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Abstract

We extract cycles from the term spread and study their role for predicting the equity

premium using linear models. When properly extracted, the trend of the term spread

is a strong and robust out-of-sample equity premium predictor, both from a statistical

and an economic point of view. It outperforms several variables recently proposed as

good equity premium predictors. Our results support recent �ndings in the asset pricing

literature that the low-frequency components of macroeconomic variables play a crucial

role in shaping the dynamics of equity markets. Hence, for policymakers and �nancial

market participants interested in gauging equity market developments, the trend of the

term spread is a promising variable to look at.

Keywords: equity premium, term spread, predictability, frequency domain

JEL classi�cation: C58, G11, G12, G17
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1 Introduction

Central banks' monetary policy actions a�ect a broad spectrum of interest rates, which in turn

impact on stock markets and, ultimately, on stockholders (i.e. households) wealth. It is not

surprising then that central banks closely monitor stock market developments (Greenspan,

1996, Bernanke, 2005 and Yellen, 2017) as they want to better understand both the e�ects of

interest rates movements on the stock market and whether they should react or not to stock

market movements. Furthermore, as stock/asset prices usually lead the business cycle, they

are often used by macroprudential authorities as early warning indicators of possible threat

to macroeconomic and �nancial stability (see Tölö et al. 2018, table 1).

A variable of particular interest to policymakers and �nancial markets participants alike is

the slope of the yield curve, for which the term spread of interest rates is a common proxy.

The term spread (TMS) is straightforward to compute from publicly available data -- it is

simply the di�erence between the long- and the short-term interest rate. Throughout the

years, several papers have analyzed the relationship between the TMS and the equity market.

In their seminal studies, Chen et al. (1986), Campbell (1987) and Fama and French (1989)

�nd that the term structure of interest rates predicts the equity premium. In particular,

Fama and French (1989) propose a (rough) frequency-domain analysis of the equity premium

predictability, in the sense that they analyze how di�erent �nancial variables track di�erent

frequency components of the equity premium. They show that the default spread and the

dividend yield track long-term business conditions, while the TMS tracks variation in ex-

pected returns in response to shorter-term business-cycle �uctuations. That is, the default

spread and the dividend yield help predicting the low-frequency �uctuations of stock return,

while the TMS its business-cycle �uctuations.1

1 A similar reasoning underlies the Ferreira and Santa-Clara (2011) sum-of-parts method for forecasting
stock returns, where di�erent parts of stock market returns (the dividend-price ratio, earnings growth, and
price-earnings ratio growth) capture di�erent frequencies of stock returns.
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In the spirit of Fama and French (1989) analysis, in this paper we consider three economically-

motivated frequency components of the TMS as potential equity premium predictors: the

high-frequency component, the business-cycle-frequency component, and the low-frequency

component. Our main focus is on the out-of-sample forecasting performance of these fre-

quency components, as it is well known since Goyal and Welch (2008) that the predictability

power of the TMS (and several other variables) is rather poor when the forecasting exercise

is done out-of-sample.

The main result of this paper is that the low-frequency component of the TMS, extracted

using wavelet �ltering methods, is found to be a strong and robust out-of-sample predictor of

the equity premium (both from a statistical and an economic point of view) for forecasting

horizons ranging from one month to two years. Its outperformance versus the historical mean

benchmark is remarkably good for the one-month horizon, increases with the forecasting

horizon, and is consistently stable throughout an out-of-sample period comprising 28 years

of monthly data. It also outperforms several variables that have recently been proposed as

good equity premium predictors. Di�erently, the remaining frequency components of the

TMS are poor equity premium out-of-sample predictors.

The main reason behind this good predictive power is that the forecast made with the low-

frequency component of the TMS captures remarkably well the low-frequency �uctuations

of the equity premium (and to a less extent its business-cycle frequency �uctuations). This

�nding further suggests that the level and price of aggregate risk in equity markets are

strongly linked to low-frequency economic �uctuations, supporting time-varying expected

returns and return predictability (see e.g. Dew-Becker and Giglio, 2016). From a theoretical

point of view, return predictability is also compatible with market e�ciency. In fact, asset

returns depend on the state of the real economy, which is characterized by signi�cant business-

cycle �uctuations. So, if the quantity and price of aggregate risk are linked to economic

�uctuations, then one should expect time-varying returns and return predictability, even if
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markets are e�cient.

The rest of the paper is organized as follows. In section 2 we review related literature. Section

3 presents the data and the method used to construct the predictors. Section 4 presents the

in-sample (IS) predictability analysis (sub-section 4.1), the out-of-sample (OOS) forecasting

results (sub-section 4.2), the results of the asset allocation exercise (sub-section 4.3), and a

discussion about possible interpretations of the results (sub-section 4.4). Robustness analyses

are done in section 5. Finally, section 6 concludes.

2 Related literature and our contribution

This research is mainly related with two streams of literature � an older one on forecasting the

equity premium using the TMS, and a more recent one on using frequency domain methods

in �nance. In this section we give a brief overview of these streams of literature, as well as

of the speci�c frequency-domain technique we use.

2.1 The term spread as equity premium predictor

Within the literature on forecasting the equity premium,2 this paper is primarily related

with the papers that analyze the equity premium forecasting properties of the TMS. Fama

and French (1989) �nd that the equity premium on US stocks is positively related to the

slope of the yield curve of US Treasury securities. Asprem (1989) studies the relationship

between the US TMS and the returns on stocks of ten European countries. Boudoukh et al.

(1993) and Ostdiek (1998) show how risk premia on US stocks and the world stock portfolio

are negative in periods preceded by inverted yield curves. McCown (2001) �nds empirical

evidence about the relationships between the yield curves of larger economies (US, Germany,

2 See e.g. the literature reviews of Rapach and Zhou (2013) and Harvey et al. (2016).
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and Japan) and risk premia of stocks for eight industrialized countries. Nyberg (2013) �nds

that the US TMS is a powerful predictive variable for bear equity markets in the US. While

this literature mainly analyzes the IS predictability of the TMS, our main focus is on its OOS

forecasting power.

Hence, this paper also contributes to the literature that focuses on �nding good OOS pre-

dictors of the equity premium. As pointed out by Goyal and Welch (2008), most equity

premium predictors perform poorly OOS on US data up to 2008. Since Goyal and Welch

(2008), several new predictors have been developed and tested, most notably macro, �nancial

market- and behavioral-related variables.3 Here we use three frequency components of the

TMS as OOS equity premium predictors.

2.2 Frequency domain asset pricing

Our paper is also related to the literature that focuses on the spectral properties of �nancial

asset returns. Frequency domain tools have long been used in economics (e.g. Granger and

Hatanaka, 1964 and Engle, 1974). In �nance, the interest in using frequency domain tools has

been growing more recently. Harris and Yilmaz (2009) decompose the spot exchange rate

into its regular and irregular components (using high-pass �lters) and use the short-term

momentum in the low frequency trend component to generate forecasts of the spot exchange

rate. Dew-Becker and Giglio (2016) develop a frequency domain decomposition of innovations

3 With regards to macro variables, Cooper and Priestley (2009, 2013) use the output gap and the world
business cycle, respectively, Favero et al. (2011) consider a demographic variable (the proportion of middle-
aged to young population), Li et al. (2013) study the aggregate implied cost of capital, Chava et al. (2015)
study the predictive power of bank lending standards, and Moller and Rangvid (2015, 2018) study di�erent
US-based macroeconomic variables and global economic growth, respectively, by focusing on their fourth-
quarter growth rate. Financial market variables include the variance risk premium (Bollerslev et al., 2009),
lagged US market returns for the OOS predictability of stock returns of other industrialized countries (Rapach
et al., 2013), the stock-bond yield gap (Maio, 2013), technical indicators (Neely et al., 2014), option-implied
state prices (Metaxoglou and Smith, 2017), and risk neutral variance of the equity market return measured
from index option prices (Martin, 2017). Behavioral-related variables include the investment sentiment
indexes (Huang et al., 2015) and information on short-interest positions (Rapach et al., 2016).
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to the pricing kernel. They derive frequency-speci�c risk prices that capture the price of risk

of �uctuations in consumption growth at di�erent frequencies. This allows to measure the

relative importance of economic �uctuations at di�erent frequencies and to assess whether

they are priced in risky asset markets. Chaudhuri and Lo (2016) apply spectral analysis

techniques to quantify stock-return dynamics across multiple time horizons and propose a

spectral portfolio theory. Finally, Bandi et al. (2018) and Faria and Verona (2018) use models

where returns and predictors are linear aggregates of components operating over di�erent

frequencies, and where predictability is frequency-speci�c. In this paper we investigate if and

how di�erent frequencies of the TMS individually capture relevant information regarding the

future dynamics of equity markets.

2.3 Wavelet �ltering methods

Wavelets have long been popular in many �elds such as geophysics, engineering, medicine,

and biomedical engineering. Notably, Yves Meyer, a French mathematician, received the 2017

Abel Prize �for his pivotal role in the development of the mathematical theory of wavelets.�4

This paper also contributes to the literature that uses wavelets methods to forecast (out-of-

sample) economic and �nancial time series. Examples include Rua (2011, 2017), who propose

a factor-augmented wavelets approach to forecast GDP growth and in�ation; Kilponen and

Verona (2016), who forecast aggregate investment using the Tobin's Q theory of investment;

and Zhang et al. (2017) and Faria and Verona (2018), both focused on stock market returns

predictability.

