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Abstract. This paper proposes a rational explanation for the existence of clientele effects under

commonly used portfolio management contracts. Contrary to the common view that investors

always benefit from a manager’s market timing skill (private information about future market

returns), we show that the value of a manager’s private information to an investor can be negative

when the investor is sufficiently more risk-averse than the manager. This suggests different clienteles

for skilled and unskilled funds. Investors in skilled funds are uniformly more risk-tolerant than

investors in unskilled funds. We examine the effects of the manager’s skill level, contract parameters,

and market conditions on an investor’s fund choice. Our results suggest that the investors who are

sufficiently more risk-averse than the manager should include fulcrum fees in the contract to benefit

from the skilled manager’s information advantage.
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1. Introduction

The money management industry plays a very important role in modern economies. For

example, about half of all U.S. households delegate the management of their wealth to pro-

fessional managers and the total net assets of U.S. mutual funds reached $18.7 trillion at
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year-end 2017 (Investment Company Institute, 2018). Given the size of the money manage-

ment industry, studying the implications of portfolio management skills on investors’ fund

investment appears to be a critical task. A substantial literature finds empirical evidence

that the mutual fund investors chase performance (e.g., Chevalier and Ellison, 1997; Sirri

and Tufano, 1998). Berk and Green (2004) employ a model of competitive capital market

and rational learning to explain the fund-performance relationship. They argue that fund

managers with superior skills will manage more money but have the same fund returns as

less-skilled managers because of decreasing return to scale. Furthermore, Berk and van Bins-

bergen (2015) use the value a mutual fund extracts from capital markets to measure the

fund’s skill and find the evidence of investment skill. They also find that investors appear

to be able to identify the managers with superior abilities and invest more money in better

funds. However, one thing that has been missing from the traditional performance evaluation

and fund flow literature is the heterogeneity in investors’ preferences and its effect on the

segmentation of fund investors, i.e., the clientele effect. In markets where segmentation is

caused by clientele effects, the fund’s superior performance will not necessarily attract more

money if stochastic dominance relations prevail among funds for certain groups of investors.

In this case, certain risk-aversion types of investors will prefer not to invest in a skilled fund

despite its superior performance.

A growing literature shows that fund investors appear to segment the market and demon-

strates the importance of clientele effects in fund performance evaluation. Blackburn et al.

(2009) find that there are different investor clienteles in value and growth funds and risk aver-

sion is an important attribute to differentiate these two groups of investors. They document

that investors in value funds are more risk-averse than investors in growth funds. Moreover,

Chan et al. (2002) find that growth managers have better abilities to generate alpha than

value managers. Given the empirical evidence for clientele effects based on the heterogeneity

in investor’s risk aversion and manager’s abilities, it should be investigated whether there

is a rational explanation for the clientele effects in the money management industry as an

alternative for behavioral interpretations such as investor sophistication (Barber et al., 2016).

Our paper studies the value of a manager’s market timing skill to fund investors with

heterogeneous risk preferences.2 The clientele effect emerges as an endogenous result. We

2 Despite the widespread belief that mutual fund managers lack skill (e.g., Carhart, 1997; Fama and French, 2010),

there is a growing number of studies that do find evidence of market timing skill (e.g., Mamaysky et al., 2008; Elton

et al., 2012; Kacperczyk et al., 2008).
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model a skilled fund manager as endowed with privately informed information about the

future market returns whose content is unknown to the investors.3 This paper focuses on

market timing skill for ease of presentation. In unreported results, we consider both stock

selection and market timing skills in a multi-asset setting, and the clientele effect results

are qualitatively similar. The anticipative information is always valuable to the manager

and increases in the information precision (i.e., skill). However, when the manager and the

investors exhibit different risk preferences, the private nature of this information can be

costly and even adverse to the investors. We show that the investors whose risk aversion lies

above a threshold value would prefer the unskilled fund to the skilled one. Thus, there are

two distinct clienteles to skilled and unskilled funds. Investors in skilled funds are uniformly

more risk-tolerant than investors in unskilled funds.

We also analyze the impacts of commonly used portfolio management contracts on in-

vestors’ fund investment. The management fee is typically a portion of the delegated wealth’s

value. In addition to this purely proportional fee contract, the compensation schemes includ-

ing a performance-based fee that depends on the excess return of the managed portfolio

relative to a benchmark are common in the money management industry. In the absence

of performance fees, we find that investors whose relative risk aversion exceeds the relative

prudence coefficient of the logarithmic fund managers always prefer the unskilled fund to the

skilled fund irrespective of excess returns’ measures like alpha and Sharpe ratios generated

by the skilled fund. Conversely, investors with relative risk aversion smaller than the man-

ager’s relative prudence will choose the skilled funds. The clientele effect result still holds

under the fulcrum and asymmetric performance fees. In contrast to the constant threshold

under the purely proportional fee, in the presence of performance fees the relative risk aver-

sion thresholds are affected by the skill, contract parameters, and market conditions. The

comparative static analysis shows that the relative risk aversion threshold is substantially

affected by the sensitivity of the contract with regard to the underperformance penalty. We

find that including a fulcrum fee in the manager’s compensation contract could lead to a

higher value of manager’s information to sufficiently risk-averse investors than that under

option-like asymmetric fees. This suggests the use of fulcrum fee for investors who are much

more risk-averse than the fund manager.

3 This paper does not consider the effort incentive problem and thus abstract from moral hazard consideration. We

assume that investors can observe managers’ skill level and risk preference. Koijen (2014) shows that the manager’s

skill and risk preference parameters can be estimated using the volatility of fund returns.
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Our analysis proceeds in two steps. First, we derive and analyze optimal portfolio choices

of a fund manager with private information. The informed manager receives a private signal

about future market excess returns with noise.4 In the presence of management fees, the

investment problem is no longer maximizing the manager’s utility function of terminal fund

portfolio, but rather a composed utility function of fund performance. In particular, with

asymmetric performance fees, the composed utility function is neither concave nor differ-

entiable in the terminal value of fund portfolio. We employ the concavification technique

pioneered by Aumann and Perles (1965), Carpenter (2000), Cuoco and Kaniel (2011) and

Bichuch and Sturm (2014) to solve the manager’s maximization problem. In the second step

of the analysis, we study the value of the manager’s information to investors and the clien-

tele effect. Following Detemple and Rindisbacher (2013) (henceforth DR), we show that the

public state price density (SPD) second-order stochastically dominates the private SPD. The

clientele effect result follows from the second-order stochastic dominance relationship and the

fact that the composed utility function of investors (i.e., the utility derived from delegation

to the manager as function of the SPD) may be concave or convex in the SPD depending

on the investors’ risk aversion is larger or smaller than a threshold value. We specialize our

general results to the noisy return forecast model and conduct a comparative static analysis

to understand the impacts of performance fees on investors’ preference between skilled and

unskilled funds in an empirically relevant setting. Finally, we discuss extensions of results

to more general settings that fund managers have constant relative risk aversion (CRRA)

preference and investors can invest in the market index, as an alternative to investing in the

active funds.

Our paper contributes to the growing literature on the clientele effect in the money man-

agement industry. Clientele effects are of great interest to research in behavioral finance.

Prior studies attribute the clientele effects to irrationality, investor sophistication or other

psychological tendencies (e.g., Barberis and Shleifer, 2003; Del Guercio and Reuter, 2014).

Compared to behavioral attributes that may or may not determine fund clienteles, to derive

the emergence of clienteles endogenously based purely on risk aversion is a viable rational

alternative and as such of first order importance. In this paper, we show that the investor

clientele in a skilled fund is more risk-tolerant than the investor clientele in an unskilled fund.

This result is consistent with some recent empirical findings. Bergstresser et al. (2009) detail

4 The manager’s skill is from his private information. Henceforth, informed is used interchangeably with skilled.
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the difference between broker-sold investors and self-directed investors. They state that the

broker-sold investors are a bit more risk-averse than self-directed investors. Del Guercio and

Reuter (2014) document that the mutual fund market is a segmented market catering to

two distinct types of investors: direct-sold investors and broker-sold investors. Their results

also suggest that direct-sold fund managers are more skilled than broker-sold fund managers

because direct-sold funds have stronger incentives to hire managers with superior abilities.

Second, our analysis is related to the delegated portfolio management literature. Existing

theoretical research on delegated portfolio management focuses on two main areas. The first

strand of literature studies how commonly observed compensation contracts affect manager’

decisions (e.g., Grinblatt and Titman, 1989; Carpenter, 2000; Hugonnier and Kaniel, 2010).

The second examines the optimal contract design problem (e.g., Admati and Pfleiderer, 1997;

Li and Tiwari, 2009). We complement this literature by considering a different problem.

Rather than solving for the optimal design of contracts in general, we analyze the impacts

of performance fees on the value of the manager’s private information to investors. Grinblatt

and Titman (1989) argue that contracts should be designed with caps and have penalties

for performance below the benchmark to mitigate the adverse risk incentives of managers.

However, the manager is allowed to have a personal portfolio and hedge the management

fees in their model. Even without the unrealistic assumption that the manager has personal

accounts, our results suggest that the investors who are sufficiently more risk-averse than

the manager may include a fulcrum fee component in the manager’s compensation contract

to realize higher value from the manager’s superior information.

Finally, our paper is closely related to DR. They develop a structural dynamic model of

market timing and find that individuals with relative risk aversion greater than the relative

risk prudence of a log manager will never prefer the skilled fund. However, their model does

not consider the presence of compensation contracts between investors and fund managers.

Sotes-Paladino and Zapatero (2017) find that fulcrum fees are able to help align the risk

preference of investors and managers, which may distort the clientele effect results. It is thus

of importance to study how the performance fees would affect investors’ fund choice. Our

paper extends the result of DR by showing that the clientele effect still holds even in the

presence of performance fees. Moreover, DR only consider log managers and investors need

to make a binary choice between skilled and unskilled actively managed funds. In extensions

to our basic setup, we consider settings that both investors and managers have CRRA utility
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and investors can choose to invest in a passive alternative. We show that the clientele effect

still exists and it is affected by the fee structures, market conditions, and the manager’s skill

level. The comparative analysis shows that if the types of these contracts are not properly

chosen, the manager’s private information would be costly and even detrimental to some fund

investors. Our results suggest that highly risk-averse investors should employ skilled fund

managers with a linear performance-based contract in order to benefit from the manager’s

superior abilities.

The article is organized as follows. Section 2 describes the economic setup. It also presents

the investment problems of managers and investors. Section 3 solves the portfolio optimiza-

tion problem of an informed fund manager under commonly observed performance contracts.

Section 4 analyzes the value of manager’s private information and the clientele effect. Sec-

tion 5 specializes the general results to the noisy return forecast model. Section 6 provides a

detailed numerical analysis of the value of manager’s information and investor’s fund choice

under fulcrum and asymmetric performance fees. Section 7 studies extensions of the basic

model. Conclusions are in Section 8.

2. Model

This section describes the economic setup and the portfolio management problems of man-

agers and investors. Financial markets and the information structure are described in Sec-

tion 2.1. Section 2.2 introduces the private information price of risk. The agents and their

risk preference are described in 2.3. The manager’s optimization problem is described in

Section 2.5. Section 2.6 describes the investor’s problem.

2.1 FINANCIAL MARKETS AND INFORMATION STRUCTURE

Financial markets are represented by a risky market portfolio (or stock) and a riskless bond.

We work with the following model of timing information considered by DR. The instanta-

neous market excess return (dRm
v ) and the gross market excess return (Smτi−1,τi

) over a period

[τi−1, τi) are given by

dRm
v = σmv (θmv dv + dWm

v ) and Smτi−1,τi
= exp

(∫ τi

τi−1

dRm
v −

1

2

∫ τi

τi−1

(σmv )2dv

)
(1)
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where σm is positive and bounded away from zero. The volatility coefficient σm, the public

market price of risk θm, and the interest rate r are stochastic process adapted to public

information. The bond’s price dynamics are given by dBv = rvBvdv.

An informed agent has access to private information about future market excess returns.

Her private information can be represented by the filtration

G(·) = Fm(·)
∨
FY(·) (2)

where Fm(·) represents the public information generated by market excess returns dRm, and

FY(·) represents the filtration generated by a private signal Y . We assume that the private

signal has the general anticipative form

Yv ≡
N∑
i=1

Gi1[τi−1,τi)(v), (3)

where τi is a sequence of deterministic dates with τ0 = 0, τN ≤ T , 1[τi−1,τi)(v) equals 1 if

v ∈ [τi−1, τi) otherwise 0, and the private signal for the period [τi−1, τi) is given by

Gi ≡ g
(
Smτi−1,τi

, ζi
)

(4)

for some function g and random variable ζi, independent of the public information FmT .

The independent random variable ζi introduces noise into the private signal Gi, thus rul-

ing out arbitrage opportunities for the informed agent within the period [τi−1, τi). The pri-

vate signal works as follows. At time τi, the informed agent observes the signal realization

Gi+1 ≡ g
(
Smτi,τi+1

, ζi+1

)
and obtains the anticipative information about the gross market ex-

cess return for the period [τi, τi+1). As time elapses, the informed agent learns from public

information about realized market returns but the signal Gi+1 remains valuable to her even

if the time is very close to τi+1. At τi+1, a new signal realization is observed and the process

repeats. In this way the informed agent maintains her information advantage against those

who only have public information about market realized returns.

As in reality that active funds report their realized returns with a typically coarse schedule,

we assume that informed agents only need to report their realized fund returns at τ0 and τN

for the period [τ0, τN ]. Fv = Fmv ⊗Faτ0 denotes the public information at time v ∈ [τ0, τN),

where Fmv is the filtration generated by realized market returns and Faτ0 is the filtration

generated by previously reported fund return. At time τN , FτN = FmτN ⊗F
a
τN

. We suppose
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that the investment evaluation period coincides with the time interval between the reporting

dates, i.e., T = τN − τ0.

2.2 INFORMATION PREMIUM

An agent with only public information has a premium per-unit risk denoted by the public

market price of risk θm. The private (anticipative) information changes the price of risk by

the private information price of risk (PIPR)

θGv ≡
1

σmv
lim
ε↓0

1

ε
E

[∫ v+ε

v

dRm
t

∣∣∣∣Gv]− θmv = lim
ε↓0

1

ε
E

[∫ v+ε

v

dWm
t

∣∣∣∣Gv] (5)

for all v ∈ [0, T ]. PIPR represents the incremental price of risk, relative to θmv , due to private

information. The informed agent’s total price of risk is thus given by θv ≡ θmv + θGv . When the

agent has no private information, G(·) = Fm(·) and the PIPR is null. If the agent is endowed with

perfect foresight, the PIPR explodes and there exists an arbitrage opportunity. Noisy private

information will lead to a PIPR with finite value and there is no arbitrage opportunity.

The market excess returns have representation dRm
v = σmv ((θmv + θGv )dv + dW G

v ) under G(·),

where dW G
v ≡ dWm

v − θGv dv is a Brownian motion relative to the private filtration G(·).

2.3 AGENTS

We consider an economy populated by three types of agents: investors, a skilled fund man-

ager, and an unskilled fund manager. All agents are price-takers. The investors and the

unskilled fund manager have only access to public information, while the skilled fund man-

agers have private information about future market returns G(·). We assume that an investor

at time 0 needs to make a choice between delegating the portfolio management of her wealth

to either the skilled fund manager or the unskilled fund manager. No additional share pur-

chases or redemptions are allowed during the whole investment period. The fund managers

do not to have any private wealth and derive utility from the management fees received at

terminal date.

We assume that both skilled and unskilled fund managers have logarithmic utility function

uM(x) = log(x) and fund investors have CRRA utility with different coefficients of relative
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risk aversion R. Let U be the class of CRRA utility functions

u(x) =

x1−R

1−R if R > 0, R 6= 1

log(x) if R = 1
.

Section 7 also examines the case of managers who have CRRA utility function with R 6= 1.

