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Abstract

In this paper, we introduce a dynamic spatial interaction econometric model. There are n forward-

looking agents of them each has a parametric linear-quadratic payo¤, and interacting with neighbors

through a spatial network. Considering a Markov perfect equilibrium (MPE), we derive a unique equilib-

rium equation and construct a new spatial dynamic panel data (SDPD) model. For estimation, we suggest

mainly the quasi-maximum likelihood (QML) method. Asymptotic properties of the QML estimator are

investigated. In a Monte Carlo study, we estimate the model�s parameters and compare the results with

those from traditional SDPD models. The model is applied to an empirical study on counties�public

safety spending in North Carolina. We conduct impulse response and welfare analyses corresponding to

changing exogenous characteristics in a region.
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1 Introduction and motivation

Interactions among rational economic agents are characterized by a network (a spatial weights or socio-

economic matrix). Since rational agents might be forward-looking instead of myopic, we focus on their

behaviors by considering intertemporal optimization. Speci�cation on forward-looking agents� decision-

making with network interactions will be introduced. We formulate an econometric model for recovering

economic agents� payo¤. The econometric model is a new spatial dynamic panel data (SDPD) model,

which can be estimated by panel data and it can be regarded as a product of Lucas critique (1976).1 For

the econometric model, identi�cation, estimation, and asymptotic properties of estimators are investigated.

Using the new SDPD model, empirical economists can conduct (i) forecasting on future economic activities,

(ii) impulse response analyses, and (iii) welfare and counterfactual analyses. As an application of our

econometric model, we study counties� public safety spending competition. We recover key parameters

describing counties�decision-making and compare estimation results with those from traditional models.

We give various and fruitful policy implications from this research.

Three contributions will be established in this paper. The �rst is a theoretical one. We introduce a

forward-looking agent�s decision-making model with network interactions. There are n economic agents in

the economy and their interactions are characterized by an n � n socio-matrix, which is assumed to be

time-invariant and known to agents as well as econometricians. An outcome of an agent�s economic activity

is assumed to be a continuous one. For example, players select how much time or e¤ort on some economic

activity. In order to specify agent�s payo¤, we take a parametric linear-quadratic payo¤ function (Ballester

et al. (2006) and Calvo-Armengol, Patacchini and Zenou (2009)). The most notable advantages in taking

this payo¤ structure are (i) easily characterizing an equilibrium and (ii) specifying agent�s payo¤by some key

parameters, in addition that a linear-quadratic payo¤ function might provide a good approximation to an

underlying nonlinear function. Chapter 4 in Jackson and Zenou (2014) provides a review for that structure.

Based on the payo¤ function, an agent�s choice problem is to maximize his/her discounted lifetime payo¤

by intertemporally choosing his/her e¤ort. An agent will face future uncertainty and form expectation for

it. In addition to future economic shocks, another source of uncertainty is due to unknown future changing

exogenous environments of an economy. From that, we describe how an agent forms expectations for series

of future decisions and possibly changing exogenous environments.

1 It means our econometric model is a structural model and its interpretations do not rely on just statistical relationships

among economic variables.
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To derive a complete model, our next step is characterizing an equilibrium under a game setting. An

"equilibrium" is a result of rationality of economic agents. Forward-looking decisions on an equilibrium

realize the "rationality" of economic agents. For this, we employ a Markov perfect equilibrium (MPE). In the

MPE, agents�current decisions depend only on their payo¤relevant previous actions, and backward induction

can be applied to specify the equilibrium. Under some stability conditions, we have agents� optimizing

values, which are results from solving dynamic (di¤erential) games problems, and they are linear-quadratic.

In consequence, the vector of agents�equilibrium decisions becomes a unique Nash equilibrium (NE) solution

of a linear system. The derived equilibrium equations describe the dynamics of individuals�forward-looking

decisions by re�ecting series of (discounted) expected future actions and exogenous characteristics in a

dynamic NE game setting. As the implied model equations are linear in outcomes, we have a unique NE

equilibrium so to obtain a bijective mapping from the model to a likelihood function for estimation.2

Second, we deliver an econometric contribution. The popular spatial autoregressive (SAR) model from

Cli¤ and Ord (1973), Ord (1975), Anselin (1988) and Lee (2004, 2007) can be considered as an equilibrium

equation of a static quadratic utility model with network interactions. In the literature, panel data can

capture the dynamics of individuals�decisions (but mostly without interactions). For spatial interaction

issues, there are fruitful studies with spatial dynamic panel data (SDPD) models. Kapoor et al. (2007),

Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014) are papers in this area. For the various

SDPD models, Lee and Yu (2015) provide a review. Those SDPD models can only be justi�ed by myopic

behaviors. In this paper, the designed framework analyzes agents�forward-looking behaviors. With proper

panel data, revealed economic activities might be results of dynamic optimization instead of considering

only current payo¤s. Our derived equilibrium equation provides a new estimable SDPD model. Our SDPD

nests traditional SDPD models as special cases if economic agents are myopic.

For estimation, we suggest the quasi-maximum likelihood (QML) method. Identi�cation of the model

and asymptotic properties (consistency and asymptotic normality) of the QML estimator are investigated.

Because our speci�cation includes individual and time �xed e¤ects, which are in�nite incidental parameters

and, in consequence, may lead to asymptotic biases in estimates, a bias correction for the QML estimator is

studied. Estimating the individual and time dummies relies on residuals, so their asymptotic distributions

are a¤ected by convergence rates of the QML estimator of the main parameters. We observe using residuals

based on the bias-corrected QML estimator has a mild condition for ratios of n and T relative to using those

2For this, see Section 8 in Amemiya (1985).
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from the QML estimator without bias-correction. As an alternatively simpler but ine¢ cient estimation, the

nonlinear two-stage least squares (NL2S) method is also brie�y introduced. Monte Carlo simulations are

conducted to evaluate (i) �nite sample performance of the QML estimator and its bias correction and (ii)

misspeci�cation, when a traditional SDPD speci�cation is taken for estimation as if agents were not forward-

looking, i.e., myopic. We �nd that the QML estimator and its bias correction show reliable performance in

small samples. We observe that signi�cant misspeci�cation errors on estimators would appear even for large

samples, as the traditional SDPD speci�cation is mistakenly used. When selecting a time-discounting factor,

we suggest considering likelihood measures (e.g., sample log-likelihood) if a signal is high with su¢ ciently

many observations. The NL2S estimator shows relatively small biases but does not provide e¢ cient estimates

compared to those of the QML estimator.

Finally, we give an empirical study with policy implications on counties�public safety spending. In this

application, an economic agent is a local government, and its decision variable is the public safety spending

for a county. Yang and Lee (2017) provide a theoretical model for this issue and apply it to cities in North

Carolina. They �nd strong free-riding e¤ects: there are strategic interactions among local governments

and, which induce a negative relationship between a city�s public safety spending and its neighbors�. In

this paper, we revisit this issue with an extended panel data set. We estimate structural parameters using

our dynamic interaction model and compare the estimation results with those from the traditional SDPD

model. In explaining the spillover e¤ects of local governments�public safety spending, our intertemporal

SAR speci�cation turns out to be more statistically favorable than the traditional SDPD model. We �nd

some evidence of persistency of public safety spending, positive di¤usion e¤ects from previous neighbors�

decisions, positive e¤ects of own total revenue, and negative externalities from neighboring total revenues,

but no signi�cant contemporaneous spilled over e¤ects. From the recovered counties�payo¤ function, we also

investigate cumulative e¤ects in the MPE and conduct impulse response analyses corresponding to changing

exogenous characteristics in a region. An overshooting impact in the sense of a negative neighboring revenue

e¤ect is observed.3 In the welfare analysis, we observe giving subsidy to the county which has a small number

of neighbors turns out to be the most e¤ective policy in the sense of public safety spending.

The paper is organized as follows. Section 2 introduces an economic foundation for our model. In Section

3, we build an econometric model based on the theoretical setting in Section 2. Section 4 presents the QML

estimation method and asymptotic properties of that estimator. Section 5 reports our investigation on the

3 It means that the contemporaneous negative revenue e¤ect converts to the positive e¤ect after some periods and �nally

decays.
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�nite sample performance of the QML estimator. In Section 6, we apply our model to counties� public

safety spending competition. Section 7 concludes. Some detailed derivations of estimating equations and

asymptotic analysis of estimation are relegated in Appendices.4

Notation and convention : Let An =

0BBB@
a11 � � � a1n
...

. . .
...

an1 � � � ann

1CCCA be an n � n square matrix. For any n �m

matrix B, [B]ij denotes the (i; j) element of B. We denote the i
th unit column vector (0; � � � ; 1; � � � ; 0)0 as

ei. For any vector a, [a]i denotes the i
th component. For any n � n matrix An, Diag (An) is a diagonal

matrix formed by the diagonal of An, kAnk1 = max1�j�n
Pn
i=1 jAij j is its maximum column sum norm,

and kAnk1 = max1�i�n
Pn
j=1 jAij j is its row sum norm. In addition, the spectral norm of An is kAnk2 =p

�1 (A
0
nAn) where �1 (A

0
nAn) denotes the largest eigenvalue of A

0
nAn, i.e., kAnk2 is the largest singular value

of An.5 Our asymptotic analyses on estimation of Section 4 are based on a large number of time periods

T and a large number of cross sectional units n, unless otherwise speci�ed. Convergence in probability and

convergence in distribution are denoted respectively as
p! and d!.

2 A spatial dynamic game with intertemporal optimization

In this section, we give a theoretical economic foundation and suggest a corresponding econometric model.

First, we review some motivating literature on the spatial autoregressive model in a cross-sectional setting

and then its extension to dynamic panel data model in the econometric literature. From these, we motivate

our formulation of a dynamic spatial autoregressive model with agents�decision processes which take into

account intertemporal consequences.

2.1 Literature review: spatial dynamic panel models and myopic choices

We assume there are n economic agents in an economy and they choose a continuous type economic activity.

A tax rate or public spending can be a good example of a continuous economic activity when an agent is

a local government. There are interactions among agents�activities through a certain network relationship.

Since there are n economic agents, a network is characterized by an n � n matrix Wn with prespeci�ed

non-negative entries (links), which can be formed by social, geographical and/or economic distances. All

4Due to space limitation, some of the analyses are provided in a supplementary �le.
5Those matrix norms are induced by corresponding vector norms.
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the diagonal elements of Wn are assumed to be zero to exclude self-in�uence. From economic reasoning,

a way of modeling agents�interactions is to formulate agents�decisions in a game setting. Given existing

network connections in Wn, one may specify a linear-quadratic payo¤ function for each individual (e.g.,

Ballester et al. (2006) and Calvō-Armengol et al. (2009)) with

ui (Yn; �it) = �iyi + �0yiwi:Yn �
1

2
y2i (1)

where Yn = (y1; � � � ; yn)0 denotes the vector of agents�decisions (activities, outcomes), �i is i�s exogenous

heterogeneity containing his/her exogenous characteristics, wi: denotes the ith row ofWn, and �0 determines

the strength of strategic interaction among agents while elements of Wn represent relative strength if there

are interactions. The �rst part, �iyi, describes a choice-speci�c bene�t from i�s characteristics in his index

�i. Increasing �i by one unit leads to rising i�s marginal payo¤
@ui(Yn;�it)

@yi
. From i�s perspective, decisions by

others linked to i will be strategic complements if �0 > 0, strategic substitutes if �0 < 0, and no interactions

when �0 = 0. The last quadratic term represents a cost for yi being taken. Let �n = (�1; � � � ; �n)0, Xn =

(x1; � � � ; xn)0 where xi = (xi1; � � � ; xiK)0 denotes agent i�s observed characteristics, and En = (�1; � � � ; �n)0

be an n � 1 vector of unobservable (for econometrician) components. By specifying �n as a regression

function, �n = Xn�0+ En, agents�optimized decisions in a perfect information game give rise to the spatial

autoregressive (SAR) model

Yn = �0WnYn +Xn�0 + En (2)

where Yn is the vector of Nash equilibrium (NE). The system (2) can have a unique NE and can be stable

under the assumption that k�0Wnk < 1 for some matrix norm k�k.

The SAR model provides a static model for strategic interactions with a given network. On the other

hand, with various panel data sets, one can go beyond the static setting and may track the dynamics

of individual�s decisions. With panel data, observed decisions of individuals might come from dynamic

optimization. Let fYnt; Xntg be a set of panel data where Ynt = (y1t; � � � ; ynt)0 stands for a vector of

individuals�decisions at time t and Xnt = (x1t; � � � ; xnt)0 denotes an n�K matrix of tth-period observable

(for econometricians) exogenous variables. Existing spatial panel data (SDPD) models in the literature (e.g.,

Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014)) actually take a

similar form as the SAR model (2) but with additional time lags Yn;t�1, di¤usion WnYn;t�1 and individual

and time �xed e¤ects:

Ynt = �0WnYnt + 
0Yn;t�1 + �0WnYn;t�1 +Xnt�0 + cn0 + �t0ln + Ent (3)
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where cn0 is an n-dimensional column vector of individual �xed e¤ects, �t0 captures the tth-period time

speci�c e¤ect with ln being an n-dimensional vector of ones. This equation can be justi�ed by a game

framework with agent i�s payo¤

ui (Ynt; Yn;t�1; �it) = �ityit + �0yitwi:Ynt + �0yitwi:Yn;t�1 � c (yit; yi;t�1) (4)

and c (yit; yi;t�1) =

0
2 (yit � yi;t�1)

2 + 1�
0
2 y2it where 0 < 
0 < 1.6 The �it denotes the t

th�period index

of heterogeneity of agent i containing those exogenous characteristics, which might evolve over time.7 The

third component, �0yitwi:Yn;t�1, describes agent�s learning process. Learning or adopting new technology is a

time-consuming process as an agent has to spend some time to understand his/her friends�past decisions and

accommodate to the new environment innovated by new technologies.8 In this setting, individual�s learning

comes from his/her recent past neighboring decisions.9 The parameter �0 determines how past neighboring

actions a¤ect agent i�s current decision. If �0 > 0 and agent j (who is an i�s friend) increased his/her

e¤ort yesterday, agent i may choose a higher level of e¤ort today (because @2ui(Ynt;Yn;t�1;�it)
@yi;t�1@yit

= �0wij � 0).

With �0 < 0 if agent j increased his/her e¤ort yesterday, agent i tends to select a low level of e¤ort (since
@2ui(Ynt;Yn;t�1;�it)

@yi;t�1@yit
= �0wij � 0). The fourth part, c (yit; yi;t�1), represents a cost of i�s decision.10 In our

6 In this paper, we use the normalized payo¤ due to identi�cation easiness. We can consider the following alternative cost

speci�cation _c (yit; yi;t�1) =

1;0
2
(yit � yi;t�1)2+


2;0
2
y2it where 0 < 
1;0; 
2;0 < 1. Then, the �rst order conditions of maximizing

the per period payo¤ can yield
�

1;0 + 
2;0

�
Ynt = �0WnYnt+
1;0Yn;t�1+�0WnYn;t�1+Xnt�0+cn0+�t0ln+Ent: It�s impossible

to identify all the parameters at the same time.

Note that an a¢ ne transformation preserves cardinal preferences realized by Von Neumann-Morgenstern utilities. If we

consider the payo¤ normalized by 1

1;0+
2;0

, we have

1


1;0 + 
2;0
ui (Ynt; Yn;t�1; �it) = ~�ityit +

~�0yitwi:Ynt + ~�0yitwi:Yn;t�1 � ~c (yit; yi;t�1)

and ~c (yit; yi;t�1) =
~
0
2
(yit � yi;t�1)2 + 1�~
0

2
y2it where ~�it =

1

1;0+
2;0

�it, ~�0 =
�0


1;0+
2;0
, ~�0 =

�0

1;0+
2;0

, and ~
0 =

0


1;0+
2;0

(i.e., structural parameters are normalized by 1

1;0+
2;0

).
7 In this framework, �it represents i�s t

th�period "overall" characteristic by including (i) agent i�s own exogenous characteris-

tics (time-invariant and/or time-variant), (ii) his/her rivals�characteristics combined with elements in Wn showing externalities

and (iii) common economic shocks globally a¤ecting all individuals�decision-making.
8 In the case of policy e¤ect analyses, this part also shows policy lags. i.e., a¤ecting neighboring policies on my city�s one is

time-consuming.
9 It means that agent�s learning follows a Markov process. However, the entire history of past decisions could be relevant to

the agents�current choices. In this case, agents�learning process is a Polya process. For the details, refer to Liu et al. (2010).

They study peer group e¤ects in laboratory experiments based on Milgrom and Roberts�(1982) entry limit pricing game and

use two speci�cations for agents learning: (i) A Markov model and (ii) a Polya model.
10 In this paper, we adopt the speci�cation of the quadratic adjustment cost (the famous study about that is Kennan (1979)).
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framework, c (yit; yi;t�1) consists of two parts: (i) dynamic adjustment cost,

0
2 (yit � yi;t�1)

2, and (ii) agent�s

cost 1�
02 y2it of selecting activity level yit. If there is a large gap between i�s current decision yit and his/her

recent previous decision yi;t�1, the term

0
2 (yit � yi;t�1)

2 may give a high penalty on i�s payo¤, therefore,

it may cause persistency on i�s behavior. The parameter 
0 captures the persistent tendency of agents�

choices. The term 1�
0
2 y2it is a kind of social cost, which prevents an agent from choosing an extremely high

e¤ort.

At time t, agent imaximizes his/her payo¤ui (yit; Y�i;t; Yn;t�1; �it) where Y�i;t = (y1t; � � � ; yi�1;t; yi+1;t; � � � ; ynt)0.

It means that agent i knows the optimum choices Y�i;t of others. The �rst order conditions of such optimiza-

tion problems give equation (3) which characterizes a NE at time t. Since each agent only maximizes his/her

per period payo¤, this model assumes agents are myopic in their decisions. In this project, we attempt to go

beyond myopic behaviors of agents. We consider an agent�s intertemporal choice problem and characterize

the NE in an in�nite horizon in order to derive an estimating equation.11 Under the linear-quadratic payo¤

(4), this will result in a new spatial dynamic panel data (SDPD) model.

2.2 Intertemporal choices

The main feature of our model is that agents are not myopic but rational to expect what would happen

in the future based on their available information. An agent considers a series of his/her (expected) future

payo¤s when he/she makes a current decision based on currently available information, and he/she expects

that future realized decisions of all agents will result in an NE. Let Bit be the tth�period information set of

agent i�s perceivable events and it is de�ned by

Bit = �
�
fyjsgnj=1 j

t�1
s�1;

�
�js
	n
j=1

jts�1
�
;

Alternatively, Engsted and Haldrup (1994) employ the following quadratic adjustment cost for analyzing the demand for labor,


0(lt � l
�
t )
2 + (lt � lt�1)2

where lt is the t�period labor demand, l�t denotes the steady-state level of the variable lt and parameter 
 is the relative cost

parameter.

However, if we consider 1�
0
2
(yit�y�)2 where y� denotes a time-invariant social norm showing agents�stereotype, identi�cation

of y� is di¢ cult (in the sense of econometrics). In case of an econometric model based on a static framework, y� will be absorbed

in the intercept. In the case of dynamic one, it will be a part of individual �xed e¤ects.
11The derivation can also be done for a �nite horizon case if one knows the terminal period.
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where � (�) denotes the ���eld12 generated by the argument inside. This speci�cation is assumed to be a

complete information game from the past to the current period t with uncertainty only for future periods.

The �it contains both time-invariant �
iv
i and time-varying �

v
it individual characteristics (some of them might

not be observable by econometricians).

To understand the implication of intertemporal choices on spatial interactions, it will be simpler to

consider an intertemporal choice problem with two periods. Denote �nt = (�1t; � � � ; �nt)0 for each t. Given

(Yn0;�n1), agent i (i = 1; � � � ; n) is assumed to maximize the expected discounted intertemporal payo¤

for t = 1 and 2: at t = 1, ui(Yn1; Yn0; �i1) + �E (ui(Yn2; Yn1; �i2)jBi1); and at t = 2 : ui(Yn2; Yn1; �i2), by

sequentially selecting yit for t = 1; 2. By considering the subgame perfect NE (SPNE) economic activities,

the agent i�s equilibrium decision at the period 1 is

y�i1(Yn0;�n1) = 
0yi0 + �0wi:Yn0 + �0wi:Y
�
n1(Yn0;�1n) + �

�
�ie

0
iA
trad
n Y �n1(Yn0;�n1)� 
0y�i1(Yn0;�n1)

�
+�i1 + ��ie

0
iS
�1
n E(�2njBi1)

where Atradn = S�1n (
0In + �0Wn) and �i =
@e0iS

�1
n (
0In+�0Wn)Y1

@yi1
= e0iA

trad
n ei. The quantity �i means a

marginal change of the future expected equilibrium decisions of i corresponding to changing yi1.13 Let

�n = Diag(A
trad
n ). Then, the NE vector at t = 1 can be characterized by a modi�ed SAR equation:

Y �n1(Yn0;�n1) = �0WnY
�
n1(Yn0;�n1) + �

h
�nA

trad
n � 
0In

i
Y �n1(Yn0;�n1) + (
0In + �0Wn)Yn0

+�n1 + ��nS
�1
n E1(�2n)

where Et (�) denotes the mathematical conditional expectation on (Yn;t�1;�nt) at t = 1 and 2. Let Rn1 =

(1 + �
0) In � �0Wn � ��nAtradn . By assuming invertibility for Rn1, the unique NE can be characterized as

Y �n1(Yn0;�n1) = R
�1
n1 (
0In + �0Wn)Yn0 +R

�1
n1

�
�n1 + ��nS

�1
n E1(�2n)

�
. (5)

From equation (5), we see that taking into account the expected outcomes in the second period, as � > 0,

it brings in the additional spatial in�uence ��nAtradn Y �n1(Yn0;�n1) and the time in�uence �
0In due to their

e¤ects on possible future outcomes.
12 In a measure theoretical interpretation, the sequence of Bit�s is a �lteration on (
;Bi). 
 contains all possible outcomes

and Bi can be de�ned by

Bi=�
�
fyjsgnj=1 j

1
s�1;

�
�js
	n
j=1

j1s�1
�
:

Then, for t1 � t2, Bi;t1 � Bi;t2 � Bi, which means agents�knowledge increases over time.
13Since there is no additional future period, the expected NE decisions at t = 2 are E (Y �

n2(Yn1;�n2)jBi1) = Atradn Yn1 +

S�1n E (�n2jBi1) for all i:
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Based on recursion, we extend this two-period model to an in�nite horizon model. At each time t,

given Yn;t�1 = (y1;t�1; ; � � � ; yn;t�1)0 and �nt = (�1t; � � � ; �nt)0, each agent, say i, is assumed to maximize the

expected discounted intertemporal payo¤

ui (yit; Y�i;t; Yn;t�1; �it) +
1X
s=1

�sE
�
ui
�
Yn;t+s; Yn;t+s�1; �i;t+s

�
jBit
�

(6)

by selecting yit. The time-discounting factor � 2 [0; 1) is introduced to give weights on agent�s future choices.

The main reason considering an in�nite horizon problem is to allow that possibility, and in that case one

can get a same functional form (over time periods) of an estimable equation with given information.14

2.3 Nash equilibrium characterization

In this subsection, we characterize the NE. In the in�nite horizon model, the Markov perfect equilibrium

(hereafter, MPE) characterizes the equilibrium strategies of all agents as best responses to one another and

helps to yield a unique equilibrium equation. "Markov" means that agent i�s tth-period optimal strategy only

depends on the state variables (Yn;t�1;�nt) and does not rely on other earlier parts of its histories (Maskin

and Tirole (1988a)). "Perfect" means that the NE constructs an optimizing behavior of each individual

for all possible uncertain future states. Hence, an MPE is a re�ned version of subgame perfect NE. As

its old de�nition is "closed-loop equilibrium", the de�nition of the MPE involves a dynamic programming

equation (the Bellman equation).15 Since the tth�period optimal decisions only depend on (Yn;t�1;�nt)

and, under the Markov assumption other past histories and exogenous characteristics are irrelevant to the

current decision-making, E (�jBit) = E (�jYn;t�1;�nt) for all i = 1; � � � ; n. Hence, we can simply de�ne the

conditional expectation operator Et (�) by Et (�) = E (�jYn;t�1;�nt). Also, time itself is not payo¤-relevant,

so we can drop the subscript "t" from agents�optimal policy functions y�it(Yn;t�1;�nt) (for i = 1; � � � ; n) in

the de�nition of MPE.

14From a panel data set, in practice, a researcher might not know initial and terminal periods of agents�decision-making.

When we consider a time-invariant equation as an estimating model, utilizing that model is available without concerning speci�c

time period t relative to a �nite terminal period.

In perspective of economics, employing an in�nite horizon model is prevalent in a lot of theoretical and/or empirical studies.

Even though agents actually have a terminal decision-making period, they might keep the same pattern of decision-making at

the terminal period because of (i) leaving a bequest, (ii) keeping a nice reputation and so on.
15For more information in MPE, refer to Maskin and Tirole (1988a, 1988b, 2001) and Chapter 7.6. in Ljungqvist and Sargent

(2012).
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De�nition 1 (Markov perfect equilibrium) A MPE will be a set of value functions Vi (�) (i = 1; � � � ; n)

and a set of policy functions fi (�) (i = 1; � � � ; n) such that

(i) (Markov strategy) y�it(Yn;t�1;�nt) = fi (Yn;t�1;�nt),

(ii) given f1; � � � ; fi�1; fi+1; � � � ; fn, Vi satis�es the Bellman equation

Vi(Yn;t�1;�nt) = maxyit

�
ui
�
yit; Y

�
�i;t(Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
Vi(yit; Y

�
�i;t(Yn;t�1;�nt);�n;t+1)

�	
(7)

where Y ��i;t(Yn;t�1;�nt) =
�
y�1t(Yn;t�1;�nt); � � � ; y�i�1;t(Yn;t�1;�nt); y�i+1;t(Yn;t�1;�nt); � � � ; y�nt(Yn;t�1;�nt)

�0
,

and

(iii) (principle of optimality) the policy function fi (�) = y�it (�) attains the right side of the Bellman

equation (7).

The principle of optimality characterizes the equivalent relationship between the two solutions to the

intertemporal choice problem (6) and the functional equation (7). In other words, given (Yn;t�1;�nt),

Vi(Yn;t�1;�nt) = ui (Y
�
nt (Yn;t�1;�nt) ; Yn;t�1; �it) + �Et

�
Vi(Y

�
nt (Yn;t�1;�nt) ;�n;t+1)

�
= ui (Y

�
nt (Yn;t�1;�nt) ; Yn;t�1; �it)

+
1X
s=1

�sEt
�
ui
�
Y �n;t+s

�
Yn;t+s�1;�n;t+s

�
; Y �n;t+s�1

�
Yn;t+s�2;�n;t+s�1

�
; �i;t+s

��
where Y �t (Yn;t�1;�nt) = (f1 (Yn;t�1;�nt) ; � � � ; fn (Yn;t�1;�nt))

0.

Since payo¤ (4) is linear-quadratic and there is a time-discounting factor �, the agent i�s intertemporal

choice problem in an in�nite horizon setting belongs to a discounted linear regulator problem. The agent

i�s value function Vi (�) takes the form

Vi (Yn;t�1;�nt) = Y
0
n;t�1QiYn;t�1 + Y

0
n;t�1Li�nt + �

0
ntGi�nt + ci (8)

for some n � n matrices Qi, Li, Gi, and a scalar ci for each i = 1; � � � ; n. Note that Qi, Li, Gi and ci are

the unique solutions of the algebraic matrix Riccati equations stemming from a recursive relationship.16 To

have a well-de�ned Bellman equation (a recursive relationship), Vi (�) should be a continuous and bounded
16Formation of the algebraic matrix Riccati equations can be found in Appendix A. When we are only interested in agents�

optimal policies rather than values, computational advantages are enjoyable since obtaining Qi and Li is su¢ cient for that.

This fact is consistent with that Howard�s improvement algorithm (policy function iteration) often converges faster than value

function iteration. For more details in the Riccati equation and relevant issues, refer to Chapters 3 and 5 in Ljungqvist and

Sargent (2012).
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function. When we consider a conventional intertemporal choice problem in economics, a choice set is

usually limited by a budget or a resource constraint. Due to the existence of a constraint, agent�s value

will not be explosive, so it becomes continuous and bounded. In our problem, however, while there is no

explicit constraint on agents�choices, there are costs which limit choices. The Bellman equation (7) can be

characterized by using the maximum operator T :

Vi(Yn;t�1;�nt) = T (Vi) (Yn;t�1;�nt) (9)

= max
yit

�
ui
�
yit; Y

�
�i;t(Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
Vi(yit; Y

�
�i;t(Yn;t�1;�nt);�t+1)

�	
;

where the functional solution Vi (�) will be a �xed point of the operator T in an in�nite horizon setting.

The existence and uniqueness of the value functions Vi (�)�s for all agents can be guaranteed by imposing

regularity conditions on ui (�), Wn, and strength of interactions so that T is a contraction mapping.17 For

this, de�ne

Q�n =
h
(Q1 +Q

0
1) e1; � � � ; (Qn +Q

0
n) en

i0
and L�n =

h
L01e1; � � � ; L0nen

i0
.

Assumption 2.1 We assume

(i) (Process of �vnt) For each t, �
v
n;t+1 = �n�

v
nt + �n;t+1 where k�nk < 1, k�k denotes a proper matrix

norm, �vnt = (�
v
1t; � � � ; �vnt)

0, Et
�
�n;t+1

�
= 0 and Et

�
�n;t+1�

0
n;t+1

�
= 
� which is positive de�nite.

(ii) For each i = 1; � � � ; n, all entries of Qi, Li, Gi and ci are bounded.

Under Assumption 2.1 (i), we have a linear expectation Et
�
�vn;t+1

�
= E

�
�vn;t+1j�vnt

�
= �n�

v
nt and

other parts of histories (e.g., �vn;t�1, �
v
n;t�2, � � � ) are not relevant.18 Since we assume k�nk < 1 and

Et
�
�n;t+1�

0
n;t+1

�
= 
� > 0, it implies maxi=1;��� ;n suptEt

����i;t+1��2� < 1. If some elements of �n;t+1 are

invariant over time, it would be reasonable to assume them to be known for all agents, then corresponding

coe¢ cients in �n would be one and �n;t+1 would be zero. By controlling Qi, Li, Gi and ci, the restrictions of

Assumption 2.1 (iii) help to avoid agents�extreme decisions so that lifetime values would not be explosive.

The restriction on Qi makes manageable dependence between Yn;t�1 and Ynt. The restriction on Li comes

from forward-looking features of our model, but would not appear in a myopic model. By imposing this

restriction, expected remote future exogenous e¤ects on the current decisions become negligible.19

17The detailed arguments can be found in Appendix A and our supplementary �le.
18The linear conditional expectation would likely be used for practical estimation. Theoretically, it can be generalized to

nonlinear functions if needed and desirable. It is convenient in notation here.
19Note that Gi and ci are not relevant to agents�equilibrium decisions. However, controlling them is needed to have bounded

Vi�s.
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As T is a contraction mapping, with an initial guess function V (0) (�), it can iteratively generate a

sequence of functions V (j) (�) such that V (j) (�) = T
�
V (j�1)

�
(�), and the value function V will be the limiting

value, i.e., Vi (�) = limj!1 T
�
V
(j�1)
i

�
(�) for each agent i.20 The Bellman equation thus characterizes the

value function. With an available limiting value Vi (�), the agent i�s optimum activity yit can be solved from

the maximization problem with

y�it (Yn;t�1;�nt) = argmax
yit

�
ui
�
yit; Y

�
�i;t(Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
Vi(yit; Y

�
�i;t(Yn;t�1;�nt);�t+1)

�	
:

For our model, because the payo¤ function ui (�) is a linear-quadratic form in Ynt and (Yn;t�1;�nt), we would

expect that the value function Vi (�) would be a linear-quadratic form. The Bellman equation with a �xed

point for Vi (�) would provide the characterization of coe¢ cients of the linear-quadratic form, which in turn,

may provide us a system of estimation equations for y�it (�) for i = 1; � � � ; n at each t. For the system of

estimation equations, we shall consider its estimation with methods such as the quasi-maximum likelihood

(QML) and a possibly simpler nonlinear two-stage least squares (NL2S).

Whether the value function is indeed in a linear-quadratic form can be revealed by �xed point iterations

of the contraction mapping T and be con�rmed by mathematical induction. Indeed, iterations of T would

provide value functions, and then optimized activities of agents can also be derived in a �nite horizon setting.

For either a �nite horizon or in�nite horizon setting, one should start with the initial V (0)i = 0 (i.e., a zero

initial function) and then have the iterations,

V
(j)
i (Yn;t�1;�nt) = maxyit

n
ui

�
yit; Y

�(j)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
V
(j�1)
i

�
yit; Y

�(j)
�i;t (Yn;t�1;�nt);�t+1

��o
;

for j = 1; 2; � � � . We see that with V (0)i = 0, V (1)i (�) is the value function of agent i at t being the terminal

period; V (2)i (�) would be the value function at t while t+1 were the terminal period, and in general, V (J+1)i (�)

would be the value function at t while t+ J were the terminal period. So for a model with a �nite horizon

of future J periods at time t, the corresponding optimum activity could be derived as

y
�(J+1)
it (Yn;t�1;�nt) = argmax

yit

8<: ui

�
yit; Y

�(J+1)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+�Et

�
V
(J)
i

�
yit; Y

�(J+1)
�i;t (Yn;t�1;�nt);�n;t+1

��
9=;

and the value function for agent i would be V (J+1)i (�).

For the situation with in�nite horizon, the iterations continue to in�nity and the stable system of NE is

Y �nt (Yn;t�1;�nt) = (�0Wn + �Q
�
n)Y

�
nt (Yn;t�1;�nt) + (
0In + �0Wn)Yn;t�1 + (In + �L

�
n�n)�nt; (10)

20This process is called "the method of successive approximations" (Stoket et al. (1989)).
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which captures the contemporaneous spatial spillover e¤ect through �0WnY
�
nt (Yn;t�1;�nt), dynamic e¤ect


0Yn;t�1, spatial- past time e¤ect or di¤usion �0WnYn;t�1, and additional expected spatial- future time e¤ect

�Q�nY
�
nt (Yn;t�1;�nt). The additional term �L�n�n�nt is due to expected future unknown explanatory factors

and disturbances, as �nt may contain time-varying and invariant explanatory variables and disturbances.

