Spatial dynamic models with intertemporal optimization:

specification and estimation*

Hanbat Jeong'and Lung-fei Lee

August, 2018

Abstract
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rium equation and construct a new spatial dynamic panel data (SDPD) model. For estimation, we suggest
mainly the quasi-maximum likelihood (QML) method. Asymptotic properties of the QML estimator are
investigated. In a Monte Carlo study, we estimate the model’s parameters and compare the results with
those from traditional SDPD models. The model is applied to an empirical study on counties’ public
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1 Introduction and motivation

Interactions among rational economic agents are characterized by a network (a spatial weights or socio-
economic matrix). Since rational agents might be forward-looking instead of myopic, we focus on their
behaviors by considering intertemporal optimization. Specification on forward-looking agents’ decision-
making with network interactions will be introduced. We formulate an econometric model for recovering
economic agents’ payoff. The econometric model is a new spatial dynamic panel data (SDPD) model,
which can be estimated by panel data and it can be regarded as a product of Lucas critique (1976).! For
the econometric model, identification, estimation, and asymptotic properties of estimators are investigated.
Using the new SDPD model, empirical economists can conduct (i) forecasting on future economic activities,
(ii) impulse response analyses, and (iii) welfare and counterfactual analyses. As an application of our
econometric model, we study counties’ public safety spending competition. We recover key parameters
describing counties’ decision-making and compare estimation results with those from traditional models.

We give various and fruitful policy implications from this research.

Three contributions will be established in this paper. The first is a theoretical one. We introduce a
forward-looking agent’s decision-making model with network interactions. There are n economic agents in
the economy and their interactions are characterized by an n x n socio-matrix, which is assumed to be
time-invariant and known to agents as well as econometricians. An outcome of an agent’s economic activity
is assumed to be a continuous one. For example, players select how much time or effort on some economic
activity. In order to specify agent’s payoff, we take a parametric linear-quadratic payoff function (Ballester
et al. (2006) and Calvo-Armengol, Patacchini and Zenou (2009)). The most notable advantages in taking
this payoff structure are (i) easily characterizing an equilibrium and (ii) specifying agent’s payoff by some key
parameters, in addition that a linear-quadratic payoff function might provide a good approximation to an
underlying nonlinear function. Chapter 4 in Jackson and Zenou (2014) provides a review for that structure.
Based on the payoff function, an agent’s choice problem is to maximize his/her discounted lifetime payoff
by intertemporally choosing his/her effort. An agent will face future uncertainty and form expectation for
it. In addition to future economic shocks, another source of uncertainty is due to unknown future changing
exogenous environments of an economy. From that, we describe how an agent forms expectations for series

of future decisions and possibly changing exogenous environments.

'Tt means our econometric model is a structural model and its interpretations do not rely on just statistical relationships

among economic variables.



To derive a complete model, our next step is characterizing an equilibrium under a game setting. An
"equilibrium" is a result of rationality of economic agents. Forward-looking decisions on an equilibrium
realize the "rationality" of economic agents. For this, we employ a Markov perfect equilibrium (MPE). In the
MPE, agents’ current decisions depend only on their payoff relevant previous actions, and backward induction
can be applied to specify the equilibrium. Under some stability conditions, we have agents’ optimizing
values, which are results from solving dynamic (differential) games problems, and they are linear-quadratic.
In consequence, the vector of agents’ equilibrium decisions becomes a unique Nash equilibrium (NE) solution
of a linear system. The derived equilibrium equations describe the dynamics of individuals’ forward-looking
decisions by reflecting series of (discounted) expected future actions and exogenous characteristics in a
dynamic NE game setting. As the implied model equations are linear in outcomes, we have a unique NE

equilibrium so to obtain a bijective mapping from the model to a likelihood function for estimation.?

Second, we deliver an econometric contribution. The popular spatial autoregressive (SAR) model from
Cliff and Ord (1973), Ord (1975), Anselin (1988) and Lee (2004, 2007) can be considered as an equilibrium
equation of a static quadratic utility model with network interactions. In the literature, panel data can
capture the dynamics of individuals’ decisions (but mostly without interactions). For spatial interaction
issues, there are fruitful studies with spatial dynamic panel data (SDPD) models. Kapoor et al. (2007),
Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014) are papers in this area. For the various
SDPD models, Lee and Yu (2015) provide a review. Those SDPD models can only be justified by myopic
behaviors. In this paper, the designed framework analyzes agents’ forward-looking behaviors. With proper
panel data, revealed economic activities might be results of dynamic optimization instead of considering
only current payoffs. Our derived equilibrium equation provides a new estimable SDPD model. Our SDPD

nests traditional SDPD models as special cases if economic agents are myopic.

For estimation, we suggest the quasi-maximum likelihood (QML) method. Identification of the model
and asymptotic properties (consistency and asymptotic normality) of the QML estimator are investigated.
Because our specification includes individual and time fixed effects, which are infinite incidental parameters
and, in consequence, may lead to asymptotic biases in estimates, a bias correction for the QML estimator is
studied. Estimating the individual and time dummies relies on residuals, so their asymptotic distributions
are affected by convergence rates of the QML estimator of the main parameters. We observe using residuals

based on the bias-corrected QML estimator has a mild condition for ratios of n and T relative to using those

2For this, see Section 8 in Amemiya (1985).



from the QML estimator without bias-correction. As an alternatively simpler but inefficient estimation, the
nonlinear two-stage least squares (NL2S) method is also briefly introduced. Monte Carlo simulations are
conducted to evaluate (i) finite sample performance of the QML estimator and its bias correction and (ii)
misspecification, when a traditional SDPD specification is taken for estimation as if agents were not forward-
looking, i.e., myopic. We find that the QML estimator and its bias correction show reliable performance in
small samples. We observe that significant misspecification errors on estimators would appear even for large
samples, as the traditional SDPD specification is mistakenly used. When selecting a time-discounting factor,
we suggest considering likelihood measures (e.g., sample log-likelihood) if a signal is high with sufficiently
many observations. The NL2S estimator shows relatively small biases but does not provide efficient estimates

compared to those of the QML estimator.

Finally, we give an empirical study with policy implications on counties’ public safety spending. In this
application, an economic agent is a local government, and its decision variable is the public safety spending
for a county. Yang and Lee (2017) provide a theoretical model for this issue and apply it to cities in North
Carolina. They find strong free-riding effects: there are strategic interactions among local governments
and, which induce a negative relationship between a city’s public safety spending and its neighbors’. In
this paper, we revisit this issue with an extended panel data set. We estimate structural parameters using
our dynamic interaction model and compare the estimation results with those from the traditional SDPD
model. In explaining the spillover effects of local governments’ public safety spending, our intertemporal
SAR specification turns out to be more statistically favorable than the traditional SDPD model. We find
some evidence of persistency of public safety spending, positive diffusion effects from previous neighbors’
decisions, positive effects of own total revenue, and negative externalities from neighboring total revenues,
but no significant contemporaneous spilled over effects. From the recovered counties’ payoff function, we also
investigate cumulative effects in the MPE and conduct impulse response analyses corresponding to changing
exogenous characteristics in a region. An overshooting impact in the sense of a negative neighboring revenue
effect is observed.? In the welfare analysis, we observe giving subsidy to the county which has a small number

of neighbors turns out to be the most effective policy in the sense of public safety spending.

The paper is organized as follows. Section 2 introduces an economic foundation for our model. In Section
3, we build an econometric model based on the theoretical setting in Section 2. Section 4 presents the QML

estimation method and asymptotic properties of that estimator. Section 5 reports our investigation on the

31t means that the contemporaneous negative revenue effect converts to the positive effect after some periods and finally

decays.



finite sample performance of the QML estimator. In Section 6, we apply our model to counties’ public
safety spending competition. Section 7 concludes. Some detailed derivations of estimating equations and

asymptotic analysis of estimation are relegated in Appendices.*
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Notation and convention : Let A4,, = : : be an n X n square matrix. For any n x m
Gpl  *°  Qpp

matrix B, [B];; denotes the (i,7) element of B. We denote the it" unit column vector (0,---,1,---,0) as

e;. For any vector a, [a]; denotes the i'® component. For any n x n matrix A,, Diag (A,) is a diagonal
matrix formed by the diagonal of A, ||A,|; = maxi<j<n > iy |Aij| is its maximum column sum norm,
and || Ayl = maxi<i<n Y5y [Aij| is its row sum norm. In addition, the spectral norm of A, is [|[An|, =

¢, (Al A;,) where ¢ (A, Ay,) denotes the largest eigenvalue of A}, A, i.e., | Ay ||, is the largest singular value
of A,.> Our asymptotic analyses on estimation of Section 4 are based on a large number of time periods
T and a large number of cross sectional units n, unless otherwise specified. Convergence in probability and

. . . . . p d
convergence in distribution are denoted respectively as — and —.

2 A spatial dynamic game with intertemporal optimization

In this section, we give a theoretical economic foundation and suggest a corresponding econometric model.
First, we review some motivating literature on the spatial autoregressive model in a cross-sectional setting
and then its extension to dynamic panel data model in the econometric literature. From these, we motivate
our formulation of a dynamic spatial autoregressive model with agents’ decision processes which take into

account intertemporal consequences.

2.1 Literature review: spatial dynamic panel models and myopic choices

We assume there are n economic agents in an economy and they choose a continuous type economic activity.
A tax rate or public spending can be a good example of a continuous economic activity when an agent is
a local government. There are interactions among agents’ activities through a certain network relationship.
Since there are n economic agents, a network is characterized by an n x n matrix W, with prespecified

non-negative entries (links), which can be formed by social, geographical and/or economic distances. All

4Due to space limitation, some of the analyses are provided in a supplementary file.
®Those matrix norms are induced by corresponding vector norms.



the diagonal elements of W,, are assumed to be zero to exclude self-influence. From economic reasoning,
a way of modeling agents’ interactions is to formulate agents’ decisions in a game setting. Given existing
network connections in W,,, one may specify a linear-quadratic payoff function for each individual (e.g.,

Ballester et al. (2006) and Calvo-Armengol et al. (2009)) with

1
wi (Yo, i) = 139 + Aoyiwi. Yo — 5%2 (1)
where Y, = (y1,--- ,yn)" denotes the vector of agents’ decisions (activities, outcomes), n; is i’s exogenous

heterogeneity containing his/her exogenous characteristics, w;, denotes the i*" row of W,,, and \g determines
the strength of strategic interaction among agents while elements of W,, represent relative strength if there
are interactions. The first part, n,y;, describes a choice-specific benefit from 4’s characteristics in his index
n;. Increasing n; by one unit leads to rising i’s marginal payoff %;’"”). From ¢’s perspective, decisions by
others linked to ¢ will be strategic complements if A\g > 0, strategic substitutes if \y < 0, and no interactions
when Ao = 0. The last quadratic term represents a cost for 3; being taken. Let n,, = (ny,---,n,) s Xpn =
(x1,---,2,)" where 2; = (241, ,2;x) denotes agent i’s observed characteristics, and &, = (e1,--- ,€,)’
be an n x 1 vector of unobservable (for econometrician) components. By specifying n,, as a regression
function, n,, = X,,8¢ + &, agents’ optimized decisions in a perfect information game give rise to the spatial

autoregressive (SAR) model

Yn = /\OWnYn + Xn/B() + gn (2)

where Y, is the vector of Nash equilibrium (NE). The system (2) can have a unique NE and can be stable

under the assumption that [[AoW,|| < 1 for some matrix norm ||-||.

The SAR model provides a static model for strategic interactions with a given network. On the other
hand, with various panel data sets, one can go beyond the static setting and may track the dynamics
of individual’s decisions. With panel data, observed decisions of individuals might come from dynamic
optimization. Let {Y,, X,:} be a set of panel data where Y,y = (y1t,-- ,¥nt) stands for a vector of
individuals’ decisions at time ¢t and X,y = (214, - - ,xm)l denotes an n x K matrix of tth—period observable
(for econometricians) exogenous variables. Existing spatial panel data (SDPD) models in the literature (e.g.,
Kapoor et al. (2007), Baltagi et al. (2007), Yu et al. (2008), Lee and Yu (2010, 2014)) actually take a
similar form as the SAR model (2) but with additional time lags Y;, ;—1, diffusion WY}, ;1 and individual

and time fixed effects:

Yo = AoWnYne + ’Yan,tfl + poWnYn,tfl + Xntﬁo + cno + voln + Ent (3)



where ¢, is an n-dimensional column vector of individual fixed effects, oo captures the t**-period time
specific effect with [,, being an n-dimensional vector of ones. This equation can be justified by a game

framework with agent ¢’s payoff

wi (Yot, Yni—1, M) = N3Yit + NoYiews, Yor + poYirwi Yni—1 — ¢ (Yits Yii—1) (4)

and ¢ (Yit, Yit—1) = %0 (yit — yi’t,1)2 + 1_270 y2 where 0 < 7y < 1.5 The n,, denotes the t"*—period index

of heterogeneity of agent i containing those exogenous characteristics, which might evolve over time.” The
third component, pyyi;w;. Y, +—1, describes agent’s learning process. Learning or adopting new technology is a
time-consuming process as an agent has to spend some time to understand his/her friends’ past decisions and
accommodate to the new environment innovated by new technologies.® In this setting, individual’s learning
comes from his/her recent past neighboring decisions.” The parameter p, determines how past neighboring

actions affect agent i’s current decision. If py > 0 and agent j (who is an ¢’s friend) increased his/her

82“1’ (Ynt 7Yn,t71 7777,’t)
OYi,t—10Yit

effort yesterday, agent ¢ may choose a higher level of effort today (because = powi; > 0).

With py < 0 if agent j increased his/her effort yesterday, agent i tends to select a low level of effort (since

0%u; (Ynt,Yn.t—1,1; . . .
4 éyitt_fgynl Mit) powi; < 0). The fourth part, ¢ (yit,vit+—1), represents a cost of i’s decision.!’ In our

%Tn this paper, we use the normalized payoff due to identification easiness. We can consider the following alternative cost
specification ¢ (yit, yit—1) = A”T‘O (yir — yiﬁt,1)2 + h?‘(’yft where 0 < 7, g, Y20 < 1. Then, the first order conditions of maximizing
the per period payoff can yield (71,0 + 7270) Yii = AoWaYos +71!0Yn,t,1 +poWnYn,t—1+XntBo+Cno+aoln+Ene. It’s impossible
to identify all the parameters at the same time.

Note that an affine transformation preserves cardinal preferences realized by Von Neumann-Morgenstern utilities. If we

consider the payoff normalized by , we have

1
Y1,0t72,0

1 _ < - .
————— i (Yot, Yo—1,Mi) = Ni¥it + Aoitwi. Yor + Poyitrwi. Yo t—1 — € (Yit, Yit—1)
V1,0 T V2,0
and ¢ (yit, ys )—;0(- —y; )2—|—17:YD 2 where 7,, = — L o = Ao Dy = £o and 4, = —0
Yito Yii—1) = 5" (Yit = Yit—1 7 Yit Mit = 37 oF7z,0 Titr 20 = 37037500 Po = S0+72.0° Yo = 3 o+20

(i.e., structural parameters are normalized by ——=2——).
Y1,01t72,0

"In this framework, 7,, Tepresents ¢’s t*" —period "overall" characteristic by including (i) agent ¢’s own exogenous characteris-
tics (time-invariant and/or time-variant), (ii) his/her rivals’ characteristics combined with elements in W,, showing externalities

and (iii) common economic shocks globally affecting all individuals’ decision-making.
1n the case of policy effect analyses, this part also shows policy lags. i.e., affecting neighboring policies on my city’s one is

time-consuming.
9Tt means that agent’s learning follows a Markov process. However, the entire history of past decisions could be relevant to

the agents’ current choices. In this case, agents’ learning process is a Polya process. For the details, refer to Liu et al. (2010).
They study peer group effects in laboratory experiments based on Milgrom and Roberts’ (1982) entry limit pricing game and

use two specifications for agents learning: (i) A Markov model and (ii) a Polya model.
10Tn this paper, we adopt the specification of the quadratic adjustment cost (the famous study about that is Kennan (1979)).



framework, ¢ (yit, yi,r—1) consists of two parts: (i) dynamic adjustment cost, 4 (yi — yi,t,1)2, and (ii) agent’s

1—7v9,,2
2

cost y;; of selecting activity level y;. If there is a large gap between 4’s current decision y;; and his/her

recent previous decision y; 1, the term 770 (yit — yi7t_1)2 may give a high penalty on ’s payoff, therefore,
it may cause persistency on i’s behavior. The parameter v, captures the persistent tendency of agents’

1—v9,,2

choices. The term ~—"y3 is a kind of social cost, which prevents an agent from choosing an extremely high

effort.

At time ¢, agent ¢ maximizes his/her payoff w; (yit, Y_it, Ynt—1,7;) where Y_; 1 = (y1s, -+ s Yie1,ts Yit1,65 -
It means that agent ¢ knows the optimum choices Y_; ; of others. The first order conditions of such optimiza-
tion problems give equation (3) which characterizes a NE at time ¢. Since each agent only maximizes his/her
per period payoff, this model assumes agents are myopic in their decisions. In this project, we attempt to go
beyond myopic behaviors of agents. We consider an agent’s intertemporal choice problem and characterize
the NE in an infinite horizon in order to derive an estimating equation.!! Under the linear-quadratic payoff

(4), this will result in a new spatial dynamic panel data (SDPD) model.

2.2 Intertemporal choices

The main feature of our model is that agents are not myopic but rational to expect what would happen
in the future based on their available information. An agent considers a series of his/her (expected) future
payoffs when he/she makes a current decision based on currently available information, and he/she expects

tth

that future realized decisions of all agents will result in an NE. Let B;; be the t""—period information set of

agent i’s perceivable events and it is defined by

Biv = o ({yss ) e {1 e )

Alternatively, Engsted and Haldrup (1994) employ the following quadratic adjustment cost for analyzing the demand for labor,

Yolle — l:)Q + (s — lt—l)Q

where [; is the t—period labor demand, I; denotes the steady-state level of the variable I and parameter « is the relative cost
parameter.

. . 1— . . . . . . . .
However, if we consider 270 (yit—y*)? where y* denotes a time-invariant social norm showing agents’ stereotype, identification

of y* is difficult (in the sense of econometrics). In case of an econometric model based on a static framework, y* will be absorbed

in the intercept. In the case of dynamic one, it will be a part of individual fixed effects.
"' The derivation can also be done for a finite horizon case if one knows the terminal period.

9 ynt)

!/



where o () denotes the o—field'? generated by the argument inside. This specification is assumed to be a
complete information game from the past to the current period ¢ with uncertainty only for future periods.
The n,, contains both time-invariant 7]2” and time-varying 7}, individual characteristics (some of them might
not be observable by econometricians).

To understand the implication of intertemporal choices on spatial interactions, it will be simpler to
consider an intertemporal choice problem with two periods. Denote 1,; = (114, , 1) for each t. Given
(Yno,mp1), agent ¢ (¢ = 1,--- ,n) is assumed to maximize the expected discounted intertemporal payoff
for t =1 and 2: at t = 1, u;(Yn1, Yno,m1) + 0E (wi(Ya2, Yn1,m9)|Bi1); and at ¢t = 2 : u;j(Yae, Ya1,m;2), by
sequentially selecting y;; for ¢ = 1,2. By considering the subgame perfect NE (SPNE) economic activities,

the agent i’s equilibrium decision at the period 1 is

y;kl(ynm 'r]nl) = 7YoYio + Powi.Yno + )\Owi.Yn*l (Yn07 nln) + 4 (Aie;Af’Zﬂad 75:1 (YTLOa nnl) - Pyoy;(l(yn(): 77711))

151 + 00€; S, E(ny,|Bit)

rg—1
where Al = §-1(yoI, + poW,) and A; = Qe (’y%{y’jp W)V el Alrade,  The quantity A; means a

marginal change of the future expected equilibrium decisions of i corresponding to changing y;1.'3 Let

A, = Diag(A!"*%). Then, the NE vector at ¢ = 1 can be characterized by a modified SAR equation:
Vi (Va0 ma1) = AoWa Yy (Yoo, M) + 6 | A AT — 'Yoln} Y1 (Yn0: 1n1) + (Voln + poWn) Yao
+1,1 + 0ALS,,  E1(n,)

where E; (-) denotes the mathematical conditional expectation on (Y, ;—1,m,;) at t =1 and 2. Let R, =

(L4 dvg) I, — AW, — 5AnAf{’“d. By assuming invertibility for R,1, the unique NE can be characterized as

Y1 (Yoo, 1) = Rr:ll (YoIn + poWn) Yno + Rr:ll (nnl + 6AnS;1E1(772n)) . (5)

From equation (5), we see that taking into account the expected outcomes in the second period, as > 0,
it brings in the additional spatial influence §A,, A79Y ¥ (Yy0,m,,;) and the time influence 6,1, due to their

effects on possible future outcomes.