2.4 MANAGER’S COMPENSATION CONTRACT

As is standard in practice, we assume that a manager is compensated at time T with a

management fee FT which depends on the end-of-period value of the fund portfolio and the

end-of-period value of a benchmark portfolio. Let Xa
T represent the value assets under man-

agement (AUM) at the terminal date T . We assume that the compensation of the manager

is of the general form as introduced by Cuoco and Kaniel (2011)

FT = F
(
Xa
T , X

b
T ;α, β1, β2, δ, π

b
)

= αXa
T − αβ1X

a
0

(
Xa
T

Xa
0

− Xb
T

Xb
0

)−
+ αβ2X

a
0

(
Xa
T

Xa
0

− Xb
T

Xb
0

)+

= αXa
T − αβ1

(
Xa
T − δXb

T

)−
+ αβ2

(
Xa
T − δXb

T

)+
,

where α, β1, β2, πb are exogenously given parameters, δ = Xa
0/X

b
0. The management fee

at time T consist of three parts: a regular fee αXa
T which is proportional to the value of

the fund portfolio at time T , a performance bonus αβ2

(
Xa
T − δXb

T

)+
which depends on the

excess return of the managed fund over the benchmark, and an underperformance penalty

αβ1

(
Xa
T − δXb

T

)−
. We assume that α > 0, β2 ≥ β1 ≥ 0. This ensures that F is increasing

and convex in the fund portfolio’s end-of-period value Xa
T and decreasing in the benchmark

portfolio’s end-of-period value Xb
T . The benchmark portfolio process Xb

T is generated by a

dynamic trading strategy πbv, which is known to all market participants.

The contract specification is general enough to encompass typical fee structures for dif-

ferent types of investment companies. When the performance bonus is symmetric to the

underperformance penalty, β1 = β2, the performance fee is linear in the excess return of

the actively managed fund relative to the benchmark. It is known as a “fulcrum” fee. The

1970 Amendment to the Investment Advisers Act of 1940 rules that the U.S. mutual fund’s

performance fees must be the “fulcrum” type. The SEC approved the use of asymmetric

performance fees in contracts for investment advisers of wealthy individuals in 1985. A re-
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cent study by Ma et al. (2016) argues that, even though the advisory contracts between

the asset management companies and fund investors are prohibited from having asymmetric

incentive fees, the compensation incentive contracts for portfolio managers are not subject

to this regulatory restriction. They document that typical compensation contracts signed by

the U.S. mutual fund managers are the asymmetric, option-like type. Hedge funds are not

subject to the fulcrum fee requirement, and asymmetric performance fees β1 = 0, β2 > 0 are

the norm. Performance-based fees were also allowed by the Labor Department for corporate

pension funds in 1986 (see Cuoco and Kaniel, 2011).

2.5 MANAGER’S PROBLEM

We consider a portfolio optimization problem of a privately informed fund manager. The

problem of an uninformed manager with only public information is a special case with

the PIPR θG is null. Managers receive an initial endowment Xa
0 from investors and choose

admissible trading strategies (written πav ∈ Gv) to maximize the expected utility function of

her management fee. The informed manager’s problem is given by

max
πav∈Gv

E
[
uM
(
F
(
Xa
T , X

b
T

)) ∣∣G0

]
(6)

subject to

dXa
v = Xa

v rvdv +Xa
vπ

a
vσ

m
v ((θmv + θGv )dv + dW G

v ), (7)

Xa
v ≥ 0, ∀v ∈ [0, T ]. (8)

Note that all the coefficients are adapted to the to the private filtration G(·), the manager’s

investment problem collapses to a traditional portfolio optimization problem.

2.6 INVESTOR’S PROBLEM

We assume that investors cannot directly invest in the financial markets and need to em-

ploy a fund manager. Suppose that investors can observe the manager’s skill level and risk

preference. At time 0, an investor makes a choice between delegating his wealth to either

the skilled manager or the unskilled manager based on only public information. The de-

cision to delegate is exogenous. It captures in a reduced form the choice to abstain from

direct investing because of participation constraint, transaction costs or other frictions. The
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composed utility function of an investor who delegates his wealth to a fund manager is

v
(
Xa∗

T , X
b
T

)
≡ u

(
Xa∗

T − F
(
Xa∗

T , X
b
T

))
, where Xa∗

T is the optimal fund value at time T chosen

by the fund manager and F
(
Xa∗

T , X
b
T

)
is the management fee paid to the manager. A fund

investor maximizes the expected value of his derived utility by solving

max
C∈{s,u}

E
[
v
(
Xa,C ∗

T , Xb
T

)]
, (9)

where Xa,s∗

T is the optimal terminal fund value chosen by the skilled fund manager and Xa,u∗

T

is the optimal terminal fund value chosen by the unskilled fund manager. Extensions to the

basic model consider a more general case that, alternatively to employing active managers,

investors can choose a passively managed index fund.

3. Manager’s Optimal Portfolio Policies

This section solves an informed manager’s portfolio optimization problem under “fulcrum”

and “asymmetric” performance fees.

The portfolio optimization problem (6) can be restated in the static form (see Pliska, 1986;

Karatzas et al., 1987; Cox and Huang, 1989, 1991):

max
Xa
T∈GT

E
[
uM
(
F
(
Xa
T , X

b
T

)) ∣∣G0

]
(10)

subject to

E
[
ξGTX

a
T

∣∣G0

]
≤ Xa

0 (11)

and non-negativity constraints in (8).

Unless β1 = β2, the fund managers’ objective function uM
(
F
(
Xa
T , X

b
T

))
is neither concave

nor differentiable in Xa
T ; it cannot be solved using the usual approach. On the other hand,

the fund manager’s marginal utility at zero is negative infinity, which implies that the man-

agement fee F
(
Xa
T , X

b
T

)
must be strictly positive at time T . It follows that Xa

T > X(Xb
T ),

where X(Xb) = β1δX
b/(1 + β1). The objective function uM(F (·, Xb)) is piecewise concave

and piecewise differentiable on the interval [X(Xb),∞), we can follow Aumann and Perles

(1965), Carpenter (2000), Cuoco and Kaniel (2011) and Bichuch and Sturm (2014) in con-

structing the concavification vM(·, Xb) of uM(F (·, Xb)) (that is the smallest concave function
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that dominates uM(F (·, Xb)) for all Xa ≥ X(Xb). Lemma 1 and 2 below are closely based

on Lemma 1 and 2 in Cuoco and Kaniel (2011).

Lemma 1. Suppose that Xb > 0, α > 0, β2 > β1 ≥ 0, there exist unique X1(Xb) and

X2(Xb) with

X(Xb) < X1(Xb) < δXb < X2(Xb)

that satisfy the system of equationsα(1 + β2)uMx (F (X2(Xb), Xb) = uM (F (X2(Xb),Xb))−uM (F (X1(Xb),Xb))
X1(Xb)−X2(Xb)

,

(1 + β1)uMx (F (X1(Xb), Xb)) = (1 + β2)uMx (F (X2(Xb), Xb)).

In particular, if marginal utility is homogeneous of degree −R (R 6= 1), letting η =(
1+β2

1+β1

)1−1/R

, direct computation shows that

X1(Xb) =

(
( η
R
− 1) β1

1+β1
+ η(1− 1

R
) β2

1+β2

η − 1

)
δXb,

X2(Xb) = X1(Xb) +
1

R

(
β2

1 + β2

− β1

1 + β1

)
δXb.

For logarithmic utility

X1(Xb) =

(
log

(
1 + β2

1 + β1

))−1(
β2

1 + β2

− β1

1 + β1

)
δXb +

β1

1 + β1

δXb > X(Xb),

X2(Xb) = X1(Xb) +

(
β2

1 + β2

− β1

1 + β1

)
δXb.

Lemma 2. Suppose that Xb > 0, let X1(Xb) and X2(Xb) be as in Lemma 1 if α > 0,

β2 > β1 ≥ 0 and X1(Xb) = X2(Xb) = δXb if α > 0, β1 = β2 ≥ 0. The concavified objective

function vM(·, Xb) of uM(F (·, Xb)) on [X(Xb),∞) is given by

vM(Xa, Xb) =


uM(F (Xa, Xb)) if X ∈ Y (Xb),

uM(F (X1(Xb), Xb))

+α(1 + β2)uMx (F (X2(Xb), Xb))(Xa −X1(Xb)) otherwise,

where Y (Xb) = [X(Xb), X1(Xb)]
⋃

[X2(Xb),∞).
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Fig. 1: Manager’s composed utility function and the concavified function. The figure plots the manager’s composed
utility function uM (F (·,Xb)) (red solid line) and the corresponding concavified utility function vM (·,Xb) (dashed
blue line) with α > 0, β2 > β1 ≥ 0.

As illustrated in Figure 1, the concavified objective function vM(·, Xb) in Lemma 2 replaces

part of the original non-concave function uM(F (·, Xb)) with a chord between X1(Xb) and

X2(Xb). The slope of the chord coincides with the slope of uM(F (·, Xb)) at X1(Xb) and

X2(Xb), which makes the function vM(·, Xb) concave. Y (Xb) denotes the interval in which

vM(·, Xb) and uM(F (·, Xb)) coincide. The intuition is that because the chord between X1(Xb)

and X2(Xb) lies above the true objective function uM(F (·, Xb)), a fund portfolio’s value that

takes on the value X1(Xb) in some states or X2(Xb) in other states will dominate a fund

portfolio’s value that takes on values in the interval (X1(Xb), X2(Xb)) in some states with

positive probability. Thus, the manager will never choose a fund’s asset value that lies in

(X1(Xb), X2(Xb)).

Since the new objective function vM(·, Xb) is concave, we can use the standard method to

solve the portfolio choice problem. The solution to the concavified problem also solves the

original portfolio optimization problem. The solution is described formally as follows.

Proposition 1. Suppose that the performance fee is of the fulcrum type:

F (Xa
T , X

b
T ) = αXa

T + αβ2

(
Xa
T − δXb

T

)
with α > 0, β2 ≥ 0.
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The optimal weight invested in risky asset and optimal fund value at v ∈ [0, T ] are given by

πa,s
∗

v =
θmv
σmv

+
β2

1 + β2

δXb
v

Xa,s∗
v

(
πbv −

θmv
σmv

)
+

(
1− β2

1 + β2

δXb
v

Xa,s∗
v

)
θGv
σmv

, (12)

=
θmv + θGv
σmv

+
β2

1 + β2

δXb
v

Xa,s∗
v

(
πbv −

θmv + θGv
σmv

)
, (13)

Xa,s∗

v =
1

ys∗ξGv
+
β2δX

b
v

1 + β2

, (14)

where ys
∗

= (1 + β2)/Xa
0 and θGv is the PIPR (5). Correspondingly, the manager’s compen-

sation at time T is

F (Xa,s∗

T , Xb
T ) =

αXa
0

ξGT
. (15)

Private information updates the informed manager’s perceived price of risk from θm to

θm + θG. The first two components in (12) are motivated by public information and the

remaining component in (12) is motivated by private information. If the private signal is

uninformative about future market excess returns, θG = 0 and the optimal policy collapses

to that of a manager with public information. Private signals could induce either positive

or negative PIPR. When E[dWm
v |Gv] is positive (negative), the PIPR is positive (negative)

and the privately informed manager would invest more (less) in the market index than that

of an uninformed manager. The instantaneous fund excess return generated by the informed

manager is given by d−Ra
v = πa,s

∗
v d−Rm

v , where d−Rm
v represents forward integration (see

Russo and Vallois, 1993). When private information induces a positive (negative) PIPR, the

optimally managed fund return’s volatility then increases (decreases) relative to that of a

fund based only on public information. Since fund returns are only reported at the τ0, τN

and informed manager’s trades are unobserved, this will not reveal private information to

the uninformed manager.

The optimal policy can also be decomposed into two components as in Equation (13).

The first component is the mean-variance demand and represents the manager’s optimal

risk taking absent the fulcrum performance fee. The second component is the benchmark-

hedging demand. It could either be positive or negative, depending on whether the benchmark

portfolio’s weight in the risky asset πb is higher or lower than the mean-variance demand

(θmv + θGv )/σmv . This component helps the manager perfectly hedge her risk exposure to the

benchmark portfolio. As a result, the presence and composition of the benchmark are irrel-
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evant to the manager’s compensation at time T as given by (15). The manager’s compensa-

tion is affected by the contract only through the proportional fee parameter α. Although the

benchmark-linked incentive parameters β2 and πb do not affect the manager’s compensation,

they, together with the proportional fee parameter α, have an impact on the expected utility

of fund investors’ after-fee wealth. This will be analyzed in details in Section 4.

In line with Sotes-Paladino and Zapatero (2017), we find that the proportional fee parame-

ter α does not affect the manager’s portfolio choice. This is in contrast to the prior literature

(e.g., Admati and Pfleiderer, 1997) with CARA utility function, in which the proportional

fees could affect the manager’s optimal risk exposure. Stronger benchmark-linked incentive

β2 leads to larger benchmark-hedging demand, which could be either a long or short posi-

tion. A higher fraction of the benchmark portfolio invested in the market index increases the

manager’s optimal risk exposure.

Proposition 2. Suppose that the performance fee is asymmetric:

F
(
Xa
T , X

b
T

)
= αXa

T − αβ1

(
Xa
T − δXb

T

)−
+ αβ2

(
Xa
T − δXb

T

)+
with α > 0, β2 > β1 ≥ 0.

The optimal end-of-period fund value at T is given by

Xa,s∗

T =
1

ys∗ξGT
+
β2δX

b
T

1 + β2

1{ys∗ξGT≤Ψ(Xb
T )} +

β1δX
b
T

1 + β1

1{ys∗ξGT>Ψ(Xb
T )}, (16)

where Ψ
(
Xb
T

)
=

log( 1+β2
1+β1

)
δXb

T ( β2
1+β2

− β1
1+β1

)
and ys

∗
is a Lagrangian multiplier solving

E
[
ξGTX

a,s∗

T

∣∣∣G0

]
= Xa

0 .

The fund manager’s compensation at time T is given by

F (Xa,s∗

T , Xb
T ) =

α(1 + β2)

ys∗ξGT
1{ys∗ξGT≤Ψ(Xb

T )} +
α(1 + β1)

ys∗ξGT
1{ys∗ξGT>Ψ(Xb

T )}. (17)

The first component in (16) corresponds to the optimal fund value absent performance

fees (β1 = β2 = 0). The remaining two components in (16) are induced by the asymmetric

performance fees, whose values depend on whether the normalized SPD ys
∗
ξGT is larger than

Ψ
(
Xb
T

)
or not. The optimal fund value at time T is thus a piecewise function of the normal-

ized SPD ys
∗
ξGT and the end-of-period benchmark portfolio value Xb

T . Optimal end-of-period



16

fund value Xa,s∗

T is greater than X2(Xb
T ) and decreasing in ys

∗
ξGT until ys

∗
ξGT hits Ψ

(
Xb
T

)
,

then Xa,s∗

T jumps from 1/(ys
∗
ξGT ) + β2δX

b
T/(1 + β2) to 1/(ys

∗
ξGT ) + β1δX

b
T/(1 + β1).

When the normalized SPD ys
∗
ξGT is smaller than Ψ

(
Xb
T

)
, the managed portfolio outper-

forms the given benchmark portfolio and the manager receives a relatively high compensation

α(1 + β2)/(ys
∗
ξGT ). Conversely, when the normalized SPD ys

∗
ξGT is larger than Ψ

(
Xb
T

)
, the

managed portfolio underperforms the benchmark and the manager’s compensation is then

α(1 + β1)/(ys
∗
ξGT ). In contrast to the fulcrum type fee case, the manager cannot completely

hedge the risk induced by the asymmetric performance fees by moving up or down the risky

asset in the portfolio. All the non-linear contract parameters will affect the manager’s com-

pensation as well as the derived utility of investors’ after-fee wealth. As in the fulcrum type

fee case, the proportional fee parameter α has no impact on the optimal fund value Xa,s∗

T as

given by (16). Thus, it does not affect the optimal portfolio weight in the risky asset either.

4. Value of Information and the Clientele Effect

This section analyzes the incremental value of a manager’s private information relative to

public information and the clientele effect, which emerges as a result of investors’ choices.

