1 hð Þ ¼ 1W 0
t

� �
� F0tþ1


 �
~h þ 1 W 0

t½ �hJþ1

~h
0 ¼ h00; h

0
1; . . . ; h0J

h i
; h0 ¼ ~h

0
; h0Jþ1

h i
:
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Therefore (2.13) can be seen as a linear system of equations that determines ~h
�

for a

given value of h�Jþ1:

E xtþ1x0tþ1

� �
~h
� ¼ 1q � E 1 W 0

t½ �h�Jþ1xtþ1

n o
xtþ1 ¼

1

Wt

" #
� Ftþ1:

(2.14)

Note that the matrix E xtþ1x0tþ1

� �
of this system can safely be assumed to be nonsingular

5since with obvious notations (and x0;t ¼ 1)

a0xtþ1 ¼
XJ

j¼0

a0jxj;tFtþ1 � 0) a ¼ aj

� �
0� j� J

¼ 0:

Otherwise, some factors among the scaled factors xj;tFtþ1; j ¼ 0;1; . . . ; J would be redundant.

One important by-product of the Cramer system of Equations (2.14) is to prove that HJ

pseudo-true values h�j ; j ¼ 0; 1; . . . ; J, albeit defined through the conditional HJ distance (that

depends of the information set I(t)) do not even depend on the specification I of the informa-

10tion set for the characterization of I-admissible SDFs. Note that we discuss the pseudo-true

values of h�j ; j ¼ 0; 1; . . . ; J only for a given value of h�Jþ1. While the former is our focus of

interest for conditional pricing models on the period t; t þ 1½ �, the latter pertains to the deter-

mination of the term structure of interest rates (pricing of assets whose future payoffs is

known a time t) which is beyond the scope of this article. Our way to overlook the determin-

15ation of h�Jþ1 can be compared with the discussion in Hansen and Jagannathan (1997) about

the parameter c0 that is “the price assigned to a unit payoff.” They ask “why should we con-

strain the family of discount factors to price the unit payoff in precisely the same way the

proxy does.” We are doing something similar in a conditional context. The complete deter-

mination of the pseudo-true value h� of hj

� �
0� j� Jþ1

will be described in the next section.

203 Pseudo-True SDF and HJ-Distance

Following Gagliardini and Ronchetti’s (2016) conditional extension of the HJ-distance, we

define the conditional distance between our parametric model and the set of admissible

SDFs as:

d2 ¼ inf
h2H

d2 hð Þ

d2 hð Þ ¼ inf
Mt;tþ12M Ið Þ

E Mt;tþ1 �mtþ1 hð Þ
� �2

:
(3.1)

25Note that this HJ-distance is conditional, albeit defined by an unconditional expect-

ation, due to the Definition (2.1) of the set M Ið Þ of admissible SDFs by conditional moment

restrictions. More precisely, by virtue of the law of iterated expectations, a sufficient condi-

tion for Mt;tþ1 to reach the minimum in (3.1) is to solve for (almost surely) any given value

of the conditioning information I(t):

d2 hð Þ I tð Þ½ � ¼ inf
Mt;tþ12M Ið Þ

E Mt;tþ1 �mtþ1 hð Þ
� �2jI tð Þ
n o

d2 hð Þ ¼ E d2 hð Þ I tð Þ½ �

 �

:

(3.2)

30
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Therefore, from the formulas of the previous section:

d2 hð Þ I tð Þ½ � ¼ e I tð Þ; h½ �0X�1 I tð Þ½ �e I tð Þ; h½ �

and thus:

d2 hð Þ ¼ E e I tð Þ; h½ �0X�1 I tð Þ½ �e I tð Þ; h½ �

 �

: (3.3)

This interpretation allows us to revisit in a conditional setting an important result of

Hansen and Jagannathan (1997) (their Proposition 2.1): the distance d hð Þ I tð Þ½ � is the largest

5possible (conditional) pricing error (among all payoffs gtþ1 2 Gtþ1jt Ið Þ of unit norm) when

using the candidate SDF mtþ1 hð Þ:

d hð Þ I tð Þ½ � ¼ max
gtþ12Gtþ1jt Ið Þ

jE mtþ1 hð Þgtþ1jI tð Þ½ � � pt gtþ1ð Þj; E g2
tþ1jI tð Þ

� �
¼ 1


 �
:

More precisely, Hansen and Jagannathan (1997) prove that this maximization gives a

sharp bound, in the sense that there exists a payoff g�tþ1 hð Þ 2 Gtþ1jt Ið Þ such that:

d hð Þ I tð Þ½ � ¼ jE mtþ1 hð Þg�tþ1 hð ÞjI tð Þ
� �

� pt g�tþ1 hð Þ
� �

j � PEt g�tþ1 hð Þ
� �

that measures the absolute pricing error at time t on the payoff g�tþ1 hð Þ. Therefore, our def-

10inition (3.1) of the conditional HJ-distance can be interpreted as follows:

d2 hð Þ ¼ E d2 hð Þ I tð Þ½ �
� �

¼ E PEt g�tþ1 hð Þ
� �
 �� �2 þ Var PEt g�tþ1 hð Þ

� �
 �
:

In other words, our minimization (3.1) not only amounts to a minimization of the aver-

aged maximum pricing error, but also it penalizes excess volatility in this time-varying pric-

ing error. While it is often said that an advantage of HJ-distance by comparison with

15efficient GMM is that “the HJ-distance does not reward SDF volatility” (Ludvigson, 2013),

the conditional setting leads to put even more emphasis on the concern for volatility of pric-

ing errors. This approach is similar in spirit to popular calibration exercises in applied eco-

nomics when a model-based (possibly simulated) sample path yt hð Þ; t ¼ 1; . . . ;T; of a

variable of interest can be compared to its real-world observation yt; t ¼ 1; . . . ;T, where

20here yt hð Þ ¼ PEt g�tþ1 hð Þ
� �

and yt ¼ 0. It is then common to minimize with respect to the un-

known parameters h the mean squared error:

1

T

XT

t¼1

yt hð Þ � yt½ �2:

We can see this approach as minimizing a mean squared error of prediction of asset prices.

Thus, even though the conditional HJ-distance is a population average quantity, it is true that

25it sets the focus on conditional pricing errors. Following Lettau and Ludvigson (2001b), the

SDF is “expected to price assets [. . .] conditionally,” leading in particular to “conditional ra-

ther than fixed linear factor models.” It is precisely the HJ pseudo-true value h� of h that does

the best job in this respect. Beyond the examples considered in Section 2, it is the solution

(assumed to be unique) of the minimization (3.1), characterized by the first-order conditions:

E
@e I tð Þ; h�½ �0

@h
X�1 I tð Þ½ �e I tð Þ; h�½ �

� 

¼ 0: (3.4)

30
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Irrespective of the interpretation of the conditional HJ-distance d2 hð Þ, it is worth keep-

ing in mind that, by virtue of the results of Section 2 above, the pseudo-true SDF mtþ1 h�ð Þ
is mainly determined by the fact that it prices factors and scaled factors accurately on aver-

age. More precisely, by the law of iterated expectations argument already mentioned above

5(see (3.2)), we know from Section 2 that for the case of conditionally affine SDF model the

pseudo-true value h� is determined as solution of the unconditional equations:

First:

E mtþ1 h�ð Þxj;tFtþ1

� �
¼ 1K; j ¼ 0; 1; . . . ; J: (3.5)

Second:

E
1

Wt

" #
E R0tþ1jI tð Þ
� �

X�1 I tð Þ½ �e I tð Þ; h½ �
( )

¼ 0: (3.6)

10Therefore, up to the dependence on h�Jþ1 whose characterization involves Equation

(3.6), the pseudo-true value h� is essentially determined by the factor pricing Equation (3.5)

that do not depend on the specification of the conditioning information I, but only on its

summary by state variables Wt. In this respect, we are conformable with the philosophy

15forcefully promoted by Lettau and Ludvigson (2001b):

On the one hand, irrespective of some well-documented empirical shortcomings, “the

reputation of the theoretical paradigm” of some popular factor models “remains well pre-

served.” There are some “fundamental factors” Ftþ1 that should be able to characterize the

relevant priced risk in the economy.

20On the other hand, “an asset’s risk is determined not by its unconditional correlation

with the model’s underlying factor, but rather by its correlation conditional on the state of

the economy,” as captured by time-varying scaling weights Wt.

Then, it seems sensible to dub as a “pseudo-true SDF” a SDF that is able to price accurate-

ly, on average, both the fundamental factors and their scaled values. It is a fair way to charac-

25terize the pricing message of our conditional factor model, that both the fundamental factors

and their scaled counterparts with relevant weights (e.g., cay in Lettau and Ludvigson,

2001a,b)) exhibit explanatory power. We have proved that it is a convenient property of the

conditional HJ-distance, that has been overlooked so far, to deliver such a pseudo-true SDF

as a result of its minimization. This result can be seen as a conditional extension of a result of

30Hansen and Jagannathan (1997) (see their minimization (39)): the pseudo-true value of the

parameters is set “to price correctly the factor mimicking payoffs.”

4 Pseudo-True SDF and Managed Portfolios

While it has been proved in Section 2 that the HJ pseudo-true value is characterized by the

exact pricing of the (rescaled) factors of a conditionally affine SDF model when the factors

35are traded, the concept of managed portfolios allows us to extend this interpretation for

general SDF models.

4.1 Mimicking Portfolios for Local Factors

A q	 nð Þ matrix Zt ¼ Zi;t
0� �

1� i�q
whose coefficients are all in L2 I tð Þ½ � allows us to define

a vector of returns on q “managed” portfolios with time tþ1 payoffs Z0i;tRtþ1 2 Gtþ1jt Ið Þ
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and time t prices Z0i;t1n 2 L2 I tð Þ½ �; i ¼ 1; . . . ;q. We then define the set MZ of Z� admissible

SDFs as the set of variables Mt;tþ1 in L2 I t þ 1ð Þ½ � such that:

E Mt;tþ1ZtRtþ1 � Zt1n

� �
¼ 0: (4.1)

Obviously, the no-arbitrage condition (4.1) is implied by (2.1). Conversely, (2.1) means

5that (4.1) is fulfilled by any possible set of managed portfolios Zt.

This enhances the interpretation of the conditional pseudo-true value h� that we have

put forward in the former subsection. According to the first-order conditions (3.4), the

pseudo-true SDF m I t þ 1ð Þ; h�½ � is the only Z� admissible SDF in the parametric family

m I t þ 1ð Þ; h½ �; h 2 H � R
pf g when we want to price properly the p managed portfolios

10Zt ¼ Zi;t
0� �

1� i�p
with respective payoffs:

gi;tþ1 ¼ Zi;t h�ð Þ0Rtþ1 (4.2)

Zi;t hð Þ0 ¼ @e I tð Þ; h½ �0

@hi
X�1 I tð Þ½ �; i ¼ 1; . . . ; p (4.3)

Zt hð Þ ¼ Zi;t hð Þ0
� �

1� i� p
: (4.4)

These managed portfolios Zt hð Þ ¼ Zi;t hð Þ0
� �

1� i�p
are “HJ-optimal” in the sense that

their pricing characterizes the HJ pseudo-true value since we can rewrite (3.4) as:

E Zt h�ð Þ mtþ1 h�ð ÞRtþ1 � 1n½ �f g ¼ 0: (4.5)

15HJ-optimal portfolios are in general different from the managed portfolios ~Zt hð Þ
¼ ~Zi;t hð Þ0
� �

1� i� p
that characterize optimal instruments for efficient GMM (see, e.g., Nagel

and Singleton, 2011). The latter would be defined as:

~Zi;t hð Þ0 ¼ @e I tð Þ; h½ �0

@hi
R�1 I tð Þ; h½ �; i ¼ 1; . . . ;p

R I tð Þ; h½ � ¼ Var mtþ1 hð ÞRtþ1jI tð Þ½ �:

The HJ-optimal managed portfolios are actually tightly related to the local factors

20defined in (2.3):

Zt hð Þ ¼ @e I tð Þ; h½ �0

@h
X�1 I tð Þ½ �

¼ E FL
tþ1 hð ÞR0tþ1jI tð Þ

� ��
E Rtþ1R0tþ1jI tð Þ
� �
�1

Rtþ1:

(4.6)

In other words, the HJ-optimal managed portfolios are the mimicking portfolios (i.e.,

the conditional linear regressions on the set of primitive returns) of the local factors. Note

these linear regressions are indeed affine regressions when, as it is generally the case, one

25component of the vector FL
tþ1 hð Þ of local factors is just the constant. This extends a result al-

ready noted in the case of a conditionally affine model by Pe~naranda, Rodrı́guez-Poo, and

Sperlich (2017) (see their Appendix B1) to a general SDF model.

It is an additional advantage of the conditional HJ-distance approach with respect to the

efficient GMM à la Nagel and Singleton (2011). The regression formulas in (4.6) clearly

30characterize the HJ-optimal managed portfolios. This can be seen as a generalization of the

interpretation of the pseudo-true value of the SDF put forward in Section 2 in the case of
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conditionally affine factor models. Even when there is no such thing as fundamental factors

(and scaled values of them), we still characterize the HJ pseudo-true value of the SDF in

terms of pricing of local factors (or their mimicking portfolios). Of course, in nonaffine

cases, this characterization is complicated by the fact that local factors and their mimicking

5portfolios may depend upon unknown parameters (and conditioning information for the

definition of mimicking portfolios). The practical consequences of this dependence are dis-

cussed in the next subsection 4.2. However, in any case, and in contrast with efficient

GMM, we resort to mimicking portfolios of local factors that are defined in a model-

invariant way.

104.2 Sensitivity of Mimicking Portfolios to Unknown Parameters and

Conditioning Information

4.2.1 Dependence on unknown parameters

We know from (4.5) that the conditional HJ pseudo-true value h� is characterized by the

exact pricing of the HJ-optimal managed portfolios, meaning that it is the only solution h
15of the equation:

eZ h�; h½ � ¼ 0;

where:

eZ h1; h2
� �

¼ E Zt h1
� �

m I t þ 1ð Þ; h2
� �

Rtþ1 � 1n

� �
 �
: (4.7)

Moreover, it is obvious that:

eZ h1; h2
� �

¼ 0; h2 ¼ h1:

As discussed in Section 5 below, this difficulty is the conditional analog of the issue of two-

step GMM estimators with misspecified moment models in Hall and Inoue (2003): a two-

step estimator does not converge toward the same pseudo true value as the first step estima-

20tor used to compute it. In our case, a GMM estimator based on instruments estimated with

a first step consistent estimator of a pseudo true value h1 does not converge in general to-

ward h1. However, we do know from the first-order conditions (3.4) that the conditional

pseudo-true value of interest can be characterized as a fixed point.