2Tn a measure theoretical interpretation, the sequence of Bi’s is a filteration on (92, B;). Q contains all possible outcomes
and B; can be defined by
Bi=o ({yis )y 120 {1}, 120 ) -
Then, for t1 < t2, By, C Bit, C B;i, which means agents’ knowledge increases over time.
13Since there is no additional future period, the expected NE decisions at ¢t = 2 are E (Y5 (Yn1,m,5)|Bi1) = Atredy, . 4
S E (n,5)Bi1) for all 4.



Based on recursion, we extend this two-period model to an infinite horizon model. At each time ¢,
given Yy i1 = (Y1015, »Ynt—1) and 0, = (14, M), each agent, say i, is assumed to maximize the

expected discounted intertemporal payoff

o0
wi (Yits Y—its Ynt—1,Mt) + Z 6°E (ui (Yatts Yostds—1,Misrs) | Bit) (6)

s=1
by selecting y;;. The time-discounting factor § € [0,1) is introduced to give weights on agent’s future choices.
The main reason considering an infinite horizon problem is to allow that possibility, and in that case one

can get a same functional form (over time periods) of an estimable equation with given information.!

2.3 Nash equilibrium characterization

In this subsection, we characterize the NE. In the infinite horizon model, the Markov perfect equilibrium
(hereafter, MPE) characterizes the equilibrium strategies of all agents as best responses to one another and
helps to yield a unique equilibrium equation. "Markov" means that agent 4’s t"-period optimal strategy only
depends on the state variables (Y;,+—1,1,,,) and does not rely on other earlier parts of its histories (Maskin
and Tirole (1988a)). "Perfect" means that the NE constructs an optimizing behavior of each individual
for all possible uncertain future states. Hence, an MPE is a refined version of subgame perfect NE. As
its old definition is "closed-loop equilibrium", the definition of the MPE involves a dynamic programming
equation (the Bellman equation).!® Since the #"—period optimal decisions only depend on (Y, ;—1,m,,;)
and, under the Markov assumption other past histories and exogenous characteristics are irrelevant to the
current decision-making, F (:|Bit) = E (:|Yn—1,M,;) for all i = 1,--- ,n. Hence, we can simply define the
conditional expectation operator E; () by E¢ (-) = E (-|Yn,—1,M,). Also, time itself is not payoff-relevant,
so we can drop the subscript "t" from agents’ optimal policy functions y};(Y5 +—1,m,,) (for i =1,--- ,n) in

the definition of MPE.

“From a panel data set, in practice, a researcher might not know initial and terminal periods of agents’ decision-making.
When we consider a time-invariant equation as an estimating model, utilizing that model is available without concerning specific
time period t relative to a finite terminal period.

In perspective of economics, employing an infinite horizon model is prevalent in a lot of theoretical and/or empirical studies.
Even though agents actually have a terminal decision-making period, they might keep the same pattern of decision-making at

the terminal period because of (i) leaving a bequest, (ii) keeping a nice reputation and so on.
For more information in MPE, refer to Maskin and Tirole (1988a, 1988b, 2001) and Chapter 7.6. in Ljungqvist and Sargent

(2012).

10



Definition 1 (Markov perfect equilibrium) A MPE will be a set of value functions V; (-) (i=1,---,n)

and a set of policy functions f; () (i=1,--- ,n) such that

(i) (Markov strategy) yj,(Yni—1,Mnt) = fi (Yoi—1, M),

(ii) given f1,---, fi—1, fi+1, -, fn, Vi satisfies the Bellman equation
Vi(Ya -1, 1) = max {wi (Wit Y20t (Yot Mt)s Yot 15 M) + 0B (Vi(wie, Y25 s (Yot 15 t)s Mp1)) b (7)

!
where Y—*iat(y”%t—h nnt) = (y)lkt(ynat—h nnt)7 T 7y;—1,t(Yn,t—1’ T’nt)’ y;(-‘rLt(Ymt—lv nnt)7 T y:Lt(Ynyt_l’ nnt)) ’

and

(iii) (principle of optimality) the policy function f;(-) = y, (-) attains the right side of the Bellman
equation (7).

The principle of optimality characterizes the equivalent relationship between the two solutions to the

intertemporal choice problem (6) and the functional equation (7). In other words, given (Y, :—1,m,),

%(Ynyt*b nnt) = U (Y:t (Ynytfla nnt) 7Yﬂ7t715 nzt) + 5Et (‘/;(Y;t (Ynytfla nnt) 7nn,t+1))
= ui (Yo Yot—1,M0e) s Ynit—1,M:1)

o0
+ Z 58Et (ul (Y;,tJrs (Yn7t+8—17 nn,t+s) ) Yr:k,tJrsfl (Yn,t+s—27 nn,t—i—s—l) ) ni,t+s))
s=1

where }/t* (Yn7t—17 nnt) = (fl (Yn,t—l’ T,nt) y T )fn (Yn,t—lu nnt))/‘
Since payoff (4) is linear-quadratic and there is a time-discounting factor §, the agent i’s intertemporal
choice problem in an infinite horizon setting belongs to a discounted linear regulator problem. The agent

i’s value function V; (-) takes the form
Vi Yoe—1Mnt) = Yoot 1QiYni—1 + Yoy 1 Limyy + M Gimlyyy + ¢ (8)

for some n x n matrices @Q;, L;, G;, and a scalar ¢; for each ¢ = 1,--- ,n. Note that Q;, L;, G; and ¢; are
the unique solutions of the algebraic matrix Riccati equations stemming from a recursive relationship.! To

have a well-defined Bellman equation (a recursive relationship), V; (-) should be a continuous and bounded

'SFormation of the algebraic matrix Riccati equations can be found in Appendix A. When we are only interested in agents’
optimal policies rather than values, computational advantages are enjoyable since obtaining @); and L; is sufficient for that.
This fact is consistent with that Howard’s improvement algorithm (policy function iteration) often converges faster than value
function iteration. For more details in the Riccati equation and relevant issues, refer to Chapters 3 and 5 in Ljungqvist and

Sargent (2012).

11



function. When we consider a conventional intertemporal choice problem in economics, a choice set is
usually limited by a budget or a resource constraint. Due to the existence of a constraint, agent’s value
will not be explosive, so it becomes continuous and bounded. In our problem, however, while there is no
explicit constraint on agents’ choices, there are costs which limit choices. The Bellman equation (7) can be

characterized by using the maximum operator 7 :

‘/’i(Yn,t—lu nnt) = 7 (V;) (Yn,t—la nnt) (9)

= max {ui (Wi, Y25 s (Yot 1, Mt)s Yoe—15mit) + 0B (Vi(ies Y3 4 (Yot—1, M) e 1)) |

where the functional solution V; (-) will be a fixed point of the operator 7 in an infinite horizon setting.
The existence and uniqueness of the value functions V; (-)’s for all agents can be guaranteed by imposing
regularity conditions on wu; (-), Wy, and strength of interactions so that 7 is a contraction mapping.!” For

this, define
* ! * !
Q=@+ @er, ) (Qu+ Qs andLi=[Lher, -, Lhe| -

Assumption 2.1 We assume
(i) (Process of mp,) For each t, mp 4y = nmpy + &, 41 where [T, < 1, ||| denotes a proper matriz
norm, My = (0, 0e)s Be (§np1) = 0 and By (§,41€0,111) = Q¢ which is positive definite.

(i) For each i =1,---  n, all entries of Q;, L;, G; and ¢; are bounded.

Under Assumption 2.1 (i), we have a linear expectation E; (0}, ;1) = E (n41ny) = unp, and
other parts of histories (e.g., m,; 1, M, 49, **) are not relevant.'®  Since we assume |[II,,|| < 1 and
By (§n7t+1g;’t+1) = Q¢ > 0, it implies max;—1 ... ,, sup; £ (‘772-7”1‘2) < oo. If some elements of n,, ., are
invariant over time, it would be reasonable to assume them to be known for all agents, then corresponding
coefficients in II,, would be one and &,, ;; would be zero. By controlling Q;, L;, G and c;, the restrictions of
Assumption 2.1 (iii) help to avoid agents’ extreme decisions so that lifetime values would not be explosive.
The restriction on (); makes manageable dependence between Y7, ;1 and Y,;;. The restriction on L; comes
from forward-looking features of our model, but would not appear in a myopic model. By imposing this

restriction, expected remote future exogenous effects on the current decisions become negligible.!?

'"The detailed arguments can be found in Appendix A and our supplementary file.
18The linear conditional expectation would likely be used for practical estimation. Theoretically, it can be generalized to

nonlinear functions if needed and desirable. It is convenient in notation here.
9Note that G; and ¢; are not relevant to agents’ equilibrium decisions. However, controlling them is needed to have bounded

Vi’s.
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As T is a contraction mapping, with an initial guess function V() (.), it can iteratively generate a
sequence of functions V) (-) such that V@) () =T (V(j ~1) (), and the value function V will be the limiting
value, i.e., Vi (-) = limj 00 T <Vi(j _1)) (-) for each agent .20 The Bellman equation thus characterizes the
value function. With an available limiting value V; (-), the agent ’s optimum activity y;; can be solved from
the maximization problem with

Yir Ynt—1, M) = argyyflax {Uz (yita Y—*i,t(Yn,tflv Mnt) Yoi—1, 77¢t) + 0k, (Vi(yita in,t(Yn,ffla Mt ) 77t+1))} .
For our model, because the payoff function u; (+) is a linear-quadratic form in Y,y and (Y3, +—1,1,,;), we would
expect that the value function V; (-) would be a linear-quadratic form. The Bellman equation with a fixed
point for V; (-) would provide the characterization of coefficients of the linear-quadratic form, which in turn,
may provide us a system of estimation equations for y}, (-) for ¢ = 1,--- ,n at each ¢. For the system of

estimation equations, we shall consider its estimation with methods such as the quasi-maximum likelihood

(QML) and a possibly simpler nonlinear two-stage least squares (NL2S).

Whether the value function is indeed in a linear-quadratic form can be revealed by fixed point iterations
of the contraction mapping 7 and be confirmed by mathematical induction. Indeed, iterations of 7 would
provide value functions, and then optimized activities of agents can also be derived in a finite horizon setting.
For either a finite horizon or infinite horizon setting, one should start with the initial VZ.(O) =0 (i.e., a zero

initial function) and then have the iterations,
Vi(j)(yn,t—l, nm) = H;ix {Uz (yih Y_*Ejt) (Ymt—lv "7me)7 Yn,t—l, ﬁit) +0E; (Vi(jil) (yih Y_*Z(jt) (Yn,t—lv nm), 7It+1>)} )

for j =1,2,---. We see that with Vi(o) =0, Vi(l) (+) is the value function of agent i at ¢ being the terminal
period; V;(Q) (+) would be the value function at ¢ while t+1 were the terminal period, and in general, Vi(JH) ()
would be the value function at ¢ while ¢ + J were the terminal period. So for a model with a finite horizon

of future J periods at time ¢, the corresponding optimum activity could be derived as

*(J+1
O (v, ) = argmax Ui (yz‘uY,Z(,t (Vi 1m0, Yn,t*h”it)
it nit—1,"TInt) =

Yit +0E; (Vi(‘]) (yit, Y_*%H) (Ynt—1, M), nn,tﬂ))

(J+1) ()

and the value function for agent 7 would be V;

For the situation with infinite horizon, the iterations continue to infinity and the stable system of NE is

Y;t (Yn,t—l, nnt) = (AoWn + 5QZ) ;t (Yn,t—h Mnt) + (Yoln + POWn) Yii-1+ (In + 5L;Hn) Mnt» (10)

20This process is called "the method of successive approximations" (Stoket et al. (1989)).
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which captures the contemporaneous spatial spillover effect through AW, Y. (Y5, t-1,m,,;), dynamic effect
YoYn,t—1, spatial- past time effect or diffusion pyW, Y, ;—1, and additional expected spatial- future time effect
0Qr Y (Ynt—1,my). The additional term 6L I1,n,, is due to expected future unknown explanatory factors
and disturbances, as 77, may contain time-varying and invariant explanatory variables and disturbances.

The spatial-time filter of our model is defined by
R, =S, —0Q;, where S, = I, — AoW,. (11)
So the NE activity vector at time ¢ is

Y;t (Yn,t—la ﬂnt) = AnYn,t—l + By (12)

where A, = R, ! (voIn + poWn) and B,, = R,;* (I,, + §L:11,,). Note that the transformation R,, characterizes
the interrelation among agents’ decisions. Due to the forward-looking feature of our model, direct influences
(i.e., first-order spatial effects) can come from all spatial units even for a sparse W,,.2! In the view of SAR
models, R, would reduce to the conventional S,, = I, — \gW,, when § = 0, i.e., with completely discount of
future values, or equivalently with myopic behavior. The transformation L} can be represented by
oo
Ly=> 6™ ' Dyl
m=1
where Dy, , (m = 1,2,---) denote some n X n matrices, which only rely on Ao, vg, pg, and § with Ww,,.2?
In estimating parameters, both the structural and nuisance parameters (related to II,,) are included in the
linear term L}, but the parts of structural parameters and nuisance one can be distinguished. Using D, 1,

moreover, we find the relationship between @} and L} :

Q. = Dn1 (voln + poWn) — voIn,

which implies

Yo Yoi-1,M0) = MoWa+0Dni1 (voIn + poWh) — 670In) Yoy (Yae—1, M) (13)
+ (’Y()In + pOWn) Yn,t—l + (In + Z 5mDn,mHg) nnt
m=1

2L For illustrative purposes, suppose there is no isolated spatial unit. Then, all elements in Q}, are nonzero. In our system
equation (10), note that the direct influences can be composed by two parts: (i) oW, Y,; and (i) 6Q5 Y. If w;; = 0, there is
no direct contemporaneous spill over effect (i.e., Aowi;y;e = 0 if wi; = 0). Even for wi; = 0, § [Q7];; yj¢ # 0 since agent ¢ has in

mind j’s expected future indirect influences (i.e., future NE) in his/her current decision-making.
2Detailed forms and their derivations can be found in our Appendix A.
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and

Ry, = (14 6v9) In — MWy, — 0Dy 1 (voln + poWh) (14)

Equation (13) describes a role of future relevant components combined with J. The additional components
dvoln and —0Dy 1 (voln + pgWy) in R, are due to agents’ forward-looking decision-making and they are
respectively counterparts of the time influence 67,1, and the additional spatial influence §A, A" in the
two-period model. Note that e/Q} =€, (Q; + Q}) and €L} = e/L; for all i = 1,--- ,n. To explain equation

(13), consider the first-order condition of agent i’s arbitrary ¢ period problem:

y;t(yn,t—l’ Mne) = Mg + YoYit—1 + powi Yni—1 + )‘Owi.Y;t(Yn,t—la Mt
o
+5 (eiQ;YJt(Yn,tla nt) + Z 5m_1€;Dn,mHnm"7nt>
m=1

= Nt +YoYit—1+ powi Yni—1 + )‘Owi.Y:t(Yn,t—h Mnt) — YoYit(Ynt—1, Mnt)

0o
+662Dn,1 ((70171 + IOOWn) Y;t(yn,t*b nnt) + Hﬂnnt) + Z 6me;D"»mHnmnnt'

m=2
Hence, we can observe 0D, 1 ((YoIn + poWn) Yy (Yo t—1, M) + I1ym,,;) plays a similar role to the additional
terms in the two-period model except the additional exogenous influences > >~ , 8™e Dy, I10'n,,,. The
reason why only D,, ; appears in R, and Y}, (Yy, 1—1,7,,;) just relies on the payoff relevant history Y,, ;1 are

due to the Markov property of agents’ decision-making.

3 The econometric model

In this section, we construct an econometric model and suggest estimation methods for this model with a
panel data set. Assume a researcher has observed ({Ym, Xnt}tT:0> and W,, from a panel data set, where
Yyt is an n x 1 vector of dependent variables and Xy = (Xpe1 -+, Xnex) with Xppp = (144, - - ,xnt,k)/
for k = 1,---, K is an n x K matrix of (exogenous) explanatory variables.?> Each Y is supposed to be
realized as an equilibrium, (i.e., Y, = Y (Ynt—1,M,)). For estimation, we assume some structures on
M, First, m,, contains time-varying explanatory variables (X,;) with coefficients 5, = (5170, P K,o)/
and disturbances. In addition, fixed individual and time effects can be introduced as components of n,,,.
It is of interest to note for the infinite horizon case, the modified dynamic SAR equation can allow the
specification of additive individual effect c;:o and time effect o . With all individual effects in a vector

Cro= (c}"o, e ,c:‘w) which is invariant over time, the corresponding II,, would be an identity matrix, thus

23 After the subsection, we add the subscript n (or T') to point out that it is constructed by n (or T') sample points.
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individual effects would be reparameterized into ¢, = (I, + 0L}) c}. For a time effect oy oly, if aro’s are
random shocks which might influence every agent, then its corresponding II,, is zero, so the time effect oy ol

can be additive.

Hence, we have the model specification
Ynt = ()\OWn + 5@;) Ynt + (’YOIn + pOWn) Yn,t—l + (In + 5L;Hn) Xnt/B[) + Cpo + at,Dln + gnt (15)

for t = 1,---,T, where &y = (e1t,- - ,em)/ is an n-dimensional vector of i.i.d. disturbances with mean
zero and variance 02’0 > (0. The main parameters are Ao, g, pg, Bo and 0270. The time-discounting factor
0 is considered as a primitive parameter and the incidental parameters in II,, are assumed to be covered
by the process of X,;’s already. We shall explore the estimation approach in the situation of both n and
T being large. In this situation, it is appropriate to consider the estimation of the structural parameter
vector 6y = ()\0,70, P05 ,6’6,0370), together with the fixed individual and time effects ¢,9 and agg, where

arg = (a1, ,aT,o)/ is the vector of time effects.

As special cases of model specification (15), we consider two cases because they have distinct features.

First, consider Ay = pg = 0, which means no spatial interactions but not myopic due to individual own time

52
lag effect. In this case, R,, = zI,, such that z =14 dv, + 570_ e Using the formula of infinite
I4+8yg+——2—
’ 1+570+ﬁ
continued fractions?*, we have
1
R, = 3 <1+(5'70+ \/1—1—2570—573 (4—5)) I,. (16)

To obtain validity of (16), 1 + 26y, — 673 (4 — &) > 0 is required. The second case is A\g = 0, which means
no direct contemporaneous spatial interaction. In conventional SDPD models, there is no contemporaneous
spatial interaction if \g = 0. In our case, however, the forward-looking spatial filter R,, becomes I,, — 6@},
where the i"-row of Q% is €/ Al [—eiel + 3 (Qi + Q)] An + voel [Aleiel + (An — I,,)]. Tt implies that (i)
Q) # 0,xn even for A\g = 0 since agents’ consider the expected future diffusion effects, and (ii) @}, would

be simpler than that of \g = 0 case.

The reduced form of equation (15) is
Ynt - AnYn,t—l + Rﬁl [(In + 6L;§Hn) Xnt/BO + Cpo + at,Oln + gnt] (17)

where A, = R, (voln + poWn) with R, = I,, — (AW, + 6Q%). Stability of system (15) means the spatial-
time dependence should be manageable. Note that Q} = Dy,1 (YoIn + poWn)—voIn, Li = 3200, 6™ 1Dy, 1T 1

24 2 — Y
This is, /22 +y =2+ W
Py
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and Dy, , (m =2,3,---) are generated by D,, ;. Then, assuming uniform boundedness of D,, ; yields well-
definedness and uniformly boundedness of LY. Hence, the current and expected future exogenous effects
I, + 6 L} I1,, become manageable.? When absolute summability for Z;; Al and its uniform boundedness

in row and column sums hold, we have the infinite summation representation

Z ARV (1, 4 SLETL,) Xot—iBo + €no + a—joln + Ent—j] - (18)

As n increases, ||A,|| < 1 and uniform boundedness of R,,! guarantees the variance of each y;; is not explosive

and remains to be bounded.