The spatial-time �lter of our model is de�ned by

Rn = Sn � �Q�n; where Sn = In � �0Wn: (11)

So the NE activity vector at time t is

Y �nt (Yn;t�1;�nt) = AnYn;t�1 +Bn�nt (12)

where An = R�1n (
0In + �0Wn) and Bn = R�1n (In + �L
�
n�n). Note that the transformation Rn characterizes

the interrelation among agents�decisions. Due to the forward-looking feature of our model, direct in�uences

(i.e., �rst-order spatial e¤ects) can come from all spatial units even for a sparse Wn.21 In the view of SAR

models, Rn would reduce to the conventional Sn = In � �0Wn when � = 0, i.e., with completely discount of

future values, or equivalently with myopic behavior. The transformation L�n can be represented by

L�n =
1X
m=1

�m�1Dn;m�
m�1
n

where Dn;m (m = 1; 2; � � � ) denote some n � n matrices, which only rely on �0, 
0, �0; and � with Wn.22

In estimating parameters, both the structural and nuisance parameters (related to �n) are included in the

linear term L�n, but the parts of structural parameters and nuisance one can be distinguished. Using Dn;1,

moreover, we �nd the relationship between Q�n and L
�
n:

Q�n = Dn;1 (
0In + �0Wn)� 
0In;

which implies

Y �nt (Yn;t�1;�nt) = (�0Wn + �Dn;1 (
0In + �0Wn)� �
0In)Y �nt (Yn;t�1;�nt) (13)

+(
0In + �0Wn)Yn;t�1 +

 
In +

1X
m=1

�mDn;m�
m
n

!
�nt

21For illustrative purposes, suppose there is no isolated spatial unit. Then, all elements in Q�n are nonzero. In our system

equation (10), note that the direct in�uences can be composed by two parts: (i) �0WnY
�
nt and (ii) �Q

�
nY

�
nt. If wij = 0, there is

no direct contemporaneous spill over e¤ect (i.e., �0wijyjt = 0 if wij = 0). Even for wij = 0, � [Q�n]ij yjt 6= 0 since agent i has in

mind j�s expected future indirect in�uences (i.e., future NE) in his/her current decision-making.
22Detailed forms and their derivations can be found in our Appendix A.
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and

Rn = (1 + �
0) In � �0Wn � �Dn;1 (
0In + �0Wn) (14)

Equation (13) describes a role of future relevant components combined with �. The additional components

�
0In and ��Dn;1 (
0In + �0Wn) in Rn are due to agents� forward-looking decision-making and they are

respectively counterparts of the time in�uence �
0In and the additional spatial in�uence ��nA
trad
n in the

two-period model. Note that e0iQ
�
n = e

0
i (Qi +Q

0
i) and e

0
iL
�
n = e

0
iLi for all i = 1; � � � ; n. To explain equation

(13), consider the �rst-order condition of agent i�s arbitrary t period problem:

y�it(Yn;t�1;�nt) = �it + 
0yi;t�1 + �0wi:Yn;t�1 + �0wi:Y
�
nt(Yn;t�1;�nt)

+�

 
eiQ

�
nY

�
nt(Yn;t�1;�t) +

1X
m=1

�m�1e0iDn;m�
m
n �nt

!
= �it + 
0yi;t�1 + �0wi:Yn;t�1 + �0wi:Y

�
nt(Yn;t�1;�nt)� �
0y�it(Yn;t�1;�nt)

+�e0iDn;1 ((
0In + �0Wn)Y
�
nt(Yn;t�1;�nt) + �n�nt) +

1X
m=2

�me0iDn;m�
m
n �nt:

Hence, we can observe �Dn;1 ((
0In + �0Wn)Y
�
nt(Yn;t�1;�nt) + �n�nt) plays a similar role to the additional

terms in the two-period model except the additional exogenous in�uences
P1
m=2 �

me0iDn;m�
m
n �nt. The

reason why only Dn;1 appears in Rn and Y �nt (Yn;t�1;�nt) just relies on the payo¤ relevant history Yn;t�1 are

due to the Markov property of agents�decision-making.

3 The econometric model

In this section, we construct an econometric model and suggest estimation methods for this model with a

panel data set. Assume a researcher has observed
�
fYnt; XntgTt=0

�
and Wn from a panel data set, where

Ynt is an n � 1 vector of dependent variables and Xnt = (Xnt;1 � � � ; Xnt;K) with Xnt;k = (x1t;k; � � � ; xnt;k)0

for k = 1; � � � ;K is an n � K matrix of (exogenous) explanatory variables.23 Each Ynt is supposed to be

realized as an equilibrium, (i.e., Ynt = Y �nt (Yn;t�1;�nt)). For estimation, we assume some structures on

�nt. First, �nt contains time-varying explanatory variables (Xnt) with coe¢ cients �0 =
�
�1;0; � � � ; �K;0

�0
and disturbances. In addition, �xed individual and time e¤ects can be introduced as components of �nt.

It is of interest to note for the in�nite horizon case, the modi�ed dynamic SAR equation can allow the

speci�cation of additive individual e¤ect c�i;0 and time e¤ect �t;0. With all individual e¤ects in a vector

c�n0 =
�
c�1;0; � � � ; c�n;0

�0 which is invariant over time, the corresponding �n would be an identity matrix, thus
23After the subsection, we add the subscript n (or T ) to point out that it is constructed by n (or T ) sample points.
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individual e¤ects would be reparameterized into cn0 = (In + �L�n) c
�
n0. For a time e¤ect �t;0ln, if �t;0�s are

random shocks which might in�uence every agent, then its corresponding �n is zero, so the time e¤ect �t;0ln

can be additive.

Hence, we have the model speci�cation

Ynt = (�0Wn + �Q
�
n)Ynt + (
0In + �0Wn)Yn;t�1 + (In + �L

�
n�n)Xnt�0 + cn0 + �t;0ln + Ent (15)

for t = 1; � � � ; T , where Ent = (�1t; � � � ; �nt)0 is an n-dimensional vector of i.i.d. disturbances with mean

zero and variance �2�;0 > 0. The main parameters are �0, 
0, �0, �0 and �
2
�;0. The time-discounting factor

� is considered as a primitive parameter and the incidental parameters in �n are assumed to be covered

by the process of Xnt�s already. We shall explore the estimation approach in the situation of both n and

T being large. In this situation, it is appropriate to consider the estimation of the structural parameter

vector �0 =
�
�0; 
0; �0; �

0
0; �

2
�;0

�0 together with the �xed individual and time e¤ects cn0 and �T0, where
�T0 = (�1;0; � � � ; �T;0)0 is the vector of time e¤ects.

As special cases of model speci�cation (15), we consider two cases because they have distinct features.

First, consider �0 = �0 = 0, which means no spatial interactions but not myopic due to individual own time

lag e¤ect. In this case, Rn = zIn such that z = 1 + �
0 +
��
20

1+�
0+
��
20

1+�
0+
��
20
���

. Using the formula of in�nite

continued fractions24, we have

Rn =
1

2

�
1 + �
0 +

q
1 + 2�
0 � �
20 (4� �)

�
In: (16)

To obtain validity of (16), 1 + 2�
0 � �
20 (4� �) > 0 is required. The second case is �0 = 0, which means

no direct contemporaneous spatial interaction. In conventional SDPD models, there is no contemporaneous

spatial interaction if �0 = 0. In our case, however, the forward-looking spatial �lter Rn becomes In � �Q�n
where the ith-row of Q�n is e

0
iA
0
n [�eie0i + � (Qi +Q0i)]An + 
0e0i [A0neie0i + (An � In)]. It implies that (i)

Q�n 6= 0n�n even for �0 = 0 since agents�consider the expected future di¤usion e¤ects, and (ii) Q�n would

be simpler than that of �0 = 0 case.

The reduced form of equation (15) is

Ynt = AnYn;t�1 +R
�1
n [(In + �L

�
n�n)Xnt�0 + cn0 + �t;0ln + Ent] (17)

where An = R�1n (
0In + �0Wn) with Rn = In � (�0Wn + �Q
�
n). Stability of system (15) means the spatial-

time dependence should be manageable. Note thatQ�n = Dn;1 (
0In + �0Wn)�
0In, L�n =
P1
m=1 �

m�1Dn;m�m�1n

24This is,
p
x2 + y = x+ y

2x+ y

2x+
y
���

.
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and Dn;m (m = 2; 3; � � � ) are generated by Dn;1. Then, assuming uniform boundedness of Dn;1 yields well-

de�nedness and uniformly boundedness of L�n. Hence, the current and expected future exogenous e¤ects

In + �L
�
n�n become manageable.

25 When absolute summability for
P1
j=1A

j
n and its uniform boundedness

in row and column sums hold, we have the in�nite summation representation

Ynt =
1X
j=0

AjnR
�1
n [(In + �L

�
n�n)Xn;t�j�0 + cn0 + �t�j;0ln + En;t�j ] : (18)

As n increases, kAnk < 1 and uniform boundedness of R�1n guarantees the variance of each yit is not explosive

and remains to be bounded.

4 Estimation

4.1 Quasi-maximum likelihood estimation

To estimate equation (15), we �rstly suggest the quasi-maximum likelihood estimation (QML) method,

which gives a fundamental background in parameter estimation. Asymptotic results for the QML estimator

are based on the increasing-domain asymptotic.26 Let � =
�
�; 
; �; �0; �2�

�0 be the set of structural parameters
for estimation, where �0 is the true value of �. The dimension of the parameters is 4 +K. To distinguish

the individual- or time-speci�c e¤ects for estimation, we denote cn = (c1; � � � ; cn)0 and �T = (�1; � � � ; �T )0.

Let �1;0 be the true �1 = (�; 
; �)0, which consists of parameters involved in L�n and Q
�
n. For each �1, we

de�ne Q�n (�1) and L
�
n (�1) with Rn (�1) = In � �Wn � �Q�n (�1) and An (�1) = R�1n (�1) (
In + �Wn). The

log-likelihood function with a panel with nT observations will be

lnLnT (�; cn;�T ) = �
nT

2
ln 2� � nT

2
ln�2� + T ln jRn (�1)j �

1

2�2�

TX
t=1

E 0nt (�; cn;�T ) Ent (�; cn;�T ) (19)

where Ent (�; cn;�T ) = Rn (�1)Ynt � (
In + �Wn)Yn;t�1 � (In + �L�n (�1)�n)Xnt� � cn � �tln:

The computation of this model will be more complicated than that of the conventional SDPD model.

Note that the conventional SDPD model is linear in parameters except �2�;0. But for the equation from the

intertemporal dynamic spatial model, the implied matrices Q�n and L
�
n are both functions of the parameters

�0, 
0, �0 and the time-discounting factor �. Hence, we need to numerically evaluate Q
�
n (�1) and L

�
n (�1) for

25 If c�n0 is a vector of uniformly bounded constants, cn0 = (In + �L
�
n) c

�
n0 is also uniformly bounded if kDn;1k < cD.

26 It means that sample observations are from a growing observation region (spatial domain). In case of the �xed-domain

asymptotic, a spatial domain (a region) is �xed and bounded and the number of observations in that spatial domain increases.
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each �1 (i.e., inner loop). As the total number of individual and time �xed e¤ects in cn0 and �T0 is n+ T ,

it is desirable to focus on the use of the concentrated log-likelihood function with the �xed e¤ects cn0 and

�T0 concentrated out. In consequence, the optimization of the concentrated log-likelihood function is on a

�xed number of structural parameters. As the �xed e¤ects are linear in the generalized SAR equation, they

can be estimated as regression coe¢ cients when other structural parameters in the equation are given.

Let �YnT = 1
T

PT
s=1 Yns, �YnT;�1 =

1
T

PT�1
s=0 Yns and �XnT =

1
T

PT
s=1Xns. With �xed individual and time

e¤ects concentrated out, the concentrated log-likelihood with parameter subvector � is

lnLnT;c (�) = �
nT

2
ln 2� � nT

2
ln�2� + T ln jRn (�1)j �

1

2�2�

TX
t=1

~E 0nt (�) Jn ~Ent (�) (20)

where ~Ent (�) = Rn (�1) ~Ynt � (
In + �Wn) ~Y
(�)
n;t�1 � (In + �L�n (�1)�n) ~Xnt� with ~Ynt = Ynt � �YnT , ~Y

(�)
n;t�1 =

Yn;t�1 � �YnT;�1, and ~Xnt = Xnt � �XnT in deviation from time mean, and Jn = In � 1
n lnl

0
n being the

deviation from group mean operator.27 From (20), we obtain the maximum likelihood estimators, �̂ml;nT =

argmax�2� lnLnT;c (�), where � denotes the parameter space of �. For computation, in particular, with a

large size sample, we shall put more attention on the evaluation of the determinant jRn (�1)j and its inverse

R�1n (�1). In the spatial literature, the suggestion by Lesage and Pace (2009) on a Taylor series analytic

expansion of the determinant jIn � �Wnj in � may be useful. For the inverse of Rn (�1), one might also

consider the Neumann series expansion. That Neumann series expansion can be justi�ed by the stability of

our spatial dynamic process.28

De�ne Rn� (�1) =
@Rn(�1)
@� , Rn
 (�1) =

@Rn(�1)
@
 , Rn� (�1) =

@Rn(�1)
@� , L�n�(�1) =

@L�n(�1)
@� , L�n
(�1) =

@L�n(�1)
@
 ,

and L�n�(�1) =
@L�n(�1)
@� . Note that Rn�, Rn
 , Rn�, L�n�, L

�
n
 , and L

�
n� denote those quantities at � = �0. Here

are assumptions for asymptotic properties of �̂ml;nT . Subsequent asymptotic analysis of the QMLE extends

properly that in Yu et al. (2008).

Assumption 4.1 (i) The diagonal elements of Wn are zero.

(ii) Wn is strictly exogenous and uniformly bounded in row and column sums in absolute value.

Assumption 4.2 For all i and t, �it v i:i:d:
�
0; �2�;0

�
, and E j�itj4+� <1 for some � > 0.

27Note that we cannot eliminate the time �xed e¤ects by introducing a traditional orthonormal transformation like Lee and

Yu (2010) and derive a partial likelihood for estimation because the spatial �lter matrix Rn does not have a row-normalization

property.
28We introduce those approximation methods for calculating jRn (�1)j and R�1n (�1) in our supplementary �le.
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Assumption 4.3 The parameter space � of � is compact. The true parameter �0 is in int(�).

Assumption 4.4 fXntgTt=1, f�t0g
T
t=1 and cn0 are conditional upon nonstochastic values with

supn;T
1
nT

Pn
i=1

PT
t=1 jxit;kj

2+� <1 for all k, supT
1
T

PT
t=1 j�t0j

2+� <1 and supn
1
n

Pn
i=1 jci;0j

2+� <1 for

some � > 0.

Assumption 4.5 Let �1 be the compact parameter space for �1.

(i) Rn (�1) is invertible for �1 2 �1. Q�n (�1) and L�n (�1) uniformly bounded in both row and column

norms, uniformly in �1 2 �1.

(ii) At any � 2 int (�), the �rst, second and third derivatives of Rn (�1) and L�n (�1) with respect to �1
exist and are uniformly bounded in both row and column sum norms, uniformly in �1 2 �1.

(iii)
P1
h=1 abs

�
Ahn
�
is uniformly bounded in both row and column sum norms, where [abs(An)]ij =���[An]ij���.

(iv) k�Dn;1�nk < 1 where k�k is a proper matrix norm.

Assumption 4.6 We assume that T goes to in�nity and n is an increasing function of T .

Assumption 4.1 is a standard assumption in spatial econometrics. By assuming uniform boundedness of

Wn, spatial dependence becomes not too large and manageable (spatial stability condition). Assumption

4.2 (i) assumes i:i:d: disturbances across i and t for simplicity. Assuming a compact parameter space

(Assumption 4.3) is for theoretical analyses (for details, refer to Chapter 4 in Amemiya (1985)). Assumption

4.4 means the conditioning argument and is for simplicity of asymptotic analyses for the QMLE. In our

economic environment, Xnt and �t0 are stochastic, so agents can make predictions about their future values.

For estimation of the implied structural equation (15), Xnt, cn0 and �t0 are conditional upon as constants and

we introduce the higher than the second empirical moment restrictions for Xnt, �t0 and cn0.29 Assumption

4.5 is for well-de�nedness of our model. Invertibility of Rn(�1) for �1 2 �1 guarantees for existence and

uniqueness of the equilibrium system (15) for any �1 2 �1 (Assumption 4.5 (i)). Uniform boundedness

assumption for Rn(�1) for �1 2 �1 means spatial dependence of dependent varaibles from our model is

manageable (stable spatial process). Assumption 4.5 (ii) is a trivial requirement. Existence and uniformly

boundedness of the �rst and second derivatives of Rn (�1) and L�n (�1) should be required so that
@ lnLnT;c(�)

@�

29By Kelejian and Prucha (2001), these higher than the second moment restrictions (with the higher than the fourth-moment

restriction for �it) are required to apply a central limit theorem for a linear quadratic form.
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and @2 lnLnT;c(�)

@�@�0
for � 2 � are well-de�ned. The reason for having the third derivatives of Rn (�1) and L�n (�1)

is for the uniform convergence of the second order derivatives of the log-likelihood function. Assumption 4.5

(iii) plays a crucial role to study the asymptotic properties of �̂ml;nT by restricting dependence between time

series and between cross sectional units so that the process is stable in both the space and time dimensions.

Under Assumption 4.5 (iii) and large T , the initial value Yn0 does not a¤ect asymptotic properties of

�̂ml;nT . A su¢ cient condition for absolute summability is kAnk1 < 1, so the in�nite sum
P1
h=0A

h
n exists

and is (In � An)�1. If we have Assumption 4.5 (iv),
P1
h=1 �

h�1Dhn;1�
h�1
n = Dn;1 (1� �Dn;1�n)�1.30 It

means expected future exogenous e¤ects become manageable, so the remote (expected) future exogenous

e¤ects on Ynt are small to be asymptotically ignorable. Assumption 4.6 is needed to consistently estimate

the individual and time dummies. Large T is for consistent estimation of cn0 and large n is required for

consistent estimation of �t0.

For asymptotic analysis of �̂ml;nT , note that 1p
nT

@ lnLnT;c(�0)
@� takes the following linear-quadratic form31:

1p
nT

TX
t=1

h
By;n ~Y

(�)
n;t�1 +Dnt

i0
Jn ~Ent +

1p
nT

TX
t=1

h
~E 0ntB0q;nJn ~Ent � �2�;0tr (Bq;n)

i
(21)

where By;n and Bq;n are some n � n uniformly bounded (in n) matrices and Dnt denotes some time-

varying nonstochastic component. By (21), �̂ml;nT can be asymptotically biased because �YnT;�1 and �EnT are

correlated even for large n and T due to many incidential paramaters of individual and time e¤ects. To derive

the asymptotic distribution of �̂ml;nT and adjust its asymptotic bias, we can decompose 1p
nT

@ lnLnT;c(�0)
@� into

an uncorrelated part and a correlated part. For this, consider the decomposition Jn ~Y
(�)
n;t�1 = Jn ~Y

(�)(u)
n;t�1 �

Jn �UnT;�1 where

Jn ~Y
(�)(u)
n;t�1 = Jn

" 1X
h=0

AhnR
�1
n

h
(In + �L

�
n�n) ~Xn;t�j�1�0 + ~�t�h�1;0ln

i#
+ Jn

" 1X
h=0

AhnR
�1
n En;t�h�1

#
and �UnT;�1 = 1

T

PT�1
t=0

P1
h=0A

h
nR

�1
n En;t�h.

Using the decomposition, we have 1p
nT

@ lnLnT;c(�0)
@� = 1p

nT

@ lnL
(u)
nT;c(�0)

@� ��1;nT ��2;nT . Note that

1p
nT

@ lnL
(u)
nT;c (�0)

@�
=

1p
nT

TX
t=1

h
By;n ~Y

(�)(u)
n;t�1 +Dnt

i0
JnEnt +

1p
nT

TX
t=1

�
E 0ntB0q;nJnEnt � �2�;0tr (JnBq;n)

�
,

(22)

which determines the asymptotic distribution of �̂ml;nT . The terms �1;nT and �2;nT characterize asymp-

totic biases. Note that �1;nT and �2;nT are respectively
q

T
n

h�
By;n �UnT;�1

�0
Jn �EnT + �E 0nTB0q;nJn �EnT

i
and

30Since Dn;h�s (h = 2; 3; � � � ) are generated by Dn;1, L�n =
P1

h=1 �
h�1Dn;h�

h�1
n is uniformly bounded in n.

31The formulas of @ lnLnT;c(�0)
@�

can be found in Appendix B.
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q
T
n

�
�2�;0 (tr (Bq;n)� tr (JnBq;n))

�
where the detailed forms of �1;nT and �2;nT can be found in Appendix

B. �1;nT comes from estimating cn0 while �2;nT is generated from estimating f�t0gTt=1. The main sto-

chastic components of �1;nT are �U 0nT;�1Bn �EnT , and �E 0nTBn �EnT where Bn denotes some uniformly bounded

(in n) matrix in row and column sum norms. However, �2;nT is determined by non-stochastic components,

tr
�
�Rn�R�1n

�
�tr

�
Jn(�Rn�R�1n )

�
, tr
�
�Rn
R�1n

�
�tr

�
Jn(�Rn
R�1n )

�
, tr
�
�Rn�R�1n

�
�tr

�
Jn(�Rn�R�1n )

�
,

and 1
2�2�;0

. By Lemmas 2.1 and 2.2 in our supplementary �le, �1;nT =
p

n
T an;1(�0) +O

�p
n
T 3

�
+Op

�
1p
T

�
,

where an;1(�0) = O(1), and, �2;nT =
q

T
nan;2(�0), where an;2(�0) are O(1). The formulas of an;1(�0) and

an;2(�0) can be found in Appendix B.

Consistency and asymptotic normality

First, consider consistency of �̂ml;nT . For each � 2 �, de�ne

QnT (�) =
1

nT
E lnLnT;c (�) = �

1

2
ln 2� � 1

2
ln�2� +

1

n
ln jRn (�1)j �

1

2�2�

1

nT
E

 
TX
t=1

~E 0nt (�) Jn ~Ent (�)
!

To show consistency, the �rst step is verifying uniform convergence of sample average of the log-likelihood

function, sup�2�
�� 1
nT lnLnT;c (�)�QnT (�)

�� p! 0 as n, T !1. After this, we show QnT (�) is well-behaved

at any point � in � by verifying uniform equicontinuity of QnT (�).32 Obtaining the identi�cation uniqueness

completes the proof of consistency. The assumption below describes the identi�cation uniqueness conditions.

Assumption 4.7 (Identi�cation) To identify �0, we assume

(i) limn;T!1
h
1
n ln

���2�;0R�10n R�1n
��� 1

n ln
����2�;nT (�1)R�10n (�1)R

�1
n (�1)

���i 6= 0 for �1 6= �1;0 where
�2�;nT (�1) =

1

nT

TX
t=1

E

0@ ~Znt (�1)� ~Xnt (�1)" TX
s=1

~X0ns (�1) Jn ~Xns (�1)

#�1 TX
s=1

~X0ns (�1) Jn ~Zns (�1)

1A0

�Jn

0@ ~Znt (�1)� ~Xnt (�1)" TX
s=1

~X0ns (�1) Jn ~Xns (�1)

#�1 TX
s=1

~X0ns (�1) Jn ~Zns (�1)

1A
+
�2�;0
n� 1 tr

�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
+ o(1);

~Znt (�1) =
�
Rn (�1)R

�1
n (
0In + �0Wn)� (
In + �Wn)

�
~Y
(�)
n;t�1+Rn (�1)R

�1
n

h
~Xnt�0 + ~�t;0ln

i
, and ~Xnt (�1) =

(In + �L
�
n (�1)�n)

~Xnt with ~Xnt = ~Xnt (�1;0).

(ii) limT!1 1
nT

PT
t=1

~X0ntJn ~Xnt exists and is nonsingular.
32Formally, lim sup

T!1
sup�02� sup

k���0k��
jQnT (�)�QnT (�0)j ! 0 as � ! 0.
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Let QnT;c (�1) = QnT

�
�1; �nT (�1) ; �

2
�;nT (�1; �nT (�1))

�
where �2�;nT (�1; �) = argmax

�2�

QnT
�
�1; �; �

2
�

�
and �nT (�1) = argmax

�
QnT

�
�1; �; �

2
�

�
. Assumption 4.7 (i) comes from the information inequality for the

concentrated expected log-likelihood function QnT;c (�1). Note that

�2�;nT (�1) =
1
nTE

�PT
t=1

~E 0nt (�1; �nT (�1)) Jn ~Ent (�1; �nT (�1))
�
and this expectation does not depend on a

normal distribution, but it comes from the correctly speci�ed �rst two moments. Also, we observe �2�;nT (�1) =

�2�;nT;1(�1) + �
2
�;nT;2(�1) + o (1) where

�2�;nT;1(�1) =
1

nT

TX
t=1

E
�
~Znt (�1)� ~Xnt (�1)�nT (�1)

�0
Jn

�
~Znt (�1)� ~Xnt (�1)�nT (�1)

�

and �2�;nT;2(�1) =
�2�;0
n�1 tr

�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
. Note that Jn ~Znt (�1) is an approximation function for

Jn ~Xnt�0 since Jn ~Znt (�1;0) = Jn ~Xnt�0. Hence, the �rst term, �2�;nT;1(�1), is a quadratic function of the di¤er-

ence between the two approximation functions for Jn ~Xnt�0 while �2�;nT;2(�1) = E
�
~E 0ntR�10n R0n (�1) JnRn (�1)R

�1
n
~Ent
�
,

which is strictly positve. When �1 approaches to �1;0, �2�;nT;1(�1) is close to zero. Hence, �
2
�;nT;2(�1) will play

a main role in identifying �1;0 if �1 is around �1;0.33 Identifying �0 is done by Assumption 4.7 (ii), which

is analogous to identi�cation of �0 in a standard linear regression once �1;0 is identi�ed. When replacing

~Xnt by ~Xnt, we can observe this feature and Assumption 4.7 (ii) becomes equivalent to the identi�cation

condition of �0 in conventional SDPD models. These conditions (i) and (ii) validate the strict information

inequality (in the limit at least) so that �0 is globally identi�able.

Here is the theorem showing consistency of �̂ml;nT .

Theorem 4.1 Suppose Assumptions 4.1 - 4.7 hold. Then, �̂ml;nT
p! �0 as T !1.

Next, we will derive the asymptotic distribution of �̂ml;nT . Denote ��0;nT = �E
�
1
nT

@2 lnLnT;c(�0)

@�@�0

�
and


�0;nT = E

�
1
nT

@ lnL
(u)
nT;c(�0)

@�

@ lnL
(u)
nT;c(�0)

@�0

�
. For that, we introduce the following assumption.

Assumption 4.8 lim infn;T!1 �min (
�0;nT ) > 0 and lim infn;T!1 �min (��0;nT ) > 0 where �min (�) denotes

the smallest eigenvalue.

Due to Assumption 4.5 (ii), we have continuity of ��;nT = �E
�
1
nT

@ lnLnT;c(�)

@�@�0

�
in � 2 N (�0) where

N (�0) denotes some neighborhood of �0. Hence, assuming infn;T �min (��0;nT ) > 0 implies that ��;nT is

also nonsingular for any � 2 N (�0). The derivation of the asymptotic normality of �̂ml;nT will be based on

33Detailed comments for identi�cation can be found in the supplementary �le.
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the mean value theorem, and the central limit theorem for martingale di¤erence arrays to 1p
nT

@ lnL
(u)
nT;c(�0)

@� .

The theorem below gives the asymptotic distribution of �̂ml;nT .

Theorem 4.2 Suppose Assumptions 4.1 - 4.8 hold. Then,

p
nT
�
�̂ml;nT � �0

�
+

r
n

T
��1�0;nTan;1(�0) +

r
T

n
��1�0;nTan;2(�0) +Op

 
max

 r
n

T 3
;

r
T

n3
;

r
1

T

!!
d! N

�
0;��1�0 
�0�

�1
�0

�
;

where 
�0 = limT!1
�0;nT and ��0 = limT!1��0;nT .

By Theorem 4.2, we have the results: (i) if n
T ! 0, n

�
�̂ml;nT � �0

�
+ ��1�0;nTan;2 (�0)

p! 0, (ii) if

n
T ! c 2 (0;1),

p
nT
�
�̂ml;nT � �0

�
+
p
c��1�0;nTan;1 (�0) +

q
1
c�

�1
�0;nT

an;2 (�0)
d! N

�
0;��1�0 
�0�

�1
�0

�
, and

(iii) if nT !1, T
�
�̂ml;nT � �0

�
+��1�0;nTan;1 (�0)

p! 0. �̂ml;nT has an asymptotic bias of order O
�
max

�
1
n ;

1
T

	�
due to� 1

T �
�1
�0;nT

an;1 (�0)� 1
n�

�1
�0;nT

an;2 (�0). Hence, the con�dence interval for �̂ml;nT is not properly centered

at �0 even if n and T have the same order (that is, nT ! c 2 (0;1)). If n and T do not have the same order,

�̂ml;nT will be degenerated. Hence, a bias corrected estimator constructed by

�̂
c

ml;nT = �̂ml;nT �
1

T

h
���1�0;nTan;1(�)

i
j�=�̂ml;nT �

1

n

h
���1�0;nTan;2(�)

i
j�=�̂ml;nT , can be valuable.

The assumption below is introduced for �̂
c

ml;nT .

Assumption 4.9
P1
h=0A

h
n (�1) and

P1
h=1 hA

h�1
n (�1) are uniformly bounded in either row or column sums

uniformly in a neighborhood of �0.

Under Assumption 4.9, we haver
n

T

�h
��1�;nTan;1(�)

i
j�=�̂ml;nT � �

�1
�0;nT

an;1(�0)
�

p! 0 and

r
T

n

�h
��1�;nTan;2(�)

i
j�=�̂ml;nT � �

�1
�0;nT

an;2(�0)
�

p! 0

when n
T 3
! 0 and T

n3
! 0. Hence, we can apply the asymptotic equivalence.34

34That is, if (i)

p
nT

�
�̂
c

ml;nT � �0
�
�
p
nT

�
�̂ml;nT �

1

T

�
���1�0;nT an;1(�0)

�
� 1

n

�
���1�0;nT an;2(�0)

�
� �0

�
p! 0

and (ii)
p
nT

�
�̂ml;nT � 1

T

�
� (��0;nT )

�1 an;1(�0)
�
� 1

n

h
���1�0;nT an;2(�0)

i
� �0

�
d! N (0; �) where � denotes the asymptotic

variance derived in Corollary 4.3, we also have
p
nT

�
�̂
c

ml;nT � �0
�

d! N (0; �).
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Corollary 4.3 Under the additional Assumption 4.9, n
T 3
! 0 and T

n3
! 0, then

p
nT
�
�̂
c

ml;nT � �0
�

d! N
�
0;��1�0 
�0�

�1
�0

�
:

For the bias-adjusted estimator �̂
c

ml;nT , if n and T are not too much large relative to each other, it can

have a nondegenerate distribution and its con�dence interval can properly be centered. For �nite samples

performance, results from Monte Carlo simulations are in Section 5.

Next, consider asymptotic properties of ĉn;ml(�̂ml;nT ) and �̂t;ml(�̂ml;nT ) for t = 1; � � � ; T . Recovering cn0
and �t0�s is meaningful because they are employed to obtain welfare measures.35 To identify cn0 and �t0�s,

we impose the normalization restriction
PT
t=1 �t0 = 0 because ci;0 + �t0 = (ci;0 + x) + (�t0 � x) for any

x. Since T goes to in�nity and n is an increasing function of T , consistently estimating cn0 and �t0�s is

feasible. For each �, de�ne r̂nt (�) = Rn (�1)Ynt � (
In + �Wn)Yn;t�1 � (In + �L�n (�1)�n)Xnt�. Because

we impose
PT
t=1 �t0 = 0, ĉn;ml(�) =

1
T

PT
t=1 r̂nt(�) and �̂t;ml(�) =

1
n l
0
n [r̂nt(�)� ĉn;ml(�)]. Two estimates for

cn0 + �t0ln + Ent can be considered: (i) r̂nt
�
�̂ml;nT

�
, and (ii) r̂nt

�
�̂
c

ml;nT

�
. The theorem below shows their

asymptotic properties.

Theorem 4.4 Suppose Assumptions 4.1 - 4.8 hold. Additionally, assume
PT
t=1 �t0 = 0. Then,

(i) for each i, if
p
T
n ! 0,

p
T (ĉi;ml � ci;0)

d! N(0; �2�;0) where ĉi;ml = ĉi;ml(�̂ml;nT ) and they are asymp-

totically independent with each other.

(ii) For each t, if
p
n
T ! 0,

p
n (�̂t;ml � �t0)

d! N(0; �2�;0) where �̂t;ml = �̂t;ml(�̂ml;nT ) and they are

asymptotically independent with each other.

(iii) Assume Assumption 4.9, n
T 3
! 0 and T

n3
! 0. For each i,

p
T
�
ĉci;ml � ci;0

�
d! N(0; �2�;0) where

ĉci;ml = ĉi;ml(�̂
c

ml;nT ). For each t,
p
n
�
�̂ct;ml � �t0

� d! N(0; �2�;0) where �̂
c
t;ml = �̂t;ml(�̂

c

ml;nT ). Asymptotic

independence holds like (i) and (ii).

Parts (i) and (ii) show that the conditions are symmetric for the other e¤ects. By Theorem 4.2, we

have the convergence rate of �̂ml;nT (i.e., �̂ml;nT � �0 = Op

�
max

�
1p
nT
; 1T ;

1
n

��
). Then, ĉi;ml � ci;0 =

1
T

PT
t=1 �it+Op (1) �




�̂ml;nT � �0


 and �̂t;ml��t0 = 1
n

Pn
i=1 �it+Op (1) �




�̂ml;nT � �0


. Hence, the conditions
p
T
n = o (1) for ĉi;ml and

p
n
T = o (1) for �̂t;ml come respectively from36

p
T (ĉi;ml � ci;0) = 1p

T

PT
t=1 �it +

35 Identi�ed cn0 are employed to recover agents� time-invariant characteristics �ivi �s and �t;0�s represent common economic

shocks. For details, see the supplementary �le.
36 In conventional SDPD literature (e.g., Yu et al. (2008), and Lee and Yu (2012)), the convergence rate of the QMLE is

Op
�
max

�
1p
nT
; 1
T

��
. In this case, the condition

p
T
n
= o (1) for ĉi;ml is not required. Since we adopt the direct estimation
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Op

�
max

�
1p
n
; 1p

T
;
p
T
n

��
, and

p
n (�̂t;ml � �t0) = 1p

n

Pn
i=1 �it + Op

�
max

�
1p
n
; 1p

T
;
p
n
T

��
. Note that the

residuals r̂nt
�
�̂ml;nT

�
contain the individual- and time-dummy as an additive way. If T is large with small

n, there exists a O
�
1
n

�
bias for the regression coe¢ cients since there are only n observations for each time

dummy. For the estimate of individual e¤ects, ĉi;ml, so
p
T
n ! 0 would appear in its asymptotic distribution

normalized by 1p
T
. The symmetric argument can be applied to �̂t;ml.

Part (iii) means the ratio conditions of n and T can be relaxed when we employ the residuals based on

�̂
c

ml;nT . Corollary 4.3 implies �̂
c

ml;nT � �0 = Op

�
1p
nT

�
if n
T 3
! 0 and T

n3
! 0. Then,

p
T
�
ĉci;ml � ci;0

�
=

1p
T

PT
t=1 �it + Op

�
1p
n

�
, and

p
n
�
�̂ct;ml � �t0

�
= 1p

n

Pn
i=1 �it + Op

�
1p
T

�
. Since n

T 3
! 0 and T

n3
! 0 are

milder conditions than
p
T
n ! 0 and

p
n
T ! 0, estimating both cn0 and �T;0 via (ii) r̂nt

�
�̂
c

ml;nT

�
would be

bene�cial compared to employing r̂nt
�
�̂ml;nT

�
.