This characterization of the pseudo-true value h� as a fixed point may suggest a GMM-

25based estimation of h� through an iterated sequence of minimization problems based on un-

conditional HJ distance. More precisely, under standard regularity conditions, we can

prove the following implication of the implicit function theorem:

Theorem 1 There exists a neighborhood @ h�ð Þ of h� such that an implicit function h :ð Þ can

be defined as solution of:

eZ h; h hð Þ
� �

¼ 0;8h 2 @ h�ð Þ
h h�ð Þ ¼ h�

(4.8)

30
In particular:

@eZ h�; h�ð Þ
@h1

þ XZ h�ð Þ @h h�ð Þ
@h

¼ 0 (4.9)
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with:

XZ hð Þ ¼ E Zt hð ÞRtþ1R0tþ1Z0t hð Þ
� �

¼ E E
@W0tþ1 hð Þ

@h
jI tð Þ

� 	
X�1 I tð Þ½ �E @Wtþ1 hð Þ

@h0
jI tð Þ

� 	� 	
:

Theorem 1 suggests that it may be sensible to assume that the function h :ð Þ is a contrac-

tion mapping in neighborhood of h�. While each of the two terms of (4.9) is zero in the case

5of a conditional affine structure of the SDF, the common practice of linearizing nonlinear

factor models (see, e.g., linearized version of the model of Lustig and Van Nieuwerburgh

(2005) mentioned in Nagel and Singleton (2011)) leads us to reckon that the first term is

often small enough to get the contraction mapping inequality:�����
����� @h h�ð Þ

@h

�����
����� ¼

�����
�����X�1

Z h�ð Þ @eZ h�; h�ð Þ
@h1

�����
����� < 1: (4.10)

10Note in particular that:

@eZ h�; h�ð Þ
@h1

¼ E E
@F0tþ1 h�ð Þ

@h
R0tþ1jI tð Þ

� 	
E Rtþ1R0tþ1jI tð Þ
� �
 ��1

m I t þ 1ð Þ; h�½ �Rtþ1 � 1n½ �
� 


:

(4.11)

Assuming a small norm for the matrix (4.11), and as a consequence the contraction map-

ping property (4.10), amounts to assume that local factors, or at least their mimicking port-

folios, do not vary much with parameters in the neighborhood of the pseudo-true value h�.
15When this condition is fulfilled, it should ensure the convergence of an iterated sequence

of GMM estimators based on managed portfolios, corresponding to the sample counterpart

of the iterations defined by:

eZ hk; hkþ1
h i

¼ 0:

4.2.2 Dependence on conditioning information

20For sake of illustration, let us follow Nagel and Singleton (2011) and consider an extended

consumption-based SDF in which ct denotes the logarithm of consumption and:

m I t þ 1ð Þ; h½ � ¼ b1 þ c1ntð Þ þ b2 þ c2ntð ÞDctþ1

h ¼ b1; c1;b2; c2ð Þ0:

The model in Lettau and Ludvigson (2001b), for example, is the special case with nt

equal to cay. For this setup, with notations:

Wtþ1 hð Þ ¼ m I t þ 1ð Þ; h½ �Rtþ1 � 1n

e I tð Þ; h½ � ¼ E Wtþ1 hð ÞjI tð Þ½ �:

we have:

@Wtþ1 hð Þ0

@h
¼

R0tþ1

ntR
0
tþ1

Dctþ1R0tþ1

ntDctþ1R0tþ1

2666664

3777775:
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so that:

@e I tð Þ; h�½ �0

@h
¼ E

@Wtþ1 h�ð Þ0

@h
jI tð Þ

� 	
¼

E R0tþ1jI tð Þ
� �

ntE R0tþ1jI tð Þ
� �

E Dctþ1R0tþ1jI tð Þ
� �

ntE Dctþ1R0tþ1jI tð Þ
� �

2666664

3777775: (4.12)

As already noted by Nagel and Singleton (2011), the managed portfolios of interest are

constructed with weights that are computed from the components of the conditional first

5and second moments of the joint vector of returns and factors (Dctþ1 in this case). An add-

itional factor ftþ1 in the SDF specification would lead to add weights based on

E ftþ1R0tþ1jI tð Þ
� �

. When the factors themselves are returns, we are computing conditional

first and second moment of returns.

In the case of a misspecified model, since the pseudo true value may depend on the con-

10ditioning information, we should rather say that an additional factor ftþ1 in the SDF specifi-

cation would lead to add weights based on E ftþ1R0tþ1jI tð Þ
� �

; where I tð Þ is an augmented

information set defined by:

I tð Þ ¼ I tð Þ _ fs; s� tf g:

For the same reason, all the conditional moments in (4.12) should now be computed given

15I tð Þ. This remark is somewhat at odds with the empirical strategy as described by Nagel and

Singleton (2011) (see page 889). They reveal that they use nonparametric local polynomial re-

gression estimators of the conditional moments in (4.12) (as well as some sieve methods).

They stress that “computational considerations” (and we shall add the curse of dimensional-

ity in terms of rates of convergence) “typically dictate that nonparametric estimation must

20focus on a small number of conditioning variables.” We consider that this parsimony in terms

of the choice of conditioning variables is far from innocuous in the misspecified case, and this

is the reason why we will propose in the next section an alternative nonparametric strategy

with fixed bandwidth that is less sensitive to the curse of dimensionality.

4.3 Pricing of Zero-Beta Portfolios

25The characterization (3.4) of the conditional pseudo-true value h� through well-chosen

managed portfolios may lead to the spurious conclusion that an unconditional HJ-distance,

computed with well-suited managed portfolios, conveys the same information as the condi-

tional HJ-distance. We will show in this subsection that it is not the case, and that similarly

to conditional moment specification tests, an unconditional distance based on a finite num-

30ber of arbitrary managed portfolios is only “directional,” in the sense that it is unable to as-

sess some pricing errors in other directions, even though they may deliver the optimal

pseudo-true SDF.

To see that, let us consider the unconditional HJ-distance associated with a given set Zt

of managed portfolios (with Zt being a q	 nð Þmatrix with coefficients in L2 I tð Þ½ �):

d2
Z ¼ inf

h2H
d2

Z hð Þ

d2
Z hð Þ ¼ inf

Mt;tþ12MZ

E Mt;tþ1 �m I t þ 1ð Þ; h½ �
� �2

:
(4.13)

35
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Again, this quadratic optimization problem can be solved as follows:

M�Z
t;tþ1 hð Þ ¼ m I t þ 1ð Þ; h½ � � c hð Þ0ZtRtþ1

c hð Þ ¼ X�1
Z eZ h½ �

XZ ¼ E ZtRtþ1R0tþ1Z0t
� �

¼ E ZtX I tð Þ½ �Z0t
� �

eZ h½ � ¼ E Zt m I t þ 1ð Þ; h½ �Rtþ1 � 1n½ �f g ¼ E Zte I tð Þ; h½ �f g

which, by plugging into (4.13), leads to:

d2
Z hð Þ ¼ eZ h½ �0X�1

Z eZ h½ �:

For any choice of instruments Zt (with possible overidentification), that would allow us

to compute not only the unconditional pseudo true value:

hZ ¼ arg min
h2H

d2
Z hð Þ

but also the conditional one (because h� ¼ hZ). However, the coincidence between h� and

5hZ does not mean that the unconditional HJ-distance d2
Z ¼ d2

Z hZð Þ is an accurate assessment

of the conditional HJ-distance d2 ¼ d2 h�ð Þ. To see that, it is worth following Gagliardini

and Ronchetti (2016) by reinterpreting the HJ-distances in terms of orthogonal projections.

For this purpose, we introduce a Hilbert space H I tð Þ½ � of n-dimensional functions n I tð Þ½ �
whose components are all elements of L2 I tð Þ½ �, and we endow H I tð Þ½ � with the scalar

10product:

hn; fi ¼ E n I tð Þ½ �0X�1 I tð Þ½ �1 I tð Þ½ �
� �

:

From Equation (3.3), the conditional HJ-distance can be written as the minimized

H I tð Þ½ �-norm of the conditional pricing error vector w.r.t. the parameter h:

d2 hð Þ ¼ jje :; h½ �jj2

d2 ¼ min h jje :; h½ �jj2 ¼ jje :; h�½ �jj2:

15Then Proposition 1 below is a corollary of Proposition 1 in Gagliardini and Ronchetti

(2016). However, we provide the direct proof in Appendix for the purpose of self-

containedness:

Proposition 1 If a q	 nð Þ matrix Zt that defines a vector of payoffs ZtRtþ1 on q

“managed” portfolios is such that the implied pseudo true value hZ coincides with the con-

20ditional pseudo true value h�, then:

d2
Z ¼ jjPCe :; h�½ �jj2;

where PC stands for the orthogonal projection on the columns of the n	 qð Þmatrix:

C I tð Þ½ � ¼ X I tð Þ½ �Z0t:

The message of Proposition 1 is not surprising. Even if, by chance, a well-chosen set of q

25managed portfolios (q
p) allows us to characterize the conditional pseudo true value h�,

the (squared) HJ-distance induced by these portfolios underestimates the (squared) condi-

tional HJ-distance by an amount equal to the orthogonal projection of the vector of pricing
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errors on the space orthogonal to the one spanned by these portfolios. By virtue of

Pythagoras’ theorem:

d2 � d2
Z ¼ jjPC?e :; h�½ �jj2:

The unconditional HJ-distance based on q managed portfolios simply overlooks the

5pricing errors for portfolios whose payoffs are (conditionally) uncorrelated with the payoffs

of these q particular portfolios. For all i ¼ 1;2; . . . ; q and j ¼ 1;2; . . . ; n� q :

0 ¼ Cov Zi0
t Rtþ1

� �
; Zj0

t Rtþ1

� �
jI tð Þ

h i
¼ hCi :ð Þ;C?j :ð Þi

if:

C I tð Þ½ � ¼ X I tð Þ½ � Z1
t ;Z

2
t ; . . . ;Zq

t

� �
C? I tð Þ½ � ¼ X I tð Þ½ � Y1

t ;Y
2
t ; . . . ;Yn�q

t

� �
and we assume without loss of generality that these managed portfolios deliver payoffs

with zero conditional mean.

The unconditional HJ-distance d2
Z based on a set of q reference portfolios Zt is not reli-

able since it does not take into account the (conditional) pricing errors on assets that are

10(conditionally) zero-beta with respect to these q portfolios. Note that this negative result is

nothing but the flipside of the result put forward in Section 2. Since the HJ pseudo-true

value h� is characterized by the exact pricing of fundamental factors and their scaled values

(or more generally of local factors), it is not informative about the pricing of assets that are

zero-beta with respect to the mimicking portfolios of these factors.

155 GMM Estimation of Pseudo-True SDF

We sketch in this section three kernel smoothing-based GMM strategies for inference about

the HJ pseudo-true SDF. We start from the traditional approach of optimal managed port-

folios, even though in contrast with Nagel and Singleton (2011), we set the focus on HJ-

optimality, and not on optimal instruments for efficient GMM. We subsequently argue that

20a one-step local GMM may have a better finite sample performance. Finally, we discuss

how our preferred approach, the SMD estimator promoted by Lavergne and Patilea (2013),

can be seen as a jackknife version of local GMM. It may allow for a fixed bandwidth point

of view that is well-suited to address the curse of dimensionality for kernel smoothing.

5.1 Estimation based on Nonparametric Estimation of Managed Portfolios

25The characterization of the pseudo-true value h� as a fixed point may suggest a GMM-

based estimation of h� through an iterated sequence of minimization problems based on the

unconditional HJ-distance. When the contraction mapping condition (4.10) is fulfilled, it

should ensure the convergence of an iterated sequence of GMM estimators based on man-

aged portfolios, corresponding to the sample counterpart of the iterations defined by:

eZ hk; hkþ1
h i

¼ 0:

30In particular, with a number of iterations k(T) going to infinity with the sample size T,

we should end up with a consistent estimator of the pseudo-true value h�. The asymptotic
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theory of such an estimator could be easily derived by applying the general asymptotic the-

ory in Pastorello, Patilea, and Renault (2003) and its semi-parametric extension in Frazier

(2018).

Note that the latter reference is especially relevant since the sample counterpart of the

5above iterations leads us to solve for each iteration k ¼ 1;2; . . . ; k Tð Þ the equations (with

unknown h):

XT

t¼1

Ẑt;T h kð Þ
� �

m I t þ 1ð Þ; h½ �Rtþ1 � 1n½ � ¼ 0; (5.1)

where Ẑt;T hð Þ is a nonparametric estimator of the managed portfolio Zt hð Þ defined in (4.6).

As in Frazier (2018), the iterative approach allows us to keep solving equations for an un-

known h which does not enter nonparametric estimators like Ẑt;T hð Þ, but only well-

behaved functions of h given by the SDF m I t þ 1ð Þ; h½ �.
10More precisely, if we use kernel estimators, we will need to assume that there exists a

vector Xt of m state variables such that:

X I tð Þ½ � ¼ E Rtþ1R0tþ1jI tð Þ
� �

� E Rtþ1R0tþ1jXt

� �
E

@W0tþ1 h kð Þ
� �
@h

jI tð Þ

24 35 � E
@W0tþ1 h kð Þ

� �
@h

jXt

24 35 (5.2)

such that we can compute Nadaraya–Watson kernel regression estimators for each given

value h kð Þ of h along the iteration sequence:

X̂t;T ¼
XT

s¼1

x Xt;Xs; hT½ �Rsþ1R0sþ1

Êt;T

@W0tþ1 h kð Þ
� �
@h

jI tð Þ

24 35 ¼XT

s¼1

x Xt;Xs; hT½ �
@W0tþ1 h kð Þ

� �
@h

Ẑt;T h kð Þ
� �

¼ Êt;T

@W0tþ1 h kð Þ
� �
@h

jI tð Þ

24 35X̂
�1

t;T

with kernel weights:

x x0;x;h½ � ¼
K x�x0

h

� �
XT

s¼1

K xs�x0

h

� � :

Note that we have used the approximation notation � in (5.2) to stress that, on the one

15hand, the curse of dimensionality for nonparametric estimation may prevent us from elicit-

ing a vector X of state variables large enough to capture all the relevant conditioning infor-

mation I tð Þ, and that, on the other hand, we are not keen on restricting the information set

I(t) since this would also modify the definition of the pseudo-true value. In other words, we

will have to live with the fact that our nonparametric estimator may not estimate exactly

20the conditional expectation of interest. Moreover, it is worth keeping in mind that, in

case one would be afraid that the above iterative procedure would not properly converge

(because the contraction mapping property may not be warranted), it is also possible to
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perform a one-step GMM in the spirit of Nagel and Singleton (2011), even though we

maintain the difference of using the arguably more robust HJ-distance. Our GMM estima-

tor ĥT would then be the solution of the equations:

XT

t¼1

Ẑt;T ĥT

� �
m I t þ 1ð Þ; ĥT

h i
Rtþ1 � 1n

h i
¼ 0: (5.3)

5In the one-step GMM form (5.3), one can clearly figure out the challenge of the estima-

tion of a pseudo-true value that entails nonparametric estimation of managed portfolios. As

Nagel and Singleton (2011) have rightly noted, if zt stands for “the conditioning variable

[. . .] that appears in the pricing kernel,” then “the dependence of the SDF weights on zt

means that, if these models are correctly specified, conditional moments of returns and con-

10sumption are likely to vary with zt:“ This remark is even more relevant in the case of a mis-

specified asset pricing model, since the mere interest of the pseudo-true value is to capture

that asset prices are satisfactorily explained by a SDF m I t þ 1ð Þ; h�½ �. If the conditioning

variables Xt used for kernel smoothing do not properly capture the relevant dynamics of m

I t þ 1ð Þ; h½ � through ztþ1; one may be afraid that the pseudo-true value will not play its

15expected role. To see that, note that the GMM first-order conditions (5.3) stipulate that the

“local pricing errors” (local alphas) should be orthogonal to the (estimated) “local betas.”

When the latter coefficients are estimated with an overly parsimonious vector of state varia-

bles (the extreme case being Nagel and Singleton (2011) who claim to restrict themselves to

just one conditioning variable), one may be afraid that the elicitation of the pseudo true

20value may be more based on restoring the too poor dynamics of conditional betas than on

minimizing pricing errors. The orthogonality relationship (5.3) may have a distorted inter-

pretation if, for all possible value of h, Ẑt;T hð Þ cannot efficiently track the dynamics of m

I t þ 1ð Þ; h½ �Rtþ1 because it depends on a much smaller vector Xt of state variables.

5.2 Local GMM

25Lewbel (2007) has arguably been the first to propose an estimation strategy dubbed local

GMM. Fang, Ren, and Yuan (2011) have applied this method for a nonparametric estima-

tion of the pricing kernel. The idea is to see the SDF parameters as functions of the state

variables. Gagliardini, Gourieroux, and Renault (2011) have extended this idea by allowing

the identification of some fixed parameters jointly with some functional ones.