4 The Abel Prize is, with the Fields Medal, considered to be the highest honor a mathematician can
receive. These awards have often been described as the mathematician's �Nobel Prize�.
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2.3.1 Time-frequency decomposition of time series using wavelet �ltering meth-

ods

Wavelet multiresolution analysis (MRA) allows to decompose any variable � regardless of

its time series properties � into a trend, a cycle, and a noise component in a way which is

similar to the traditional time series trend-cycle decomposition approach (Watson, 1986) or

other �ltering methods like the Hodrick and Prescott (1997) or the Baxter and King (1999)

band-pass �lter. In particular, using a wavelet �lter, any time series yt can be decomposed

as

yt =
J∑

j=1

y
Dj

t + ySJ
t , (1)

where y
Dj

t , j = 1, 2, . . . , J , are the J wavelet detail components and ySJ
t is the wavelet smooth

component. Equation (1) shows that the original series yt, exclusively de�ned in the time

domain, can be decomposed in di�erent time series components, each de�ned in the time do-

main and representing the �uctuation of the original time series in a speci�c frequency band.

In particular, for small j, the j wavelet detail components represent the higher frequency

characteristics of the time series (i.e. its short-term dynamics). As j increases, the j wavelet

detail components represent lower frequencies movements of the series. Finally, the wavelet's

smooth component captures the lowest frequency dynamics (i.e. its long-term behavior).

In this paper, we perform wavelet decomposition analysis by applying the maximal overlap

discrete wavelet transform (MODWT) MRA. This methodology i) is not restricted to a

particular sample size; ii) is translation-invariant, so that it is not sensitive to the choice of

starting point for the examined time series; and iii) does not introduce phase shifts in the

wavelet coe�cients, i.e. peaks or troughs of the original time series are perfectly aligned

with similar events in the MODWT MRA. This last feature is especially relevant in a OOS

forecasting exercise.5

5 Our presentation here is limited to basic facts that are directly relevant to our empirical analysis. A

8



2.3.2 The advantages of wavelets over standard econometric techniques

Traditional econometric techniques (time series and spectral/frequency analysis) impose

strong assumptions about the data generating process. In particular, they presuppose a

variable to be stationary. However, several economic and �nancial time series are hardly

stationary as they exhibit trends and patterns such as structural breaks, volatility clustering

and long memory.

Unlike Fourier analysis, wavelets are de�ned over a �nite window in the time domain, which

is automatically and optimally resized according to the frequency of interest. That is, using a

short time window allows to isolate the high frequency features of a time series, while looking

at the same signal with a large time window reveals its low frequency features. Hence, by

varying the size of the time window, it is possible to capture simultaneously both time-varying

and frequency-varying features of the time series. Wavelets are thus extremely useful when

dealing with non-stationary time series, regardless of whether the non-stationarity comes

from the level of the time series (i.e. from long-term trend or jumps) and/or from higher

order moments (i.e. from changes in volatility).

Wavelet �ltering methods allow a decomposition of a time series into di�erent frequency

bands. To obtain the decomposition, an appropriate cascade of wavelet �lters is applied.

This is essentially equivalent to �ltering by a set of band-pass �lters so as to capture the

�uctuations of the time series in di�erent frequency bands.

One may ask the question of why not just use the more popular Baxter and King (1999)

or Christiano and Fitzgerald (2003) band-pass �lters, which also permit the isolation of

�uctuations in di�erent frequency bands. The band-pass �lter is a combination of a Fourier

more detailed analysis of wavelets methods can be found in Appendix A and in Percival and Walden (2000).
Papers using the MODWT MRA decomposition include Galagedera and Maharaj (2008), Gallegati et al.
(2011), Xue et al. (2013), Bekiros and Marcellino (2013), Gallegati and Ramsey (2013), Barunik and Vacha
(2015), Caraiani (2015), Crowley and Hughes Hallett (2015), Bekiros et al. (2016), Berger (2016), Zhang
et al. (2017) and Faria and Verona (2018).
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decomposition in the frequency domain with a moving average in the time domain. It is

optimized by minimizing the distance between the Fourier transform and an ideal �lter.

Like a short-time Fourier transform, it applies an �optimal� Fourier �ltering on a sliding

window in the time domain with constant length regardless of the frequency being isolated.

Wavelet �ltering, in contrast, provides better resolution in the time domain as the wavelet

basis functions are both time-localized and frequency-localized. Guay and St.-Amant (2005)

observe that the band-pass �lter is not an ideal �lter, as it is a �nite representation of an

in�nite moving-average �lter, and that it performs well at business-cycle frequencies but not

at low and high frequencies. Moreover, Murray (2003) points out that the band-pass �lter

may introduce spurious dynamic properties.6

3 Data and predictors

We use monthly data from January 1973 to December 2017 and focus on the predictability of

the S&P500 index excess returns, measured as the log return on the S&P500 index (including

dividends) minus the log return on a one-month Treasury bill. Data for the S&P500 index

total return is from CRSP and for the one-month Treasury bill is from the FRED2 database.

The TMS (TMSTS) is computed as the di�erence between the US 10-year government bond

yield and the 3-month T-bill time series, and the time series are obtained from the New York

Federal Reserve Bank website.7

Although the relationship between stock market returns, economic growth, and the TMSTS

6 For a description of other disadvantages of band-pass �lters, see Gallegati et al. (2017) and Gallegati
and delli Gatti (2018).

7 We start our sample period in 1973 for two main (and related) reasons. First, the beginning of the
sample coincides with the collapse of the Bretton Woods system, which led to a di�erent way of conducting
monetary policy. The second reason concerns the issue of model instability, which typically becomes more
apparent in longer samples and can make �nding a good forecasting model more di�cult. In fact, unless
structural breaks (like di�erent monetary policy regimes) are properly modelled, past data can be of limited
use in constructing useful forecasting models to be used at the end of the sample.
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has been extensively studied in previous research (see references in section 2), we are partic-

ularly motivated by the conjecture of Fama and French (1989) that the TMS tracks variation

in expected returns in response to business cycles. So, besides the TMSTS, we evaluate three

frequency components of the TMSTS as individual equity premium predictors. The �rst,

denoted TMSHF , captures the high-frequency �uctuations of the series (HF stands for high

frequency). The second, denoted TMSBCF , broadly corresponds to business cycle �uctua-

tions. The third, denoted TMSLF , captures the low-frequency �uctuations of the series (LF

stands for low frequency).

To compute those frequency components, we start by running a J=6 level MODWT MRA

to the TMSTS using the Haar wavelet �lter with re�ecting boundary conditions (as done

by e.g. Manchaldore et al., 2010 and Malagon et al., 2015).8 As we use monthly data,

the �rst component (TMSD1
t ) captures oscillations of the TMSTS between 2 and 4 months,

while components TMSD2
t , TMSD3

t , TMSD4
t , TMSD5

t and TMSD6
t capture oscillations of

the TMSTS with a period of 4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally,

the smooth component TMSS6
t captures oscillations of the TMSTS with a period exceeding

128 months (10.6 years).9

Subsequently, the high-frequency component (TMSHF ) is computed as TMSHF,t =
∑3

i=1 TMSDi
t ,

the business-cycle-frequency component (TMSBCF,t) is computed as TMSBCF,t =
∑6

i=4 TMSDi
t ,

whereas the low-frequency component (TMSLF ) corresponds to TMSS6
t .

To illustrate the rich set of di�erent dynamics aggregated (and thus hidden) in the original

time series, Figure 1 plots the time series of the TMSTS and its three frequency components

under analysis. As expected, the lower the frequency, the smoother the resulting �ltered

8 Results are robust using di�erent wavelet �lters (like e.g. Daubechies). As regards the choice of J, the
number of observations dictates the maximum number of frequency bands that can be used. In our case,
N = 204 is the number of observations in the in-sample period, so J is such that J ≤ log2N ' 7.7.

9 In the MODWT, each wavelet �lter at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
, while the smooth component is associated with frequencies f ∈

[
0 , 1/2j+1

]
. The level j

wavelet components are thus associated to �uctuations with periodicity
[
2j , 2j+1

]
(months, in our case).
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time series. We note that, by summing these three frequency components, we get the exact

original TMSTS.

The summary statistics of the predictors (and of the equity premium) and their correlations

are reported in Panel A and B of Table 1, respectively. The monthly excess market return has

a mean of 0.43% and a standard deviation of 4.44%, which implies a monthly Sharpe ratio

of 0.10. The excess market return has little autocorrelation, while the predictors are quite

persistent (with the exception of the TMSHF ). The frequency components of the TMSTS

are low correlated.

4 Empirical results

4.1 In-sample predictability

Let rt be the equity premium for month t and h the forecasting horizon. For each predictor

xt, the predictive regression is

rt:t+h = α + βxt + εt:t+h ∀t = 1, ..., T − h , (2)

where rt:t+h = (1/h) (rt+1 + · · ·+ rt+h). The objective of the IS analysis is to estimate equa-

tion (2) by OLS in order to test the signi�cance of estimated β coe�cients. As there are

some concerns about the statistical inferences from equation (2) (related with Stambaugh,

1999 and Campbell and Yogo, 2006 bias), to make reliable inferences we follow Rapach et al.