4 Estimation

4.1 Quasi-maximum likelihood estimation

To estimate equation (15), we firstly suggest the quasi-maximum likelihood estimation (QML) method,
which gives a fundamental background in parameter estimation. Asymptotic results for the QML estimator
are based on the increasing-domain asymptotic.?6 Let § = ( .p, 30 ) be the set of structural parameters
for estimation, where 6y is the true value of . The dimension of the parameters is 4 + K. To distinguish
the individual- or time-specific effects for estimation, we denote ¢, = (c1,--- ,¢,)" and a7 = (a1, -+, ar)’.
Let 61 be the true 61 = (\,7, p)’, which consists of parameters involved in L and Q. For each 6;, we
define Q% (61) and L¥ (1) with R, (01) = I, — \W,, — 6Q%, (01) and A, (61) = R, (61) (vI, + pW,,). The

log-likelihood function with a panel with nT’ observations will be

T
T nT
In Lot (0, ¢, 1) = —’Ll o — —lna TR, ( 5o3 Z (0, cn, or) Ent (0, Cny ) (19)
Oc =1
where Ent (0, ¢, ar) = Ry, (01) Yor — (VI + pWi) Yo i—1 — (Iy + 0L}, (61) IL,) Xyt B — €5 — il

The computation of this model will be more complicated than that of the conventional SDPD model.
Note that the conventional SDPD model is linear in parameters except 0?70. But for the equation from the
intertemporal dynamic spatial model, the implied matrices @)} and L} are both functions of the parameters

A0, Yo, Po and the time-discounting factor . Hence, we need to numerically evaluate Q7 (61) and L7, (6;) for

21 ¢ty is a vector of uniformly bounded constants, cno = (I, + 6L}) ¢l is also uniformly bounded if || Dy 1] < ¢p.
6Tt means that sample observations are from a growing observation region (spatial domain). In case of the fixed-domain

asymptotic, a spatial domain (a region) is fixed and bounded and the number of observations in that spatial domain increases.
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each 0y (i.e., inner loop). As the total number of individual and time fixed effects in ¢,9 and apg is n + T,
it is desirable to focus on the use of the concentrated log-likelihood function with the fixed effects ¢, and
arg concentrated out. In consequence, the optimization of the concentrated log-likelihood function is on a
fixed number of structural parameters. As the fixed effects are linear in the generalized SAR equation, they
can be estimated as regression coeflicients when other structural parameters in the equation are given.

Let Yur = 2 30 Yo, Yo o1 = = 3ty Yos and Xpr = = 30| X, With fixed individual and time

effects concentrated out, the concentrated log-likelihood with parameter subvector 0 is

lnLnT,c(H):——l n 2w ——lna +TIn|R, ( nt (6) (20)

IIMH

where £ (6) = Ru (61) Var — (vl + W) V104 = (I + 6L, (01) T1) KB with Yoy = Yo — Y, V1)), =
Yoi-1 — YnTy,l, and Xnt = X, — X, in deviation from time mean, and J, = I, — %lnl; being the
deviation from group mean operator.?” From (20), we obtain the maximum likelihood estimators, émlmT =
arg maxgee In L7 (6), where © denotes the parameter space of . For computation, in particular, with a
large size sample, we shall put more attention on the evaluation of the determinant | R, (61)| and its inverse
R;1(61). In the spatial literature, the suggestion by Lesage and Pace (2009) on a Taylor series analytic
expansion of the determinant |I,, — AW,,| in A may be useful. For the inverse of R, (f1), one might also
consider the Neumann series expansion. That Neumann series expansion can be justified by the stability of

our spatial dynamic process.?®

Define Ry (61) = BRgie”,Rm (91):81%37’(;91)’ Rup (01) = aRg/(Jel) L%, (6,) = L(é’l) Li(01) = 8L8§91)7

and L, (01) = 25 Note that Ry, Ruy, Bup, Liy, L,

and Lj,, denote those quantities at § = 6. Here
are assumptions for asymptotic properties of le,nT- Subsequent asymptotic analysis of the QMLE extends

properly that in Yu et al. (2008).

Assumption 4.1 (i) The diagonal elements of W, are zero.

(i) W, is strictly exogenous and uniformly bounded in row and column sums in absolute value.

Assumption 4.2 For all i and t, €; « i.i.d. (0, 020), and B |€it|4+n < oo for some n > 0.

2TNote that we cannot eliminate the time fixed effects by introducing a traditional orthonormal transformation like Lee and

Yu (2010) and derive a partial likelihood for estimation because the spatial filter matrix R, does not have a row-normalization

property.
28We introduce those approximation methods for calculating |R,, (61)| and Ry ' (61) in our supplementary file.
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Assumption 4.3 The parameter space © of 0 is compact. The true parameter 6y is in int(O).

Assumption 4.4 {Xnt}thl, {ato}zzl and ¢y are conditional upon nonstochastic values with
1

sup,, 7 % Yoy Zle ]mit,k|2+" < oo for all k, supp % Z;f:l |at0\2+’7 < 00 and sup, = Y i, \ci70|2+" < o0 for

some n > 0.

Assumption 4.5 Let ©1 be the compact parameter space for 6.

(i) Ry (01) is invertible for 01 € ©1. QF (01) and L (01) uniformly bounded in both row and column
norms, uniformly in 61 € O1.

(ii) At any 0 € int (©), the first, second and third derivatives of Ry (01) and L (61) with respect to 6,
exist and are uniformly bounded in both row and column sum norms, uniformly in 01 € ©1.

(iti) >°°, abs (Al) is uniformly bounded in both row and column sum norms, where labs(Ap)l;; =
144,

() |0Dy 111,|| < 1 where ||-|| is a proper matriz norm.

Assumption 4.6 We assume that T goes to infinity and n is an increasing function of T.

Assumption 4.1 is a standard assumption in spatial econometrics. By assuming uniform boundedness of
W,, spatial dependence becomes not too large and manageable (spatial stability condition). Assumption
4.2 (i) assumes i.i.d. disturbances across ¢ and ¢ for simplicity. Assuming a compact parameter space
(Assumption 4.3) is for theoretical analyses (for details, refer to Chapter 4 in Amemiya (1985)). Assumption
4.4 means the conditioning argument and is for simplicity of asymptotic analyses for the QMLE. In our
economic environment, X,; and ayg are stochastic, so agents can make predictions about their future values.
For estimation of the implied structural equation (15), X,,;, cno and oy are conditional upon as constants and
we introduce the higher than the second empirical moment restrictions for X,;, ay and c,0.2? Assumption
4.5 is for well-definedness of our model. Invertibility of R, (1) for #; € ©; guarantees for existence and
uniqueness of the equilibrium system (15) for any 6; € ©; (Assumption 4.5 (i)). Uniform boundedness
assumption for R,(#1) for #; € ©1 means spatial dependence of dependent varaibles from our model is
manageable (stable spatial process). Assumption 4.5 (ii) is a trivial requirement. Existence and uniformly

boundedness of the first and second derivatives of R,, (f1) and L} (61) should be required so that %Léif’c(m

2By Kelejian and Prucha (2001), these higher than the second moment restrictions (with the higher than the fourth-moment

restriction for €;+) are required to apply a central limit theorem for a linear quadratic form.
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d 821n Ly7,.(0)

an 9000’

for € O are well-defined. The reason for having the third derivatives of Ry, (/1) and L}, (1)
is for the uniform convergence of the second order derivatives of the log-likelihood function. Assumption 4.5
(iii) plays a crucial role to study the asymptotic properties of 9ml,nT by restricting dependence between time
series and between cross sectional units so that the process is stable in both the space and time dimensions.
Under Assumption 4.5 (iii) and large T, the initial value Y,y does not affect asymptotic properties of
éml,nT. A sufficient condition for absolute summability is ||A,[|,, < 1, so the infinite sum Y 7% AR exists
and is (I, — An)~!. If we have Assumption 4.5 (iv), S22, 6" DI \TTh=1 = D,y (1 — 6D T0,) 130 T
means expected future exogenous effects become manageable, so the remote (expected) future exogenous
effects on Y,; are small to be asymptotically ignorable. Assumption 4.6 is needed to consistently estimate

the individual and time dummies. Large T is for consistent estimation of c¢,g and large n is required for

consistent estimation of ayyg.

For asymptotic analysis of 9ml,nT, note that \/711—7,81“ ng’cwo) takes the following linear-quadratic form3!
1 E [ + Dy Jc‘?t+1§T:[~’B’ JnEnt — 02 gt (Byn) (21)
t 1 n nén nt~qgnnen €, q,n
\/nT vnT —

where By, and B, are some n x n uniformly bounded (in n) matrices and D,; denotes some time-
varying nonstochastic component. By (21), éml,nT can be asymptotically biased because YnT,,l and &,7 are
correlated even for large n and T due to many incidential paramaters of individual and time effects. To derive

the asymptotic distribution of 9ml,nT and adjust its asymptotic bias, we can decompose \/1—7, Oln Lg‘g’cwo) into

an uncorrelated part and a correlated part. For this, consider the decomposition J,Y, (t)l = J ert)(l)

Jn UnT,_ 1 Where

LYW = 0, |3 AR [(In + L) Xti1 8 + dt_h_l,ozn} +J,

io: AITlLRnlgn,t—h—ll

h=0

7 _ 1 T-1 o0 h p—1
and UnT77]_ - T t=0 h=0 Aan gn,t—h‘

am L™ (0
Using the decomposition, we have \/71TT‘91“ ng,c(%) _ \/71TT n L’ég“( 0 _ A1 7 — Ag . Note that
(u)
1 Oln L (90)
ﬁ ggc _ E |: yin Yét)l +Dnt} In&nt + — E J nEnt — S,OtT (Janm)] ,
n

(22)
which determines the asymptotic distribution of 9ml7nT. The terms Ay ,7 and Ay, characterize asymp-

totic biases. Note that Aq,r and A, are respectively \/% [(By,nUnTﬁl),JngnT + g,lzTB&,angnT} and

#8ince Dy, p’s (h = 2,3,---) are generated by Dy 1, L, = 35>, 6" 7' D,, ,JI"™" is uniformly bounded in n.

3! The formulas of %ﬁ’cw(’) can be found in Appendix B.
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% [020 (tr (Bgn) —tr (Jan,n))] where the detailed forms of Ay ,7 and Ay ,7 can be found in Appendix
B. Ay ,r comes from estimating c,o while Ag 7 is generated from estimating {atg}thl. The main sto-
chastic components of Ay ,r are U;T7—1BngnTa and g;LTBngnT where B,, denotes some uniformly bounded
(in n) matrix in row and column sum norms. However, Ay ;7 is determined by non-stochastic components,
tr (—Rn,\R’l) —tr (Jn(=RaaR,1Y)), tr (—Roy Ry Y) —tr (Jn(—Ruy RyY)), tr (= RupRy ) —tr (Jn(—RnpRy1Y)),
. By Lemmas 2.1 and 2.2 in our supplementary file, Ay 7 = \/>an 1(6p) + O (\/Ti@,) + 0, (ﬁ),

where am(eo) = 0(1), and, Ay p = \/%amg(eo), where ap2(0p) are O(1). The formulas of ay1(fp) and

an,2(6o) can be found in Appendix B.

Consistency and asymptotic normality

First, consider consistency of éml,nT- For each 0 € ©, define

1 1 1 1
Qur (0) = —=EIn Lyr, (0) = =5 2w — 5 Ino? + —In[Ry (61)] -

(z ) D e>>
To show consistency, the first step is verifying uniform convergence of sample average of the log-likelihood
function, supgcg |7 In Lyr,c (8) — Qur (0)| L0 as n, T — co. After this, we show Q7 (0) is well-behaved

at any point @ in © by verifying uniform equicontinuity of Q,,7 (#).3? Obtaining the identification uniqueness

completes the proof of consistency. The assumption below describes the identification uniqueness conditions.

Assumption 4.7 (Identification) 7o identify 0y, we assume

(1) limy, 700 [% In ‘UZORle'Rgl} — 1 enT(Ol)R Y6, R, (Ql)H # 0 for 61 # 01,0 where

T

1
o2 pr(61) = ZE Znt (01) — Xyt (61)

T “lor
nT ZX;LS (01) Jnf&w (01)] ZX 01 J, Zns (61>

s=1

X | Znt (01) — Kog (61) ZX (61) JnZns (61)

ZX (61) JnXons (01)

2
g
+—<0tr (B VR, (01) JuR (01) By) + (1),

Zut (61) = [Ru (62) Ry (oJu + poWa) = (Yl pWa)] YS! R (62) Ry [RoaBy + Qo] and Ko (1) =
(In, + 0L% (61) I) Xog with Xy = Xyt (601,0).

(i) imy_ o 5 Z?:l X In Xt exists and is nonsingular.

Formally, imsupsupyce sup  |Qnr () — Qnr (0')] — 0 as § — 0.
T—o0 lo—6"||<é
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Let Qnre(01) = Qnr (9175@ (61), 02,7 (01, Bar (91))) where o2, 5. (01,8) = argglaXQnT (61,8, 0?)

€

and B, (01) = argmaxQ,r (91, B, af). Assumption 4.7 (i) comes from the information inequality for the
concentrated expected log-likelihood function Q7. (61). Note that
O'inT(@l) = (Zt LEL (01, Brr (01)) Tkt (01, B (01))) and this expectation does not depend on a

normal distribution, but it comes from the correctly specified first two moments. Also, we observe Uz,nT<91) =

Uz,nT,l(el) + a?,nT,Q(Hl) to (1) where

T !/ ~ ~
o (00) = 1 3 (Zoa (0) = Ko 00) 8 (00)) n (Z 40) = ot (1) B 4)

and Jg7nT72(91) = Zg_(i tr (R, VRY, (1) JoRn (61) R, '). Note that J, wZnt (A1) is an approximation function for
Jantﬁo since Jy Zns (010) = JantBO. Hence, the first term, ae’nT’l(Hl), is a quadratic function of the differ-
ence between the two approximation functions for Jnfimﬁo while Jg,nT,2(91) =F (éfltR,; VR (01) JuR, (01) R, lgnt) ,
which is strictly positve. When 6; approaches to 61, 0'37nT71(91) is close to zero. Hence, 03nT72(91) will play
a main role in identifying 61 ¢ if 61 is around ;.3 Identifying 3, is done by Assumption 4.7 (ii), which
is analogous to identification of 3, in a standard linear regression once 6; g is identified. When replacing
Xnt by Xnt, we can observe this feature and Assumption 4.7 (ii) becomes equivalent to the identification
condition of 3, in conventional SDPD models. These conditions (i) and (ii) validate the strict information

inequality (in the limit at least) so that 0 is globally identifiable.

Here is the theorem showing consistency of éml,nT-

Theorem 4.1 Suppose Assumptions 4.1 - 4.7 hold. Then, émlmT L0y as T — oo.

A 2
Next, we will derive the asymptotic distribution of 8,,; ,7. Denote g, ,7 = —F (%%{W) and
o L) (60) o L) (0
Qoo = F <an n ggc( o) &1n g;",,c( 0)>. For that, we introduce the following assumption.

Assumption 4.8 liminf, 70 Gin (Qog.nr) > 0 and iminf, 700 dpin (Xggnr) > 0 where ¢y, () denotes

the smallest eigenvalue.

Due to Assumption 4.5 (ii), we have continuity of ¥g,r = —F (an %{%f@) in 0 € N (6y) where

N (6p) denotes some neighborhood of 6y. Hence, assuming inf,, 7 ¢pin (X, n7) > 0 implies that g, is

also nonsingular for any § € N (6p). The derivation of the asymptotic normality of 9ml,nT will be based on

33 Detailed comments for identification can be found in the supplementary file.
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o L™ (6
the mean value theorem, and the central limit theorem for martingale difference arrays to \/:ﬁ . gg’c( 0)

The theorem below gives the asymptotic distribution of 9ml,nT-

Theorem 4.2 Suppose Assumptions 4.1 - 4.8 hold. Then,

P n__q T 4 In /T |1
vnT (le’nT — 90) + \/;EQO,HTCL”J(G()) + \/: GO,nTam?(‘gO) + Op (max ( 73\ 3 T))

4N (0, 25019902501) ,
where ng = limTHoo Q@OJLT and 2,90 = limTHOO EGO,nT’

By Theorem 4.2, we have the results: (i) if % — 0, n (eml,nT - 90) + Z%{nTan,g (00) 2 0, (ii) if
# — c € (0,00), VnT (éml,nT - 00) + \ﬁE;O{nTanJ (0o) + \/%ZG_O{HTCL”’Q (0o) 4N (0,29_0199026701>, and
(iii) if % — 00, T (éml,nT — 90> +20701,nTan,1 (6o) 2. éml,nT has an asymptotic bias of order O (max {%, % )
due to —%26_0 %nTan,l (0o)— %Ee_olmTCLmQ (Ap). Hence, the confidence interval for @ml,nT is not properly centered
at g even if n and T have the same order (that is, 7+ — ¢ € (0,00)). If n and T' do not have the same order,

Ominr Will be degenerated. Hence, a bias corrected estimator constructed by

ac A 1 1

_ 1 ) e )
Ominr = OminT — T [_ b0t 1(0)| 1o, - 2907nTan,2(0):| l9=4,,, 1> Can be valuable.

The assumption below is introduced for @fnl’nT.

Assumption 4.9 >7° AL (01) and >27°  hAL=1(01) are uniformly bounded in either row or column sums

uniformly in a neighborhood of 0g.

Under Assumption 4.9, we have

\/g ([Z022a01®)] 04,1,z — Zourna(60)) & 0 and \/f ([Z042an20)] los,. . — Soturan2(80)) 20

when 2% — 0 and 4 — 0. Hence, we can apply the asymptotic equivalence.?*

T3 n3

34 That is, if (i)

e R 1 _ 1 -
vnT (emlmT - 90) —vnT (eml,nT - T [*ZGD{nTGn,l(eo)] - g [*ZGO{nTGn,Q(GO)] - 90) 2 0

and (ii) vnT (éml,nT — % [f (EGO,”T)71 an,l(eo)] -1 [f 9_01,7LTa’nv2(90):| — 00) 4, N (0,%) where * denotes the asymptotic

n
~C

variance derived in Corollary 4.3, we also have vVnT (lemT — 90) 4N (0, %).
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Corollary 4.3 Under the additional Assumption 4.9, 75 — 0 and % — 0, then
~ d _ —
VT (G;MT . 90) 4 N (o, 29019902901) .

C

For the bias-adjusted estimator 6 if n and T are not too much large relative to each other, it can

ml,nT»

have a nondegenerate distribution and its confidence interval can properly be centered. For finite samples

performance, results from Monte Carlo simulations are in Section 5.

~ A~

Next, consider asymptotic properties of &, mi(0minr) and & mi(Ominr) for t =1,--- ,T. Recovering cpg
and ay’s is meaningful because they are employed to obtain welfare measures.?® To identify c,o and ay’s,
we impose the normalization restriction Zthl ay = 0 because ¢; 0 + ay = (¢i0 + ) + (a — z) for any
x. Since T goes to infinity and n is an increasing function of 7', consistently estimating c,g and ayg’s is
feasible. For each 6, define 7,; () = Ry, (01) Yot — (7L + pWh) Yot—1 — (L + 0L (61) I1,,) Xt 8. Because
we impose >_/_, a0 = 0, &nmi(0) = £ 31, #ne(0) and Gy mi(0) = L1, [704(0) — €nmi(0)]. Two estimates for

Cno + ol + Ent can be considered: (i) 7y <éml,nT>7 and (ii) 7y <9,Cnl7nT). The theorem below shows their

asymptotic properties.

Theorem 4.4 Suppose Assumptions 4.1 - 4.8 hold. Additionally, assume Zthl ayg = 0. Then,

(i) for each i, if g — 0, \/T(éi,ml —¢ip) 4, N(0, afio) where €y = é@ml(éml?nT) and they are asymp-
totically independent with each other.

(i) For each t, if % — 0, V1 (éymi — o) 4, N(0,0‘io) where G = @t,ml(éml,nT) and they are

asymptotically independent with each other.

(iii) Assume Assumption 4.9, 7z — 0 and % — 0. For each i, VT (éfml — c@o) <, N(O,Ugo) where
. . c . d . . ~c .
il = Cimi(Opmypr). For each t, Vn (oz;ml — Oéto) — N(O,Uzo) where & ) = &t (O r). Asymptotic

independence holds like (i) and (ii).