30We rather use here the terminology “local GMM” in the sense of Gospodinov and Otsu

(2012) who revisit in a time series context an estimator initially introduced by Antoine,

Bonnal, and Renault (2007) and Smith (2007) as a byproduct of an Euclidean empirical

likelihood approach, following the empirical likelihood based inference in conditional mo-

ment restrictions models of Kitamura, Tripathi, and Ahn (2004). Ai and Chen (2003, 2007)

35have introduced a very similar estimator that they have also revisited with misspecified con-

ditional moment restrictions, albeit only in an i.i.d. setting. In all of these cases, the local

GMM estimator is defined as minimizer of:

d̂
2

T hð Þ ¼ 1

T

XT

t¼1

1t;Tê I tð Þ; h½ �0X̂�1
I tð Þ½ �ê I tð Þ; h½ � (5.4)

when we assume that:

e I tð Þ; h½ � ¼ E Wtþ1 hð ÞjI tð Þ½ � � E Wtþ1 hð ÞjXt½ �:
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Gagliardini and Ronchetti (2016) note that (5.4) is nothing but the sample counterpart

of the conditional HJ-distance (3.3), where ê I tð Þ; h½ � stands for a nonparametric estimator

of E Wtþ1 hð ÞjXt½ �, and 1t;T is a trimming term to discard observations for which the non-

parametric estimator of the marginal density of Xt is overly small (below some well chosen

5threshold cT). In this article, we also follow Gagliardini and Ronchetti (2016) by only con-

sidering kernel smoothing:

ê Xt; h½ � ¼
XT

s¼1

x Xt;Xs;hT½ �Wsþ1 hð Þ:

We note that Ai and Chen (2003, 2007) rather promote sieve estimation, and therefore

call the minimization of (5.4) a sieve minimum distance estimation.

10It is then worth comparing the first-order conditions that characterize the estimator ĥ
�
T

of the pseudo-true value obtained by minimization of (5.4) with the first-order conditions

(5.3) that had characterized the GMM estimator ĥT associated with the optimal managed

portfolios Ẑt;T ĥT

� �
. While (5.3) can be rewritten:

XT

t¼1

@ê 0 Xt; ĥT

h i
@h

X̂
�1

t;TWtþ1 ĥT

� �
¼ 0 (5.5)

we now characterize ĥ
�
T as solution of the first-order conditions associated with the mini-

mization of (5.4):

XT

t¼1

1t;T

@ê0 Xt; ĥ
�
T

h i
@h

X̂
�1

t;Tê 0 Xt; ĥ
�
T

h i
¼ 0: (5.6)

15Up to trimming, the only difference between (5.5) and (5.6) is the replacement of the

sample counterpart of:

Wtþ1 hð Þ ¼ m I t þ 1ð Þ; h½ �Rtþ1 � 1n

by a kernel estimator of:

e Xt; h½ � ¼ E Wtþ1 hð ÞjXt½ �:

In a context where we cannot afford to run nonparametric regressions on a set Xt of

20regressors as large as the relevant conditional information set I(t), which should include

all pricing factors and all asset prices as well, one may intuitively consider that the latter ap-

proach (5.6) is safer than the former one (5.5). As already explained, one may be afraid

that a pseudo-true value computed from the population analog of (5.5) would be more

focused on tracking the rich dynamics of the vector m I t þ 1ð Þ; h½ �Rtþ1 through a reduced set

25Xt of state variables present in the managed portfolios (or equivalently inPT
t¼1

@ê 0 Xt ;ĥ
�
T½ �

@h X̂
�1

t;T ) than on minimizing the pricing errors. At the least, (5.6) has the advan-

tage to treat symmetrically the information sets included on both sides of the orthogonality

relationship.

This intuition may lead to prefer, especially to deal with misspecified conditional asset

30pricing models, local GMM as Gagliardini and Ronchetti (2016) do, instead of GMM with

nonparametric estimation of instruments as in Nagel and Singleton (2011). In particular,

Gagliardini and Ronchetti (2016) extend the asymptotic distributional theory of GMM
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with misspecification that had been developed in the unconditional case by Hall and Inoue

(2003). However, the price to pay for this asymptotic theory is the need to resort to martin-

gale difference sequences that are not provided, in case of misspecification, by the condi-

tional moment restrictions themselves. They need to basically assume (see their proof of

5Proposition 5) that differences:

Wtþ1 hð Þ � e Xt; h½ �

provide a martingale difference sequence w.r.t the process Xtf g for any h, meaning that m

I t þ 1ð Þ; h½ �Rtþ1 is r Xs; s� t þ 1½ � measurable for all h. This is likely to imply that all the

pricing factors in m I t þ 1ð Þ; h½ � and all the returns components of Rtþ1 are themselves r

Xs; s� t þ 1½ � measurable. As explained above, it is an assumption that we do not want to

maintain due to the curse of dimensionality in nonparametric regression. This is one of the

10main motivations for the introduction below of the alternative SMD approach.

5.3 A Jackknife GMM Alternative to Local GMM

While local GMM as defined by (5.4) amounts to minimizing a direct sample counterpart

of the conditional HJ-distance:

d2 hð Þ ¼ E e I tð Þ; h½ �0X�1 I tð Þ½ �e I tð Þ; h½ �

 �

;

where:

e I tð Þ; h½ � ¼ E Wtþ1 hð ÞjI tð Þ½ �:

It is worth noting that we can resort less to kernel smoothing by, before computing sample

counterparts, using as follows a square root matrix of X�1 I tð Þ½ � and the law of iterated

15expectations:

d2 hð Þ ¼ E E B Xtð ÞWtþ1 hð ÞjI tð Þ½ �0E B Xtð ÞWtþ1 hð ÞjI tð Þ½ �

 �

¼ E W0tþ1 hð ÞB0 Xtð ÞB Xtð ÞE Wtþ1 hð ÞjI tð Þ½ �

 �

¼ E Utþ1 hð Þ0E Utþ1 hð ÞjI tð Þ½ �

 �

;

where we maintain the Assumption (5.2):

X I tð Þ½ � � E Rtþ1R0tþ1jXt

� �
and define accordingly a square root matrix B Xtð Þ and associated sphericized moment

functions Utþ1 hð Þ by:

X�1 I tð Þ½ � ¼ B Xtð Þ0B Xtð Þ
Utþ1 hð Þ ¼ B Xtð ÞWtþ1 hð Þ:

(5.7)

Using this new version of the conditional HJ-distance, we can revisit the local GMM es-

timator as minimizing over h:

1

T

XT

t¼1

1t;TUtþ1 hð Þ0Êt;T Utþ1 hð ÞjXt½ �; (5.8)

where the notation Êt;T Utþ1 hð ÞjXt½ � stands for a kernel counterpart of the conditional

20expectation E Utþ1 hð ÞjI tð Þ½ �. Note that in practice the sphericization (5.7) may also take a
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kernel counterpart of the matrix X I tð Þ½ � before computing a square root B Xtð Þ of its inverse.

Recall that in (5.4) and its modification (5.8) 1t;T is a trimming term to discard observations

for which the nonparametric estimator f̂ T Xtð Þ of the marginal density of Xt is overly small

(below some well-chosen threshold cT). We refer to Zheng (1996) to note that “as in

5Powell, Stock, and Stoker (1989) the inclusion of the density function avoids the problem

of trimming the small values of the density function.” In other words, a sensible smoother

alternative to the trimming terms 1t;T might be to weight the various terms of the sum by

the estimated density itself:

SM�
T hð Þ ¼ 1

T

XT

t¼1

f̂ T Xtð ÞUtþ1 hð Þ0Êt;T Utþ1 hð ÞjXt½ �

f̂ T Xtð Þ ¼
1

T � 1ð Þhm
T

X
1� s�T;s 6¼t

K
Xs � x0

hT

� 	
:

10Given our “externalized” (Jones, Davies, and Park, 1994) version of the Nadaraya–

Watson estimator of the conditional expectation, we have:

f̂ T Xtð ÞÊt;T Utþ1 hð ÞjXt½ � ¼ 1

T � 1ð Þhm
T

X
1� s�T;s6¼t

K
Xs �Xt

hT

� 	
Usþ1 hð Þ

so that:

SM�
T hð Þ ¼ 1

T T � 1ð Þ
1

hm
T

XT

t¼1

XT

s¼1;s 6¼t

Utþ1 hð Þ0Usþ1 hð ÞK Xs �Xt

hT

� 	
:

This approach can actually be seen as a generalization of the test statistic proposed inde-

pendently by Fan and Li (1996) and Zheng (1996) for testing the specification of regression

15functions. Moreover, Fan and Li (2000) complete this approach by addressing the issue of

“fixed bandwidth vs. vanishing bandwidth.” More generally, the focus of our interest in

the next sections will be a possibly bandwidth dependent pseudo-true value h� hð Þ whose es-

timator, the SMD estimator promoted by Lavergne and Patilea (2013), is defined by:

ĥT hð Þ ¼ arg min
h2H

1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s6¼t

B Xsð ÞWsþ1 hð Þ½ �0 B Xtð ÞWtþ1 hð Þ½ �K Xs �Xt

h

� 	
: (5.9)

20Note that the sphericization matrix B Xtð Þ itself can also be seen as resulting of a choice

of a fixed bandwidth in kernel smoothing of X I tð Þ½ �. This additional fixed bandwidth par-

ameter is not made explicit for notational simplicity. While our focus of interest is estima-

tion of a pseudo true value, Pe~naranda, Rodrı́guez-Poo, and Sperlich (2017) have recently

led a similar discussion for the purpose of nonparametric specification testing of condition-

25al asset pricing models.They first put forward an integral of squared sphericized pricing

errors over the possible values of the conditioning variable. Interestingly enough, their sug-

gestion of weighting this squared pricing errors by the value of the probability density of

the conditioning variable exactly corresponds to our conditional HJ-distance. In other

words, the sample counterpart of this integral coincides with our local GMM (5.4) dis-

30tance. Moreover, they also note that it is worth downplaying the role of pricing errors

“when the data are sparse,” such that they re-weight the kernel estimation of the pricing

error by the kernel estimator of probability density of the conditioning variable, leading to
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our discrepancy measure (5.9). They put forward “an automatic procedure for maximizing

the power” of the test, leading to see the bandwidth parameter h as a “calibration parame-

ter.” This is conformable to our strategy of looking at a pseudo true value p lim T¼1 ĥT hð Þ
for different possible values of this “calibration parameter” h. In the particular case of lin-

5ear factor pricing models, our approach can also be related to the work of Roussanov

(2014) and Wang (2003).

We will explain in the next two subsections below why this bandwidth dependent

pseudo-true value is worth considering. We already note that the new discrepancy function

(5.9) can be related to local GMM in a way similar to the extension of GMM dubbed

10Jackknife GMM by Newey and Windmeijer (2009). To see that, let us consider some un-

conditional moment restrictions:

E g Y; hð Þ½ � ¼ 0 (5.10)

For a given positive definite matrix W, a GMM estimator is defined as:

ĥT ¼ arg min
h2H

QT hð Þ;

where:

QT hð Þ ¼ gT hð Þ0WgT hð Þ

gT hð Þ ¼ 1

T

XT

t¼1

g Yt; hð Þ:

15The logic of jackknife GMM can be described from the following decomposition of the

GMM criterion function:

QT hð Þ ¼ 1

T

XT

t¼1

g Yt; hð Þ0WgT hð Þ

 �

:

Consistent with the leave-one-out logic, it is natural to consider that in the tth term of

this sum the expectation E g Y; hð Þ½ � should rather be estimated by:

g
tð Þ

T hð Þ ¼ 1

T � 1

XT

s¼1;s 6¼t

g Ys; hð Þ

leading to a modification of the objective function as follows:

~QT hð Þ ¼ 1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s6¼t

g Yt; hð Þ0Wg Ys; hð Þ

 �

: (5.11)

20Following Newey and Windmeijer (2009), an estimator of h computed as minimizer of
~QT hð Þ will be dubbed a jackknife GMM estimator. As explained by Newey and

Windmeijer (2009), this estimator is a generalization of the second jackknife instrumental

variables estimator (JIVE2) of Angrist, Imbens, and Krueger (1999) in order to allow for a

25general weighting matrix W. The analogy between the discrepancy measure (5.11) and

(5.9) is obvious, up to the fact that in the context of conditional moment restrictions, naive

empirical weights 1=Tð Þ must be replaced by kernel weights (see, e.g., Antoine, Bonnal, and

Renault, 2007).
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This jackknife principle is known to be useful in the context of weak identification. We

will show in Section 7 that it is also helpful to deal with the asymptotic distributional theory

of a GMM estimator based on misspecified moment conditions. We will develop an asymp-

totic distributional theory that revisits the theory of Hall and Inoue (2003) in the case (5.10)

5of unconditional moment restrictions and replaces the theory of local GMM in the context of

SMD estimation (5.9) based on misspecified conditional moment restrictions.

6 Bandwidth Dependent Pseudo-True SDF

We provide in the next two subsections an interpretation of the fixed bandwidth pseudo-

true value in the i.i.d. case and in the context of a state variable framework. Following

10Antoine and Lavergne (2014), we also discuss in the last subsection how the SMD estimator

can be modified to deal with weak identification contexts in the i.i.d. case.

6.1 Interpretation in the i.i.d. Case

Even though the i.i.d. setting is not our focus of interest in this article, it is worth consider-

ing it now to get more intuition about the interpretation of the fixed bandwidth pseudo-

15true value defined in the former subsection. To do so, let us for the moment replace the con-

ditional moment restrictions of interest:

E Utþ1 hð ÞjXt½ � ¼ 0

by the following:

E g Yi; hð ÞjXi½ � ¼ 0 (6.1)

when we observe some i.i.d. sample Yl;Xlð Þ; l ¼ 1; 2::: and g y; hð Þ ¼ g kð Þ y; hð Þ
� �

1�k� n
is a

vector of n moment functions. Assume that the kernel function K :ð Þ is such that:

K uð Þ ¼
ð
R

m
exp if0uð Þdl fð Þ

for some measure l :ð Þ that is strictly positive (except possibly for a set of isolated points).

This condition is not very restrictive for kernel functions based on products of univariate

probability density functions (see, e.g., Lavergne and Patilea (2013) for a discussion). Then,

20if we compute the analog of the quantity (5.9), assuming h¼1 without loss of generality:

E g0 Yl; hð Þg Yj; h
� �

K Xl �Xj

� �
 �
¼ E g0 Yl; hð Þg Yj; h

� �ð
R

m
exp if0 Xl �Xj

� �� �
dl fð Þ

� 

¼
Xn

k¼1

ð
R

m
E g kð Þ Yl; hð Þg kð Þ Yj; h

� �
exp if0 Xl �Xj

� �� �
 �
dl fð Þ

¼
Xn

k¼1

ð
R

m
E g kð Þ Yl; hð Þexp if0Xl½ �

 �

E g kð Þ Yj; h
� �

exp �if0Xj

� �
 �
dl fð Þ

¼
Xn

k¼1

ð
R

m
jE g kð Þ Yl; hð Þexp if0Xl½ �
n o

j2dl fð Þ:

(6.2)
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Therefore, we see that (6.2) can be zero if and only if:

E g Yl; hð Þexp if0Xl½ �f g ¼ 0;8f 2 R
m: (6.3)

However, it has been known at least since Bierens (1982) that the continuum of uncon-

ditional restrictions (6.3) is equivalent to the set (6.1) of conditional moment restrictions.

5The logical equivalence between (6.2) and (6.3) has first been pointed out by Fan and Li

(2000) in the context of specification testing. As far as estimation is concerned, it says that

when (6.1) is well-specified and identifies a unique true value h0, the nullity of (6.2) identi-

fies the same true value. It is then natural to define a pseudo-true value by minimization of

(6.2) or, in our context, minimization of (5.9). This argument does not extend directly to

10general time series models. However, we can also produce an additional interpretation

that we will eventually be able to extend to time series context with well suited state

variables.