(2016) and use a heteroskedasticity- and autocorrelation-robust t-statistic and compute a

wild bootstrapped p-value to test H0 : β = 0 against HA : β > 0 in equation (2). To

enhance comparisons across predictors, we also standardize each predictor to have a unitary

standard deviation before estimating equation (2). After accounting for lags and overlapping
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observations, we thus have 540, 538, 535, 529 and 517 to estimate equation (2) for one-month-

ahead (h=1), one-quarter-ahead (h=3), one-semester-ahead (h=6), one-year-ahead (h=12),

and two-years-ahead (h=24) forecasting horizons.

Panel A of Table 2 reports, for each predictor and forecasting horizon, the OLS estimate of

β in equation (2), its t-statistic, and the R2 of the regression.

Starting with the monthly horizon (h=1), the high and business-cycle frequencies of the

TMSTS (TMSHF and TMSBCF ) are not statistically signi�cant, whereas the TMSTS and

the TMSLF are signi�cant at the 10% and 5% level, respectively. Overall, the R2s are

rather small, which is expectable due to the large unpredictable component in monthly data.

Campbell and Thompson (2008) argue, however, that a monthly R2 of about 0.5% represents

an economically relevant degree of return predictability. The monthly R2s of the statistically

signi�cant predictors are indeed slightly above that threshold.

Looking at longer forecasting horizons (h ≥ 3), the estimated βs for the TMSTS and the

TMSLF are similar to the ones obtained for h=1. Those two predictors continue to be

statistically signi�cant (at least at the 10% level) at all forecasting horizons. As it is common

in this literature, the �t of the regression increases as the forecasting horizon increases. The

high-frequency component is never signi�cant, while the business-cycle-frequency component

becomes signi�cant at longer horizons (h ≥ 12).

Thus, the TMSTS and its low-frequency component are statistically signi�cant IS predictors

of the equity premium for all forecasting horizons.

4.2 Out-of-sample forecasting

Besides being more relevant from the perspective of an investor, an OOS exercise allows to

avoid some econometric problems like in-sample over-�tting, small-sample size distortions

and look-ahead bias (see e.g. Goyal and Welch, 2008 and Huang et al., 2015).
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The OOS forecasts are produced using a sequence of expanding windows. We use an initial

sample (1973:01 to 1989:12) to make the �rst OOS forecast. The sample is then increased

by one observation and a new OOS forecast is produced. This is the procedure until the end

of the sample. The full OOS period runs from 1990:01 to 2017:12 (336 observations).

The h-step-ahead OOS forecast of the excess returns, r̂t:t+h, is computed as

r̂t:t+h = α̂t + β̂txt , (3)

where α̂t and β̂t are the OLS estimates of α and β in equation (2), respectively, using data

from the beginning of the sample until month t. Importantly, as the MODWT MRA at a

given point in time uses information of neighboring data points (both past and future), we

recompute the time-frequency series components at each iteration of the OOS forecasting

process. This ensures that our method does not su�er from any look-ahead bias as the

forecasts are made with current and past information only.

The OOS forecasting performance of each predictor is evaluated using the Campbell and

Thompson (2008) R2
OS statistic. As is standard in the literature, the benchmark model is

the historical mean (HM) forecast rt, which is the average excess return up to time t. The

R2
OS statistic measures the proportional reduction in the mean squared forecast error for the

predictive model (MSFEPRED) relative to the historical mean (MSFEHM) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEHM

)
= 100

[
1−

∑T−h
t=t0

(rt:t+h − r̂t:t+h)
2∑T−h

t=t0
(rt:t+h − rt)2

]
,

where r̂t:t+h is the excess return forecast from the model using each of the alternative predic-

tors. A positive (negative) R2
OS indicates that the predictive model outperforms (underper-

forms) the HM in terms of MSFE.

As in Rapach et al. (2016), the statistical signi�cance of the results is evaluated using the
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Clark and West (2007) statistic. This statistic tests the null hypothesis that the MSFE

of the HM model is less than or equal to the MSFE of the predictive model against the

alternative hypothesis that the MSFE of the HM model is greater than the predictive model

(H0 : R
2
OS ≤ 0 against HA : R2

OS > 0).

Columns two to six of Panel A in Table 3 show the R2
OS of each predictor for the entire OOS

period. As in the IS analysis, �ve forecasting horizons h are considered.

For forecasting horizons up to six months, the TMSTS is a poor OOS predictor of the

equity premium (negative R2
OS). However, it outperforms the HM benchmark (positive and

statistically signi�cant R2
OS) at the one-year- and two-years-ahead forecasting horizons.

The results for the di�erent frequency components of the TMSTS allow us to uncover some

interesting features about the OOS predictive power of the TMSTS. Its high- and business-

cycle frequencies (TMSHF and TMSBCF ) perform rather poorly as OOS equity premium

predictors. This result is hardly surprising given their poor IS performance. In contrast, the

TMSLF has a remarkable OOS forecasting power for all forecasting horizons under analysis.

Its R2
OS ranges between 2.09% for h=1 and 31.9% for h=24.

To evaluate the consistency over time of the OOS performance of the predictors, we look

at the dynamics of the di�erence between the cumulative square forecasting error for the

HM forecasting model and the cumulative square forecasting error when the TMSTS and

the TMSLF are used as equity premium predictors. The results are plotted in Figure 2

and should be read as follows. When the line rises (falls), the predictive regression using

the TMSTS (black line) and the TMSLF (blue line) outperforms (underperforms) the HM.

A forecasting model/variable that consistently outperforms the HM over time would then

feature an upward-sloping curve. Furthermore, the R2
OS is positive when the end point is

above the zero line. For all forecasting horizons, the TMSLF consistently outperforms the

HM benchmark during the entire OOS period (excluding the �rst �ve years for h=1, 6 and
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12).

Overall, from a statistical point of view, these results show that the low-frequency component

of theTMSTS is a remarkably good predictor of the equity premium for forecasting horizons

from one month to two years.10

4.3 Asset allocation analysis

To analyze the economic value of the di�erent predictive models from an asset allocation

perspective, we consider a mean-variance investor allocating his wealth between equities and

risk-free bills. At the end of month t, the investor optimally allocates

wt =
1

γ

R̂t+h

σ̂2
t+h

(4)

of the portfolio to equity for the period from t to t+h. In equation (4), γ is the investor's

relative risk aversion coe�cient, R̂t+h is the model prediction of stock return at time t for

the period t+h, and σ̂2
t+h is the forecast of the variance of the stock return. As in Rapach

et al. (2016), we assume a relative risk aversion coe�cient of three, use a ten-year moving

window of past excess returns to estimate the variance of the excess return, and constrain

the weights wt to a range between -0.5 and 1.5. These constraints introduce limits to the

possibilities of short-selling and leveraging the portfolio.

We assume that the rebalancing frequency of the portfolio is equal to the forecasting horizon

h. Taking the semester horizon (h=6) as an example, the procedure is as follows. The

investor uses the model prediction of excess returns over the next six months and the rule

(4) to de�ne the equity weight for the next six months. Then, at the end of that semester,

10 This is an improvement with respect to previous results using wavelet �ltering methods in out-of-sample
forecasting exercises (see e.g. Rua, 2011 and Kilponen and Verona, 2016), which �nd improved predictability
only at very short horizons.
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the investor updates the model prediction of excess returns and determines the new weight

using the non-overlapping return forecasts.

The average utility (or certainty equivalent return, CER) of an investor that uses the portfolio

rule (4) is given by CER = RP − 0.5γσ2
RP , where RP and σ2

RP are the sample mean and

variance of the portfolio return, respectively. We report the annualized utility gain from using

the predictive models associated with di�erent predictors. The utility gain is computed as

the di�erence between the CER for an investor that uses the predictive model to forecast

excess returns and the CER for an investor who uses the HM benchmark for forecasting.

The di�erence can be interpreted as the annual portfolio management fee that an investor

is willing to pay for access to the alternative forecasting model versus the historical average

forecast. The analysis of di�erent forecasting/rebalancing horizons (from one month to two

years) allows us to take into account the perspective of agents with di�erent pro�les, as they

include those with short- and medium-term approaches (e.g. some mutual funds) and those

with longer-term horizons (e.g. central banks, pension and sovereign wealth funds).

Reported results in columns seven to eleven in Panel A of Table 3 show that the performance

of the TMSLF is strong also from an economic point of view. The CER gains obtained

are remarkable and range from 453 basis points (h=24) to 659 basis points (h=3). From a

practical standpoint, this means that the information contained in the TMSLF may be useful

to investors with di�erent pro�les regarding their forecasting and rebalancing horizons.

To complement this analysis, Figure 3 provides a dynamic perspective of the portfolio and

cumulative wealth for an investor that uses a trading strategy (for h=1) based on the equity

premium forecast using the HM model (black dashed line), the TMSTS (black solid line),

and the TMSLF (blue line). Panel A presents the dynamic equity weights (resulting from

equation 4). Three results stand out. First, changes in the equity exposure of the TMSLF

portfolio are much smoother than those using the TMSTS. Second, a trading strategy based

on the TMSLF is una�ected by the lower bound on the equity weight (-0.5), but is quite often
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constrained by the upper bound (1.5). Third, the strategy based on the TMSLF displays

excellent market timing in the three business cycle recessions. The exposure of the TMSLF

based portfolio to the equity market smoothly decreases before the occurrence of a recession

(leading the portfolio to enter the recession with a rather low exposure to the risky asset),

starts to increase in the late stage of the recession period, and continues to increase, smoothly,

at the beginning of the subsequent expansionary period.