Section 4.1 examines the case of fulcrum type contracts. Section 4.2 studies the asymmetric

performance fees case.

4.1 FULCRUM PERFORMANCE CONTRACTS

We start our analysis of an uninformed investor’s fund choice in the presence of symmetric

fees, F (Xa
T , X

b
T ) = αXa

T + αβ2

(
Xa
T − δXb

T

)
with α > 0 and β2 ≥ 0. The performance-related

component of the management fee F (Xa
T , X

b
T ) is linear in the excess return of the managed

fund over a benchmark. These types of contracts are known as fulcrum performance contracts

and commonly observed in practice. In 1970, the amendment to the Investment Advisers Act

of 1940 rules that the U.S. mutual fund performance fees must be the fulcrum type.

The (ex ante) value of private information for the fund manager can be computed as

the certainty equivalent return (CER) achieved with private information in excess of the

certainty equivalent return without the information advantage. It is described next.
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Proposition 3. Let process pG(·) ≡ {pGv (z) : v ∈ [τi−1, τi)} be the conditional density pro-

cess of the signal Gi given public information. In the presence of fulcrum performance

fees F (Xa
T , X

b
T ) = αXa

T + αβ2

(
Xa
T − δXb

T

)
with α > 0 and β2 ≥ 0, the (ex ante) incremental

value of the private signal Yv =
∑N

i=1 Gi1[τi−1,τi)(v) for the manager is

V M,f ≡ CERM,s − CERM,u =
1

2

∫ T

0

E
[(
θGv
)2
]
dv =

N∑
i=1

E
[
DKL

(
pGτi(Gi)

∣∣ pGτi−1
(Gi)

)]
(18)

where DKL
(
pGτi(Gi)

∣∣ pGτi−1
(Gi)

)
≡ E

[
log

pGτi (Gi)

pGτi−1
(Gi)

∣∣∣Fτi] is the relative entropy of the signal.

The private signal has no value to the manager if and only if the PIPR is null.

The value of information to the fund manager (18) is non-negative and increasing in the

absolute value of the PIPR. Proposition 3 also shows that the source of private information

value is the relative entropy between an uninformed individual’s beliefs about the signal

at time τi−1 and τi. The relative entropy DKL
(
pGτi(Gi)

∣∣ pGτi−1
(Gi)

)
measures the information

gained when one updates her beliefs from the prior probability distribution pGτi−1
(Gi) to

the posterior probability distribution pGτi(Gi). If the public information at time τi provides

valuable information about the signal Gi relative to the public information at time τi−1, the

relative entropy will be positive. If the signal is unrelated to the public information, the prior

and posterior probability distributions will be the same, leading the relative entropy to be

zero.

Neither the fulcrum performance fees nor the proportional fees affect the value of informa-

tion to the fund manager. Since the manager is able to undo any benchmark-linked incentive

implemented through linear contracts, the manager’s excess CER is unaffected by the power

of incentives β2 or the benchmark composition πb. The proportional fee parameter α does not

affect the manager’s excess CER either. This is because the skilled (respectively unskilled)

manager’s compensation at time T is αXa
0/ξ

G
T (respectively αXa

0/ξ
m
T ), α vanishes when the

excess CER is computed.

Let I(y, b) = 1−α−αβ2

y
+ β2δb

1+β2
. The derived utility function of a fund investor is

u
(
Xa∗

T − F
(
Xa∗

T , X
b
T

))
= u

(
I(y∗ξT , X

b
T )
)
≡ vf

(
ξT , X

b
T

)
,

where y∗ = (1 + β2)/Xa
0 . The associated value function is U ≡ E

[
vf
(
ξT , X

b
T

)]
. An unskilled

(respectively skilled) fund manager optimizes her portfolio based on the public SPD ξm
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(respectively private SPD ξG). Investors would prefer a skilled fund instead of an unskilled

fund when U s > Uu. Let U s ⊂ U be the subset of investors’ utilities that find it better off

investing in the skilled fund rather than the unskilled one

U s =
{
u ∈ U : ∆ ≡ U s − Uu = E

[
vf
(
ξGT , X

b
T

)
− vf

(
ξmT , X

b
T

)]
> 0
}
.

Let F ξm,b (respectively F ξG ,b) be the cumulative distribution function (CDF) of ξmT (re-

spectively ξGT ) conditional on the σ-algebra generated by the benchmark portfolio at time T ,

σ(Xb
T ). As E

[
ξGT
∣∣σ(Xb

T )
]

= E
[
ξmT
∣∣σ(Xb

T )
]

(see the proof of Proposition 4), one does not

dominate the other in the sense of first-order stochastic dominance. Let T ξ,b be the cumula-

tive spread between the distributions of private and public SPDs conditional on σ(Xb
T ).

Proposition 4. The public state price density second-order stochastically dominates (SSD)

the private state price density

ξmT SSD ξGT and T ξ,b(z) ≡
∫ z

−∞

(
F ξG ,b(y)− F ξm,b(y)

)
dy ≥ 0 for all z ∈ R+. (19)

Proposition 4 generalizes the stochastic dominance result of DR, allowing the distribution

of the SPDs to be conditional on the benchmark and signal realizations for the whole invest-

ment period. The second-order stochastic dominance result follows from the fact that the

ratio of private and public SPDs corresponds to the product of reciprocal of the signal’s den-

sity process, ξGT = ξmT
∏N

i=1 p
G
τi−1

(Gi)/p
G
τi

(Gi). As ξmT and ξGT have the same mean conditional

on σ(Xb
T ), the private SPD ξGT is a mean-preserving spread of the public SPD ξmT .

The SSD result has the potential to formulate a second-order stochastic dominance test

to evaluate whether actively managed funds have timing skills or not controlling the ef-

fects of management fees. For example, with a linear performance-based fee, the test can

be implemented using a Kolmogorov-Smirnov statistic or other statistics to quantify the

spread between the empirical distribution of
(
Xa,s∗

T − β2

1+β2
Xb
T

)−1

and the known parametric

distribution of
(
Xa,s∗

T − β2

1+β2
Xb
T

)−1

.

Proposition 5 describes the value of private information to investors and the clientele effect

by making use of the SSD result.

Proposition 5. In the presence of fulcrum performance fees F (Xa
T , X

b
T ) = αXa

T +

αβ2

(
Xa
T − δXb

T

)
with α > 0 and β2 ≥ 0, the value of the manager’s private signal Gi (4)
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to an investor with relative risk aversion R is

V f ≡ CERs − CERu =
1

1−R
log

(
E
[
vf
(
ξGT , X

b
T

)]
E
[
vf
(
ξmT , X

b
T

)]) . (20)

Let ∆ ≡ U s − Uu = E

[∫ ∞
0

∂2vf

∂z2
(z,Xb

T )T ξ,b(z)dz

]
. The set of investors who prefer the

skilled fund U s = {u ∈ U : ∆ > 0} =
{
u ∈ U : V f > 0

}
is given by

U s =

u ∈ U : E

∫ ∞

0

(
1−α(1+β2)

y∗z2

)2 [
2
(

1 +
β2δX

b
T

1+β2

y∗z
1−α(1+β2)

)
−R

]
T ξ,b(z)(

1−α(1+β2)
y∗z

+
β2δXb

T

1+β2

)R+1
dz

 > 0

 .

where y∗ = (1 + β2)/Xa
0 is the Lagrange multiplier, R is the relative risk aversion (RRA)

of investors. The unskilled fund is preferred by investors with utility function in the set

Uu = {u ∈ U : ∆ < 0} =
{
u ∈ U : V f < 0

}
. For any level of skill, there exists a value R∗ > 0

and investors with coefficient of RRA exceeding R∗ will choose the unskilled fund.

In particular, with purely proportional fees β2 = 0, skilled fund returns are preferred by all

investors with R < 2. Conversely, investors with relative risk aversion R ≥ 2 will be better

off choosing the unskilled fund irrespective of the skill level. The RRA threshold value 2 here

corresponds to the relative risk prudence (RRP) of the manager with log utility.

Expression (20) describes the (incremental) value of the manager’s private signal to an

investor. It is the analog of (18), except that all the contract parameters affect the investor’s

excess CER. The risk aversion misalignment between the manager and investors leads to a

loss of the value of manager’s information that investors can exploit. Proposition 5 shows

that when the misalignment is large enough, the value of the manager’s private information

to investor might even be negative.

Proposition 5 also provides a characterization of potential investors in a skilled fund. It

shows that investors with RRA less than the manager’s RRP always prefer the skilled funds to

unskilled ones. However, when investors’ relative risk aversion is sufficiently high, they would

choose the uninformed funds rather than the ones which have access to anticipative infor-

mation. In particular, when the management fee is purely proportional to the end-of-period

AUM (β2 = 0), the manager’s optimal portfolio collapses to the mean-variance demand. This

leads to a fixed relative risk aversion threshold, equaling the manager’s RRP, that divides the



20

investors into different clienteles to skilled and unskilled funds. Investors with relative risk

aversion less than the manager’s RRP prefer the skilled fund return; conversely, investors

with RRA exceeding the manager’s RRP never prefer the skilled return independently of all

the parameters. The result incorporates the special case of no management fee considered in

DR.

In the presence of fulcrum performance fees, for any given skill level there always exist

investors whose RRA exceeds a threshold value R∗ will prefer the unskilled fund manager

to the skilled one. R∗ is determined by the equation ∆(R) = 0. If the solution is not unique,

we have an odd number of roots and there still exists a group of highly risk-averse investors

whose RRA larger than the largest root will choose the unskilled fund. The threshold value

R∗ is no longer constant but depends on the manager’s skill, contract parameters, and market

conditions. The clientele effect is a direct result of the SSD relationship between public and

private SPDs and the composed utility function of the investor u ◦ I is strictly concave

(respectively convex) in the SPD ξ if and only if R ≥ R∗ (respectively R < R∗).

4.2 ASYMMETRIC PERFORMANCE CONTRACT

Although the Investment Company Amendments Act of 1970 places restrictions that U.S.

mutual funds’ advisory contracts must be the fulcrum type, many U.S. hedge funds, institu-

tional funds, and mutual funds outside the United States employ the asymmetric fees (Golec

and Starks, 2004). Furthermore, a recent study by Ma et al. (2016) document that most

of U.S. mutual fund managers are offered the option-like, performance-based compensation

contracts.

We assume that both the skilled and unskilled fund managers receive asymmetric perfor-

mance fees F (Xa
T , X

b
T ) = αXa

T − αβ1

(
Xa
T − δXb

T

)−
+ αβ2

(
Xa
T − δXb

T

)+
with the same pa-

rameters α > 0, β2 > β1 > 0. It is shown in (17) that the optimal fund value and manager’s

compensation are both piecewise functions of the normalized state price density and bench-

mark portfolio’s value. Let

g(y, b) =
1

y
+

β2δb

1 + β2

1{y≤Ψ(b)} +
β1δb

1 + β1

1{y>Ψ(b)},

gc(y, b) =
α(1 + β2)

y
1{y≤Ψ(b)} +

α(1 + β1)

y
1{y>Ψ(b)},
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where Ψ (b) =
log( 1+β2

1+β1
)

δb( β2
1+β2

− β1
1+β1

)
. The skilled and unskilled fund managers’ compensation at time

T are given by

F (Xa,s∗

T , Xb
T ) = gc(ys

∗
ξGT , X

b
T ),

F (Xa,u∗

T , Xb
T ) = gc(yu

∗
ξmT , X

b
T ),

where the Lagrange multipliers ys
∗

and yu
∗

are determined by

E
[
ξGTg

(
ys
∗
ξGT , X

b
T

) ∣∣ G0

]
= Xa

0 , (21)

E
[
ξmT g

(
yu
∗
ξmT , X

b
T

)]
= Xa

0 . (22)

The associated utility function of a fund investor is given by

va
(
y∗ξT , X

b
T

)
≡ u

(
g
(
y∗ξT , X

b
T

)
− gc

(
y∗ξT , X

b
T

))
(23)

Note that ys
∗

is a random variable that depends on the realization of the private signal

G1 and solves the Equation (21). By contrast, in the case of the fulcrum type fee, ys
∗

is

independent of the signal and it equals yu
∗
.

Proposition 6. In the presence of asymmetric performance fees:

F (Xa
T , X

b
T ) = αXa

T − αβ1

(
Xa
T − δXb

T

)−
+ αβ2

(
Xa
T − δXb

T

)+
with α > 0, β2 > β1 > 0,

the ex ante value of the private signals Gi with i = 1, . . . , N to a fund manager is

V M,a ≡ CERM,s − CERM,u = E

[
log

gc(ys
∗
ξGT , X

b
T )

gc(yu∗ξmT , X
b
T )

]
and the value of the private signals Gi with i = 1, . . . , N to a fund investor is

V a ≡ CERs − CERu =
1

1−R
log

(
E
[
va
(
ys
∗
ξGT , X

b
T

)]
E
[
va
(
yu∗ξmT , X

b
T

)]) . (24)

Proposition 6 describes the value of private information to fund manager and investors in

the presence of asymmetric fees. Since the manager cannot completely undo the incentives

implemented through non-linear contract, her excess CER is no longer independent of the

contract parameters. The investor’s excess CER is also affected by all the parameters.

Since the derived utility function of a fund investor (23) is neither concave nor convex in

the normalized SPD, we cannot apply Jensen’s inequality to compare the value functions U s
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and Uu as in Proposition 5. The intuition that risk-aversion misalignment may also lead to

a negative value of information to investors with asymmetric performance fees is confirmed

in the numerical examples described in Section 6.

5. Noisy Return Forecast Timing Model

In this section, we specialize to the case of a private signal with a linear-multiplicative form.

To simplify the presentation, it is assumed that r, θm, σm, πb are constant and there is only

one signal received during the investment period. Thus, N = 1 and τ0 = 0, τN = T .

Suppose that the skilled fund manager receives a private signal which informs the future

market excess return with noise. We consider a signal (4) with the linear multiplicative form5

G ≡ g (SmT , ζ) = SmT ζ with ζ ≡ exp

(
σyW ζ

T −
1

2
(σy)2T

)
, (25)

where W ζ is a standard Brownian motion process, independent of the market innovation Wm.

Thus, log(ζ) ∼ N(−(σy)2T/2, (σy)2T ), and E [ζ | Fmt ] = 1 for all t ∈ [0, T ]. The logarithm of

the signal is the cumulative local excess return of the market plus a normally distributed noise

term. Smaller volatility σy makes the signal more informative. The inverse volatility (σy)−1

measures the information extraction skill of the fund manager. A more-skilled manager is

able to extract more precise information than a less-skilled manager. An unskilled manager

does not observe the signal or has a signal with pure noise.

Corollary 1. Suppose that θm and σm are constant and the private information filtration

is G(·) = Fm(·)
∨
FY(·), where Fm(·) is the public information generated by the market returns and

FY(·) is the filtration generated by the private signal (25). For all t ∈ [0, T ), the conditional

density of the signal is given by

pGt (x) =
φ(d(x, t))

x
√

Σt,T

and the PIPR is given by

θGt = Dmt log pGt (x)|x=G = σm
(

logG− Et[logG]

V ARt[logG]

)
,

5 The form is an extension of the return forecast model studied in DR section 2.1 by allowing the variance of the

signal noise to increase as the timing interval T increases. Thus, the manager is not able to extract more precise

information about the future market returns because of shorter investment period T.
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where φ(·) is the standard normal probability density distribution function and

d(x, t) =
log(x)− Et[log(G)]√

Σt,T

,

V ARt[logG] = (σm)2(T − t) + (σy)2T ≡ Σt,T ,

Et[logG] =

(
σmθm − (σm)2 + (σy)2

2

)
T + σmWm

t .

Corollary 1 shows that the PIPR is linear in the innovation in the log signal logG−
Et[logG] and inversely related to the log signal’s conditional variance Σt,T . The sign of the

PIPR is the same as that of the innovation in the log signal. As time elapses, the informed

manager learns from market realized returns and revises her assessment of risk and PIPR.