The key idea is to use the law of iterated expectations to rewrite (6.2) as follows:

E g0 Yl; hð Þg Yj; h
� �

K Xl �Xj

� �
 �
¼ E E g0 Yl; hð Þg Yj; h

� �
jXl;Xj

� �
K Xl �Xj

� �
 �
:

15However, the fact that Yl;Xlð Þ and Yj;Xj

� �
are independent implies that:

E g0 Yl; hð Þg Yj; h
� �

jXl;Xj

� �
¼ E g0 Yl; hð ÞjXl½ �E g Yj; h

� �
jXj

� �
:

To see this, it is convenient to assume that Yl;Xlð Þ admits a density with respect to a

product probability measure. Elementary probability computations then allow us to show

that:

f yl; yjjxl;xj

� �
¼ f yljxlð Þf yjjxj

� �
which implies the announced factorization of conditional expectations.With a nonspecified

20bandwidth parameter h, we have for the same reason:

E g0 Yl; hð Þg Yj; h
� �

K
Xl �Xj

h

� �� 

¼ E E g0 Yl; hð ÞjXl½ �E g Yj; h

� �
jXj

� �
K

Xl �Xj

h

� �� 

;

(6.4)

Therefore, from (6.4) we understand that, at least for a sufficiently small bandwidth

parameter h, minimizing this quantity amounts to searching for a value h� hð Þ of h that

comes as close as possible to fulfilling the conditional moment restrictions (6.1).

256.2 Interpretation through State Variables

The goal of this subsection is to show that a natural state variables setting allows us to han-

dle our minimization of interest, namely (5.9), in a way quite similar to the well-

documented i.i.d. case. We start by applying the law of iterated expectations to the quantity

in (5.9), rewritten as follows:

E B Xsð ÞWsþ1 hð Þð Þ0 B Xtð ÞWtþ1 hð Þð ÞK Xt �Xs

h

� �� 	
¼ E B Xsð ÞW Ysþ1; hð Þð Þ0 B Xtð ÞW Ytþ1; hð Þð ÞK Xt �Xs

h

� �� 

:

30
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For s < t :

Ds;t h; hð Þ ¼ E B Xsð ÞW Ysþ1; hð Þð Þ0 B Xtð ÞW Ytþ1; hð Þð ÞK Xt �Xs

h

� �� 

¼ E B Xsð ÞW Ysþ1; hð Þð Þ0B Xtð ÞE W Ytþ1; hð ÞjYt

1;X
tþ1
1

� �
K

Xt �Xs

h

� �� 

:

A common assumption in asset pricing models (see, e.g., Garcia, Luger, and Renault

(2003) and references therein) is that exogenous state variables summarize the dynamics of

5asset returns and pricing kernels; given the path of state variables (for instance, the path of

stochastic volatility), the consecutive asset returns and SDFs are serially conditionally

independent:

Assumption A1

E W Ytþ1; hð ÞjYt
1;X

tþ1
1

� �
¼ E W Ytþ1; hð ÞjXtþ1

1

� �
10

Then:

Ds;t h; hð Þ ¼ E B Xsð ÞW Ysþ1; hð Þð Þ0B Xtð ÞE W Ytþ1; hð ÞjXtþ1
1

� �
K

Xt �Xs

h

� �� 

¼ E E W0 Ysþ1; hð ÞjXtþ1

1

� �
B0 Xsð ÞB Xtð ÞE W Ytþ1; hð ÞjXtþ1

1

� �
K

Xt �Xs

h

� �� 

:

A second common assumption (see again the discussion in Garcia, Luger, and Renault

(2003)) is that state variables are strictly exogenous in the sense that they are not caused by

15the time series of asset returns and SDFs. Writing this noncausality assumption in the Sims

way allows us to write:

Assumption A2

s < t ) E W0 Ysþ1; hð ÞjXtþ1
1

� �
¼ E W0 Ysþ1; hð ÞjXsþ1

1

� �
20Thus, under assumptions A1 and A2:

Ds;t h; hð Þ ¼ E E W0 Ysþ1; hð ÞjXsþ1
1

� �
B0 Xsð ÞB Xtð ÞE W Ytþ1; hð ÞjXtþ1

1

� �
K

Xt �Xs

h

� �� 

:

An additional assumption, that is more questionable, states that there is no instantan-

eous causality between asset returns/SDF and state variables. When state variables

include stochastic volatility, this would amount to assuming that there is no leverage ef-

25fect. Garcia, Luger, and Renault (2003) have extensively documented the consequences of

this questionable assumption for the purpose of asset pricing. This assumption can be

written:

Assumption A3

E W Ytþ1; hð ÞjXtþ1
1

� �
¼ E W Ytþ1; hð ÞjXt

1

� �
30

28 Journal of Financial Econometrics



If in addition we assume that the state variables process fulfills the Markov property (a

natural and hardly restrictive assumption) we conclude that under assumptions A1, A2,

and A3:

Ds;t h; hð Þ ¼ E E B Xsð ÞW Ysþ1; hð Þð Þ0jXs

� �
E B Xtð ÞW Ytþ1; hð ÞjXt½ �K Xt �Xs

h

� �� 

:

5As in the i.i.d. case, we can then conclude that, at least for a sufficiently small band-

width parameter, the minimization of (5.9) amounts to searching for a value h� hð Þ of h that

comes as close as possible to fulfilling the conditional moment restrictions of the asset pric-

ing model, when the moment restrictions are properly rescaled by the conditional HJ

weighting matrix (whose square root is the matrix B Xtð Þ).

106.3 Weak Identification

In the i.i.d. case, Antoine and Lavergne (2014) show that the bandwidth dependent SMD

estimator ĥT hð Þ defined in (5.9) is consistent under semi-strong identification for any

chosen fixed bandwidth h. However, as the gradient of the objective function flattens under

semi-strong identification, the solution of the first-order conditions can be numerically

15quite dispersed and unstable in practice. To avoid such a behavior, Antoine and Lavergne

(2014) propose instead the following WMD estimator:

ĥ
�
T hð Þ ¼ arg min

h2H
WMT h; hð Þ½ �

WMT h; hð Þ ¼

1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s6¼t

B Xsð ÞWsþ1 hð Þð Þ0 B Xtð ÞWtþ1 hð Þð ÞK Xt �Xs

h

� �� 	
1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s 6¼t

B Xsð ÞWsþ1 hð Þð Þ0 B Xtð ÞWtþ1 hð Þð Þ
� � :

The associated first-order conditions combine the gradient of the SMD estimator with

the one of a least-squares criterion. This second gradient does not flatten, even under semi-

20strong identification, and thus yields more stability in estimation for small and moderate

samples.

In Section 8.2, we present evidence that the factors commonly used in asset pricing mod-

els exhibit semi-strong identification strength. We then illustrate the finite sample proper-

ties of our inference procedures in a linear asset pricing model with semi-strong factors. In

25a (univariate) linear model, say y ¼ Y 0hþ e, the WMD estimator actually resembles a k-

class estimator. Recall that a general k-class estimator is of the form

Y 0 A� kIð ÞY½ ��1
Y 0 A� kIð Þy;

where A is a matrix depending on the exogenous variables. Estimators differ in the choice

of A and k: for instance, 2SLS uses k ¼ 0 and A¼P, the projection matrix on the space

spanned by the chosen instruments, while the jackknife IV estimator (JIVE) (see Angrist,

Imbens, and Krueger, 1999) uses k ¼ 0 and A¼P, the same projection matrix P, but with

30its diagonal elements are set to zero; limited information maximum likelihood (LIML) cor-

responds to A¼P and k equal to the smallest eigenvalue of Y 0Yð Þ�1 Y 0PYð Þ, while the jack-

knife LIML, labeled as HLIM by Hausman et al. (2012), corresponds to A¼P and k equal

to the smallest eigenvalue of Y 0Yð Þ�1 Y 0PYð Þ.
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Under strong identification, 2SLS (respectively, JIVE) and LIML (respectively, HLIM)

are asymptotically equivalent, while they are generally not under semi-strong identification:

2SLS can be inconsistent (see Chao and Swanson, 2005) or asymptotically inefficient rela-

tive to LIML (see Hausman et al., 2012) because the correction k can yield a lower vari-

5ance. But, k also depends on the number of instruments, because it involves a projection

matrix whose rank is the number of instruments. This yields an interplay between the num-

ber of instruments and their strength. In contrast, the WMD estimator does not use projec-

tion on instruments, so there is no user-chosen parameter that affects its consistency or

asymptotic variance. Nonetheless, it retains the computational simplicity of k-class estima-

10tors. An extension to weak identification frameworks as considered in Antoine and

Lavergne (2018) are beyond the scope of this article.

7 Asymptotic Distributional Theory for the Bandwidth Dependent
Pseudo-True SDF

The asymptotic theory for GMM estimators based either on nonparametric estimators of

15managed portfolios or on local GMM is well-documented in the case of well-specified mo-

ment conditions. The extension of this theory to misspecified moments is problematic. To

see that, it is worth referring to the seminal work of Hall and Inoue (2003) in the case of

misspecified unconditional moment restrictions.

The main message of Hall and Inoue (2003) is that in the case of misspecification, the es-

20timation errors on the Jacobian matrix of the moment conditions and on the weighting ma-

trix have an impact on the asymptotic distribution of the GMM estimator of the pseudo-

true value. Moreover, when this weighting matrix is estimated at a nonparametric rate, this

nonparametric rate will contaminate the estimation of the pseudo-true value.

This message is ominous regarding the impact of misspecification when either managed

25portfolios are estimated at a nonparametric rate or when local GMM leads one to estimate

the moment conditions themselves at a nonparametric rate. As already mentioned, the as-

sumption of martingale difference sequence that Gagliardini and Ronchetti (2016) need to

maintain is rather unrealistic. To escape this quandary, we develop in this section the

asymptotic theory of the SMD estimator of this pseudo-true value computed with a fixed

30bandwidth. We settle this theory through a jackknife alternative of Hall and Inoue’s (2003)

asymptotic theory of GMM with misspecification.

7.1 Why a Jackknife Alternative?

In this subsection, we provide some intuition for why a jackknife version of GMM is espe-

cially well-suited in the case of misspecification. We develop this intuition in the simplest

35framework of some unconditional moment restrictions:

E g Y; hð Þ½ � ¼ 0

based on a sequence of i.i.d. variables Yt; t ¼ 1; . . . ;T for inference about a vector h 2 H

� R
p of unknown parameters.

For a given positive definite matrix W, a GMM estimator of h is defined as:

ĥT ¼ arg min
h2H

QT hð Þ;
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where:

QT hð Þ ¼ gT hð Þ0WgT hð Þ:

We maintain the assumption of laws of large numbers that are uniform over the param-

eter space H:

P lim
T¼1

QT hð Þ ¼ Q1 hð Þ ¼ E g Y; hð Þ½ �0WE g Y; hð Þ½ �:

5We also assume that there is a unique pseudo-true value h� defined as solution of the

population minimization problem:

Q1 h�ð Þ < Q1 hð Þ; 8h 2 H� h�f g:

Under standard regularity conditions (compactness of H and continuity of the function

10g Y; :ð Þ), the GMM estimator ĥT is a consistent estimator of h�. Moreover, h� is assumed to

be an interior point of H, and a solution of the first-order conditions:

@Q1 h�ð Þ
@h

¼ 2E
@g Y; h�ð Þ0

@h

� 	
WE g Y; h�ð Þ½ � ¼ 0: (7.1)

The jackknife GMM alternative to the GMM estimator defined above is motivated by

the following decomposition of the quadratic form:

QT hð Þ ¼ Q�T hð Þ þ ~QT hð Þ

Q�T hð Þ ¼ 1

T2

XT

t¼1

XT

s¼1;s 6¼t

g Yt; hð Þ0Wg Ys; hð Þ

~QT hð Þ ¼ 1

T2

XT

t¼1

g Yt; hð Þ0Wg Yt; hð Þ:

15Obviously, we expect that uniformly over H:

P lim
T¼1

Q�T hð Þ ¼ E g Yt; hð Þ0Wg Ys; hð Þ
� �

¼ E g Y; hð Þ½ �0WE g Y; hð Þ½ � ¼ Q1 hð Þ (7.2)

while:

~QT hð Þ � 1

T
E g Yt; hð Þ0Wg Yt; hð Þ
� �

¼ OP
1

T

� �
: (7.3)

Therefore, we have an alternative consistent estimator h�T of h� by defining h�T as solu-

tion of the minimization program:

h�T ¼ arg min
h2H

Q�T hð Þ:

20Following Newey and Windmeijer (2009), h�T will be dubbed a jackknife GMM estima-

tor. We naturally assume that the estimator h�T is characterized (for T sufficiently large) as

solution of the first-order conditions:

@Q�T h�T
� �
@h

¼ 0:
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With a standard Taylor expansion, we deduce:

ffiffiffiffi
T
p @Q�T h�ð Þ

@h
þ @

2Q�T h�ð Þ
@h@h0

ffiffiffiffi
T
p

h�T � h�
� �

¼ oP 1ð Þ: (7.4)

As usual, the estimator h�T will be asymptotically normal as a linear function of the score

vector:

ffiffiffiffi
T
p @Q�T h�ð Þ

@h
¼

ffiffiffiffi
T
p

T2

X
1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ
� 	

¼
ffiffiffiffi
T
p

T2

X
1� t 6¼s�T

U Ys;Ytð Þ;

where U Ys;Ytð Þ has a zero expectation by virtue of (7.1).

5This expression of the score vector displays the advantage of the jackknife approach:

the asymptotic normal distribution of the GMM estimator will involve, in a symmetric

way, the asymptotic normality of sample means of the moment conditions, as well as

the asymptotic normality of sample means of the Jacobian matrix of these moments.

This is the key difference with respect to the standard asymptotic theory of GMM in the

10case of well-specified moments: only the asymptotically normal distribution of sample

means of the moment conditions matters, while the sample means of the Jacobian matrix

can be replaced by their population values. Hall and Inoue (2003), in revisiting the stand-

ard way to derive the asymptotic distribution of GMM, point out that the need to

demean misspecified moment conditions by their population expectation (computed

15at the pseudo-true value h�) implies the nonstandard impact of the asymptotic normal dis-

tribution of sample means of the Jacobian matrix of moments on the asymptotic distribu-

tion of GMM. We will see in the next subsection that the argument is much more

transparent when based on sample means of the symmetric function U Ys;Ytð Þ. It appears

as a direct corollary of classical results for the asymptotic normality of U-statistics of

20order 2.