Panel B in Figure 3 shows the log cumulative wealth for an investor that begins with $1

and reinvests all proceeds. Consistent with the results reported in Table 3 and Figure 2,

the strategy based on the TMSLF clearly outperforms those based on the HM and on the

TMSTS. In particular, an investor who invests $1 at the end of December 1989 would have

accumulated approximately $43 ($8.6 / $6.9) by the end of December 2017 using a strategy

based on the TMSLF (TMSTS / HM). In other words, it pays o� to be focused on the

long-term dynamics of the TMSTS and to ignore its higher-frequency �uctuations.

4.4 Interpretation of the results

We �rst analyze the economic source of equity premium predictability of the TMSTS and of

its frequency components, and then discuss some possible interpretations of the predictive

power of the TMSLF .

4.4.1 Channels of predictability

The value of a stock is the discounted value of its expected cash �ows. Stock return can

thus re�ect changes in the discount rate, changes in the expectations of cash �ows, or both.

That is, a variable that predicts lower (higher) stock market return should either predict an

increase (decrease) in the discount rate or a decrease (increase) in cash �ow expectations, or

both (Baker and Wurgler, 2006). Following Cochrane (2008), we use the log dividend-price
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ratio (DP) as the proxy for the discount rate channel (supported by the evidence that changes

in aggregate DP ratio comes primarily from changes in discount rates) and the log dividend

growth (DG) as proxy for the cash �ow channel.

A common way of disentangling variations in expected discount rates versus variations in

future cash �ows is by means of the Campbell and Shiller (1988) log linearization of stock

returns (Cochrane, 2008):

Rt+1 = κ+DGt+1 − ρDPt+1 +DPt , (5)

where Rt+1 is the one-month-ahead stock market return, and κ and ρ are positive log-

linearization constants.

Equation (5) implies that, if a variable has forecasting power of the next-period market

return (beyond that of DPt), then it must predict DPt+1, DGt+1, or both. As DPt+1 and

DGt+1 are proxies for the discount rate and cash �ow channels, respectively, evaluating their

predictability from a variable provides insight into the economic source of the market return

predictability power of that variable.

We use the approach in Huang et al. (2015) and estimate two bivariate predictive regressions

for the TMSTS and for each of its frequency components:

Yt+1 = %+ δX t + ψDPt + ϑt+1 , (6)

where X = TMSTS, TMSHF , TMSBCF , TMSLF and Y = DP, DG. To make reliable in-

ferences, we use a heteroskedasticity- and autocorrelation-robust t-statistic and compute a

wild bootstrapped p-value to test H0 : δ = 0 against HA : δ < 0 and H0 : ψ = 0 against

HA : ψ > 0 in (6).11

11 Data is from Goyal and Welch (2008) updated database and the sample period is 1973-2016.
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Table 4 reports the results. The lagged DP ratio has a strong predictive power for the one-

month-ahead DP ratio, with very high persistence as given by the auto-regressive coe�cient

of 0.99, and no forecasting power for the one-month-ahead DG. This supports the claim of

Cochrane (2008) that the dividend-price ratio captures the time change in discount rates.

The TMSTS has predictive power for both the discount rate and cash-�ow proxies, as both

slope estimates are statistically signi�cant. This suggests that the predictability power of

the TMSTS comes from both channels. Interestingly, this analysis also unveils that the

predictability power of the TMSTS operating through the cash-�ow channel is concentrated

at the business cycle frequency, while the one operating through the discount rate channel is

concentrated at the low frequency.

4.4.2 Good market timing of the TMSLF

The previous analysis shows that the equity premium predictability power of the TMSLF

is concentrated in the discount rate channel. Accordingly, high (low) TMSLF predicts high

(low) future returns, because it predicts low (high) discount rates. This implies an increased

(decreased) appetite for risk-taking, triggering an increased (decreased) future equity expo-

sure.

Figure 4 shows the good market timing of the TMSLF as equity premium predictor. Let us

start from the most left point A in Figure 4, where both the TMSLF and the optimal equity

exposure are at their maximum. After point A, the TMSLF starts to decrease while the

optimal equity exposure still stays at its maximum for approximately four more years (until

point B), after which the equity exposure starts to decrease. At point C the TMSLF reaches

its relative minimum, while the equity exposure continues to decrease and reaches its relative

minimum immediately before the beginning of the recession. It stays around that level until

the very end of the recession (point D), after which it starts to increase again. After point

D, approximately the same lead-lag pattern restarts. Interestingly, this patter does not seem
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to be altered by the quantitative easing policy of the Federal Reserve in the latter part of

the sample.

4.4.3 Low-frequency �uctuations of the equity premium

In Figure 5 we plot the dynamics of the one-month ahead equity premium forecast using

the TMSLF and the high-, business-cycle- and low-frequency components of the equity pre-

mium (top, middle and bottom graph, respectively). It is clear that the equity premium

predictability power of the TMSLF comes essentially from its ability to capture the low-

frequency dynamics of the equity premium. In fact, the correlation between the forecast

with the TMSLF and the low-frequency component of the equity premium is 0.62, while the

correlations between the forecast with the TMSLF and the other frequency components are

much lower. That is, the forecast made with the low-frequency component of the TMSTS

captures remarkably well the low-frequency �uctuations of the equity premium and, simi-

larly to Fama and French (1989) �ndings but to a less extent, its business-cycle frequency

�uctuations.

This is consistent with empirical evidence that there are low-frequency, decades-long shifts

in asset values relative to measures of macroeconomic fundamentals in the U.S. (see e.g.

Bianchi et al., 2017). Additionally, Dew-Becker and Giglio (2016) �nd that low-frequency

shocks in the consumption growth are signi�cantly priced in the U.S. equity markets, which

a�ects the one-period innovation in the stochastic discount factor, whereas business-cycle and

higher frequencies are not priced. This supports the existence of aversion to low-frequency

�uctuations by investors in the equity market, and is related to our �ndings in the sense that

it is the dynamics of the low-frequency component of macroeconomic variables � rather than

their business cycle or higher frequencies components � that is really relevant for the equity

markets evolution. As illustrated in Figure 3, it indeed pays o� to be focused on the long-

term dynamics of the TMSTS and of the equity premium and to ignore their higher-frequency
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�uctuations.

5 Robustness analyses

5.1 Di�erent sample periods

We �rst test the robustness of the results by evaluating the forecasting performance of the

low-frequency component of the TMSTS in di�erent sample periods.

First, we divide the OOS period into two sub-periods: from January 1990 to December 2006,

which broadly corresponds to the great moderation period, and from January 2007 onwards,

which includes the great �nancial crisis and its aftermath. Panel A of Table 5 presents

the R2
OS and CER gains for the TMSTS and the TMSLF . For both sub-sample periods

and all forecasting horizons considered, the TMSLF has strong statistical and economic

performances.

Second, we evaluate the one-month-ahead return forecasts based on the TMSTS and TMSLF

during periods of bad, normal, and good economic growth. These regimes are de�ned as the

bottom, middle, and top-third of sorted growth rates of industrial production in the US,

respectively.12 This analysis is motivated by the fact that, while there is common agreement

in the empirical literature that return predictability is usually concentrated in recessions,

there is an ongoing debate about OOS returns predictability during expansions and good

times. Henkel et al. (2011) and Neely et al. (2014) �nd no return predictability during

expansions, whereas Dangl and Halling (2012) and Huang et al. (2017) �nd statistically

signi�cant levels of OOS predictability during expansions and good times when using models

with time-varying or state-dependent coe�cients.

12 Data on US industrial production was downloaded from Federal Reserve Economic Data at
http://research.stlouisfed.org/fred2/.
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We report the R2
OS and the CER gains for each regime in Panel A of Table 6. Overall, the

TMSTS is never signi�cant while the TMSLF is statistically signi�cant in all sub-samples �

even in good growth periods. In bad growth periods, the TMSLF delivers R2
OS of 2.87% and

CER gains of 752 basis points. These values are higher than in the full sample case, thus

con�rming that return predictability and utility gains are higher in bad times.

5.2 Comparison with di�erent �ltering methods

We evaluate the importance of the �ltering method used to extract the low-frequency com-

ponent of the TMSTS by using two alternative �lters. The �rst one is the Christiano and

Fitzgerald (2003) asymmetric band-pass �lter, assuming a unit root with drift. The frequency

bands of the �lter are chosen so as to extract exactly the same frequency components as in

our analysis with wavelets: the high-frequency (TMSBP−HF ), the business-cycle-frequency

(TMSBP−BCF ) and low-frequency (TMSBP−LF ) components. The second �lter is the one-

sided Hodrick and Prescott (1997) �lter, which is used to isolate the business-cycle component

(TMSHP−CY ) from its low-frequency component (TMSHP−TR).
13

Panels B of Tables 2, 3, 5 and 6 report the R2, R2
OS and CER gains for TMSBP−HF ,

TMSBP−BCF , TMSBP−LF , TMSHP−CY and TMSHP−TR for the full sample and for the dif-

ferent sub-sample periods. We only discuss the results for the TMSBP−LF and TMSHP−TR,

as our main interest is to compare the performance of the TMSLF with that of predictors

with similar characteristics.