For a fixed signal realization and realized gross excess return Smt , an increase in the skill level

s raises the absolute value of the PIPR. When σy = 0, the informed manager has perfect

foresight about future returns, the PIPR explodes as the time approaches T , and an arbitrage

opportunity emerges. When the signal is uninformative s = 0, the variance of the noise goes

to infinity and the PIPR is null.

The optimal informed investment policy with the fulcrum fees is given by (13). When the

PIPR is positive (negative), the informed manager invests more (less) in the risky stock, and

the volatility of the informed fund portfolio is greater (smaller) than that of the uninformed

fund portfolio. Since the optimal informed policy and the fund return volatility are linear

in PIPR, they share the same structure and properties as PIPR’s . For a given innovation

logG− Et[logG], as time passes, a manager with positive news increases the share of risky

asset in the portfolio as the variance of the forecast decreases.

Corollary 2 describes an explicit formula for the incremental value of a manager’s infor-

mation to a fund manager with a logarithmic utility function and fulcrum fees.

Corollary 2. In the presence of fulcrum performance fees:

F (Xa
T , X

b
T ) = αXa

T + αβ2

(
Xa
T − δXb

T

)
with α > 0, β2 ≥ 0,

the ex ante value of the private signal G, as described in (25), to a fund manager with

logarithmic utility function is

V M,f ≡ CERM,s − CERM,u =
1

2
log
(
1 + (σm/σy)2

)
. (26)
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As shown by the expression (26), the manager’s excess CER is positive and increasing in

the skill level and the market volatility. A manager with greater skill level is able to extract

more precise information about the future market excess returns. When the market is more

volatile, the private signal is more valuable to the informed manager. The value of the private

information does not depend on the public market price of risk θm or the timing interval T .

Corollary 3 gives an explicit formula for the value of information to a fund investor with

relative risk aversion R and purely proportional fees.

Corollary 3. Suppose managers’ compensation at time T is purely proportional to the

terminal value of the managed portfolio F (Xa
T ) = αXa

T with α > 0 and investors’ relative risk

aversion coefficients R < 1 +
√

1 + (σy/σm)2. 6 The incremental value of the log manager’s

private signal G (relative to public information), as described in (25), to the investor and its

first derivative with respect to the skill s = 1/σy are

V p = log

√
1 +

(
σm

σy

)2

+
log
√

1− (R−1)2(σm)2

(σm)2+(σy)2

R− 1
+

(R− 1)2(R− 2)(θm)2T (σm)2

2 (R(R− 2)(σm)2 − (σy)2)
,

∂V p

∂s
=

(2−R)(σm)2
[
(R(σm)2 + 1/s2)

(
1− (R−1)2(σm)2

(σm)2+1/s2

)
+ (R− 1)2(θm)2T/s2

]
s [R(R− 2)(σm)2 − 1/s2]2

.

When R < 2, the value of private information V p is positive and it is increasing in the

skill. Conversely, when R > 2, the value of private information V p becomes negative and

it is decreasing in the skill. Consequently, investors with relative risk aversion R < 2 would

choose the manager with the highest level of skill on the market, and investors with R > 2

would prefer the manager with the lowest level of skill.

Corollary 3 extends the result in Proposition 5 by showing that investors could be cat-

egorized into two groups: one group who would choose the most-skilled manager and the

other group who would choose the least-skilled manager. The private information is only

valuable and increases in skill level for investors whose relative risk aversion is smaller than

2, the relative prudence of the log manager. These investors would choose managers with the

highest skill level on the market. If the investor’s relative risk aversion is greater than 2, the

value of the manager’s private signal to investors becomes negative due to its private nature,

and the private information’s negative effect on the investors’ utility is more prominent as

6 This condition guarantees the ex ante expected utility of a fund investor invests in the skilled manager is finite.
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the manager’s skill level increases. As a result, investors with R > 2 are better off choosing

the least skilled manager.
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Fig. 2: Sharpe ratio and probability density of after-fee fund returns under public information in the noisy return fore-
cast model. The left panel shows the Sharpe ratios generated versus the manager’s skill under fulcrum fee contract. The
right panel plots the probability density function of after-fee fund returns with three different skill levels under fulcrum
fee contract. The fixed parameter values are α = 0.6%, β1 = β2 = 2%, σm = 0.155, θm = 0.47, δ = 1, πb = 0, T = 1.

We illustrate the intuition behind the clientele effect in Figure 2, which presents the prop-

erties of fund returns in the noisy return forecast timing model. From the perspective of

an investor who has only public information, a higher skill level of manager increases the

portfolio’s downside tail risk as shown in the right panel. This directly follows from the fact

that the manager’s anticipative information is noisy. A more skilled fund manager may suffer

from larger losses when her signal is misleading. This explains why investors with sufficiently

high relative risk aversion will choose the least skilled fund.

The result that there exist two distinctive groups of investors is notable and has important

implications. The left panel in Figure 2 shows that the Sharpe ratio of the skilled fund’s net

return is monotonically increasing in the manager’s level of skill. Since Sharpe ratio is a

commonly used criterion to consider when investors make investment decisions, Corollary 3

implies that a certain group of investors would not invest in the most skilled funds despite

that a high Sharpe ratio is generated. The result thus highlights the importance of controlling

heterogeneity in investors’ risk preference when one evaluates investors’ fund investment.

Corollary 4 gives explicit formulas for the optimal portfolio choices and fund value in the

presence of asymmetric fees.
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Corollary 4. Define the constant ∆β = β2

1+β2
− β1

1+β1
. With asymmetric performance fees:

F
(
Xa
T , X

b
T

)
= αXa

T − αβ1

(
Xa
T − δXb

T

)−
+ αβ2

(
Xa
T − δXb

T

)+
with α > 0, β2 > β1 > 0,

the optimal fund value based on public and private information at time t ∈ [0, T ] are

Xa,u∗

t =
1

yu∗ξmt
+
β2δX

b
t

1 + β2

N (d1,t) +
β1δX

b
t

1 + β1

N (−d1,t), (27)

Xa,s∗

t =
1

ys∗ξGt
+
β2δX

b
t

1 + β2

(
N (d+

2,t)−N (d−2,t)
)

+
β1δX

b
t

1 + β1

(N (−d+
2,t) +N (d−2,t)) (28)

and their optimal weights invested in stock are given by

πa,u
∗

t =
θm

σm
+

β2

1 + β2

δXb
t

Xa,u∗

t

(
πb − θm

σm

)
− ∆βδX

b
t

Xa,u∗

t

(
N (−d1,t)

(
πb − θm

σm

)
+
N ′(d1,t)√
T − t

)
(29)

πa,s
∗

t =
θm + θGt
σm

+
β2

1 + β2

δXb
t

Xa,s∗

t

(
πb − θm + θGt

σm

)
− ∆βδX

b
t

Xa,s∗

t

(
(N (−d+

2,t) +N (d−2,t))

(
πb − θm + θGt

σm

)
− (η+

t N ′(d+
2,t)− η−t N ′(d−2,t))

)
(30)

where yu
∗

solves E
[
ξmT X

a,u∗

T

]
= xa and ys

∗
solves E

[
ξGTX

a,s∗

T

∣∣∣G0

]
= xa, N (·) is the standard

normal cumulative distribution function and

d1,t =

log

(
log(

1+β2
1+β1 )

ξmt X
b
t y
u∗δ∆β

)
− (πbσm−θm)2(T−t)

2√
(πbσm − θm)2(T − t)

,

d±2,t =

±

√√√√√ΣT,T

2 log

√
Σt,T
ΣT,T

log
1+β2
1+β1

ξGtX
b
t y
s∗δ∆β

+ Σt,T

(
πb − θm+θGt

σm

)2

− Σt,T

(
πb − θm+θGt

σm

)
√

Σt,T − ΣT,T

η±t =±

√√√√√√√√√
T (T−t)
t2

(
(σm)2+(σy)2

σy

(
θGt
σm
− 1

2

)
+ σmθm

σy

)2

2 log

√
Σt,T
ΣT,T

log
1+β2
1+β1

ξGtX
b
t y
s∗δ∆β

+ Σt,T

(
πb − θm+θGt

σm

)2

− 1√
T − t

.
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The uninformed and informed managers’ compensation at time T is

F (Xa,u∗

T , Xb
T ) =

α(1 + β2)

yu∗ξmT
1{yu∗ξmT ≤Ψ(Xb

T )} +
α(1 + β1)

yu∗ξmT
1{yu∗ξmT >Ψ(Xb

T )}, (31)

F (Xa,s∗

T , Xb
T ) =

α(1 + β2)

ys∗ξGT
1{ys∗ξGT≤Ψ(Xb

T )} +
α(1 + β1)

ys∗ξGT
1{ys∗ξGT>Ψ(Xb

T )}, (32)

where Ψ (b) = log
(

1+β2

1+β1

)
/ (δb∆β).

As shown in (29) and (30), the manager’s optimal portfolio is a sum of a standard mean-

variance component plus additional components. The difference between the manager’s op-

timal portfolio policy and the mean-variance demand can be interpreted as the hedging

demands, motivated by the asymmetric performance fees. The second component is the

hedging demand due to the performance bonus αβ2(Xa
T − δXb

T )+. The last component is

the hedging demand due to the performance penalty −αβ1(Xa
T − δXb

T )−. Equations (31)

and (32) show that in the presence of asymmetric fees the optimal trading strategies can-

not fully hedge the manager’s exposure to the benchmark portfolio. There is a jump in the

manager’s end-of-period compensation when the normalized SPD y∗ξT hits the critical value

Ψ(Xb
T ). As in the linear contract case, the proportional fee α does not affect the manager’s

optimal portfolio either. However, α and other contract parameters do affect the manager’s

compensation as well as the investor’s after-fee wealth.

The informed agent’s price of risk is changed from θm to θm + θG due to the private

information. When the private signal is uninformative or the manager lacks true timing

skill, σy =∞, the PIPR is null and the optimal portfolio of the skilled manager as given

by (30) collapses to that of his unskilled peer as given by (29).

In particular, expression (27) and (28), evaluated at t = T , identify the optimal fund value

and can be used for the computation of the investor’s and manager’s CERs.

6. Numerical Example

This section conducts a numerical analysis of the value of information and investors’ pref-

erence between skilled and unskilled funds in the noisy return forecast model. Section 6.1

examines the value of the manager’s information to investors under the three commonly used
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contracts. Section 6.2 conducts a sensitivity analysis of the investor’s relative risk aversion

threshold and the key parameters.

We calibrate the parameters of risky and risk-free assets using quarterly U.S. data begin-

ning in 1947 and ending in the first quarter of 2010. The risky asset is constructed using

the CRSP value-weighted index, while the risk-free rate is constructed from real returns on

3-month Treasury bill. The market parameters are θm = 0.47, σm = 15.5%, r = 3.5%.

We consider three performance fee structures: purely proportional fees, fulcrum perfor-

mance fees, and asymmetric performance fees. In the last two cases, the performance fee

is added on top of a non-zero proportional fee (α > 0). Based on the evidence reported by

Cuoco and Kaniel (2011) that “the value-weighted average proportional component across

funds charging performance fee is 60 basis, and the typical fulcrum performance fee is 2%;

both on an annual basis.” We set α/T = 0.6% and β1 = β2 = 2%/α for the fulcrum fees,

where T is the investment horizon. For asymmetric fees, we analyze the most commonly

observed two-twenty hedge fund contract and set α/T = 2%, β1 = 0, and β2 = 20%/α. For

ease of exposition, we set the benchmark portfolio’s weight in the stock πb to be 0.7 Ma et al.

(2016) document “the performance evaluation window in mutual fund industry ranges from

one quarter to ten years, and the average evaluation window is three years.” We consider

an investment horizon T of three years. The skill level s = 1/σy is calibrated to be in the

range of (0, 10) to deliver a range of (0, 20%) for excess certainty equivalent return under the

setting of purely proportional fees. We set the parameter δ = Xa
0/X

b
0 = 1.

6.1 THE VALUE OF INFORMATION

Figure 3 presents the investor’s excess CER from delegation under three different fee struc-

tures (purely proportional fees, fulcrum fees, and asymmetric fees) as a function of the

investor’s coefficient of relative risk aversion R, for various timing skill levels. It shows that

in all three cases the investor’s excess CERs are all decreasing in R and become negative

as R hits a threshold value R∗.8 It is notable that when investors are sufficiently risk-averse

(R > R∗), the value of the manager’s private information to investors is negative and investors

prefer the unskilled fund to the skilled ones. This suggests that there are different groups

7 Hedge funds usually use 0% return or treasury rates as the benchmark in the incentive scheme (see Brown et al.,

1999). The results for πb ∈ (0, 1] are qualitatively similar.
8 The threshold value R∗ is constant under purely proportional fees, while it depends on the parameters under

asymmetric and symmetric fees.
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Fig. 3: The value of private information to investors in the noisy return forecast model. The left panel plots the
investor’s excess CER from delegation under purely proportional fee contract as a function of the investor’s RRA
coefficient, with different skill levels s = 1, 3, 5. Excess CERs are computed as the investors’ CER from delegation
to skilled funds in excess of the CER from delegation to an unskilled fund. The contract parameters are α/T =
0.6%, πb = 0. The middle panel plots the investor’s excess CER from delegation under fulcrum fee contract as a
function of the investor’s RRA coefficient, with different skill levels s = 1, 3, 5. The contract parameters are α/T =
0.6%, β1 = β2 = 10/3, πb = 0. The right panel plots the investor’s excess CER from delegation under asymmetric fee
contract as a function of the investor’s RRA coefficient, with different skill levels s = 1, 3, 5. The fixed parameters
values are r = 3.5%, θm = 0.47, σm = 0.155, δ = 1, T = 3.

of investors to skilled and unskilled funds under commonly observed portfolio management

contracts. Under the same fee structure, investors in skilled funds are a more risk-tolerant

clientele than investors in unskilled funds.

Notably, Figure 3 also shows that the higher the skill, the steeper the lines of investor’s

excess CERs. The value of the private information to the relatively risk-tolerant individuals

(R < R∗) increases as the skill level of manager increases. On the contrary, relatively risk-

averse individuals (R > R∗) suffer from larger losses when the manager is more skilled. This

implies that some asset allocation or hiring decisions are inappropriate. If fund investors

or owners are sufficiently more risk-averse than the managers, they should not delegate the

portfolio management to the manager with higher skill level.

The intuition for these results is as follows. The private information adds value to investors

because it helps investors better assess the investment opportunities. An increase in skill

increases the private information precision. However, the investors do not just evaluate the

benefits of the private information precision but also take into account the cost incurred by

the noisy nature of this information. The downside tail risk of portfolios is also increasing
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in the manager’s skill and has a negative effect on the value of private information. When

the investor’s risk aversion is sufficiently low, the information precision effect dominates and

the investor would choose the fund manager with the highest skill. Conversely, when the

investor’s risk aversion is sufficiently high, the downside tail risk effect dominates and the

investor would prefer the unskilled fund.

As shown in Proposition 1, and displayed in the left panel of the figure, the threshold

value for the investor’s coefficient of relative risk aversion is the relative prudence of the

logarithmic fund manager irrespective of the manager’s skill level in the purely proportional

fee case. In the presence of fulcrum fees, the risk aversion threshold value is larger than

that with purely proportion fees. The middle panel shows that the threshold value R∗ is

around 10, and investors with R < R∗ prefer the skilled fund and are able to extract positive

value from the private signal under delegation. Conversely, investors with R ≥ 2 will prefer

the fund without any anticipative information. Interestingly, for the two-twenty asymmetric

performance fees, the threshold value for the coefficient of the relative risk aversion is around

2, as displayed in the right panel. In contrast to the constant threshold in purely proportional

fee case, the threshold value R∗ in both the fulcrum and asymmetric fee cases is not constant

and is affected by the manager’s skill, the contract parameters, and the market conditions.

Table 1 shows investors’ CER from delegation to a skilled fund manager and the value

of manager’s private information to the investors (excess CER) across the three commonly

observed types of contracts: proportional-only fees (α > 0, β1 = β2 = 0), asymmetric per-

formance fees (α > 0, β1 = 0, β2 > 0), and symmetric performance fees (α > 0, β1 = β2 > 0).