4.2 Nonlinear two-stage least squares (NL2S) estimation

In practical applications, we may like to have a robust estimator to unknown heteroskedasticity and/or

unknown serial/cross-sectional correlations. Under a limited information setting, the NL2S method can be

a reasonable estimation approach. In addition to possible robustness, it might have computational advantage

relative to the ML or QML methods by avoiding evaluating ln jRn (�1)j. In this subsection, we brie�y discuss

the implementation of this method.

For each t, let Znt be the n�q IV matrix where q � 4+K means the order condition of identi�ability. By

observing the form of additional endogenous component Q�nYnt, we can consider [Yn;t�1; Xnt] and its trans-

formations by
�
In;Wn;W

0
n;W

0
nWn;W

2
n ; � � �

�
as IVs. De�ne the sample moment function gLnT (�; cn;�T ) =

1
nT

PT
t=1 Z

0
ntEnt (�; cn; �t) and observe E

�
gLnT (�0; cn0;�T;0)

�
= 0q�1. Then, the NL2S estimator (NL2SE)

can be obtained by minimizing the objective function: gL0nT (�; cn;�T )
�
1
nT

PT
t=1 Z

0
ntZnt

��1
gLnT (�; cn;�T ).

37

For regularity conditions about IV Znt, we need to assume existence of plimn;T!1 1
nT

PT
t=1 Z

0
ntZnt and non-

singularity of it. Remaining conditions for consistency and asymptotic normality can be achieved by our

suggested assumptions for the QML method.38 In next section, we compare estimation results by the QML

and NL2S methods to investigate whether the NL2S estimation method could work well.

approach of estimating cn0 and �T;0, we have the di¤erent convergence rate of the QMLE.
37Since the incidental parameters cn0 and �T;0 are linear in Ent (�; cn; �t), the concentrated statistical objected function will

be gL0nT;c (�)
�

1
nT

PT
t=1 Z

0
ntZnt

��1
gLnT;c (�) where g

L
nT;c (�) =

1
nT

PT
t=1 Z

0
ntJn ~Ent (�).

38For basic discussions on the NL2SE, refer to Theorems 8.1.1 and 8.1.2 in Amemiya (1985).
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5 Simulations

In this section, we report Monte Carlo simulation results on small sample performance of the QMLE. For

t = 1; � � � ; T , the DGP for our simulation is

RnYnt = 
0Yn;t�1 + �0WnYn;t�1 +
KX
k=1

(In + �L
�
n�n)

�
�1;k;0In + �2;k;0Wn

�
Xnt;k + cn0 + �t0ln + Ent (23)

and the expectation function �n is speci�ed based on

Xnt;k = Ak;nXn;t�1;k + cn;k;0 + �t;k;0ln + Vnt;k (24)

for k = 1; � � � ;K where Ak;n = 
k;0In + �k;0Wn. We consider the joint estimation for the main parameter

vector �0 and the nuisance parameters
n

k;0; �k;0; �

2
V;k;0

oK
k=1

where �2V;k;0In is the variance of Vnt;k.
39

For sample sizes, we consider the combinations of n = 49, 81 and T = 10, 30. We generate our data

with 30 + T periods where the starting value is drawn from N (0n�1; In), but employ the last T periods

as our sample. This design makes the initial value Yn0 close to be in steady state. We experiment two

cases with the primitive �, (i) � = 0:5 (large discounted for the future) and (ii) � = 0:95 (small discounted

for the future). The cn0, cn;k;0, �t0, �t;k;0, Ent, and Vnt;k�s (k = 1; � � � ;K) are independently drawn from

the standard normal distribution. For Wn, a row-normalized rook matrix as for a chess board is utilized.

We consider K = 1; and �x 
0 = 0:4, �1;1;0 = 0:4, �2;1;0 = 0:4, �2�;0 = 1, 
1;0 = 0:4, �1;0 = 0:1 and

�2V;1;0 = 1 throughout the experiment. For (�0; �0), we consider four scenarios: (i) (�0; �0) = (0:2; 0:2), (ii)

(�0; �0) = (0:2;�0:2), (iii) (�0; �0) = (�0:2; 0:2) and (iv) (�0; �0) = (�0:2;�0:2). The tolerance level of

the inner loop is 0:0001 (evaluated by k�k1).40 We compare performance of four estimators, (i) the QMLE

�̂ml;nT (ii) the bias corrected QMLE �̂
c

ml;nT , (iii) QMLE as if � = 0 (denoted by �̂
S

ml;nT ) and (iv) the bias

corrected QMLE as if � = 0 (denoted by �̂
S;c

ml;nT ). That is, �̂
S

ml;nT and �̂
S;c

ml;nT are the QMLEs based on Lee

and Yu�s (2010). In order to evaluate performance of estimators, we consider four criteria: (i) empirical

bias, (ii) standard deviation (SD), (iii) empirical root mean square error (RMSE) and (iv) 95% coverage

39As a simpler alternative, we can consider a two-step estimation instead of the joint estimation. In the �rst step, the nuisance

parameters are estimated and generated regressors from the �rst step are used in the second step to estimate the structural

parameters �0. However, it sometimes might yield a bad statistical inference without taking into account the asymptotic

in�uence of the �rst step estimate through the generated regressors. See, e.g., Pagan (1984) and Murphy and Topel (1985). For

the empirical analyses, we also take the joint estimation.
40This level is also applied to our empirical analysis.
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probability (CP).41 The number of sample repetitions I is 400. The obtained MC results reported in Table

1 with � = 0:95 are summarized in Subsections 5.1 and 5.2.

5.1 The overall results

(i) The empirical biases of �̂ml;nT and �̂
c

ml;nT tend to decrease when n and T are large. In particular, we have

biases for 
̂ml;nT (
̂
c
ml;nT ), �̂

2
ml;nT (�̂

2;c
ml;nT ), 
̂1;ml;nT (
̂

c
1;ml;nT ), �̂1;ml;nT (�̂

c
1;ml;nT ) and �̂

2
V;1;ml;nT (�̂

2;c
V;1;ml;nT ),

which are reduced substantially as sample sizes become larger. While the empirical biases diminish when n

and T increase, contribution of large T for reducing biases is relatively larger compared to that of large n.

(ii) �̂
c

ml;nT performs better with smaller empirical biases and RMSE compared to those of �̂ml;nT . The

biases observed in 
̂ml;nT , �̂ml;nT , �̂
2
ml;nT , 
̂1;ml;nT , �̂1;ml;nT and �̂

2
V;1;ml;nT can be corrected by the bias

correction procedure.

(iii) In the case of �̂ml;nT , the coverage probabilities increase for all cases and approach to 0:95. The

coverage probabilities of �̂ml;nT also increase and are close to 0:95 when we increase n and T . Overall, the

results (i), (ii) and (iii) also hold for � = 0:5.42

(iv) For �̂
S

ml;nT and �̂
S;c

ml;nT , they do not have a good pattern of performance. The RMSEs and the coverage

probabilities of �̂
S

ml;nT and �̂
S;c

ml;nT even tend to increase after the bias correction. Also, this tendency does

not disappear for large n and T . For all cases, �̂
S

ml;nT and �̂
S;c

ml;nT do not seem to work well due to crucial

misspeci�cation errors.

5.2 The results for speci�c parameters

(�0) In terms of empirical biases and coverage probabilities, �̂
c

ml;nT works relatively better than �̂ml;nT .

For most cases, downward biases are observed. When �0 < 0, it seems that �̂ml;nT and �̂
c

ml;nT have relatively

low coverage probabilities.

Based on �̂
S;c

ml;nT when (n; T ) = (49; 10), the signs of misspeci�cation biases are positive if �0 > 0; but

41The 95% coverage probability is de�ned by

1

I
#I

�
[�0]l 2

�h
�̂
i
l
� 1:96p

nT

h
\��1�0 
�0�

�1
�0

i 1
2

ll
;
h
�̂
i
l
+
1:96p
nT

h
\��1�0 
�0�

�1
�0

i 1
2

ll

��
for l = 1; � � � ; 4 + 5K, I is the total number of sample repetitions�#I f�g denotes the number of counts of coverage, where,

�̂ is an estimate of �0 and \��1�0 
�0�
�1
�0

denotes a consistent estimate of ��1�0 
�0�
�1
�0
. We employ

�
��1� 
��

�1
�

�
�=�̂ml;nT

for

\��1�0 
�0�
�1
�0
.

42Those results are reported in the supplementary �le.
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are negative if �0 < 0. From these results, the sign of �0 determines the sign of the misspeci�cation bias of

�̂
S;c

ml;nT while the sign of �0 would not be so.

(
0) Under small T , 
̂ml;nT has signi�cant downward biases for all cases. When T increases, the absolute

values of biases decrease. This result is consistent with those of Hahn and Kuersteiner (2002) for dynamic

panels (with neither spatial nor intertemporal e¤ects). The bias corrected 
̂cml;nT reduces the bias.

Focusing on 
̂S;cml;nT when (n; T ) = (49; 10), we observe misspeci�cation biases in estimating 
0 are

negative and their degree of bias might be a¤ected by values of �0 and �0.

(�0) For �0, the magnitude of biases is smaller than that of 
0. For all cases, we observe upward biases

in �̂ml;nT . If �0 > 0 and �0 < 0, substantial upward biases in �̂ml;nT are observed. On the other hand, we

detect relatively small upward biases in �̂ml;nT if �0 < 0 and �0 > 0. By introducing the bias correction to

�̂ml;nT or increasing n or T , the amount of bias decreases and coverage probabilities become better.

Consider the misspeci�cation bias by focusing on �̂S;cml;nT . Based on �̂S;cml;nT when (n; T ) = (49; 10),

misspeci�cation biases turn to be upward if �0 < 0, but are downward if �0 > 0. It seems that the sign of

misspeci�cation bias takes the opposite sign of �0 but can be irrelevant to signs of �0.�
�1;1;0

�
Performances of �̂1;1;ml;nT and �̂

c

1;1;ml;nT are reasonable in biases and coverage probabilities. For

all cases, upward biases in �̂1;1;ml;nT are detected but they diminish after correcting biases or increasing n

or T .

To analyze the misspeci�cation bias, consider �̂
S;c

1;1;ml;nT when (n; T ) = (49; 10). We observe downward

biases and those biases increase when � increases in absolute values.�
�2;1;0

�
Like the case of �1;1;0, we detect upward biases in �̂2;1;ml;nT but they decrease and coverage

probabilities become better after correcting the biases or increasing n or T .

To study misspeci�cation errors, focus on �̂
S;c

2;1;ml;nT with (n; T ) = (49; 10). When both �0 and �0 > 0,

there are upward misspeci�cation biases in �̂
S;c

2;1;ml;nT . For other cases, however, downward misspeci�cation

biases in �̂
S;c

2;1;ml;nT are observed.�
�2�;0
�
When n and T are small, biases of �̂2�;ml;nT are downward and the bias correction is needed.

For all cases of �̂2;S�;ml;nT and �̂
2;S;c
�;ml;nT , there are downward biases.�


1;0
�
Properties of 
̂1;ml;nT of X processes are very similar to 
̂ml;nT . That is, large downward biases in


̂1;ml;nT are observed but the bias can be reduced and the coverage probability can become more adequate

from the bias correction.
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�
�1;0
�
In case of �1;0, �̂1;ml;nT and �̂

c
1;ml;nT perform well with small biases and adequate coverage proba-

bilities even for small samples.�
�2V;1;0

�
Lastly, consider �̂2V;1;ml;nT and �̂

2;c
V;1;ml;nT . Similar to �

2
�;0, we detect a substantial downward bias

for small T = 10 cases. By introducing the bias correction or increasing sample size T , biases are reduced

and coverage probabilities are improved.

5.3 Identi�cation of � and e¤ects of misspeci�ed � on estimation

In nonlinear structural econometric analyses, identifying the true time-discounting factor (�0) is a challenging

issue since the statistical objective function is very �at around �0.43 Hence, we conduct an additional

experiment on identifying �0 the true time-discounting factor. To identify the true �0, we suggest using

the log-likelihood measures such as the sample log-likelihood function, Akaike information criterion (AIC),

and Bayesian information criterion (BIC). Employing those likelihood measures can be justi�ed by the

information inequality in likelihood theory. Via Figure 1, we report the sample likelihood functions across

various ��s and the misspeci�cation errors of estimating �0, 
0; and �0 in terms of the RMSE for the two

representative cases: (i) �0 = 0 and (ii) �0 = 0:95 with a large �nite sample and rich exogenous variables.

Additional results and discussions can be found in the supplementary �le.

Throughout all cases, three observations can be summarized. First, having su¢ ciently large observations

is needed to identify the true �0. If we do not have su¢ cient observations, we may not distinguish the

true model via the likelihood measures. Second, the number of signi�cant exogenous variables also a¤ects

identifying �0. Under same circumstance, including additional exogenous variables means a (relatively)

high signal-to-noise ratio. If a portion of the explainable part is large, we can distinguish the myopic and

forward-looking models by the likelihood measures and estimation results are less a¤ected by misspeci�ed

��s. Third, it is easier to identify �0 if the true model is a myopic one. It seems that the myopic model�s

complexity is much simpler, so less information might be required to identify �0, which is zero.

5.4 Performance comparison: QML and NL2S methods

In this subsection, we compare estimation performance of the QML and NL2S estimators. For this experi-

ment, we set (n; T ) = (81; 30), � = 0:95, �0 = 0:2, 
0 = 0:4, �0 = 0, �1;1;0 = �1;2;0 = 0:4, �2;1;0 = �2;2;0 = 0,

and other circumstances are the same as in the main simulation. This design means no spatial time lag

43Komarova et al. (2017) discuss this issue in a framework of dynamic discrete choice models.
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as well as no Durbin regressor for simplicity. As IVs, we employ [Yn;t�1; Xnt] and its transformations by�
In;Wn;W

0
n;W

0
nWn;W

2
n

�
. Under this circumstance, Wn [Yn;t�1; Xnt] can play an important role in identify-

ing �0.

For each estimation method and parameter value, we report empirical bias, standard deviation, and

RMSE as bar graphs (Figure 2).44 Except for �0, two methods show the same signs of empirical biases

(negative for �0 and 
0, and positive for �1;1;0). The NL2SE tends to yield smaller magnitude of empirical

biases than that of the QMLE (except for 
0). In terms of standard deviation and RMSE, however, the

NL2SE is worse than the QMLE. This implies the NL2SE is not e¢ cient, so we may need to include more

IVs or consider quadratic moment conditions to improve e¢ ciency. If we include many moment conditions,

however, it leads to additional biases (Lee and Yu (2014)). Compared to the main structural parameters

�0, 
0, and �0, there is the relatively small gap in e¢ ciency in estimating �1;1;0.

In the aspect of computation costs, it seems using the NL2S method does not reduce computation time.

In the inner loop, solutions of algebraic matrix Riccati equation Q�n (�) and L
�
n (�) are obtained for given �,

so ~Ent (�)�s are calculated. Note that this procedure is required for both estimation methods. In the outer

loop, however, parameter searching on � is conducted by optimizing di¤erent statistical objective functions.

We expect reduced computation time in the outer loop by avoiding calculating ln jRn (�)j if we use the NL2S

method. Hence, the main computation costs might be originated from the inner loop. If we have very

large n, calculating ln jRn (�)j can be also demanding. For this situation, using approximation methods for

ln jRn (�)j will be helpful.45

6 Application

In this section, we consider an application of our model. Since our model is based on strategic interactions

stemming from �xed locations, we consider analyzing spillover e¤ects of local governments�welfare spending.

Two sources of strategic interactions can be considered in making local policies. First, welfare recipients can

move in from or out to nearby cities to enjoy more bene�cial policies. Second, the "yardstick competition"

is considered. It means that a decision-maker of a local government has an incentive to make an e¢ cient

�scal decision by comparing its decision with those of neighboring local governments. Since there exists

"vote" to evaluate the performance of a local government by residents, this type of competitions arises.

44We do not report results for �1;2;0, which are similar to those of �1;1;0.
45 In the supplement �le, we introduce an approximation method based on the Taylor expansion.

30



To econometrically investigate these strategic interactions, SAR and/or SDPD models describe optimal

reaction functions of local governments when they play a simultaneous move game at each period. With

payo¤ speci�cation (4), conventional SDPD models present the vector of myopic best response functions

while the intertemporal spatial dynamic model shows the forward-looking best responses.

In this paper, we consider public safety spending competitions among counties in North Carolina. Both

myopic and forward-looking policy reaction functions are considered.46 In the case of the public safety

spending competition, a decision maker shall consider speci�c policy externalities. Those policy externalities

arise since criminals can commit crimes with moving to neighboring cities and they are punished in every

city. On one hand, a local government has an incentive to decrease its safety spending to enjoy "free-

riding" e¤ects when its neighbor spends more on public safety (substitution e¤ect). On the other hand,

a local government can increase its e¤ort (public safety spending) to reduce overall criminal activities

corresponding to a substantial safety spending in a neighboring city (similar to income e¤ect in consumer

theory). Yang and Lee (2017) consider a criminal�s payo¤ function describing an incentive to commit a

crime. Under certain conditions of payo¤, they show the substitution e¤ect will dominate. In both complete

and incomplete information settings, they establish a SAR equation as a policy reaction function and �nd

signi�cant estimated substitution e¤ects in cities�public safety spending. However, their framework is based

on a static game, so a cross-sectional data set is employed.

We revisit this issue with a panel data set and two kinds of econometric speci�cations: (i) conventional

SDPD model, and (ii) our intertemporal SAR model. From the North Carolina Department of State Trea-

surer�s website, we obtain the government �nance data. The data on counties�demographic and economic

characteristics are from the United States Census Bureau. We have samples of 100 counties in North Car-

olina from 2005 to 2016 (total 1,200 observations). We construct a panel data set, so it might capture the

dynamics of local governments�decision-making and their demographic/economic characteristics.47 Table

2 summarizes the sample statistics. All dollar amounts are real values adjusted by the GDP de�ator with

the base year 2009. We observe that counties have distinct characteristics in �nancial status as well as eco-

nomic/demographic characteristics. There are substantial di¤erences among county governments�revenues,

46Reasons for considering our forward-looking model are that (i) a policymaker can be assumed to be benevolent (for the

regional economic growth) and (ii) he/she has an incentive to make a forward-looking decision to keep his/her political reputation.
47For some demographic and economic variables (Median ages and Median household income), there are some missing ob-

servations from 2005 to 2008 (164 observations among 1,200 observations). To get a balanced panel data set, we conduct the

extrapolation scheme.
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amounts of public safety spending, and proportion of expenditures on public safety. The maximal public

safety spending is 237.365 million dollars, and the minimal one is zero. The number of observations taking

zero is 31 among a total of 1,200 observations (2.58%).48 In the proportion of expenditures on public safety,

the average is 19.3%, and the standard deviation is 0.06%. The largest portion is 44.8% while the smallest

one is 0%. County governments in North Carolina also di¤er in demographic/economic status. The smallest

population is 4,127 in 2016 (Tyrrell county) while two big counties are: Mecklenburg county (1,035,605 in

2016) and Wake county (1,007,631 in 2016). The population density is calculated by Population
Land area (km2)

, where

the minimum and maximum areas are respectively 446.701 km2 and 2457.924 km2. The average median

age of counties is 40.08, and the median household income is 41,410 dollars.

For construction of a network Wn, we employ a concept of "neighbors" such that wij =
~wijPn

k=1 ~wik
where

~wij = 1 if i and j are "neighbors"; ~wij = 0 otherwise. To de�ne "neighbors", geographic distances among

counties are considered. The kilometer-base geographic distance between two counties i and j (denoted by

dij) is evaluated by the Haversine formula:

dij = 2rE arcsin

�
sin2

�
'j � 'i
2

�
+ cos

�
'j
�
cos ('i) sin

2

�
� j � � i
2

��
where rE = 6356:752 km denotes the Earth radius, 'i and 'j are latitudes, and � i and � j are longitudes in

radians.49 If dij < dc where dc is a speci�ed cuto¤ value, i and j are "neighbors". We consider four sets of

model pairs (myopic model v.s forward-looking model) by choosing four di¤erent cuto¤ values, dc = 50, 65,

80, and 95. On average, a county has 4.34 neighbors if dc = 50; 7.34 neighbors if dc = 65; 10.54 neighbors

if dc = 80; and 14.76 neighbors if dc = 95.

This application studies the main structural parameters. �0, 
0; and �0 under two di¤erent assumptions

for agents. i.e., myopic v.s forward-looking agents. Instead of directly estimating the time-discounting factor

�, we consider and compare two values of �: (i) � = 0 (myopic agents) and (ii) � = 0:9704 (forward-looking

agents). The value � = 0:9704 is set by 1
1+�{r

where �{r = 0:0305 is the average annual 10-year Treasury

Constant Maturity Rate from 2005 to 2016.50 To achieve a stable process of a decision variable, we consider

48Because the zero proportion is small, so we do not build a Tobit model for this application.
49That is, county i�s location is characterized by a pair ('i; � i).
50 In macroeconomic literature, � is calibrated with targeting to the �rst moment of capital to output ratio (about 3) or is set

to be a reciprocal of the gross long-run (risk-free) interest rate. They usually take a value from 0.95 to 0.99 if an annual data set

is considered. We select the latter approach, which implies � (1 +�{r) = 1. In a conventional intertemporal consumption-saving

model, � (1 +�{r) = 1 means completely smoothed consumption. For the detailed discussion, refer to Chapter 1.3 in Ljungqvist

and Sargent (2012).
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counties�public safety spending per capita as a dependent variable. Since a local government�s public safety

spending is based on its budget, the annual revenue (per capita) of a county is considered as an explanatory

variable. Since the population size and residents�wealth level might a¤ect the scale of criminal activities,

a decision of a local government re�ects those features. To control them, the population density and the

median household income are included in a set of explanatory variables. We also include the median age

of residents of a county. Lastly, Durbin regressors (WnXnt) of all explanatory variables are also considered

so that they describe the externalities of explanatory variables a¤ecting decisions. For estimation of the

structural and nuisance parameters, we consider the joint estimation of the equations (23) and (24).51

The estimation results are summarized in Tables 3.A to 3.D: Tables 3.A, B, C, and D are respectively for

various neighboring systems with dc = 50, 65, 80, and 95. For both � = 0 and 0:9704, and all cuto¤ values,

county government�s public safety spending (per capita) is persistent itself, the total revenue is signi�cantly

positive, but the neighboring total revenue is signi�cantly negative. The current competition parameter �0

is negative for dc = 50 and 65 while it is positive for dc = 80 and 95. However, those are not signi�cant. For

the learning and/or di¤usion parameter �0, the sign is positive for all cases, but it is signi�cant only for the

forward-looking agent model (except dc = 95) at the 10% signi�cance level. Thus, for the forward-looking

agent model, this result indicates that the learning and di¤usion e¤ects diminish when dc characterizing

"neighbors" becomes 95 kilometers. The population density, median age, median household income and

their Durbin regressors do not have signi�cant e¤ects. To evaluate the model�s performance, we consider

three likelihood measures: sample conditional log-likelihood values52, values of Akaike information criterion

(AIC) and Bayesian information criterion (BIC). In choosing a spatial weight matrix, Chapter 2 in Lee

(2008) suggests using the goodness-of-�t measures (e.g., adjusted R2 or log-likelihood). Via Section 5, we

provide evidence for using likelihood measures in selecting �. Based on those likelihood measures, hence,

the forward-looking agent model with cuto¤ value dc = 80 is the best one among the 8 model speci�cations.

For each cuto¤ value dc, the forward-looking agent model is more favorable than the myopic model except

dc = 95. For both myopic and forward-looking models, dc = 80 is selected in general as preferred.53

Here we provide economic interpretations based on the forward-looking agent model with dc = 80. We

can recover the cost function: c (yit; yi;t�1) = 0:2541 (yit � yi;t�1)2 + 0:2459y2it. The marginal direct e¤ect of
51Derivation and statistical properties (including asymptotic properties) of the joint QML method can be found in the

supplement �le.
52 It means the log-likelihood function conditional on exogenous variables.
53However, AIC selects dc = 95 in case of the myopic model.
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increasing previous own public safety spending (per capita) by one thousand dollars on the current one is

0.508 thousand dollars. The marginal direct e¤ect of increasing previous neighbors�public safety spending

(per capita) by one thousand dollars is �0
Pn
j=1wij = �0 = 0:1726 thousand dollars.

54 Consider the direct

marginal e¤ects of own and neighbor�s revenues on the public safety spending. When the current revenue

(per capita) of a county increases by one thousand dollars, it induces an increment of 0.124 thousand dollars

directly on its public safety spending (per capita). On the other hand, the direct e¤ect of neighbors�revenues

(per capita) by increasing one thousand dollars will decrease the public safety spending (per capita) by 0.067

thousand dollars. It provides evidence of the negative externalities of revenues on the public safety spending.

Since our intertemporal SAR equation describes an equilibrium system, the cumulative marginal e¤ects

of an increase in the total revenue can be evaluated. The formula of the cumulative marginal e¤ects from

j�s kth-exogenous characteristic on i�s decision is

@yit
@xjt;k

=
�
R�1n (In + �Dn;kAk;n)

�
�1;k;0In + �2;k;0Wn

��
ij

(25)

where Dn;k =
P1
l=1 �

l�1Dn;lA
l�1
k;n for each k = 1; � � � ;K. Correspondingly, the cumulative own marginal ef-

fects are
�
R�1n (In + �Dn;kAk;n)

�
�1;k;0In + �2;k;0Wn

��
ii
. On the other hand, the direct neighboring marginal

e¤ect is �2;k;0wij while the direct own marginal e¤ect is �1;k;0. Equation (25) says the cumulative marginal

e¤ects di¤er across spatial units and heterogeneity of these comes from the network Wn. To investigate

the cumulative e¤ect, we select two speci�c counties based on the number of neighbors. Based on dc = 80,

Iredell county has the largest number of neighbors (17 neighbors) while Dare county has the smallest number

of neighbors (3 neighbors). The �gure below describes neighbors of the two counties.

[Figure 3 here]

Table 4 shows direct own/neighboring e¤ects and cumulative own/neighboring e¤ects for the two counties.

First, magnitudes of neighboring e¤ects (both direct and cumulative) are bigger for the isolated county.

Second, the negative direct neighboring e¤ects are smaller than the negative neighboring cumulative e¤ects.

For Dare county, that negative e¤ect is weakened by 29.28% while 23.07% of the e¤ect is alleviated for

Iredell county in the equilibrium. Third, the positive direct e¤ects are also weakened in the equilibrium. For

Dare county, the positive own e¤ect is alleviated by 15.66% and 15.58% of the positive e¤ect is weakened

for Iredell county. These results might be a¤ected by a structure of Wn and structural parameters �0.55

54For speci�c j�s e¤ect on i�s decision, it will be �0wij =
�0

Number of i�s neighbors .
55Additional comments for this issues can be found in the supplement �le.
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A notable advantage of using dynamic models is doing impulse response analyses. The e¤ect of changing

j�s tth-period kth-exogenous characteristic xjt;k on i�s (t+h)th-period economic activity yi;t+h (h = 1; 2; � � � )

is characterized by the impulse response function:

@ [Et (Yn;t+h)]i
@xjt;k

=

24 hX
g=0

Ah�gn R�1n (In + �Dn;kAk;n)
�
�1;k;0In + �2;k;0Wn

�
Agk;n

35
ij

: (26)

Using formula (26), we plot the impulse response functions of own e¤ects
@[Et(Yn;t+h)]i

@xit;k
and neighboring

e¤ects
@[Et(Yn;t+h)]i

@xjt;k
(j is a neighbor of i) for the two counties.

[Figure 4 here]

First, observe the impulse response functions of own e¤ects. Note that Iredell county�s own cumulative e¤ect

(impulse response function at h = 0) is slightly larger than that of Dare county (see Table 4). However,

there is a crossover at h = 4. Since two impulse responses are so close in this case, we only plot the

impulse response functions of the two counties between h = 4 and 5 to show the intersecting point. It

means Dare county�s own e¤ects will be larger than that of Iredell county after h = 4. Second, we capture

the overshooting e¤ects for both counties. The negative neighboring e¤ects are alleviated by h = 2. After

h = 3, the neighboring e¤ects become positive and they are diminishing when h increases. In case of Dare

county, that overshooting e¤ect is more distinct relative to that of Iredell county. It seems that the negative

neighboring e¤ects diminish over time combined with other positive e¤ects: self-reinforcing e¤ects, positive

di¤usion e¤ects, and positive own revenue e¤ects. Since we consider a row-normalizedWn, nonzero elements

in the row of Wn for Dare county are much larger than those of Iredell county. This fact may be a primary

reason for distinct overshooting e¤ects in case of Dare county.

Last, we want to deliver policy implications by conducting welfare analyses. We consider a situation

that the North Carolina state government gives some amount of subsidy (per capita) to a county in 2016.

So, the initial period is set to be 2016 in this analysis. Let �x denote the amount of subsidy and k = 1 for

the index of a county�s total revenue. Then, we generate a new regressor XnT;1 (denoted by �XnT;1)

�XnT;1 =
h
x1;T;1 � � � xj;T;1 +�x � � � xn;T;1

i0
describing a changed economic environment, where j denotes a subsidy recipient. Note that the realized pair

fYnT ; XnT;1g and the generated one
n
YnT ; �XnT;1

o
yield distinct dynamics, so they have di¤erent expected
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lifetime values as well as social welfare. Using the bias corrected QMLE (�̂
c

ml;nT ), we can compute a change

of welfare

�̂W = ~WF
�n
YnT ; �XnT;1

o
; �̂
c

ml;nT

�
� ~WF

�
fYnT ; XnT;1g ; �̂

c

ml;nT

�
(27)

where ~WF (fYnT ; XnT;1g ; �) stands for the welfare measure de�ned by the summation of counties�(expected)

lifetime payo¤s with the initial value fYnT ; XnT;1g and parameter �. ~WF
�n
YnT ; ~XnT;1

o
; �̂
c

ml;nT

�
captures

social welfare when a county receives some subsidy while ~WF
�
fYnT ; XnT;1g ; �̂

c

ml;nT

�
evaluates social wel-

fare in a given realized economic environment. The di¤erence between ~WF
�n
YnT ; ~XnT;1

o
; �̂
c

ml;nT

�
and

~WF
�
fYnT ; XnT;1g ; �̂

c

ml;nT

�
will capture a welfare change corresponding to the change of policy.56

For convenience of analysis, we only select four speci�c counties: (Case 1) Mecklenburg county (richest

and the most populated county), (Case 2) Tyrrell county (poorest and the least populated county), (Case

3) Iredell county (has the largest number of neighbors (17 neighbors)), and (Case 4) Dare county (has the

smallest number of neighbors (3 neighbors)). The amount of subsidy (per capita) from the state government

is set to be one thousand dollars (i.e., �x = $1; 000). Table 5 reports �̂W�s for Cases 1 - 4. First, we

observe that the number of neighbors a¤ects social welfare more than population and/or level of revenues

in our framework. When the state government increases Mecklenburg county�s revenue (per capita) by

$1,000, social welfare decreases by 0.0013 welfare measure. This negative welfare e¤ect might come from

the negative externalities of revenues on the public safety spending. Welfare increases for each of the other

three cases. By comparing Cases 3 and 4, giving subsidy to the county whose number of neighbors is small

increases social welfare more in the sense of public safety spending.

7 Conclusion

In this paper, we consider the speci�cation and estimation of a spatial intertemporal competition model in

a dynamic (di¤erential) game setting. Agents are linked in a given spatial network. To characterize agent�s

payo¤ function, a linear-quadratic one is considered. By the MPE with a unique NE equation, we build an

econometric model and consider model identi�cation and estimation. In particular, we investigate the QML

estimator. We obtain consistency and asymptotic normality of the QML estimator under some regularity

conditions. Due to the presence of many nuisance parameters, bias correction of the QML estimator is

needed. To fortify those results and investigate �nite sample performance of the estimator, we conduct

56The detailed derivation and speci�cation can be found in the supplement �le.
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Monte Carlo simulations. From the simulations, the QML estimator and its bias-correction reveal reliable

performance. In particular, for small T , the bias corrected QML estimator is recommended. For a mis-

speci�ed conventional SDPD model, which ignores the intertemporal decision, signi�cant empirical biases

of estimates and low coverage probabilities are detected. Using the established model, we analyze strategic

spillover e¤ects of counties�public safety spending in North Carolina. We estimate structural parameters and

compare the estimation results with those from the conventional SDPD model. First, our intertemporal SAR

speci�cation turns out to be more statistically favorable than the corresponding traditional SDPD model.

Second, we �nd some evidence of persistency of public safety spending, positive learning and/or di¤usion

e¤ects from previous neighbors�decisions, positive e¤ects of own total revenue, and negative externalities

from neighboring total revenues. An overshooting e¤ect is captured for the case of negative neighboring

revenue e¤ect. In the welfare analysis, we observe giving subsidy to counties whose number of neighbors is

small can be e¤ective in the sense of public safety spending.

Appendix A: Derivation of the MPE equation

In this appendix, we derive the NE equation by solving equation (7). By the principle of optimality, a

solution from the intertemporal choice problem (6) is equivalent to that of the functional equation (7) if the

latter exists. For this, we need to verify the existence and uniqueness of Vi (�) satisfying both (6) and (7).

The unknown Vi (�) will be implied by known ui (�). All mathematical arguments in this part are based on

Stokey et al. (1989) and Fuente (2000). Here we present some basic discussions and essential mathematical

results.57

Step 1 (Formation of V (j)i (�)�s): We choose an arbitrary agent i for our analysis. Consider the period

t. For any given (Yn;t�1;�nt) and Y
�
�i;t(Yn;t�1;�nt), de�ne the operator T which maps the jth approximation

to the (j + 1)th approximation of Vi (�) by

V
(j+1)
i (Yn;t�1;�nt) = T

�
V
(j)
i

�
(Yn;t�1;�nt)

= max
yit

8<: ui

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+�Et

�
V
(j)
i

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt);�n;t+1

��
9=;

for j = 0; 1; 2; � � � . From V
(j)
i (�)�s, we can also generate Y �(j)nt (Yn;t�1;�nt)�s (j = 1; 2; � � � ). Using T , we

generate V (j)i (�)�s (from V
(0)
i = 0) and corresponding (approximated) MPE equations.

57More details can be found in the supplementary document.
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Step 2 (Continuity of T ): Note that the domain of T contains a set of Vi (�)�s (i.e., V (j)i (�)�s). Consider

a set of continuous and bounded functions C
��
�y
�n � ����n� where all possible Yn;t�1 2 ��y�n � Rn and

�nt 2
�
��
�n � Rn. Note that C

��
�y
�n � ����n� is a well-known Banach space. Under Assumption 2.1,n

V
(j)
i (�)

o
j
� C

��
�y
�n � ����n� for any continuous and bounded function V (0)i (�). Then, we can apply the

theorem of maximum, which yields (i) existence of optimal decisions and (ii) continuity of T V (j)i (Yn;t�1;�nt)

at (Yn;t�1;�nt). Since ui (�) is strictly concave with strictly decreasing marginals58 with respect to large yit,

we can guarantee for unique NE decisions.59

Step 3 (Contraction mapping theorem): Since T is the maximum operator, its arguments V (j)i (�)�s

are continuous and bounded functions in (Yn;t�1;�nt) and � 2 (0; 1), T satis�es the Blackwell�s (1965)

su¢ cient conditions to be a contraction mapping. By the contraction mapping theorem, there exists a unique

�xed point Vi (�) in C
��
�y
�n � ����n� for each i = 1; � � � ; n and subsequently a unique NE Y �nt (Yn;t�1;�nt).