7.2 Jackknife GMM and U-Statistics

As shown above:

@Q�T h�ð Þ
@h

¼ T � 1

T
UT ;

where UT is the U-statistic of order 2:

UT ¼
1

T T � 1ð Þ
X

1� t 6¼s�T

U Yt;Ysð Þ (7.5)

with the symmetric function U Yt;Ysð Þ:

U Yt;Ysð Þ ¼ @g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ:
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Assuming that U Yt;Ysð Þ is square-integrable, UT is a U-statistic with zero mean that is

nondegenerate insofar as we have a nonzero Hájek projection by computing:

u Ytð Þ ¼ E U Yt;Ysð ÞjYt½ � ¼ @g Yt; h
�ð Þ0

@h
Wl� þG h�ð Þ0Wg Yt; h

�ð Þ; (7.6)

where the above expression has been obtained by using the independence of Yt and Ys and

the notations:

l� ¼ E g Yt; h
�ð Þ½ �;G hð Þ ¼ E

@g Yt; hð Þ
@h0

� 	
:

5The Hájek projection (7.6) is obviously nonzero under standard GMM assumptions;

namely that G h�ð Þ is of rank p and S� ¼ Var g Yt; h
�ð Þ½ � is nonsingular. Then, by virtue of the

Central Limit Theorem for nondegenerate U-statistics, we know that
ffiffiffiffi
T
p

UT is asymptotic-

ally equivalent to the asymptotically normal vector:

2ffiffiffiffi
T
p

XT

t¼1

u Ytð Þ:

10Therefore,
ffiffiffiffi
T
p

UT is asymptotically normal with mean zero and variance 4R�, where:

R� ¼ Var u Ytð Þ½ � ¼ Var G h�ð Þ0Wg Yt; h
�ð Þ

� �
þ Var

@g Yt; h
�ð Þ0

@h
Wl�

� 	
þ Cov

@g Yt; h
�ð Þ0

@h
Wl�;G h�ð Þ0Wg Yt; h

�ð Þ
� 	

þ Cov G h�ð Þ0Wg Yt; h
�ð Þ; @g Yt; h

�ð Þ0

@h
Wl

� 	
:

Note that, since all the terms have a zero expectation by virtue of (7.1), all the above

variances and covariances are actually expectations of products. Following Hall and Inoue

(2003), it is worth introducing the following notations:

Var
@g Yt; h

�ð Þ0

@h
Wl

� 	
¼ X22 lð Þ

Cov
@g Yt; h

�ð Þ0

@h
Wl; g Yt; h

�ð Þ
� 	

¼ X21 lð Þ

Cov g Yt; h
�ð Þ; @g Yt; h

�ð Þ0

@h
Wl

� 	
¼ X12 lð Þ ¼ X021 lð Þ;

where, in particular:

X22 0ð Þ ¼ 0;X12 0ð Þ ¼ 0 ¼ X021 0ð Þ:

15Then:

Var u Ytð Þ½ � ¼ G h�ð Þ0WS�WG h�ð Þ þ X22 l�ð Þ þ X21 l�ð ÞWG h�ð Þ þG h�ð Þ0WX12 l�ð Þ:

From (7.4), we get that
ffiffiffiffi
T
p

h�T � h�
� �

is asymptotically normal with asymptotic variance:

@2Q�1 h�ð Þ
@h@h0

� 	�1

R�
@2Q�1 h�ð Þ
@h@h0

� 	�1
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with:

Q�1 hð Þ ¼ p lim
T¼1

Q�T hð Þ ¼ p lim
T¼1

QT hð Þ ¼ Q1 hð Þ;

where the second equality comes from (7.3). We then deduce that under standard regularity

conditions:

@2Q1 hð Þ
@h@h0

¼ @

@h
2E g0 Y; hð ÞWE

@g0 Yt; hð Þ
@h

� 	� 	� 

leading to:

H� ¼ 1

2

@2Q1 h�ð Þ
@h@h0

¼ G h�ð Þ0WG h�ð Þ þ l�0W � Idp

� �
DGð Þ h�ð Þ

DGð Þ hð Þ ¼ E
@

@h0
vec

@g Yt; hð Þ
@h0

� 	� 

:

Hall and Inoue (2003) note that in contrast with the well-specified case (l� ¼ 0), the

5classical local identification condition of a rank p Jacobian matrix G h�ð Þ does not guaran-

tee that the matrix H� is nonsingular. However, we follow Hall (2005) (see his Assumption

4.6) to note that if the second-order condition is satisfied (Q1 hð Þ strictly convex in the

neighborhood of h�), H� should be positive definite. Therefore, as Hall and Inoue (2003)

and Hall (2005), we maintain the assumption that H� is nonsingular. Hence, we have

10proved:

Theorem 2 Assume that Yt; t ¼ 1; . . . ;T is an i.i.d. sequence and the jackknife GMM esti-

mator h�T is defined as:

arg min
h2H

XT

t¼1

XT

s¼1;s 6¼t

g Yt; hð Þ0Wg Ys; hð Þ

for some positive definite matrix W. Then, under standard regularity conditions, the asymp-

totic distribution of
ffiffiffiffi
T
p

h�T � h�
� �

is normal with zero mean and variance:

H�ð Þ�1R� H�ð Þ�1

15with:

R� ¼ G h�ð Þ0WS�WG h�ð Þ þ X22 l�ð Þ þ X21 l�ð ÞWG h�ð Þ þG h�ð Þ0WX12 l�ð Þ
H� ¼ G h�ð Þ0WG h�ð Þ þ l�0W � Idp

� �
DGð Þ h�ð Þ:

Several remarks are in order. First, when the moments are well-specified (l� ¼ 0), we find

the standard formula for asymptotic variance of a GMM estimator associated with a

20weighting matrix W:

H�ð Þ�1R� H�ð Þ�1 ¼ G h�ð Þ0WG h�ð Þ
� ��1

G h�ð Þ0WS�WG h�ð Þ
� �

G h�ð Þ0WG h�ð Þ
� ��1

:
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Second, in the general case, our asymptotic distribution is identical to the asymptotic

distribution provided for the GMM estimator
ffiffiffiffi
T
p

ĥT � h�
h i

by Hall and Inoue (2003).

However, it is worth noting that the use of CLT for U-statistics in the context of jackknife

GMM has made the proof much more transparent. The key for this transparency is the

5symmetric role between moment conditions and their Jacobian matrix provided by the

Hájek projection (7.6). As noted by Hall and Inoue (2003), this result can also be seen as a

particular case of Gallant and White’s (1998) general asymptotic theory of misspecified

models (see their Theorem 5.7).

Third, our result is also nested in the variance formula given by Ai and Chen (2007) (see

10their Theorem 4.1). However, their analysis is more general since they accommodate mo-

ment conditions with infinite dimensional unknown parameters. Moreover, they also do

not use the simplifying framework of U-statistics.

7.3 Jackknife GMM with an Estimated Weighting Matrix

If the weighting matrix W has to be replaced by a consistent estimator WT , a jackknife

15GMM estimator h�T of h is obtained by minimizing:

Q�T hð Þ ¼ 1

T2

XT

t¼1

XT

s¼1;s 6¼t

g Yt; hð Þ0WTg Ys; hð Þ

so that:

@Q�T h�ð Þ
@h

¼ 1

T2

X
1� t 6¼s�n

UT Yt;Ysð Þ;

where UT Yt;Ysð Þ is now the sample-size dependent symmetric function:

UT Yt;Ysð Þ ¼ @g Yt; h
�ð Þ0

@h
WTg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
WTg Yt; h

�ð Þ:

Powell, Stock, and Stoker (1989) have proved a generalization of the CLT for U-statis-

tics for the case of a symmetric function UT Yt;Ysð Þ that varies with T (see their Lemma

3.1). However, we must keep in mind that the estimator WT of the weighting matrix W is

20a function of the random sample Yt; t ¼ 1; ::;T. For this reason, the result of Powell,

Stock, and Stoker (1989) does not seem very helpful. It involves the Hájek projection com-

puted with the function UT Yt;Ysð Þ, for which we do not know how to take into account

the randomness within WT to compute the needed conditional expectations. As already

stressed by Gallant and White (1988) (see their discussion page 12 and 13), “additional

25complications arise in allowing WT to be stochastic,” precisely because the effect of this

randomness remains relevant, even asymptotically, when the model is misspecified. The

impact of the asymptotic distribution of the estimator WT on the asymptotic distribution

of h�T has been fully characterized by Hall and Inoue (2003). The purpose of this subsec-

tion is to show that the framework of U-statistics still provides a much more transparent

30proof of the main result of Hall and Inoue (2003). However, this framework will be based

on the time-invariant symmetric function U Yt;Ysð Þ of the former section, rather than

UT Yt;Ysð Þ.
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We start from:

UT ¼
1

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
WTg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
WTg Yt; h

�ð Þ
� 	

¼ 1

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ
� 	

þ 1

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
WT �Wð Þg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
WT �Wð Þg Yt; h

�ð Þ
� 	

:

From the former subsection, we know that:

1

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ
� 	

¼ 2

T

XT

t¼1

u Ytð Þ þ oP
1ffiffiffiffi
T
p
� �

:

5Moreover, just by assuming that WT is a consistent estimator of W, we have:

1

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
WT �Wð Þg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
WT �Wð Þg Yt; h

�ð Þ
� 	

¼ 2

T T � 1ð Þ
XT

t¼1

@g Yt; h
�ð Þ0

@h

 !
WT �Wð Þ

XT

t¼1

g Yt; h
�ð Þ

 !

� 2

T T � 1ð Þ
XT

t¼1

@g Yt; h
�ð Þ0

@h
WT �Wð Þg Yt; h

�ð Þ
� 	

¼ 2

T T � 1ð Þ
XT

t¼1

@g Yt; h
�ð Þ0

@h

 !
WT �Wð Þ

XT

t¼1

g Yt; h
�ð Þ

 !
þ oP

1

T

� �
¼ 2G h�ð Þ0 WT �Wð Þl� þ oP

1ffiffiffiffi
T
p
� �

:

To get the last equality, we have used a standard CLT for sample means of the moment

conditions and their Jacobians, such that:

1

T

XT

t¼1

@g Yt; h
�ð Þ

@h0
�G h�ð Þ ¼ OP

1ffiffiffiffi
T
p
� �

1

T

XT

t¼1

g Yt; h
�ð Þ � l� ¼ OP

1ffiffiffiffi
T
p
� �

:

10We end up with:

UT ¼
2

T

XT

t¼1

u Ytð Þ þ 2G h�ð Þ0 WT �Wð Þl� þ oP
1ffiffiffiffi
T
p
� �

: (7.7)

The decomposition (7.7) clearly displays the deep reason for the findings of Hall and

Inoue (2003). On the one hand, there is no hope to get a root-T asymptotically normal

GMM estimator if we do not maintain the assumption that
ffiffiffiffi
T
p

WT �Wð Þl� is asymptotic-

15ally normal. While this assumption is rather innocuous in the i.i.d. unconditional case
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(under standard regularity conditions), it might be more problematic in a time series and/or

a conditional context. This will be discussed in the next two subsections.

On the other hand, when it is asymptotically normal, the asymptotic distribution offfiffiffiffi
T
p

h�T � h�
� �

is determined by the asymptotic joint normal distribution of 1ffiffiffi
T
p
PT

t¼1 u Ytð Þ
5and

ffiffiffiffi
T
p

WT �Wð Þl�. Obviously, this asymptotic distribution can be explained, as in Hall

and Inoue (2003), by the asymptotic joint normal distribution of sample means of moments

and their Jabobians, as well as
ffiffiffiffi
T
p

WT �Wð Þl�.
Following Hall and Inoue (2003), under the maintained assumption that

ffiffiffiffi
T
p

WT �Wð Þ
l� is asymptotically normal, it is worth introducing the following notations:

lim
T¼1

Var
ffiffiffiffi
T
p

WT �Wð Þl
h i

¼ X33 lð Þ

lim
T¼1

Cov
1ffiffiffiffi
T
p

XT

t¼1

g Yt; h
�ð Þ;

ffiffiffiffi
T
p

WT �Wð Þl
" #

¼ X13 lð Þ;X31 lð Þ ¼ X13 lð Þ0

lim
T¼1

Cov
1ffiffiffiffi
T
p

XT

t¼1

@g Yt; h
�ð Þ0

@h
Wl;

ffiffiffiffi
T
p

WT �Wð Þl
" #

¼ X23 lð Þ;X32 lð Þ ¼ X23 lð Þ0:

(7.8)

10Note that, to make an assumption of asymptotic normality of
ffiffiffiffi
T
p

WT �Wð Þl� useful for

feasible inference, we will need to assume that all the above limits exist, at least for l ¼ l�.

Then, we can deduce easily from (7.7) that
ffiffiffiffi
T
p

UT is asymptotically normal with mean

zero and variance 4~R
�

with:

~R
� ¼ Var u Ytð Þ½ � þ X23 l�ð ÞG h�ð Þ þG h�ð Þ0X32 l�ð Þ þG h�ð Þ0X33 lð ÞG h�ð Þ

þG h�ð Þ0WX13 lð ÞG h�ð Þ þG h�ð Þ0X31 lð ÞWG h�ð Þ:

15We immediately get the following generalization of Theorem 2:

Theorem 3 Assume that Yt; t ¼ 1; . . . ;T is an i.i.d. sequence and the jackknife GMM esti-

mator h�T is defined as:

arg min
h2H

XT

t¼1

XT

s¼1;s6¼t

g Yt; hð Þ0WTg Ys; hð Þ

for a sequence of positive definite matrices WT converging in probability toward a positive

20definite matrix W, such that
ffiffiffiffi
T
p

WT �Wð Þl� is asymptotically normal with the existence of

limits (7.8) for l ¼ l�. Then, under standard regularity conditions, the asymptotic distribu-

tion of
ffiffiffiffi
T
p

h�T � h�
� �

is normal with zero mean and variance:

H�ð Þ�1 ~R
�

H�ð Þ�1

with:

~R
� ¼ R� þ R��

R� ¼ G h�ð Þ0WS�WG h�ð Þ þ X22 l�ð Þ þ X21 l�ð ÞWG h�ð Þ þG h�ð Þ0WX12 l�ð Þ
R�� ¼ G h�ð Þ0WX13 l�ð ÞG h�ð Þ þG h�ð Þ0X31 lð ÞWG h�ð Þ þ X23 l�ð ÞG h�ð Þ

þG h�ð Þ0X32 l�ð Þ þG h�ð Þ0X33 l�ð ÞG h�ð Þ
H� ¼ G h�ð Þ0WG h�ð Þ þ l�0W � Idp

� �
DGð Þ h�ð Þ: 25
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Once again, several remarks are in order. First, when the moments are well-specified

(l� ¼ 0), we find the standard formula for asymptotic variance of a GMM estimator associ-

ated with a weighting matrix W. To see that, just note that:

Xij 0ð Þ ¼ 0;8i; j ¼ 1;2;3:

5Second, in the general case, our asymptotic distribution is identical to the asymptotic

distribution provided for the GMM estimator
ffiffiffiffi
T
p

ĥT � h�
h i

by Hall and Inoue (2003).

However, it is worth noting that again the use of CLT for U-statistics in the context of jack-

knife GMM has made the proof much more transparent.

Third, our result is not encompassed by Ai and Chen (2007) because they restrict their

10attention to a known weighting matrix, chosen for convenience equal to the identity

matrix.

7.4 The Time Series Case

We now revisit the analysis of the former subsection when the process Yt; t ¼ 1; . . . ;T may

display some serial dependence, always assumed to be stationary. Our analysis will differ

15from that of Hall and Inoue (2003) in two respects.

First, Hall and Inoue (2003) put some emphasis on the case where g Yt; hð Þ � l�f g is a

martingale difference sequence (see page 370). Of course, this assumption would be very

relevant for a well-specified asset pricing model since it would then be, for a (possibly par-

ameter dependent) choice of instruments Zt hð Þ, on moment functions:

g Ytþ1; hð Þ ¼ Zt hð Þ mtþ1 hð ÞRtþ1 � 1n½ �

that are by definition a martingale difference sequence. However when the conditional ex-

20pectation of g Ytþ1; hð Þ given I(t) is not zero, there is no reason to believe that it would coin-

cide with the unconditional expectation l�. A pricing error that would be uncorrelated

with any function of the past information would be rather easy to fix! Thus, this case is not

relevant for our study of pseudo-true values and will not be considered here.

Second, Hall and Inoue (2003) provide a sophisticated analysis of the case of a weight-

25ing matrix sequence WT that is the inverse of the HAC estimator of the long-run variance

matrix of the moment conditions. This complicates dramatically the matter since it implies

that the estimator WT is in general converging only at a slow nonparametric rate that may

contaminate the estimator h�T of h�. This issue is of course very relevant for an “efficient”

GMM approach (even though efficiency is never granted in the case of misspecification),

30but irrelevant for our specific pseudo-true value based on the HJ-distance.