The excess CERs are computed as the investors’ CER from delegation to the skilled funds in

excess of the CER from delegation to the unskilled fund as given by (20) and (24). Table 1

shows that symmetric performance fee contract dominates proportional-only fee contract and

asymmetric performance fee contract for investors with risk aversion larger than or equal 2 in

the sense that the CER and excess CER are both higher under symmetric fee contract. For

the relatively risk-averse investors with R ≥ 2, the fact that CERs are higher indicates sym-

metric performance fee contract entails less welfare loss.9 This is consistent with the finding

of Sotes-Paladino and Zapatero (2017), in which they endogenize the contract parameters
9 The welfare loss is due to the misalignment between the risk aversions of manager and investors. The manager

will choose a portfolio that deviates from the investor’s desired policy π∗ that investors would choose if they had

access to the same private information as the manager. The inclusion of symmetric performance fees might also be

welfare-improving for relatively risk-tolerant investors with optimal contract parameters as in Sotes-Paladino and

Zapatero (2017).
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CER, Excess CER (%)

Investor’s risk aversion 1 2 3 4 5

s = 1 Proportional-only 44.82 1.19 10.50 0.00 -27.34 -4.71 -76.27 -20.50 -153.34 -64.44
Asymmetric 26.03 -1.06 -18.91 -0.17 -68.14 -3.32 -113.60 -10.59 -158.04 -20.89
Symmetric 17.61 -0.55 15.03 0.29 13.04 0.19 11.44 0.15 10.10 0.13

s = 3 Proportional-only 53.42 9.79 10.50 0.00 -125.47 -102.83 -∞ -∞ -∞ -∞
Asymmetric 34.81 9.85 -17.21 1.54 -129.26 -64.45 -293.35 -190.34 -385.59 -251.45
Symmetric 21.43 4.36 17.20 2.47 14.57 1.72 12.68 1.39 11.19 1.23

s = 5 Proportional-only 67.15 23.52 10.50 0.00 -1.45e6 -1.45e6 -∞ -∞ -∞ -∞
Asymmetric 48.26 23.29 -19.21 -0.46 -186.88 -122.07 -335.82 -232.81 -419.85 -282.71
Symmetric 27.23 10.16 20.79 6.06 17.36 4.51 15.04 3.75 13.30 3.33

Table 1: Investors’ CER and Excess CER from Delegation. This table reports the investors’ certainty equivalent
returns (CER) from delegation to a skilled fund manager and excess CER, which measures the value of the man-
ager’s information to the investors, under proportional-only fees, asymmetric performance fees and symmetric fees
for different skill levels and investors’ relative risk aversion R. Excess CER are computed as the CER from dele-
gation to a skilled fund in excess of the CER from delegation to an unskilled fund. The fixed parameter values are
r = 0.035, θm = 0.47, σm = 0.155, δ = 1, T = 3, s = 1, α/T = 0.02, πb = 0. For proportional-only fees, β1 = β2 = 0. For
asymmetric fees, β1 = 0, β2 = 0.2/α. For symmetric fees, β1 = β2 = 0.2/α.

and show that symmetric performance fee contract is optimal and welfare-improving for

investors irrespective of the investors’ risk aversion relative to the manager’s. Since the ex-

cess CERs measure the value of the manager’s information to investors, the results suggest

that highly risk-averse investors may include a symmetric performance fee in the manager’s

compensation to realize higher value from the manager’s anticipative information.

6.2 SENSITIVITY ANALYSIS

To analyze the sensitivity of the relative risk aversion thresholds under fulcrum fees, Figure 4

illustrates the effects of skill s = 1/σy, proportional fee α, fulcrum incentive β2, market price

of risk θm, and market volatility σm. The upper panels show that the relative risk aversion

threshold is almost invariant to the proportional fee α but increases in the fulcrum incen-

tive β2. According to Proposition 5, the risk aversion threshold under fulcrum fees is larger

than that under purely proportional fees. An increase in the fulcrum incentive β2 diminishes

the relative impact of proportional fee component on fund managers’ compensation. Con-

sequently, the risk aversion threshold is higher with more powerful incentive β2. Similarly,

since the relative impact of the proportional component is independent of the parameter α,

there is little effect of the proportional fee α on the risk aversion threshold. The lower-left

panel shows the clientele of skilled fund expands as the market improves (θm increases) and
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Fig. 4: Sensitivity of RRA threshold to model parameters under fulcrum fees contract. The figure presents the
RRA threshold R∗ of investors under fulcrum type contract versus proportional fee parameter α, performance bonus
parameter β2, (public) market price of risk θm, market volatility σm and the skill level s of fund manager. The
fixed parameter values (where applicable) are r = 3.5%, θm = 0.47, σm = 0.155, δ = 1, T = 3, α/T = 0.6%, β1 = β2 =
10/9, πb = 0 and s = 5.

a one-unit increase in the skill would lead to a larger increase in the risk aversion threshold

when the market price of risk is higher. This is because the negative effect of downside risk on

investor’s choice is alleviated in good states. By contrast, the value of the private information

to a manager does not depend on the market price of risk θm as shown in Corollary 2. The

lower-right panel of the figure displays that the set of investors in skilled fund is larger when

the market is more volatile and this effect is more pronounced for high skill level. The higher
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market volatility the more valuable the information advantage. Therefore, more investors

are investing in the skilled funds. As shown in all the panels of the figure, the investor’s

relative risk aversion threshold is increasing in skill. The intuition is as follows. The higher

the manager’s level of skill, the more advantageous the private information relative to public

information, the higher the value of the private information to the investors in skilled funds.

Figure 5 plots the risk aversion threshold of investors as a function of key parameters with

asymmetric performance fees. It shows that in the absence of penalty component (β1 = 0)

the risk aversion threshold with different parameters lies in a relatively small range [1.8, 2.3].

This indicates that the proportional fee α, bonus incentive β2, market price of risk θm, market

volatility σm, and skill s have little impact on the investor’s preference between the skilled

and unskilled fund. The risk aversion threshold seems to slightly increase in the market price

of risk θm, market volatility σm, and manager’s skill s. The qualitative relationships are

similar to those under fulcrum fee contract. One major observation in Figure 5 is that the

range of the risk aversion threshold as a function of the penalty sensitivity β1 is much larger

than that of other parameters. This implies that the value of market timing to investors

is much more affected by the penalty sensitivity β1 than the bonus incentive β2 or other

parameters. Increasing the penalty sensitivity β1 leads to a wider investor clientele in skilled

funds. This is because an increase in the penalty sensitivity β1 causes the managers to reduce

portfolio volatility and alleviates investors’ concerns about the larger tail risk in the skilled

fund relative to the unskilled fund.

The fulcrum fee contract can be regarded as the extreme case of the asymmetric fee contract

with underperformance penalty sensitivity β1 equals to the outperformance bonus incentive

β2. Comparing the Figure 4 and Figure 5 further illustrates that the qualitative impact

of adding a penalty component into the manager’s compensation scheme on the value of

manager’s information to investors. It shows that the risk aversion threshold is larger under

fulcrum fees than under option-like asymmetric fees. Furthermore, the variations in the

investor’s risk aversion threshold as a function of different parameters are more pronounced

with fulcrum fees compared to those with option-like asymmetric fees. The results suggest

the important role of the underperformance penalty component in affecting the value of the

manager’s private information to investors and their fund investment. When investors are

sufficiently more risk-averse relative to managers, the fulcrum fee contract serves the purpose

of realizing positive value from the manager’s private information better than the option-like
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Fig. 5: Sensitivity of RRA threshold to model parameters under asymmetric fees contract. The figure presents the
RRA threshold R∗ of investors under asymmetric performance fees contract versus proportional fee parameter α,
penalty parameter β1, performance bonus parameter β2, (public) market price of risk θm, market volatility σm, the
skill level s and the benchmark portfolio’s weight in the stock πb. The fixed parameter values (where applicable) are
r = 3.5%, θm = 0.47, σm = 0.155, δ = 1, T = 3, α/T = 2%, β1 = 0, β2 = 10/3, πb = 0 and s = 5.
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asymmetric fee contract. On the other hand, if managers are able to dictate the fee structure,

the unskilled managers may abstain from including an underperformance penalty in their

contracts in order to expand their clientele when soliciting funds from potential investors.

7. Extensions of the Model

Suppose that θm, σm, r are constant and there is one signal received by the informed manager

at the inception of investment period, namely N = 1, τ0 = 0, and τN = T . For tractability,

we assume that the manager observes the private signal with linear multiplicative form as

described in (25) and takes prices as given.

7.1 MANAGERS WITH CONSTANT RELATIVE RISK AVERSION

We generalize the logarithmic manager assumption and consider an informed manager who

has general CRRA utility with a coefficient of relative risk aversion equal to Ra. The manager

maximizes the expected utility of her management fee, which is a fraction of the total asset

under management at the terminal date, and solves

sup
Xa
T∈GT

E

[
(αXa

T )1−Ra

1−Ra

∣∣∣∣∣G0

]
,

s.t. E
[
ξGTX

a
T

]
= Xa

0 , X
a
T ≥ 0,

where α is the proportional fee parameter and ξGT is the private state price density given by

ξGT = exp

(
−
∫ T

0

(
r +

1

2

(
θm + θGv

)2
)
dv −

∫ T

0

(
θm + θGv

)
dW G

v

)
.

The next proposition describes the manager’s optimal investment strategies.

Proposition 7. Suppose that θm and σm are constant and the private information filtration

is G(·) = Fm(·)
∨
FY(·), where Fm(·) is the public information generated by the market returns and

FY(·) is the filtration generated by the private signal (25). Consider a manager with a coefficient

of relative risk aversion equal to Ra. The manager’s optimal fund value at time t ∈ [0, T ] is

given by

Xa∗

t =
(
ξGt
)−1/Ra

Xa
0H

G
t /H

G
0
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and the optimal risk exposure at time t ∈ [0, T ] is given by

π∗t =πmt + πht =
Σt,T

Σt,T + (Ra − 1)ΣT,T

θm + θGt
σm

, (33)

πmt =
θm + θGt
Raσm

, (34)

πht =
(Ra − 1)(Σt,T − ΣT,T )

Σt,T + (Ra − 1)ΣT,T

θm + θGt
Raσm

(35)

where

HGt =

√
RaΣT,T

Σt,T + (Ra − 1)ΣT,T

(
ΣT,T

Σt,T

)− 1
2Ra

× exp

(
−
(
r +

Σt,T (θm + θGt )2

2(Σt,T + (Ra − 1)ΣT,T )

)
(Ra − 1)(T − t)

Ra

)
,

Σt,T =(σm)2(T − t) + (σy)2T.

The manager’s compensation at time T is

F (Xa∗

T ) = α
(
ξGT
)−1/Ra

Xa
0H

G
T/H

G
0

As shown by Equation (33), the optimal portfolio policy can be decomposed into the

mean-variance demand πmt and the dynamic hedging demand πht . By standard arguments,

πmt =
θm+θGt
Raσm

. Relative to the logarithmic case, the mean-variance demand is scaled by the

manager’s relative risk aversion, and the optimal portfolio choice has an additional term,

reflecting the manager’s hedging behavior. The dynamic hedging demand πht is given by

d[H,W G]t
σmHtdt

=
(Ra − 1)(Σt,T − ΣT,T )

Σt,T + (Ra − 1)ΣT,T

θm + θGt
Raσm

=
Ra − 1

1 + T
T−t

(
σy

σm

)2
Ra

θm + θGt
Raσm

. (36)

Since the public market price of risk θm is constant, the hedging demand is motived by the

stochastic fluctuations in θGt . As shown in (36), when the manager is more risk-averse than

a log manager, her hedging demand is positive (negative) if the total price of risk (θm +

θGt ) is positive (negative). Moreover, as time passes, the magnitude of the hedging demand

decreases, inducing the informed manager to adjust the share of stocks in the portfolio.

πht → 0 when clock approaches the terminal date T . A longer investment horizon reduces

the magnitude of the hedging demand and the horizon effect is weaker for a manager with
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higher skill. Finally, the magnitude of the hedging demand is decreasing in the variance ratio

(σy)2/(σm)2. This implies that a more skilled manager will have a larger hedging demand.

With proportional only fees, the risk sharing is perfect and the proportional fee does not

affect the manager’s portfolio. The proportional fee parameter α only affects the manager’s

compensation as well as the investor’s welfare.

Corollary 5 describes the value of the private information to a fund investor (Excess CER)

when both the manager and investor have CRRA under purely proportional fees.

Corollary 5. Suppose the manager’s compensation at time T is purely proportional to

the terminal value of the managed portfolio F (Xa
T ) = αXa

T with α > 0 and the manager

(respectively investor) has CRRA utility with a coefficient of relative risk aversion equal to

Ra (respectively R). The incremental value of the manager’s private signal G, as described

in (25), to the investor is

V p =

log
√

1 + (σm)2

Ra(σy)2 +
log

√
1− (R−1)(R−Ra)(σm)2

Ra((σm)2+Ra(σy)2)

R−1
+ (R−Ra)2(Pa−R)(θm)2(σm)2T

2(Ra)2(R(Pa−R)(σm)2+(Ra)2(σy)2)
, if R < Re

−∞, if R ≥ Re,

where P a is the manager’s relative risk prudence coefficient and Re =
Pa+
√

(Pa)2+4(σy/σm)2(Ra)2

2
.

Note that as the precision of the private signal goes to infinity, namely σy → 0, the in-

vestors with relative risk aversion R smaller than the manager’s relative risk prudence P a

will choose the skilled fund. Conversely, the investors whose relative risk aversion R lies

above the manager’s relative risk prudence P a will prefer the unskilled fund.

The fact that the investors with R > P a will prefer the uninformed manager to the in-

formed one though the informed manager has nearly perfect private information about the

future market returns is remarkable. Corollary 5 implies that the clientele effect result still

holds under the case of managers with CRRA preference. Assuming the manager has loga-

rithmic utility Ra = 1 leads to a special case of the finding in Corollary 3.

Figure 6 illustrates the threshold of investor’s RRA when the managers also have general

CRRA utility. The threshold values can be obtained by finding the root of V p = 0 numeri-

cally. Re provides an upper bound for the RRA threshold. Contrary to the logarithmic man-

ager case, the investor’s RRA thresholds here are affected by the manager’s skill s = 1/σy as
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Fig. 6: Investor’s RRA threshold versus manager’s RRP under purely proportional fees. The figure presents the
relative risk aversion threshold of investors under purely proportional fee contract versus manager’s relative risk
prudence coefficients and skill levels. The fixed parameter values (where applicable) are r = 3.5%, θm = 0.47, σm =
0.155, s = 5, T = 3, α/T = 2%.

well as the market conditions θm, σm. The upper left panel shows that the investor’s RRA

threshold is decreasing in the manager’s skill when the manager’s RRP is above 2, whereas

the investor’s RRA threshold is slightly increasing in the manager’s skill level when the

manager’s RRP lies below than 2. Consistent with the theoretical finding in Corollary 5, it

appears that the investor’s RRA threshold converges to the manager’s relative risk prudence

as the skill level increases. The remaining panels show that the investor’s RRA threshold is
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decreasing in both the market price of risk and market volatility when the manager’s RRP

is above 2. However, the pattern changes when the manager’s RRP is below 2.

7.2 PASSIVE ALTERNATIVE

We further extend the model in Section 7.1 by allowing the fund investors to choose a

passively managed index fund (e.g., market index) as an alternative to the actively managed

funds. Suppose that investors choose among an actively managed skilled fund, an actively

managed unskilled fund, and the market index. The fund investor’s portfolio-choice problem

can be characterized as

max
C∈{s,u,m}

E

[(
(1− αC )XC

T

)1−R

1−R

]
, (37)

where Xs
T (respectively Xu

T ) is the optimal terminal fund value chosen by the skilled (respec-

tively unskilled) fund manager with relative risk aversion Ra and Xm
T is the market index

as given by Equation (1). The parameter αC with C ∈ {s, u,m} represents the proportional

fee charged by these funds.