Parts (i) and (ii) show that the conditions are symmetric for the other effects. By Theorem 4.2, we
have the convergence rate of éml,nT (i.e., éml,nT — 6o = Oy <max (\/%, %, %))) Then, ¢;pm — cio =
% Zle eit+0p (1) Hémlmj‘ — OOH and Gy ) — o = % Yo €ir+0p (1) Héml,nT — HOH. Hence, the conditions

4 = o(1) for ¢, and g = 0(1) for Gy m come respectively from? \/T(ézml —¢ip) = ﬁ Zthl €it +

5 . . . . . . 3 .
35 1dentified cno are employed to recover agents’ time-invariant characteristics n;"’s and ay,0’s represent common economic

shocks. For details, see the supplementary file.
%1n conventional SDPD literature (e.g., Yu et al. (2008), and Lee and Yu (2012)), the convergence rate of the QMLE is

Op (max (\/%, %)) In this case, the condition @ = 0(1) for é;m: is not required. Since we adopt the direct estimation
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Oy (max (ﬁ, %, ?)), and /1 (G m; — o) = ﬁ Son e+ Op (max (ﬁ, ﬁ, #)) Note that the

residuals 7 | @y n7 ) contain the individual- and time-dummy as an additive way. If T is large with small

n, there exists a O (%) bias for the regression coefficients since there are only n observations for each time
VT

dummy. For the estimate of individual effects, ¢; ,;, so ¥~ — 0 would appear in its asymptotic distribution

normalized by % The symmetric argument can be applied to ¢y .

Part (iii) means the ratio conditions of n and T can be relaxed when we employ the residuals based on
@:nl,nT. Corollary 4.3 implies 9fnlmT — 00 =0, (ﬁ) if 75 — 0 and % — 0. Then, VT (éfml — Ci,O) =
ﬁ Zthl €t + Op (ﬁ), and /n (&5, — o) = ﬁ Y€+ 0, (%) Since 75 — 0 and % — 0 are
VT n

n

milder conditions than — 0 and % — 0, estimating both ¢,0 and ag o via (ii) 7 (9fnlnT) would be

beneficial compared to employing 7, (@ml,nT)

4.2 Nonlinear two-stage least squares (NL2S) estimation

In practical applications, we may like to have a robust estimator to unknown heteroskedasticity and/or
unknown serial/cross-sectional correlations. Under a limited information setting, the NL2S method can be
a reasonable estimation approach. In addition to possible robustness, it might have computational advantage
relative to the ML or QML methods by avoiding evaluating In |R,, (/1)|. In this subsection, we briefly discuss

the implementation of this method.

For each t, let Z,,; be the n x ¢ IV matrix where ¢ > 4+ K means the order condition of identifiability. By
observing the form of additional endogenous component @}, Yy, we can consider [Y,;—1, Xp¢| and its trans-
formations by [In, W, W, W W, W2, . ] as IVs. Define the sample moment function gX; (6, c,, ar) =
ﬁ 2321 Z!Ent (0, ¢py ) and observe E (ng{T (0o, cno, aT70)) = 0gx1. Then, the NL2S estimator (NL2SE)
can be obtained by minimizing the objective function: g (6, c,, cur) (% Ethl Z;Ltht) o gL (0, cny ar)37
For regularity conditions about IV Z,,;, we need to assume existence of plimn,TﬂooniT 25:1 Z! Znt and non-
singularity of it. Remaining conditions for consistency and asymptotic normality can be achieved by our

suggested assumptions for the QML method.?® In next section, we compare estimation results by the QML

and NL2S methods to investigate whether the NL2S estimation method could work well.

approach of estimating c,0 and a0, we have the different convergence rate of the QMLE.
37Since the incidental parameters cno and aur,o are linear in €yt (0, €n, ), the concentrated statistical objected function will

—1 ~
be g% (0) (75 11 ZaZnt) G (6) where gl (0) = 2 S0, ZhJubnt (0).
% For basic discussions on the NL2SE, refer to Theorems 8.1.1 and 8.1.2 in Amemiya (1985).
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5 Simulations

In this section, we report Monte Carlo simulation results on small sample performance of the QMLE. For
t=1,---,T, the DGP for our simulation is

K
R,)Yt = ’70Yn,t71 + pOWnYn,tfl + Z (In + 5L:;Hn) (B17k701n + BQ,k,OWn) Xnt,k + Cpo + atOln + Ent (23)
k=1

and the expectation function II,, is specified based on
Xtk = Ak nXnt—1k + Cnk,0 + Qi oln + Vark (24)

for k =1,---, K where Ay, = v, oln + poWn. We consider the joint estimation for the main parameter

K
: 2 2 : : 39
vector 6y and the nuisance parameters {’yk,o, k.05 av7k70}k ) where Uv,k,oln is the variance of Vi, .

For sample sizes, we consider the combinations of n = 49, 81 and T = 10, 30. We generate our data
with 30 + T periods where the starting value is drawn from N (0,,x1, ), but employ the last T periods
as our sample. This design makes the initial value Y,q close to be in steady state. We experiment two
cases with the primitive §, (i) 6 = 0.5 (large discounted for the future) and (ii) 6 = 0.95 (small discounted
for the future). The cpno, Cp k0, 0, Q4 k0, Ent, and Vipp'’s (k= 1,--- | K) are independently drawn from
the standard normal distribution. For W,,, a row-normalized rook matrix as for a chess board is utilized.
We consider K = 1, and fix vy = 0.4, 81,9 = 04, By, = 0.4, UZO =1, 710 = 04, p;o = 0.1 and
U%/,l,[) = 1 throughout the experiment. For (Ao, py), we consider four scenarios: (i) (Ao, pg) = (0.2,0.2), (ii)
(Mo, pg) = (0.2,—-0.2), (iii) (Ao, pg) = (—0.2,0.2) and (iv) (Mo, py) = (—0.2,—0.2). The tolerance level of
the inner loop is 0.0001 (evaluated by ||| )-® We compare performance of four estimators, (i) the QMLE
Ominr (ii) the bias corrected QMLE 9;17,1:“ (iii) QMLE as if 6 = 0 (denoted by @fnl,nT) and (iv) the bias
corrected QMLE as if § = 0 (denoted by 955,7%) That is, 9il,nT and 95{27% are the QMLEs based on Lee

and Yu’s (2010). In order to evaluate performance of estimators, we consider four criteria: (i) empirical

bias, (ii) standard deviation (SD), (iii) empirical root mean square error (RMSE) and (iv) 95% coverage

39 As a simpler alternative, we can consider a two-step estimation instead of the joint estimation. In the first step, the nuisance
parameters are estimated and generated regressors from the first step are used in the second step to estimate the structural
parameters 6p. However, it sometimes might yield a bad statistical inference without taking into account the asymptotic
influence of the first step estimate through the generated regressors. See, e.g., Pagan (1984) and Murphy and Topel (1985). For

the empirical analyses, we also take the joint estimation.
49This level is also applied to our empirical analysis.
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probability (CP).*! The number of sample repetitions I is 400. The obtained MC results reported in Table

1 with § = 0.95 are summarized in Subsections 5.1 and 5.2.

5.1 The overall results

(i) The empirical biases of éml,nT and 97Cnl,nT tend to decrease when n and 7" are large. In particular, we have

3 -y -y ~2 ~ 27 -y 2 A A ~2 ~ 27
biases for YminT (anz,nT)7 OminT (UminT% Y1,minT (ﬁ,mz,nT% P1,ml,nT (p(i,ml,nT) and OV,1,ml,nT (O-V,Cl,ml,nT)7

which are reduced substantially as sample sizes become larger. While the empirical biases diminish when n
and T increase, contribution of large T" for reducing biases is relatively larger compared to that of large n.
(i) @fnl’nT performs better with smaller empirical biases and RMSE compared to those of émmT. The

biases observed in Y, 7 Pmints 6-72nl,nT7 Y1minTs Plminr and (}%/,Lml,nT can be corrected by the bias

correction procedure.

(iii) In the case of 9ml,nT, the coverage probabilities increase for all cases and approach to 0.95. The

coverage probabilities of 9ml,nT also increase and are close to 0.95 when we increase n and T'. Overall, the

results (i), (ii) and (iii) also hold for § = 0.5.42
Sy

m

T and 0

.S .
(iv) For 0, ,,7 and ¢
S

mil,n

;nT, they do not have a good pattern of performance. The RMSEs and the coverage

Sw

mlcynT even tend to increase after the bias correction. Also, this tendency does

probabilities of 8
5 55, .
not disappear for large n and 7. For all cases, 0, ,p and GminT do not seem to work well due to crucial

misspecification errors.

5.2 The results for specific parameters

Ag) In terms of empirical biases and coverage probabilities, A works relatively better than Xml T -
p ge P ml,nT y ,

c

For most cases, downward biases are observed. When pg < 0, it seems that /A\mlynT and ;\ml7nT have relatively

low coverage probabilities.

S, . . . . . e
Based on )\mlcmT when (n,T) = (49, 10), the signs of misspecification biases are positive if p, > 0, but

1 The 95% coverage probability is defined by

o oo [0, - 77 [owmesa, [, + 7 i),

for ! =1,---,4+ 5K, I is the total number of sample repetitions,, #r {-} denotes the number of counts of coverage, where,

6 is an estimate of @ and 25019902501 denotes a consistent estimate of 25019902501. We employ [Z; Q%] for

ezém,l,nT
16 -1
ZGO ng 290 .

42Those results are reported in the supplementary file.
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are negative if py < 0. From these results, the sign of p, determines the sign of the misspecification bias of

3>

mlC,nT while the sign of A\¢g would not be so.
(7o) Under small T, 4,,,; ,7 has significant downward biases for all cases. When T increases, the absolute
values of biases decrease. This result is consistent with those of Hahn and Kuersteiner (2002) for dynamic

panels (with neither spatial nor intertemporal effects). The bias corrected 43, .7 reduces the bias.

Focusing on 'Ayfl’lch when (n,7) = (49,10), we observe misspecification biases in estimating -y, are

negative and their degree of bias might be affected by values of Ag and py.

(pg) For py, the magnitude of biases is smaller than that of 7. For all cases, we observe upward biases
in P e I Ao > 0 and py < 0, substantial upward biases in p,,; ,p are observed. On the other hand, we
detect relatively small upward biases in p,,,; 7 if Ao < 0 and py > 0. By introducing the bias correction to
Pminr OF increasing n or T', the amount of bias decreases and coverage probabilities become better.

Consider the misspecification bias by focusing on ,?)fl’inT. Based on /A)izlch when (n,T) = (49,10),
misspecification biases turn to be upward if p, < 0, but are downward if p, > 0. It seems that the sign of

misspecification bias takes the opposite sign of py but can be irrelevant to signs of Ag.

~ »C . . 1oL
(617170) Performances of (1 j ,; npr and By 1 ), are reasonable in biases and coverage probabilities. For
all cases, upward biases in 31 1 ,,; ,r are detected but they diminish after correcting biases or increasing n

orT.

.S,
To analyze the misspecification bias, consider 51,1C,ml,nT when (n,T') = (49,10). We observe downward

biases and those biases increase when § increases in absolute values.

(BZI,O) Like the case of ;1 , we detect upward biases in B2,1,ml,nT but they decrease and coverage

probabilities become better after correcting the biases or increasing n or 7.

. . . ~S, .
To study misspecification errors, focus on 62,1C,ml,nT with (n,T") = (49,10). When both Ao and py > 0,
. . . . .S, . . .
there are upward misspecification biases in 527f,ml,nT. For other cases, however, downward misspecification

. . aSe
biases in 97, are observed.

2

(02’0) When n and T' are small, biases of ¢, ,,

r are downward and the bias correction is needed.

~2,S,c

~2,8 .
For all cases of e and O T there are downward biases.

(7170) Properties of 4y ,,; 7 of X processes are very similar to %,,; ,p. That is, large downward biases in
Y1,mi,nT are observed but the bias can be reduced and the coverage probability can become more adequate

from the bias correction.
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(Pl,o) In case of py g, P1 iy and pf , ,r Perform well with small biases and adequate coverage proba-

bilities even for small samples.

. . 2 . . .
(0%4170) Lastly, consider 0%/717ml7nT and 0‘,’::17ml7nT. Similar to 0270, we detect a substantial downward bias
for small T" = 10 cases. By introducing the bias correction or increasing sample size T', biases are reduced

and coverage probabilities are improved.

5.3 Identification of ¢ and effects of misspecified § on estimation

In nonlinear structural econometric analyses, identifying the true time-discounting factor (dg) is a challenging

43 Hence, we conduct an additional

issue since the statistical objective function is very flat around dg.
experiment on identifying dg the true time-discounting factor. To identify the true §y, we suggest using
the log-likelihood measures such as the sample log-likelihood function, Akaike information criterion (AIC),
and Bayesian information criterion (BIC). Employing those likelihood measures can be justified by the
information inequality in likelihood theory. Via Figure 1, we report the sample likelihood functions across
various ¢’s and the misspecification errors of estimating Ao, 7y, and p, in terms of the RMSE for the two

representative cases: (i) do = 0 and (ii) dp = 0.95 with a large finite sample and rich exogenous variables.

Additional results and discussions can be found in the supplementary file.

Throughout all cases, three observations can be summarized. First, having sufficiently large observations
is needed to identify the true dp. If we do not have sufficient observations, we may not distinguish the
true model via the likelihood measures. Second, the number of significant exogenous variables also affects
identifying dp. Under same circumstance, including additional exogenous variables means a (relatively)
high signal-to-noise ratio. If a portion of the explainable part is large, we can distinguish the myopic and
forward-looking models by the likelihood measures and estimation results are less affected by misspecified
6’s. Third, it is easier to identify Jg if the true model is a myopic one. It seems that the myopic model’s

complexity is much simpler, so less information might be required to identify g, which is zero.

5.4 Performance comparison: QML and NL2S methods

In this subsection, we compare estimation performance of the QML and NL2S estimators. For this experi-
ment, we set (TL,T) = (81,30), (5 = 0957 )\0 = 02, ’YO = 04, po = 0, 51’170 = 6172’0 = 04, 5271’0 = 52’270 = 07

and other circumstances are the same as in the main simulation. This design means no spatial time lag

*Komarova et al. (2017) discuss this issue in a framework of dynamic discrete choice models.
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as well as no Durbin regressor for simplicity. As IVs, we employ [Y},:—1, X,] and its transformations by
[In, W, W W/ W, Wﬁ] Under this circumstance, Wy, [Y}, -1, Xnt| can play an important role in identify-
ing 0.

For each estimation method and parameter value, we report empirical bias, standard deviation, and
RMSE as bar graphs (Figure 2).** Except for py, two methods show the same signs of empirical biases
(negative for Ao and -y, and positive for 3, ; ;). The NL2SE tends to yield smaller magnitude of empirical
biases than that of the QMLE (except for 7,). In terms of standard deviation and RMSE, however, the
NL2SE is worse than the QMLE. This implies the NL2SE is not efficient, so we may need to include more
IVs or consider quadratic moment conditions to improve efficiency. If we include many moment conditions,
however, it leads to additional biases (Lee and Yu (2014)). Compared to the main structural parameters

Aos Vo, and py, there is the relatively small gap in efficiency in estimating f; 1 o-

In the aspect of computation costs, it seems using the NL2S method does not reduce computation time.
In the inner loop, solutions of algebraic matrix Riccati equation Q7 (0) and L} (f) are obtained for given 6,
50 Ent (A)’s are calculated. Note that this procedure is required for both estimation methods. In the outer
loop, however, parameter searching on O is conducted by optimizing different statistical objective functions.
We expect reduced computation time in the outer loop by avoiding calculating In |R,, (8)| if we use the NL2S
method. Hence, the main computation costs might be originated from the inner loop. If we have very
large n, calculating In |R, (#)| can be also demanding. For this situation, using approximation methods for

In|R, (#)| will be helpful.*>

6 Application

In this section, we consider an application of our model. Since our model is based on strategic interactions
stemming from fixed locations, we consider analyzing spillover effects of local governments’ welfare spending.
Two sources of strategic interactions can be considered in making local policies. First, welfare recipients can
move in from or out to nearby cities to enjoy more beneficial policies. Second, the "yardstick competition"
is considered. It means that a decision-maker of a local government has an incentive to make an efficient
fiscal decision by comparing its decision with those of neighboring local governments. Since there exists

"vote" to evaluate the performance of a local government by residents, this type of competitions arises.

*We do not report results for B1 2,0, which are similar to those of 3, ; o
45In the supplement file, we introduce an approximation method based on the Taylor expansion.
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To econometrically investigate these strategic interactions, SAR and/or SDPD models describe optimal
reaction functions of local governments when they play a simultaneous move game at each period. With
payoff specification (4), conventional SDPD models present the vector of myopic best response functions

while the intertemporal spatial dynamic model shows the forward-looking best responses.

In this paper, we consider public safety spending competitions among counties in North Carolina. Both
myopic and forward-looking policy reaction functions are considered.*® In the case of the public safety
spending competition, a decision maker shall consider specific policy externalities. Those policy externalities
arise since criminals can commit crimes with moving to neighboring cities and they are punished in every
city. On one hand, a local government has an incentive to decrease its safety spending to enjoy "free-
riding" effects when its neighbor spends more on public safety (substitution effect). On the other hand,
a local government can increase its effort (public safety spending) to reduce overall criminal activities
corresponding to a substantial safety spending in a neighboring city (similar to income effect in consumer
theory). Yang and Lee (2017) consider a criminal’s payoff function describing an incentive to commit a
crime. Under certain conditions of payoff, they show the substitution effect will dominate. In both complete
and incomplete information settings, they establish a SAR equation as a policy reaction function and find
significant estimated substitution effects in cities’ public safety spending. However, their framework is based

on a static game, so a cross-sectional data set is employed.

We revisit this issue with a panel data set and two kinds of econometric specifications: (i) conventional
SDPD model, and (ii) our intertemporal SAR model. From the North Carolina Department of State Trea-
surer’s website, we obtain the government finance data. The data on counties’ demographic and economic
characteristics are from the United States Census Bureau. We have samples of 100 counties in North Car-
olina from 2005 to 2016 (total 1,200 observations). We construct a panel data set, so it might capture the
dynamics of local governments’ decision-making and their demographic/economic characteristics.*” Table
2 summarizes the sample statistics. All dollar amounts are real values adjusted by the GDP deflator with
the base year 2009. We observe that counties have distinct characteristics in financial status as well as eco-

nomic/demographic characteristics. There are substantial differences among county governments’ revenues,

46Reasons for considering our forward-looking model are that (i) a policymaker can be assumed to be benevolent (for the

regional economic growth) and (ii) he/she has an incentive to make a forward-looking decision to keep his/her political reputation.
4TFor some demographic and economic variables (Median ages and Median household income), there are some missing ob-

servations from 2005 to 2008 (164 observations among 1,200 observations). To get a balanced panel data set, we conduct the

extrapolation scheme.
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amounts of public safety spending, and proportion of expenditures on public safety. The maximal public
safety spending is 237.365 million dollars, and the minimal one is zero. The number of observations taking
zero is 31 among a total of 1,200 observations (2.58%).%® In the proportion of expenditures on public safety,
the average is 19.3%, and the standard deviation is 0.06%. The largest portion is 44.8% while the smallest
one is 0%. County governments in North Carolina also differ in demographic/economic status. The smallest
population is 4,127 in 2016 (Tyrrell county) while two big counties are: Mecklenburg county (1,035,605 in
2016) and Wake county (1,007,631 in 2016). The population density is calculated by %, where

the minimum and maximum areas are respectively 446.701 km? and 2457.924 km?. The average median

age of counties is 40.08, and the median household income is 41,410 dollars.

For construction of a network W, we employ a concept of "neighbors" such that w;; = # where

1 Wik
w;; = 1 if v and j are "neighbors"; w;; = 0 otherwise. To define "neighbors", geographic distances among
counties are considered. The kilometer-base geographic distance between two counties 7 and j (denoted by

d;j) is evaluated by the Haversine formula:

d;; = 2rg arcsin (sin2 (W) + cos (Saj) cos (¢;) sin” (77))

where rp = 6356.752 km denotes the Earth radius, ¢; and ¢; are latitudes, and 7; and 7; are longitudes in
radians.*? If d;j < d. where d. is a specified cutoff value, ¢ and j are "neighbors". We consider four sets of
model pairs (myopic model v.s forward-looking model) by choosing four different cutoff values, d. = 50, 65,
80, and 95. On average, a county has 4.34 neighbors if d. = 50; 7.34 neighbors if d. = 65; 10.54 neighbors
if d. = 80; and 14.76 neighbors if d. = 95.