Step 4 (Recovering Vi (�) for each i and Y �nt (Yn;t�1;�nt)): From the initial iteration with V
(0)
i = 0, we

have V (1)i (Yn;t�1;�nt) = Y
0
n;t�1Q

(1)
i Yn;t�1+Y

0
n;t�1L

(1)
i �nt+�

0
ntG

(1)
i �nt+c

(1)
i , whereA

(1)
n = S�1n (
0In + �0Wn),

B
(1)
n = S�1n , Q(1)i = 1

2

�
A
(1)0
n IiA(1)n � 
0Ii

�
, L(1)i = A

(1)0
n IiB(1)n , G(1)i = 1

2B
(1)0
n IiB(1)n and c(1)i = 0 with Ii

being a diagonal matrix with only a unit for its ith diagonal element and zero elsewhere. By mathematical

induction, we generate the following matrix Riccati equations:

Q
(j+1)
i = A(j+1)0n

�
Ii
�
1

2
In � Sn

�
+ �Q

(j)
i

�
A(j+1)n +A(j+1)0n Ii (
0In + �0Wn)�


0
2
Ii, (28)

Q�(j+1)n =
h�
Q
(j+1)
1 +Q

(j+1)0
1

�
e1; � � � ;

�
Q
(j+1)
n +Q

(j+1)0
n

�
en

i0
;

L
(j+1)
i = A(j+1)0n

��
Ii
�
1

2
In � Sn

�
+ �Q

(j)
i

�
+

�
Ii
�
1

2
In � Sn

�
+ �Q

(j)
i

�0�
B(j+1)n (29)

+A(j+1)0n

�
Ii + �L(j)i �n

�
+ (
0In + �0Wn)

0 IiB(j+1)n ,

L�(j+1)n =
h
L
(j+1)0
1 e1; � � � ; L

(j+1)0
n en

i0
,

G
(j+1)
i = B(j+1)0n

�
Ii
�
1

2
In � Sn

�
+ �Q

(j)
i

�
B(j+1)n +B(j+1)0n

�
Ii + �L(j)i �n

�
+ ��0nG

(j)
i �n, (30)

and c(j+1)i = �
�
c
(j)
i + tr

�
G
(j)
i 
�

��
, where A(j+1)n =

h
R
(j+1)
n

i�1
(
0In + �0Wn) and

B
(j+1)
n =

h
R
(j+1)
n

i�1 �
In + �L

�(j)
n �n

�
with R(j+1)n = Sn � �Q�(j)n .

58Note that ui (�) will eventually decrease in yit. This property is important because our maximization problem is not

constrained.
59Refer to Theorems 3.8 and 4.9 in Stokey et al. (1989).
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By taking j ! 1, we obtain the asymptotic version of algebraic matrix Riccati equations for Qn, Ln,

Gi�s and ci, i.e., for each i,

Vi (Yn;t�1;�nt) = Y
0
n;t�1QiYn;t�1 + Y

0
n;t�1Li�nt + �

0
ntGi�nt + ci

where Qi = limj!1Q
(j)
i , Li = limj!1 L

(j)
i , Gi = limj!1G

(j)
i and ci = limj!1 c

(j)
i . Then, the activity

outcomes NE equation will be

Y �nt (Yn;t�1;�nt) = (�0Wn + �Q
�
n)Y

�
nt (Yn;t�1;�nt) + (
0In + �0Wn)Yn;t�1 + (Ii + �L

�
n�n)�nt;

which implies that

Y �nt (Yn;t�1;�nt) = AnYn;t�1 +Bn�nt;

where An = R�1n (
0In + �0Wn) and Bn = R�1n (In + �L
�
n�n) with Rn = Sn � �Q�n.

From the above expressions, we can also have an alternative representation of Q�n in the subsequent

Proposition A.1, which has some similarity on the additional term due to future in�uence as in the two-period

case. First of all, we can have an alternative representation of B(j)n , j = 1; 2; � � � . Note that B(1)n = S�1n .

Consider B(2)n =
h
R
(2)
n

i�1 �
In + �L

�(1)
n �n

�
. Using e0iL

�(1)
n = e0iL

(1)
i with L(1)i = A

(1)0
n IiS�1n , we can de�ne

D
(2)
n;1 = Diag

�
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(1)
n

�
B
(1)
n such that B(2)n =

h
R
(2)
n

i�1 �
In + �D

(2)
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�
. This has

Y
�(2)
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h
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n Et
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��
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Consider iteratively B(j+1)n =
h
R
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In + �L

�(j)
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�
for j = 2; 3; � � � . We can show that
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(j+1)
n;2 �n + � � �+ �j�1D(j+1)n;j �j�1n (31)

for some D(j+1)n;1 , D(j+1)n;2 , � � � , D(j+1)n;j by the method of undetermined coe¢ cients. Hence,
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The second equality holds due to the law of iterative expectations. For notational convenience, let

C
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�(j)
n = e0i

�
Q
(j)
i +Q

(j)0
i

�
and

e0i

�
Q
(j)
i +Q

(j)0
i

�
= e0iA

(j)0
n

n
Ii
�
�In + �0

�
Wn +W

0
n

��
+ �

�
Q
(j�1)
i +Q

(j�1)0
i

�o
A(j)n

+e0iA
(j)0
n Ii (
0In + �0Wn) + e

0
i (
0In + �0Wn)

0 IiA(j)n � 
0e0i

= e0iA
(j)0
n

n
Ii
�
�In + �0

�
Wn +W

0
n

��
+ �

�
Q
(j�1)
i +Q

(j�1)0
i

�o
A(j)n

+e0iA
(j)0
n eie

0
i (
0In + �0Wn) + 
0e

0
iA
(j)
n � 
0e0i

= e0iA
(j)0
n

n
Ii
�
�In + �0

�
Wn +W

0
n

��
+ �

�
Q
(j�1)
i +Q

(j�1)0
i

�o h
R(j)n

i�1
(
0In + �0Wn)

+e0i (
0In + �0Wn)
0 Ii
h
R(j)n

i�1
(
0In + �0Wn) + e

0
iA
(j)0
n eie

0
i (
0In + �0Wn)� 
0e0i

= e0i

0@ A
(j)0
n

n
Ii [�In + �0 (Wn +W

0
n)] + �

�
Q
(j�1)
i +Q

(j�1)0
i

�o h
R
(j)
n

i�1
+(
0In + �0Wn)

0 Ii
h
R
(j)
n

i�1
+A

(j)0
n Ii

1A (
0In + �0Wn)

�e0i
0In

= e0i

�
D
(j+1)
n;1 (
0In + �0Wn)� 
0In

�
for j = 2; 3; � � � , since e0i (
0In + �0Wn) ei = 
0 by e

0
iWnei = wii = 0 for all i = 1; � � � ; n. �

To have a stable system, a su¢ cient condition is
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< 1 for each j. By the following mathematical

result, we can check invertibility of R(j+1)n and the possibility of representing its inverse as a Neumann series.

Proposition A.2 (Stewart (1998)) Consider a linear operator In�Cn satis�es limj!1
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k�k denotes a well-de�ned operator norm. Then, In�Cn is invertible and its inverse has a Neumann series

expansion:
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Hence, for our model, the implied spatial time series process for Ynt to be stable in both space and time
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Appendix B: Statistical results

In this section, we list components of asymptotic biases of the QMLE, and provide brie�y proofs of Theorems

4.1, 4.2, 4.4 and Corollary 4.3. The detailed proofs can be found in our supplementary �le.

7.1 First order derivatives of the log-likelihood function
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7.2 Components of asymptotic biases of QMLEs
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7.3 Sketches of Proofs (Consistency and asymptotic normality)

Sketch of proof of Theorem 4.1. Consistency can be shown in three steps.

In the �rst step, we shall show the uniform convergence of sample average of the log-likelihood function,
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p! 0 (33)

and r
T

n

�h
��1�;nTan;2(�)

i
j�=�̂ml;nT � �

�1
�0;nT

an;2(�0)
�

p! 0: (34)

Assumption 4.9, n
T 3
! 0 and T

n3
! 0 (with Assumptions 4.3 and 4.5) imply (33) and (34). The detailed

arguments can be found in our supplementary �le. �

Sketch of proof of Theorem 4.4. (i) First, note that ĉi;ml = ci;ml

�
�̂ml;nT

�
. By Theorem 4.1

with
PT
t=1 �t0 = 0, we observe ci;ml

�
�̂ml;nT

�
� ci;0 = 1

T

PT
t=1 �it +




�̂ml;nT � �0


 � Op (1) = 1
T

PT
t=1 �it +

Op

�
max

�
1p
nT
; 1T ;

1
n

��
by Theorem 4.2. Under the rate

p
T
n = o (1), 1T

PT
t=1 �it will be the dominant term.

Therefore, for each i,
p
T
�
ĉi;ml(�̂ml;nT )� ci;0

�
d! N(0; �2�;0) if

p
T
n ! 0; and ĉi;ml(�̂ml;nT )�s are asymptoti-

cally independent from each other.

60Also, refer to Kelejian and Prucha (2001).
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(ii) Using the same logic, the dominant term of
p
n
�
�̂t;ml(�̂ml;nT )� �t0

�
is 1p

n
l0nEnt if

p
n
T = o (1). This

yields
p
n (�̂t;ml � �t0)

d! N(0; �2�;0) if
p
n
T ! 0; and the estimates �̂t;ml�s for t = 1; � � � ; T are asymptotically

independent with each other.

(iii) Under Assumption 4.9, n
T 3
! 0 and T

n3
! 0, ci;ml

�
�̂
c

ml;nT

�
� ci;0 = 1

T

PT
t=1 �it + Op

�
1p
nT

�
and

�̂t;ml(�̂
c

ml;nT )��t0 = 1
n l
0
nEnt+Op

�
1p
nT

�
since




�̂cml;nT � �0


 = Op � 1p
nT

�
. We can apply the same strategies

as Parts (i) and (ii). �
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[3] Ballester, C., A. Calvō-Armengol, and Y. Zenou 2006. Who�s who in networks. wanted: the key player.

Econometrica 74, 1403-1417.

[4] Baltagi, B.H., S.H. Song, B.C. Jung, and W. Koh 2007. Testing for serial correlation, spatial autocor-

relation and random e¤ects using panel data. Journal of Econometrics 140, 5-51.

[5] Blackwell, D. 1965. Discounted dynamic programming. Annals of Mathematical Statistics 36, 226-235.
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Table 1 : Performance of ,
ˆ
ml nT  and ,

ˆc

ml nT  when 0.95   

( , ) (49,10)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0205 -0.1470 0.0548 0.0397 0.0628 -0.2147 -0.1493 -0.0135 -0.1383 

SD 0.0665 0.0565 0.0786 0.0429 0.0813 0.0740 0.0442 0.0860 0.0612 

RMSE 0.0695 0.1575 0.0957 0.0584 0.1027 0.2271 0.1557 0.0870 0.1512 

CP 0.9300 0.2150 0.8550 0.8425 0.8800 0.1375 0.0600 0.9425 0.3050 

,
ˆc

ml nT  
Bias 0.0031 -0.0311 0.0002 0.0220 0.0263 -0.0452 -0.0258 -0.0044 -0.0361 

SD 0.0712 0.0650 0.0898 0.0428 0.0827 0.0864 0.0491 0.0948 0.0684 

RMSE 0.0712 0.0720 0.0897 0.0481 0.0867 0.0974 0.0554 0.0948 0.0773 

CP 0.9325 0.8400 0.9025 0.9175 0.9300 0.7850 0.8650 0.9075 0.8075 

,
ˆS

ml nT  
Bias 0.0230 -0.1870 0.0205 0.0009 0.0325 -0.4338    

SD 0.0567 0.0424 0.0695 0.0374 0.0733 0.0395    

RMSE 0.0612 0.1918 0.0724 0.0373 0.0801 0.4356    

CP 0.9150 0.0025 0.9450 0.9425 0.9175 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0549 -0.0990 -0.0367 -0.0106 0.0121 -0.3692    

SD 0.0574 0.0462 0.0746 0.0368 0.0726 0.0441    

RMSE 0.0794 0.1092 0.0831 0.0383 0.0735 0.3718    

CP 0.8100 0.3150 0.8925 0.9400 0.9300 0.0000    

 

( , ) (49,10)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0811 -0.1618 0.0990 0.0279 0.0406 -0.2442 -0.1496 -0.0158 -0.1383 

SD 0.0724 0.0567 0.0870 0.0419 0.0798 0.0736 0.0442 0.0859 0.0612 

RMSE 0.1087 0.1714 0.1317 0.0503 0.0895 0.2550 0.1560 0.0873 0.1512 

CP 0.7800 0.1625 0.7675 0.8900 0.9125 0.0725 0.0600 0.9375 0.3050 

,
ˆc

ml nT  
Bias -0.0198 -0.0373 0.0243 0.0190 0.0183 -0.0622 -0.0261 -0.0064 -0.0362 

SD 0.0801 0.0665 0.1000 0.0420 0.0822 0.0877 0.0491 0.0949 0.0684 

RMSE 0.0824 0.0762 0.1028 0.0460 0.0841 0.1074 0.0556 0.0950 0.0773 

CP 0.8900 0.8175 0.8800 0.9150 0.9250 0.7100 0.8625 0.9075 0.8075 

,
ˆS

ml nT  
Bias -0.1125 -0.1994 0.1161 -0.0158 0.0010 -0.4569    

SD 0.0601 0.0425 0.0731 0.0368 0.0715 0.0379    

RMSE 0.1275 0.2039 0.1372 0.0400 0.0714 0.4585    

CP 0.5100 0.0000 0.6075 0.9250 0.9425 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0809 -0.1063 0.0588 -0.0268 -0.0178 -0.3935    

SD 0.0612 0.0463 0.0789 0.0363 0.0710 0.0423    

RMSE 0.1014 0.1159 0.0983 0.0450 0.0731 0.3958    

CP 0.6900 0.2400 0.8450 0.8800 0.9350 0.0000    
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( , ) (49,10)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0154 -0.1503 0.0112 0.0257 0.0300 -0.2346 -0.1497 -0.0164 -0.1383 

SD 0.0722 0.0560 0.0837 0.0417 0.0794 0.0731 0.0443 0.0860 0.0612 

RMSE 0.0737 0.1604 0.0843 0.0489 0.0848 0.2457 0.1561 0.0875 0.1512 

CP 0.9375 0.1875 0.9650 0.9000 0.9200 0.1000 0.0600 0.9375 0.3050 

,
ˆc

ml nT  
Bias -0.0042 -0.0334 -0.0013 0.0174 0.0141 -0.0568 -0.0262 -0.0070 -0.0362 

SD 0.0781 0.0645 0.0952 0.0414 0.0806 0.0863 0.0492 0.0950 0.0684 

RMSE 0.0781 0.0725 0.0951 0.0448 0.0817 0.1032 0.0556 0.0951 0.0773 

CP 0.9150 0.8250 0.9075 0.9225 0.9300 0.7375 0.8600 0.9050 0.8050 

,
ˆS

ml nT  
Bias 0.0486 -0.1912 -0.0236 -0.0220 -0.0165 -0.4582    

SD 0.0584 0.0415 0.0701 0.0363 0.0702 0.0379    

RMSE 0.0760 0.1956 0.0738 0.0424 0.0721 0.4597    

CP 0.8700 0.0025 0.9350 0.9000 0.9300 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0749 -0.1042 -0.0438 -0.0315 -0.0321 -0.3927    

SD 0.0599 0.0449 0.0758 0.0359 0.0697 0.0424    

RMSE 0.0959 0.1134 0.0874 0.0477 0.0767 0.3950    

CP 0.7175 0.2300 0.8675 0.8550 0.9250 0.0000    

 

( , ) (49,10)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0728 -0.1577 0.0708 0.0287 0.0283 -0.2316 -0.1497 -0.0165 -0.1383 

SD 0.0668 0.0551 0.0799 0.0413 0.0793 0.0734 0.0443 0.0860 0.0612 

RMSE 0.0988 0.1670 0.1066 0.0503 0.0841 0.2429 0.1561 0.0875 0.1512 

CP 0.7825 0.1375 0.8550 0.8800 0.9175 0.0950 0.0600 0.9375 0.3050 

,
ˆc

ml nT  
Bias -0.0245 -0.0385 0.0310 0.0189 0.0118 -0.0556 -0.0261 -0.0071 -0.0362 

SD 0.0730 0.0631 0.0914 0.0409 0.0794 0.0862 0.0492 0.0949 0.0684 

RMSE 0.0769 0.0739 0.0964 0.0450 0.0802 0.1025 0.0556 0.0951 0.0773 

CP 0.8950 0.7875 0.8850 0.9100 0.9325 0.7350 0.8600 0.9075 0.8050 

,
ˆS

ml nT  
Bias -0.0749 -0.1940 0.0868 -0.0131 -0.0103 -0.4424    

SD 0.0581 0.0417 0.0695 0.0370 0.0726 0.0395    

RMSE 0.0947 0.1985 0.1111 0.0392 0.0733 0.4441    

CP 0.6900 0.0000 0.7375 0.9375 0.9375 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0516 -0.1029 0.0591 -0.0221 -0.0247 -0.3741    

SD 0.0597 0.0452 0.0759 0.0367 0.0720 0.0443    

RMSE 0.0788 0.1123 0.0961 0.0428 0.0760 0.3767    

CP 0.8100 0.2500 0.8400 0.9025 0.9225 0.0000    

 

( , ) (49,30)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0399 -0.0446 0.0373 0.0232 0.0449 -0.0751 -0.0487 0.0020 -0.0571 

SD 0.0391 0.0323 0.0450 0.0241 0.0443 0.0433 0.0271 0.0479 0.0379 

RMSE 0.0558 0.0550 0.0584 0.0334 0.0630 0.0866 0.0557 0.0479 0.0685 

CP 0.8425 0.7025 0.8425 0.8225 0.8375 0.5300 0.4925 0.9275 0.6000 

,
ˆc

ml nT  
Bias -0.0018 -0.0048 -0.0028 0.0041 0.0074 -0.0097 -0.0047 0.0033 -0.0070 

SD 0.0399 0.0334 0.0467 0.0239 0.0440 0.0455 0.0281 0.0493 0.0399 

RMSE 0.0399 0.0337 0.0467 0.0242 0.0446 0.0465 0.0284 0.0493 0.0405 

CP 0.9550 0.9250 0.9550 0.9550 0.9575 0.8975 0.9075 0.9300 0.9125 

,
ˆS

ml nT  
Bias 0.0237 -0.1118 -0.0015 -0.0058 0.0319 -0.3841    

SD 0.0308 0.0233 0.0378 0.0214 0.0391 0.0250    

RMSE 0.0388 0.1142 0.0378 0.0221 0.0504 0.3849    

CP 0.8650 0.0000 0.9575 0.9350 0.8675 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0576 -0.0820 -0.0362 -0.0152 0.0117 -0.3542    

SD 0.0311 0.0239 0.0387 0.0213 0.0389 0.0262    

RMSE 0.0655 0.0854 0.0529 0.0261 0.0406 0.3552    
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CP 0.5500 0.0625 0.8300 0.8525 0.9450 0.0000    

( , ) (49,30)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0571 -0.0542 0.0363 0.0171 0.0310 -0.0927 -0.0489 -0.0001 -0.0571 

SD 0.0424 0.0323 0.0498 0.0235 0.0435 0.0431 0.0271 0.0480 0.0379 

RMSE 0.0711 0.0631 0.0615 0.0291 0.0534 0.1022 0.0559 0.0480 0.0685 

CP 0.7475 0.5875 0.9000 0.8725 0.8875 0.3575 0.4925 0.9275 0.6000 

,
ˆc

ml nT  
Bias -0.0037 -0.0057 -0.0026 0.0030 0.0044 -0.0133 -0.0048 0.0025 -0.0070 

SD 0.0443 0.0337 0.0521 0.0236 0.0438 0.0460 0.0281 0.0495 0.0399 

RMSE 0.0444 0.0341 0.0521 0.0237 0.0440 0.0478 0.0284 0.0495 0.0405 

CP 0.9600 0.9300 0.9500 0.9475 0.9500 0.8825 0.9075 0.9275 0.9125 

,
ˆS

ml nT  
Bias -0.1131 -0.1210 0.0699 -0.0224 -0.0003 -0.4064    

SD 0.0324 0.0230 0.0396 0.0210 0.0381 0.0241    

RMSE 0.1177 0.1231 0.0803 0.0307 0.0380 0.4071    

CP 0.0800 0.0000 0.6150 0.7800 0.9475 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0790 -0.0866 0.0406 -0.0308 -0.0169 -0.3759    

SD 0.0329 0.0236 0.0407 0.0209 0.0379 0.0253    

RMSE 0.0856 0.0898 0.0575 0.0372 0.0415 0.3768    

CP 0.3100 0.0350 0.8075 0.6450 0.9500 0.0000    

 

( , ) (49,30)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0333 -0.0481 0.0125 0.0156 0.0249 -0.0895 -0.0490 -0.0007 -0.0571 

SD 0.0426 0.0322 0.0502 0.0233 0.0427 0.0430 0.0271 0.0482 0.0379 

RMSE 0.0540 0.0578 0.0517 0.0280 0.0494 0.0993 0.0560 0.0481 0.0685 

CP 0.8750 0.6450 0.9475 0.8800 0.9025 0.3925 0.4900 0.9275 0.6000 

,
ˆc

ml nT  
Bias -0.0007 -0.0060 -0.0056 0.0025 0.0032 -0.0137 -0.0048 0.0024 -0.0070 

SD 0.0441 0.0331 0.0523 0.0232 0.0426 0.0456 0.0281 0.0497 0.0399 

RMSE 0.0441 0.0336 0.0526 0.0233 0.0427 0.0475 0.0285 0.0497 0.0405 

CP 0.9525 0.9175 0.9350 0.9450 0.9550 0.8800 0.9075 0.9250 0.9125 

,
ˆS

ml nT  
Bias 0.0482 -0.1169 -0.0310 -0.0287 -0.0183 -0.4090    

SD 0.0314 0.0227 0.0398 0.0206 0.0374 0.0243    

RMSE 0.0575 0.1191 0.0504 0.0353 0.0416 0.4097    

CP 0.7200 0.0000 0.8925 0.6700 0.9475 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0767 -0.0868 -0.0465 -0.0356 -0.0319 -0.3760    

SD 0.0322 0.0232 0.0411 0.0206 0.0374 0.0256    

RMSE 0.0832 0.0898 0.0620 0.0411 0.0492 0.3769    

CP 0.3475 0.0275 0.7900 0.5500 0.8725 0.0000    

 

( , ) (49,30)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0469 -0.0544 0.0276 0.0151 0.0194 -0.0922 -0.0490 -0.0010 -0.0571 

SD 0.0385 0.0313 0.0455 0.0226 0.0415 0.0435 0.0272 0.0482 0.0379 

RMSE 0.0607 0.0627 0.0532 0.0272 0.0458 0.1019 0.0560 0.0481 0.0685 

CP 0.7775 0.5225 0.9275 0.8800 0.9225 0.3625 0.4875 0.9325 0.6000 

,
ˆc

ml nT  
Bias -0.0021 -0.0076 0.0003 0.0025 0.0015 -0.0137 -0.0048 0.0022 -0.0070 

SD 0.0404 0.0322 0.0477 0.0226 0.0412 0.0464 0.0281 0.0497 0.0399 

RMSE 0.0404 0.0330 0.0477 0.0227 0.0412 0.0483 0.0285 0.0497 0.0405 

CP 0.9625 0.9325 0.9450 0.9525 0.9475 0.8850 0.9075 0.9250 0.9125 

,
ˆS

ml nT  
Bias -0.0800 -0.1160 0.0547 -0.0193 -0.0102 -0.3899    

SD 0.0308 0.0229 0.0381 0.0208 0.0384 0.0253    

RMSE 0.0857 0.1183 0.0667 0.0283 0.0397 0.3907    

CP 0.2525 0.0000 0.7225 0.8175 0.9500 0.0000    

Bias -0.0551 -0.0819 0.0363 -0.0256 -0.0212 -0.3549    

SD 0.0317 0.0234 0.0395 0.0208 0.0384 0.0267    
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,

,
ˆS c

ml nT  
RMSE 0.0636 0.0852 0.0536 0.0330 0.0438 0.3559    

CP 0.5750 0.0450 0.8450 0.7400 0.9275 0.0000    

( , ) (81,10)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias 0.0012 -0.1486 0.0507 0.0323 0.0481 -0.2104 -0.1486 -0.0094 -0.1332 

SD 0.0520 0.0440 0.0621 0.0366 0.0686 0.0557 0.0342 0.0703 0.0447 

RMSE 0.0520 0.1550 0.0801 0.0488 0.0837 0.2177 0.1525 0.0708 0.1405 

CP 0.9325 0.0625 0.8225 0.8250 0.8825 0.0275 0.0100 0.9375 0.1550 

,
ˆc

ml nT  
Bias 0.0104 -0.0309 0.0011 0.0172 0.0167 -0.0421 -0.0245 -0.0001 -0.0367 

SD 0.0552 0.0503 0.0709 0.0359 0.0689 0.0650 0.0381 0.0765 0.0497 

RMSE 0.0561 0.0589 0.0708 0.0398 0.0708 0.0774 0.0452 0.0764 0.0618 

CP 0.9075 0.7950 0.9025 0.9025 0.9250 0.7825 0.8575 0.9025 0.8000 

,
ˆS

ml nT  
Bias 0.0419 -0.1878 0.0164 -0.0052 0.0217 -0.4297    

SD 0.0458 0.0331 0.0560 0.0319 0.0609 0.0315    

RMSE 0.0620 0.1907 0.0582 0.0323 0.0646 0.4308    

CP 0.7975 0.0000 0.9225 0.9075 0.9025 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0617 -0.0984 -0.0367 -0.0148 0.0063 -0.3679    

SD 0.0460 0.0358 0.0600 0.0314 0.0597 0.0349    

RMSE 0.0769 0.1047 0.0703 0.0346 0.0600 0.3695    

CP 0.6875 0.1400 0.8575 0.8900 0.9325 0.0000    

 

( , ) (81,10)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0620 -0.1609 0.0917 0.0233 0.0326 -0.2351 -0.1488 -0.0110 -0.1332 

SD 0.0577 0.0441 0.0712 0.0359 0.0672 0.0551 0.0342 0.0702 0.0447 

RMSE 0.0847 0.1668 0.1160 0.0428 0.0746 0.2415 0.1527 0.0710 0.1405 

CP 0.7850 0.0350 0.6725 0.8625 0.8900 0.0075 0.0100 0.9325 0.1550 

,
ˆc

ml nT  
Bias -0.0134 -0.0356 0.0199 0.0159 0.0135 -0.0553 -0.0247 -0.0012 -0.0368 

SD 0.0631 0.0515 0.0813 0.0354 0.0683 0.0655 0.0380 0.0767 0.0497 

RMSE 0.0644 0.0625 0.0836 0.0388 0.0696 0.0857 0.0453 0.0766 0.0618 

CP 0.8975 0.7800 0.8775 0.8975 0.9175 0.7350 0.8575 0.9050 0.7975 

,
ˆS

ml nT  
Bias -0.0967 -0.1984 0.1097 -0.0204 -0.0060 -0.4514    

SD 0.0483 0.0330 0.0595 0.0314 0.0593 0.0302    

RMSE 0.1080 0.2011 0.1248 0.0374 0.0595 0.4524    

CP 0.4250 0.0000 0.5075 0.8500 0.9300 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0767 -0.1049 0.0551 -0.0298 -0.0213 -0.3911    

SD 0.0487 0.0357 0.0638 0.0309 0.0585 0.0335    

RMSE 0.0909 0.1108 0.0842 0.0429 0.0622 0.3925    

CP 0.5875 0.0875 0.7875 0.7825 0.9225 0.0000    

 

( , ) (81,10)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias 0.0010 -0.1509 0.0062 0.0212 0.0223 -0.2259 -0.1488 -0.0115 -0.1332 

SD 0.0572 0.0431 0.0701 0.0357 0.0670 0.0545 0.0342 0.0703 0.0447 

RMSE 0.0571 0.1569 0.0703 0.0415 0.0705 0.2324 0.1527 0.0711 0.1405 

CP 0.9500 0.0475 0.9425 0.8750 0.9000 0.0100 0.0100 0.9350 0.1550 

,
ˆc

ml nT  
Bias 0.0007 -0.0321 -0.0036 0.0144 0.0093 -0.0504 -0.0247 -0.0017 -0.0368 

SD 0.0614 0.0494 0.0794 0.0349 0.0672 0.0642 0.0380 0.0768 0.0497 

RMSE 0.0614 0.0588 0.0794 0.0377 0.0677 0.0816 0.0453 0.0767 0.0618 

CP 0.9250 0.7975 0.9150 0.9050 0.9200 0.7500 0.8575 0.9050 0.7975 

,
ˆS

ml nT  
Bias 0.0618 -0.1912 -0.0271 -0.0258 -0.0228 -0.4517    

SD 0.0471 0.0320 0.0590 0.0310 0.0584 0.0302    

RMSE 0.0777 0.1938 0.0649 0.0403 0.0626 0.4528    

CP 0.7175 0.0000 0.9050 0.8225 0.9200 0.0000    

Bias 0.0783 -0.1030 -0.0452 -0.0344 -0.0358 -0.3901    
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,

,
ˆS c

ml nT  
SD 0.0478 0.0344 0.0634 0.0305 0.0575 0.0336    

RMSE 0.0917 0.1085 0.0778 0.0459 0.0677 0.3915    

CP 0.6050 0.0850 0.8450 0.7325 0.8875 0.0000    

( , ) (81,10)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0594 -0.1564 0.0596 0.0250 0.0237 -0.2206 -0.1488 -0.0115 -0.1332 

SD 0.0529 0.0422 0.0665 0.0349 0.0658 0.0549 0.0342 0.0703 0.0447 

RMSE 0.0795 0.1620 0.0892 0.0429 0.0698 0.2273 0.1527 0.0711 0.1405 

CP 0.7750 0.0250 0.8200 0.8550 0.9050 0.0100 0.0100 0.9350 0.1550 

,
ˆc

ml nT  
Bias -0.0202 -0.0362 0.0222 0.0161 0.0085 -0.0481 -0.0247 -0.0017 -0.0368 

SD 0.0575 0.0481 0.0752 0.0340 0.0652 0.0646 0.0380 0.0768 0.0497 

RMSE 0.0609 0.0601 0.0783 0.0376 0.0656 0.0804 0.0453 0.0767 0.0618 

CP 0.8975 0.7825 0.8800 0.8975 0.9175 0.7825 0.8575 0.9050 0.7975 

,
ˆS

ml nT  
Bias -0.0639 -0.1930 0.0787 -0.0169 -0.0148 -0.4357    

SD 0.0463 0.0320 0.0577 0.0313 0.0595 0.0313    

RMSE 0.0788 0.1956 0.0975 0.0355 0.0612 0.4368    

CP 0.6625 0.0000 0.6675 0.8700 0.9225 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0488 -0.1014 0.0533 -0.0252 -0.0278 -0.3716    

SD 0.0470 0.0343 0.0624 0.0309 0.0587 0.0348    

RMSE 0.0677 0.1070 0.0820 0.0398 0.0649 0.3733    

CP 0.7550 0.0925 0.7925 0.8300 0.9125 0.0000    

 

( , ) (81,30)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0220 -0.0453 0.0336 0.0184 0.0354 -0.0686 -0.0479 -0.0007 -0.0501 

SD 0.0327 0.0249 0.0354 0.0194 0.0382 0.0333 0.0189 0.0362 0.0272 

RMSE 0.0394 0.0517 0.0488 0.0267 0.0520 0.0763 0.0515 0.0361 0.0570 

CP 0.8625 0.5700 0.8475 0.8075 0.8025 0.4125 0.3075 0.9425 0.5400 

,
ˆc

ml nT  
Bias -0.0002 -0.0038 0.0008 0.0020 0.0053 -0.0062 -0.0034 0.0008 -0.0071 

SD 0.0333 0.0257 0.0367 0.0192 0.0381 0.0348 0.0196 0.0371 0.0284 

RMSE 0.0332 0.0260 0.0366 0.0193 0.0385 0.0353 0.0199 0.0371 0.0292 

CP 0.9225 0.9250 0.9300 0.9250 0.9400 0.9225 0.9350 0.9425 0.9275 

,
ˆS

ml nT  
Bias 0.0395 -0.1121 -0.0042 -0.0096 0.0258 -0.3789    

SD 0.0264 0.0179 0.0299 0.0172 0.0340 0.0187    

RMSE 0.0475 0.1136 0.0301 0.0197 0.0426 0.3794    

CP 0.6175 0.0000 0.9450 0.8800 0.8375 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0606 -0.0813 -0.0331 -0.0171 0.0110 -0.3526    

SD 0.0266 0.0184 0.0305 0.0171 0.0339 0.0196    

RMSE 0.0662 0.0834 0.0450 0.0242 0.0357 0.3532    

CP 0.3125 0.0075 0.7950 0.8025 0.9225 0.0000    

 

( , ) (81,30)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0409 -0.0526 0.0362 0.0143 0.0261 -0.0814 -0.0481 -0.0023 -0.0501 

SD 0.0358 0.0247 0.0399 0.0191 0.0379 0.0326 0.0189 0.0363 0.0272 

RMSE 0.0543 0.0581 0.0538 0.0239 0.0460 0.0877 0.0516 0.0363 0.0570 

CP 0.7600 0.4350 0.8500 0.8650 0.8550 0.2600 0.2975 0.9400 0.5400 

,
ˆc

ml nT  
Bias -0.0030 -0.0045 0.0023 0.0018 0.0045 -0.0085 -0.0035 0.0003 -0.0071 

SD 0.0370 0.0258 0.0416 0.0190 0.0381 0.0344 0.0196 0.0373 0.0284 

RMSE 0.0370 0.0261 0.0416 0.0191 0.0383 0.0354 0.0199 0.0372 0.0292 

CP 0.9375 0.9400 0.9225 0.9250 0.9350 0.9200 0.9350 0.9400 0.9275 

,
ˆS

ml nT  
Bias -0.0987 -0.1198 0.0695 -0.0251 -0.0043 -0.4001    

SD 0.0283 0.0175 0.0318 0.0170 0.0332 0.0180    

RMSE 0.1026 0.1210 0.0764 0.0303 0.0334 0.4005    

CP 0.0425 0.0000 0.3800 0.6375 0.9300 0.0000    
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,

,
ˆS c

ml nT  
Bias -0.0772 -0.0857 0.0442 -0.0318 -0.0164 -0.3737    

SD 0.0286 0.0181 0.0325 0.0169 0.0332 0.0188    

RMSE 0.0823 0.0876 0.0549 0.0360 0.0369 0.3742    

CP 0.1625 0.0050 0.7275 0.5025 0.9025 0.0000    

( , ) (81,30)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0197 -0.0471 0.0126 0.0132 0.0214 -0.0777 -0.0481 -0.0028 -0.0501 

SD 0.0360 0.0245 0.0394 0.0189 0.0375 0.0324 0.0189 0.0363 0.0272 

RMSE 0.0410 0.0531 0.0414 0.0230 0.0431 0.0841 0.0517 0.0364 0.0570 

CP 0.8825 0.5075 0.9375 0.8725 0.8700 0.3050 0.2975 0.9375 0.5400 

,
ˆc

ml nT  
Bias -0.0011 -0.0038 -0.0005 0.0016 0.0037 -0.0079 -0.0036 0.0001 -0.0071 

SD 0.0370 0.0254 0.0410 0.0188 0.0374 0.0340 0.0196 0.0373 0.0284 

RMSE 0.0370 0.0256 0.0410 0.0188 0.0376 0.0349 0.0199 0.0373 0.0292 

CP 0.9325 0.9375 0.9250 0.9250 0.9350 0.9125 0.9350 0.9375 0.9275 

,
ˆS

ml nT  
Bias 0.0598 -0.1161 -0.0300 -0.0306 -0.0210 -0.4016    

SD 0.0278 0.0173 0.0314 0.0168 0.0328 0.0180    

RMSE 0.0659 0.1173 0.0434 0.0349 0.0389 0.4020    

CP 0.3775 0.0000 0.8700 0.5200 0.8800 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0776 -0.0852 -0.0423 -0.0365 -0.0315 -0.3737    

SD 0.0282 0.0178 0.0322 0.0167 0.0328 0.0188    

RMSE 0.0826 0.0870 0.0531 0.0401 0.0454 0.3741    

CP 0.1875 0.0050 0.7500 0.3675 0.7900 0.0000    

 

( , ) (81,30)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0371 -0.0515 0.0256 0.0138 0.0184 -0.0781 -0.0481 -0.0030 -0.0501 

SD 0.0322 0.0238 0.0366 0.0184 0.0363 0.0322 0.0189 0.0363 0.0272 

RMSE 0.0491 0.0567 0.0446 0.0230 0.0407 0.0845 0.0517 0.0364 0.0570 

CP 0.7800 0.3900 0.8825 0.8625 0.8825 0.3175 0.2975 0.9375 0.5400 

,
ˆc

ml nT  
Bias -0.0035 -0.0056 0.0042 0.0019 0.0029 -0.0081 -0.0036 -0.0000 -0.0071 

SD 0.0333 0.0245 0.0382 0.0183 0.0361 0.0339 0.0196 0.0373 0.0284 

RMSE 0.0334 0.0251 0.0384 0.0183 0.0361 0.0348 0.0199 0.0373 0.0292 

CP 0.9400 0.9325 0.9475 0.9300 0.9325 0.9200 0.9350 0.9375 0.9275 

,
ˆS

ml nT  
Bias -0.0696 -0.1144 0.0547 -0.0212 -0.0122 -0.3827    

SD 0.0269 0.0173 0.0307 0.0170 0.0335 0.0186    

RMSE 0.0747 0.1157 0.0628 0.0271 0.0356 0.3831    

CP 0.2175 0.0000 0.5550 0.7300 0.9000 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0538 -0.0807 0.0403 -0.0267 -0.0207 -0.3531    

SD 0.0274 0.0177 0.0317 0.0169 0.0335 0.0195    

RMSE 0.0604 0.0826 0.0512 0.0316 0.0394 0.3537    

CP 0.4225 0.0050 0.7300 0.6000 0.8800 0.0000    
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Table 2: Descriptive statistics: counties in North Carolina 

Variables Mean Standard deviation Minimum Maximum 

Public safety spending (
6$ 10 ) 

20.5504 26.3425 0 237.3665 

Total revenue (
6$ 10 ) 

126.2299 216.4341 0 1786.4493 

Proportion on total expenditure 0.193 0.060 0 0.448 

Population (
310 ) 

94.4273 140.5532 4.1430 1035.6050 

Land area (
2km ) 

1259.181 497.481 446.701 2457.924 

Population density (
2/km ) 

74.7630 99.8999 3.3976 763.9331 

Median ages 40.0793 4.5780 23.9 51.3 

Median household income (
4$ 10 ) 

4.1410 0.7681 2.5107 7.0620 

Distance ( km ) 
248.1450 147.8367 12.2632 751.9034 

No. of observations 1200 - - - 

Note: Sample is 100 counties in North Carolina from 2005 to 2016. Dollar amounts are real values adjusted by the GDP deflator 

with base year 2009. 