Our extension to time series of Theorems 2 and 3 above is based on Theorem 1.8. of

Dehling and Wendler (2010). Their starting point is the function:

u yð Þ ¼ E V y;Ysð Þ½ �;

where:

V Yt;Ysð Þ ¼ @g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ

) u yð Þ ¼ @g y; h�ð Þ0

@h
Wl� þG h�ð Þ0Wg y; h�ð Þ:

(7.9)
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Interestingly enough, the sequence u Ytð Þ coincides with the one defined in (7.6), even

though it cannot be interpreted anymore as E V Yt;Ysð ÞjYt½ �:

u Ytð Þ ¼
@g Yt; h

�ð Þ0

@h
Wl� þG h�ð Þ0Wg Yt; h

�ð Þ:

We are going to show that, as far as the asymptotic distribution of the U -statistic is con-

5cerned, this function plays exactly the same role as in the previous subsections. The intu-

ition for that may be found in Lemma 1 of Yoshihara (1976). Under some b�mixing

conditions, the absolute expected error due to the approximation of E V Yt;Ysð ÞjYt½ � by

u Ytð Þ can be made arbitrarily small (for large s� tð Þ). We will then show that the time ser-

ies extension of Theorem 2 holds with X lð Þ ¼ Xi;j lð Þ
� �

1� i;j�3
being defined as a long-term

10variance matrix. More precisely, we maintain the following assumption that is similar to

Assumption (12) in Hall and Inoue (2003):

Assumption LT The vector ZT l�ð Þ is asymptotically normal with mean zero and variance

X l�ð Þ ¼ Xi;j l�ð Þ
� �

1� i;j�3
when ZT lð Þ is defined as:

ZT lð Þ ¼ Z1;T lð Þ0;Z2;T lð Þ0;Z3;T lð Þ0
� �0

Z1;T lð Þ ¼ 1ffiffiffiffi
T
p

XT

t¼1

g Yt; h
�ð Þ � l½ �

Z2;T lð Þ ¼ 1ffiffiffiffi
T
p

XT

t¼1

@g Yt; h
�ð Þ0

@h
�G h�ð Þ0

� 	
Wl

Z3;T lð Þ ¼
ffiffiffiffi
T
p

WT �W½ �l:

15
Note that in contrast with Hall and Inoue (2003), we do not need to assume that X l�ð Þ

is a positive definite matrix. For instance, nothing precludes that X2;2 l�ð Þ ¼ 0 or

X3;3 l�ð Þ ¼ 0. However, we also need to maintain the assumptions of Theorem 1.8. of

Dehling and Wendler (2010). Since their theorem is written for a scalar U-statistic, we need

20to apply it for any possible linear combination.

Assumption DW Ytð Þt2N is a stationary mixing process such that for all a 2 R
p; ha y1; y2ð Þ

¼ a0V y1; y2ð Þ fulfills the assumptions of Theorem 1.8. of Dehling and Wendler (2010).

These assumptions involve the strength of the mixing property jointly with some inte-

25grability conditions. Together these assumptions allow Dehling and Wendler (2010) to con-

clude that the asymptotic distribution of:ffiffiffiffi
T
p

T T � 1ð Þ
X

1� t 6¼s�T

ha Yt;Ysð Þ ¼ a0
ffiffiffiffi
T
p

T T � 1ð Þ
X

1� t 6¼s�T

V Yt;Ysð Þ
 !

is normal with mean zero and asymptotic variance 4r2 að Þ with:

r2 að Þ ¼ Var a0u Ytð Þ½ � þ 2
X1
k¼1

Cov a0u Ytð Þ; a0u Ytþkð Þ½ �:

In other words, for any a in R
p, we get an asymptotic normal distribution that coincides

with the asymptotic distribution of 2ffiffiffi
T
p
PT

t¼1 a0u Ytð Þ, including the long-term variance ma-

30trix. By the Cramér–Wold theorem, the asymptotic distribution of the sequence of random
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vectors is characterized by the set of asymptotic distributions of all linear combinations.

We can then conclude that the asymptotic distribution of:ffiffiffiffi
T
p

T T � 1ð Þ
X

1� t 6¼s�T

@g Yt; h
�ð Þ0

@h
Wg Ys; h

�ð Þ þ @g Ys; h
�ð Þ0

@h
Wg Yt; h

�ð Þ
� 	

coincides with the asymptotic distribution of 2ffiffiffi
T
p
PT

t¼1 u Ytð Þ. Therefore, a proof very similar

to the one of Theorem 3 can be devised to conclude that:

Theorem 4 Assume that Yt; t ¼ 1; . . . ;T is a stationary mixing process and the jackknife

5GMM estimator h�T is defined as:

arg min
h2H

XT

t¼1

XT

s¼1;s6¼t

g Yt; hð Þ0WTg Ys; hð Þ

for a sequence of positive definite matrices WT converging in probability toward a positive

definite matrix W. Then, under assumptions LT and DW, the asymptotic distribution of
ffiffiffiffi
T
p

h�T � h�
� �

is normal with zero mean and variance:

H�ð Þ�1 ~R
�

H�ð Þ�1

with:

~R
� ¼ R� þ R��

R� ¼ G h�ð Þ0WX11 l�ð ÞWG h�ð Þ þ X22 l�ð Þ þ X21 l�ð ÞWG h�ð Þ þG h�ð Þ0WX12 l�ð Þ
R�� ¼ G h�ð Þ0WX13 l�ð ÞG h�ð Þ þG h�ð Þ0X31 lð ÞWG h�ð Þ þ X23 l�ð ÞG h�ð Þ

þG h�ð Þ0X32 l�ð Þ þG h�ð Þ0X33 l�ð ÞG h�ð Þ
H� ¼ G h�ð Þ0WG h�ð Þ þ l�0W � Idp

� �
DGð Þ h�ð Þ:

10

7.5 Bandwidth Dependent Pseudo-True SDF

Following Lavergne and Patilea (2013), we can apply a U-statistic approach similar to the

one described above for the estimation of our bandwidth dependent pseudo true SDF h� hð Þ:

ĥT hð Þ ¼ arg min
h2H

QT hð Þ

QT hð Þ ¼ 1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s6¼t

Wsþ1 hð Þ0B0 Xsð ÞB Xtð ÞWtþ1 hð ÞK Xs �Xt

h

� 	
:

15To derive the asymptotic distribution of
ffiffiffiffi
T
p

ĥT hð Þ � h� hð Þ
h i

, the key is the asymptotic

distribution of the U-statistic:

@QT h� hð Þ½ �
@h

¼ UT ¼
1

T T � 1ð Þ
XT

t¼1

XT

s¼1;s6¼t

U Yt;Ysð Þ

U Xt;Xsð Þ ¼ @Wsþ1 hð Þ0

@h
B0 Xsð ÞB Xtð ÞWtþ1 hð ÞK Xs �Xt

h

� 	
þ @Wtþ1 hð Þ0

@h
B0 Xtð ÞB Xsð ÞWsþ1 hð ÞK Xs �Xt

h

� 	
:
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Following a logic similar to the proofs of Theorems 2, 3, and 4 above, we start by noting

that under convenient regularity conditions (as well as mixing assumptions in the time ser-

ies case),
ffiffiffiffi
T
p

UT is asymptotically equivalent to 2ffiffiffi
T
p
PT

t¼1 u Xtð Þ with:

u xtð Þ ¼ E U xt;Xsð Þ½ �

¼ E
@Wsþ1 hð Þ0

@h
B0 Xsð ÞK

Xs � xt

h

� 	� 

B xtð ÞWtþ1 hð Þ

þ @Wtþ1 hð Þ0

@h
B0 xtð ÞE B Xsð ÞWsþ1 hð ÞK Xs � xt

h

� 	� 

:

5By stationarity, we can define time invariant matricial functions A :ð Þ and C :ð Þ such that:

u xtð Þ ¼ A xtð ÞB xtð ÞWtþ1 hð Þ þ @Wtþ1 hð Þ0

@h
B0 xtð ÞC xtð Þ

A xtð Þ ¼ E
@Wsþ1 hð Þ0

@h
B0 Xsð ÞK

Xs � xt

h

� 	� 

C xtð Þ ¼ E B Xsð ÞWsþ1 hð ÞK Xs � xt

h

� 	� 

:

Therefore,
ffiffiffiffi
T
p

UT is asymptotically normal with mean zero and variance 4R�:

R� ¼ Var u Xtð Þ½ �

¼ Var A Xtð ÞB Xtð ÞWtþ1 hð Þ½ � þ Var
@Wtþ1 hð Þ0

@h
B0 xtð ÞC xtð Þ

� 	

þ Cov A xtð ÞB xtð ÞWtþ1 hð Þ; @Wtþ1 hð Þ0

@h
B0 xtð ÞC xtð Þ

� 	

þ Cov
@Wtþ1 hð Þ0

@h
B0 xtð ÞC xtð Þ;A xtð ÞB xtð ÞWtþ1 hð Þ

� 	
:

Then the same argument as the one developed for proving Theorem 2, 3, and 4 allows

10to prove that, under convenient regularity and mixing conditions, the asymptotic distribu-

tion of
ffiffiffiffi
T
p

ĥT hð Þ � h� hð Þ
h i

is normal with zero mean and variance:

H�ð Þ�1R� H�ð Þ�1

where:

H� ¼ 1

2

@2Q1 h�ð Þ
@h@h0

:

A similar result has been stated by Lavergne and Patilea (see their Theorem 2.3.). Note

that we have simplified the analysis by using a fixed known matrix instead of a consistent

15estimator of a genuine square root of the HJ weighting matrix defined by:

E Rtþ1R0tþ1jI tð Þ
� �� ��1 ¼ B0 Xtð ÞB Xtð Þ:

A consistent estimator of B Xtð Þ would involve a nonparametric rate of convergence that

would contaminate the estimator of h� hð Þ, analogous to the case of a HAC estimator

pointed out by Hall and Inoue (2003).
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8 Numerical Experiments

We investigate in this section the finite sample properties of the SMD estimator relative to

the local GMM estimator in a time-series setting. In Section 8.1, we study their perform-

ance for estimating an equity risk price parameter in the presence of global misspecification.

5We then proceed to present evidence in Section 8.2 that the factors commonly used in asset

pricing models exhibit semi-strong identification strength. Finally, we illustrate the finite

sample properties of the WMD estimator in a linear asset pricing model with semi-strong

factors.

8.1 Misspecified Asset Pricing Model

10The asset pricing model that we consider in this section is a discrete time option pricing

model with an exponentially affine SDF that is driven by two fundamental factors, the re-

turn on an underlying asset and a factor driving its stochastic volatility process. We intro-

duce global misspecification by assuming that the econometrician ignores the stochastic

volatility factor as a priced source of risk.

158.1.1 Data generating process

The data-generating process (DGP) is a bivariate compound autoregressive process (Car(1))

for the log market return and a stochastic volatility factor (rtþ1; r2
tþ1) defined by the condi-

tional Laplace transform

E exp �vrtþ1 � ur2
tþ1

� �
jIt

� �
¼ exp �l u; vð Þr2

t � g u; vð Þ

 �

(8.1)

for complex arguments u and v, and It the natural filtration of the state variables. We pre-

clude Granger causality from return to volatility and we assume the volatility factor is

20Markov of order one. This implies a univariate Car(1) model for the volatility factor

E exp �ur2
tþ1

� �
jr2

t

� �
¼ exp a uð Þr2

t � b uð Þ

 �

: (8.2)

Furthermore, we assume that stock returns are conditionally serially independent given

the volatility path, and that the conditional Laplace transform for log-returns given r2
t and

r2
tþ1 is

E exp �vrtþ1ð Þjr2
t ; r

2
tþ1

� �
¼ exp �a vð Þr2

tþ1 � b vð Þr2
t � c vð Þ


 �
: (8.3)

25The univariate conditional Laplace transforms (8.2) and (8.3) impose the following con-

straint on the bivariate conditional Laplace transform (8.1):

l u; vð Þ ¼ a uþ a vð Þ½ � þ b vð Þ
g u; vð Þ ¼ b uþ a vð Þ½ � þ c vð Þ:

(8.4)

The functions a :ð Þ; b :ð Þ; a :ð Þ; b :ð Þ, and c :ð Þ are all defined on neighborhood of zero in

30the complex plane, and we have by definition

a 0ð Þ ¼ b 0ð Þ ¼ a 0ð Þ ¼ b 0ð Þ ¼ c 0ð Þ ¼ 0:

A structure preserving exponential affine pricing kernel is specified as:

Mt;tþ1 hð Þ ¼ exp �rf ;t

� �
exp m0 hð Þ þm1 hð Þr2

t � h1r
2
tþ1 � h2rtþ1


 �
; (8.5)
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where h1 and h2 are preference parameters which characterize the prices of volatility risk

and equity risk, respectively, and m0 hð Þ and m1 hð Þ with h ¼ h1; h2ð Þ are defined in order to

match the exogenously specified dynamics of the risk-free rate, rf ;t, which we assume to be

zero. This is akin to the restriction

E exp m0 hð Þ þm1 hð Þr2
t � h1r

2
tþ1 � h2rtþ1


 �
jIt

� �
¼ 1

from which it follows that

m0 hð Þ ¼ b h1 þ a h2ð Þ½ � þ c h2ð Þ (8.6)

and

m1 hð Þ ¼ a h1 þ a h2ð Þ½ � þ b h2ð Þ: (8.7)

5The exponential affine pricing kernel is structure preserving in the sense that the risk-

neutral dynamics are defined by the following bivariate Car(1):

E� exp �ur2
tþ1 � vrtþ1

� �
jI tð Þ

� �
¼ exp �l� u; vð Þr2

t � g� u; vð Þ

 �

l� u; vð Þ ¼ a� uþ a� vð Þ½ � þ b� vð Þ

g� u; vð Þ ¼ b� uþ a� vð Þ½ � þ c� vð Þ;

where

a� vð Þ ¼ a h2 þ vð Þ � a h2ð Þ

b� vð Þ ¼ b h2 þ vð Þ � b h2ð Þ

c� vð Þ ¼ c h2 þ vð Þ � c h2ð Þ

and

a� uð Þ ¼ a uþ h1 þ a h2ð Þ½ � � a h1 þ a h2ð Þ½ �

b� uð Þ ¼ b uþ h1 þ a h2ð Þ½ � � b h1 þ a h2ð Þ½ �:

The particular bivariate Car(1) process that we simulate from is the ARG(1)-Normal

10specification introduced by Khrapov and Renault (2016) as an extension (with leverage ef-

fect) of the discrete time stochastic volatility model of Darolles, Gourieroux, and Jasiak

(2006). In the ARG(1)-Normal model, the volatility factor follows an autoregressive

gamma process of order one (ARG(1)) defined by:

a uð Þ ¼ qu

1þ cu
; b uð Þ ¼ dlog 1þ cuð Þ (8.8)

with

q 2 0; 1½ Þ; c > 0; d > 0

so that the affine volatility dynamics are parametrized as:

E r2
tþ1jIt

� �
¼ qr2

t þ dc

V r2
tþ1jIt

� �
¼ 2cqr2

t þ dc2:
(8.9)
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Furthermore, the log market return rtþ1 is conditionally Gaussian with conditional

Laplace transform characterized by:

a vð Þ ¼ wv� 1

2
v2 1� /2
� �

;b vð Þ ¼ va� �/kð Þ; c vð Þ ¼ vb� �/kð Þ; (8.10)

where:

k ¼ k c;qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 1þ qð Þ

p
w ¼ w c; q;/; h1; h2ð Þ ¼ k/þ 1� /2

� �
h2 �

1

2

� �
and:

a� uð Þ ¼ q�u
1þ c�u

; b� uð Þ ¼ dlog 1þ c�uð Þ

q� uð Þ ¼ q
v2 hð Þ ; c

� uð Þ ¼ c

v hð Þ ; and v hð Þ ¼ 1þ c h1 þ a h2ð Þ½ �:

In addition to the three stochastic volatility parameters (c, q, d), the conditional distribu-

5tion of the log market return is characterized by three additional parameters (/, h1, h2)

which capture leverage effect, volatility risk premium, and equity risk premium, respective-

ly. Identification of the volatility risk premium parameter h1 is fragile as it only occurs in

the function v hð Þ, whereas the equity risk premium parameter h2 is prevalent throughout.