As regards the IS analysis (Table 2), the low-frequency components of the TMSTS obtained

using the alternative �ltering methods are statistically signi�cant (at least at the 10% level)

for all forecasting horizons. Looking at the OOS results (Tables 3 to 6), the TMSBP−LF

is a poor equity premium predictor as it is never statistically signi�cant. Regarding the

13 See Mehra (2004). As we use monthly data, we set the smoothness parameter of the HP �lter to 129600
as suggested by Ravn and Uhlig (2002) and de Jong and Sakarya (2016).
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TMSHP−TR, it features positive and statistically signi�cant R2
OSs for all forecasting horizons

when looking at the entire sample period. However, its forecasting performance across dif-

ferent sub-sample periods is mixed. It performs poorly during the great moderation period

for the one-month horizon and in periods of normal and good growth, but performs reason-

ably well in the other periods/horizons. Despite being a good equity premium predictor, the

TMSHP−TR lacks robustness across sample periods.

These results show that the methodology used to extract the low-frequency component of the

TMS is crucial for the quality of the equity premium forecasting exercise. Wavelet �ltering

methods enable the extraction of a low-frequency component with a forecasting performance

clearly superior to that obtained using alternative �lters.

5.3 Comparison with other predictors

We evaluate the OOS equity premium predictability performance of some variables which

have been recently proposed as good equity premium predictors. We consider two �nancial

market variables � the excess bond premium (EBP, Gilchrist and Zakrajsek, 2012) and the

yield gap (Maio, 2013), a macro variable � the output gap (Cooper and Priestley, 2009), a

technical indicator based on �nancial market variable (TI-MA(2,12), Neely et al., 2014), and

a behavioral-related variable � the short-interest positions (SII, Rapach et al., 2016).

Due to data availability, the sample period starts in January 1973 and ends in December

2014. The OOS period spans from January 1990 to December 2014. Panel C of Table

3 reports the results. For comparison, we also report the results for the TMSLF for this

sample period. Overall, none of these alternative predictors outperforms the TMSLF . Except

for the SII, these variables are not good predictors of the equity premium during the OOS

under consideration. As shown by Rapach et al. (2016), the SII is a good predictor up to a

one-year horizon. Its forecasting power, however, deteriorates signi�cantly at the two-year
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horizon. Panels C of Tables 5 and 6 report the results for the OOS periods as in sub-section

8.1. As shown in Table 5, the SII exhibits an unstable performance as its success as equity

premium predictor is a fairly recent phenomenon. In fact, it strongly underperforms the HM

benchmark during the �rst sub-sample period (up to 2006), while it features a remarkable

performance in the second sub-sample period (from 2007 onwards).

6 Concluding remarks

The term spread of interest rates, commonly used as a proxy for the slope of the yield curve,

is a variable of particular interest to policymakers and �nancial markets participants. We

show that the term spread is a good and robust out-of-sample predictor of stock market

return, once its time series is properly purged from its short-term noise and medium-term

�uctuations. Properly means that it is crucial the way the higher-frequency �uctuations are

eliminated, as certain �ltering methods (namely wavelet �lters) enable the extraction of a

low-frequency component with forecasting performance clearly superior to that other �lters

(like band-pass �lters).

The out-of-sample forecasting performance of the low-frequency component of the term

spread is strong (both from a statistical and an economic point of view) for forecasting

horizons ranging from one month to two years. It is also consistently stable throughout an

out-of-sample period comprising 28 years of monthly data. Importantly, it performs well

also in expansions and outperforms several variables that have recently been proposed as

good equity premium predictors. Hence, for policymakers and �nancial market participants

interested in gauging equity market developments, the proper trend of the term spread is a

promising variable to look at. This reinforces recent �ndings in asset pricing literature that

it is the low-frequency components of macroeconomic variables � rather than their business

cycle or higher frequencies components � that shape the dynamics of equity markets.

25



References

Asprem, M.: 1989, `Stock prices, asset portfolios and macroeconomic variables in ten Euro-

pean countries'. Journal of Banking & Finance 13(4), 589 � 612.

Baker, M. and J. Wurgler: 2006, `Investor Sentiment and the Cross-Section of Stock Returns'.

Journal of Finance 61(4), 1645�1680.

Bandi, F., B. Perron, A. Tamoni, and C. Tebaldi: 2018, `The Scale of Predictability'. Journal

of Econometrics. forthcoming.

Barunik, J. and L. Vacha: 2015, `Realized wavelet-based estimation of integrated variance

and jumps in the presence of noise'. Quantitative Finance 15(8), 1347�1364.

Baxter, M. and R. King: 1999, `Measuring Business Cycles: Approximate Band-Pass Filters

For Economic Time Series'. Review of Economics and Statistics 81(4), 575�593.

Bekiros, S. and M. Marcellino: 2013, `The multiscale causal dynamics of foreign exchange

markets'. Journal of International Money and Finance 33(C), 282�305.

Bekiros, S., D. K. Nguyen, G. S. Uddin, and B. Sjo: 2016, `On the time scale behavior of

equity-commodity links: Implications for portfolio management'. Journal of International

Financial Markets, Institutions and Money 41(C), 30�46.

Berger, T.: 2016, `Forecasting Based on Decomposed Financial Return Series: A Wavelet

Analysis'. Journal of Forecasting 35(5), 419�433.

Bernanke, B. S.: 2005, `The Global Saving Glut and the U.S. Current Account De�cit'.

Remarks by Governor Ben S. Bernanke at the Sandridge Lecture, Virginia Association of

Economists, Richmond, Virginia, on March 10, 2005.

Bianchi, F., M. Lettau, and S. Ludvigson: 2017, `Monetary Policy and Asset Valuation'.

CEPR Discussion Papers 12275.

26



Bollerslev, T., G. Tauchen, and H. Zhou: 2009, `Expected Stock Returns and Variance Risk

Premia'. Review of Financial Studies 22(11), 4463�4492.

Boudoukh, J., M. Richardson, and T. Smith: 1993, `Is the ex ante risk premium always

positive?'. Journal of Financial Economics 34(3), 387 � 408.

Campbell, J. Y.: 1987, `Stock returns and the term structure'. Journal of Financial Eco-

nomics 18(2), 373�399.

Campbell, J. Y. and R. J. Shiller: 1988, `The Dividend-Price Ratio and Expectations of

Future Dividends and Discount Factors'. Review of Financial Studies 1(3), 195�228.

Campbell, J. Y. and S. B. Thompson: 2008, `Predicting Excess Stock Returns Out of Sample:

Can Anything Beat the Historical Average?'. Review of Financial Studies 21(4), 1509�1531.

Campbell, J. Y. and M. Yogo: 2006, `E�cient tests of stock return predictability'. Journal

of Financial Economics 81(1), 27 � 60.

Caraiani, P.: 2015, `Estimating DSGE models across time and frequency'. Journal of Macroe-

conomics 44(C), 33�49.

Chaudhuri, S. and A. Lo: 2016, `Spectral Portfolio Theory'. mimeo.

Chava, S., M. Gallmeyer, and H. Park: 2015, `Credit conditions and stock return predictabil-

ity'. Journal of Monetary Economics 74, 117�132.

Chen, N.-F., R. Roll, and S. A. Ross: 1986, `Economic Forces and the Stock Market'. The

Journal of Business 59(3), 383�403.

Christiano, L. and T. Fitzgerald: 2003, `The Band Pass Filter'. International Economic

Review 44(2), 435�465.

27



Clark, T. and K. West: 2007, `Approximately normal tests for equal predictive accuracy in

nested models'. Journal of Econometrics 138(1), 291 � 311.

Cochrane, J. H.: 2008, `The Dog That Did Not Bark: A Defense of Return Predictability'.

Review of Financial Studies 21(4), 1533�1575.

Cooper, I. and R. Priestley: 2009, `Time-Varying Risk Premiums and the Output Gap'.

Review of Financial Studies 22(7), 2601�2633.

Cooper, I. and R. Priestley: 2013, `The World Business Cycle and Expected Returns'. Review

of Finance 17(3), 1029�1064.

Crowley, P. M. and A. Hughes Hallett: 2015, `Great moderation or "Will o' the Wisp"? A

time-frequency decomposition of GDP for the US and UK'. Journal of Macroeconomics

44(C), 82�97.

Dangl, T. and M. Halling: 2012, `Predictive regressions with time-varying coe�cients'. Jour-

nal of Financial Economics 106(1), 157�181.

de Jong, R. M. and N. Sakarya: 2016, `The Econometrics of the Hodrick-Prescott Filter'.

Review of Economics and Statistics 98(2), 310�317.

Dew-Becker, I. and S. Giglio: 2016, `Asset Pricing in the Frequency Domain: Theory and

Empirics'. Review of Financial Studies 29(8), 2029�2068.

Engle, R. F.: 1974, `Band Spectrum Regression'. International Economic Review 15(1),

1�11.

Fama, E. F. and K. R. French: 1989, `Business conditions and expected returns on stocks

and bonds'. Journal of Financial Economics 25(1), 23�49.

Faria, G. and F. Verona: 2018, `Forecasting stock market returns by summing the frequency-

decomposed parts'. Journal of Empirical Finance 45, 228 � 242.

28



Favero, C. A., A. E. Gozluklu, and A. Tamoni: 2011, `Demographic Trends, the Dividend-

Price Ratio, and the Predictability of Long-Run Stock Market Returns'. Journal of Fi-

nancial and Quantitative Analysis 46(05), 1493�1520.