 

Table 3.A: Model estimation I. 50cd km  

 Myopic Forward-looking 
Total revenue per capita 0.1008*** (0.0054) 0.1226*** (0.0066) 

Population density 0.0002 (0.0003) 0.0002 (0.0003) 

Median ages 0.0035 (0.0022) 0.003 (0.0022) 

Median Household income 0.0011 (0.0011) 0.001 (0.0011) 

Neighboring total revenue per capita -0.0295*** (0.0096) -0.0379*** (0.0117) 

Neighboring population density -0.0001 (0.0006) 0 (0.0005) 

Neighboring median ages 0.0011 (0.0041) 0.0008 (0.004) 

Neighboring median household income -0.0018 (0.0021) -0.0017 (0.0022) 

  -0.0309 (0.043) -0.0623 (0.0561) 

  0.384*** (0.0252) 0.5099*** (0.069) 
  0.0582 (0.0515) 0.1154*  (0.0662) 

2

  0.003*** (0.0001) 0.0051*** (0.0003) 

Conditional log likelihood -2713.5 -2713.3 

AIC 4935.0 4934.6 

BIC 5610.4 5610.0 

No. of Obs 1200 1200 

No. of “neighbors” 4.3400 (1.4229) 4.3400 (1.4229) 

Cutoff distance ( km ) 
50 50 

Note: The conditional log likelihood is the sample log likelihood for  ntY   given  ntX  . AIC and BIC are the values of 

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels 

are respectively marked by “*”, “**”, and “***”. 
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Table 3.B: Model estimation II. 65cd km  

 Myopic Forward-looking 

Total revenue per capita 0.1012*** (0.0053) 0.1226*** (0.0066) 

Population density 0.0002 (0.0003) 0.0002 (0.0002) 

Median ages 0.0032 (0.0022) 0.0027 (0.0021) 

Median Household income 0.0011 (0.0011) 0.001 (0.0011) 

Neighboring total revenue per capita -0.0394*** (0.0129) -0.053*** (0.0157) 

Neighboring population density -0.0001 (0.0006) 0 (0.0005) 

Neighboring median ages -0.001 (0.0054) -0.001 (0.0053) 

Neighboring median household income -0.0027 (0.0027) -0.0026 (0.0028) 

  -0.0308 (0.0559) -0.0321 (0.072) 

  0.3796*** (0.0251) 0.5228*** (0.0656) 
  0.0747 (0.0657) 0.1486* (0.0833) 

2

  0.003*** (0.0001) 0.0051*** (0.0003) 

Conditional log likelihood -2712.9 -2712.5 

AIC 4932.2 4931.3 

BIC 5607.6 5606.7 

No. of Obs 1,200 1,200 

No. of “neighbors” 7.3400 (2.1937) 7.3400 (2.1937) 

Cutoff distance ( km ) 
65 65 

Note: The conditional log likelihood is the sample log likelihood for  ntY   given  ntX  . AIC and BIC are the values of 

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels 

are respectively marked by “*”, “**”, and “***”. 

 

Table 3.C: Model estimation III. 80cd km  

 Myopic Forward-looking 

Total revenue per capita 0.1023*** (0.0054) 0.1239*** (0.0066) 

Population density 0.0002 (0.0003) 0.0002 (0.0002) 

Median ages 0.0032 (0.0022) 0.0028 (0.0021) 

Median Household income 0.0011 (0.0011) 0.001 (0.0011) 

Neighboring total revenue per capita -0.052*** (0.0158) -0.0667*** (0.0191) 

Neighboring population density -0.0003 (0.0007) -0.0002 (0.0006) 

Neighboring median ages -0.0028 (0.0074) -0.0031 (0.0072) 

Neighboring median household income -0.0041 (0.0034) -0.0036 (0.0036) 

  0.0142 (0.0657) 0.0058 (0.0845) 

  0.3739*** (0.0251) 0.5081*** (0.065) 
  0.0705 (0.0784) 0.1726* (0.0984) 

2

  0.003*** (0.0001) 0.0051*** (0.0003) 

Conditional log likelihood -2712.9 -2712.5 

AIC 4927.8 4927.1 

BIC 5603.3 5602.5 

No. of Obs 1,200 1,200 

No. of “neighbors” 10.5400 (3.0465) 10.5400 (3.0465) 

Cutoff distance ( km ) 
80 80 

Note: The conditional log likelihood is the sample log likelihood for  ntY   given  ntX  . AIC and BIC are the values of 

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels 

are respectively marked by “*”, “**”, and “***”. 
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Table 3.D: Model estimation IV. 95cd km  

 Myopic Forward-looking 

Total revenue per capita 0.1031*** (0.0054) 0.1237*** (0.0066) 

Population density 0.0003 (0.0003) 0.0002 (0.0002) 

Median ages 0.0033 (0.0022) 0.0028 (0.0021) 

Median Household income 0.0012 (0.0011) 0.0011 (0.0011) 

Neighboring total revenue per capita -0.0673*** (0.0187) -0.082*** (0.0226) 

Neighboring population density -0.0006 (0.0008) -0.0004 (0.0008) 

Neighboring median ages -0.0044 (0.0088) -0.0041 (0.0086) 

Neighboring median household income -0.0028 (0.0042) -0.0024 (0.0044) 

  0.0434 (0.0805) 0.027 (0.1049) 

  0.3616*** (0.0252) 0.506*** (0.0661) 
  0.1607 (0.1002) 0.1696 (0.1255) 

2

  0.003*** (0.0001) 0.0051*** (0.0003) 

Conditional log likelihood -2713.1 -2713.2 

AIC 4927.1 4927.4 

BIC 5602.5 5602.8 

No. of Obs 1,200 1,200 

No. of “neighbors” 14.7600 (4.1709) 14.7600 (4.1709) 

Cutoff distance ( km ) 
95 95 

Note: The conditional log likelihood is the sample log likelihood for  ntY   given  ntX  . AIC and BIC are the values of 

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels 

are respectively marked by “*”, “**”, and “***”. 

 

Table 4. The direct and cumulative effect of increasing the total revenue (per capita) by one thousand dollars 

  Iredell county Dare county 

Direct Own effect 0.1239 0.1239 

 Neighboring effect -0.0039 -0.0222 

Cumulative Own effect 0.1046 0.1045 

 Neighboring effect -0.0030 -0.0167 

No. of neighbors  17 3 

 

Table 5. Changes of social welfare if a county’s total revenue (per capita) increases by one thousand dollars 

 Case 1 Case 2 Case 3 Case 4 

Welfare change ˆ
W  

-0.0013 0.0097 0.0121 0.0918 

Note: We select four specific counties: (Case 1) Mecklenburg county (richest and the most populated county), (Case 2) Tyrrell 

county (poorest and the least populated county), (Case 3) Iredell county (the largest number of neighbors (17 neighbors)), and (Case 

4) Dare county (the most isolated one (3 neighbors)). 
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Figure 1.A: Selection of   via likelihood measures 

  
Myopic Forward-looking 

Note: We show two representative cases:  

(i) Myopic: 0 0  ,    , 81,30n T   and 2K    

(ii) Forward-looking: 0 0.95  ,    , 81,30n T   and 2K  .  

We set 0 0.2  , 0 0.4  , and 0 0.4  , and other circumstances are the same as the main simulation. The 

x-axis shows  ’s while the y-axis reports the sample log-likelihood. 

 

Figure 1.B: RMSEs in estimating 0 , 0 , and 0  for misspecified   

   

0 , myopic model 0 , myopic model 0 , myopic model 
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0 , forward-looking model 0 , forward-looking model 0 , forward-looking model 

Note: We show two representative cases:  

(i) Myopic: 0 0  ,    , 81,30n T   and 2K    

(ii) Forward-looking: 0 0.95  ,    , 81,30n T   and 2K  .  

We set 0 0.2  , 0 0.4  , and 0 0.4  , and other circumstances are the same as the main simulation. The 

x-axis shows  ’s while the y-axis reports the RMSEs. 

 

Figure 2: Performance comparison: QMLE and NL2SE 

  

0  0  
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0  1,1,0  

Note: We set    , 81,30n T   , 0.95   , 0 0.2   , 0 0.4   , 0 0   , 
1,1,0 1,2,0 0.4    , 

2,1,0 2,2,0 0    (no Durbin regressor), and other circumstances are the same as the main simulation. As IVs 

for the NL2SE, we consider 
, 1,n t ntY X

    and its transformations by 2, , ', ' ,n n n n n nI W W W W W   . 

 

 

 

Figure 3: Neighbors of the two counties (based on 80cd  ) 

 

 

Figure 4: Impulse response functions: own effects (left) and neighboring effects (right) 
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1 Derivation of the Markov perfect equilibrium (MPE) equation

Recall the Bellman equation of our model is

Vi(Yn;t�1;�nt) = maxyit

�
ui
�
yit; Y

�
�i;t(Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
Vi(yit; Y

�
�i;t(Yn;t�1;�nt);�n;t+1)

�	
(1)

where Y ��i;t(Yn;t�1;�nt) =
�
y�1t(Yn;t�1;�nt); � � � ; y�i�1;t(Yn;t�1;�nt); y�i+1;t(Yn;t�1;�nt); � � � ; y�nt(Yn;t�1;�nt)

�0
,

for i = 1; � � � ; n, and an arbitrary t. Throughout this section, we take the following assumption.

Assumption 1.1 For each t, �vn;t+1 = �n�
v
nt + �n;t+1 where k�nk < 1, k�k denotes a proper matrix norm,

�vnt = (�
v
1t; � � � ; �vnt)

0, Et
�
�n;t+1

�
= 0 and Et

�
�n;t+1�

0
n;t+1

�
= 
� which is positive de�nite.

1.1 Step 1: Generation of V (j)i (�)�s

Derivations are in our main draft. Since all entries in Wn are �nite, by Assumption 1.1, all entries of Q
(j)
i ,

L
(j)
i , G

(j)
i , and c

(j)
i (for each i and for j = 1; 2; � � � ) which are functions of Wn and (�; �0; 
0; �0;�n;
�)
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generated by Step 1 are �nite, and not relevant to (Yn;t�1;�nt). A
(j)
n and B(j)n can be evaluated by using

Q
(j)
i and L(j)i .

1.2 Step 2: Continuity of T

To investigate T , we review several mathematical results. They are imported from Stokey et al. (1989)

and Fuente (2000). We will reproduce those arguments in our framework with simple sketches of proofs.

Note that arguments of T are V (j)i (�)�s j = 0; 1; 2; � � � . The domain of V (j)i (�)�s is a subset of R2n denoted

by
�
�y
�n � ����n where �y, �� � R. By Step 1, we can claim that, for any continuous and bounded

function V (0)i (�),
n
V
(j)
i (�)

o
j=0;1;2;���

2 C
��
�y
�n � ����n� where C ���y�n � ����n� is the set of bounded and

continuous functions from
�
�y
�n � ����n to R equipped with the sup norm (or the uniform norm),

kV ku = sup
(Yn;t�1;�t)2(�y)

n�(��)
n
jV (Yn;t�1;�nt)j

for V 2 C
��
�y
�n � ����n�. Note that C ���y�n � ����n� is a complete normed vector space equipped with

k�ku. Hence, if V
(j)
i ! V �i as j ! 1, a candidate limit function V �i (�) is also bounded and continuous.

The theorem below veri�es the continuity of T V (j)i (�) and the existence and uniqueness of agent i�s optimal

action.

Theorem 1.1 (Theorem of the maximum) For all j = 1; 2; � � � ;

ui

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
V
(j)
i

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt);�n;t+1

��
(2)

is a continuous and bounded function from �y|{z}
= decision space

�
��
�y
�n � ����n�| {z }

= state space

to R.

The set of optimal decisions

�
(j+1)
i (Yn;t�1;�nt) =

8<:yit :
0@ ui

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+�Et

�
V
(j)
i

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt);�n;t+1

��
1A = T V (j)i (Yn;t�1;�nt)

9=; (3)

is a singleton and y�(j+1)it (Yn;t�1;�nt) is a continuous function of (Yn;t�1;�nt). Furthermore, T V
(j)
i (Yn;t�1;�nt)

is continuous at (Yn;t�1;�nt).

Theorem 1.1 is a slightly modi�ed version of Theorem 3.6 in Stokey et al. (1989).

Proof of Theorem 1.1. Choose arbitrary (Yn;t�1;�nt) and j 2 f2; 3; � � � g and �x them. By proceeding

the two stages, we will get the desired results.
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Stage 1: Since ui (yit; Y�i;t; Yn;t�1; �it) is strictly concave in yit, �
(1)
i (Yn;t�1;�nt) is a singleton set. From

j = 1, we inductively generate unique Y �(j)nt (Yn;t�1;�nt) = A
(j)
n Yn;t�1 + B

(j)
n �nt for j = 2; 3; � � � . It implies

that (i) �(j)i (Yn;t�1;�nt) =
n
y
�(j)
it (Yn;t�1;�nt)

o
(i.e., a singleton set), and (ii) Y �(j)nt (Yn;t�1;�nt) is a linear

transformation of (Yn;t�1;�nt).

Stage 2: We want to show that Y �(j)nt (Yn;t�1;�nt) is also continuous and bounded on (Yn;t�1;�nt). By

showing continuity of T V (j)i (�), we �nish the proof. Arbitrarily choose a convergent sequence
n�
Y
(k)
n;t�1;�

(k)
nt

�o
k
��

�y
�n�����n such that �Y (k)n;t�1;�

(k)
nt

�
! (Yn;t�1;�nt). For each k, we can choose

n
y
(k)
it

o
= �

(j+1)
i

�
Y
(k)
n;t�1;�

(k)
nt

�
since �(j+1)i

�
Y
(k)
n;t�1;�

(k)
nt

�
is a singleton by Stage 1. Since y(k)it is continuous of

�
Y
(k)
n;t�1;�

(k)
nt

�
by Stage 1,

y
(k)
it ! yit as k ! 1 because

n
y
(k)
it

o
= �

(j+1)
i

�
Y
(k)
n;t�1;�

(k)
nt

�
and fyitg = �(j+1)i (Yn;t�1;�nt). By continuity

of (2),

T V (j)i

�
Y
(k)
n;t�1;�

(k)
nt

�
= ui

�
y
(k)
it ; Y

�(j+1)
�i;t (Y

(k)
n;t�1;�

(k)
nt ); Y

(k)
n;t�1; �

(k)
it

�
+ �Et

�
V
(j)
i

�
y
(k)
it ; Y

�(j+1)
�i;t (Y

(k)
n;t�1;�

(k)
nt );�n;t+1

��
! ui

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt); Yn;t�1; �it

�
+ �Et

�
V
(j)
i

�
yit; Y

�(j+1)
�i;t (Yn;t�1;�nt);�n;t+1

��
= T V (j)i (Yn;t�1;�nt)

as k !1. Hence,
n
T V (j)i (Yn;t�1;�nt)

o
is continuous at (Yn;t�1;�nt).�

1.3 Step 3: Contraction mapping and Banach �xed point theorem

Note that C
��
�y
�n � ����n� is a complete normed vector space (=Banach space) equipped with the sup

norm k�ku. Hence, it is also a metric space with the metric d (f1; f2) = kf1 � f2ku for any f1, f2 2

C
��
�y
�n � ����n�. Based on that, we consider the de�nition of a contraction mapping.

De�nition 1 (Contraction mapping) Note that C
��
�y
�n � ����n� is a metric space with d (f1; f2) for

any f1, f2 2 C
��
�y
�n � ����n�. We say T is a contraction mapping with modulus � 2 (0; 1) if

d (T f1; T f2) � �d (f1; f2) for any f1; f2 2 C
��
�y
�n � ����n� :

First, we want to show that T is a contraction mapping with modulus �. There is an easy way to check

whether T is a contraction mapping. This is called Blackwell�s (1965) su¢ cient conditions.

Proposition 1.2 (Blackwell�s su¢ cient conditions) Note that T : C
��
�y
�n � ����n�! C

��
�y
�n � ����n�

be an operator.1 Assume T satis�es
1 Indeed, arguments of T need not be continuous functions to employ Proposition 1.2.
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(i) (Monotonicity) For f1, f2 2 C
��
�y
�n � ����n� such that f1 (Yn;t�1;�nt) � f2 (Yn;t�1;�nt) for all

(Yn;t�1;�nt) 2
��
�y
�n � ����n�, we have

(T f1) (Yn;t�1;�nt) � (T f2) (Yn;t�1;�nt) for all (Yn;t�1;�nt) 2
��
�y
�n � ����n� :

(ii) (Discounting) There exists � 2 (0; 1) such that for all f 2 C
��
�y
�n � ����n�,

(T (f + c)) (Yn;t�1;�nt) � (T f) (Yn;t�1;�nt) + �c for all (Yn;t�1;�nt) 2
��
�y
�n � ����n�

where (f + c) (Yn;t�1;�nt) = f (Yn;t�1;�nt) + c.

Then, T is a contraction mapping with modulus �.

By properties of max operator and the time-discounting factor �, our T satis�es the Blackwell su¢ cient

conditions, and hence is a contraction mapping. Then, we can obtain the following proposition.

Proposition 1.3 (Contraction mapping theorem) Note that C
��
�y
�n � ����n� is a Banach space with

k�ku and T is a contraction mapping with modulus � 2 (0; 1). Then, we obtain

(i) There exists a unique �xed point Vi 2 C
��
�y
�n � ����n� (That is, T Vi = Vi).

(ii) For any V (0)i 2 C
��
�y
�n � ����n�, 


T jV (0)i � Vi





u
� �j




V (0)i � Vi




u
for j = 0; 1; 2; � � � .

Proposition 1.3 is also called the Banach �xed point theorem. The main idea of proving this follows

three steps. First, by arbitrary choosing V (0)i from C
��
�y
�n � ����n�, a Cauchy sequence nV (j)i

o
j
can be

inductively generated from T , i.e., V (1)i = T V (0)i , V (2)i = T V (1)i , � � � . Second, T Vi = Vi is veri�ed by using

the discounting property of T . Regardless of a starting point, T yields ultimate convergence to a unique

�xed point Vi. By Proposition 1.3, for our model, V �i is the same as the unique �xed point Vi and the vector

of optimal decisions is Y �nt (�). The way of getting Y �nt (�) and V �i (�)�s are in the main text.

2 QML estimation

2.1 Model identi�cation

This subsection will discuss the identi�cation issue. From Rothenberg (1971), �0 and �
00
are observationally

equivalent if LnT
�
�0j fYntgTt=1

�
= LnT

�
�
00 j fYntgTt=1

�
a.e. Hence, �0 2 � is identi�able if and only if

there is no other � 2 � is observationally equivalent. Identi�cation of �0 in this setting comes from the
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information inequality: (i) for any � 2 �, E
�
lnLnT

�
�j fYntgTt=1

��
� E

�
lnLnT

�
�0j fYntgTt=1

��
, and (ii)

LnT

�
�j fYntgTt=1

�
= LnT

�
�0j fYntgTt=1

�
a.e. in fYntgTt=1 if and only if

E
�
lnLnT

�
�j fYntgTt=1

��
= E

�
lnLnT

�
�0j fYntgTt=1

��
:

The information inequality comes from concavity of the logarithmic function. The expected (concen-

trated) log-likelihood function2 is

QnT
�
�1; �; �

2
�

�
= �1

2
ln 2� � 1

2
ln�2� +

1

n
ln jRn (�1)j �

1

2�2�

1

nT

TX
t=1

E
�
~E 0nt (�) Jn ~Ent (�)

�
for � 2 �, where ~Ent (�) = Rn (�1) ~Ynt � (
In + �Wn) ~Y

(�)
n;t�1 � (In + �L�n (�1)�n) ~Xnt�. First, note that

�2�;nT (�1; �) = argmax
�2�

QnT
�
�1; �; �

2
�

�
=

1

nT

TX
t=1

E
�
~E 0nt (�) Jn ~Ent (�)

�
;

and �nT (�1) = argmax
�

QnT
�
�1; �; �

2
�

�
=
hPT

t=1
~X0nt (�1) Jn ~Xnt (�1)

i�1PT
t=1

~X0nt (�1) JnE
�
~Znt (�1)

�
where ~Xnt (�1) = (In + �L�n (�1)�n) ~Xnt, ~Xnt = ~Xnt (�1;0) and

~Znt (�1) =
�
Rn (�1)R

�1
n (
0In + �0Wn)� (
In + �Wn)

�
~Y
(�)
n;t�1 +Rn (�1)R

�1
n

h
~Xnt�0 + ~�t;0ln

i
:

If �1 = �1;0, Jn ~Znt (�1;0) = Jn ~Xnt�0. Hence, Jn ~Znt (�1) represents the misspeci�ed Jn ~Xnt�0 if we evaluate it

at �1 2 �1n f�1;0g. For �1 2 �1n f�1;0g, Jn
�
~Znt (�1)� ~Xnt�0

�
shows the misspeci�cation error. Given the

identi�cation of �1;0, we obtain the identi�cation condition for �0: limn;T!1
1
nT

PT
t=1

~X0ntJn ~Xnt exists and

is nonsingular.

Using �nT (�1) and �
2
�;nT (�1) � �2�;nT (�1; �nT (�1)), we derive the concentrated expected log-likelihood

at �1 is

QnT;c (�1) = QnT
�
�1; �nT (�1) ; �

2
�;nT (�1; �nT (�1))

�
= �1

2
[ln 2� + 1]� 1

2
ln�2�;nT (�1) +

1

n
ln jRn (�1)j

with QnT;c (�1;0) = �1
2 [ln 2� + 1]�

1
2 ln�

2
�;0 +

1
n ln jRnj. Then,

QnT;c (�1)�QnT;c (�1;0) = �
�
ln�2�;nT (�1)� ln�2�;0

�
+
1

n
[ln jRn (�1)j � ln jRnj]

=
1

n
ln
�����2�;0� 12 R�1n ���� 1

n
ln
�����2�;nT (�1)� 12 R�1n (�1)

���
=

1

2

�
1

n
ln
���2�;0R�10n R�1n

��� 1

n
ln
���2�;nT (�1)R�1n (�1)R

�1
n (�1)

0��� :
2Note that we can apply the information inequality to a concentrated log-likelihood function.
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Hence, we obtain the unique identi�cation condition for �1;0 under large n and T :

lim
n;T!1

�
1

n
ln
���2�;0R�10n R�1n

��� 1

n
ln
���2�;nT (�1)R�10n (�1)R

�1
n (�1)

��� 6= 0 (4)

for �1 6= �1;0 where

�2�;nT (�1) =
1

nT

TX
t=1

E
�
~E 0nt (�1; �nT (�1))Jn ~Ent (�1; �nT (�1))

�

=
1

nT

TX
t=1

E

0@ ~Znt (�1)� ~Xnt (�1)" TX
s=1

~X0ns (�1) Jn ~Xns (�1)

#�1 TX
s=1

~X0ns (�1) Jn ~Zns (�1)

1A0

�Jn

0@ ~Znt (�1)� ~Xnt (�1)" TX
s=1

~X0ns (�1) Jn ~Xns (�1)

#�1 TX
s=1

~X0ns (�1) Jn ~Zns (�1)

1A
+
�2�;0
n� 1 tr

�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
+ o(1)

= �2�;nT;1(�1) + �
2
�;nT;2(�1) + o(1),

�2�;nT;1(�1) =
1

nT

TX
t=1

E
�
~Znt (�1)� ~Xnt (�1)�nT (�1)

�0
Jn

�
~Znt (�1)� ~Xnt (�1)�nT (�1)

�
,

and �2�;nT;2(�1) =
�2�;0
n�1 tr

�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
. We observe that �2�;nT (�1) consists of two parts. The

�rst term, �2�;nT;1(�1), is a quadratic function of the di¤erence between two approximation functions for

Jn ~Xnt�0. The second term, �2�;nT;2(�1), comes from E
�
~E 0ntR�10n R0n (�1) JnRn (�1)R

�1
n
~Ent
�
. Note that the

identi�cation condition (4) can be written as

lim
n;T!1

"
ln

 
�2�;0

�2�;nT;1(�1) + �
2
�;nT;2(�1)

!
+
1

n
ln
��R�10n R�1n

��� 1

n
ln
��R�10n (�1)R

�1
n (�1)

��# 6= 0
If �1 is close to �1;0, �2�;nT;1(�1) is close to zero. Around �1;0, hence, �

2
�;nT;2(�1) plays a main role in identifying

�1;0.

2.2 Derivation of the concentrated joint log-likelihood function

For estimation, we assume the following structure on �nt to derive the joint log-likelihood function.

Assumption 2.1 (i) For each t, �nt = �ivn + �
v
nt where �

iv
n =

�
�iv1 ; � � � ; �ivn

�0 and �vnt = (�v1t; � � � ; �vnt)0.
(ii) �vnt = Xnt�1;0+WnXnt�2;0+�t;0ln+Ent where �1;0 =

�
�1;1;0; � � � ; �1;K;0

�0 and �2;0 = ��2;1;0; � � � ; �2;K;0�0
are respectively coe¢ cients of Xnt and WnXnt. For each t, �t;0 is a period-speci�c shock and Ent =

(�1t; � � � ; �nt)0 is an n-dimensional vector of idiosyncratic shocks.
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(iii) The �t;0 and Ent are independently generated across time t.

(iv) Xnt;k is generated by

Xnt;k = Ak;nXn;t�1;k + cn;k;0 + �t;k;0ln + Vnt;k (5)

where Ak;n = 
k;0In + �k;0Wn with maxk=1;��� ;K kAk;nk1 < 1, and Vnt = (Vnt;1; � � � ; Vnt;K) denotes a distur-

bance term of Xnt;k, which is independent with the (t� 1)-period agents�information set.

We assume that (i), (ii), (iii) and (iv) are known to all agents.

Assumption 2.1 (i) means �nt is additively separable. By Assumption 2.1 (ii), the time-variant part �
v
nt

is composed of two parts: (i) observable (to econometricians) part Xnt�1;0 +WnXnt�2;0 and (ii) unobserv-

able (to econometricians) shocks �t;0ln + Ent. In general, Xnt means own exogenous characteristics while

WnXnt describes rivals�exogenous characteristics (which capture externalities and/or contextual e¤ects).

Assumption 2.1 (iii) implies also that for any t, Et (�t+1) = 0 and Et (En;t+1) = 0n�1. Assumption 2.1 (iv)

assumes stationarity of Xnt;k. By Assumption 2.1 (iv) and supposing cn;k;0 = h1;k�
iv
n for some coe¢ cient

h1;k,

�nt + �Et(L
�
n�n(�n;t+1))

=

KX
k=1

 
In +

1X
l=1

�lDn;lA
l
k;n

!�
�1;k;0In + �2;k;0Wn

�
Xnt;k

+

  
In +

1X
l=1

�lDn;l

!
+

KX
k=1

1X
l=1

�lDn;l

 
l�1X
m=0

Amk;n

!�
�1;k;0In + �2;k;0Wn

�
h1;k

!
�ivn| {z }

=time-invariant component part

+ �t;0ln + Ent:

The time-invariant components are absorbed in individual speci�c e¤ects denoted by cn;0 = (c1; � � � ; cn)0.

For notational convenience, de�ne Dn;k =
P1
l=1 �

l�1Dn;lA
l�1
k;n for each k. Then, the part of observables is

KX
k=1

 
In +

1X
l=1

�lDn;lA
l
k;n

!�
�1;k;0In + �2;k;0Wn

�
Xnt;k (6)

=

KX
k=1

�
�1;k;0In + �2;k;0Wn

�
Xnt;k| {z }

�rst term

+

KX
k=1

�Dn;kAk;n
�
�1;k;0In + �2;k;0Wn

�
Xnt;k| {z }

second term

.

The �rst term in (6) describes the part of Xnt;k�s a¤ecting Ynt directly at time t. The second term in (6)

captures e¤ects of (discounted) expected future characteristics based on current available information.
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For our econometric model, assume that �it (i = 1; � � � ; n and t = 1; � � � ; T ) has zero mean and �nite

variance �2�;0 and also Vnt;k has zero mean and �nite variance �
2
V;k;0 for each k. The main parameters are

�0, 
0, �0, �1;0 and �2;0. Let �1;0 be the true �1 = (�; 
; �)
0. Let Rn (�1) be the spatial-time �lter evaluated

at �1 so that Rn = Rn (�1;0). The parameters 
1;0; � � � ; 
K;0; �1;0; � � � ; �K;0 drive the dynamics of Xnt;k�s.

For possible values of those parameters, let 
X = (
1; � � � ; 
K)0 and �X = (�1; � � � ; �K)0. Then,

� =
�
�01; �

0
1; �

0
2; �

2
� ; 


0
X ; �

0
X ; �

2
V;1; � � � ; �2V;K

�0
(7)

is the set of parameters for estimation, where �0 is the true value of �. The dimension of the parameters is

4 + 5K. To distinguish the true individual- or time-speci�c e¤ects, we add the subscript "0" to �t and cn.

Hence, the data generating process (DGP) consists of

RnYnt = (
0In + �0Wn)Yn;t�1 +
KX
k=1

(In + �Dn;kAk;n)
�
�1;k;0In + �2;k;0Wn

�
Xnt;k + cn0 + �t0ln + Ent (8)

and

Xnt;k = Ak;nXn;t�1;k + cn;k;0 + �t;k;0ln + Vnt;k for k = 1; � � � ;K (9)

where Dn;k is a function of (�1;0; 
X;0; �X;0). The reduced form of equation (8) is

Ynt = AnYn;t�1 +
KX
k=1

R�1n BX;k;nXnt;k +R
�1
n (cn0 + �t0ln + Ent) (10)

where An = R�1n (
0In + �0Wn), and BX;k;n = (In + �Dn;kAk;n)
�
�1;k;0In + �2;k;0Wn

�
for k = 1; � � � ;K.