This application studies the main structural parameters. Ao, 7q, and py under two different assumptions
for agents. i.e., myopic v.s forward-looking agents. Instead of directly estimating the time-discounting factor
J, we consider and compare two values of §: (i) 6 = 0 (myopic agents) and (ii) 6 = 0.9704 (forward-looking
agents). The value 6 = 0.9704 is set by ﬁ where 7, = 0.0305 is the average annual 10-year Treasury

Constant Maturity Rate from 2005 to 2016.°° To achieve a stable process of a decision variable, we consider

*8Because the zero proportion is small, so we do not build a Tobit model for this application.
" That is, county 4’s location is characterized by a pair (g, 7:).
0In macroeconomic literature, d is calibrated with targeting to the first moment of capital to output ratio (about 3) or is set

to be a reciprocal of the gross long-run (risk-free) interest rate. They usually take a value from 0.95 to 0.99 if an annual data set
is considered. We select the latter approach, which implies ¢ (1 +7%,) = 1. In a conventional intertemporal consumption-saving
model, § (1 +7,) = 1 means completely smoothed consumption. For the detailed discussion, refer to Chapter 1.3 in Ljungqvist

and Sargent (2012).
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counties’ public safety spending per capita as a dependent variable. Since a local government’s public safety
spending is based on its budget, the annual revenue (per capita) of a county is considered as an explanatory
variable. Since the population size and residents’ wealth level might affect the scale of criminal activities,
a decision of a local government reflects those features. To control them, the population density and the
median household income are included in a set of explanatory variables. We also include the median age
of residents of a county. Lastly, Durbin regressors (W,,X,,;) of all explanatory variables are also considered
so that they describe the externalities of explanatory variables affecting decisions. For estimation of the

structural and nuisance parameters, we consider the joint estimation of the equations (23) and (24).%!

The estimation results are summarized in Tables 3.A to 3.D: Tables 3.A, B, C, and D are respectively for
various neighboring systems with d. = 50, 65, 80, and 95. For both § = 0 and 0.9704, and all cutoff values,
county government’s public safety spending (per capita) is persistent itself, the total revenue is significantly
positive, but the neighboring total revenue is significantly negative. The current competition parameter Ag
is negative for d. = 50 and 65 while it is positive for d. = 80 and 95. However, those are not significant. For
the learning and/or diffusion parameter p,, the sign is positive for all cases, but it is significant only for the
forward-looking agent model (except d. = 95) at the 10% significance level. Thus, for the forward-looking
agent model, this result indicates that the learning and diffusion effects diminish when d. characterizing
"neighbors" becomes 95 kilometers. The population density, median age, median household income and
their Durbin regressors do not have significant effects. To evaluate the model’s performance, we consider
three likelihood measures: sample conditional log-likelihood values®?, values of Akaike information criterion
(AIC) and Bayesian information criterion (BIC). In choosing a spatial weight matrix, Chapter 2 in Lee
(2008) suggests using the goodness-of-fit measures (e.g., adjusted R? or log-likelihood). Via Section 5, we
provide evidence for using likelihood measures in selecting 6. Based on those likelihood measures, hence,
the forward-looking agent model with cutoff value d. = 80 is the best one among the 8 model specifications.
For each cutoff value d., the forward-looking agent model is more favorable than the myopic model except

d. = 95. For both myopic and forward-looking models, d. = 80 is selected in general as preferred.”

Here we provide economic interpretations based on the forward-looking agent model with d. = 80. We

can recover the cost function: ¢ (i, yi—1) = 0.2541 (yi — yi’t_l)z + 0.24593/%. The marginal direct effect of

S Derivation and statistical properties (including asymptotic properties) of the joint QML method can be found in the

supplement file.
521t means the log-likelihood function conditional on exogenous variables.
3 However, AIC selects d. = 95 in case of the myopic model.
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increasing previous own public safety spending (per capita) by one thousand dollars on the current one is
0.508 thousand dollars. The marginal direct effect of increasing previous neighbors’ public safety spending
(per capita) by one thousand dollars is p, Z?Zl w;j = py = 0.1726 thousand dollars.>®* Consider the direct
marginal effects of own and neighbor’s revenues on the public safety spending. When the current revenue
(per capita) of a county increases by one thousand dollars, it induces an increment of 0.124 thousand dollars
directly on its public safety spending (per capita). On the other hand, the direct effect of neighbors’ revenues
(per capita) by increasing one thousand dollars will decrease the public safety spending (per capita) by 0.067

thousand dollars. It provides evidence of the negative externalities of revenues on the public safety spending.
Since our intertemporal SAR equation describes an equilibrium system, the cumulative marginal effects

of an increase in the total revenue can be evaluated. The formula of the cumulative marginal effects from

j’s kt'-exogenous characteristic on i’s decision is

Dyt _
oz Z o= (R (In + 0D 1 Ak ) (Brkoln + 527k70Wn)]ij (25)
] K
where Dy, = > 72 si-1 Dy AZ‘# for each k = 1,--- , K. Correspondingly, the cumulative own marginal ef-

fects are [R;, ' (I, + 6Dy kAgn) (B10ln + BQ,k,OWn)]n" On the other hand, the direct neighboring marginal
effect is B3, ; gwi; while the direct own marginal effect is 3, ; o. Equation (25) says the cumulative marginal
effects differ across spatial units and heterogeneity of these comes from the network W,. To investigate
the cumulative effect, we select two specific counties based on the number of neighbors. Based on d. = 80,
Iredell county has the largest number of neighbors (17 neighbors) while Dare county has the smallest number

of neighbors (3 neighbors). The figure below describes neighbors of the two counties.
[Figure 3 here]

Table 4 shows direct own/neighboring effects and cumulative own/neighboring effects for the two counties.
First, magnitudes of neighboring effects (both direct and cumulative) are bigger for the isolated county.
Second, the negative direct neighboring effects are smaller than the negative neighboring cumulative effects.
For Dare county, that negative effect is weakened by 29.28% while 23.07% of the effect is alleviated for
Iredell county in the equilibrium. Third, the positive direct effects are also weakened in the equilibrium. For
Dare county, the positive own effect is alleviated by 15.66% and 15.58% of the positive effect is weakened

for Iredell county. These results might be affected by a structure of W,, and structural parameters 6.

Po
Number of #’s neighbors *

%5 Additional comments for this issues can be found in the supplement file.

54 . . . .. . .
*"For specific j’s effect on ¢’s decision, it will be pyw;; =
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A notable advantage of using dynamic models is doing impulse response analyses. The effect of changing
§’s t*-period k*"-exogenous characteristic Tjep ond’s (14 h)*-period economic activity Yigrn (R=1,2,--+)

is characterized by the impulse response function:

OB (Yesn)l; _ [N~ gheg et g
— o > AFIR (I + 6Dy Ag) (Bigodn + BogoWn) AL, | - (26)
Jt.k g=0 i
. . . OE:(Yn,e4n)], . .
Using formula (26), we plot the impulse response functions of own effects B r— and neighboring
OB (Yursn)],

effects (7 is a neighbor of i) for the two counties.

850]',5’]@

[Figure 4 here]

First, observe the impulse response functions of own effects. Note that Iredell county’s own cumulative effect
(impulse response function at h = 0) is slightly larger than that of Dare county (see Table 4). However,
there is a crossover at h = 4. Since two impulse responses are so close in this case, we only plot the
impulse response functions of the two counties between h = 4 and 5 to show the intersecting point. It
means Dare county’s own effects will be larger than that of Iredell county after h = 4. Second, we capture
the overshooting effects for both counties. The negative neighboring effects are alleviated by h = 2. After
h = 3, the neighboring effects become positive and they are diminishing when h increases. In case of Dare
county, that overshooting effect is more distinct relative to that of Iredell county. It seems that the negative
neighboring effects diminish over time combined with other positive effects: self-reinforcing effects, positive
diffusion effects, and positive own revenue effects. Since we consider a row-normalized W,,, nonzero elements
in the row of W,, for Dare county are much larger than those of Iredell county. This fact may be a primary

reason for distinct overshooting effects in case of Dare county.

Last, we want to deliver policy implications by conducting welfare analyses. We consider a situation
that the North Carolina state government gives some amount of subsidy (per capita) to a county in 2016.
So, the initial period is set to be 2016 in this analysis. Let A, denote the amount of subsidy and k& = 1 for

the index of a county’s total revenue. Then, we generate a new regressor X, 1 (denoted by XnT’l)

!
XnTJ:[xl,TJ SRR 2% AT SVA VI mn,T,1]

describing a changed economic environment, where j denotes a subsidy recipient. Note that the realized pair

{Y,r, Xpr1} and the generated one {YnT, XnT,1} yield distinct dynamics, so they have different expected
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lifetime values as well as social welfare. Using the bias corrected QMLE (éfnl,nT), we can compute a change

of welfare
Ay = WF ({YHT,XnT,l} ;éfmT) —WF <{YnT, Xz} ;éﬁuw) (27)

where WF ({Y,1, Xp71} 5 0) stands for the welfare measure defined by the summation of counties’ (expected)
lifetime payoffs with the initial value {Y,7, X, 71} and parameter 6. W ({YHT, XnT’l} ;9fnlmT> captures

C

social welfare when a county receives some subsidy while wr ({YnT, Xor 1} ;9 7 ) evaluates social wel-

ml,n

. . . . . . 5 AC
fare in a given realized economic environment. The difference between W¥ ({YnT,XnT,l} ;Hml,nT) and

WF ({YnT, Xnr1}; 9:nl’nT> will capture a welfare change corresponding to the change of policy.”®

For convenience of analysis, we only select four specific counties: (Case 1) Mecklenburg county (richest
and the most populated county), (Case 2) Tyrrell county (poorest and the least populated county), (Case
3) Iredell county (has the largest number of neighbors (17 neighbors)), and (Case 4) Dare county (has the
smallest number of neighbors (3 neighbors)). The amount of subsidy (per capita) from the state government
is set to be one thousand dollars (i.e., A, = $1,000). Table 5 reports Ay’s for Cases 1 - 4. First, we
observe that the number of neighbors affects social welfare more than population and/or level of revenues
in our framework. When the state government increases Mecklenburg county’s revenue (per capita) by
$1,000, social welfare decreases by 0.0013 welfare measure. This negative welfare effect might come from
the negative externalities of revenues on the public safety spending. Welfare increases for each of the other
three cases. By comparing Cases 3 and 4, giving subsidy to the county whose number of neighbors is small

increases social welfare more in the sense of public safety spending.

7 Conclusion

In this paper, we consider the specification and estimation of a spatial intertemporal competition model in
a dynamic (differential) game setting. Agents are linked in a given spatial network. To characterize agent’s
payoff function, a linear-quadratic one is considered. By the MPE with a unique NE equation, we build an
econometric model and consider model identification and estimation. In particular, we investigate the QML
estimator. We obtain consistency and asymptotic normality of the QML estimator under some regularity
conditions. Due to the presence of many nuisance parameters, bias correction of the QML estimator is

needed. To fortify those results and investigate finite sample performance of the estimator, we conduct

56The detailed derivation and specification can be found in the supplement file.
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Monte Carlo simulations. From the simulations, the QML estimator and its bias-correction reveal reliable
performance. In particular, for small T, the bias corrected QML estimator is recommended. For a mis-
specified conventional SDPD model, which ignores the intertemporal decision, significant empirical biases
of estimates and low coverage probabilities are detected. Using the established model, we analyze strategic
spillover effects of counties’ public safety spending in North Carolina. We estimate structural parameters and
compare the estimation results with those from the conventional SDPD model. First, our intertemporal SAR
specification turns out to be more statistically favorable than the corresponding traditional SDPD model.
Second, we find some evidence of persistency of public safety spending, positive learning and/or diffusion
effects from previous neighbors’ decisions, positive effects of own total revenue, and negative externalities
from neighboring total revenues. An overshooting effect is captured for the case of negative neighboring
revenue effect. In the welfare analysis, we observe giving subsidy to counties whose number of neighbors is

small can be effective in the sense of public safety spending.

Appendix A: Derivation of the MPE equation

In this appendix, we derive the NE equation by solving equation (7). By the principle of optimality, a
solution from the intertemporal choice problem (6) is equivalent to that of the functional equation (7) if the
latter exists. For this, we need to verify the existence and uniqueness of V; (-) satisfying both (6) and (7).
The unknown V; (+) will be implied by known w; (-). All mathematical arguments in this part are based on
Stokey et al. (1989) and Fuente (2000). Here we present some basic discussions and essential mathematical

results.?”

Step 1 (Formation of Vi(j ) (+)’s): We choose an arbitrary agent i for our analysis. Consider the period
t. For any given (Yy, t—1,m,,) and Y, ,(Yy, t—1,7M,,), define the operator 7 which maps the 4" approximation
to the (j + 1) approximation of V; (-) by

‘/i(j+1) (Yn,tfla nnt) =T (‘/z(])> (Ymt*l’ T]nt)

*(j4+1
Us (yit,Y,gftJr )(Yn,t—lannt)> Yn,t—bnit)
= max

Yit +5Et (V;(J) (yit» sz(,]t-i_l) (Yn,tflv nnt)a nn,t+1)>

for j =0,1,2,---. From Vi(j) (1)’s, we can also generate Y:t(j)(Ym_l,nm)’s (j = 1,2,---). Using 7, we
generate Vi(j )(-)’s (from Vi(o) = 0) and corresponding (approximated) MPE equations.

5TMore details can be found in the supplementary document.
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Step 2 (Continuity of 7): Note that the domain of 7 contains a set of V; (-)’s (i.e., Vi(‘j) (+)’s). Consider
a set of continuous and bounded functions C ((Xy)n X (Xn)n) where all possible Y, ;1 € (Xy)n C R™ and
Npt € (X,?)n C R™. Note that C ((Xy)n X (Xn)n) is a well-known Banach space. Under Assumption 2.1,
{V;(j) ()} ccC ((Xy)n X (Xn)n) for any continuous and bounded function V;(O) (). Then, we can apply the
theorem 0; maximum, which yields (i) existence of optimal decisions and (ii) continuity of TVZ-U ) (Yot—1,Mp:)
at (Ynt—1,Mp)- Since wu; (+) is strictly concave with strictly decreasing marginals®® with respect to large i,

we can guarantee for unique NE decisions.?”

Step 3 (Contraction mapping theorem): Since 7 is the maximum operator, its arguments Vl-(j ) (-)’s
are continuous and bounded functions in (Y, +-1,m,,) and § € (0,1), 7 satisfies the Blackwell’s (1965)
sufficient conditions to be a contraction mapping. By the contraction mapping theorem, there exists a unique
fixed point V; (+) in C ((Xy)n X (Xn)") for each i = 1,--- ,n and subsequently a unique NE Y%, (Y, t—1,1,,¢)-

Step 4 (Recovering V; (-) for each i and Y}, (Y, 1—1,m,,;)): From the initial iteration with X/i(o) =0, we
have Vi (Vaec1,mne) = Vi 1 QM Yoo Y, Ll G et where AS) = S0 (o1 + po W),
BY = 5.1 QW = L(AVTAL —q03), 1 = AVTBY, ¢ = 1BITBY and ol = 0 with T,
being a diagonal matrix with only a unit for its " diagonal element and zero elsewhere. By mathematical

induction, we generate the following matrix Riccati equations:

QU = a1y [Ii @f - Sn> * 5@“} AT + AL (ol + o) — T, (28)
. . ; 1 j !
Q=i+ — [<Q§J+1) n Qgﬁrl)/) 1, - (Qﬁf“) +Q§Z+1)') en} ;
!/
LY = G+ { {L- (;In - sn) + 6@5”} + [L- (;In - Sn) + 5625”} } B (29)

+AGT (L‘ + 5L§j)Hn> + (YoIn + poWn) TBYHY,
. . . /
L;(J+1) = [Lg]—i_l)/el, Ty Lq(‘bj+1)/€ni| )
Gz(jJrl) _ B7(1j+1)/ [L, <;In _ Sn> + 5QZ(J')] B,ngFl) + B1(1J'+1)’ (IZ- + 5L§j)1"[n> + 5H;G§j)ﬂn, (30)
. . . . . -1
and cl(-]H) =0 <c§]) +tr (GE”Qg)), where AYT = [R,(fﬂ)} (voIn + poWh) and
BYTY = [RYTY] - (n + o129, ) with RS = 5, - 501,

% Note that wu; (-) will eventually decrease in y;+. This property is important because our maximization problem is not

constrained.

S9Refer to Theorems 3.8 and 4.9 in Stokey et al. (1989).
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By taking j — oo, we obtain the asymptotic version of algebraic matrix Riccati equations for @, Ly,

G;’s and ¢, i.e., for each 1,

Vi (Yni—1,Mnt) = Yé,t—1QiYn,t71 + Y’r:,t—lL’innt + n;ztGinnt +¢

where Q; = lim;_, Qz(j), L; = limj_, Ll(-j), G; = limj_ Gl(j) and ¢; = limj_, cl(j). Then, the activity

outcomes NE equation will be
Y*t (Ynt 1, nnt) (AOW + 5@ ) (Ynt 1777nt) ( OI + pOW ) nt—1 + ( it 6L:LH”) Mnts

which implies that
Yo (Yot—1,Mne) = AnYnt—1 + BnMy,
where A, = R;' (voln + poWn) and B,, = R;;* (I,, + 0L:11,) with R, = S,, — §Q%.
From the above expressions, we can also have an alternative representation of @} in the subsequent
Proposition A.1, which has some similarity on the additional term due to future influence as in the two-period
case. First of all, we can have an alternative representation of BT(Lj), j=1,2,---. Note that B,(Ll) = SL

-1
Consider Bg) = [R,(f)] (In + 5LZ(1)Hn>. Using e;LZ(l) = e;Lgl) with Lg ) — A(l) 7;S; 1, we can define
-1
") = Diag (A) BV such that B = [RP| (I, + 6D, ). This has

(
~1
Y:t@) Ynio1,mm) = APY1+ [Rﬁf)] (nnt +oL;VE, (ﬂn,t+1)>

-1
— 4DV, + [Rg)] ( I+ wﬁnn) .
Consider iteratively B(J—H) {ROH)} (I + 0Ly’ U)1g n) for j =2,3,---. We can show that

n( J) — D(J 1) + 6D(J+1)H . _|_5j—1D(j"f‘1)Hj—1

TZ, n,j n

J+1)  pG+1)
. DY

n,

puth by the method of undetermined coefficients. Hence,

for some D » Dy

BY*D = (RG] - (10 +8DY VM, +62DYS T2 4+ 67 DY)
so that
Y:t(jﬂ) (Yoi—1,M0)
= AUy, [Rgg+1>]’1 (I +5L*U>Hn) Mo
= AYVY, g+ [Rﬁi“’] (0t + ODSTV By (141) + 2 DYT VB (M 2) + -+ 9 DITVE (m,,,05) )

. . -1 . . . .
= ATYr + [RID] (1 + 6D, + 62DYT 2 4t 5]D§{j”ngl) Tt
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The second equality holds due to the law of iterative expectations. For notational convenience, let

. . . Nk
@””‘—fW“”{F(éh—&J+ﬁQW]+P%EQ—SQ4JQW]}+Wdﬂ+%WJL

= AU+ {L- (=L + Ao (Wy + W/)] +6 (Q§j) + Q?”)} + (YoIn + poWa)' T
for j =1,2,---. And, 'Y = AT, [~ I, + Ao (W + W] + (voIn + poWa) Ti, so observe

¢ (Ci(l) [Rnl)}_l _|_A511)'L'>
= GAVT [~ Ly + Ao (Wo + W)] S, + € (voTn + paWa) TiS, + €AV,
= AT (<1 + 2oW S, t) + AV T+ €] (voln + poWa) TSy,
= AVTAW! ST + ¢ (voIn + poWa) TiS; !