Figure (7) illustrates the fund investor’s choice among a skilled fund manager, an un-

skilled fund manager, and the market index as a function of the investor’s RRA and the

manager’s RRP. It highlights the impact of the manager’s and investor’s risk preference on

fund investors’ investment behaviors.

Although some investors turn to index investing, the clientele effect still exists in the

active management industry. Unskilled fund investors (represented by the dark blue area)

are generally more risk-averse than skilled fund investors (represented by the light blue area).

Figure (7) illustrates this finding for different level of skills. A bit surprisingly, the unskilled

fund is not completely dominated by the passive index fund for relatively risk averse investors,

but depending on the RRP of the fund managers. When the fund managers are relatively

risk-averse (e.g., P a > 5), the investors whose risk aversion above the red solid line will choose

the unskilled fund manager. The intuition is that as the manager’s risk aversion increases, the

misalignment between the risk preference of the unskilled manager and the relatively risk-

averse investors becomes smaller than that between the risk exposure of the market index

and the investors’ optimal portfolios. In the same vein, when the risk preference misalignment

between manager and investors |R−Ra| is large enough, the alignment of the passive fund
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Fig. 7: Investor’s choice among skilled, unskilled, and index funds under purely proportional fees. The figure presents
the investor’s choice among skilled, unskilled, and index funds under purely proportional fee contract. The dark
blue area represents the region in which the investors will choose skilled fund. The light blue area represents the
region in which the investors will choose unskilled fund. The grey areas represent the regions in which the investors
will choose the index fund. The black dotted line represents Re as a function of manager’s RRP. Parameter values
are r = 3.5%, θm = 0.47, σm = 0.155, T = 3, α/T = 2% for active (skilled and unskilled) funds and α/T = 1% for the
passively managed index fund.

and the investors’ optimal portfolios is better than that of the active fund managers’ and

investors’ optimal portfolios. As a result, these investors will choose the passively managed

index fund, as represented by the grey regions in the above plots.

Another insight derived from Figure (7) is that investor’s choice between active and passive

investing does not only depend on risk preference of manager and investor, but also on the

manager’s skill level. As seen in the figure, the grey regions expand as the manager’s skill

s decreases from 7 to 3. It implies that the investors in passively managed index fund are

growing as the active managers become less skilled. This result is consistent with the findings

of many studies that managers’ abilities to beat the market declines as the active management

industry size increases in recent decades and this could help explain the growing popularity

of index funds (e.g., Berk and Green, 2004; Pástor and Stambaugh, 2012).

8. Conclusion

The clientele effects in the money management industry have been widely documented. Prior

literature attributes these clientele effects to irrationality or psychological tendencies. In this
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paper, we establish a rational theory to explain the clientele effect in the money management

industry and show that investors in skilled funds are uniformly more risk-tolerant than

investors in unskilled funds.

Taking a general parametric class of contracts as given, we first derive and analyze the

optimal trading strategies of the skilled fund manager who is endowed with private infor-

mation about future market returns. Then we analyze the value of the private information

to both managers and investors. Though the privation information is always valuable to the

manager, it might not add value and may be harmful to the investors who are sufficiently

more risk-averse than the manager. Investors with risk aversion exceeding a threshold value

will never find it beneficial to delegate the management of their wealth to the skilled fund

manager. As a result, the fund investor clientele is endogenously segmented. The relatively

risk-tolerant investors will prefer skilled funds, whereas the highly risk-averse investors will

prefer unskilled funds. This result provides theoretical justification for some recent empirical

findings about the clientele effect in the mutual fund industry.

In the absence of performance fees, the relative risk aversion threshold that separates

investors in skilled and unskilled funds equals to the log manager’s RRP, irrespective of

the skill or other parameters. When the fund manager receives performance-based fees, the

relative risk aversion threshold is affected by the skill level, contract parameters, and market

conditions. We specialize the general results to a parametric timing model. A comparative

static analysis of the risk aversion threshold is carried out to analyze the impacts of symmetric

and asymmetric performance fees on investors’ fund investment. The results suggest that

sufficiently risk-averse investors should include a fulcrum performance fee in the manager’s

compensation contract for the purpose of realizing positive value from the manager’s private

information. The intuition behind this is that lifting the penalty sensitivity to the same level

of bonus incentive reduces the portfolio’s volatility and alleviates highly risk-averse investors’

concerns about the larger downside tail risk in the skilled fund relative to the unskilled fund.

Our qualitative results do not depend on the assumptions that managers have logarithmic

utility function or investors are restricted to choose among actively managed funds. Ex-

tensions to the basic setup examine the cases of managers with general CRRA utility and

investors who can invest in a passive alternative. There still exist two distinctive groups of

investors for skilled and unskilled funds. Moreover, our results in Section 2 are easily gener-

alizable to a multi-asset setting that managers have both the timing and selection skills.
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Appendix

In order to prove the main results, the following regularity conditions are assumed.

ASSUMPTION

We consider the following assumptions as in DR. Let θv ≡ θmv + θGv be an informed agent’s price of

risk. For i = 1, . . . , N , the private information price of risk θG and the informed trading strategy π

satisfy the conditions

(i) (Finite quadratic variation)
∫ τi
τi−1

θ2
vdv <∞ P-a.s.

(ii) (Gains from trade bounded below) Let Hε
i ≡ 1

ε

∫ τi
τi−1

πv(R
m
v,v+ε − E[Rmv,v+ε|Gv])dv be the inno-

vations in the gains from trade. Then, Hε
i > −H i for some positive G0-measureable random

variable Hi with E[H i|G0] <∞ P-a.s.

The first condition ensures that the private information price of risk is finite, ruling out arbitrage

opportunities. The second condition rules out doubling strategies.

PROOF OF LEMMA 1

Proof. Suppose Xb > 0 and α > 0, β2 > β1 ≥ 0, there exist unique numbers X1(Xb) and X2(Xb)

solve the system of equations
uM (F (X2(Xb),Xb))−uM (F (X1(Xb),Xb))

X1(Xb)−X2(Xb)
= uMx (F (X2(Xb), Xb)α(1 + β2),

uMx (F (X1(Xb), Xb))(1 + β1) = uMx (F (X2(Xb), Xb))(1 + β2).
(A1)

In particular, if marginal utility is homogeneous of degree −R (R 6= 1), letting η ≡
(

1+β2

1+β1

)1−1/R

and ρ ≡
(

1+β2

1+β1

)−1/R
. In particular, if marginal utility is homogeneous of degree −R, the above

equations imply thatX1(Xb) + β1(X1(Xb)− δXb) = ρ(X2(Xb) + β2(X2(Xb)− δXb)),

X2(Xb) = X1(Xb) + uM (αX2(Xb)+αβ2(X2(Xb)−δXb)−uM (ρ(αX2(Xb)+αβ2(X2(Xb)−δXb)))
uMx (αX2(Xb)+αβ2(X2(Xb)−δXb))α(1+β2)

.
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Equivalently, uM is homogeneous of degree 1−R, we have

X2(Xb) = X1(Xb) + (1− ρ1−R)
uM (αX2(Xb) + αβ2(X2(Xb)− δXb))

uMx (αX2(Xb) + αβ2(X2(Xb)− δXb))α(1 + β2)

= X1(Xb) +
1− η

(1−R)α(1 + β2)
(αX2(Xb) + αβ2(X2(Xb)− δXb)),

Direct computation yields
X1(Xb) =

(
( ηR−1)

β1
1+β1

+η(1− 1
R )

β2
1+β2

η−1

)
δXb,

X2(Xb) = X1(Xb) + 1
R

(
β2

1+β2
− β1

1+β1

)
δXb.

Moreover, X(Xb) = β1δXb
1+β1

< X1(Xb) < δXb < X2(Xb). In particular, for logarithmic utility

X1(Xb) =

(
log

(
1 + β2

1 + β1

))−1( β2

1 + β2
− β1

1 + β1

)
δXb +

β1

1 + β1
δXb > X(Xb),

X2(Xb) = X1(Xb) +

(
β2

1 + β2
− β1

1 + β1

)
δXb.

PROOF OF LEMMA 2

Proof. This closely follows the proof of Lemma 2 from Cuoco and Kaniel (2011). The first equation

in the system (A1) shows that vM (·, Xb) is continuous at X2(Xb), while the second equation in the

system (A1) show that vM (·, Xb) is continuously differentiable at X1(Xb). Thus vM (·, Xb) is contin-

uously differentiable and concave on [X(Xb),∞). Since vM (X1(Xb), Xb) = uM (F (X1(Xb), Xb)) and

uM (F (·, Xb)) is strictly concave on the interval (X1(Xb), δXb] while vM (·, Xb) is linear, we must have

that vM (·, Xb) > uM (F (·, Xb)) on the interval. Similarly, we have vM (·, Xb) > uM (F (·, Xb)) on the

interval [δXb, X2(Xb)). Moreover, vM (·, Xb) = uM (F (·, Xb)) on A(Xb), thus we have vM (·, Xb) ≥

uM (F (·, Xb)) on the interval [X(Xb),∞).

Suppose v̂M (·, Xb) is any concave function with v̂M (·, Xb) ≥ uM (F (·, Xb)) on the interval

[X(Xb),∞). It follows from the definition that v̂M (·, Xb) ≥ uM (F (·, Xb)) = vM (·, Xb) on A(Xb).

In addition, v̂M (·, Xb) is concave on the interval (X1(B), X2(B)) while vM (·, Xb) is linear, it follows

that v̂M (·, Xb) > vM (·, Xb) on (X1(Xb), X2(Xb)). Thus, vM (·, Xb) is the smallest concave function

with v̂M (·, Xb) ≥ uM (F (·, Xb)) on the interval [X(Xb),∞).
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PROOF OF PROPOSITION 1

Proof. Suppose that α > 0, β1 = β2 ≥ 0. The first order condition of the fund manager’s static

problem is

α(1 + β2)uMx (αXa,s∗

T + αβ2(Xa,s∗

T − δXb
T )) = ys

∗
ξGT .

Direct computation yields

Xa,s∗

T =
1

α(1 + β2)
IM

(
ys
∗
ξGT

α(1 + β2)

)
+
β2δX

b
T

1 + β2
, (A2)

where IM (·) is the inverse function of uMx (·) and ys
∗

is determined by the static budget constraint

xa

1 + β2
= E

[
ξGT

α(1 + β2)
IM

(
ys
∗
ξGT

α(1 + β2)

)∣∣∣∣∣G0

]
≡ χ(ys

∗
).

The function χ(y) is continuous and strictly decreasing on (0,∞). Moreover, χ(y)→ 0 as y →∞

and χ(y)→∞ as y → 0. Therefore, there exists a unique ys
∗
> 0 such that χ(ys

∗
) = xa/(1 + β2).

In particular, with uM (x) = log(x), ys
∗

= (1 + β2)/xa. We can find the manager’s optimal portfolio

choice by applying Itô’s Lemma on both sides of (A2) and matching the coefficients in front of

dW G
v . The optimal portfolio choice is given by

πa,s
∗

v =
θmv + θGv
σmv

+
β2

1 + β2

δXb
v

Xa,s∗
v

(
πb − θmv + θGv

σmv

)
.

Substituting the optimal fund’s end-of-period value (A2) into the contract yields the manager’s

compensation at time T , F (Xa,s∗

T , Xb
T ) = αxa/ξGT .

PROOF OF PROPOSITION 2.

Proof. Suppose that α > 0, β2 > β1 ≥ 0. The concavified utility function vM concave and contin-

uously differentiable on the interval [X(Xb),∞). Thus we can solve the concavified problem using

standard optimization theory. The sufficient and necessary condition for Xa,s∗

T to be optimal is

∂vM

∂xa
(Xa,s∗

T , Xb
T ) = ys

∗
ξGT .
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We can define a function gI : (0,∞)× (0,∞)

gI(y, b) =


1

α(1+β2)I
M
(

y
α(1+β2)

)
+ β2δb

1+β2
> X2(b) if y ≤ Ψ (b) ,

1
α(1+β1)I

M
(

y
α(1+β1)

)
+ β1δb

1+β1
< X1(b) if y > Ψ (b) ,

where IM (·) is the inverse function of uMx (·) and Ψ (b) =
log
(

1+β2
1+β1

)
δb
(

β2
1+β2

− β1
1+β1

) . The optimal end-of-period

fund value is given by

Xa,s∗

T = gI
(
ys
∗
ξGT , X

b
T

)
=

1

α(1 + β2)
IM

(
ys
∗
ξGT

α(1 + β2)

)
+
β2δX

b
T

1 + β2
1{ys∗ξGT≤Ψ(Xb

T )} +
β1δX

b
T

1 + β1
1{ys∗ξGT>Ψ(Xb

T )},

where ys
∗

is the Lagrange multiplier solving the static budget constraint:

xa = E
[
ξGT g

I
(
ys
∗
ξGT , X

b
T

) ∣∣∣G0

]
≡ χ̃(ys

∗
).

The function χ̃(y) is continuous and strictly decreasing on (0,∞). Moreover, χ̃(y)→ β1X
a
0/(1 + β1)

as y →∞ and χ(y)→∞ as y → 0. Therefore, there exists a unique ys
∗
> 0 such that χ(ys

∗
) = Xa

0 .

With uM (x) = log(x), we immediately obtain (16) and the manager’s compensation at time T :

F (Xa,s∗

T , Xb
T ) =

α(1 + β2)

ys∗ξGT
1{ys∗ξGT≤Ψ(Xb

T )} +
α(1 + β1)

ys∗ξGT
1{ys∗ξGT>Ψ(Xb

T )}.

PROOF OF PROPOSITION 3

Proof. Define Hε
v ≡ 1

ε

∫ v+ε
v dWm

v . For v ∈ [τi−1, τi), using Bayes’ rule P (dWm|Fv ,Gi=z)
P (dWm|Fv) =

P (Gi∈dz|Fv+ε)
P (Gi∈dz|Fv) gives

E [Hε
v | Gv] =E

[
1

ε

∫ v+ε

v
dWm

s

∣∣∣∣Fv, Gi = z

]
|z=Gi

=E

[
Hε
v

P (dWm|Fv, Gi = z)

P (dWm|Fv)

∣∣∣∣Fv]
|z=Gi

=E

[
Hε
v

P (Gi ∈ dz|Fv+ε)

P (Gi ∈ dz|Fv)

∣∣∣∣Fv]
|z=Gi

.
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Therefore, with pGv (z) = P (Gi ∈ dz|Fv), for v ∈ [τi−1, τi) when z = Gi

θGv = lim
ε↓0

E [Hε
v | Gv] = lim

ε↓0
Ev

[
pGv+ε(z)

pGv (z)

∫ v+ε

v
dWm

s

]
|z=Gi

=

(
d[log pGv (z),Wm]v

dv

)
|z=Gi

= Dv log pGv (z)|z=Gi ,

where Ev[·] ≡ E[·|Fv]. In the presence of fulcrum performance fees αXa
T + αβ2

(
Xa
T − δXb

T

)
with

α > 0 and β2 ≥ 0, the managers compensation is αxa/ξT . Thus, the ex ante value functions for the

skilled and unskilled managers are

E

[
log

αxa

ξGT

]
= log (αXa

0 ) + E

[∫ T

0
rvdv

]
+

1

2
E

[∫ T

0

(
θmv + θGv

)2
dv

]
E

[
log

αxa

ξmT

]
= log (αXa

0 ) + E

[∫ T

0
rvdv

]
+

1

2
E

[∫ T

0
(θmv )2 dv

]
.

Using E[θmv θ
G
v ] = 0, which follows from Ev[θ

G
v ] = Ev

[
lim
ε↓0

E [Hε
v | Gv]

]
= 0, gives E

[
log

αXa
0

ξGT

]
=

E
[
log

αXa
0

ξmT

]
+ 1

2E
[∫ T

0

(
θGv
)2
dv
]

and the ex ante value of information to the manager

VM,f ≡ CERM,s − CERM,u =
1

2

∫ T

0
E
[(
θGv
)2]

dv.