To keep the exposition brief, we refer the reader to Khrapov and Renault (2016) for further

10details on the above parameterization of the log market return.

8.1.2 Simulation design

We simulate 1000 replications of sample size T¼2500 from the ARG(1)-Normal model

with parameter values:

c; q; d;/; h1; h2ð Þ ¼ 0:10; 0:60;1:25;0:00;�0:70; 0:50ð Þ:

15Although the model allows for leverage effect as captured by the parameter /, we as-

sume that it is zero in order to be consistent with our state variable framework introduced

in Section 6.2.

We initialize the volatility process at its unconditional mean, and we simulate it using

the following well known procedure of Gouriéroux and Jasiak (2006):

1. Draw an integer valued latent variable Ut from the Poisson distribution with inten-

20sity qr2
t =c

� �
.

2. Draw (r2
tþ1=c) from a gamma distribution with degree of freedom dþUt.

We simulate the log market return based on its first two conditional moments:

E rtþ1jr2
t ;r

2
tþ1

� �
¼ a0 0ð Þr2

tþ1 þ b0 0ð Þr2
t þ c0 0ð Þ

V rtþ1jr2
t ;r

2
tþ1

� �
¼ �a00 0ð Þr2

tþ1 � b00 0ð Þr2
t � c00 0ð Þ

and the affine decomposition:

rtþ1 ¼ E rtþ1jr2
t ; r

2
tþ1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V rtþ1jr2

t ;r
2
tþ1

� �q
�tþ1;
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where �tþ1 is a standard normal random variable. The above parameterization of the model

implies

a0 0ð Þ ¼ w;b0 0ð Þ ¼ a� �/kð Þ; c0 0ð Þ ¼ b� �/kð Þ
a00 0ð Þ ¼ � 1� /2

� �
; and b00 0ð Þ ¼ c00 0ð Þ ¼ 0:

8.1.3 Estimation

5We base our estimation of a well-specified model on the conditional moment restriction:

E exp m0 hð Þ þm1 hð Þr2
t � h1r

2
tþ1 � h2rtþ1


 �
exp rtþ1f g � 1jr2

t

� �
¼ 0; (8.11)

where m0 hð Þ and m1 hð Þ are defined in Equations (8.6) and (8.7), respectively. For the globally

misspecified case, we instead base our estimation on the conditional moment restriction:

E exp m0 hð Þ � h2rtþ1f gexp rtþ1f g � 1jr2
t

� �
¼ 0: (8.12)

Even though the volatility factor is recognized to be the proper conditioning variable in

10each case, in the globally misspecified case the econometrician incorrectly assumes that the

it is not a priced risk factor. In order to further simplify matters, we only attempt to esti-

mate the equity risk price, h2. This is consistent with estimating the parameters which gov-

ern the state variable dynamics c; q; d;/ð Þ separately from the preference parameters

(h1; h2Þ, while also using option prices to (correctly) calibrate the volatility risk price, h1,

15for the well-specified case.

8.1.4 Results

Our baseline results for the well-specified model are reported in Table A.1. We report mean

bias, median bias, standard deviation, root mean squared error, and the sampling distribu-

tion skewness and kurtosis for our estimates of the equity risk price h2. Both estimators,

20local GMM and SMD, are specified with a Gaussian kernel and the identity weighting ma-

trix. We provide results for bandwidths, h, in the set 10; 1; 0:10;0:01f g.
In the well-specified case we see that both estimators perform comparably well over a

range of bandwidths, but that both exhibit identification issues when we undersmooth.

Histograms (not provided here) show a bimodal sampling distribution for the SMD estima-

25tor with modes of 0.50 and 1.00, but a unimodal distribution for local GMM centered

around 1.00. A bimodal distribution also appears for the local GMM estimator for

h¼ 0.10. This suggests that the extra degree of smoothing in local GMM compared to

SMD leads to less stable behavior for small bandwidth choices.

Our baseline results for the globally misspecified case are reported in Table A.2. The

30reported statistics are the same as in Table A.1, but the estimators are now specified using

the conditional HJ weighting matrix. For our baseline results, the bandwidth for the

weighting matrix, b, coincides with the bandwidth for the conditional moment restrictions,

h, across all specifications. Finally, due to a lack of a closed-form solutions for the pseudo-

true values, we first simulated them using a much larger sample size of T¼ 7, 500. These

35are also reported in Table A.2 as h�2 hð Þ:
In the misspecified case, we see that both estimators perform comparably across all

bandwidths, but we hesitate to make any strict comparisons between the two estimators as

they are estimating different pseudo-true values. Encouragingly, we also see that (at least
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for the model in question) the pseudo-true values do not vary drastically with the choice of

bandwidth. Furthermore, we note that the pseudo-true for local GMM appears to be less

sensitive to the bandwidth choice. As expected based on our asymptotic distributional the-

ory, we also see that the sampling distributions exhibit normal behavior with near zero

5skewness, and kurtosis near three.

In Tables A.3 and A.4 we report results for the misspecified case again, but with a band-

width for the conditional HJ weighting matrix estimator that is fixed across specifications

at b¼1.0 and b¼ 0.10, respectively. We do not find considerable differences between the

results in Tables A.2, A.3, and A.4.

10As we have argued previously, we may not want to be overly parsimonious with respect

to the conditioning information set in the misspecified case. For this reason, we revisit the

baseline results with additional conditioning information by including one-period lagged

returns as a conditioning variable alongside the stochastic volatility factor.

For the well-specified case with additional conditioning information, the results in

15Table A.5 show similar patterns to those in Table A.1. The most striking difference is the

change in the sampling distribution statistics for local GMM at a relatively large bandwidth

of h¼ 1; local GMM starts to exhibit nonnormal behavior, and once again we have identifi-

cation issues for the smallest bandwidth choices.

For the misspecified case with additional conditioning information, the results in Table

20A.6 confirm that the pseudo-true value is a function of the conditioning information for

both estimators. Moreover, we find that the pseudo-true value for SMD is more sensitive to

the choice of conditioning information for large bandwidths, but that it is more stable

across the entire range of bandwidths than that of local GMM.

Finally, we reconsider the well-specified case in the presence of leverage effect in order

25to confirm whether or not the assumption of no leverage effect introduced in Section 6.2 is

necessary. The results in Table A.7 clearly show that SMD and local GMM are both biased

in the presence of leverage effect.

8.2 Estimation with Identification Weakness

In this section, we present evidence that the factors commonly used in asset pricing models

30exhibit semi-strong identification strength. We then illustrate the finite sample properties of

our new inference procedures in a linear asset pricing model with semi-strong factors.

8.2.1 Factors display different identification strengths

We start with a covariance study of the factors commonly used in asset pricing models to il-

lustrate their identification strengths. Consider the usual case where a CLT holds for the

35empirical covariance between the market return rt and a given (observable) factor ft under

standard regularity assumptions, that is:ffiffiffiffi
T
p dCovT rt; ftð Þ � Cov rt; ftð Þ
� �

!d z

with z random variable normally distributed with mean 0 and given variance r2.

It is useful to consider the implication of the above result for T large enough,

dCov rt; ftð Þ ¼ zffiffiffiffi
T
p þ Cov rt; ftð Þ
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Let us now consider the following cases:

1. Strong factor, Cov rt; ftð Þ ¼ O 1ð Þ: for T large, dCov rt; ftð Þ ¼ O 1ð Þ;
2. Semi-strong/Near-weak factor, Cov rt; ftð Þ ¼ O 1=Tk

� �
and 0 < k < 1=2: for

T large, dCov rt; ftð Þ ¼ O 1=Tk
� �

;

3. Weak factor, Cov rt; ftð Þ ¼ O 1=Tk
� �

and k ¼ 1=2: for T large, dCov rt; ftð Þ ¼

OP 1=
ffiffiffiffi
T
p� �

þO 1=
ffiffiffiffi
T
p� �

;

4. Super-weak factor, Cov rt; ftð Þ ¼ O 1=Tk
� �

and k > 1=2: for T large, dCov rt; ftð Þ ¼

Op 1=
ffiffiffiffi
T
p� �

.

5Regardless of the properties of the factors, assuming the above CLT applies, the empiric-

al covariance is always of order 1=T� with 0� �� 1=2.

In order to gain intuition on the properties of macro-finance factors commonly used in

empirical studies, we use monthly data and consider n different sample sizes Ti (with

i ¼ 1; 
 
 
 ;n) to compute the associated sample covariances ci between rt and ft. We then re-

10gress log cið Þ on log Tið Þ,

log cið Þ ¼ a� blog Tið Þ þ ui;

and estimate the associated slope coefficients by OLS. We consider the following three

popular factors: cay (the factor developed by Lettau and Ludvigson (2001a)), cg (the

growth rate in real per capita nondurable consumption (seasonally adjusted at annual rates)

from the Bureau of Economic Analysis), and smb (the second factor of Fama and French,

“small minus big”). The data are from February 1959 until December 2012. The different

15sample sizes are 196, 246, 296,. . ., 646, and the associated estimated slopes are as follows,

all between 0 and 0.5:

To conclude, our empirical results reveal that the three factors are semi-strong, with cay

stronger than cg stronger than smb.

8.2.2 Pricing model with semi-strong factors

20In this section, we illustrate the finite sample properties of our new inference procedures.

We focus on a linear asset pricing model where the SDF is motivated by Epstein–Zin prefer-

ences. More specifically, we consider the following pricing equations:

E Rtþ1mtþ1 gð Þ � 1jF t½ � ¼ 0

with

mtþ1 gð Þ ¼ mtþ1 d; c;wð Þ ¼ d cgtþ1ð Þ�1=w
h ic 1

Rm;tþ1

� 	1�c

;

Factor cay cg smb

Slope 0.0824 0.2936 0.4573
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and

F t ¼ Zs; s� tf g with Zt ¼ cayt; cgt; smbt;Rm;t


 �
:

The linear approximation of the above pricing model yields the following conditional

moment equations:

E Rtþ1 1þ log mtþ1 hð Þð Þð Þ � 1jF t½ � ¼ 0

with three unknown parameters h ¼ a; b; cð Þ and

1þ log mtþ1 hð Þð Þ ¼ 1þ log mtþ1 d; c;wð Þð Þ ¼ 1þ clogd� c
w

log cgtþ1ð Þ � 1� cð Þlog Rm;tþ1

� �
¼ aþ blog cgtþ1ð Þ þ clog Rm;tþ1

� �
;

and

F t ¼ Zs; s� tf g with Zs ¼ cays; cgs; smbs;Rm;s

 �

:

5We are pricing the seventeen industry portfolios; definitions and data can be found on

K. French’s webpage at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.First, we investigate the informational content of the different instruments fea-

tured in F t. More specifically, we compute confidence intervals for each parameter using

10the estimators of Antoine and Lavergne (2014)1 and the Local-GMM (computed with the

data-dependent optimal bandwidth) which rely on conditional moment equations based on

different combinations of the conditioning variables cay, cg, smb, and Rm. As a benchmark,

we also compute confidence regions based on the efficient GMM estimator obtained using

five unconditional moments using the constant and the first lag of each conditioning vari-

15able, as well as nine and thirteen unconditional moments, respectively with the first two

and three lags of each conditioning variable. Results are displayed in Table A.8.

When conditioning variables are added, the associated confidence intervals of Antoine

and Renault (2009) are always narrower, and always a strict subset of the original confi-

dence intervals. This is in contrast with the estimation based on local GMM and GMM:

20when conditioning variables are added, the new local GMM-based confidence interval is

often much wider, indicating issues related to the curse of dimensionality; when instru-

ments are added, the new GMM-based confidence interval often has a null intersection

with the original interval. Since it is always unclear which instruments should be used in

practice, one may obtain very different (and misleading) inference results.

25All estimation techniques reveal that a is positive and slightly smaller than one; how-

ever, they disagree for b and c: AL inference suggests that both b and c are negative and

both between �1 and zero, which conforms to the economic interpretation of the coeffi-

cients, whereas local GMM and GMM inference suggest conflicting results depending on

the set of conditioning variables/instruments used.

30Second, we investigate the convergence rates of the estimators of Antoine and Lavergne

(2014) obtained with different conditioning variables. We follow the procedure highlighted

in the previous section by considering different sample sizes from 196 to 646 and comput-

ing the associated estimators and their variances. More specifically, for a given sample size

1 The estimator of Antoine and Lavergne (2014) is a special case of SMD where smoothing is not used.
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Ti, we compute the ratios of the standard deviations of the estimators of a and b, as well as

a and c as follows, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b̂i

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var âið Þ

p and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ĉið Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var âið Þ

p
and regress the logarithm of such ratio on the logarithm of the sample size. According to

asymptotic results developed in Antoine and Renault (2009) and Antoine and Lavergne

(2014), the estimator of a is strongly identified with a standard rate of convergence
ffiffiffiffi
T
p

,

5whereas estimators of b and c may not be as strongly identified. As a result, we expect the

slope coefficients of the above regression to be positive coefficients between 0 and 0.5: the

closer to zero, the stronger the identification. Our results are displayed in Table A.9.

Some of the results for the AL estimators obtained with one conditioning variable are

hard to reconcile with the asymptotic theory mentioned above, especially the negative

10slopes. However, when computing the AL estimators based on the four conditioning varia-

bles, our results suggest that b and c are semi-strongly identified with a similar identifica-

tion strength: both slope coefficients for the estimators using the four conditioning

variables are approximately 0.14 which means that they are associated with a rate of con-

vergence of T0:50�0:14 ¼ T0:36. This also supports the confidence intervals obtained in

15Table A.8: the length of the interval for a is much narrower than that of b or c.

The results for the local GMM estimators with four conditioning variables and for the

GMM estimators with thirteen IV also suggest that b and c are semi-strongly identified:

corresponding rates of convergence are T0:09 and T0:37 for Local GMM estimators, and

T0:09 and T0:19 for efficient GMM; all GMM-based estimators are somewhat weaker than

20corresponding AL estimators.

9 Concluding Remarks

In this article, we pursue the research agenda put forward by H. White’s (1994)

Econometric Society monograph to examine the consequences of misspecification in econo-

metrics for the interpretation and properties of parameters estimated from a misspecified

25model. However, since our focus of interest is inference on asset pricing models, the max-

imum likelihood approach developed by White (1994) is hardly relevant. As clearly charac-

terized by Hansen and Richard (1987), the empirical content of an asset pricing model is

encapsulated in the definition of a SDF, or in practice, a parametric family of SDFs. A valid

SDF is supposed to deliver asset prices as solutions of some moment conditions. Therefore,

30a SDF model is misspecified insofar as there is no value of the vector h of unknown parame-

ters that fulfills all of the moment conditions for all observed asset prices.

The main motivation of this article is the observation that extant literatures for inference

on misspecified models have developed in very different ways for the methodology of

(quasi) maximum likelihood and GMM-type approaches, respectively.

35In the maximum likelihood literature, there is little doubt that the relevant measure of

misspecification is the Kullback–Leibler distance between the DGP and the parametric fam-

ily of probability distributions that characterize the misspecified model of interest. The

probability limit of the quasi maximum likelihood estimator is indeed the value of the
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parameters that minimizes this distance, and the focus of interest is inference about this so-

called pseudo-true value of h.

In the asset pricing literature, the focus has been mainly on comparison of the degree of

misspecification of different competing models as exemplified for instance in the list of

5papers mentioned in the conclusion of Hansen and Jagannathan (1997). In contrast, little

has been done on interpretation and estimation of the pseudo-true value. The ambition of

this article has been to shed more light on these issues, in particular through the following

statements.