= € (AVTAW, + (ol + W) S,V T:) S,

_ 2
62‘17(11),11'577, ! 6;[ 7(1,%
By equation (29),

LY = cYBY 4 AUVT, 4549/ LY VT,

n n 7

= CYBY) 4+ 540 cUY UL, 4+ AUVT, 4+ 549 AG-V'T,1L, 4 6240V AG-D/ LU~ 12

n n n n

— Ci(j)Bff) + A j)'C(j_l)Bﬁlj_l)Hn T 557240 G- 4B ) )2

n n n (3 n n

+ AT 4 AU AG=DITAL, 4o 4 677240 AU=17 AR)Y 7 =2

n

51 AGY AGD L AR LD
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Then, we have

) ) 1-1 . )
19 = P [RP] (£ +8DYM, +6*DYNE + -+ 571 DY)

—1
n,j— IHJ )

) ) ) -1 ) . )
+AGY I [R,gﬂ—ﬂ (mn +62DpY 2 + 53D7(Z{2_1)H731 -4 DU - 1) N

N -1
+A£1J)/A$7,J_1), .. A%3)IC’L(2) |:R512):| (5] 2Hj 2 + 5] lD(2)Hj 1)
+ AT 4+ AU AUV, 4+ 5j—2A$g'>’A§g—1>' A2

+6171AU )A(J .. (2) )

_ (c}” [R;' B ’L)

+6 (0}” [Rg')] 7 DY) 4 4GrelY [Rgg—w} Ty A@’Ag—l)m) I,

7

. N — . . . . . -1
+62 ( Cz(]) [Rg)} D(J)2 —I—A(])/C(] 1) |:R(J 1)} Dizj,l_l) +A$l])/A£L]_1),Ci(]_2) [R%J_Q)] )

+AY ATV AT,
. -1 Ny (i1 01l iy
+6j71 Cz(]) [R(J)] D;Jg  + A(J)ICZ-(J ) [ 7(1] )} ng—% 4. 1
. —1 . . n
AP AGY AP [RP) T DO + AP A AV TS,

As egL:L( D = et ) by applying the method of undetermined coefficients based on (31) and by taking e}, we

[t ]

have

DY) = ¢ (C}j) [R;J')] 4+ AU z)
;DU = ¢ (c§j> R 7 DY) 4 APy [ng—n] + AGY AG- 1>'I>

i ( 9 [r9) ' DY) 4 4Gl (RG] ' DU | 4G 4GV [Rgﬂ)]‘l )
; — ei g eee

+A AT AT,

and
o) [R(j)} 'pU)_ 4 A9yl [Ro—l)]‘lD(j,—l%...
7 n n,j— mn n,j—
j -1
4pi = A AT AP [RP] D

+ AP AT A T s

We observe {D(lg , D

n,

(2;, Sk } (where DS} = 0,,xn) characterize evolution of {ij;l)}k .
’ 7j

n)
Proposition A.1 A relationship between Q:L(j) and L:L(j) from ]_)1(1];1*1) is
*(7 j+1
Qn(]) = D’ELJI ) (70171 + IOOWn) —Yoln
forj=1,2,---
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Proof of Proposition A.1. Note that egQ;(j) =€ (QZ@ + Qz('j)/) and

(04 Q) = A B s do (VW] 4 (05D + QU)} a
+e, AD'T; (YoIn + poWa) + € (YoIn + poWa) TiAY) = 7o¢]
= ALY {L- [ I+ o (W, + W] +6 (Qﬁj‘l) + ng‘l)’) } AW
+e; AP eiel (YoIn + PoWn) + 7065 AY) — o€
= AP [+ 2 (Wa W)+ (QU )+ QUYL [RD] T (ol + W)

~1—1 .
+ei (YoIn + poW)' Z; [Rﬁi )] (YoIn + poWa) + €A eiel (voIn + poWa) — Yo

. . . 1 —1
(AT L 20 W+ W 6 (QF7Y + QU | RY]
+ (ol + poWa) T |[BY |+ AD'T,

_62’70[71

= 6; (szjjl) (70[n + poWhn) — ’YOIn)

for j =2,3,--, since €, (YoIn + poWn) €i =79 by e,Wpe; =w;; =0foralli=1,--- ., n. B

To have a stable system, a sufficient condition is A;j +b

result, we can check invertibility of R,(ij +1)

< 1 for each j. By the following mathematical

HOO

and the possibility of representing its inverse as a Neumann series.

Proposition A.2 (Stewart (1998)) Consider a linear operator I, — C,, satisfies lim;_,oo ‘ C || = 0 where

I|| denotes a well-defined operator norm. Then, I, — C,, is invertible and its inverse has a Neumann series

exTpansion:

(In - Cn)_l

S

J=0

Hence, for our model, the implied spatial time series process for Y,; to be stable in both space and time

dimensions, it suffices to assume that

Ao d (j+1)
W, + D, L+ poWo)|| < 1.
H 14+ 5,)/0 1+ (5")/0 n,l1 (’70 Po ) -
, -1
Then, [R,(IJ +1)] has the Neumann series expansion,
[ A] I S (! ’ (MW + 70D + 3p DY W, )
o) 1—}-(5"}/0 n 1+570 n 0~'n,1 0~n,1 n

j=1
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Appendix B: Statistical results

In this section, we list components of asymptotic biases of the QMLE, and provide briefly proofs of Theorems

4.1, 4.2, 4.4 and Corollary 4.3. The detailed proofs can be found in our supplementary file.

7.1 First order derivatives of the log-likelihood function

Note that K
Vot = An¥l s+ 0 B (I 0L KBy + By (Gl + Ent)
k=1
The components of 8lnLg$00
/
(=)
"}/O,[ + poW )Y ~ ~
alnLnT 0(90) a’Tlo Zt:l _RW)‘R ! nt ! + 5L:>\Hant’k60 Jngnt
o + (In + 0L3TL,) X ko + Groln :
++ ZH Ene (<R Tula = o2 otr (—RanRyY) |
!/
Yoln + PoWhn) Y, v 5
_ Yo 0
OIn Lyyre(00) _ U%Oztzl _RmR il Y( )1 + L5, 11, X, kB | Inént
oy “ nt 5L* ) nt,kﬁo + OftOZn y
+A ZH 5’ 1’R’ Tt — o2tr (—Rngl)]
!/
Yoln + poWh) Y, VAN . .
70 0
8lnLnTC(90) O'TIO Zz:l RTLPR ! il + W, Y(t)l + 5L HanthﬁO Jngm
dp ° n+ 5[’* ) nt,kﬁo + ayolp
+ % Zt 1[ llR, J, gnt 670t7" (_RnpRr_Ll)i|
Eanboratiol o Zt ¢ n+6L*Hn)ka} Jpbog for k=1, K,
dn Ly7..(6
: afg Gl = 203’0 Zt:l [5 Tnént — no¢ o}

7.2 Components of asymptotic biases of QMLESs

Here are the components of Ay 1, Az 1, an1(00), and ay, 2(6o):

Ai\nT = % L [(_Rn/\Rgl (70171 + pOWn> UnT,—l)/ JngnT + EAT(_RJI/R%A)JngnT} 5

UE,O n
Afly nT 02170 \/% |:((_R”’YRT;1 (70171 + pOWn) + In) UnT,—l), JngnT + gr/LT(_RgllR;’w)JngnT} ’

A= AT [((_RnpR—l (toTn + P W) + W) O, 1) T + Epp(~ R VR ) ],

3 ~
A11nkT = O x1, AlenT Let rdnnr,

A=/ [tr (—RMR; )—tr (Tn(~RusBy )], A3 0 = /L [t (~ R B ) — tr (Jn(— R B V)],
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Ag,nT = \/g [“" (_RNPREI) —tr (Jn(_RnpRﬁl))L Ag,nT = Ogx1, and Ag?nT = gﬁ?

Lir (Tn(—RaadAn) (X520 AR RyY) + Ltr (Jn(— R Ry 1))
Lir (Jn (=RnpAn + 1) (520 AM) RyY) + Ltr (Ju(—Ras Ry1))
an,1(00) = | 2t (Jo (= RupAn + W) (3520 A2) RyY) + Ltr (1 (=R, R |

0K><1

n—1_1
n 202,

and

€,0

an,2(90):<71LZ;L(_Rn)\Rn1)lm %l%(_Rn'ngl)lm %l;(_RnpRgl)lm O1x K %,12>

7.3 Sketches of Proofs (Consistency and asymptotic normality)

Sketch of proof of Theorem 4.1. Consistency can be shown in three steps.

In the first step, we shall show the uniform convergence of sample average of the log-likelihood function,
supge@ | 2= In Lyre (6) — Qur (9)} %, 0 as T — co. The main component of LIn Lype (0) — Qur (0) is
L ST [ E(0) Jnni (0) — (grlzt (0) JnEns (9))] Since (i) € is bounded in the compact parameter space
© and R, (01), R;;*, and L} (6;) are uniformly bounded in both row and column sum norms, uniformly in
01 € ©4, it follows that R, (01) R,,* — I, and L} — L} (61) are also uniformly bounded in row and column
sum norms uniformly in 0; € ©1. By Lemmas 8 and 15 in Yu et al. (2008),

L Zt L IEL(0) JnEn (0) — (ci’lt (0) JpEnt (9))] 2,0 uniformly in @ € ©. Since o2 is assumed to be
bounded away from zero,

L (0) - Qur () =~ LY (00.(0) Tuar 0) = B (€1 (0) Juar (0)) | 2> 0

nT ’ 202 nT — L "

€
uniformly in 6 € ©.

Secondly, we will show that @, (#) is uniformly equicontinuous in 6 € ©. Note that

T
5 2 F (E10(0) Juni 6)) = aura (64,5) + dura (61) + o(1)
t=1
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where

!/

T -1 (=) ~ -1
R, (01) R, I+ poWh) — (vIn +pWh)) Y, .24 + R, (01) R, 1,
anT,1 (917ﬂ> = —1 E FE ( (1) (70 Po ) (fYN g ~)) A o (1)
nl =1 +R, (61) R;lxntﬁo — Xt (01) 8

o | B @) R (roln+ poWa) = (VI + W) Yoy )y + G R (01) Byl

+Rp, (01) Ry Xoi g — Xt (01) 8
and gn72 (61) = %aaotr (R, VR], (1) JuRn (61) R, '). For the equicontinuity of Q7 (6), we verify (i) In o2
is uniformly continuous, (i) £ In|R,, (61)] is uniformly equicontinuous, and (iii) gn7,1 () and gnr,2 (61) are
uniformly equicontinuous. The basic idea of showing those properties is to verify that each component can
be represented by (01 — 02) - hyr (9) , where 01, 05 € O, 0 lies between 61 and 6, and h,r () are uniformly
bounded. Uniform boundedness of h,r () comes from Assumptions 4.3 - 4.5. By applying Assumption 4.7,

we achieve the desired result. B

Sketch of proof of Theorem 4.2. This proof relies on the Taylor expansion:

N ()
~ 1 62 In LnTc (enT) 1 dln LnTc (90)
T ‘9m n -0 == —— - ’ - A n - A n
\/F( tnT 0) ( nT 0000’ vnT a0 bt 2t

where 0,7 lies between 6y and @ml,nT. By Assumptions 4.2 (ii), 4.3 and 4.5,

1 0In Lype (Bnr) i )
<_nT 9007 — Sggu1 = ||0ur — 00| - Op (1) + O (\/W) |

Theorem 4.1 implies HénT — 0 ‘ = 0p (1). Under large T', ¥y, 7 is nonsingular in 6 around ¢y by Assumption
1 82 In LnT,c(énT)

4.8. These imply — 7 ———z7r——> is of Op (1) and invertible. Hence,
7 -1 (u)
A 1 8?°InL,r. (HnT) 1 8lnLnTc(90>
VT (Opinr —00) = | ——= ’ : ’ - A1y - Aoy
" ( LT O) ( nT 0600’ vnT 00 \ﬁl’/_j; ﬂ
—0,(1) =0,(1) =0(vF)+0(y/75)+0s(Jr) :0( 0

which means @ml,nT — 0o =0, (max (\/%, %, %)) Note that

1

. B 1
V nT (eanT — 00) + Eeol;nT . (Al,nT + AQJLT) + Op <maX (m, f’

>) (Arpr + Ao pr)

S|

(u)
I 11 1))\ _1 9L (%)
= <290’nT + 0, (max <ﬁ’ T W 50 .
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Since (i) ¥g, = limy o Xg, nr exists and is nonsingular by Assumption 4.8, (ii) Ay,7 = ﬁaml(ﬁo) +
O (\/%) + 0, (ﬁ) by Lemmas 2.1 and 2.2 in our supplement file, and (iii) Ag 7 = \/%amg(eo).

: : . oL (6 _ om L™ (o
The last task is to investigate \/:ﬁ 2 ’g‘g’“( 0). The stochastic components of \/i—T z ’Cl’,:g’c( o) take a

linear-quadratic form, \/% Zthl it Epeis where E (&, 4| Fnpio1) =0
Fn,t,i =0 (6117 s €nlyttt €Lt—1, "y Ent—1,€1¢, " " ae’it) ) (32)

and F, 00 = {9, 2}, where Q is the sample space. Let F, 10 = Fpnt—1,n. Since Fp i1 C Frpiand Fpi10 C
Fnt,0, we construct the martingale difference arrays, {(fnt’i, fn,m) t=1,---,nandt=1,--- ,T}. Then,

we can apply the martingale central limit theorem to \/% Zthl i1 &pei as Yu et al. (2008).%° In conse-

omr™ (o
quence, we obtain \/:ﬁ . gg’c( o) 4, N (0,9Q,) as T' — oo and have the desired results. W

Sketch of proof of Corollary 4.3. By Theorem 4.2,

(% /n 1 1T 4 In /T 1
nT <9ml7nT - 90) + ?zeo,nTanJ (90) + gZGo’nTan,g (00) + Op (max ( ﬁ, ﬁ’ ﬁ
d — _
%N (0,200,755 )
1

. A€ A -1 —
Since eml,nT = 9ml,nT - 7T {*Egjn:ran,l(e)] |9:éml,nT - % [729,711Ta”72(9)} |‘9:éml,nT’

VT (9;1,,@ - 90) 4 N (0, 25019902501)

if
n -1 -1 p
VT ([Z5hr201 O] lozp, y = Sir@na(8o)) 20 (33)
and
T — —
. <[Ee,iman,2(9)} lo—rinr ~ Eeol,nTana(@o)) = 0. (34)

Assumption 4.9, 75 — 0 and % — 0 (with Assumptions 4.3 and 4.5) imply (33) and (34). The detailed

arguments can be found in our supplementary file. W

Sketch of proof of Theorem 4.4. (i) First, note that & ,u = ¢ (Hmlm;p). By Theorem 4.1
with Zthl ay = 0, we observe ¢; (9ml7nT) —¢cio = % Zthl €t + Héml’”T — 6o ’ -0, (1) = %Zthl €t +
O, (max (\/%, %, %)) by Theorem 4.2. Under the rate g =o0(1), % ZtT:1 €;+ will be the dominant term.
Therefore, for each i, VT (é@ml(éml,nT) — ci,()) LA N(O,aio) if g — 0; and éi7ml(9ml7nT)’s are asymptoti-

cally independent from each other.

60 Also, refer to Kelejian and Prucha (2001).
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(ii) Using the same logic, the dominant term of \/n <5ét,ml(9ml,nT) — at0> is ﬁlgé’nt if g = o0(1). This

yields /1 (6, mi — aro) 4, N(0, 030) if g — 0; and the estimates ¢ ,;’s for t = 1,--- , T are asymptotically

independent with each other.

~C

(iii) Under Assumption 4.9, 75 — 0 and % — 0, ¢imi (0ml7nT> —Cip = %Zthl et + Op (ﬁ) and
@t}ml(é;l,n’]’) —ayo = L1l €+ O, (\/%) since H@fnlnT - HOH =0, (\/%) We can apply the same strategies
as Parts (i) and (ii). W
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Table 1 : Performance of 6,