The process pGv (z) is a martingale. By the Clark-Ocone formula,

pGτi(z) = pGτi−1
(z) +

∫ τi

τi−1

Ev[DvpGτi(z)]dW
m
v = pGτi−1

(z) +

∫ τi

τi−1

DvEv[pGτi(z)]dW
m
v

= pGτi−1
(z) +

∫ τi

τi−1

DvpGv (z)dWm
v = pGτi−1

(z) +

∫ τi

τi−1

pGv (z)Dv log pGv (z)dWm
v

= pGτi−1
(z) +

∫ τi

τi−1

pGv (z)θGv (z)dWm
v .

Solving this linear stochastic differential equation gives

pGτi(z)

pGτi−1
(z)

= exp

(∫ τi

τi−1

θGv (z)dWm
v −

∫ τi

τi−1

1

2
θGv (z)2dz

)
. (A3)
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and

Eτi−1

[
log

pGτi(z)

pGτi−1
(z)

∣∣∣∣∣Gi = z

]
=Eτi−1

[∫ τi

τi−1

θGv (z)dWm
v −

∫ τi

τi−1

1

2
θGv (z)2dz

∣∣∣∣Gi = z

]
=Eτi−1

[∫ τi

τi−1

θGv (z)(dWm
v − θGv (z)dv) +

∫ τi

τi−1

1

2
θGv (z)2dv

∣∣∣∣Gi = z

]
=

1

2
Eτi−1

[∫ τi

τi−1

θGv (z)2dv

∣∣∣∣Gi = z

]
Using Bayes’ rule

P (dWm|Fτi−1
,Gi=z)

P (dWm|Fτi−1
) =

P (Gi∈dz|Fτi )
P (Gi∈dz|Fτi−1

) =
pGτi (z)

pGτi−1
(z)

gives

1

2
Eτi−1

[∫ τi

τi−1

(
θGv
)2
dv

]
=

∫ ∞
−∞

1

2
Eτi−1

[∫ τi

τi−1

θGv (z)2dv

∣∣∣∣Gi = z

]
pGτi−1

(z)dz

=

∫ ∞
−∞

Eτi−1

[
log

pGτi(z)

pGτi−1
(z)

∣∣∣∣∣Gi = z

]
pGτi−1

(z)dz

=

∫ ∞
−∞

Eτi−1

[
pGτi(z)

pGτi−1
(z)

log
pGτi(z)

pGτi−1
(z)

]
pGτi−1

(z)dz

=

∫ ∞
−∞

Eτi−1

[
pGτi(z) log pGτi(z)

]
dz −

∫ ∞
−∞

log pGτi−1
(z)pGτi−1

(z)dz

=Eτi−1

[
log pGτi(Gi)

]
− Eτi−1

[
log pGτi−1

(Gi)
]

=Eτi−1

[
log

pGτi(Gi)

pGτi−1
(Gi)

]

Using the definition DKL(pGτi(Gi)|p
G
τi−1

(Gi)) = Eτi−1

[
log

pGτi (Gi)

pGτi−1
(Gi)

]
and the law of iterated expecta-

tions gives VM,f = 1
2E
[∫ T

0

(
θGv
)2
dv
]

=
∑N

i=1E
[
DKL(pGτi(Gi)|p

G
τi−1

(Gi))
]

PROOF OF PROPOSITION 4

Proof. The state price densities for the time interval [τi−1, τi] are

ξGτi−1,τi ≡ exp

(
−
∫ τi

τi−1

(
rv +

1

2

(
θmv + θGv

)2)
dv −

∫ τi

τi−1

(
θmv + θGv

)
dW G

v

)
ξmτi−1,τi ≡ exp

(
−
∫ τi

τi−1

(
rv +

1

2
(θmv )2

)
dv −

∫ τi

τi−1

θmv dW
m
v

)
.
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where θGv = θGv (Gi). Using dW G
v = dWm

v − θGv dv and (A3) gives
ξGτi−1,τi

ξmτi−1,τi

=
pGτi−1

(Gi)

pGτi (Gi)
. It follows that

ξGT
ξmT

=
∏N
i=1

pGτi−1
(Gi)

pGτi (Gi)
. Let E

[
·
∣∣Fτi−1

∨
σ(Xb

T )
]

= Eτi−1,bT [·]. As

E

[
pGτn−1

(Gi)

pGτn(Gi)

∣∣∣∣∣Fτn∨σ(Xb
T )
∨
σ(ξmT )

]
=E

[
pGτn−1

(Gi)

pGτn(Gi)

∣∣∣∣∣Fτn
]

=

∫ ∞
−∞

pGτn−1
(z)

pGτn(z)
pGτn(z)dz = 1.

The law of iterated expectation gives

Eτ0,bT

[
N∏
i=1

pGτi−1
(Gi)

pGτi(Gi)

∣∣∣∣∣ ξmT
]

= Eτ0,bT

[
N−1∏
i=1

pGτi−1
(Gi)

pGτi(Gi)
E

[
pGτN−1

(Gi)

pGτN (Gi)

∣∣∣∣∣FτN
] ∣∣∣∣∣ ξmT

]

= Eτ0,bT

[
N−2∏
i=1

pGτi−1
(Gi)

pGτi(Gi)
E

[
pGτN−2

(Gi)

pGτN−1
(Gi)

∣∣∣∣∣FτN−1

] ∣∣∣∣∣ ξmT
]

...

= Eτ0,bT

[
E

[
pGτ0(Gi)

pGτ1(Gi)

∣∣∣∣∣Fτ1
] ∣∣∣∣∣ ξmT

]
= 1.

As
ξGT
ξmT

=
∏N
i=1

pGτi−1
(Gi)

pGτi (Gi)
., it follows that

Eτ0,bT
[
ξGT
∣∣ ξmT ] = ξmT

Eτ0,bT
[
ξGT
]

= Eτ0,bT [ξmT ]

Let εξ ≡ ξmT
(∏N

i=1

pGτi−1
(Gi)

pGτi (Gi)
− 1

)
and note that ξGT = ξmT + εξ with Eτ0,bT

[
εξ
∣∣ ξmT ]. Thus ξmT SSD ξ

G
T

in the mean-preserving spread sense.

PROOF OF PROPOSITION 5

Proof. Suppose the performance fees are of fulcrum type: F (Xa
T , X

b
T ) = αXa

T + αβ2

(
Xa
T − δXb

T

)
with α > 0 and β2 ≥ 0. The definition of certainty equivalent returns gives

CERs =
1

1−R
log
(

(1−R)E
[
vf
(
ξGT , X

b
T

)])
− log(Xa

0 ),

CERu =
1

1−R
log
(

(1−R)E
[
vf
(
ξmT , X

b
T

)])
− log(Xa

0 ).
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Thus, the value of the private signals Gi with i = 1, . . . , N within the period [0, T ] to the fund

investor with relative risk aversion R is

V f ≡ CERs − CERu =
1

1−R
log

(
E
[
vf
(
ξGT , X

b
T

)]
E
[
vf
(
ξmT , X

b
T

)]) .
Let F ξ

m,b (respectively F ξ
G ,b) be the cumulative distribution function (CDF) of ξmT (respectively

ξGT ) based on σ(Xb
T ), where σ(Xb

T ) is the filtration generated by the benchmark portfolio at time

T . Define ∆ξ,b(z) ≡ F ξG ,b(z)− F ξm,b(z) and T ξ,b(z) ≡
∫ z

−∞

(
F ξ

G ,b(y)− F ξm,b(y)
)
dy. We have

∆ =E
[
vf
(
ξGT , X

b
T

)]
− E

[
vf
(
ξmT , X

b
T

)]
= E

[
E
[
vf
(
ξGT , X

b
T

)
− vf

(
ξmT , X

b
T

) ∣∣∣σ(Xb
T )
]]

=E

[∫ ∞
0

vf
(
z,Xb

T

)
d∆ξ,b(z)

]
= E

[
vf
(
z,Xb

T

)
∆ξ,b(z)

∣∣∣∞
0
−
∫ ∞

0

∂vf
(
z,Xb

T

)
∂z

∆ξ,b(z)dz

]

=E

[
−
∫ ∞

0

∂vf
(
z,Xb

T

)
∂z

∆ξ,b(z)dz

]
= E

[
−
∂vf

(
z,Xb

T

)
∂z

T ξ,b(z)

∣∣∣∣∣
∞

0

+

∫ ∞
0

∂2vf
(
z,Xb

T

)
∂z2

T ξ,b(z)dz

]

=E

[∫ ∞
0

∂2vf
(
z,Xb

T

)
∂z2

T ξ,b(z)dz

]
(A4)

where the last equality follows from the fact T ξ,b(∞) = 0. Together with T ξ,b(z) ≥ 0 for all z ∈

R+, ∆ = E

[∫ ∞
0

∂2vf
(
z,Xb

T

)
∂z2

T ξ,b(z)dz

]
≤ 0 (respectively > 0) if vf (·, Xb

T ) is concave (respectively

convex). Using vf (z,Xb
T ) = u(I(y∗z,Xb

T )), we have

∂2vf
(
z,Xb

T

)
∂z2

=
du

dx
(I(y∗z,Xb

T ))
∂I
∂z (y∗z,Xb

T )2

I(y∗z,Xb
T )

[
d2u
dx2 (I(y∗z,Xb

T ))I(y∗z,Xb
T )

du
dx(I(y∗z,Xb

T ))
+

∂2I
∂z2 (y∗z,Xb

T )
∂I
∂z (y∗z,Xb

T )2
I(y∗z,Xb

T )

]

=
∂I
∂z (y∗z,Xb

T )2

I(y∗z,Xb
T )R+1

P a α(1 + β2)I(y∗z,Xb
T )

(1− α(1 + β2))IM
(

y∗z
α(1+β2)

) −R


=

(
1−α(1+β2)

y∗z2

)2 [
2
(

1 +
β2δX

b
T

1+β2

y∗z
1−α(1+β2)

)
−R

]
(

1−α(1+β2)
y∗z +

β2δXb
T

1+β2

)R+1

where y∗ = (1 + β2)/Xa
0 and P a ≡ −d3uM

dx3 (x)x/d
2uM

dx2 (x) is the relative risk prudence of the manager.

The third equality follows because P a = 2 for logarithmic utility and I(y∗z,Xb
T ) = 1−α(1+β2)

y∗z +



50

β2δX
b
T

1+β2
. Substituting the expression of

∂2vf(z,Xb
T )

∂z2 into (A4) yields

∆ = E


∫ ∞

0

(
1−α(1+β2)

y∗z2

)2 [
2
(

1 +
β2δX

b
T

1+β2

y∗z
1−α(1+β2)

)
−R

]
T ξ,b(z)(

1−α(1+β2)
y∗z +

β2δXb
T

1+β2

)R+1
dz


PROOF OF PROPOSITION 6

Proof. The claims immediately follow from the definition of the value of the private signal.

PROOF OF COROLLARY 1

Proof. For t ∈ [0, T ), the conditional density of the signal is

pGt (x) ≡ ∂xPt(G ≤ x) = ∂xPt

(
log
(
Sm0,T

)
+ σy

∫ T

0
dW ζ

v ≤ log(x) +
1

2
(σy)2T

)
.

Thus, we have

pGt (x) = ∂xPt

(
σm
∫ T
t dWm

v + σy
∫ T

0 dW ζ
v√

Σt,T

≤ d(x, t)

)
= ∂xΦ(d(x, t)) =

φ(d(x, t))

x
√

Σt,T

,

where

d(x, t) =
log(x)− Et[log(G)]√

Σt,T

,

V ARt[logG] = (σm)2(T − t) + (σy)2T ≡ Σt,T ,

Et[logG] = logSm0,t + (σmθm − 1

2
(σm)2)(T − t)− 1

2
(σy)2T.

PROOF OF COROLLARY 2

Proof. As in the proof of Proposition 3

1

2
E

[∫ T

0

(
θGv
)2
dv

]
=E

[
log

pGT (Gi)

pG0 (Gi)

]
= E

[
log

(
φ(d(Gi, T ))

φ(d(Gi, 0))

√
Σ0,T

ΣT,T

)]
= E

[
log

φ(d(Gi, T ))

φ(d(Gi, 0))

]
+ log

√
Σ0,T

ΣT,T

=E

[
d(Gi, 0)2 − d(Gi, T )2

2

]
+

1

2
log
(
1 + (σm/σy)2

)
=

1

2
log
(
1 + (σm/σy)2

)
.
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Thus, in the presence of fulcrum performance fees, the ex ante value of the private signal G, as

described in (25), to a fund manager is

VM,f ≡ CERM,s − CERM,u =
1

2
log
(
1 + (σm/σy)2

)
.

PROOF OF COROLLARY 3

Proof. Using ξGT = ξmT p
G
0 (G)/pGT (G) and pGt (x) = φ(d(x, t))/(x

√
Σt,T ), we have

E
[(
ξGT
)R−1

]
=E

[(√
(σy)2

(σm)2 + (σy)2
exp

(
−
(
r +

1

2
(θm)2

)
T − θm

√
TWm

1 +
1

2
(W ζ

1 )2 − (σmWm
1 + σyW ζ

1 )2

2 ((σm)2 + (σy)2)

))R−1
]

=

(
(σy)2

(σm)2 + (σy)2

)R−1
2

exp

(
−(R− 1)

(
r +

1

2
(θm)2

)
T +

1

2
(R− 1)2(θm)2T

(R− 2)(σm)2 − (σy)2

R(R− 2)(σm)2 − (σy)2

)
∫ ∞

−∞

∫ ∞

−∞

1

2π
exp
(
−1

2
(w − µ)ᵀΣ−1(w − µ)

)
dwmdwζ

=

(
(σy)2

(σm)2 + (σy)2

)R−1
2

exp

(
−(R− 1)

(
r +

1

2
(θm)2

)
T +

(R− 1)2(θm)2T (R− 2)(σm)2 − (σy)2

2 (R(R− 2)(σm)2 − (σy)2)

)
|Σ|1/2

=

(
(σy)2

(σm)2 + (σy)2

)R−1
2
√

(σm)2 + (σy)2

−R(R− 2)(σm)2 + (σy)2
exp
(
−(R− 1)

(
r +

1

2
(θm)2

)
T

+
1

2
(R− 1)2(θm)2T

(R− 2)(σm)2 − (σy)2

R(R− 2)(σm)2 − (σy)2

)
,

where

w =

(
wm

wζ

)
, µ =

(
θm(R− 1)

√
T (R−2)(σm)2−(σy)2

R(R−2)(σm)2−(σy)2

θm(R− 1)
√
T (R−1)σmσy

R(R−2)(σm)2−(σy)2

)
,Σ =

(
(R−2)(σm)2−(σy)2

R(R−2)(σm)2−(σy)2
−(R−1)σmσy

R(R−2)(σm)2−(σy)2

−(R−1)σmσy

R(R−2)(σm)2−(σy)2
−R(σm)2−(σy)2

R(R−2)(σm)2−(σy)2

)
.

Direct computation yields

E
[
(ξmT )R−1

]
= exp

(
−(R− 1)

(
r +

1

2
(θm)2

)
T +

1

2
(R− 1)2(θm)2T

)
.

Thus, with purely proportional fees F (Xa
T ) = αXa

T , the value of a private signal G to investors with

relative risk aversion R is

V p =
1

1−R
log

E
[(
ξGT
)R−1

]
E
[
(ξmT )R−1

]
=

1

2
log

(
1 +
(
σm

σy

)2
)

+
1

2(R− 1)
log

(
1− (R− 1)2(σm)2

(σm)2 + (σy)2

)
+

(R− 1)2(R− 2)(θm)2T (σm)2

2 (R(R− 2)(σm)2 − (σy)2)
.
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According to Proposition 5, V p > 0 when R < 2 and V p < 0 when R > 2. Differentiating V p with

respect to σy yields

∂V p

∂σy
=

(R− 2)(σm)2
[(
R(σm)2 + (σy)2

) (
1− (R−1)2(σm)2

(σm)2+(σy)2

)
+ (R− 1)2(θm)2T (σy)2

]
σy [R(R− 2)(σm)2 − (σy)2]2

.