Ferreira, M. A. and P. Santa-Clara: 2011, `Forecasting stock market returns: the sum of the

parts is more than the whole'. Journal of Financial Economics 100(3), 514�537.

Galagedera, D. and E. Maharaj: 2008, `Wavelet timescales and conditional relationship be-

tween higher-order systematic co-moments and portfolio returns'. Quantitative Finance

8(2), 201�215.

Gallegati, M. and D. delli Gatti: 2018, `Macro�nancial imbalances in historical perspective:

A global crisis index'. Journal of Economic Dynamics and Control 91, 190 � 205.

Gallegati, M., M. Gallegati, J. B. Ramsey, and W. Semmler: 2011, `The US Wage Phillips

Curve across Frequencies and over Time'. Oxford Bulletin of Economics and Statistics

73(4), 489�508.

Gallegati, M., M. Gallegati, J. B. Ramsey, and W. Semmler: 2017, `Long waves in prices:

new evidence from wavelet analysis'. Cliometrica 11(1), 127�151.

Gallegati, M. and J. B. Ramsey: 2013, `Bond vs stock market's Q: Testing for stability across

frequencies and over time'. Journal of Empirical Finance 24(C), 138�150.

Gilchrist, S. and E. Zakrajsek: 2012, `Credit Spreads and Business Cycle Fluctuations'.

American Economic Review 102(4), 1692�1720.

Goyal, A. and I. Welch: 2008, `A Comprehensive Look at The Empirical Performance of

Equity Premium Prediction'. Review of Financial Studies 21(4), 1455�1508.

Granger, C. and M. Hatanaka: 1964, Spectral Analysis of Economic Time Series. Princeton

University Press.

29



Greenspan, A.: 1996, `The Challenge of Central Banking in a Democratic Society'. Remarks

by Chairman Alan Greenspan at the Annual Dinner and Francis Boyer Lecture of The

American Enterprise Institute for Public Policy Research, Washington, D.C., on December

5, 1996.

Guay, A. and P. St.-Amant: 2005, `Do the Hodrick-Prescott and Baxter-King Filters Provide

a Good Approximation of Business Cycles?'. Annales d'Economie et de Statistique (77),

133�155.

Harris, R. D. and F. Yilmaz: 2009, `A momentum trading strategy based on the low frequency

component of the exchange rate'. Journal of Banking and Finance 33(9), 1575�1585.

Harvey, C. R., Y. Liu, and H. Zhu: 2016, `... and the Cross-Section of Expected Returns'.

Review of Financial Studies 29(1), 5�68.

Henkel, S. J., J. S. Martin, and F. Nardari: 2011, `Time-varying short-horizon predictability'.

Journal of Financial Economics 99(3), 560�580.

Hodrick, R. J. and E. C. Prescott: 1997, `Postwar U.S. Business Cycles: An Empirical

Investigation'. Journal of Money, Credit and Banking 29(1), 1�16.

Huang, D., F. Jiang, J. Tu, and G. Zhou: 2015, `Investor Sentiment Aligned: A Powerful

Predictor of Stock Returns'. Review of Financial Studies 28(3), 791�837.

Huang, D., F. Jiang, J. Tu, and G. Zhou: 2017, `Forecasting Stock Returns

in Good and Bad Times: The Role of Market States'. Available at SSRN:

https://ssrn.com/abstract=2188989.

Kilponen, J. and F. Verona: 2016, `Testing the Q theory of investment in the frequency

domain'. Research Discussion Papers 32/2016, Bank of Finland.

30



Li, Y., D. T. Ng, and B. Swaminathan: 2013, `Predicting market returns using aggregate

implied cost of capital'. Journal of Financial Economics 110(2), 419�436.

Maio, P.: 2013, `The 'Fed Model' and the Predictability of Stock Returns'. Review of Finance

17(4), 1489�1533.

Malagon, J., D. Moreno, and R. Rodriguez: 2015, `Time horizon trading and the idiosyncratic

risk puzzle'. Quantitative Finance 15(2), 327�343.

Manchaldore, J., I. Palit, and O. Soloviev: 2010, `Wavelet decomposition for intra-day volume

dynamics'. Quantitative Finance 10(8), 917�930.

Martin, I.: 2017, `What is the Expected Return on the Market?'. The Quarterly Journal of

Economics 132(1), 367�433.

McCown, J. R.: 2001, `Yield curves and international equity returns'. Journal of Banking &

Finance 25(4), 767 � 788.

Mehra, Y. P.: 2004, `The Output Gap, Expected Future In�ation and In�ation Dynamics:

Another Look'. The B.E. Journal of Macroeconomics 4(1), 1�19.

Metaxoglou, K. and A. Smith: 2017, `Forecasting Stock Returns Using Option-Implied State

Prices'. Journal of Financial Econometrics 15(3), 427�473.

Moller, S. V. and J. Rangvid: 2015, `End-of-the-year economic growth and time-varying

expected returns'. Journal of Financial Economics 115(1), 136 � 154.

Moller, S. V. and J. Rangvid: 2018, `Global Economic Growth and Expected Returns Around

the World: The End-of-the-Year E�ect'. Management Science forthcoming.

Murray, C. J.: 2003, `Cyclical Properties of Baxter-King Filtered Time Series'. Review of

Economics and Statistics 85(2), 472�476.

31



Neely, C., D. Rapach, J. Tu, and G. Zhou: 2014, `Forecasting the Equity Risk Premium:

The Role of Technical Indicators'. Management Science 60(7), 1772�1791.

Nyberg, H.: 2013, `Predicting bear and bull stock markets with dynamic binary time series

models'. Journal of Banking & Finance 37(9), 3351 � 3363.

Ostdiek, B.: 1998, `The world ex ante risk premium: an empirical investigation'. Journal of

International Money and Finance 17(6), 967 � 999.

Percival, D. and A. Walden: 2000, Wavelet methods for time series analysis. Cambridge

University Press.

Rapach, D. E., M. C. Ringgenberg, and G. Zhou: 2016, `Short interest and aggregate stock

returns'. Journal of Financial Economics 121(1), 46 � 65.

Rapach, D. E., J. K. Strauss, and G. Zhou: 2013, `International Stock Return Predictability:

What Is the Role of the United States?'. Journal of Finance 68(4), 1633�1662.

Rapach, D. E. and G. Zhou: 2013, Forecasting Stock Returns, Vol. 2 of Handbook of Economic

Forecasting, pp. 328�383. Elsevier.

Ravn, M. O. and H. Uhlig: 2002, `On adjusting the Hodrick-Prescott �lter for the frequency

of observations'. Review of Economics and Statistics 84(2), 371�375.

Rua, A.: 2011, `A wavelet approach for factor-augmented forecasting'. Journal of Forecasting

30(7), 666�678.

Rua, A.: 2017, `A wavelet-based multivariate multiscale approach for forecasting'. Interna-

tional Journal of Forecasting 33(3), 581�590.

Stambaugh, R. F.: 1999, `Predictive regressions'. Journal of Financial Economics 54(3), 375

� 421.

32



Tölö, E., H. Laakkonen, and S. Kalatie: 2018, `Evaluating Indicators for Use in Setting the

Countercyclical Capital Bu�er'. International Journal of Central Banking 14(2), 51�112.

Watson, M. W.: 1986, `Univariate detrending methods with stochastic trends'. Journal of

Monetary Economics 18(1), 49�75.

Xue, Y., R. Gencay, and S. Fagan: 2013, `Jump detection with wavelets for high-frequency

�nancial time series'. Quantitative Finance 14(8), 1427�1444.

Yellen, J. L.: 2017, `Chair Yellen's Press Conference'. Transcript of Chair Yellen's Press

Conference on December 13, 2017.

Zhang, K., R. Gencay, and M. E. Yazgan: 2017, `Application of wavelet decomposition in

time-series forecasting'. Economics Letters 158, 41�46.

33



Table 1: Summary statistics and correlations
Panel A reports the summary statistics for the equity premium and the predictors. Panel B reports the cor-

relation coe�cients for the predictors. Predictors are the original time series of the term spread TMSTS and

the three frequency components TMSHF , TMSBCF and TMSLF obtained through wavelets decomposition

capturing oscillations of the TMSTS of less than 16 months, between 16 and 128 months and greater than

128 months, respectively. The database contains 540 monthly observations from 1973:01 to 2017:12.

Panel A: Summary statistics

Variable Mean Median 1st percentile 99th percentile Std. dev. AR(1)

Equity premium (%) 0.43 0.85 -11.7 10.5 4.40 0.05

TMSTS (%, ann.) 1.58 1.75 -2.38 3.67 1.35 0.95

TMSHF (%, ann.) 0.00 -0.01 -1.03 1.67 0.42 0.60

TMSBCF (%, ann.) 0.00 0.09 -2.00 1.53 0.95 0.99

TMSLF (%, ann.) 1.58 1.76 0.56 2.37 0.52 1.00

Panel B: Correlations

Variable TMSTS TMSHF TMSBCF TMSLF

TMSTS 1

TMSHF 0.47 1

TMSBCF 0.89 0.22 1

TMSLF 0.61 0.02 0.31 1
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Table 2: In-sample predictive regression results
This table reports the β estimation by OLS of the predictive model (2) and the corresponding R2 statis-

tic (in percentage), for the various forecasting horizons (h = 1, 3, 6, 12, 24) and di�erent predictors. The

predictors in Panel A are the original time series of the term spread TMSTS , and the three frequency com-

ponents TMSHF , TMSBCF , and TMSLF obtained through wavelets decomposition capturing oscillations

of the TMSTS less than 16 months, between 16 and 128 months, and greater than 128 months, respec-

tively. The predictors in Panel B are the high-, business-cycle- and low-frequency components (TMSBP−HF ,

TMSBP−BCF and TMSBP−LF ) of the TMSTS obtained using the BP �lter and the cycle (TMSHP−CY )

and the low-frequency component (TMSHP−TR) of the TMSTS obtained using the one-sided HP �lter. Each

predictor variable is standardized to have a standard deviation of one. Brackets below the β estimates contain

the heteroskedasticity- and autocorrelation-robust t-statistics for H0 : β = 0 versus HA : β > 0. ***, **, and

* denote signi�cance at the 1%, 5%, and 10% levels, respectively, accordingly to wild bootstrapped p-values.