Let �T = (�1; � � � ; �T )0 and �T;k = (�1;k; � � � ; �T;k)0 for k = 1; � � � ;K. To derive the log-likelihood

function for equation (8), assume that for each ith column (ith individual) of (Ent; Vnt;1; � � � ; Vnt;K)0 v

i:i:d:N
�
0(1+K)�1; diag

�
�2�;0; �

2
V;1;0; � � � ; �2V;K;0

��
. Given (Yn0; Xn0), the joint density of fYnt; XntgTt=1 is

f (Yn1; � � � ; YnT ; Xn1; � � � ; XnT ; �) =

TY
t=1

f
�
Ynt; Xntj fYns; Xnsgt�1s=0 ; �

�
=

TY
t=1

f
�
YntjXnt; fYns; Xnsgt�1s=0 ; �

�
� f
�
Xntj fYns; Xnsgt�1s=0 ; �

�
=

TY
t=1

f (YntjXnt; Yn;t�1; �) � f (XntjXn;t�1; �)

=
TY
t=1

f (YntjXnt; Yn;t�1; �) �
KY
k=1

f (Xnt;kjXn;t�1;k; �) :
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The �rst and second equalities come from the relation between the joint probability and the conditional

probabilities. By observing (10), we have the third equality. Since Vnt;k1 and Vnt;k2 are uncorrelated for

k1 6= k2, the last equality holds. The corresponding log-likelihood function will be

lnLnT

�
�; cn; fcn;kgKk=1 ;�T ; f�T;kg

K
k=1

�
(11)

= �nT (K + 1)

2
ln 2� � nT

2
ln�2� �

nT

2

KX
k=1

ln�2V;k + T ln jRn (�1)j

� 1

2�2�

TX
t=1

E 0nt (�; cn;�T ) Ent (�; cn;�T )�
TX
t=1

KX
k=1

1

2�2V;k
V 0nt;k (
k; �k; cn;k;�T;k)Vnt;k (
k; �k; cn;k;�T;k)

where Ent (�; cn;�T ) = Rn (�1)Ynt � (
In + �Wn)Yn;t�1 �
PK
k=1BX;k;n(�)Xnt;k � cn � �tln, and

Vnt;k (
k; �k; cn;k;�T;k) = Xnt;k � (
kIn + �kWn)Xn;t�1;k � cn;k � �t;kln for k = 1; � � � ;K. Since cn and �T
are linear parameters, we have the following concentrated log-likelihood function

lnLnT;c (�) = �nT (K + 1)

2
ln 2� � nT

2
ln�2� �

nT

2

KX
k=1

ln�2V;k + T ln jRn (�1)j (12)

� 1

2�2�

TX
t=1

~E 0nt (�) Jn ~Ent (�)�
TX
t=1

KX
k=1

1

2�2V;k

~V 0nt;k (
k; �k) Jn ~Vnt;k (
k; �k)

where ~Ent (�) = Rn (�1) ~Ynt � (
In + �Wn) ~Y
(�)
n;t�1 �

PK
k=1BX;k;n (�)

~Xnt;k, and

~Vnt;k (
k; �k) = ~Xnt;k � (
kIn + �kWn) ~X
(�)
n;t�1;k for k = 1; � � � ;K:

2.3 Some notations on derivatives

For further steps, consider the relationships by the mean value theorem, which de�nes various quantities of

C�n;k (�), etc., :

Rn (�1)R
�1
n BX;k;n �BX;k;n (�) =

26664
(�0 � �) � C�n;k

�
��
�
+ (
0 � 
) � C



n;k

�
��
�
+ (�0 � �) � C

�
n;k

�
��
�

+
�
�1;k;0 � �1;k

�
� C�1;kn;k

�
��
�
+
�
�2;k;0 � �2;k

�
� C�2;kn;k

�
��
��


k;0 � 
k
�
� C
;kn;k

�
��
�
+
�
�k;0 � �k

�
� C�;kn;k

�
��
�

37775
where k = 1; � � � ;K, �� lies between � and �0 and

C�n;k (�) = �Rn�(�1)R�1n BX;k;n + �Dn�;k(�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

C
n;k (�) = �Rn
(�1)R�1n BX;k;n + �Dn
;k(�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

C�n;k (�) = �Rn�(�1)R�1n BX;k;n + �Dn�;k(�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

C
�1;k
n;k (�) = (In + �Dn;k (�1; 
k; �k)Ak;n (
k; �k)) for k = 1; � � � ;K,
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C
�2;k
n;k (�) = (In + �Dn;k (�1; 
k; �k)Ak;n (
k; �k))Wn for k = 1; � � � ;K,

C
;kn;k (�) = �
�
Dn;
k;k (�1; 
k; �k)Ak;n (
k; �k) +Dn;k (�1; 
k; �k)

� �
�1;kIn + �2;kWn

�
for k = 1; � � � ;K,

C�;kn;k (�) = �
�
Dn;�k;k (�1; 
k; �k)Ak;n (
k; �k) +Dn;k (�1; 
k; �k)Wn

� �
�1;kIn + �2;kWn

�
for k = 1; � � � ;K,

and �� lies between � and �0. These de�ned C�s would be used later on.

For k = 1; � � � ;K, denoteDn;��;k(�1; 
k; �k) =
@2Dn;k(�1;
k;�k)

@�2
. Other second order derivatives are de�ned

similarly.

2.4 �1;nT and �2;nT

Here are the components of �1;nT and �2;nT , relevant for asymptotic bias of the QMLE:

��1;nT =
1
�2�;0

q
T
n

266666666664

0BBB@
�
�Rn�R�1n (
0In + �0Wn)

� �
�U1;nT;�1 + �U2;nT;�1

�
+
PK
k=1

24 �
�Rn�R�1n

�
BX;k;nAk;n

+�Dn�;kAk;n
�
�1;k;0In + �2;k;0Wn

�
Ak;n

35 �U3;nT;k;�1
1CCCA
0

Jn �EnT

+�E 0nT (�R�10n R0n�)Jn
�EnT +

PK
k=1

�V 0nT;k

0@ �
�Rn�R�1n

�
BX;k;n

+�Dn�;kAk;n
�
�1;k;0In + �2;k;0Wn

�
1A0 Jn �EnT

377777777775
,

�
1;nT =
1
�2�;0

q
T
n

266666666664

0BBB@
�
�Rn
R�1n (
0In + �0Wn) + In

� �
�U1;nT;�1 + �U2;nT;�1

�
+
PK
k=1

24 �
�Rn
R�1n

�
BX;k;nAk;n

+�Dn
;kAk;n
�
�1;k;0In + �2;k;0Wn

�
Ak;n

35 �U3;nT;k;�1
1CCCA
0

Jn �EnT

+�E 0nT (�R�10n R0n
)Jn �EnT +
PK
k=1

�V 0nT;k

0@ �
�Rn
R�1n

�
BX;k;n

+�Dn
;kAk;n
�
�1;k;0In + �2;k;0Wn

�
1A0 Jn �EnT

377777777775
,

��1;nT =
1
�2�;0

q
T
n

266666666664

0BBB@
�
�Rn�R�1n (
0In + �0Wn) +Wn

� �
�U1;nT;�1 + �U2;nT;�1

�
+
PK
k=1

24 �
�Rn�R�1n

�
BX;k;nAk;n

+�Dn�;kAk;n
�
�1;k;0In + �2;k;0Wn

�
Ak;n

35 �U3;nT;k;�1
1CCCA
0

Jn �EnT

+�E 0nT (�R�10n R0n�)Jn �EnT +
PK
k=1

�V 0nT;k

0@ �
�Rn�R�1n

�
BX;k;n

+�Dn�;kAk;n
�
�1;k;0In + �2;k;0Wn

�
1A0 Jn �EnT

377777777775
,

�
�1;k
1;nT =

1
�2�;0

q
T
n

�
[(In + �Dn;kAk;n)Ak;n] �U3;nT;k;�1

�0
Jn �EnT + �V 0nT;k (In + �Dn;kAk;n)

0 Jn �EnT ,

�
�2;k
1;nT =

1
�2�;0

q
T
n

�
[(In + �Dn;kAk;n)WnAk;nWn] �U3;nT;k;�1

�0
Jn �EnT + �V 0nT;k [(In + �Dn;kAk;n)Wn]

0 Jn �EnT ,

�
�2�
1;nT =

1
2�4�;0

q
T
n
�E 0nTJn �EnT ,

�

X;k
1;nT =

q
T
n

264 1
�2�;0

�
�
�
Dn;
X;k;kAk;n +Dn;k

� �
�1;k;0In + �2;k;0Wn

�
Ak;n �U3;nT;k;�1

�0
Jn �EnT

+ 1
�2�;0

�V 0nT;k

�
�
�
Dn;
X;k;kAk;n +Dn;k

� �
�1;k;0In + �2;k;0Wn

��0
Jn �EnT + 1

�2V;k;0

�U 03;nT;k;�1Jn
�VnT;k

375 ,

10



�
�X;k
1;nT =

q
T
n

266664
1
�2�;0

�
�
�
Dn;�X;k;kAk;n +Dn;kWn

� �
�1;k;0In + �2;k;0Wn

�
WnAk;n �U3;nT;k;�1

�0
Jn �EnT

+ 1
�2�;0

�V 0nT;k

�
�
�
Dn;�X;k;kAk;n +Dn;kWn

� �
�1;k;0In + �2;k;0Wn

�
Wn

�0
Jn �EnT

+ 1
�2V;k;0

�U 03;nT;k;�1W
0
nJn

�VnT;k

377775 ,

�
�2V;k
1;nT =

1
2�4V;k;0

q
T
n
�V 0nT;kJn

�VnT;k,

��2;nT =
q

T
n

�
tr
�
�Rn�R�1n

�
� tr

�
Jn(�Rn�R�1n )

��
, �
2;nT =

q
T
n

�
tr
�
�Rn
R�1n

�
� tr

�
Jn(�Rn
R�1n )

��
,

��2;nT =
q

T
n

�
tr
�
�Rn�R�1n

�
� tr

�
Jn(�Rn�R�1n )

��
, ��12;nT = 0K�1, �

�2
2;nT = 0K�1, �

�2�
2;nT =

q
T
n

1
2�2�;0

,

�

X;k
2;nT = 0, �

�X;k
2;nT = 0, and �

�2V;k
2;nT =

q
T
n

1
2�2V;k;0

for k = 1; � � � ;K:

2.5 Some lemmas for the asymptotic properties of QMLEs

Note that Ynt can be represented by

Ynt =

24 P1
h=0

P1
g=0

PK
k=1A

h
nR

�1
n BX;k;nA

g
k;n (cn;k;0 + �t�h�g;k;0ln)

+
P1
h=0A

h
nR

�1
n (cn0 + �t�h;0ln)

35
| {z }

nonstochastic component of Ynt

(13)

+

24 P1
h=0

P1
g=0

PK
k=1A

h
nR

�1
n BX;k;nA

g
k;nVn;t�h�g;k

+
P1
h=0A

h
nR

�1
n En;t�h

35
| {z }

stochastic component of Ynt

:

Hence, the main stochastic component of Ynt is

1X
h=0

1X
g=0

KX
k=1

AhnR
�1
n BX;k;nA

g
k;nVn;t�h�g;k +

1X
h=0

AhnR
�1
n En;t�h: (14)

To investigate (14), de�ne U1;nt =
P1
h=0

P1
g=0

PK
k=1 PnhQng;kVn;t�h�g;k and U2;nt =

P1
h=0 PnhEn;t�h where

fPnhg1h=0 and fQng;kg
1
g=0 j

K
k=1 are n�n uniformly bounded (in n) matrices. Then, the stochastic component

(14) takes the form of U1;nt + U2;nt. Similarly, the main stochastic component of Xnt;k is veri�ed by

U3;nt;k =
P1
g=0 PX;ng;kVn;t�g;k where fPX;ng;kg

1
g=0 j

K
k=1 are n�n uniformly bounded (in n) matrices for each

k. The following assumptions and lemmas are fundamental in our asymptotic analysis and similar to Yu et

al. (2008) and Lee and Yu (2010).

Assumption 2.2 For all i, t, and k, �it v i:i:d:(0; �2�;0), vit;k v i:i:d:(0; �2V;k;0), and ��s and v�s are inde-

pendent. Suppose E j�itj4+� <1 and maxk=1;��� ;K E jvit;kj4+� <1 for some � > 0.
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Assumption 2.3
P1
h=0 abs(Pnh),

P1
h=0

P1
g=0

PK
k=1 abs(Pnh)abs(Qng;k) and

P1
g=0 abs(PX;ng;k) are uni-

formly bounded.

Assumption 2.4 (i) Dnt denotes an n � 1 nonstochastic and all of elements are uniformly bounded in

n and t. (ii) Let Bn, B1;n;1; � � � ; B1;n;K , B2;n;1; � � � ; B2;n;K be n � n nonstochastic and uniformly bounded

matrices.

Assumption 2.5 T goes to in�nity. n is an increasing function of T .

Note that the �rst order condition (except for
@ lnL

(u)
nT;c(�0)

@�2V;k
, k = 1; � � � ;K) at � = �0 takes the linear

quadratic form,

1p
nT

TX
t=1

"
By;n ~Yn;t�1 +

KX
k=1

B1;X;k;n ~Xn;t�1;k +Dnt

#0
Jn ~Ent| {z }

Linear term I

+
1p
nT

TX
t=1

h
~E 0ntB0q;nJn ~Ent � �2�;0tr (Bq;n)

i
| {z }

Quadratic term I

+
1p
nT

TX
t=1

KX
k=1

~V 0nt;kB
0
2;X;k;nJn

~Ent| {z }
Cross term I

+
1p
nT

TX
t=1

KX
k=1

~X 0
n;t�1;kB

0
3;X;k;nJn

~Vnt;k| {z }
Linear term II

where By;n, Bq;n, fB1;X;k;ngKk=1, fB2;X;k;ng
K
k=1 and fB3;X;k;ng

K
k=1 are uniformly bounded (in n). The follow-

ing lemmas 2.1 and 2.2 describe stochastic orders of linear and/or quadratic terms.

Lemma 2.1 (Quadratic and cross terms) Suppose Assumptions 2.2, 2.4 (ii) and 2.5 hold. Then,

(i) 1
nT

PT
t=1 E 0ntBnEnt�E

�
1
nT

PT
t=1 E 0ntBnEnt

�
= Op

�
1p
nT

�
where E

�
1
nT

PT
t=1 E 0ntBnEnt

�
= 1

n�
2
�;0tr (Bn) =

O (1).

(ii) 1
n
�E 0nTBn �EnT � E

�
1
n
�E 0nTBn �EnT

�
= Op

�
1p
nT 2

�
where E

�
1
n
�E 0nTBn �EnT

�
= 1

nT �
2
�;0tr (Bn) = O

�
1
T

�
.

(iii) 1
nT

PT
t=1

PK
k=1 V

0
nt;kB1;n;kEnt = Op

�
1p
nT

�
. Note that E

�
1
nT

PT
t=1

PK
k=1 V

0
nt;kB1;n;kEnt

�
= 0.

(iv) 1
n

PK
k=1

�V 0nT;kB1;n;k
�EnT = Op

�
1p
nT 2

�
. Note that E

�
1
n

PK
k=1

�V 0nT;kB1;n;k
�EnT
�
= 0.

(v) 1
nT

PT
t=1

PK
k=1 V

0
nt;kB2;n;kVnt;k � E

�
1
nT

PT
t=1

PK
k=1 V

0
nt;kB2;n;kVnt;k

�
= Op

�
1p
nT

�
where

E

 
1

nT

TX
t=1

KX
k=1

V 0nt;kB2;n;kVnt;k

!
=
1

n

KX
k=1

�2V;k;0tr (B2;n;k) = O (1) :

(vi) 1
n

PK
k=1

�V 0nT;kB2;n;k
�VnT;k � E

�
1
n

PK
k=1

�V 0nT;kB2;n;k
�VnT;k

�
= Op

�
1p
nT 2

�
where

E

 
1

n

KX
k=1

�V 0nT;kB2;n;k �VnT;k

!
=

1

nT

KX
k=1

�2V;k;0tr (B2;n;k) = O

�
1

T

�
:
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Lemma 2.2 (Linear terms) Suppose Assumptions 2.2, 2.3 and 2.5 hold. Then,

(i) 1
nT

PT
t=1

~U01;n;t�1Bn ~Ent = Op
�

1p
nT

�
. Note that E

�
1
nT

PT
t=1

~U01;n;t�1Bn ~Ent
�
= 0.

(ii) 1
nT

PT
t=1

~U02;n;t�1Bn ~Ent�E
�
1
nT

PT
t=1

~U02;n;t�1Bn ~Ent
�
= Op

�
1p
nT

�
where E

�
1
nT

PT
t=1

~U02;n;t�1Bn ~Ent
�
=

O
�
1
T

�
. Note that

1

n
E
�
�U02;nT;�1Bn �EnT

�
=

1

nT 2

T�2X
h=0

(T � 1)�2�;0tr
�
P 0nhBn

�
� 1

nT 2

T�2X
h=0

h�2�;0tr
�
P 0nhBn

�
=

1

T

1

n
�2�;0tr

 1X
h=0

P 0nhBn

!
| {z }+O

�
1

T 2

�
=O(1)

= O

�
1

T

�
+O

�
1

T 2

�
:

(iii) 1
nT

PT
t=1D

0
ntBn

~Ent and 1
nT

PT
t=1

PK
k=1D

0
ntB1;n;k

~Vnt;k have Op
�

1p
nT

�
.

(iv) 1
nT

PT
t=1

PK
k=1

~U03;n;t�1;kB1;n;k ~Ent = Op
�

1p
nT

�
. Note that E

�
1
nT

PT
t=1

PK
k=1

~U03;n;t�1;kB1;n;k ~Ent
�
=

0.

(v) 1
nT

PT
t=1

PK
k=1

~U03;n;t�1;kB1;n;k ~Vnt;k � E
�
1
nT

PT
t=1

PK
k=1

~U03;n;t�1;kB1;n;k ~Vnt;k
�
= Op

�
1p
nT

�
where

E
�
1
nT

PT
t=1

PK
k=1

~U03;n;t�1;kB1;n;k ~Vnt;k
�
= O

�
1
T

�
. Note that

1

n

KX
k=1

E
�
�U03;nT;k;�1B1;n;k �VnT

�
=
1

T

1

n
tr

 
KX
k=1

1X
h=0

�2V;k;0P
0
X;nh;kB1;n;k

!
+O

�
1

T 2

�
:

To derive the asymptotic distribution of �̂ml;nT , consider the stochastic component of
@ lnL

(u)
nT;c(�0)

@� (except

for
@ lnL

(u)
nT;c(�0)

@�2V;k
, k = 1; � � � ;K).

snT =

TX
t=1

0@ (U1;n;t�1 + U2;n;t�1)0 Ent +D0ntEnt +
�
E 0ntBnEnt � �2�;0tr (Bn)

�
+
PK
k=1U03;n;t�1;kEnt +

PK
k=1 V

0
nt;kB1;n;kEnt +

PK
k=1U03;n;t�1;kVnt;k

1A =

TX
t=1

nX
i=1

�nt;i

and

�nt;i =

0@u1;i;t�1 + u2;i;t�1 + KX
k=1

u3;i;t�1;k +
KX
k=1

nX
j=1

b1;n;ij;kvjt + dnt;i

1A �it
+bn;ii(�

2
it � �2�;0) + 2�it

i�1X
j=1

bn;ij�jt +

KX
k=1

u3;i;t�1;kvit;k

where u1;i;t�1, u2;i;t�1, u3;i;t�1 and dnt;i denotes respectively the i-th element of U1;n;t�1, U2;n;t�1, U3;n;t�1;k

and Dnt. bn;ij , b1;n;ij;k, b2;n;ij;k and b3;n;ij;k denote respectively the (i; j)-component of Bn, B1;n;k, B2;n;k and

13



B3;n;k. Also,
@ lnL

(u)
nT;c(�0)

@�2V;k
, k = 1; � � � ;K take the quadratic form,

s
�2V
nT;k =

1

2�4V;k;0

TX
t=1

�
V 0nt;kJnVnt;k � (n� 1)�2V;k;0

�
=

TX
t=1

nX
i=1

�
�2V;k
nt;i;k

where �
�2V;k
nt;i;k =

�
1� 1

n

2�4V;k;0

��
v2it;k � �2V;k;0

�
+2vit;k

Pi�1
j=1

�
� 1
n

2�4V;k;0

�
vjt;k for k = 1; � � � ;K. Note that the expec-

tations of snT and s
�2V
nT;k�s are E (snT ) =

PT
t=1

Pn
i=1E

�
�nt;i

�
= 0 and E

�
s
�2V
nT;k

�
=
PT
t=1

Pn
i=1E

�
�
�2V;k
nt;i;k

�
=

0 for k = 1; � � � ;K using the statistical independence between �it and vit;k�s. Let �
(3)
�;0 = E

�
�3it
�
, �(3)V;k;0 =

E
�
v3it;k

�
, �(4)�;0 = E

�
�4it
�
, and �(4)V;k;0 = E

�
v4it;k

�
for k = 1; � � � ;K. Next, consider calculating the variance of

snT : note that

(i-a)
E
�PT

t=1

PT
s=1 (U1;n;t�1 + U2;n;t�1)

0 EntE 0ns (U1;n;s�1 + U2;n;s�1)
�

= T
PK
k=1 �

2
";0�

2
V;k;0tr

�P1
f=0

P1
h1=0

P1
h2=0

Q0n;f�h2;kP
0
nh2
Pnh1Qn;f�h1;k

�
+ T�4";0tr (

P1
h=0 P

0
nhPnh) ;

(i-b) E
�PT

t=1

PT
s=1 (U1;n;t�1 + U2;n;t�1)

0 EntE 0nsDns
�
= 0;

(i-c) E
�PT

t=1

PT
s=1 (U1;n;t�1 + U2;n;t�1)

0 Ent�
�
E 0nsBnEns � �2�;0tr (Bn)

��
= 0;

(i-d)
E
�PT

t=1

PT
s=1

PK
k=1 (U1;n;t�1 + U2;n;t�1)

0 EntE 0nsU03;n;s�1;k
�

= T
PK
k=1 �

2
";0�

2
V;k;0tr

�P1
f=0

P1
h=0 P

0
X;nf;kPnhQn;f�h;k

�
;

(i-e) E
�PT

t=1

PT
s=1

PK
k=1 (U1;n;t�1 + U2;n;t�1)

0 Ent�
�
V 0ns;kB1;n;kEns

��
= 0;

(i-f) E
�PT

t=1

PT
s=1 (U1;n;t�1 + U2;n;t�1)

0 Ent�
�PK

k=1U03;n;s�1;kVns;k
��
= 0;

(ii-a) E
�PT

t=1

PT
s=1D

0
ntEntE 0nsDnt

�
= �2";0

PT
t=1D

0
ntDnt;

(ii-b) E
�PT

t=1

PT
s=1D

0
ntEnt�

�
E 0nsBnEns � �2�;0tr (Bn)

��
= �

(3)
�;0

PT
t=1

Pn
i=1 dnt;ibn;ii;

(ii-c) E
�PT

t=1

PT
s=1

PK
k=1D

0
ntEntE 0nsU03;n;s�1;k

�
= 0;

(ii-d) E
�PT

t=1

PT
s=1

PK
k=1D

0
ntEntE 0nsB1;n;kVns;k

�
= 0;

(ii-e) E
�PT

t=1

PT
s=1

PK
k=1D

0
ntEntVns;kUn;s�1;3;k

�
= 0

(iii-a)
E
�PT

t=1

PT
s=1

�
E 0ntBnEnt � �2�;0tr (Bn)

�
�
�
E 0nsBnEns � �2�;0tr (Bn)

��
= T

��
�
(4)
�;0 � 3�4�;0

�Pn
i=1 b

2
n;ii + �

4
�;0

�
tr
�
B2n
�
+ tr (BnB

0
n)
��
;

(iii-b) E
�PT

t=1

PT
s=1

PK
k=1

�
E 0ntBnEnt � �2�;0tr (Bn)

�
� E 0nsUn;s�1;3;k

�
= 0,

(iii-c) E
�PT

t=1

PT
s=1

PK
k=1

�
E 0ntBnEnt � �2�;0tr (Bn)

�
� E 0nsB1;n;kVns;k

�
= 0;

(iii-d) E
�PT

t=1

PT
s=1

PK
k=1

�
E 0ntBnEnt � �2�;0tr (Bn)

�
� V 0ns;kUn;s�1;3;k

�
= 0;

(iv-a) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1U0n;t�1;3;kEntE 0nsUn;s�1;3;l

�
= T�2�;0

PK
k=1 �

2
V;k;0tr

�P1
h=0 P

0
X;nhPX;nh

�
;

(iv-b) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1U0n;t�1;3;kEntE 0nsB01;n;lVns;l

�
= 0;
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(iv-c) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1U0n;t�1;3;kEntV 0ns;lUn;s�1;3;l

�
= 0;

(v-a) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1 V

0
nt;kB1;n;kEntE 0nsB01;n;lVns;l

�
= T�2�;0

PK
k=1 �

2
V;k;0tr

�
B01;n;kB1;n;k

�
;

(v-b) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1 V

0
nt;kB1;n;kEntV 0ns;lUn;s�1;3;l

�
= 0;

(vi-a) E
�PT

t=1

PT
s=1

PK
k=1

PK
l=1U0n;t�1;3;kVnt;kV

0
ns;lUn;s�1;3;l

�
= T

PK
k=1 �

4
V;k;0tr

�P1
h=0 P

0
X;nhPX;nh

�
:

Then, we obtain the variance of snT , �2snT � V ar (snT ):

�2snT = T
KX
k=1

�2";0�
2
V;k;0tr

0@ 1X
f=0

1X
h1=0

1X
h2=0

Q0n;f�h2;kP
0
nh2Pnh1Qn;f�h1;k

1A+ T�4";0tr
 1X
h=0

P 0nhPnh

!
(15)

+2T
KX
k=1

�2";0�
2
V;k;0tr

0@ 1X
f=0

1X
h=0

P 0X;nf;kPnhQn;f�h;k

1A+ �2";0 TX
t=1

D0ntDnt

+2�
(3)
�;0

TX
t=1

nX
i=1

dnt;ibn;ii + T

 �
�
(4)
�;0 � 3�4�;0

� nX
i=1

b2n;ii + 2�
4
�;0tr

�
B2n
�!

+T�2�;0

KX
k=1

�2V;k;0tr

  1X
h=0

P 0X;nhPX;nh

!
+B01;n;kB1;n;k

!
+ T

KX
k=1

�4V;k;0tr

 1X
h=0

P 0X;nhPX;nh

!
:

Also, �2
s
�2
V

nT;k

� V ar
�
s
�2V
nT;k

�
= (n � 1)T 1

4�8V;k;0

��
�
(4)
V;k;0 � 3�4V;k;0

� �
n�1
n

�
+ 2�4V;k;0

�
for k = 1; � � � ;K. Since

E
�
snT s

�2V
nT;k

�
= 0 for all k = 1; � � � ;K and E

�
s
�2V
nT;ks

�2V
nT;l

�
= 0 for all k 6= l, we can apply the Cramér-Wold

device to verify the asymptotic distribution of the main statistic, @ lnL
(u)
nT (�0)
@� . Here is the detailed proof

strategy:

Step 1: The �rst step is to verify the asymptotic distribution of the univariate random variables, snT

and s
�2V
nT;k. That is,

snT
�snT

d! N(0; 1) and
s
�2V
nT;k

�
s
�2
V

nT;k

d! N(0; 1) for all k = 1; � � � ;K. Similar to Yu et al. (2008),

we apply the central limit theorem of the martingale di¤erence array. The idea of proof is following. At

�rst, we consider the �-�eld,

Fn;t;i = � (�11; � � � ; �n1; � � � ; �1;t�1; � � � ; �n;t�1; �1t; � � � ; �it) (16)

and Fn;0;0 = f?;
g where 
 denotes the sample space. Let Fn;t;0 = Fn;t�1;n as a convention. By us-

ing statistical independence between �it and vit;k�s, we have E
�
�nt;ijFn;t;i�1

�
= 0, E

�
�nt;ijFn;t�1;n

�
= 0,

E

�
�
�2V;k
nt;i;kjFn;t;i�1

�
= 0, and E

�
�
�2V;k
nt;i;kjFn;t�1;n

�
= 0. From these with Fn;t;i�1 � Fn;t;i and Fn;t�1;0 � Fn;t;0,

we construct the martingale di¤erence arrays
�
�nt;i;Fn;t;i : i = 1; � � � ; n and t = 1; � � � ; T

	
, and�

�
�2V;k
nt;i;k;Fn;t;i : i = 1; � � � ; n and t = 1; � � � ; T

�
for k = 1; � � � ;K. To apply the CLT to snT =

PT
t=1

Pn
i=1 �nt;i

15



and s
�2V
nT;k =

PT
t=1

Pn
i=1 �

�2V;k
nt;i;k, we need to check two su¢ cient conditions: for all k

(i)
1

�2+�snT

TX
t=1

nX
i=1

E
���nt;i��2+� ! 0,

1

�2+�

s
�2
V

nT;k

TX
t=1

nX
i=1

E

������2V;knt;i;k

����2+� ! 0

and (ii) 1
�2snT

PT
t=1

Pn
i=1E

�
�2nt;ijFn;t;i�1

� p! 1, 1
�2

s
�2
V

nT;k

PT
t=1

Pn
i=1E

�
�
�2V;k
nt;i;kjFn;t;i�1

�
p! 1. The �rst condi-

tion is a Liapounov�s condition and the second one is for convergence of the conditional variances to the

unconditional variances.

Step 2: Note that 1p
nT

@ lnL
(u)
nT (�0)
@� consists of snT and s

�2V
nT;k. Since we know the variances and covariances

of snT and s
�2V
nT;k, the Cramér-Wold device can be applied. Then, we have

1p
nT

@ lnL
(u)
nT;c(�0)

@�
d! N (0;
�0) where


�0 = limT!1
�0;nT :

Lemma 2.3 Suppose Assumptions 2.2 - 2.5 hold. If the sequence 1
nT �

2
snT

is bounded away from zero, then
snT
�snT

d! N(0; 1).

Lemma 2.4 Suppose Assumptions 2.2 - 2.5 hold. Then,

(i) 1
nT

PT
t=1

~U01;n;t�1Bn ~U1;n;t�1 � E 1
nT

PT
t=1

~U01;n;t�1Bn ~U1;n;t�1 = Op
�

1p
nT

�
where

E 1
nT

PT
t=1

~U01;n;t�1Bn ~U1;n;t�1 = O(1),

(ii) 1
nT

PT
t=1

~U01;n;t�1Bn ~U2;n;t�1 = Op
�

1p
nT

�
where E 1

nT

PT
t=1

~U01;n;t�1Bn ~U2;n;t�1 = 0,

(iii) 1
nT

PT
t=1

~U02;n;t�1Bn ~U2;n;t�1 � E 1
nT

PT
t=1

~U02;n;t�1Bn ~U2;n;t�1 = Op
�

1p
nT

�
where

E 1
nT

PT
t=1

~U02;n;t�1Bn ~U2;n;t�1 = O(1),

(iv) 1
nT

PT
t=1D

0
ntBn

~U1;n;t�1 = Op
�

1p
nT

�
where Dnt is an n � 1 time-variant deterministic vector with

all its elements bounded for all n and t, and E 1
nT

PT
t=1D

0
ntBn

~U1;n;t�1 = 0,

(v) 1
nT

PT
t=1D

0
ntBn

~U2;n;t�1 = Op
�

1p
nT

�
where E 1

nT

PT
t=1D

0
ntBn

~U2;n;t�1 = 0,

(vi) for k; l = 1; � � � ;K,

1

nT

TX
t=1

~U03;n;t�1;kBn ~U3;n;t�1;l � E
1

nT

TX
t=1

~U03;n;t�1;kBn ~U3;n;t�1;l = Op
�

1p
nT

�

where E 1
nT

PT
t=1

~U03;n;t�1;kBn ~U3;n;t�1;l = O(1),

(vii) for k = 1; � � � ;K, 1
nT

PT
t=1D

0
ntBn

~U3;n;t�1;k = Op
�

1p
nT

�
where E 1

nT

PT
t=1D

0
ntBn

~U3;n;t�1;k = 0,
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(viii) for k = 1; � � � ;K,

1

nT

TX
t=1

�
~U1;n;t�1 + ~U2;n;t�1

�
Bn ~U3;n;t�1;k � E

1

nT

TX
t=1

�
~U1;n;t�1 + ~U2;n;t�1

�
Bn ~U3;n;t�1;k = Op

�
1p
nT

�

where E 1
nT

PT
t=1

�
~U1;n;t�1 + ~U2;n;t�1

�
Bn ~U3;n;t�1;k = O(1):

From Lemma 2.4, we have the following results:

(i)
1

nT

TX
t=1

~Y
(�)0
n;t�1Bn

~Y
(�)
n;t�1 � E

1

nT

TX
t=1

~Y
(�)0
n;t�1Bn

~Y
(�)
n;t�1 = Op

�
1p
nT

�

where E 1
nT

PT
t=1

~Y
(�)0
n;t�1Bn

~Y
(�)
n;t�1 = O(1) from Lemma 2.4 (vi) and (vii),

(ii)
1

nT

TX
t=1

~X
(�)0
n;t�1;kBn

~X
(�)0
n;t�1;l � E

1

nT

TX
t=1

~X
(�)0
n;t�1;kBn

~X
(�)0
n;t�1;l = Op

�
1p
nT

�

where E 1
nT

PT
t=1

~X
(�)0
n;t�1;kBn

~X
(�)0
n;t�1;l = O(1) from Lemma 2.4 for k; l = 1; � � � ;K, and

(iii)
1

nT

TX
t=1

~Y
(�)0
n;t�1Bn

~X
(�)
n;t�1;k � E

1

nT

TX
t=1

~Y
(�)0
n;t�1Bn

~X
(�)
n;t�1;k = Op

�
1p
nT

�

where E 1
nT

PT
t=1

~Y
(�)0
n;t�1Bn

~X
(�)
n;t�1;k = O(1) from Lemma 2.4 (iv)-(v) and (vii)-(viii) for k = 1; � � � ;K.

2.6 Proofs of theorems: consistency and asymptotic normality

Proof of Theorem 4.1. We �rstly show the uniform convergence of 1
nT lnLnT (�)�QnT (�)

p! 0 uniformly

in � 2 �. The main issue is whether the terms

1

nT

TX
t=1

h
~E 0nt (�) Jn ~Ent (�)� E

�
~E 0nt (�) Jn ~Ent (�)

�i
and 1

nT

PT
t=1

h
~V 0nt;k (
k; �k) Jn

~Vnt;k (
k; �k)� E
�
~V 0nt;k (
k; �k) Jn

~Vnt;k (
k; �k)
�i
for k = 1; � � � ;K converge

to zero in probability uniformly in � 2 �. Let

~Ent (�) = ~EAnt (�) +Rn(�1)R�1n ~Ent +
KX
k=1

�
Rn(�1)R

�1
n BX;k;n �BX;k;n (�)

�
~Vnt;k:
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where ~EAnt (�) =

24 �Rn(�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn(�1)R�1n ln

+
PK
k=1

�
Rn(�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35. Consider

1

nT

TX
t=1

~E 0nt (�) Jn ~Ent (�)

=
1

nT

TX
t=1

~EA0nt (�) Jn ~EAnt (�) +
2

nT

TX
t=1

~EA0nt (�) JnRn (�1)R�1n ~Ent

+
2

nT

KX
k=1

TX
t=1

~EA0nt (�) Jn
�
Rn(�1)R

�1
n BX;k;n �BX;k;n (�)

�
~Vnt;k +

1

nT

TX
t=1

~E 0ntR�10n R0n (�1) JnRn (�1)R
�1
n
~Ent

+
2

nT

KX
k=1

TX
t=1

~E 0ntR�10n R0n (�1) Jn
�
Rn(�1)R

�1
n BX;k;n �BX;k;n (�)

�
~Vnt;k

+
1

nT

KX
k=1

KX
l=1

TX
t=1

~V 0nt;k
�
Rn(�1)R

�1
n BX;k;n �BX;k;n (�)

�0
Jn
�
Rn(�1)R

�1
n BX;l;n �BX;l;n (�)

�
~Vnt;l:

and

1

nT

TX
t=1

~V 0nt;k (
k; �k) Jn ~Vnt;k (
k; �k)

=
1

nT

TX
t=1

~X 0
n;t�1;k

��

k;0 � 
k

�
In +

�
�k;0 � �k

�
Wn

�0
Jn
��

k;0 � 
k

�
In +

�
�k;0 � �k

�
Wn

�
~Xn;t�1;k

+
2

nT

TX
t=1

~X 0
n;t�1;k

��

k;0 � 
k

�
In +

�
�k;0 � �k

�
Wn

�0
Jn ~Vnt;k +

1

nT

TX
t=1

~V 0nt;kJn ~Vnt;k:

Since (i) � is bounded in the compact parameter space � and (ii) Rn (�1) and R�1n are uniformly bounded in

� 2 � and (iii) BX;k;n (�) and BX:k;n are uniformly bounded in � 2 �, Rn (�1)R�1n �In and BX;k;n�BX;k;n (�)

(for k = 1; � � � ;K) are also uniformly bounded in � 2 �. By using Lemmas 8 and 15 in Yu et al. (2008),

therefore,

1

nT

TX
t=1

h
~E 0nt (�) Jn ~Ent (�)� E

�
~E 0nt (�) Jn ~Ent (�)

�i
p! 0

and 1
nT

PT
t=1

h
~V 0nt;k (
k; �k) Jn

~Vnt;k (
k; �k)� E
�
~V 0nt;k (
k; �k) Jn

~Vnt;k (
k; �k)
�i

p! 0 uniformly in � 2 �.