As s = 1/σy, it follows that

∂V p

∂s
=

(2−R)(σm)2
[(
R(σm)2 + 1/s2

) (
1− (R−1)2(σm)2

(σm)2+1/s2

)
+ (R− 1)2(θm)2T/s2

]
s [R(R− 2)(σm)2 − 1/s2]2

.

Suppose R < 1 +
√

1 + (σy/σm)2, which guarantees the ex ante expected utility of a fund investor

who delegates his wealth to the skilled manager does not explode, ∂V p

∂s < 0 for R > 2 and ∂V p

∂s > 0

for R < 2. Thus, investors with relative risk aversion R < 2 would choose the manager with the

highest skill level on the market, and investors with R > 2 would prefer the least skilled manager.

PROOF OF COROLLARY 4

Proof. The optimal fund value of the uninformed manager at time t ∈ [0, T ] is given by

Xa,u∗

t =E
[
ξmt,TX

a,s∗

T

∣∣∣ Ft]
=

1

ys∗ξmt
+ E

[
β2δ

1 + β2
ξmt,TX

b
T1{ξmT <Ψ(Xb

T )}

∣∣∣∣ Ft]+ E

[
β1δ

1 + β1
ξmt,TX

b
T1{ξmT >Ψ(Xb

T )}

∣∣∣∣ Ft]

=
1

ys∗ξmt
+

β2δ

1 + β2
Xb
tE

ξmt,TXb
t,T1

ξmt,TXb
t,T<

log(
1+β2
1+β1

)

ξm
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Ft


+
β1δ

1 + β1
Xb
tE

ξmt,TXb
t,T1

ξmt,TXb
t,T>

log(
1+β2
1+β1

)

ξm
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Ft
 . (A5)

Since
∫ T
t dWm

v is normally distributed with mean 0 and variance T − t under Ft, replacing∫ T
t dWm

v =
√
T − tz yields

ξmt,TX
b
t,T <

log( 1+β2

1+β1)

ξmt X
b
t y
s∗δ
(

β2

1+β2
− β1

1+β1

) ⇒ z <

log

(
log(

1+β2
1+β1 )

ξmt X
b
t y
s∗δ
(

β2
1+β2

− β1
1+β1

)
)

+
(πbσm−θm)

2
(T−t)

2√
(πbσm − θm)

2
(T − t)

≡ d̄1,t.
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The first expectation on the RHS of (A5) is

E

ξmt,TXb
t,T1

ξmt,TXb
t,T<

log(
1+β2
1+β1

)

ξm
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Ft


=

∫ d̄1,t

−∞

1√
2π

exp

(
−1

2

(
πbσm − θm

)2
(T − t) +

(
πbσm − θm

)√
T − tz − 1

2
z2

)
= N (d1,t) ,

where

d1,t =

log

(
log(

1+β2
1+β1 )

ξmt X
b
t y
s∗δ
(

β2
1+β2

− β1
1+β1

)
)
− 1

2

(
πbσm − θm

)2
(T − t)√

(πbσm − θm)
2

(T − t)
.

Similar computation applies to the second expectation of (A5). The Lagrange multiplier yu
∗

can be

obtained by solving Xa,u∗

0 = Xa
0 . Plugging the two expectation in (A5), we obtain

Xa,u∗

t =
1

yu∗ξmt
+
β2δX

b
t

1 + β2
N (d1,t) +

β1δX
b
t

1 + β1
N (−d1,t).

In order to find the optimal fund value of informed manager, we need to find the distribution of

Wm
t under private information G. We notice that Wm

t = W G
t +
∫ t

0
θGv dv for t ∈ [0, T ], where

θGv = σm
(

log(G)− Ev[logG]

V ARv[logG]

)
= σm

(
log(G)−

(
σmθm − 1

2(σm)2 − 1
2(σy)2

)
T − σmWm

v

(σm)2(T − t) + (σy)2T

)
= mvW

m
v + nv,

where

mv =
1

v −
(

1 +
(
σy

σm

)2)
T
, nv =

(
θm − (σm)2+(σy)2

2σm

)
T − log(G)

σm

v −
(

1 +
(
σy

σm

)2)
T

.

We have dWm
t = (mtW

m
t + nt)dt+ dW G

t . The solution to the stochastic differential equation is

Wm
t =

∫
t

0

(
1 +

(
σy

σm

)2)
T − t(

1 +
(
σy

σm

)2)
T − v

dW G
v +

(
log(G)
σm −

(
θm − (σm)2+(σy)2

2σm

)
T
)
t(

1 +
(
σy

σm

)2)
T

.
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This implies that
∫ T
t dWm

v is normally distributed under private information Gt with mean µt,T

and variance σ2
t,T where

µt,T =
σm(T − t)√

Σt,T

d(G, t), σ2
t,T =

ΣT,T (T − t)
Σt,T

.

The optimal fund value of the informed manager is given by

Xa,s∗

t =E
[
ξGt,TX

a,s∗

T

∣∣∣ Gt] =
1

ys∗ξGt
+ E

[
β2δξ

G
t,TX

b
T

1 + β2
1{ξGT<ΨG}

∣∣∣∣∣ Gt
]

+ E

[
β1δξ

G
t,TX

b
T

1 + β1
1{ξGT>ΨG}

∣∣∣∣∣ Gt
]

=
1

ys∗ξGt
+

β2δ

1 + β2
Xb
tE

ξGt,TXb
t,T1

ξGt,TXb
t,T<

log(
1+β2
1+β1

)

ξG
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Gt


+
β1δ

1 + β1
Xb
tE

ξGt,TXb
t,T1

ξGt,TXb
t,T>

log(
1+β2
1+β1

)

ξG
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Gt
 . (A6)

We find that

ξGt,TX
b
t,T = ξmt,T

pGt (G)

pGT (G)
Xb
t,T

=

√
ΣT,T
Σt,T

exp

(
−1

2

(
πbσm − θm

)2
(T − t) +

(
πbσm − θm

)∫ T

t

dWm
v +

1

2

(
d(G,T )2 − d(G, t)2

))
=

√
ΣT,T
Σt,T

exp

(
−
(
πbσm − θm

)2
(T − t)

2
−
(
(πbσm − θm)ΣT,T − σm

√
Σt,T d(G, t)

)2
2(σm)2ΣT,T

+
d(G, t)2

2

(
Σt,T
ΣT,T

− 1

)
+

(σm)2

2ΣT,T

(∫ T

t

dWm
v +

(πbσm − θm)ΣT,T − σm
√

Σt,T d(G, t)

(σm)2

)2)

=

√
ΣT,T
Σt,T

exp

−Σt,T
2

(
πb − θm

σm
− d(G, t)√

Σt,T

)2

+

(
σm
∫ T
t
dWm

v +
(
πb − θm

σm

)
ΣT,T −

√
Σt,T d(G, t)

)2

2ΣT,T

 .
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Let
∫ T
t dWm

v = µt,T + σt,T z and Ω =
log(

1+β2
1+β1 )

ys
∗
δ
(

β2
1+β2

− β1
1+β1

) , we have

ξGt,TX
b
t,T <

Ω

ξGtX
b
t√

ΣT,T
Σt,T

exp

−Σt,T
2

(
πb − θm

σm
− d(G, t)√

Σt,T

)2

+

(
σmσt,T z + ΣT,T

(
πb − θm

σm
− d(G,t)√

Σt,T

))2

2ΣT,T

 <
Ω

ξGtX
b
t(

σmσt,T z + ΣT,T

(
πb − θm

σm
− d(G, t)√

Σt,T

))2

< ΣT,T

(
2 log

(√
Σt,T
ΣT,T

Ω

)
+ Σt,T

(
πb − θm

σm
− d(G, t)√

Σt,T

)2)
d̄−2,t < z < d̄+

2,t,

where

d̄±2,t =

±

√√√√√ΣT,T

2 log

 √
Σt,T
ΣT,T

log
1+β2
1+β1

ys
∗
δ
(

β2
1+β2

− β1
1+β1

)+ Σt,T

(
πb − θm

σm
− d(G,t)√

Σt,T

)2

−ΣT,T

(
πb − θm

σm
− d(G,t)√

Σt,T

)
σmσt,T

.

The first expectation in (A6) is given by

E

ξGt,TXb
t,T1

ξGt,TXb
t,T<

log(
1+β2
1+β1

)

ξG
t
Xb
t
ys
∗
δ
(

β2
1+β2

− β1
1+β1

)

∣∣∣∣∣∣∣∣ Gt


=

∫ d̄+
2,t

d̄−2,t

√
ΣT,T

2πΣt,T
exp

−1

2

(√
ΣT,T

Σt,T
z −

√
Σt,T − ΣT,T

(
πb − θm

σm
− d(G, t)√

Σt,T

))2
 dz

=N
(
d+

2,t

)
−N

(
d−2,t

)
,

where

d±2,t =

±

√√√√√ΣT,T

2 log

 √
Σt,T
ΣT,T

log
1+β2
1+β1

ys
∗
ξGtX

b
t δ
(

β2
1+β2

− β1
1+β1

)
+ Σt,T

(
πb − θm+θGt

σm

)2

− Σt,T

(
πb − θm+θGt

σm

)
√

Σt,T − ΣT,T

.

Plugging the expectations in (A6), we get

Xa,s∗

t =
1

ys∗ξGt
+
β2δX

b
t

1 + β2

(
N (d+

2,t)−N (d−2,t)
)

+
β1δX

b
t

1 + β1
(N (−d+

2,t) +N (d−2,t))
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The optimal trading strategies of fund managers can be obtained by taking derivatives on both

sides of Xa,u∗

t (Xa,s∗

t ) and matching the coefficients in front of dWm
t .

PROOF OF PROPOSITION 7

Proof. The first order condition of the fund manager’s static problem is

((1− α)Xa∗
T )−R

a
= y∗ξGT ⇔ Xa∗

T =
(
y∗ξGT

)−Ra
/(1− α)

where y∗ is determined by the static budget constraint

E
[
ξGT
(
y∗ξGT

)−Ra]
= Xa

0 .

Thus, we have

Xa∗
T =

Xa
0

(
ξGT
)−1/Ra

Et

[(
ξGT
)1−1/Ra

] , F (Xa∗
T ) = α

(
ξGT
)−1/Ra

Xa
0H
G
T /H

G
0 .

The manager’s optimal fund value at time t ∈ [0, T ] is given by

Xa∗
t = Et[ξ

G
t,TX

a∗
T ] =

(
ξGt
)−1/Ra

Xa
0H
G
t /H

G
0

where HGt = Et

[(
ξGt,T

)1−1/Ra
]
.

Using d(G, t) =
θGt
σm

√
Σt,T and d(G,T ) =

θGtΣt,T−(σm)2Wm
t,T

σm
√

ΣT,T
we have

ξGt,T =ξmt,T p
G
t (G)/pGT (G)

=

√
ΣT,T

Σt,T
exp

(
−
(
r +

1

2
(θm)2

)
(T − t)− θmWm

t,T −
d(G, t)2

2
+
d(G,T )2

2

)

=

√
ΣT,T

Σt,T
exp

−(r +
1

2
(θm)2

)
(T − t)− 1

2

(
θGt
σm

)2

Σt,T +
1

2

(
θGt
σm

)2
Σ2
t,T

ΣT,T

+
(σm)2

2ΣT,T
(Wm

t,T )2 −

(
Σt,T θ

G
t

ΣT,T
+ θm

)
Wm
t,T

)
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Since Wm
t,T is normally distributed with mean 0 and variance T − t under public information,

direct computation yields

HGt =

√
RaΣT,T

Σt,T + (Ra − 1)ΣT,T

(
ΣT,T

Σt,T

)− 1
2Ra

exp

((
r +

Σt,T (θm + θGt )2

2(Σt,T + (Ra − 1)ΣT,T )

)
(1−Ra)(T − t)

Ra

)
The manager’s optimal trading strategies can be determined by

π∗t =
d[Xa∗ ,W G ]t
σmXa∗

t dt
=

Σt,T

Σt,T + (Ra − 1)ΣT,T

θm + θGt
σm

.

Similarly,

πht =
d[H,W G ]t
σmHtdt

=
(Ra − 1)(Σt,T − ΣT,T )

Σt,T + (Ra − 1)ΣT,T

θm + θGt
Raσm

=
Ra − 1

1 + T
T−t

(
σy

σm

)2
Ra

θm + θGt
Raσm

.

and πmt = π∗t − πht .

PROOF OF COROLLARY 5

Proof.

E

[(
XG,aT

)1−R
1−R

]
= E


((
ξGT
)− 1

Ra x/HG0

)1−R

1−R

 =
x1−R

1−R
E

[((
ξGT
)− 1

Ra /HG0

)1−R
]

=
x1−R

1−R
E

[(√
Ra(σy)2

(σm)2 +Ra(σy)2
exp
(
−
(
r +

1

2
(θm)2

)
T − 1

Ra
θm
√
TWm

1 +
1

2Ra
(W ζ

1 )2

− (σmWm
1 + σyW ζ

1 )2

2Ra(σy)2
+

(
σmσyW ζ

1 + (σm)2Wm
1 − (Ra − 1)(σy)2θm

√
T
)2

2Ra(σy)2 ((σm)2 +Ra(σy)2)

))R−1


=
x1−R

1−R

(
Ra(σy)2

(σm)2 +Ra(σy)2

)R−1
2
∫ ∞

−∞

∫ ∞

−∞

1

2π
exp
(
−1

2
(w − µ)ᵀΣ−1(w − µ)

)
dwmdwζ

exp

(
−(R− 1)(r +

1

2
(θm)2)T +

((R− 1)(Ra + 1−R)(σm)2 + (R+ (Ra)2 − 2Ra)(σy)2) (R− 1)(θm)2T

2 ((1 +Ra −R)R(σm)2 + (Ra)2(σy)2)

)
=
x1−R

1−R

(
Ra(σy)2

(σm)2 +Ra(σy)2

)R−1
2
√

Ra((σm)2 +Ra(σy)2)

R(Ra + 1−R)(σm)2 + (Ra)2(σy)2

exp

(
−(R− 1)(r +

1

2
(θm)2)T +

((R− 1)(Ra + 1−R)(σm)2 + (R+ (Ra)2 − 2Ra)(σy)2) (R− 1)(θm)2T

2 ((1 +Ra −R)R(σm)2 + (Ra)2(σy)2)

)
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where w = (wm, wζ)ᵀ and

µ =

 ((R−Ra−1)(σm)2−Ra(σy)2)θm(R−1)
√
T

R(R−Ra−1)(σm)2−(Ra)2(σy)2

(R−Ra)σmσyθm(R−1)
√
T

R(R−Ra−1)(σm)2−(Ra)2(σy)2

 ,Σ =

−R(σm)2−Ra(σy)2

(σm)2+Ra(σy)2
(1−R)σmσy

(σm)2+Ra(σy)2

(1−R)σmσy

(σm)2+Ra(σy)2
(R−Ra−1)(σm)2−(Ra)2(σy)2

Ra((σm)2+Ra(σy)2)

 .

Direct computation yields

E

[(
Xm,a
T

)1−R
1−R

]
= E


(

(ξmT )−1/Ra x/Hm
0

)1−R

1−R

 =
x1−R

1−R

E
[
(ξmT )

R−1
Ra

]
(Hm

0 )1−R

=
x1−R

1−R
exp

(
−(R− 1)(r +

1

2
(θm)2)T +

1

2

(R+ (Ra)2 − 2Ra)(R− 1)

(Ra)2
(θm)2T

)
=
x1−R

1−R
exp

(
−(R− 1)rT +

1

2

(R− 2Ra)(R− 1)

(Ra)2
(θm)2T

)
Thus, with purely proportional fees F (Xa

T ) = αXa
T , the value of a private signal G to investors with

relative risk aversion R is

V p =
1

2
log

(
1 +

(σm)2

Ra(σy)2

)
+

log
(

Ra((σm)2+Ra(σy)2)

R(Ra+1−R)(σm)2+(Ra)2(σy)2

)
2(1−R)

+
(R−Ra)2(Ra + 1−R)(θm)2(σm)2T

2(Ra)2 (R(Ra + 1−R)(σm)2 + (Ra)2(σy)2)
.
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