First, we follow Lettau and Ludvigson (2001b) to note that the approach “of scaling fac-

10tors with information available in the current period leads to a multifactor unconditional

model in place of a single-factor, conditional model. This approach therefore provides a

justification for requiring more than one factor to explain the behavior of expected returns”

even if one knows that a well-specified SDF should always provide a one factor model.

More generally, we have argued that the ability to price accurately on average the local fac-

15tors is the main feature of interest of our pseudo true SDF.

Second, it is interesting to notice the analogy between linear exponential families for the

study of maximum likelihood with misspecification and the conditionally affine (or expo-

nentially conditionally affine) pricing factor models. For quasi maximum likelihood the lin-

ear exponential family gives a setting where the pseudo-true value may coincide with the

20true unknown value of the parameters because there are cases where “the consequences for

the QMLE of ignoring or misspecifying features of the conditional density that are not of

direct interest” (White, 1994, page 62) is not harmful for the characterization of the true

unknown value of h (see also Gourieroux, Monfort, and Trognon, 1984). Similarly, we

have stressed that our HJ pseudo-true value delivers exact pricing on average of the factors

25(or at least of the discounted factors) in the context of conditionally affine (or exponentially

conditionally affine) pricing factor models.

Third, White (1994) (see chapter 8) emphasizes “the crucial role played by the martin-

gale difference sequence requirement” on the score vector, while “this martingale difference

assumption generally fails in the presence of dynamic misspecification.” A similar failure

30has led us to question the traditional GMM approaches, including local GMM, even when

they try to accommodate misspecification. We have shown that an approach in terms of

jackknife GMM (including SMD with fixed bandwidth) and Central Limit Theorems for

U-statistics is much more transparent and flexible. However, the ability to incorporate in

the estimating equations estimated quantities that come with a nonparametric rate of con-

35vergence (as a kernel estimator of a conditional HJ weighting matrix) is still work in pro-

gress. More generally, quadratic forms of Markov chains arise in a variety of estimation

problems with misspecified moment restrictions and a Markov setting of state variables. A

martingale decomposition as put forward by Atchadé and Cattaneo (2014) that “resembles

the well-known Hoeffding decomposition of U-statistics” should be very helpful in this re-

40spect, beyond the few examples provided in this article.

Finally, we have provided in this article a few elements to bridge the gap between two im-

portant issues for inference in conditional pricing models, namely misspecification and weak

identification. The development of methods able to tackle simultaneously these two issues is

still in its infancy with the notable exception of Gospodinov, Kan, and Robotti (2014, 2018).

45We consider that the SMD approaches put forward in this article, after Lavergne and Patilea

(2013) as well as Antoine and Lavergne (2014), are promising in this respect.
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APPENDIX

A.1 Proofs

Theorem 1

eZ h1; h2
� �

¼ E Zt h1
� �

Wtþ1 h2
� �
 �

¼ E Zt h1
� �

E Wtþ1 h2
� �
jI tð Þ

� �
 �
)
@eZ h1; h2

� �
@h20 ¼ E Zt h1

� �
E
@Wtþ1 h2

� �
@h0

jI tð Þ
" #( )

¼ E E
@W0tþ1 h2

� �
@h

jI tð Þ
" #

X�1 I tð Þ½ �E
@Wtþ1 h2

� �
@h0

jI tð Þ
" #( )

:

5
Hence:

@eZ h; hð Þ
@h20 ¼ XZ hð Þ

is a positive definite matrix, and in particular a nonsingular matrix. Moreover, since we

have by definition:

h1 ¼ h2 ¼ h� ) eZ h1; h2
� �

¼ 0

we can apply the implicit function theorem to define the function h :ð Þ as announced in

Theorem 1. The differentiation of the identity (4.8) gives:

@eZ h; h hð Þ
� �
@h1

þ
@eZ h; h hð Þ

� �
@h20

@h hð Þ
@h

¼ 0

leading to the formula of Theorem 1 in the case h ¼ h�. QED

10

Proposition 1. By definition of the scalar product:

PCe :; h�½ � ¼ C :½ �b

with:

b ¼ E C0 I tð Þ½ �X�1 I tð Þ½ �C I tð Þ½ �

 �� ��1

E C0 I tð Þ½ �X�1 I tð Þ½ �e I tð Þ; h�½ �

 �

:

Therefore:

d2
Z ¼ d2

Z h�ð Þ ¼ eZ h�½ �0X�1
Z eZ h�½ � ¼ jjPCe :; h�½ �jj2

15since:

eZ h½ � ¼ E Zt m I t þ 1ð Þ; h½ �Rtþ1 � 1n½ �f g
¼ E C0 I tð Þ½ �X�1 I tð Þ½ �e I tð Þ; h½ �


 �
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and:

XZ ¼ E ZtX I tð Þ½ �Z0t

 �

¼ E C0 I tð Þ½ �X�1 I tð Þ½ �C I tð Þ½ �

 �

:

QED

A.2 Results for Numerical Experiments

5A.2.1 Misspecified asset pricing model

Table A.1. Finite sample properties of the SMD and Local GMM estimators for a well-specified

asset pricing model

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

Bias �0.0154 �0.0114 �0.0135 �0.0111 �0.0003 �0.0017 0.2384 0.4511

Med �0.0158 �0.0123 �0.0152 �0.0119 �0.0019 �0.0044 �0.0001 0.4926

Std 0.0460 0.0465 0.0463 0.0466 0.0528 0.0593 4.4000 0.1353

Rmse 0.0485 0.0479 0.0482 0.0478 0.0528 0.0593 4.4043 0.4709

Skew 0.078 0.093 0.103 0.095 0.836 2.063 21.433 �2.694

Kurt 3.143 3.170 3.112 3.164 9.164 17.933 473.210 8.634

We report mean bias (Bias), median bias (Med), standard deviation (Std), root mean squared error (RMSE),

skewness, and kurtosis for two different estimators: SMD and Local GMM (LGMM). Both estimators are

specified with a Gaussian Kernel and the identity weighting matrix.

Table A.2. Finite sample properties of the SMD and Local GMM estimators for a misspecified

asset pricing model

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

h�2ðhÞ 0.2088 0.2098 0.2059 0.2090 0.1660 0.1998 0.1435 0.2055

Bias �0.0058 �0.0040 �0.0057 �0.0040 �0.0071 �0.0023 �0.0238 0.0152

Med �0.0049 �0.0032 �0.0051 �0.0033 �0.0080 �0.0026 �0.0240 0.0155

Std 0.0384 0.0385 0.0380 0.0383 0.0392 0.0371 0.0411 0.0361

Rmse 0.0388 0.0387 0.0384 0.0385 0.0398 0.0372 0.0475 0.0391

Skew �0.166 �0.154 �0.160 �0.158 �0.103 �0.149 �0.115 �0.144

Kurt 3.174 3.210 3.152 3.197 2.962 3.130 2.857 3.024

We report the pseudo-true equity risk price h�2ðhÞ, mean bias (Bias), median bias (Med), standard deviation

(Std), root mean squared error (RMSE), skewness, and kurtosis for two different estimators: SMD and Local

GMM (LGMM). Both estimators are specified with a Gaussian Kernel and the Hansen–Jagannathan weighting

matrix. The bandwidth for the weighting matrix, b, coincides with the bandwidth for the conditional moment

restrictions, h, across all specifications.
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Table A.3. Finite sample properties of the SMD and Local GMM estimators for a misspecified

asset pricing model

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

h�2ðhÞ 0.2108 0.2098 0.2059 0.2090 0.1773 0.2179 0.1682 0.2543

Bias �0.0064 �0.0040 �0.0057 �0.0040 �0.0054 0.0003 �0.0059 0.0511

Med �0.0054 �0.0032 �0.0051 �0.0033 �0.0069 0.0015 �0.0057 0.0518

Std 0.0382 0.0385 0.0380 0.0383 0.0395 0.0429 0.0430 0.0546

Rmse 0.0388 0.0387 0.0384 0.0385 0.0398 0.0429 0.0433 0.0748

Skew �0.191 �0.154 �0.160 �0.158 �0.100 �0.017 �0.041 0.239

Kurt 3.139 3.210 3.152 3.197 2.996 3.386 2.902 3.168

We report the pseudo-true equity risk price h�2ðhÞ, mean bias (Bias), median bias (Med), standard deviation

(Std), root mean squared error (RMSE), skewness, and kurtosis for two different estimators: SMD and Local

GMM (LGMM). Both estimators are specified with a Gaussian Kernel and the Hansen–Jagannathan weighting

matrix. The bandwidth for the weighting matrix is fixed at b¼ 1.0 across all specifications.

Table A.4. Finite sample properties of the SMD and Local GMM estimators for a misspecified

asset pricing model

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

h�2ðhÞ 0.1935 0.2098 0.1910 0.2079 0.1659 0.1998 0.1556 0.2264

Bias �0.0090 �0.0041 �0.0077 �0.0039 �0.0070 �0.0023 �0.0075 0.0400

Med �0.0082 �0.0032 �0.0079 �0.0033 �0.0079 �0.0026 �0.0082 0.0418

Std 0.0369 0.0385 0.0369 0.0382 0.0392 0.0371 0.0422 0.0380

Rmse 0.0380 0.0387 0.0377 0.0383 0.0398 0.0372 0.0429 0.0552

Skew �0.144 �0.154 �0.131 �0.159 �0.104 �0.149 �0.079 �0.167

Kurt 2.955 3.210 2.961 3.190 2.962 3.130 2.832 2.989

We report the pseudo-true equity risk price h�2ðhÞ, mean bias (Bias), median bias (Med), standard deviation

(Std), root mean squared error (RMSE), skewness, and kurtosis for two different estimators: SMD and Local

GMM (LGMM). Both estimators are specified with a Gaussian Kernel and the Hansen–Jagannathan weighting

matrix. The bandwidth for the weighting matrix is fixed at b¼ 0.10 across all specifications.
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Table A.5. Finite sample properties of the SMD and Local GMM estimators for a well-specified

asset pricing model with additional conditioning information

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

Bias �0.0165 �0.0114 �0.0665 �0.0131 �0.1385 0.4715 �0.0919 0.4825

Med �0.0170 �0.0123 �0.0648 �0.0148 �0.1384 0.4768 �0.1487 0.4826

Std 0.0458 0.0465 0.0408 0.0548 0.0441 0.0446 0.3384 0.0141

Rmse 0.0487 0.0479 0.0780 0.0563 0.1454 0.4737 0.3505 0.4827

Skew 0.072 0.093 �0.027 3.001 �0.099 �2.917 �6.446 0.056

Kurt 3.136 3.170 2.986 32.080 2.791 24.721 113.684 3.271

We report mean bias (Bias), median bias (Med), standard deviation (Std), root mean squared error (RMSE),

skewness, and kurtosis for two different estimators: SMD and Local GMM (LGMM). Both estimators are

specified with a product of Gaussian Kernels and the identity weighting matrix.

Table A.6. Finite sample properties of the SMD and Local GMM estimators for a misspecified

asset pricing model with additional conditioning information

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

h�2ðhÞ 0.161 0.2098 0.1608 0.2069 0.1199 0.2486 0.1035 1.1176

Bias �0.0405 �0.0041 �0.0280 �0.0034 �0.0169 0.1258 �0.0130 �0.0465

Med �0.0398 �0.0032 �0.0286 �0.0028 �0.0156 0.0171 �0.0191 �0.0457

Std 0.0395 0.0385 0.0377 0.0383 0.0434 0.2987 0.1017 0.0101

Rmse 0.0566 0.0387 0.0469 0.0384 0.0466 0.3240 0.1025 0.0476

Skew �0.132 �0.154 �0.086 �0.148 �0.165 2.099 0.210 �0.698

Kurt 2.947 3.211 2.875 3.198 2.958 5.632 3.411 4.360

We report the pseudo-true equity risk price h�2ðhÞ, mean bias (Bias), median bias (Med), standard deviation

(Std), root mean squared error (RMSE), skewness, and kurtosis for two different estimators: SMD and Local

GMM (LGMM). Both estimators are specified with a product of Gaussian Kernels and the Hansen–

Jagannathan weighting matrix. The bandwidth for the weighting matrix is fixed at b¼0.10 across all

specifications.
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Table A.7. Finite sample properties of the SMD and Local GMM estimators for an asset pricing

model with leverage effect

h¼ 10 h¼ 1 h¼ 0.10 h¼ 0.01

SMD LGMM SMD LGMM SMD LGMM SMD LGMM

Bias 0.0492 0.0531 0.0512 0.0535 0.0660 0.0661 0.0951 0.4808

Med 0.0491 0.0528 0.0501 0.0532 0.0633 0.0599 0.0684 0.4959

Std 0.0430 0.0436 0.0434 0.0437 0.0504 0.0682 0.1192 0.0808

Rmse 0.0653 0.0687 0.0671 0.0690 0.0830 0.0950 0.1525 0.2390

Skew 0.137 0.161 0.160 0.162 0.069 2.891 2.424 �4.341

Kurt 3.157 3.200 3.133 3.196 6.912 18.058 8.697 22.097

We report mean bias (Bias), median bias (Med), standard deviation (Std), root mean squared error (RMSE),

skewness, and kurtosis for two different estimators: SMD and Local GMM (LGMM). Both estimators are

specified with a Gaussian Kernel and the identity weighting matrix.
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A.2.2 Estimation with identification weakness

Table A.8. Confidence intervals for each parameter using the SMD estimator with h¼ 1 with dif-

ferent conditioning variables, as well as the local GMM estimator with different conditioning

variables, and the efficient GMM estimator based on 4, 8, and 12 unconditional moments

SMD with h ¼ 1

1 conditioning

variable

cay cg smb R m

Confidence interval

for a

[0.9768; 1.0049] [0.9734; 1.0054] [0.9691; 1.0049] [0.9825; 1.0101]

Confidence interval

for b

[�16.6987; 7.2351] [�17.6110; 8.4584] [�14.7980; 10.6002] [�24.4754; 4.9896]

Confidence interval

for c

[�0.6809; 2.5114] [�0.8129; 3.0894] [�0.6992; 2.8511] [� 1.0102; 2.8754]

4 conditioning

variables

(cay; cg; smb;Rm)

Confidence interval

for a

[0.9921; 0.9924]

Confidence interval

for b

[�0.9513;�0.8472]

Confidence interval

for c

[�0.1273;�0.0730]

Local-GMM

1 conditioning variable cay cg smb R m

Confidence interval

for a

[0.9861; 1.0069] [0.9488; 1.0507] [5.3; 35.3] [0.9228; 0.9430]

Confidence interval

for b

[�10.6581; 7.9169] [�10.6606; 11.3798] [933.3; 7459.5] [�32.0638; �11.6121]

Confidence interval

for c

[�1.6724; 0.1225] [�3.2114; 0.6840] [119.4; 938.3] [�1.7861; 0.2510]

4 conditioning variables (cay; cg; smb;Rm)

Confidence interval

for a

[0.8876; 1.1110]

Confidence interval

for b

[�46.9301; 44.4371]

Confidence interval

for c

[�7.2303; 5.4776]

Efficient GMM

4 IV 8 IV 12 IV

Confidence interval for a [0.9904; 0.9907] [0.9907; 0.9908] [0.9918; 0.9919]

Confidence interval for b [�0.3168;�0.2324] [�0.1142;�0.0661] [0.3433; 0.3856]

Confidence interval for c [0.1855; 0.2220] [�0.0255;�0.0044] [�0.4598;�0.4434]

Note: We price seventeen industry portfolios.
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p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâÞ
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p
Þ 0.12 0.07 0.31

Notes: We price seventeen industry portfolios. Note that with 12 IV, the smallest sample has size T¼244 to

avoid numerical instabilities.

Antoine et al. j SDFs in Conditional Asset Pricing Model 57



Antoine, B., and E. Renault. 2009. Efficient GMM with Nearly-Weak Instruments. Econometrics

Journal 12: S135–S171.
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