The sample period runs from 1973:01 to 2017:12, monthly frequency.

Predictor h=1 h=3 h=6 h=12 h=24

β̂ R2 β̂ R2 β̂ R2 β̂ R2 β̂ R2

PANEL A: Predictors

TMSTS 0.33 0.55 0.30 1.33 0.28 2.22 0.36 6.95 0.32 12.9

[1.64]* [1.71]* [1.63]* [2.35]** [2.99]**

TMSHF 0.17 0.16 0.03 0.02 -0.09 0.23 0.04 0.10 0.01 0.01

[0.91] [0.22] [-0.76] [0.56] [0.15]

TMSBCF 0.21 0.22 0.23 0.79 0.26 1.90 0.30 5.04 0.29 10.0

[1.12] [1.37] [1.53] [1.96]* [2.15]*

TMSLF 0.33 0.56 0.33 1.61 0.33 3.00 0.34 6.26 0.32 12.1

[1.68]** [1.93]** [1.99]* [2.25]** [3.72]***

PANEL B: Alternative �ltering methods

TMSBP−HF 0.13 0.09 -0.03 0.01 -0.16 0.74 -0.02 0.02 -0.02 0.07

[0.71] [-0.19] [-1.40] [-0.27] [-0.83]

TMSBP−BCF 0.20 0.21 0.23 0.78 0.26 1.95 0.30 4.78 0.28 9.68

[1.11] [1.40] [1.56] [1.95]* [2.19]**

TMSBP−LF 0.28 0.40 0.28 1.14 0.27 2.09 0.28 4.13 0.23 6.47

[1.38]* [1.55]* [1.60]* [1.77]* [2.63]**

TMSHP−CY -0.22 0.25 -0.26 1.00 -0.28 2.15 -0.15 1.22 -0.06 0.39

[-1.04] [-1.22] [-1.36] [-0.93] [-0.74]

TMSHP−TR 0.51 1.35 0.51 3.93 0.51 7.30 0.49 12.9 0.38 17.4

[2.53]*** [2.81]*** [2.74]** [2.74]** [2.82]**
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Table 3: Out-of-sample R-squares (R2
OS) and annualized CER gains

Columns two to six report the OOS R-squares R2
OS (in percentage) for the excess returns forecasts at h-

month horizon from the model as given by equation (3). The R2
OS measures the proportional reduction

in the mean squared forecast error for the predictive model relative to the forecast based on the historical

mean HM. The h-month-ahead OOS forecast of excess return is generated using a sequence of expanding

windows. Panel A reports the results for the original time series of the term spread TMSTS , and the

three frequency components TMSHF , TMSBCF , and TMSLF obtained through wavelets decomposition

capturing oscillations of the TMSTS less than 16 months, between 16 and 128 months and greater than 128

months, respectively. Panel B reports the results for the high-, business-cycle- and low-frequency components

(TMSBP−HF , TMSBP−BCF and TMSBP−LF ) of the TMSTS obtained using the BP �lter, and the cycle

(TMSHP−CY ) and the low-frequency component (TMSHP−TR) of the TMSTS obtained using the one-

sided HP �lter. Columns seven to eleven present the annualized certainty equivalent return (CER) gains (in

percent) for an investor who allocates his or her wealth between equities and risk-free bills according to the

rule (4), using stock return forecasts from model in equation (3) with alternative predictors under analysis

instead of the forecasts based on the HM. Panel C reports the R2
OS and the CER gains obtained using

alternative predictors from the literature (excess bond premium, yield gap, output gap, technical indicator

based on moving averages and the short interest index). The sample period is from 1973:01 to 2017:12.

The OOS period is from 1990:01 to 2017:12, monthly frequency. Asterisks denote signi�cance of the OOS

MSFE-adjusted statistic of Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and

10% levels, respectively.

Predictor R2
OS CER gains

h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24

PANEL A: Predictors

TMSTS -0.72 -1.99 -1.28 3.47** 15.0*** 0.10 0.52 0.33 1.38 1.84

TMSHF -0.87 -1.70 0.58* -1.63 2.37 -1.16 -0.78 0.05 -0.81 -0.03

TMSBCF -1.52 -5.01 -8.16 -7.78 5.19* -2.25 -1.96 -2.19 -0.58 0.81

TMSLF 2.09*** 6.36*** 12.0*** 22.9*** 31.9*** 5.91 6.59 6.34 5.46 4.53

PANEL B: Alternative �ltering methods

TMSBP−HF -0.13 -0.28 -5.25 -0.43 -0.50 1.28 -0.14 -1.05 -0.01 -0.30

TMSBP−BCF -0.68 -2.30 -3.81 -2.58 6.46** -1.29 -1.33 -1.24 -0.21 0.78

TMSBP−LF -0.01 0.06 0.59 1.55 8.26 0.90 1.89 1.63 1.83 2.73

TMSHP−CY 0.21 0.79 1.91 -0.98 1.41 0.38 0.39 0.52 -0.82 0.64

TMSHP−TR 1.24** 3.89*** 8.10*** 15.5*** 20.5*** 3.83 4.03 3.98 3.40 2.21

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP 0.97 0.66 -7.23 -10.1 -11.6 3.90 5.09 0.14 -1.30 1.44

Yield gap -1.13 -4.22 -8.79 -15.7 -16.2 -0.21 -0.25 -1.01 -1.29 -0.87

Output gap -3.24 -7.40 -8.52 -5.25 -8.02 -3.73 -2.86 -1.65 -0.75 0.70

TI-MA(2,12) 1.20* 0.76 2.55 0.86 -0.34 4.78 1.76 2.53 0.67 0.21

SII 1.94*** 6.52*** 11.6*** 13.1** 4.85 4.18 4.67 5.44 3.40 -0.02

TMSLF 2.17*** 6.49*** 12.1*** 23.1*** 31.0*** 6.29 6.99 6.68 5.63 4.24
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Table 4: Economic channel analysis
This table reports the estimation results of equation (6) considering four predictors (X): the original time

series of the term spread TMSTS , and the three frequency components TMSHF , TMSBCF , and TMSLF

obtained through wavelets decomposition capturing oscillations of the TMSTS less than 16 months, between

16 and 128 months and greater than 128 months, respectively. DP stands for the dividend-price ratio and

represents the discount rate channel. DG is the dividend growth and represents the cash �ow channel. The

regression slopes and the R2 (in percentage) are reported. ***, ** and * denote signi�cance at the 1%,

5% and 10% levels, respectively, accordingly to wild bootstrapped p-values. The sample period runs from

1973:01 to 2016:12, monthly frequency.

Xt Yt+1 δ ψ R2

TMSTS
DP -0.24* 0.99*** 98.9

DG -0.08*** 0.04 3.8

TMSHF
DP -0.30 0.99*** 98.9

DG -0.02 0.07 0.3

TMSBCF

DP -0.24 0.995*** 98.9

DG -0.15*** 0.09* 6.1

TMSLF

DP -0.68** 0.99*** 98.9

DG -0.04 0.05 0.4
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Table 5: Out-of-sample R-squares (R2
OS) and annualized CER gains

Columns three to six present the OOS R-squares R2
OS (in percentage) for the excess returns forecasts at

h-month horizon from the model as given by equation (3). Panel A reports the results for the original time

series of the term spread TMSTS , and the low-frequency component of the term spread TMSLF , obtained

through wavelets decomposition capturing oscillations of the TMSTS greater than 128 months. Panel B

reports the results for the low-frequency component (TMSBP−LF ) of the TMSTS obtained using the BP

�lter, and the low-frequency component (TMSHP−TR) of the TMSTS obtained using the one-sided HP �lter.

Panel C reports the results obtained using alternative predictors from the literature (excess bond premium,

yield gap, output gap, technical indicator based on moving averages and the short interest index). The R2
OS

measures the proportional reduction in the mean squared forecast error for the predictive model relative to

the forecast based on the historical mean HM. The h-month-ahead OOS forecast of excess returns is generated

using a sequence of expanding windows. Columns seven to ten present the annualized certainty equivalent

return (CER) gains (in percent) for an investor who allocates his wealth between equities and risk-free bills

according to the rule (4), using stock return forecasts from model in equation (3) with alternative predictors

under analysis instead of the forecasts based on the HM. The sample period runs from 1973:01 to 2017:12.

Two OOS forecasting periods are considered. The �rst runs from 1990:01 to 2006:12 and the second from

2007:01 to 2017:12, monthly frequency. Asterisks denote signi�cance of the OOS MSFE-adjusted statistic of

Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and 10% levels, respectively.