Since �2� , �
2
V;1, � � � , �2V;K are bounded away from zero,

1

nT
lnLnT (�)�QnT (�)

= � 1

2�2�

1

nT

TX
t=1

h
~E 0nt (�) Jn ~Ent (�)� E

�
~E 0nt (�) Jn ~Ent (�)

�i
� 1

nT

KX
k=1

1

2�2V;k

TX
t=1

h
~V 0nt;k (
k; �k) Jn ~Vnt;k (
k; �k)� E

�
~V 0nt;k (
k; �k) Jn ~Vnt;k (
k; �k)

�i
p! 0
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uniformly in � 2 �.

Secondly, we shall show that QnT (�) is uniformly equicontinuous in � 2 �. Note that

1

nT

TX
t=1

E
�
~E 0nt (�) Jn ~Ent (�)

�
= qnT;1 (�) + qnT;2 (�1) +

KX
k=1

qnT;3;k (�) + o(1)

and 1
nT

PT
t=1

PK
k=1E

�
~V 0nt;k (
k; �k) Jn

~Vnt;k (
k; �k)
�
=
PK
k=1 qnT;4;k (
k; �k) +

(n�1)(T�1)
nT

PK
k=1 �

2
V;k;0 + o(1)

where

qnT;1 (�) =
1

nT

TX
t=1

E

0@ �
Rn (�1)R

�1
n (
0In + �0Wn)� (
In + �Wn)

�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
1A0

�Jn

0@ �
Rn (�1)R

�1
n (
0In + �0Wn)� (
In + �Wn)

�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
1A ,

qnT;2 (�1) =
T � 1
nT

�2�;0tr
�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
,

qnT;3;k (�) =
T � 1
nT

�2V;k;0tr
��
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

�0
Jn
�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

��
,

and qnT;4;k (
k; �k) =
1
nT

PT
t=1E

0@ ~X 0
n;t�1;k

��

k;0 � 
k

�
In +

�
�k;0 � �k

�
Wn

�0
�Jn

��

k;0 � 
k

�
In +

�
�k;0 � �k

�
Wn

�
~Xn;t�1;k

1A for k = 1; � � � ;K.

To show the uniform equicontinuity of QnT (�), we should verify (i) ln�2� is uniformly continuous, (ii)

ln�2V;k, k = 1; � � � ;K, are uniformly continuous, (iii) 1
n ln jRn (�1)j is uniformly equicontinuous, and (iv)

qnT;1 (�), qnT;2 (�1), fqnT;3;k (�)gKk=1 and fqnT;4;k (
k; �k)g
K
k=1 are uniformly equicontinuous.

(i) and (ii) hold because �2� , �
2
V;1; � � � ; �2V;K are bounded away from zero in �. Consider (iii). For �1;1,

�1;2 in �,

1

n
ln jRn (�1;1)j �

1

n
ln jRn (�1;2)j

=
1

n
tr
�
Rn�

�
��1
�
R�1n

�
��1
��
� (�1 � �2) +

1

n
tr
�
Rn


�
��1
�
R�1n

�
��1
��
� (
1 � 
2) +

1

n
tr
�
Rn�

�
��1
�
R�1n

�
��1
��
� (�1 � �2)

where �1;1 = (�1; 
1; �1)
0, �1;2 = (�2; 
2; �2)

0 and ��1 lies between �1;1 and �1;2. Since Rn� (�1), Rn
 (�1),

Rn� (�1) andR�1n (�1) are uniformly bounded for all �1 in�, 1n tr
�
Rn�

�
��1
�
R�1n

�
��1
��
, 1n tr

�
Rn


�
��1
�
R�1n

�
��1
��

and 1
n tr

�
Rn�

�
��1
�
R�1n

�
��1
��
are bounded. Hence, we have the uniform equicontinuity of 1n ln jRn (�1)j. Last,

we consider (iv). By the Taylor expansion, for �a; �b 2 �

qnT;1 (�a)� qnT;1 (�b) =
@q1;nT

�
��
�

@�0
(�a � �b)
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where �� lies between �a and �b and the components of
@qnT;1(�)

@� are

@qnT;1(�)
@� =

E 1
nT

PT
t=1 2

24 Rn� (�1)R
�1
n

�
(
0In + �0Wn) ~Yn;t�1 + ~�t;0ln

�
+
PK
k=1

�
Rn� (�1)R

�1
n BX;k;n �BX;k;n;� (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
350

�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

where BX;k;n;� (�) = �Dn�;k (�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

@qnT;1(�1)
@
 =

E 1
nT

PT
t=1 2

24 �
Rn
 (�1)R

�1
n (
0In + �0Wn)� In

�
~Yn;t�1 + ~�t;0Rn
 (�1)R�1n ln

+
PK
k=1

�
Rn
 (�1)R

�1
n BX;k;n �BX;k;n;
 (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
350

�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

where BX;k;n;
 (�) = �Dn
;k (�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

@qnT;1(�)
@� =

E 1
nT

PT
t=1 2

24 �
Rn� (�1)R

�1
n (
0In + �0Wn)�Wn

�
~Yn;t�1 + ~�t;0Rn� (�1)R�1n ln

+
PK
k=1

�
Rn� (�1)R

�1
n BX;k;n �BX;k;n;� (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
350

�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

where BX;k;n;� (�) = �Dn�;k (�1; 
k; �k)Ak;n (
k; �k)
�
�1;kIn + �2;kWn

�
,

@qnT;1(�)
@�1;k

=

�E 1
nT

PT
t=1 2

h
(In + �Dn;k (�1; 
k; �k)Ak;n(
k; �k))

�
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�i0
�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

@qnT;1(�)
@�2;k

=

�E 1
nT

PT
t=1 2

h
(In + �Dn;k (�1; 
k; �k)Ak;n(
k; �k))Wn

�
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�i0
�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

@qnT;1(�)
@
k

=

�E 1
nT

PT
t=1 2

24 � �Dn;
k;k (�1; 
k; �k)Ak;n(
k; �k) +Dn;k (�1; 
k; �k)
�

�
�
�1;kIn + �2;kWn

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
350

�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;

@qnT;1(�)
@�k

=

�E 1
nT

PT
t=1 2

24 � �Dn;�k;k (�1; 
k; �k)Ak;n(
k; �k) +Dn;k (�1; 
k; �k)
�
Wn

�
�
�1;kIn + �2;kWn

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
350

�Jn

24 �Rn (�1)R�1n (
0In + �0Wn)� (
In + �Wn)
�
~Yn;t�1 + ~�t;0Rn (�1)R�1n ln

+
PK
k=1

�
Rn (�1)R

�1
n BX;k;n �BX;k;n (�)

� �
Ak;n ~Xn;t�1;k + ~�t;k;0ln

�
35 ;
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@qnT;1(�)
@�2�

= 0, and @qnT;1(�)

@�2V;k
= 0 for k = 1; � � � ;K.

Since (i) Rn� (�1), Rn
 (�1), Rn� (�1), R�1n , Dn;k(�1; 
k; �k), Dn�;k(�1; 
k; �k), Dn
;k(�1; 
k; �k),

Dn�;k(�1; 
k; �k),Dn;
k;k(�1; 
k; �k) andDn;�k;k(�1; 
k; �k) (for all k) are uniformly bounded, (ii) � is bounded

in the compact parameter space � and (iii) E 1
nT

PT
t=1

~Z 0ntBn ~Znt = O (1) from Lemma 2.4 where ~Znt can

take ~Yn;t�1, ~Xn;t�1;k�s, ~�t;0ln and ~�t;k;0ln and Bn is an n�n uniformly bounded matrix,
@qnT;1(��)

@�0
is bounded.

Thus, qnT;1 (�) is uniformly equicontinuous. For uniformly equicontinuous of qnT;2(�1), it su¢ ces to show

1
n�

2
�;0tr

�
R�10n R0n (�1) JnRn (�1)R

�1
n

�
is uniformly equicontinuous. By using the expansion of Rn (�1)R�1n �In,

for �1;1, �1;2 in � we have

�2�;0
n

�
tr
�
R�10n R0n (�1;1) JnRn (�1;1)R

�1
n

�
� tr

�
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n

��

=
�2�;0
n

266666666666666666664
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�Rn�(��1)R�1n

��
� 2(
1 � 
2)tr

�
Jn
�
�Rn
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where ��1 lies between �1;1 and �1;2. Since Rn (�1), Rn� (�1), Rn
 (�1), Rn� (�1) and R�1n are uniformly

bounded, we obtain the uniform equicontinuity of qnT;2 (�1). To show the uniform equicontinuity of qnT;3;k (�)

for k = 1; � � � ;K, it is enough to verify that property of
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n tr
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�0
Jn
�
Rn (�)R

�1
n BX;k;n �BX;k;n (�)

��
. By employing the expansion

of Rn (�)R�1n BX;k;n � BX;k;n (�), we have the following decomposition: for �1, �2 in � and k = 1; � � � ;K,
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k; �k) (for all k = 1; � � � ;K) are uniformly bounded for any � in �, we

obtain the uniform equicontinuity of qnT;3;k (�). Last, the uniform equicontinuity of fqnT;4;k (
k; �k)gKk=1 can

be veri�ed because 1
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i
= O (1) for all k = 1; � � � ;K.

By combining the results by the two steps above and the identi�cation uniqueness assumption, we obtain
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where ��nT lies between �̂ml;nT and �0. Since �̂ml;nT � �0 = Op
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��
from Theorem 4.1, the

dominant term of ci;ml(�̂ml;nT )� ci;0 is 1
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p
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ĉi;ml(�̂ml;nT )� ci;0

�
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are asymptotically independent with each other.
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Consider (ii). Using ~�t0 = �t0 from
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where ��nT lies between �̂ml;nT and �0. Since �̂ml;nT � �0 = Op

�
max

�
1p
nT
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1
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��
, the dominant term of

p
n
�
�̂t;ml(�̂ml;nT )� �t0

�
is 1p

n
l0nEnt. This yields (i)

p
n (�̂t;ml � �t0)

d! N(0; �2�;0) and (ii) the estimates

�̂t;ml�s for t = 1; � � � ; T are asymptotically independent with each other.

Verifying (iii) can be done by applying �̂
c

ml;nT � �0 = Op
�

1p
nT

�
if n
T 3
and T

n3
! 0. �

2.7 Calculation of Rn (�1) and ln jRn (�1)j

For the inner loop (evaluation of spatial-time �lter Rn (�1))

Note that Rn (�1) is the spatial-time �lter of our model. Since a component of the inner loop is to evaluate

Rn (�1), we need a numerical approximation method. If we take a high order approximation, a computation

cost of getting Rn (�1) increases explosively when n is large. In Table A.1, we provide the performance of

iterations and several approximations for Rn (�1). For this experiment, we use (row-normalized) rook and

queen matrices for Wn and �x n = 49, � = 0:95 and 
0 = 0:4. We consider four combinations of (�0; �0):

(0:2; 0:2), (0:2;�0:2), (�0:2; 0:2) and (�0:2;�0:2). If j�0j+
0+j�0j is small, convergence speed will be rapid.

To measure performance of iterations, we use the relative norm,



R(j+1)n (�1;0)�R(j)n (�1;0)





s
=



R(j)n (�1;0)




s

where k�ks denotes the spectral norm and R(1)n (�1;0) is set to be In � �0Wn. By Table A.1, we observe

that numerical errors decrease when taking more iterations for all cases. By taking the second iteration for

approximation, we observe the dramatic reduction of numerical errors. If signs of �0 and �0 are di¤erent, it

seems convergence speed becomes rapid.

27



For the outer loop (parameter searching)

In evaluating lnLnT;c (�), a demanding part is to calculate ln jRn (�1)j at each �1 2 �1. Even though we

use conventional SDPD models, evaluating the log-determinant is computationally burdensome when (i) n

is very large or (ii) there are multiple spatial weighting matrices, or (iii) we have a nonlinear speci�cation

(i.e., ln jIn �Wn(�)j where Wn(�) is a nonlinear function of �). Calculating ln jRn (�1)j is more demanding

because (i) it is a highly nonlinear function of �, 
; and �, and (ii) it also contains in�nite-order polynomials

of Wn. Hence, developing technology for calculating ln jRn (�1)j might be meaningful because (i) it can

reduce computation costs and (ii) might suggest an alternative way under large n.

One approach is to change ln jRn (�1)j by a function of trace. Consider the form of ln jAnj where

An = Bn + Cn = Bn(In +Dn) where Dn = B�1n Cn. Then, we have

jAnj = jBnj � exp (tr (ln (In +Dn))) ,

where ln (In +Dn) is the matrix logarithm of In + Dn.3 If kDnk < 1 where k�k is a proper matrix

norm, ln (In +Dn) can be represented by ln (In +Dn) = �
P1
j=1

(�Dn)j
j and we have ln jAnj = ln jBnj �P1

j=1

tr((�Dn)j)
j . Then, a feasible approximation ln jAnj ' ln jBnj �

PJ
j=1

tr((�Dn)j)
j can be employed in

practice where J is a chosen positive integer.

For example, consider the approximation of ln jIn � �Wnj where j�j < 1 with a row normalized Wn. By

using jIn � �Wnj = exp (tr (ln (In � �Wn))) and ln (In � �Wn) = �
P1
j=1

�jW j
n

j , we have ln jIn � �Wnj =

�
P1
j=1

�jtr(W j
n)

j . The details can be found in LeSage and Pace (2009). We can apply the same strategy to

our model. Because we know Rn (�1) = (1 + �
)In � �Wn � �Dn;1 (�1) (
In + �Wn), the decomposition

jRn (�1)j = j(1 + �
)Inj � exp (tr (ln (In � Fn (�1))))

where Fn (�1) = �
1+�
Wn +

�
1+�
Dn;1 (�1) (
In + �Wn). If kFn (�1)k < 1, we obtain ln (In � Fn (�1)) =

�
P1
j=1

F jn(�1)
j . It implies ln jRn (�1)j = n � ln(1 + �
) �

P1
j=1

tr(F jn(�1))
j . In Table A.2, we present the

performance of feasible approximations,

(ln jRn (�1)j)(J) = n � ln(1 + �
)�
JX
j=1

tr
�
F jn (�1)

�
j

(23)

where J = 1; 2; 3; 4 and 5. We evaluate the performance of those approximations by considering

sup�12�1

���� 1n ln jRn (�1)j�(J) � 1
n ln jRn (�1)j

��� for J = 1; � � � ; 5 where �1 is set to be [�0:2; 0:2] � [0; 0:4] �

3See LeSage and Pace (2009), pp. 96-97.
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[�0:2; 0:2], n = 49, Wn is considered as rook and queen matrix and ln jRn (�1)j is directly calculated through

Matlab. We observe the approximations will be �ner corresponding to increasing the order J . This result

generally holds for large n.

3 Some additional simulations

In this section, we introduce more simulation results to support our empirical analyses. Via Table A.3, �rst,

we report simulation results with the same setting in the main draft but � = 0:5. The next issue is capturing

the true time-discounting factor (denoted by �0). In recent structural estimation analyses, time-discounting

factor �0 is usually a primitive parameter. For dynamic discrete choice models, Komarova et al. (2017)

argue that identifying �0 is possible under the limited model speci�cation (linear-in-parameter assumption).

Under a general model speci�cation, we have di¢ culty in identifying �0 since a log-likelihood function might

be �at around �0. Instead of estimating �0, hence, its value might often be selected by economic reasonings

(e.g., long-run interest rates or capital-output ratio) in the empirical macroeconomics literature.. Since there

is no general guidance in selecting �0 in the statistical aspect, we want to give some practical evidence to

determine an appropriate (well �tted to data) time-discounting factor in a forward-looking SDPD model.

By Rothenberg (1971), identi�cation under likelihood theory is based on the information inequality:

E (lnLnT;c (�; �)) � E (lnLnT;c (�0; �0)) for any � 2 � and � 2 [0; 1) :

Identi�cation uniqueness is achieved if (�0; �0) is the unique maximizer of E (lnLnT;c (�; �)): by the strict

information inequality,

E (lnLnT;c (�; �)) < E (lnLnT;c (�0; �0)) for all (�; �) 6= (�0; �0) . (24)

By doing simulations, we evaluate four likelihood measures for di¤erent values of �: (i) average empirical joint

log-likelihood (E lnL), (ii) average empirical partial log-likelihood (E lnL1), (iii) Akaike information criterion

(AIC), and (iv) Bayesian information criterion (BIC).4 The four measures are based on the (concentrated)
4The formulas of the four measures are

E lnL (�) =
1

I

IX
l=1

lnLnT;c
�h
�̂nT;ml

i
l
; �
�
, E lnL1 (�) =

1

I

IX
l=1

lnLPnT;c

�h
�̂nT;ml

i
l
; �
�
;

AIC (�) =
1

I

IX
l=1

�
�2 lnLnT;c

�h
�̂nT;ml

i
l
; �
�
+ 2 � (4 + 5K)

�
, and BIC (�) =

1

I

IX
l=1

�
�2 lnLnT;c

�h
�̂nT;ml

i
l
; �
�
+ ln (nT ) � (4 + 5K)

�
where I denotes the number of repetitions (set to be 400), lnLPnT;c (�) represents the log-likelihood function only relevant to the

main SAR equation, and 4 + 5K denotes the model�s dimension.
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log-likelihood, so our purpose is to verify the strict information inequality (24) via simulations.

We consider the same DGP process in Monte Carlo simulations of the main text. Throughout the exper-

iment, we �x �0 = 0:2, 
0 = 0:4, �0 = 0:2, and all remaining parameters are set to be the same in the main

draft. We consider the six scenarios and evaluate the suggested measures at various ��s (i.e., misspeci�ed

��s).5 The �rst case represents a forward-looking model (�0 = 0:95), small number of observations (n = 49

and T = 10), and a low signal-to-noise ratio (SNR) (K = 1); The second model is generated by �0 = 0:95,

(n; T ) = (49; 10), and a high SNR (K = 2); the third scenario is generated by �0 = 0:95, relatively large

number of observations (n = 81 and T = 30), and K = 1; the fourth model sets �0 = 0:95, (n; T ) = (81; 30)

and K = 2; the �fth model is a myopic model, (n; T ) = (81; 30) and K = 1; The last one is generated

by �0 = 0 with (n; T ) = (81; 30) and K = 2. First, we evaluate and compare the likelihood measures for

di¤erent ��s. This investigation gives validity of employing the suggested likelihood measures when we select

a proper � among possible candidate values. For all cases, we observe that the four measures are equivalent

in the sense of selecting �0. Second, we try to evaluate e¤ects of misspeci�ed � on estimating the main

structural parameters �0, 
0, and �0. For that purpose, the bias-corrected QMLE is considered and its

RMSEs are evaluated across various ��s. Simulation results are reported via Table A.4 and Figure A.1.

� Model 1: �0 = 0:95, K = 1 and (n; T ) = (49; 10)

The E lnL indicates that � = 0:9 is the best model. However, some irregular zig-zag patterns are

observed in E lnL. If we compare the cases of � = 0 and 0:95, the E lnL chooses the myopic model. It

implies that choosing �0 by the likelihood measures may not work in this case. For �0, the RMSE takes

a U-shape in � and is minimized at � = 0:5. For 
0, the RMSE is minimized at � = 0:9 while the case of

� = 0:925 shows the best performance for �0. However, it is hard to observe a regular pattern of e¤ects.

� Model 2: �0 = 0:95, K = 2 and (n; T ) = (49; 10)

In the sense of E lnL, the model with � = 0:99 is the best. We observe E lnL tends to increase from

� = 0 to � = 0:99. Around the true value �0 = 0:95, however, some irregular behaviors of E lnL are observed.

It means we can distinguish between the two models, (i) myopic and (ii) forward-looking models, while the

true �0 is di¢ cult to be identi�ed via E lnL. The behaviors of RMSEs are similar to those of Model 1.

However, irregular patterns disappear relative to the Model 1�s case.
5Since we consider Durbin regressors, the exact number of exogenous variables is 4 if K = 2. For this model, �1;2;0 = �2;2;0

are selected as the true values.
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� Model 3: �0 = 0:95, K = 1 and (n; T ) = (81; 30)

The third model describes that many observations are available relative to the �rst case in both time

and space dimensions. Under large �nite samples, the likelihood measures can distinguish the true forward-

looking model from the myopic one: E lnL (0) = �1; 799:54 < �1; 798:69 = E lnL (0:95). However, we

do not observe a speci�c relationship between E lnL (�) and �. Also, the likelihood measures show almost

similar values around the true �0 = 0:95 (if � = 0:975 and 0:99). In this case, it is hard to choose a correct

time-discounting factor among economically reasonable ��s (e.g., 0:95 � �0 < 1). The RMSEs of parameters

�0; and 
0 are respectively minimized at the true value �0 = 0:95. The RMSE for �0 is minimized at

� = 0:7. However, the RMSEs take similar values for 0:7 � � < 1. Compared to Models 1 and 2, having

more observations gives evidence of identifying �0 by the likelihood measures and good performance of the

QMLEs around �0.

� Model 4: �0 = 0:95, K = 2 and (n; T ) = (81; 30)

Via Model 4, we perform an experiment on a high signal-to-noise ratio case by including (signi�cant)

exogenous regressors. Compared to Models 1, 2 and 3, the likelihood measures show smooth behaviors (no

zig-zag pattern) and are optimized around the true �0. It means the more transparent relationship between

E lnL (�) and �. Hence, we can conclude that the likelihood measures perform well in identifying �0 if we

have su¢ cient observations with rich exogenous variables. On estimating �0, 
0; and �0, the RMSEs are

minimized around the true value �0 except for the case of �0.

� Model 5: �0 = 0, K = 1 and (n; T ) = (81; 30)

By Models 5 and 6, we consider identi�cation of �0 and misspeci�cation errors if the myopic model

(�0 = 0) is the true one. The E lnL (�) is optimized at �0 = 0 and becomes far from the true one if a large

� is selected (i.e., E lnL (�) tends to be a decreasing function of �). Even for the case K = 1 (relatively

low signal), it seems that considering likelihood measures is good to identify �0 if the true model indicates

myopic economic agents. For all parameters, the RMSEs are minimized at the true values and they increase

corresponding to increasing �. In case of the myopic model, therefore, identifying �0 can be done via the

likelihood measures and the misspeci�cation errors are consistent with econometric theory.

� Model 6: �0 = 0, K = 2 and (n; T ) = (81; 30)
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Model 6 describes the similar DGP process to Model 5 but the relatively high signal. We observe similar

behaviors of E lnL (�) and RMSEs to those of Model 5.

4 Interpretations of our model and some empirical tools

This section introduces some practical and useful tools that are employed in our empirical analyses. Detailed

forms and derivations of those tools and measures are included.

4.1 Cumulative e¤ects

The cumulative e¤ects of xjt;k on yit can be calculated by
@yit
@xjt;k

=
�
R�1n (In + �Dn;kAk;n)

�
�1;k;0In + �2;k;0Wn

��
ij
:

4.2 Empirical tool I: Rational forecasting

One useful property of employing dynamic models is providing a prediction of future economic variables.

For forecasting horizons h = 1; 2; � � � ,

Et (Yn;t+h) = Ah+1n Yn;t�1 +
KX
k=1

hX
g=0

Ah�gn R�1n BX;k;nA
g
k;nXnt;k +

hX
u=0

AunR
�1
n cn0

+
KX
k=1

hX
g=1

g�1X
f=0

�
Ah�gn R�1n BX;k;nA

f
k;n

�
cn;k;0 +A

h
nR

�1
n (�t;0ln + Ent)

By employing fEt (Yn;t+h)g1h=1, we can forecast the expected agents�future actions on the MPE. In contrast

to the forecasts from conventional dynamic panel data model (including traditional SDPD models), our

forecasts re�ect economic agents�forward-looking behaviors.

4.3 Empirical tool II: Impulse response functions

For h = 1; 2; � � � , @[Et(Yn;t+h)]i@xjt;k
=
hPh

g=0A
h�g
n R�1n BX;k;nA

g
k;n

i
ij
. Since Ynt is linearly transformed by Xnt;k�s,

the impulse response functions only depend on Wn and the parameters.
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4.4 Empirical tool III: Welfare analyses

Last, we suggest some concepts to give policy implications. Note that �ivn is recovered by cn0 :

�ivn =

  
In +

1X
l=1

�lDn;l

!
+

KX
k=1

1X
l=1

�lDn;l

 
l�1X
m=0

Amk;n

!�
�1;k;0In + �2;k;0Wn

�
h1;k

!�1
cn0:

Given a panel data set fYnt; XntgTt=0 ; and Wn with the identi�ed parameters, �0, 
0, �0, �1;0, �2;0, 
X;0,

�X;0, cn0 and f�t0gTt=1, we have the agent i�s recovered per period payo¤ at time t;

ûi
�
Ynt; Yn;t�1; Xnt;�
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0
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y2it

for i = 1; � � � ; n and t = 1; � � � ; T . By (25), we can also specify the (approximated) i�s lifetime value :

V̂i

��
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Using the same logic, a measure of social welfare is

Ŵ
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Hence, we can evaluate (i) the i�s immediate payo¤ ûi (�), (ii) his/her lifetime value V̂i (�) and (iii) social

welfare Ŵ (�).

In many applications, we would like to know e¤ects of some exogenous characteristics on the i�s lifetime

payo¤ as well as social welfare. Given fYnT ; XnT g, we de�ne

XF
n;T+h;k

�
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for h = 1; 2; � � � , and k = 1; � � � ;K and

Y Fn;T+h (YnT ; XnT;1; � � � ; XnT;K ; �0) = AhnYnT +
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for h = 1; 2; � � � . Using the generated
n
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, we re-de�ne the measures (25), (26) and (27)
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where Y FnT = YnT , i = 1; � � � ; n and h = 1; 2; � � � ,

~V Fi (fYnT ; XnT g ; �0) =
HX
h=0

�t�1ûi
�
Y Fn;T+h; Y

F
n;T+h�1; X

F
n;T+h;�

iv
n ; �T0; fYnT ; XnT g ; �0

�
(31)

for i = 1; � � � ; n and
~WF (fYnT ; XnT g ; �0) =

nX
i=1

~V Fi (fYnT ; XnT g ; �0) (32)

for some su¢ ciently largeH � 1. From (30), (31), and (32), we conduct a welfare analysis. For example, con-

sider that a policy change xj;T;k for the individual j by�x. Let �XnT;k =
h
x1;T;k � � � xj;T;k +�x � � � xn;T;k

i0
where �XnT =

�
XnT;1; � � � ; �XnT;k; � � � ; XnT;K

�
. Using �XnT , we can evaluate ~V Fi

�n
YnT ; �XnT

o
; �0

�
and

~WF
�n
YnT ; �XnT

o
; �0

�
. Hence, the (expected) e¤ects of that policy on i�s lifetime value and social welfare

can be speci�ed by the following di¤erences:

�Vi =
~V Fi

�n
YnT ; �XnT

o
; �0

�
� ~V Fi (fYnT ; XnT g ; �0) and �W = ~WF

�n
YnT ; �XnT

o
; �0

�
� ~WF (fYnT ; XnT g ; �0) :
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Table A.1 : Performance of several approximations for 1( )nR   

Case 1:  0 0 0, , (0.2,0.4,0.2)     

   A rook 

matrix 

A queen 

matrix 
(2) (1) (1)

1 1 1( ) ( ) / ( )n n nR R R    0.2618 0.2498 

(3) (2) (2)

1 1 1( ) ( ) / ( )n n nR R R    0.0191 0.0222 

(4) (3) (3)

1 1 1( ) ( ) / ( )n n nR R R    0.0040 0.0046 

(5) (4) (4)

1 1 1( ) ( ) / ( )n n nR R R    0.0036 0.0040 

(6) (5) (5)

1 1 1( ) ( ) / ( )n n nR R R    0.0030 0.0025 

(7) (6) (6)

1 1 1( ) ( ) / ( )n n nR R R    0.0002 0.0001 
 

Case 2:  0 0 0, , (0.2,0.4, 0.2)      

   A rook 

matrix 

A queen 

matrix 
(2) (1) (1)

1 1 1( ) ( ) / ( )n n nR R R    0.2390 0.2602 

(3) (2) (2)

1 1 1( ) ( ) / ( )n n nR R R    0.0198 0.0213 

(4) (3) (3)

1 1 1( ) ( ) / ( )n n nR R R    0.0020 0.0021 

(5) (4) (4)

1 1 1( ) ( ) / ( )n n nR R R    0.0005 0.0004 

(6) (5) (5)

1 1 1( ) ( ) / ( )n n nR R R    0.0003 0.0002 

(7) (6) (6)

1 1 1( ) ( ) / ( )n n nR R R    0.0000 0.0000 
 

Case 3:  0 0 0, , ( 0.2,0.4,0.2)      

   A rook 

matrix 

A queen 

matrix 
(2) (1) (1)

1 1 1( ) ( ) / ( )n n nR R R    0.2390 0.2120 

(3) (2) (2)

1 1 1( ) ( ) / ( )n n nR R R    0.0198 0.0201 

(4) (3) (3)

1 1 1( ) ( ) / ( )n n nR R R    0.0020 0.0021 

(5) (4) (4)

1 1 1( ) ( ) / ( )n n nR R R    0.0005 0.0005 

(6) (5) (5)

1 1 1( ) ( ) / ( )n n nR R R    0.0003 0.0003 

(7) (6) (6)

1 1 1( ) ( ) / ( )n n nR R R    0.0000 0.0000 
 

Case 4:  0 0 0, , ( 0.2,0.4, 0.2)       

   A rook 

matrix 

A queen 

matrix 
(2) (1) (1)

1 1 1( ) ( ) / ( )n n nR R R    0.2618 0.2634 

(3) (2) (2)

1 1 1( ) ( ) / ( )n n nR R R    0.0191 0.0209 

(4) (3) (3)

1 1 1( ) ( ) / ( )n n nR R R    0.0040 0.0037 

(5) (4) (4)

1 1 1( ) ( ) / ( )n n nR R R    0.0036 0.0012 

(6) (5) (5)

1 1 1( ) ( ) / ( )n n nR R R    0.0030 0.0004 

(7) (6) (6)

1 1 1( ) ( ) / ( )n n nR R R    0.0002 0.0000 
 

Table A.2 : Performance of several approximations for 1ln ( )nR   

Approximation order ( )J  A rook matrix A queen matrix 

1J   
0.0191 0.0118 

2J   
0.0031 0.0023 

3J   
0.0009 0.0006 

4J   
0.0002 0.0002 

5J   
0.0001 0.0000 

       Note: For J, refer to equation (23) in Section 2.7.



36 

 

Table A.3 : Performance of ,
ˆ
ml nT  and ,

ˆc

ml nT  when 0.5   

( , ) (49,10)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0282 -0.1352 0.0499 0.0314 0.0452 -0.1709 -0.1496 -0.0159 -0.1383 

SD 0.0620 0.0499 0.0760 0.0440 0.0846 0.0645 0.0443 0.0862 0.0612 

RMSE 0.0680 0.1441 0.0908 0.0540 0.0958 0.1826 0.1560 0.0875 0.1512 

CP 0.9200 0.1925 0.8850 0.8875 0.9125 0.2075 0.0600 0.9400 0.3050 

,
ˆc

ml nT  
Bias -0.0007 -0.0289 -0.0021 0.0150 0.0153 -0.0369 -0.0261 -0.0066 -0.0362 

SD 0.0639 0.0555 0.0846 0.0434 0.0840 0.0736 0.0491 0.0952 0.0684 

RMSE 0.0639 0.0625 0.0845 0.0458 0.0852 0.0822 0.0556 0.0953 0.0773 

CP 0.9425 0.8525 0.9125 0.9325 0.9400 0.8100 0.8625 0.9125 0.8075 

,
ˆS

ml nT  
Bias -0.0022 -0.1590 0.0302 0.0097 0.0284 -0.3086    

SD 0.0576 0.0427 0.0707 0.0412 0.0801 0.0483    

RMSE 0.0575 0.1646 0.0768 0.0422 0.0849 0.3124    

CP 0.9375 0.0225 0.9300 0.9450 0.9250 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0301 -0.0668 -0.0228 -0.0020 0.0082 -0.2294    

SD 0.0583 0.0466 0.0764 0.0405 0.0791 0.0539    

RMSE 0.0656 0.0814 0.0796 0.0405 0.0794 0.2357    

CP 0.8950 0.6000 0.9150 0.9475 0.9400 0.0000    

 

 

( , ) (49,10)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0608 -0.1474 0.0922 0.0262 0.0354 -0.1892 -0.1497 -0.0164 -0.1383 

SD 0.0661 0.0504 0.0816 0.0437 0.0845 0.0641 0.0443 0.0861 0.0612 

RMSE 0.0897 0.1558 0.1231 0.0509 0.0915 0.1997 0.1561 0.0875 0.1512 

CP 0.8300 0.1300 0.7775 0.8900 0.9175 0.1425 0.0600 0.9400 0.3050 

,
ˆc

ml nT  
Bias -0.0126 -0.0334 0.0223 0.0133 0.0106 -0.0476 -0.0261 -0.0070 -0.0362 

SD 0.0693 0.0567 0.0910 0.0433 0.0848 0.0739 0.0491 0.0951 0.0684 

RMSE 0.0704 0.0658 0.0936 0.0452 0.0853 0.0878 0.0556 0.0953 0.0773 

CP 0.9075 0.8325 0.8925 0.9375 0.9325 0.7550 0.8650 0.9050 0.8075 

,
ˆS

ml nT  
Bias -0.0813 -0.1705 0.1030 0.0019 0.0141 -0.3262    

SD 0.0601 0.0431 0.0739 0.0409 0.0796 0.0471    

RMSE 0.1011 0.1758 0.1267 0.0409 0.0807 0.3295    

CP 0.6950 0.0125 0.6925 0.9475 0.9375 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0492 -0.0730 0.0423 -0.0099 -0.0064 -0.2479    

SD 0.0611 0.0471 0.0800 0.0403 0.0788 0.0526    

RMSE 0.0784 0.0868 0.0904 0.0415 0.0789 0.2534    

CP 0.8525 0.5350 0.8825 0.9425 0.9325 0.0000    
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( , ) (49,10)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0218 -0.1364 0.0089 0.0236 0.0263 -0.1853 -0.1497 -0.0166 -0.1383 

SD 0.0646 0.0493 0.0778 0.0433 0.0834 0.0638 0.0443 0.0861 0.0612 

RMSE 0.0681 0.1450 0.0782 0.0493 0.0873 0.1960 0.1561 0.0876 0.1512 

CP 0.9100 0.1625 0.9625 0.8950 0.9225 0.1425 0.0600 0.9400 0.3050 

,
ˆc

ml nT  
Bias -0.0032 -0.0302 -0.0028 0.0123 0.0081 -0.0446 -0.0262 -0.0072 -0.0362 

SD 0.0675 0.0547 0.0864 0.0428 0.0830 0.0735 0.0492 0.0952 0.0684 

RMSE 0.0675 0.0624 0.0864 0.0444 0.0833 0.0859 0.0556 0.0954 0.0773 

CP 0.9225 0.8325 0.9150 0.9350 0.9400 0.7650 0.8625 0.9050 0.8050 

,
ˆS

ml nT  
Bias 0.0166 -0.1613 -0.0114 -0.0033 -0.0001 -0.3284    

SD 0.0581 0.0419 0.0703 0.0404 0.0780 0.0472    

RMSE 0.0603 0.1667 0.0711 0.0405 0.0779 0.3317    

CP 0.9425 0.0175 0.9550 0.9450 0.9400 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0421 -0.0706 -0.0267 -0.0132 -0.0163 -0.2469    

SD 0.0596 0.0454 0.0762 0.0399 0.0773 0.0528    

RMSE 0.0729 0.0839 0.0807 0.0420 0.0789 0.2525    

CP 0.8825 0.5500 0.9000 0.9350 0.9325 0.0000    

 

( , ) (49,10)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0486 -0.1457 0.0657 0.0241 0.0231 -0.1863 -0.1497 -0.0167 -0.1383 

SD 0.0623 0.0491 0.0762 0.0433 0.0838 0.0646 0.0443 0.0861 0.0612 

RMSE 0.0790 0.1537 0.1005 0.0495 0.0868 0.1971 0.1561 0.0876 0.1512 

CP 0.8600 0.1250 0.8550 0.8975 0.9300 0.1500 0.0600 0.9375 0.3050 

,
ˆc

ml nT  
Bias -0.0104 -0.0355 0.0290 0.0125 0.0047 -0.0459 -0.0262 -0.0073 -0.0362 

SD 0.0650 0.0545 0.0856 0.0427 0.0829 0.0743 0.0492 0.0952 0.0684 

RMSE 0.0657 0.0650 0.0903 0.0444 0.0830 0.0872 0.0556 0.0953 0.0773 

CP 0.9075 0.8050 0.9050 0.9375 0.9375 0.7525 0.8625 0.9050 0.8050 

,
ˆS

ml nT  
Bias -0.0535 -0.1675 0.0753 0.0011 0.0021 -0.3189    

SD 0.0585 0.0422 0.0705 0.0409 0.0798 0.0483    

RMSE 0.0792 0.1728 0.1031 0.0409 0.0798 0.3225    

CP 0.8075 0.0225 0.8075 0.9475 0.9400 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0297 -0.0720 0.0452 -0.0085 -0.0135 -0.2357    

SD 0.0601 0.0459 0.0774 0.0405 0.0790 0.0542    

RMSE 0.0670 0.0854 0.0896 0.0414 0.0800 0.2418    

CP 0.8775 0.5325 0.8600 0.9400 0.9400 0.0050    

 

( , ) (49,30)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0394 -0.0402 0.0341 0.0183 0.0355 -0.0632 -0.0489 -0.0001 -0.0571 

SD 0.0350 0.0276 0.0426 0.0249 0.0452 0.0393 0.0271 0.0482 0.0379 

RMSE 0.0527 0.0487 0.0546 0.0308 0.0574 0.0744 0.0559 0.0482 0.0685 

CP 0.8125 0.6675 0.8550 0.8625 0.8675 0.5575 0.4900 0.9275 0.6000 

,
ˆc

ml nT  
Bias -0.0028 -0.0047 -0.0028 0.0030 0.0055 -0.0088 -0.0048 0.0027 -0.0070 

SD 0.0355 0.0283 0.0439 0.0246 0.0448 0.0414 0.0281 0.0498 0.0399 

RMSE 0.0356 0.0287 0.0440 0.0247 0.0451 0.0423 0.0285 0.0498 0.0405 

CP 0.9550 0.9300 0.9575 0.9575 0.9550 0.8925 0.9075 0.9300 0.9125 

,
ˆS

ml nT  
Bias -0.0022 -0.0782 0.0123 0.0029 0.0286 -0.2472    

SD 0.0312 0.0233 0.0387 0.0236 0.0428 0.0306    

RMSE 0.0312 0.0816 0.0405 0.0237 0.0514 0.2490    

CP 0.9550 0.0775 0.9350 0.9475 0.8850 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0321 -0.0472 -0.0219 -0.0068 0.0081 -0.2103    

SD 0.0315 0.0240 0.0397 0.0234 0.0425 0.0321    

RMSE 0.0449 0.0529 0.0453 0.0243 0.0432 0.2127    

CP 0.8225 0.4550 0.9225 0.9350 0.9575 0.0000    
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( , ) (49,30)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0485 -0.0483 0.0342 0.0152 0.0277 -0.0728 -0.0490 -0.0007 -0.0571 

SD 0.0370 0.0276 0.0451 0.0247 0.0452 0.0391 0.0271 0.0482 0.0379 

RMSE 0.0609 0.0556 0.0566 0.0289 0.0530 0.0826 0.0560 0.0482 0.0685 

CP 0.7625 0.5575 0.8925 0.8825 0.9000 0.4625 0.4925 0.9300 0.6000 

,
ˆc

ml nT  
Bias -0.0038 -0.0054 -0.0019 0.0023 0.0036 -0.0109 -0.0048 0.0025 -0.0070 

SD 0.0379 0.0284 0.0468 0.0246 0.0451 0.0415 0.0281 0.0498 0.0399 

RMSE 0.0381 0.0289 0.0467 0.0246 0.0451 0.0429 0.0285 0.0498 0.0405 

CP 0.9550 0.9250 0.9500 0.9525 0.9450 0.8825 0.9075 0.9275 0.9125 

,
ˆS

ml nT  
Bias -0.0822 -0.0868 0.0537 -0.0053 0.0126 -0.2627    

SD 0.0323 0.0231 0.0398 0.0233 0.0423 0.0300    

RMSE 0.0883 0.0898 0.0669 0.0239 0.0441 0.2644    

CP 0.2700 0.0325 0.7225 0.9425 0.9400 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0474 -0.0508 0.0223 -0.0145 -0.0055 -0.2254    

SD 0.0329 0.0237 0.0410 0.0232 0.0421 0.0315    

RMSE 0.0576 0.0560 0.0466 0.0273 0.0424 0.2275    

CP 0.7075 0.3775 0.9375 0.8750 0.9475 0.0000    

 

( , ) (49,30)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0310 -0.0429 0.0104 0.0130 0.0215 -0.0742 -0.0490 -0.0009 -0.0571 

SD 0.0362 0.0272 0.0454 0.0243 0.0443 0.0393 0.0271 0.0483 0.0379 

RMSE 0.0476 0.0508 0.0465 0.0276 0.0491 0.0840 0.0560 0.0482 0.0685 

CP 0.8600 0.6200 0.9475 0.8975 0.9275 0.4375 0.4900 0.9325 0.6000 

,
ˆc

ml nT  
Bias -0.0009 -0.0057 -0.0054 0.0019 0.0025 -0.0114 -0.0048 0.0024 -0.0070 

SD 0.0373 0.0278 0.0471 0.0241 0.0441 0.0417 0.0281 0.0499 0.0399 

RMSE 0.0373 0.0284 0.0473 0.0242 0.0441 0.0432 0.0285 0.0498 0.0405 

CP 0.9650 0.9175 0.9325 0.9525 0.9475 0.8800 0.9075 0.9275 0.9125 

,
ˆS

ml nT  
Bias 0.0159 -0.0824 -0.0143 -0.0104 -0.0018 -0.2668    

SD 0.0311 0.0227 0.0400 0.0229 0.0415 0.0302    

RMSE 0.0349 0.0855 0.0424 0.0251 0.0415 0.2685    

CP 0.9325 0.0350 0.9425 0.9175 0.9475 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0436 -0.0509 -0.0285 -0.0178 -0.0161 -0.2256    

SD 0.0319 0.0232 0.0413 0.0228 0.0415 0.0319    

RMSE 0.0540 0.0560 0.0502 0.0289 0.0444 0.2278    

CP 0.7450 0.3525 0.8925 0.8550 0.9500 0.0000    

 

( , ) (49,30)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0369 -0.0489 0.0248 0.0124 0.0169 -0.0760 -0.0490 -0.0011 -0.0571 

SD 0.0342 0.0271 0.0422 0.0240 0.0438 0.0399 0.0271 0.0483 0.0379 

RMSE 0.0503 0.0559 0.0489 0.0269 0.0469 0.0858 0.0560 0.0482 0.0685 

CP 0.8275 0.4950 0.9275 0.9025 0.9275 0.4400 0.4900 0.9325 0.6000 

,
ˆc

ml nT  
Bias -0.0012 -0.0070 -0.0001 0.0018 0.0010 -0.0114 -0.0048 0.0023 -0.0070 

SD 0.0353 0.0276 0.0440 0.0238 0.0435 0.0425 0.0281 0.0498 0.0399 

RMSE 0.0353 0.0285 0.0440 0.0239 0.0435 0.0439 0.0285 0.0498 0.0405 

CP 0.9650 0.9300 0.9475 0.9475 0.9500 0.8775 0.9075 0.9275 0.9125 

,
ˆS

ml nT  
Bias -0.0593 -0.0842 0.0405 -0.0055 0.0020 -0.2539    

SD 0.0310 0.0230 0.0383 0.0230 0.0422 0.0309    

RMSE 0.0669 0.0873 0.0557 0.0236 0.0422 0.2557    

CP 0.5375 0.0350 0.8375 0.9425 0.9425 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0338 -0.0483 0.0202 -0.0124 -0.0099 -0.2112    

SD 0.0319 0.0235 0.0398 0.0230 0.0421 0.0326    

RMSE 0.0464 0.0537 0.0446 0.0261 0.0432 0.2137    

CP 0.7975 0.4050 0.9275 0.9075 0.9475 0.0000    
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( , ) (81,10)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0078 -0.1361 0.0451 0.0245 0.0318 -0.1647 -0.1488 -0.0111 -0.1332 

SD 0.0493 0.0387 0.0610 0.0376 0.0711 0.0496 0.0342 0.0703 0.0447 

RMSE 0.0498 0.1415 0.0758 0.0449 0.0778 0.1720 0.1527 0.0711 0.1405 

CP 0.9250 0.0400 0.8450 0.8825 0.9000 0.0650 0.0100 0.9325 0.1550 

,
ˆc

ml nT  
Bias 0.0062 -0.0280 -0.0021 0.0103 0.0070 -0.0334 -0.0247 -0.0014 -0.0368 

SD 0.0504 0.0427 0.0678 0.0367 0.0698 0.0566 0.0380 0.0768 0.0497 

RMSE 0.0507 0.0510 0.0678 0.0381 0.0701 0.0657 0.0453 0.0767 0.0618 

CP 0.9125 0.8100 0.9125 0.9175 0.9425 0.8225 0.8575 0.9075 0.7975 

,
ˆS

ml nT  
Bias 0.0166 -0.1596 0.0255 0.0035 0.0170 -0.3030    

SD 0.0465 0.0332 0.0571 0.0352 0.0669 0.0384    

RMSE 0.0493 0.1630 0.0625 0.0353 0.0689 0.3054    

CP 0.9200 0.0000 0.9000 0.9250 0.9150 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0366 -0.0660 -0.0232 -0.0062 0.0019 -0.2273    

SD 0.0468 0.0359 0.0617 0.0345 0.0654 0.0427    

RMSE 0.0594 0.0751 0.0659 0.0350 0.0654 0.2313    

CP 0.8300 0.4525 0.9025 0.9150 0.9350 0.0000    

 

( , ) (81,10)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0426 -0.1462 0.0846 0.0210 0.0268 -0.1802 -0.1488 -0.0114 -0.1332 

SD 0.0528 0.0389 0.0662 0.0374 0.0705 0.0489 0.0342 0.0702 0.0447 

RMSE 0.0678 0.1513 0.1074 0.0429 0.0753 0.1867 0.1527 0.0711 0.1405 

CP 0.8575 0.0225 0.6850 0.8875 0.8950 0.0325 0.0100 0.9350 0.1550 

,
ˆc

ml nT  
Bias -0.0070 -0.0316 0.0179 0.0097 0.0055 -0.0422 -0.0247 -0.0016 -0.0368 

SD 0.0547 0.0435 0.0733 0.0367 0.0701 0.0563 0.0380 0.0768 0.0497 

RMSE 0.0551 0.0537 0.0753 0.0379 0.0702 0.0703 0.0453 0.0767 0.0618 

CP 0.9225 0.7925 0.8950 0.9225 0.9350 0.7725 0.8575 0.9100 0.7975 

,
ˆS

ml nT  
Bias -0.0651 -0.1692 0.0958 -0.0032 0.0062 -0.3196    

SD 0.0483 0.0332 0.0599 0.0349 0.0659 0.0375    

RMSE 0.0810 0.1724 0.1129 0.0350 0.0661 0.3218    

CP 0.6775 0.0000 0.5825 0.9025 0.9325 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0448 -0.0713 0.0381 -0.0134 -0.0106 -0.2450    

SD 0.0487 0.0360 0.0643 0.0344 0.0649 0.0416    

RMSE 0.0661 0.0799 0.0747 0.0368 0.0656 0.2485    

CP 0.8075 0.4050 0.8550 0.8975 0.9350 0.0000    

 

( , ) (81,10)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0074 -0.1365 0.0042 0.0191 0.0189 -0.1754 -0.1488 -0.0116 -0.1332 

SD 0.0516 0.0377 0.0654 0.0370 0.0697 0.0488 0.0342 0.0702 0.0447 

RMSE 0.0521 0.1416 0.0654 0.0416 0.0721 0.1820 0.1527 0.0711 0.1405 

CP 0.9550 0.0350 0.9400 0.8925 0.9050 0.0425 0.0100 0.9325 0.1550 

,
ˆc

ml nT  
Bias 0.0006 -0.0286 -0.0050 0.0089 0.0034 -0.0390 -0.0247 -0.0017 -0.0368 

SD 0.0534 0.0415 0.0721 0.0361 0.0687 0.0561 0.0380 0.0768 0.0497 

RMSE 0.0534 0.0504 0.0722 0.0372 0.0687 0.0683 0.0453 0.0767 0.0618 

CP 0.9475 0.8125 0.9175 0.9225 0.9325 0.7950 0.8575 0.9100 0.7975 

,
ˆS

ml nT  
Bias 0.0293 -0.1611 -0.0152 -0.0075 -0.0067 -0.3203    

SD 0.0468 0.0321 0.0592 0.0344 0.0648 0.0375    

RMSE 0.0552 0.1643 0.0610 0.0352 0.0651 0.3225    

CP 0.8825 0.0000 0.9300 0.8950 0.9275 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0452 -0.0691 -0.0283 -0.0164 -0.0204 -0.2436    

SD 0.0475 0.0345 0.0637 0.0339 0.0637 0.0417    

RMSE 0.0656 0.0772 0.0696 0.0376 0.0668 0.2472    

CP 0.8000 0.3900 0.8900 0.8850 0.9325 0.0000    
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( , ) (81,10)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0367 -0.1442 0.0550 0.0201 0.0184 -0.1751 -0.1488 -0.0117 -0.1332 

SD 0.0494 0.0373 0.0629 0.0366 0.0689 0.0492 0.0342 0.0702 0.0447 

RMSE 0.0615 0.1490 0.0835 0.0417 0.0713 0.1819 0.1527 0.0711 0.1405 

CP 0.8550 0.0200 0.8250 0.8850 0.9100 0.0450 0.0100 0.9350 0.1550 

,
ˆc

ml nT  
Bias -0.0074 -0.0333 0.0211 0.0094 0.0014 -0.0397 -0.0247 -0.0018 -0.0368 

SD 0.0508 0.0411 0.0698 0.0357 0.0678 0.0567 0.0380 0.0768 0.0497 

RMSE 0.0513 0.0529 0.0729 0.0369 0.0677 0.0691 0.0453 0.0767 0.0618 

CP 0.9350 0.7900 0.8775 0.9200 0.9300 0.7800 0.8575 0.9100 0.7975 

,
ˆS

ml nT  
Bias -0.0429 -0.1662 0.0664 -0.0030 -0.0024 -0.3105    

SD 0.0466 0.0321 0.0581 0.0346 0.0653 0.0382    

RMSE 0.0633 0.1693 0.0881 0.0347 0.0653 0.3128    

CP 0.8025 0.0000 0.7475 0.9000 0.9300 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0276 -0.0702 0.0389 -0.0117 -0.0166 -0.2323    

SD 0.0474 0.0346 0.0631 0.0341 0.0644 0.0425    

RMSE 0.0548 0.0783 0.0740 0.0360 0.0664 0.2362    

CP 0.8700 0.3900 0.8525 0.8975 0.9325 0.0000    

 

( , ) (81,30)n T   

   , 0.2,0.2    

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0224 -0.0408 0.0306 0.0142 0.0278 -0.0555 -0.0480 -0.0025 -0.0501 

SD 0.0297 0.0213 0.0333 0.0201 0.0393 0.0299 0.0189 0.0364 0.0272 

RMSE 0.0372 0.0460 0.0452 0.0245 0.0480 0.0630 0.0516 0.0364 0.0570 

CP 0.8500 0.5025 0.8575 0.8725 0.8575 0.4900 0.3025 0.9400 0.5400 

,
ˆc

ml nT  
Bias -0.0007 -0.0037 0.0005 0.0012 0.0042 -0.0054 -0.0035 0.0001 -0.0071 

SD 0.0300 0.0218 0.0343 0.0198 0.0390 0.0313 0.0196 0.0374 0.0284 

RMSE 0.0300 0.0221 0.0343 0.0199 0.0392 0.0317 0.0199 0.0374 0.0292 

CP 0.9300 0.9300 0.9350 0.9225 0.9375 0.9100 0.9350 0.9375 0.9275 

,
ˆS

ml nT  
Bias 0.0136 -0.0786 0.0093 -0.0006 0.0226 -0.2403    

SD 0.0268 0.0179 0.0303 0.0190 0.0372 0.0229    

RMSE 0.0300 0.0806 0.0317 0.0190 0.0435 0.2414    

CP 0.8925 0.0075 0.9375 0.9150 0.8675 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0349 -0.0464 -0.0189 -0.0085 0.0075 -0.2080    

SD 0.0270 0.0185 0.0310 0.0188 0.0371 0.0239    

RMSE 0.0441 0.0499 0.0363 0.0206 0.0378 0.2093    

CP 0.7050 0.2425 0.8825 0.8900 0.9300 0.0000    

 

( , ) (81,30)n T   

   , 0.2, 0.2     

      
1  2  

2

  1  1  
2

,1V  

  0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0327 -0.0469 0.0337 0.0121 0.0225 -0.0625 -0.0481 -0.0029 -0.0501 

SD 0.0317 0.0211 0.0362 0.0200 0.0393 0.0294 0.0189 0.0364 0.0272 

RMSE 0.0455 0.0514 0.0494 0.0234 0.0453 0.0691 0.0517 0.0364 0.0570 

CP 0.7800 0.3800 0.8500 0.8925 0.8725 0.3900 0.2975 0.9400 0.5400 

,
ˆc

ml nT  
Bias -0.0025 -0.0044 0.0025 0.0011 0.0036 -0.0069 -0.0035 -0.0000 -0.0071 

SD 0.0322 0.0218 0.0374 0.0199 0.0393 0.0310 0.0196 0.0374 0.0284 

RMSE 0.0323 0.0222 0.0374 0.0199 0.0394 0.0317 0.0199 0.0374 0.0292 

CP 0.9275 0.9400 0.9225 0.9200 0.9300 0.9175 0.9350 0.9350 0.9275 

,
ˆS

ml nT  
Bias -0.0673 -0.0855 0.0529 -0.0082 0.0081 -0.2552    

SD 0.0283 0.0176 0.0320 0.0189 0.0368 0.0224    

RMSE 0.0730 0.0873 0.0618 0.0206 0.0376 0.2561    

CP 0.2675 0.0025 0.6225 0.9025 0.9200 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0454 -0.0498 0.0259 -0.0156 -0.0052 -0.2227    

SD 0.0285 0.0182 0.0328 0.0188 0.0367 0.0234    

RMSE 0.0536 0.0530 0.0418 0.0244 0.0371 0.2239    

CP 0.5850 0.1775 0.8650 0.8275 0.9300 0.0000    
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( , ) (81,30)n T   

   , 0.2,0.2     

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0189 -0.0419 0.0109 0.0108 0.0185 -0.0623 -0.0481 -0.0032 -0.0501 

SD 0.0314 0.0208 0.0357 0.0198 0.0389 0.0293 0.0189 0.0364 0.0272 

RMSE 0.0367 0.0467 0.0373 0.0225 0.0430 0.0689 0.0517 0.0365 0.0570 

CP 0.8725 0.4625 0.9425 0.9000 0.8925 0.3875 0.2975 0.9425 0.5400 

,
ˆc

ml nT  
Bias -0.0010 -0.0037 -0.0006 0.0009 0.0031 -0.0067 -0.0036 -0.0001 -0.0071 

SD 0.0321 0.0213 0.0369 0.0196 0.0387 0.0308 0.0196 0.0374 0.0284 

RMSE 0.0320 0.0216 0.0369 0.0196 0.0388 0.0315 0.0199 0.0374 0.0292 

CP 0.9325 0.9325 0.9275 0.9200 0.9300 0.9200 0.9350 0.9425 0.9275 

,
ˆS

ml nT  
Bias 0.0270 -0.0815 -0.0133 -0.0125 -0.0044 -0.2576    

SD 0.0276 0.0174 0.0315 0.0186 0.0364 0.0223    

RMSE 0.0386 0.0833 0.0341 0.0224 0.0366 0.2586    

CP 0.8200 0.0050 0.9125 0.8550 0.9225 0.0000    

,

,
ˆS c

ml nT  
Bias 0.0443 -0.0493 -0.0241 -0.0188 -0.0155 -0.2227    

SD 0.0281 0.0178 0.0324 0.0185 0.0364 0.0234    

RMSE 0.0524 0.0524 0.0403 0.0264 0.0395 0.2239    

CP 0.5875 0.1575 0.8925 0.7925 0.9025 0.0000    

 

( , ) (81,30)n T   

   , 0.2, 0.2      

      
1  2  

2

  1  1  
2

,1V  

  -0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1 

,
ˆ
ml nT  

Bias -0.0272 -0.0465 0.0234 0.0108 0.0155 -0.0631 -0.0481 -0.0032 -0.0501 

SD 0.0292 0.0205 0.0340 0.0195 0.0383 0.0294 0.0189 0.0364 0.0272 

RMSE 0.0399 0.0508 0.0412 0.0223 0.0412 0.0696 0.0517 0.0365 0.0570 

CP 0.8125 0.3600 0.8925 0.9000 0.8950 0.4100 0.2975 0.9425 0.5400 

,
ˆc

ml nT  
Bias -0.0018 -0.0052 0.0039 0.0010 0.0023 -0.0069 -0.0036 -0.0002 -0.0071 

SD 0.0298 0.0210 0.0354 0.0193 0.0380 0.0309 0.0196 0.0374 0.0284 

RMSE 0.0298 0.0216 0.0356 0.0193 0.0381 0.0317 0.0199 0.0374 0.0292 

CP 0.9375 0.9375 0.9475 0.9275 0.9250 0.9150 0.9350 0.9425 0.9275 

,
ˆS

ml nT  
Bias -0.0492 -0.0824 0.0399 -0.0074 0.0001 -0.2448    

SD 0.0271 0.0174 0.0310 0.0188 0.0367 0.0227    

RMSE 0.0561 0.0842 0.0505 0.0201 0.0367 0.2458    

CP 0.5100 0.0050 0.7450 0.8975 0.9275 0.0000    

,

,
ˆS c

ml nT  
Bias -0.0330 -0.0470 0.0241 -0.0134 -0.0091 -0.2088    

SD 0.0276 0.0178 0.0320 0.0187 0.0367 0.0238    

RMSE 0.0430 0.0503 0.0400 0.0229 0.0378 0.2101    

CP 0.7150 0.1900 0.8700 0.8525 0.9150 0.0000    
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Table A.4 : Likelihood measures for identifying 0  and misspecification errors 

Model 1: 0 =0.95, K=1 and (n,T)=(49,10) 

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -313.816 -105.899 763.632 1048.851 0.0730 0.1021 0.0822 

0.1 -313.808 -105.890 763.616 1048.835 0.0710 0.0973 0.0825 

0.2 -313.800 -105.882 763.600 1048.819 0.0693 0.0926 0.0830 

0.3 -313.792 -105.874 763.585 1048.804 0.0678 0.0879 0.0837 

0.4 -313.831 -105.891 763.662 1048.881 0.0669 0.0835 0.0846 

0.5 -313.890 -105.933 763.780 1049.000 0.0668 0.0795 0.0862 

0.6 -313.844 -105.900 763.688 1048.907 0.0669 0.0758 0.0875 

0.7 -314.032 -106.030 764.063 1049.283 0.0688 0.0728 0.0895 

0.8 -313.801 -105.863 763.602 1048.821 0.0701 0.0707 0.0911 

0.825 -313.883 -105.918 763.766 1048.985 0.0710 0.0704 0.0918 

0.85 -313.835 -105.895 763.671 1048.890 0.0716 0.0701 0.0921 

0.875 -313.847 -105.906 763.694 1048.914 0.0727 0.0699 0.0926 

0.9 -313.769 -105.845 763.539 1048.758 0.0733 0.0697 0.0933 

0.925 -313.822 -105.875 763.644 1048.864 0.0696 0.0940 0.0475 

0.95 -313.896 -105.908 763.792 1049.011 0.0758 0.0698 0.0946 

0.975 -313.913 -105.929 763.826 1049.046 0.0771 0.0701 0.0956 

0.99 -313.772 -105.846 763.544 1048.764 0.0773 0.0699 0.0956 

 

Model 2: 0 =0.95, K=2 and (n,T)=(49,10)  

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -519.571 -104.429 1185.141 1491.333 0.0783 0.0997 0.0766 

0.1 -519.547 -104.405 1185.094 1491.286 0.0758 0.0945 0.0767 

0.2 -519.524 -104.381 1185.047 1491.239 0.0735 0.0893 0.0770 

0.3 -519.500 -104.357 1185.001 1491.192 0.0714 0.0842 0.0775 

0.4 -519.478 -104.333 1184.955 1491.147 0.0697 0.0792 0.0782 

0.5 -519.456 -104.309 1184.912 1491.104 0.0686 0.0744 0.0792 

0.6 -519.436 -104.287 1184.873 1491.064 0.0682 0.0702 0.0804 

0.7 -519.419 -104.267 1184.838 1491.030 0.0689 0.0666 0.0819 

0.8 -519.405 -104.250 1184.810 1491.002 0.0707 0.0639 0.0837 

0.825 -519.402 -104.246 1184.804 1490.996 0.0713 0.0634 0.0842 

0.85 -519.400 -104.243 1184.799 1490.991 0.0721 0.0630 0.0847 

0.875 -519.397 -104.240 1184.795 1490.986 0.0729 0.0627 0.0852 

0.9 -519.524 -104.258 1185.047 1491.239 0.0738 0.0629 0.0857 

0.925 -519.394 -104.234 1184.787 1490.979 0.0748 0.0624 0.0864 

0.95 -519.480 -104.285 1184.961 1491.152 0.0759 0.0631 0.0871 

0.975 -519.391 -104.229 1184.783 1490.974 0.0771 0.0625 0.0876 

0.99 -519.391 -104.228 1184.782 1490.974 0.0778 0.0626 0.0880 
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Model 3: 0 =0.95, K=1 and (n,T)=(81,30) 

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -1799.543 -647.517 3839.086 4534.564 0.0623 0.0835 0.0447 

0.1 -1799.422 -647.395 3838.843 4534.321 0.0585 0.0770 0.0429 

0.2 -1799.302 -647.275 3838.604 4534.082 0.0546 0.0703 0.0412 

0.3 -1799.483 -647.446 3838.965 4534.443 0.0506 0.0633 0.0397 

0.4 -1799.849 -647.770 3839.698 4535.175 0.0471 0.0563 0.0384 

0.5 -1799.748 -647.663 3839.497 4534.974 0.0432 0.0492 0.0373 

0.6 -1801.327 -649.095 3842.654 4538.132 0.0413 0.0426 0.0364 

0.7 -1799.594 -647.461 3839.189 4534.666 0.0368 0.0359 0.0357 

0.8 -1800.353 -648.154 3840.706 4536.184 0.0361 0.0361 0.0361 

0.825 -1799.709 -647.566 3839.419 4534.896 0.0350 0.0350 0.0361 

0.85 -1799.451 -647.313 3838.902 4534.379 0.0347 0.0347 0.0361 

0.875 -1799.629 -647.478 3839.259 4534.737 0.0347 0.0347 0.0363 

0.9 -1799.887 -647.701 3839.775 4535.252 0.0353 0.0353 0.0364 

0.925 -1799.272 -647.154 3838.544 4534.021 0.0346 0.0346 0.0367 

0.95 -1798.690 -646.650 3837.381 4532.859 0.0339 0.0339 0.0368 

0.975 -1798.690 -646.649 3837.379 4532.857 0.0344 0.0344 0.0371 

0.99 -1798.690 -646.649 3837.380 4532.858 0.0348 0.0348 0.0373 

 

Model 4: 0 =0.95, K=2 and (n,T)=(81,30) 

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -2953.095 -646.914 6156.189 6880.645 0.0678 0.0839 0.0446 

0.1 -2952.879 -646.699 6155.759 6880.215 0.0634 0.0772 0.0426 

0.2 -2952.668 -646.487 6155.336 6879.792 0.0588 0.0703 0.0407 

0.3 -2952.463 -646.279 6154.925 6879.381 0.0540 0.0632 0.0388 

0.4 -2952.266 -646.081 6154.532 6878.988 0.0490 0.0559 0.0371 

0.5 -2952.083 -645.895 6154.166 6878.622 0.0439 0.0484 0.0355 

0.6 -2951.921 -645.730 6153.841 6878.297 0.0389 0.0410 0.0343 

0.7 -2951.786 -645.591 6153.571 6878.027 0.0344 0.0339 0.0334 

0.8 -2951.686 -645.488 6153.371 6877.827 0.0310 0.0278 0.0330 

0.825 -2951.667 -645.468 6153.334 6877.790 0.0305 0.0266 0.0330 

0.85 -2951.651 -645.452 6153.303 6877.759 0.0301 0.0256 0.0330 

0.875 -2951.639 -645.438 6153.277 6877.733 0.0299 0.0248 0.0330 

0.9 -2951.629 -645.427 6153.258 6877.713 0.0298 0.0243 0.0331 

0.925 -2951.622 -645.419 6153.244 6877.700 0.0299 0.0240 0.0332 

0.95 -2951.619 -645.415 6153.237 6877.693 0.0303 0.0241 0.0334 

0.975 -2951.619 -645.414 6153.237 6877.693 0.0308 0.0244 0.0336 

0.99 -2951.620 -645.415 6153.240 6877.696 0.0312 0.0248 0.0337 
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Model 5: 0 =0, K=1 and (n,T)=(81,30) 

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -2318.808 -1166.782 4877.617 5573.094 0.0275 0.0185 0.0318 

0.05 -2318.823 -1166.797 4877.647 5573.124 0.0284 0.0189 0.0322 

0.1 -2318.841 -1166.815 4877.682 5573.159 0.0300 0.0205 0.0328 

0.15 -2318.861 -1166.835 4877.722 5573.200 0.0321 0.0230 0.0336 

0.2 -2318.885 -1166.858 4877.769 5573.247 0.0348 0.0262 0.0345 

0.25 -2318.911 -1166.885 4877.823 5573.300 0.0379 0.0301 0.0355 

0.3 -2318.942 -1166.915 4877.884 5573.361 0.0415 0.0343 0.0367 

0.4 -2319.015 -1166.988 4878.030 5573.508 0.0498 0.0439 0.0394 

0.5 -2319.108 -1167.079 4878.215 5573.693 0.0594 0.0546 0.0426 

0.6 -2319.450 -1167.388 4878.901 5574.378 0.0700 0.0658 0.0463 

0.7 -2319.360 -1167.329 4878.720 5574.197 0.0819 0.0785 0.0504 

0.8 -2319.813 -1167.745 4879.627 5575.104 0.0945 0.0917 0.0548 

0.9 -2320.515 -1168.452 4881.029 5576.507 0.1082 0.1056 0.0598 

0.99 -2320.972 -1168.880 4881.945 5577.422 0.1219 0.1192 0.0651 

 

Model 6: 0 =0, K=2 and (n,T)=(81,30) 

  lnE L  1lnE L  AIC  BIC  
RMSE 

  

RMSE 
  

RMSE 
  

0 -3471.856 -1165.676 7193.712 7918.168 0.0253 0.0170 0.0294 

0.05 -3471.876 -1165.695 7193.751 7918.207 0.0262 0.0178 0.0298 

0.1 -3471.899 -1165.719 7193.799 7918.255 0.0279 0.0197 0.0303 

0.15 -3471.928 -1165.747 7193.855 7918.311 0.0303 0.0226 0.0310 

0.2 -3471.961 -1165.780 7193.922 7918.378 0.0333 0.0262 0.0319 

0.25 -3472.000 -1165.818 7193.999 7918.455 0.0368 0.0304 0.0329 

0.3 -3472.044 -1165.863 7194.089 7918.545 0.0408 0.0349 0.0341 

0.4 -3472.154 -1165.971 7194.308 7918.764 0.0500 0.0450 0.0369 

0.5 -3472.295 -1166.110 7194.590 7919.045 0.0605 0.0560 0.0402 

0.6 -3472.470 -1166.283 7194.940 7919.396 0.0723 0.0680 0.0441 

0.7 -3473.139 -1166.665 7196.278 7920.734 0.0851 0.0808 0.0484 

0.8 -3474.130 -1167.342 7198.261 7922.717 0.0990 0.0944 0.0532 

0.9 -3473.964 -1167.428 7197.927 7922.383 0.1145 0.1091 0.0590 

0.99 -3474.952 -1168.197 7199.903 7924.359 0.1288 0.1231 0.0643 
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Figure A.1: Likelihood measures for identifying 0  and misspecification errors with figures 

 Average sample log likelihood across different  ’s 

  

Model 1: 0 =0.95, K=1 and (n,T)=(49,10) Model 2: 0 =0.95, K=2 and (n,T)=(49,10) 

  

Model 3: 0 =0.95, K=1 and (n,T)=(81,30) Model 4: 0 =0.95, K=2 and (n,T)=(81,30) 

  

Model 5: 0 =0, K=1 and (n,T)=(81,30) Model 6: 0 =0, K=2 and (n,T)=(81,30) 
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 Misspecification errors (in terms of RMSE) for misspecified 0  

Model 1: 0 =0.95, K=1 and (n,T)=(49,10) 

   

0  0  0  

 

Model 2: 0 =0.95, K=2 and (n,T)=(49,10) 

   

0  0  0  

 

Model 3: 0 =0.95, K=1 and (n,T)=(81,30) 

   

0  0  0  
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Model 4: 0 =0.95, K=2 and (n,T)=(81,30) 

   

0  0  0  

 

Model 5: 0 =0, K=1 and (n,T)=(81,30) 

   

0  0  0  

 

Model 6: 0 =0, K=2 and (n,T)=(81,30) 

   

0  0  0  

 

 