Sample Predictor R2
OS CER gains

period h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PANEL A: Predictors

1990-2006
TMSTS -1.12 -3.13 -3.44 -2.37 0.72 1.67 0.71 0.13

TMSLF 1.66*** 6.13*** 13.5*** 25.1*** 5.51 6.57 5.62 4.72

2007-2017
TMSTS -0.16 -0.74 0.57 9.38*** -0.87 -1.28 -0.37 3.08

TMSLF 2.67*** 6.62*** 10.8*** 20.8*** 6.50 6.59 7.39 6.44

PANEL B: Alternative �ltering methods

1990-2006
TMSBP−LF 0.05 0.79 2.57 4.17 1.34 2.95 2.19 3.22

TMSHP−TR 0.35 1.54* 4.29** 8.64*** 2.57 3.20 2.28 1.47

2007-2017
TMSBP−LF -0.10 -0.74 -1.09 -1.09 0.24 0.30 0.90 0.04

TMSHP−TR 2.48** 6.48*** 11.3*** 22.4*** 5.77 5.26 6.48 6.20

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP 0.64 3.41** -6.47 -10.7 2.59 4.31 -0.98 -1.23

Yield gap -0.99 -3.33 -8.43 -21.5 -0.89 -0.40 -1.35 -1.35

1990-2006 Output gap -4.05 -9.31 -13.0 -8.74 -5.12 -3.96 -2.60 -1.13

TI-MA(2,12) 1.05 1.67 6.25** 0.24 4.17 2.15 2.72 -0.10

SII -0.15 -0.51 -0.95 -9.49 0.88 0.74 0.59 -0.38

EBP 1.48 -2.62 -7.90 -9.56 6.68 6.69 2.42 -1.47

Yield gap -1.34 -5.27 -9.11 -9.48 1.24 0.06 -0.28 -1.10

2007-2014 Output gap -1.96 -5.14 -4.50 -1.48 -0.80 -0.64 -0.11 -0.99

TI-MA(2,12) 1.44 -0.33 -0.76 1.53 6.06 0.95 2.33 2.33

SII 5.24*** 14.9*** 22.9*** 37.4*** 11.2 13.1 15.9 11.2
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Table 6: Out-of-sample R-squares (R2
OS) and annualized CER and SR gains

The sample period runs from 1973:01 to 2017:12. We divide the OOS in periods of bad growth, normal

growth, and good growth. These regimes are de�ned as the bottom, middle, and top-third of sorted growth

rates of industrial production in the US, respectively. This table reports, for the three regimes, the OOS

R-squares R2
OS (in percentage) for the excess returns forecasts at the one-month horizon (h = 1) from

the model as given by equation (3). Panel A reports the results for the original time series of the term

spread TMSTS , and the low-frequency component of the term spread TMSLF , obtained through wavelets

decomposition capturing oscillations of the TMSTS greater than 128 months. Panel B reports the results

for the low-frequency component (TMSBP−LF ) of the TMSTS obtained using the BP �lter, and the low-

frequency component (TMSHP−TR) of the TMSTS obtained using the one-sided HP �lter. Panel C reports

the results obtained using alternative predictors from the literature (excess bond premium, yield gap, output

gap, technical indicator based on moving averages and the short interest index). The R2
OS measures the

proportional reduction in the mean squared forecast error for the predictive model relative to the forecast

based on the historical mean HM. The one-month-ahead OOS forecast of excess return is generated using

a sequence of expanding windows. The table also reports the annualized certainty equivalent return (CER)

gains (in percent) for an investor who allocates his wealth between equities and risk- free bills according to the

rule (4), using stock return forecasts from model in equation (3) with alternative predictors under analysis

instead of the forecasts based on the HM. Asterisks denote signi�cance of the OOS MSFE-adjusted statistic

of Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and 10% levels, respectively.

Predictor Bad growth Normal growth Good growth

R2
OS CER gains R2

OS CER gains R2
OS CER gains

PANEL A: Predictors

TMSTS 0.57 0.92 -2.61 -1.70 -0.82 1.03

TMSLF 2.87*** 7.52 2.17** 4.95 1.16** 5.24

PANEL B: Alternative �ltering methods

TMSBP−LF -0.10 1.24 -0.44 -0.81 0.37 2.30

TMSHP−TR 2.51*** 6.29 0.12 1.33 0.62 3.84

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP -0.30 5.97 3.26** 4.39 0.77 1.37

Yield gap -1.87 -0.39 0.20 0.46 -1.22 -0.67

Output gap -2.23 -4.18 -5.23 -4.37 -2.97 -2.69

TI-MA(2,12) 3.47* 10.3 2.49* 5.58 -2.23 -1.46

SII 2.88** 4.98 0.13 1.73 2.16* 5.79

TMSLF 3.00*** 7.88 2.13** 5.55 1.29** 5.45
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Figure 1: Time series of the term spread and of its frequency components

This �gure reports the original time series of the term spread TMSTS (black line) and of its three frequency

components TMSHF , TMSBCF and TMSLF obtained through wavelets decomposition capturing oscillations

of the TMS less than 16 months (green line), between 16 and 128 months (red line), and greater than 128

months (blue line), respectively. Gray bars denote NBER-dated recessions. Sample period runs from 1973:01

to 2017:12, monthly frequency.
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Figure 2: Cumulative sum of squared forecast errors

This �gure reports the di�erence between the cumulative square forecasting error for the HM forecasting

model and the cumulative square forecasting error for the predictive regression based on the model (3) for

the original time series of the term spread TMSTS (black line) and the low-frequency component of the term

spread TMSLF (blue line). Gray bars denote NBER-dated recessions. The sample period runs from 1973:01

to 2017:12. The OOS forecasting period runs from 1990:01 to 2017:12, monthly frequency.
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Figure 3: Equity weights and log cumulative wealth

Panel A plots the dynamics of the equity weight for a mean-variance investor who allocates monthly his

wealth between equities and risk-free bills according to the rule (4), using stock return forecasts based on the

HM benchmark (dashed black line), the original time series of the term spread TMSTS (solid black line), and

the low-frequency component of the term spread TMSLF (blue line). The equity weight is constrained to a

range between -0.5 and 1.5. Panel B delineates the corresponding log cumulative wealth for the investor that

begins with $1 and reinvests all proceeds. The investor is assumed to have a relative risk aversion coe�cient

of three. Gray bars denote NBER-dated recessions. Sample period runs from 1990:01 to 2017:12, monthly

frequency.

A. Equity weights

B. Log cumulative wealth
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Figure 4: Equity weights and low-frequency component of the term spread

This �gure plots the dynamics of the low-frequency component of the term spread (TMSLF , black line)

and the equity weight (blue line) for a mean-variance investor who allocates monthly his wealth between

equities and risk-free bills according to the rule (4) using stock return forecasts based on the TMSLF . For

readability, the TMSLF has been demeaned and centered around 1. The investor is assumed to have a

relative risk aversion coe�cient of three. Gray bars denote NBER-dated recessions. Sample period runs from

1990:01 to 2017:12, monthly frequency.
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Figure 5: Equity premium frequency components and equity premium forecast (h = 1) based
on the TMSLF

This �gure plots the dynamics of the one-month ahead equity premium forecast based on the low-frequency

component of the term spread (TMSLF , blue line) and the high-, business-cycle- and low-frequency com-

ponents of the equity premium (top, middle and bottom graphs, respectively, black lines). The series are

centered to have zero mean and scaled to have standard deviation 1. Gray bars denote NBER-dated reces-

sions. Sample period runs from 1990:01 to 2017:12, monthly frequency.
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Appendix A

The discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decom-

position of a time series into its constituent multiresolution (frequency) components. There

are two types of wavelets: father wavelets (φ), which capture the smooth and low-frequency

part of the series, and mother wavelets (ψ), which capture the high-frequency components

of the series, where
∫
φ (t) dt = 1 and

∫
ψ (t) dt = 0.

Given a time series yt with a certain number of observations N, its wavelet multiresolution

representation is given by

yt =
∑
k

s
J,k
φ

J,k
(t) +

∑
k

d
J,k
ψ

J,k
(t) +

∑
k

d
J−1,k

ψ
J−1,k

(t) + · · ·+
∑
k

d
1,k
ψ

1,k
(t) , (7)

where J represents the number of multiresolution levels (or frequencies), k de�nes the length

of the �lter, φ
J,k

(t) and ψ
j,k

(t) are the wavelet functions and s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
are the

wavelet coe�cients.

The wavelet functions are generated from the father and mother wavelets through scaling

and translation as follows

φ
J,k

(t) = 2−J/2φ
(
2−Jt− k

)
ψ

j,k
(t) = 2−j/2ψ

(
2−jt− k

)
,
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while the wavelet coe�cients are given by

s
J,k

=

∫
ytφJ,k

(t) dt

d
j,k

=

∫
ytψj,k

(t) dt ,

where j = 1, 2, ..., J .

Due to the practical limitations of DWT in empirical applications, we perform wavelet

decomposition analysis here by applying the maximal overlap discrete wavelet transform

(MODWT). The MODWT is not restricted to a particular sample size, is translation-invariant

so that it is not sensitive to the choice of the starting point of the examined time series, and

does not introduce phase shifts in the wavelet coe�cients (so peaks or troughs in the orig-

inal time series are correctly aligned with similar events in the MODWT MRA). This last

property is especially relevant in the forecasting exercise.
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