I,nT and éncﬂ,nT When 52095

— 2 2
(n.T) = (49,10) A ! P B B, 0, 71 P Oy,
(1.p)=(02,02)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0205 -0.1470 0.0548 0.0397 0.0628 -0.2147 -0.1493 -0.0135 -0.1383
ml,nT SD 0.0665 0.0565 0.0786 0.0429 0.0813 0.0740 0.0442 0.0860 0.0612
RMSE 0.0695 0.1575 0.0957 0.0584 0.1027 0.2271 0.1557 0.0870 0.1512
CP 0.9300 0.2150 0.8550 0.8425 0.8800 0.1375 0.0600 0.9425 0.3050
éc Bias 0.0031 -0.0311 0.0002 0.0220 0.0263 -0.0452 -0.0258 -0.0044 -0.0361
ml,nT SD 0.0712 0.0650 0.0898 0.0428 0.0827 0.0864 0.0491 0.0948 0.0684
RMSE 0.0712 0.0720 0.0897 0.0481 0.0867 0.0974 0.0554 0.0948 0.0773
CP 0.9325 0.8400 0.9025 0.9175 0.9300 0.7850 0.8650 0.9075 0.8075
és Bias 0.0230 -0.1870 0.0205 0.0009 0.0325 -0.4338
ml,nT SD 0.0567 0.0424 0.0695 0.0374 0.0733 0.0395
RMSE 0.0612 0.1918 0.0724 0.0373 0.0801 0.4356
CP 0.9150 0.0025 0.9450 0.9425 09175 0.0000
éS,c Bias 0.0549 -0.0990 -0.0367 -0.0106 0.0121 -0.3692
ml,nT SD 0.0574 0.0462 0.0746 0.0368 0.0726 0.0441
RMSE 0.0794 0.1092 0.0831 0.0383 0.0735 0.3718
CP 0.8100 0.3150 0.8925 0.9400 0.9300 0.0000
(n,T)=(49,10) A Y P B, B, 0'5 71 P1 0\3,1
(2.p)=(02,-02)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0811 -0.1618 0.0990 0.0279 0.0406 -0.2442 -0.1496 -0.0158 -0.1383
ml,nT SD 0.0724 0.0567 0.0870 0.0419 0.0798 0.0736 0.0442 0.0859 0.0612
RMSE 0.1087 0.1714 0.1317 0.0503 0.0895 0.2550 0.1560 0.0873 0.1512
CP 0.7800 0.1625 0.7675 0.8900 0.9125 0.0725 0.0600 0.9375 0.3050
Ac Bias -0.0198 -0.0373 0.0243 0.0190 0.0183 -0.0622 -0.0261 -0.0064 -0.0362
ml,nT SD 0.0801 0.0665 0.1000 0.0420 0.0822 0.0877 0.0491 0.0949 0.0684
RMSE 0.0824 0.0762 0.1028 0.0460 0.0841 0.1074 0.0556 0.0950 0.0773
CP 0.8900 0.8175 0.8800 0.9150 0.9250 0.7100 0.8625 0.9075 0.8075
AS Bias -0.1125 -0.1994 0.1161 -0.0158 0.0010 -0.4569
ml,nT SD 0.0601 0.0425 0.0731 0.0368 0.0715 0.0379
RMSE 0.1275 0.2039 0.1372 0.0400 0.0714 0.4585
CP 0.5100 0.0000 0.6075 0.9250 0.9425 0.0000
éS,c Bias -0.0809 -0.1063 0.0588 -0.0268 -0.0178 -0.3935
ml,nT SD 0.0612 0.0463 0.0789 0.0363 0.0710 0.0423
RMSE 0.1014 0.1159 0.0983 0.0450 0.0731 0.3958
CP 0.6900 0.2400 0.8450 0.8800 0.9350 0.0000
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(n,T)=(49,10) A Y P B, B, 0'5 V1 P1 0\3,1
(ﬂ, p) = (—0.2, 0.2)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0154 -0.1503 0.0112 0.0257 0.0300 -0.2346 -0.1497 -0.0164 -0.1383
ml.nT SD 0.0722 0.0560 0.0837 0.0417 0.0794 0.0731 0.0443 0.0860 0.0612
RMSE 0.0737 0.1604 0.0843 0.0489 0.0848 0.2457 0.1561 0.0875 0.1512
CP 0.9375 0.1875 0.9650 0.9000 0.9200 0.1000 0.0600 0.9375 0.3050
Ac Bias -0.0042 -0.0334 -0.0013 0.0174 0.0141 -0.0568 -0.0262 -0.0070 -0.0362
ml,nT SD 0.0781 0.0645 0.0952 0.0414 0.0806 0.0863 0.0492 0.0950 0.0684
RMSE 0.0781 0.0725 0.0951 0.0448 0.0817 0.1032 0.0556 0.0951 0.0773
CP 0.9150 0.8250 0.9075 0.9225 0.9300 0.7375 0.8600 0.9050 0.8050
és Bias 0.0486 -0.1912 -0.0236 -0.0220 -0.0165 -0.4582
ml,nT SD 0.0584 0.0415 0.0701 0.0363 0.0702 0.0379
RMSE 0.0760 0.1956 0.0738 0.0424 0.0721 0.4597
CP 0.8700 0.0025 0.9350 0.9000 0.9300 0.0000
éS,c Bias 0.0749 -0.1042 -0.0438 -0.0315 -0.0321 -0.3927
ml,nT SD 0.0599 0.0449 0.0758 0.0359 0.0697 0.0424
RMSE 0.0959 0.1134 0.0874 0.0477 0.0767 0.3950
CP 0.7175 0.2300 0.8675 0.8550 0.9250 0.0000
(n,T)=(49,10) A Y P B, B, Uj 71 P1 6\3,1
(l, p) = (—0.2, —0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0728 -0.1577 0.0708 0.0287 0.0283 -0.2316 -0.1497 -0.0165 -0.1383
ml,nT SD 0.0668 0.0551 0.0799 0.0413 0.0793 0.0734 0.0443 0.0860 0.0612
RMSE 0.0988 0.1670 0.1066 0.0503 0.0841 0.2429 0.1561 0.0875 0.1512
CP 0.7825 0.1375 0.8550 0.8800 0.9175 0.0950 0.0600 0.9375 0.3050
éc Bias -0.0245 -0.0385 0.0310 0.0189 0.0118 -0.0556 -0.0261 -0.0071 -0.0362
ml,nT SD 0.0730 0.0631 0.0914 0.0409 0.0794 0.0862 0.0492 0.0949 0.0684
RMSE 0.0769 0.0739 0.0964 0.0450 0.0802 0.1025 0.0556 0.0951 0.0773
CP 0.8950 0.7875 0.8850 0.9100 0.9325 0.7350 0.8600 0.9075 0.8050
AS Bias -0.0749 -0.1940 0.0868 -0.0131 -0.0103 -0.4424
ml,nT SD 0.0581 0.0417 0.0695 0.0370 0.0726 0.0395
RMSE 0.0947 0.1985 0.1111 0.0392 0.0733 0.4441
CP 0.6900 0.0000 0.7375 0.9375 0.9375 0.0000
45+ Bias 200516 -0.1029  0.0591 00221 _ -0.0247 __-0.3741
T SD 0.0597  0.0452 00759 00367 00720  0.0443
RMSE 00788 0.1123 00961  0.0428  0.0760 03767
CpP 0.8100 02500  0.8400 09025 09225  0.0000
(n,T)=(49,30) A y P B, B, O’f V1 P1 0\3,1
(ﬂ., p) = (0.2, 0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0399 -0.0446 0.0373 0.0232 0.0449 -0.0751 -0.0487 0.0020 -0.0571
ml,nT SD 0.0391 0.0323 0.0450 0.0241 0.0443 0.0433 0.0271 0.0479 0.0379
RMSE 0.0558 0.0550 0.0584 0.0334 0.0630 0.0866 0.0557 0.0479 0.0685
CP 0.8425 0.7025 0.8425 0.8225 0.8375 0.5300 0.4925 0.9275 0.6000
Ac Bias -0.0018 -0.0048 -0.0028 0.0041 0.0074 -0.0097 -0.0047 0.0033 -0.0070
ml,nT SD 0.0399 0.0334 0.0467 0.0239 0.0440 0.0455 0.0281 0.0493 0.0399
RMSE 0.0399 0.0337 0.0467 0.0242 0.0446 0.0465 0.0284 0.0493 0.0405
CP 0.9550 0.9250 0.9550 0.9550 0.9575 0.8975 0.9075 0.9300 0.9125
éS Bias 0.0237 -0.1118 -0.0015 -0.0058 0.0319 -0.3841
ml,nT SD 0.0308 0.0233 0.0378 0.0214 0.0391 0.0250
RMSE 0.0388 0.1142 0.0378 0.0221 0.0504 0.3849
CP 0.8650 0.0000 0.9575 0.9350 0.8675 0.0000
éS,c Bias 0.0576 -0.0820 -0.0362 -0.0152 0.0117 -0.3542
ml,nT SD 0.0311 0.0239 0.0387 0.0213 0.0389 0.0262
RMSE 0.0655 0.0854 0.0529 0.0261 0.0406 0.3552
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CP 0.5500 0.0625 0.8300 0.8525 0.9450 0.0000
_ 2 2
(n,T)=(49,30) A 4 P B B, o, 41 P1 Oy
(ﬂ,, p) = (0.2, —0.2)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0571 -0.0542 0.0363 0.0171 0.0310 -0.0927 -0.0489 -0.0001 -0.0571
ml.nT SD 0.0424 0.0323 0.0498 0.0235 0.0435 0.0431 0.0271 0.0480 0.0379
RMSE 0.0711 0.0631 0.0615 0.0291 0.0534 0.1022 0.0559 0.0480 0.0685
CP 0.7475 0.5875 0.9000 0.8725 0.8875 0.3575 0.4925 0.9275 0.6000
Ac Bias -0.0037 -0.0057 -0.0026 0.0030 0.0044 -0.0133 -0.0048 0.0025 -0.0070
ml,nT SD 0.0443 0.0337 0.0521 0.0236 0.0438 0.0460 0.0281 0.0495 0.0399
RMSE 0.0444 0.0341 0.0521 0.0237 0.0440 0.0478 0.0284 0.0495 0.0405
CP 0.9600 0.9300 0.9500 0.9475 0.9500 0.8825 0.9075 0.9275 09125
éS Bias -0.1131 -0.1210 0.0699 -0.0224 -0.0003 -0.4064
ml,nT SD 0.0324 0.0230 0.0396 0.0210 0.0381 0.0241
RMSE 0.1177 0.1231 0.0803 0.0307 0.0380 0.4071
CP 0.0800 0.0000 0.6150 0.7800 0.9475 0.0000
éS,c Bias -0.0790 -0.0866 0.0406 -0.0308 -0.0169 -0.3759
ml,nT SD 0.0329 0.0236 0.0407 0.0209 0.0379 0.0253
RMSE 0.0856 0.0898 0.0575 0.0372 0.0415 0.3768
CP 0.3100 0.0350 0.8075 0.6450 0.9500 0.0000
_ 2 2
(n,T)=(49,30) A r P B B, o, 41 P1 Oy
(ﬂ,, p) = (—0.2, 0.2)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0333 -0.0481 0.0125 0.0156 0.0249 -0.0895 -0.0490 -0.0007 -0.0571
ml.nT SD 0.0426 0.0322 0.0502 0.0233 0.0427 0.0430 0.0271 0.0482 0.0379
RMSE 0.0540 0.0578 0.0517 0.0280 0.0494 0.0993 0.0560 0.0481 0.0685
CP 0.8750 0.6450 0.9475 0.8800 0.9025 0.3925 0.4900 0.9275 0.6000
Ac Bias -0.0007 -0.0060 -0.0056 0.0025 0.0032 -0.0137 -0.0048 0.0024 -0.0070
ml,nT SD 0.0441 0.0331 0.0523 0.0232 0.0426 0.0456 0.0281 0.0497 0.0399
RMSE 0.0441 0.0336 0.0526 0.0233 0.0427 0.0475 0.0285 0.0497 0.0405
CP 0.9525 09175 0.9350 0.9450 0.9550 0.8800 0.9075 0.9250 0.9125
éS Bias 0.0482 -0.1169 -0.0310 -0.0287 -0.0183 -0.4090
ml,nT SD 0.0314 0.0227 0.0398 0.0206 0.0374 0.0243
RMSE 0.0575 0.1191 0.0504 0.0353 0.0416 0.4097
CP 0.7200 0.0000 0.8925 0.6700 0.9475 0.0000
éS,c Bias 0.0767 -0.0868 -0.0465 -0.0356 -0.0319 -0.3760
ml,nT SD 0.0322 0.0232 0.0411 0.0206 0.0374 0.0256
RMSE 0.0832 0.0898 0.0620 0.0411 0.0492 0.3769
CP 0.3475 0.0275 0.7900 0.5500 0.8725 0.0000
— 2 2
(n,T)=(49,30) A 4 P B B, (o " P1 Oy 1
(4 p)=(-02,-02)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
0" Bias -0.0469 -0.0544 0.0276 0.0151 0.0194 -0.0922 -0.0490 -0.0010 -0.0571
ml.nT SD 0.0385 0.0313 0.0455 0.0226 0.0415 0.0435 0.0272 0.0482 0.0379
RMSE 0.0607 0.0627 0.0532 0.0272 0.0458 0.1019 0.0560 0.0481 0.0685
CP 0.7775 0.5225 0.9275 0.8800 0.9225 0.3625 0.4875 0.9325 0.6000
Ac Bias -0.0021 -0.0076 0.0003 0.0025 0.0015 -0.0137 -0.0048 0.0022 -0.0070
ml,nT SD 0.0404 0.0322 0.0477 0.0226 0.0412 0.0464 0.0281 0.0497 0.0399
RMSE 0.0404 0.0330 0.0477 0.0227 0.0412 0.0483 0.0285 0.0497 0.0405
CP 0.9625 0.9325 0.9450 0.9525 0.9475 0.8850 0.9075 0.9250 0.9125
éS Bias -0.0800 -0.1160 0.0547 -0.0193 -0.0102 -0.3899
ml,nT SD 0.0308 0.0229 0.0381 0.0208 0.0384 0.0253
RMSE 0.0857 0.1183 0.0667 0.0283 0.0397 0.3907
CP 0.2525 0.0000 0.7225 0.8175 0.9500 0.0000
Bias -0.0551 -0.0819 0.0363 -0.0256 -0.0212 -0.3549
SD 0.0317 0.0234 0.0395 0.0208 0.0384 0.0267
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éS,c RMSE 0.0636 0.0852 0.0536 0.0330 0.0438 0.3559
ot CP 0.5750 00450 0.8450 07400 0.9275 _ 0.0000
(n,T)=(8110) A Y P B B, O’f 71 P 0\3,1
(ﬂ., p) = (0.2, 0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias 0.0012 -0.1486 0.0507 0.0323 0.0481 -0.2104 -0.1486 -0.0094 -0.1332
ml,nT SD 0.0520 0.0440 0.0621 0.0366 0.0686 0.0557 0.0342 0.0703 0.0447
RMSE 0.0520 0.1550 0.0801 0.0488 0.0837 0.2177 0.1525 0.0708 0.1405
CP 0.9325 0.0625 0.8225 0.8250 0.8825 0.0275 0.0100 0.9375 0.1550
Ac Bias 0.0104 -0.0309 0.0011 0.0172 0.0167 -0.0421 -0.0245 -0.0001 -0.0367
ml,nT SD 0.0552 0.0503 0.0709 0.0359 0.0689 0.0650 0.0381 0.0765 0.0497
RMSE 0.0561 0.0589 0.0708 0.0398 0.0708 0.0774 0.0452 0.0764 0.0618
CP 0.9075 0.7950 0.9025 0.9025 0.9250 0.7825 0.8575 0.9025 0.8000
AS Bias 0.0419 -0.1878 0.0164 -0.0052 0.0217 -0.4297
ml,nT SD 0.0458 0.0331 0.0560 0.0319 0.0609 0.0315
RMSE 0.0620 0.1907 0.0582 0.0323 0.0646 0.4308
CP 0.7975 0.0000 0.9225 0.9075 0.9025 0.0000
éS,c Bias 0.0617 -0.0984 -0.0367 -0.0148 0.0063 -0.3679
ml,nT SD 0.0460 0.0358 0.0600 0.0314 0.0597 0.0349
RMSE 0.0769 0.1047 0.0703 0.0346 0.0600 0.3695
CP 0.6875 0.1400 0.8575 0.8900 0.9325 0.0000
(n,T)=(8110) A y P B, B, O’f V1 P1 0\3,1
(/1, p) = (0.2, —0.2)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0620 -0.1609 0.0917 0.0233 0.0326 -0.2351 -0.1488 -0.0110 -0.1332
ml,nT SD 0.0577 0.0441 0.0712 0.0359 0.0672 0.0551 0.0342 0.0702 0.0447
RMSE 0.0847 0.1668 0.1160 0.0428 0.0746 0.2415 0.1527 0.0710 0.1405
CP 0.7850 0.0350 0.6725 0.8625 0.8900 0.0075 0.0100 0.9325 0.1550
Ac Bias -0.0134 -0.0356 0.0199 0.0159 0.0135 -0.0553 -0.0247 -0.0012 -0.0368
ml,nT SD 0.0631 0.0515 0.0813 0.0354 0.0683 0.0655 0.0380 0.0767 0.0497
RMSE 0.0644 0.0625 0.0836 0.0388 0.0696 0.0857 0.0453 0.0766 0.0618
CP 0.8975 0.7800 0.8775 0.8975 0.9175 0.7350 0.8575 0.9050 0.7975
éS Bias -0.0967 -0.1984 0.1097 -0.0204 -0.0060 -0.4514
ml,nT SD 0.0483 0.0330 0.0595 0.0314 0.0593 0.0302
RMSE 0.1080 0.2011 0.1248 0.0374 0.0595 0.4524
CP 0.4250 0.0000 0.5075 0.8500 0.9300 0.0000
éS,c Bias -0.0767 -0.1049 0.0551 -0.0298 -0.0213 -0.3911
ml,nT SD 0.0487 0.0357 0.0638 0.0309 0.0585 0.0335
RMSE 0.0909 0.1108 0.0842 0.0429 0.0622 0.3925
CP 0.5875 0.0875 0.7875 0.7825 0.9225 0.0000
(n,T)=(8110) A Y P B, B, 052 71 P1 6\3,1
(/1, p) = (—0.2, 0.2)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias 0.0010 -0.1509 0.0062 0.0212 0.0223 -0.2259 -0.1488 -0.0115 -0.1332
ml,nT SD 0.0572 0.0431 0.0701 0.0357 0.0670 0.0545 0.0342 0.0703 0.0447
RMSE 0.0571 0.1569 0.0703 0.0415 0.0705 0.2324 0.1527 0.0711 0.1405
CP 0.9500 0.0475 0.9425 0.8750 0.9000 0.0100 0.0100 0.9350 0.1550
Ac Bias 0.0007 -0.0321 -0.0036 0.0144 0.0093 -0.0504 -0.0247 -0.0017 -0.0368
ml,nT SD 0.0614 0.0494 0.0794 0.0349 0.0672 0.0642 0.0380 0.0768 0.0497
RMSE 0.0614 0.0588 0.0794 0.0377 0.0677 0.0816 0.0453 0.0767 0.0618
CP 0.9250 0.7975 0.9150 0.9050 0.9200 0.7500 0.8575 0.9050 0.7975
éS Bias 0.0618 -0.1912 -0.0271 -0.0258 -0.0228 -0.4517
ml,nT SD 0.0471 0.0320 0.0590 0.0310 0.0584 0.0302
RMSE 0.0777 0.1938 0.0649 0.0403 0.0626 0.4528
CP 0.7175 0.0000 0.9050 0.8225 0.9200 0.0000
Bias 0.0783 -0.1030 -0.0452 -0.0344 -0.0358 -0.3901



éS,c SD 0.0478 0.0344 0.0634 0.0305 0.0575 0.0336
ml,nT RMSE 0.0917 0.1085 0.0778 0.0459 0.0677 0.3915
CP 0.6050 0.0850 0.8450 0.7325 0.8875 0.0000
(n,T)=(8110) A 4 P B 5 O'gz N y%i 0\3,1
(4,p)=(~02,-02)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0594 -0.1564 0.0596 0.0250 0.0237 -0.2206 -0.1488 -0.0115 -0.1332
ml,nT SD 0.0529 0.0422 0.0665 0.0349 0.0658 0.0549 0.0342 0.0703 0.0447
RMSE 0.0795 0.1620 0.0892 0.0429 0.0698 0.2273 0.1527 0.0711 0.1405
CP 0.7750 0.0250 0.8200 0.8550 0.9050 0.0100 0.0100 0.9350 0.1550
Ac Bias -0.0202 -0.0362 0.0222 0.0161 0.0085 -0.0481 -0.0247 -0.0017 -0.0368
ml,nT SD 0.0575 0.0481 0.0752 0.0340 0.0652 0.0646 0.0380 0.0768 0.0497
RMSE 0.0609 0.0601 0.0783 0.0376 0.0656 0.0804 0.0453 0.0767 0.0618
CP 0.8975 0.7825 0.8800 0.8975 0.9175 0.7825 0.8575 0.9050 0.7975
éS Bias -0.0639 -0.1930 0.0787 -0.0169 -0.0148 -0.4357
ml,nT SD 0.0463 0.0320 0.0577 0.0313 0.0595 0.0313
RMSE 0.0788 0.1956 0.0975 0.0355 0.0612 0.4368
CP 0.6625 0.0000 0.6675 0.8700 0.9225 0.0000
éS,c Bias -0.0488 -0.1014 0.0533 -0.0252 -0.0278 -0.3716
ml.nT SD 0.0470 0.0343 0.0624 0.0309 0.0587 0.0348
RMSE 0.0677 0.1070 0.0820 0.0398 0.0649 0.3733
CP 0.7550 0.0925 0.7925 0.8300 0.9125 0.0000
(n,T)=(81,30) A 4 P B B, o’ A o) ov,
(/1, p) = (0.2, 0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0220 -0.0453 0.0336 0.0184 0.0354 -0.0686 -0.0479 -0.0007 -0.0501
ml,nT SD 0.0327 0.0249 0.0354 0.0194 0.0382 0.0333 0.0189 0.0362 0.0272
RMSE 0.0394 0.0517 0.0488 0.0267 0.0520 0.0763 0.0515 0.0361 0.0570
CP 0.8625 0.5700 0.8475 0.8075 0.8025 0.4125 0.3075 0.9425 0.5400
Ac Bias -0.0002 -0.0038 0.0008 0.0020 0.0053 -0.0062 -0.0034 0.0008 -0.0071
ml,nT SD 0.0333 0.0257 0.0367 0.0192 0.0381 0.0348 0.0196 0.0371 0.0284
RMSE 0.0332 0.0260 0.0366 0.0193 0.0385 0.0353 0.0199 0.0371 0.0292
CP 0.9225 0.9250 0.9300 0.9250 0.9400 0.9225 0.9350 0.9425 0.9275
éS Bias 0.0395 -0.1121 -0.0042 -0.0096 0.0258 -0.3789
ml.nT SD 0.0264 0.0179 0.0299 0.0172 0.0340 0.0187
RMSE 0.0475 0.1136 0.0301 0.0197 0.0426 0.3794
CP 0.6175 0.0000 0.9450 0.8800 0.8375 0.0000
éS,c Bias 0.0606 -0.0813 -0.0331 -0.0171 0.0110 -0.3526
ml,nT SD 0.0266 0.0184 0.0305 0.0171 0.0339 0.0196
RMSE 0.0662 0.0834 0.0450 0.0242 0.0357 0.3532
CP 0.3125 0.0075 0.7950 0.8025 0.9225 0.0000
(n,T)=(81,30) A Y P B, B, 0'5 V1 P1 0'\3,1
(4.p)=(02,-02)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0409 -0.0526 0.0362 0.0143 0.0261 -0.0814 -0.0481 -0.0023 -0.0501
ml,nT SD 0.0358 0.0247 0.0399 0.0191 0.0379 0.0326 0.0189 0.0363 0.0272
RMSE 0.0543 0.0581 0.0538 0.0239 0.0460 0.0877 0.0516 0.0363 0.0570
CP 0.7600 0.4350 0.8500 0.8650 0.8550 0.2600 0.2975 0.9400 0.5400
Ac Bias -0.0030 -0.0045 0.0023 0.0018 0.0045 -0.0085 -0.0035 0.0003 -0.0071
ml,nT SD 0.0370 0.0258 0.0416 0.0190 0.0381 0.0344 0.0196 0.0373 0.0284
RMSE 0.0370 0.0261 0.0416 0.0191 0.0383 0.0354 0.0199 0.0372 0.0292
CP 0.9375 0.9400 0.9225 0.9250 0.9350 0.9200 0.9350 0.9400 0.9275
éS Bias -0.0987 -0.1198 0.0695 -0.0251 -0.0043 -0.4001
ml.nT SD 0.0283 0.0175 0.0318 0.0170 0.0332 0.0180
RMSE 0.1026 0.1210 0.0764 0.0303 0.0334 0.4005
CP 0.0425 0.0000 0.3800 0.6375 0.9300 0.0000
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éS,c Bias -0.0772 -0.0857 0.0442 -0.0318 -0.0164 -0.3737
ml,nT SD 0.0286 0.0181 0.0325 0.0169 0.0332 0.0188
RMSE 0.0823 0.0876 0.0549 0.0360 0.0369 0.3742
CP 0.1625 0.0050 0.7275 0.5025 0.9025 0.0000
(n,T)=(8130) A 4 P By B, O’f 71 P1 0\3,1
(/1, p) = (—0.2, 0.2)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0197 -0.0471 0.0126 0.0132 0.0214 -0.0777 -0.0481 -0.0028 -0.0501
ml,nT SD 0.0360 0.0245 0.0394 0.0189 0.0375 0.0324 0.0189 0.0363 0.0272
RMSE 0.0410 0.0531 0.0414 0.0230 0.0431 0.0841 0.0517 0.0364 0.0570
CP 0.8825 0.5075 0.9375 0.8725 0.8700 0.3050 0.2975 0.9375 0.5400
Ac Bias -0.0011 -0.0038 -0.0005 0.0016 0.0037 -0.0079 -0.0036 0.0001 -0.0071
ml,nT SD 0.0370 0.0254 0.0410 0.0188 0.0374 0.0340 0.0196 0.0373 0.0284
RMSE 0.0370 0.0256 0.0410 0.0188 0.0376 0.0349 0.0199 0.0373 0.0292
CP 0.9325 0.9375 0.9250 0.9250 0.9350 0.9125 0.9350 0.9375 0.9275
és Bias 0.0598 -0.1161 -0.0300 -0.0306 -0.0210 -0.4016
ml,nT SD 0.0278 0.0173 0.0314 0.0168 0.0328 0.0180
RMSE 0.0659 0.1173 0.0434 0.0349 0.0389 0.4020
CP 0.3775 0.0000 0.8700 0.5200 0.8800 0.0000
éS,c Bias 0.0776 -0.0852 -0.0423 -0.0365 -0.0315 -0.3737
ml,nT SD 0.0282 0.0178 0.0322 0.0167 0.0328 0.0188
RMSE 0.0826 0.0870 0.0531 0.0401 0.0454 0.3741
CP 0.1875 0.0050 0.7500 0.3675 0.7900 0.0000
(n,T)=1(81,30) A 7 P B B, 052 7 yo) 6\3‘1
(/1, p) = (—0.2, —0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0371 -0.0515 0.0256 0.0138 0.0184 -0.0781 -0.0481 -0.0030 -0.0501
ml,nT SD 0.0322 0.0238 0.0366 0.0184 0.0363 0.0322 0.0189 0.0363 0.0272
RMSE 0.0491 0.0567 0.0446 0.0230 0.0407 0.0845 0.0517 0.0364 0.0570
CP 0.7800 0.3900 0.8825 0.8625 0.8825 0.3175 0.2975 0.9375 0.5400
éc Bias -0.0035 -0.0056 0.0042 0.0019 0.0029 -0.0081 -0.0036 -0.0000 -0.0071
ml,nT SD 0.0333 0.0245 0.0382 0.0183 0.0361 0.0339 0.0196 0.0373 0.0284
RMSE 0.0334 0.0251 0.0384 0.0183 0.0361 0.0348 0.0199 0.0373 0.0292
CP 0.9400 0.9325 0.9475 0.9300 0.9325 0.9200 0.9350 0.9375 0.9275
éS Bias -0.0696 -0.1144 0.0547 -0.0212 -0.0122 -0.3827
ml,nT SD 0.0269 0.0173 0.0307 0.0170 0.0335 0.0186
RMSE 0.0747 0.1157 0.0628 0.0271 0.0356 0.3831
CP 0.2175 0.0000 0.5550 0.7300 0.9000 0.0000
éS,c Bias -0.0538 -0.0807 0.0403 -0.0267 -0.0207 -0.3531
ml,nT SD 0.0274 0.0177 0.0317 0.0169 0.0335 0.0195
RMSE 0.0604 0.0826 0.0512 0.0316 0.0394 0.3537
CP 0.4225 0.0050 0.7300 0.6000 0.8800 0.0000
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Table 2:

Descriptive statistics: counties in North Carolina

Variables Mean Standard deviation Minimum Maximum
Public safety spending ($X106) 20.5504 26.3425 0 237.3665
Total revenue ($><106) 126.2299 216.4341 0 1786.4493
Proportion on total expenditure 0.193 0.060 0 0.448
Population (xlOS) 94.4273 140.5532 4.1430 1035.6050
Land area ( km? ) 1259.181 497.481 446.701 2457.924
Population density (/km2 ) 74.7630 99.8999 3.3976 763.9331
Median ages 40.0793 4.5780 23.9 51.3
Median household income ($><104) 4.1410 0.7681 2.5107 7.0620
Distance (Km) 248.1450 147.8367 12.2632 751.9034
No. of observations 1200 . } ~

Note: Sample is 100 counties in North Carolina from 2005 to 2016. Dollar amounts are real values adjusted by the GDP deflator

with base year 2009.

Table 3.A: Model estimation I. d_ =50km

Myopic

Forward-looking

Total revenue per capita

Population density

Median ages

Median Household income
Neighboring total revenue per capita
Neighboring population density
Neighboring median ages

Neighboring median household income

0.1008*** (0.0054)
0.0002 (0.0003)
0.0035 (0.0022)
0.0011 (0.0011)

-0.0295*** (0.0096)
-0.0001 (0.0006)
0.0011 (0.0041)
-0.0018 (0.0021)
-0.0309  (0.043)

0.1226%** (0.0066)
0.0002 (0.0003)
0.003 (0.0022)
0.001 (0.0011)
-0.0379*** (0.0117)
0 (0.0005)
0.0008 (0.004)
-0.0017 (0.0022)
-0.0623 (0.0561)

v 0.384*** (0.0252) 0.5099*** (0.069)

P 0.0582 (0.0515) 0.1154*  (0.0662)

o2 0.003*** (0.0001) 0.0051*%%* (0.0003)
&

Conditional log likelihood -2713.5 -2713.3

AIC 4935.0 4934.6

BIC 5610.4 5610.0

No. of Obs 1200 1200

No. of “neighbors” 4.3400 (1.4229) 4.3400 (1.4229)

Cutoff distance (Km) >0 >0

Note: The conditional log likelihood is the sample log likelihood for {Ym} given {Xm} . AIC and BIC are the values of

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels

are respectively marked by “*7, “**” and “***”,
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Table 3.B:

Model estimation II. d, =65km

Myopic

Forward-looking

Total revenue per capita

Population density

Median ages

Median Household income
Neighboring total revenue per capita
Neighboring population density
Neighboring median ages

Neighboring median household income

0.1012*** (0.0053)
0.0002 (0.0003)
0.0032 (0.0022)
0.0011 (0.0011)

-0.0394%** (0.0129)
-0.0001 (0.0006)
-0.001 (0.0054)
-0.0027 (0.0027)
-0.0308 (0.0559)

0.3796%** (0.0251)
0.0747 (0.0657)
0.003*** (0.0001)

0.1226*** (0.0066)
0.0002 (0.0002)
0.0027 (0.0021)

0.001 (0.0011)
-0.053*** (0.0157)
0 (0.0005)
-0.001 (0.0053)
-0.0026 (0.0028)
-0.0321 (0.072)

0.5228*** (0.0656)
0.1486* (0.0833)
0.0051*** (0.0003)

Conditional log likelihood
AIC

BIC

No. of Obs

No. of “neighbors”

Cutoff distance (Km)

2712.9
49322
5607.6

1,200

7.3400 (2.1937)

65

2712.5
49313
5606.7

1,200

7.3400 (2.1937)

65

Note: The conditional log likelihood is the sample log likelihood for {Ym} given {Xm} . AIC and BIC are the values of

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels

are respectively marked by “*7, “**” and “***”,

Table 3.C: Model estimation III. d, =80km

Myopic

Forward-looking

Total revenue per capita

Population density

Median ages

Median Household income
Neighboring total revenue per capita
Neighboring population density
Neighboring median ages

Neighboring median household income

0.1023*** (0.0054)
0.0002 (0.0003)
0.0032 (0.0022)
0.0011 (0.0011)

-0.052%** (0.0158)
-0.0003 (0.0007)
-0.0028 (0.0074)
-0.0041 (0.0034)
0.0142 (0.0657)

0.3739%** (0.0251)
0.0705 (0.0784)
0.003*** (0.0001)

0.1239%** (0.0066)
0.0002 (0.0002)
0.0028 (0.0021)
0.001 (0.0011)

-0.0667*** (0.0191)
-0.0002 (0.0006)
-0.0031 (0.0072)
-0.0036 (0.0036)
0.0058 (0.0845)

0.5081%*** (0.065)
0.1726* (0.0984)
0.0051%** (0.0003)

Conditional log likelihood
AIC

BIC

No. of Obs

No. of “neighbors”

Cutoff distance (Km)

2712.9
4927.8
5603.3

1,200

10.5400 (3.0465)

80

27125
4927.1
5602.5
1,200
10.5400 (3.0465)
80

Note: The conditional log likelihood is the sample log likelihood for {Ym} given {Xm} . AIC and BIC are the values of

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels
are respectively marked by “*”, “**” and “***”,
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Table 3.D: Model estimation IV. d, =95km

Myopic

Forward-looking

Total revenue per capita

Population density

Median ages

Median Household income
Neighboring total revenue per capita
Neighboring population density
Neighboring median ages

Neighboring median household income

0.1031*** (0.0054)
0.0003 (0.0003)
0.0033 (0.0022)
0.0012 (0.0011)

-0.0673%** (0.0187)
-0.0006 (0.0008)
-0.0044 (0.0088)
-0.0028 (0.0042)
0.0434 (0.0805)

0.3616%** (0.0252)
0.1607 (0.1002)
0.003*** (0.0001)

0.1237*** (0.0066)
0.0002 (0.0002)
0.0028 (0.0021)
0.0011 (0.0011)

-0.082%%* (0.0226)
-0.0004 (0.0008)
-0.0041 (0.0086)
-0.0024 (0.0044)
0.027 (0.1049)

0.506%** (0.0661)
0.1696 (0.1255)
0.0051*** (0.0003)

Conditional log likelihood
AIC

BIC

No. of Obs

No. of “neighbors”

Cutoff distance (Km)

2713.1
4927.1
5602.5

1,200

14.7600 (4.1709)

95

2713.2
4927.4
5602.8

1,200

14.7600 (4.1709)

95

Note: The conditional log likelihood is the sample log likelihood for {Ym} given {Xm} . AIC and BIC are the values of

information criteria. Theoretical standard deviations are in parenthesis. Estimates that are significant at the 10%, 5%, and 1% levels
are respectively marked by “*7, “**” and “***”,

Table 4. The direct and cumulative effect of increasing the total revenue (per capita) by one thousand dollars

Iredell county Dare county
Direct Own effect 0.1239 0.1239
Neighboring effect -0.0039 -0.0222
Cumulative Own effect 0.1046 0.1045
Neighboring effect -0.0030 -0.0167
No. of neighbors 17 3

Table 5. Changes of social welfare if a county’s total revenue (per capita) increases by one thousand dollars

Case 1 Case 2 Case 3 Case 4

Welfare change Aw -0.0013 0.0097 0.0121 0.0918

Note: We select four specific counties: (Case 1) Mecklenburg county (richest and the most populated county), (Case 2) Tyrrell
county (poorest and the least populated county), (Case 3) Iredell county (the largest number of neighbors (17 neighbors)), and (Case
4) Dare county (the most isolated one (3 neighbors)).
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Figure 1.A: Selection of ¢ via likelihood measures
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Note: We show two representative cases:

(i) Myopic: d, =0, (n,T)=(81,30) and K =2
(i)  Forward-looking: &, =0.95, (n,T)=(81,30) and K=2.

Weset 4,=0.2, y,=0.4,and p,=0.4, and other circumstances are the same as the main simulation. The

x-axis shows o ’s while the y-axis reports the sample log-likelihood.

Figure 1.B: RMSE:s in estimating A,, y,,and p, for misspecified o
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Weset 4,=0.2, y,=0.4,and p,=0.4, and other circumstances are the same as the main simulation. The

Myopic: d, =0, (n,T)=(81,30) and K =2

Forward-looking: &, =0.95, (n,T)=(81,30) and K=2.

x-axis shows o ’s while the y-axis reports the RMSEs.

Figure 2: Performance comparison: QMLE and NL2SE
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Po Biio
Note: We set (nT)=(8.30) , 6=095, 4 =02, =04, p,=0, B,,=8,,=04,

Boio=8,,0=0 (noDurbin regressor), and other circumstances are the same as the main simulation. As IVs

for the NL2SE, we consider [YHH, X.. | and its transformations by [In W WLWW ,an} .

Figure 3: Neighbors of the two counties (based on d_, =80)

e =
Way,, / E 1o
4 WIKES Yedkin Forsyth ( =
3 h Jdvrcl \ Wash- ¢ Tyrell )
al | Alex- )
I ander .0 0 |ington ' Dare \
Davidson | . )
éprkc | L
95 Catawba Rowen /
ord Uncoin Cabarrus {
Gaston danky i
e lenbur_g/ S0
Iredell county's 17 Neighbors Dare county's 3 Neighbors

Figure 4: Impulse response functions: own effects (left) and neighboring effects (right)

w107 , w102

—— lredall
21 — — —Dare ||

(=]
i
—
[==]

61



Supplement to "Spatial dynamic models with intertemporal

optimization: specification and estimation"

Hanbat Jeong*and Lung-fei Lee'

August, 2018

Abstract

This document contains some technical and detailed theoretical analyses, and additional Monte Carlo

results for Jeong and Lee’s (2018).

1 Derivation of the Markov perfect equilibrium (MPE) equation
Recall the Bellman equation of our model is
VitYni—1,Mp) = max {ui (Yie, Y20 e (Yot 1, M) Yot 15 Mit) + 0B (Vi(wits Y5 4 (Vo1 M)y Mp)) b (1)

/
where in,t(Yn,t*b nnt) = (yTt(Ymt*l: nnt)v U 7y;:1,t(yn7t717 nnt)a y;kJrl,t(Yn»t*l? nnt)’ e >y;t(Yn,t*17 nnt)) )

fori=1,---,n, and an arbitrary ¢. Throughout this section, we take the following assumption.

Assumption 1.1 For each t, n;, 4y = nmp, + &, 41 where ||IL,|| < 1, [|-[| denotes a proper matriz norm,
Nl =, ,n%), B (énir1) =0 and By (&,14180.0401) = Qe which is positive definite.
1.1 Step 1: Generation of V;(j)(-)’s

Derivations are in our main draft. Since all entries in W, are finite, by Assumption 1.1, all entries of QEJ ),

ng), Gz(j), and C,Ej) (for each ¢ and for j = 1,2,---) which are functions of W,, and (6, Ao, Yo, po, IIn, Q2¢)

*Department of Economics, The Ohio State University, 1945 N. High Street, Columbus, Ohio. E-mail: jeong.181@osu.edu
TDepartment of Economics, The Ohio State University, 1945 N. High Street, Columbus, Ohio. E-mail: lee.1777@osu.edu



generated by Step 1 are finite, and not relevant to (Y, t—1,7,,¢)- Ag ) and B7(ij ) can be evaluated by using
() ()
Qij and Lij .

1.2 Step 2: Continuity of 7

To investigate 7, we review several mathematical results. They are imported from Stokey et al. (1989)
and Fuente (2000). We will reproduce those arguments in our framework with simple sketches of proofs.
Note that arguments of 7" are Vi(j) (+)’s 7=0,1,2,---. The domain of Vi(j) (-)’s is a subset of R?" denoted
by (Xy)n X (Xn)n where x,, x,, € R. By Step 1, we can claim that, for any continuous and bounded
function Vi(o) (), {V-(j) (.)}jfo o € C ((Xy)n X (Xn)n) where C ((Xy)n X (Xn)n) is the set of bounded and

7
=0,1,2,---

continuous functions from (Xy)n X (X,])n to R equipped with the sup norm (or the uniform norm),
HVHu = Sup N N ’V (Yn,t—lvnnt)’
Ye—1.m)€(xy )" % (xn)
for VeC ((Xy)n X (Xn)n). Note that C ((Xy)n X (Xn)n) is a complete normed vector space equipped with
|-]l,,- Hence, if V;(j ) V* as j — oo, a candidate limit function V;*(-) is also bounded and continuous.
The theorem below verifies the continuity of ’Z'Vz-(j ) () and the existence and uniqueness of agent i’s optimal

action.

Theorem 1.1 (Theorem of the maximum) For all j =1,2,---,

U; (yita Y_*Z(,Jt—i_l) (Yn,tfla nnt)a Yn,tflv nit) +0E; (V;(J) (yit’ Y—*Z(,Jt—i_l) (Ynat*h 77nt)? nn7t+1)> (2)
s a continuous and bounded function from Xy X ((Xy)n X (Xn)n) to R.
= decision space = state space

The set of optimal decisions

i+1
Uj (yita ngj )(Yn,tfla Mt ) Yoi-1, %)

. . = T‘/z(]) (Yn t—1, nnt) (3)
+O0E; (Vi(J) (yih ngftﬂ)(yn,t—l, Mt)s 77n,t+1))

_(j+1
:z(j ) (Y1, Mpt) = { it

is a singleton and y:t(jﬂ) (Yot—1,Mp,) is a continuous function of (Yn1—1,M,,). Furthermore, TVi(j) (Yot—1, M)

is continuous at (Y t—1,Myy)-

Theorem 1.1 is a slightly modified version of Theorem 3.6 in Stokey et al. (1989).

Proof of Theorem 1.1. Choose arbitrary (Y, :—1,m,,) and j € {2,3,---} and fix them. By proceeding

the two stages, we will get the desired results.



Stage 1: Since w; (yit, Y_it, Ynt—1,7;) 1s strictly concave in y;, EZ(-l) (Ynt—1,M,,) is a singleton set. From
j = 1, we inductively generate unique Y;t(j) (Yot—1,mp) = Ag)Ym,l + By(Lj)nm for j =2,3,---. It implies
that (i) EZ(-j) (Yoi—1,Mp) = {y:t(j) (Yn,t—hnnt)} (i.e., a singleton set), and (ii) Y:t(j) (Yt—1,My) is a linear
transformation of (Y, t—1,7,,¢)-

Stage 2: We want to show that Y:t(j ) (Y,t—1,M,,;) is also continuous and bounded on (Y}, ;—1,7,;). By
showing continuity of 7° Vz‘(j) (+), we finish the proof. Arbitrarily choose a convergent sequence { (Yn(f?_17 ng?) }k C
(Xy)nx (Xn)n such that (Y(ﬁ)_l, nij?) — (Ynt—1,M,,). For each k, we can choose {yff)} =0+ (Yéﬁ)—p n(k)>

n 7 nt
EjJrl) (erﬁll,nfﬁ)) is a singleton by Stage 1. Since yff) is continuous of (Yéill, 775[?) by Stage 1,

since =
U = s = 0 o {32} = 20 (9, ) (= %Y (1,0, By contioi
of (2),
TV (vl
= i (P VGO )+ om (VO (50 6 ) m))
o <yl-t,Yfgffl)(Yn,t—l,nnt)aYn,t—l’mt) +0E; (V;(j) (yz‘t,ngftﬂ)(Yn,t—lﬂ?m)a77n,t+1>>
= TVY (Yoso1, M)

as k — oo. Hence, {’TVi(j) (Yot-1, nnt)} is continuous at (Y, ¢+—1,7,,).1

1.3 Step 3: Contraction mapping and Banach fixed point theorem

Note that C ((Xy)n X (Xn)n) is a complete normed vector space (=Banach space) equipped with the sup
norm |-||,. Hence, it is also a metric space with the metric d(f1, f2) = | fi — fl|, for any fi, fo €

C ((Xy)n X (Xn)n). Based on that, we consider the definition of a contraction mapping.

Definition 1 (Contraction mapping) Note that C ((Xy)n X (Xn)n) is a metric space with d(f1, f2) for
any f1, fo €C ((Xy)n X (Xn)n). We say T is a contraction mapping with modulus § € (0,1) if

d(T f1.T f2) < 6d(f1, f2) for any fi,f2€C((x,)" % (x,)") -

First, we want to show that 7 is a contraction mapping with modulus §. There is an easy way to check

whether 7 is a contraction mapping. This is called Blackwell’s (1965) sufficient conditions.

Proposition 1.2 (Blackwell’s sufficient conditions) Note that7T : C ((Xy)n X (xn)n) —C ((Xy)n X (xn)n)

be an operator. Assume T satisfies

'Indeed, arguments of T need not be continuous functions to employ Proposition 1.2.



(i) (Monotonicity) For fi, fo € C ((Xy)n X (Xn)n) such that f1 (Yni—1,Mp) < fo (Yoi—1,My,) for all
(Yn,t—lannt) € ((Xy)n X (Xn)n), we have

(T f1) (Yn,t—lannt) < (7 fa) (Yn,t—lannt) Jor all (Yn,t—l7"7nt) € ((Xy)n X (Xn)n) .
(i1) (Discounting) There exists § € (0,1) such that for all f € C ((Xy)n X (Xn)n),
(T (f + C)) (Yn,t—b nnt) < (Tf) (Yn,t—h nnt) +dc fOT’ all (Yn,t—h nnt) € ((Xy)n X (Xn)n)

where (f + c) (Yn,t—lannt> =f (Yn,t—hnnt) +ec.

Then, T is a contraction mapping with modulus §.

By properties of max operator and the time-discounting factor ¢, our 7 satisfies the Blackwell sufficient

conditions, and hence is a contraction mapping. Then, we can obtain the following proposition.

Proposition 1.3 (Contraction mapping theorem) Note thatC ((Xy)n X (Xn)n) 1s a Banach space with

|-l, and T is a contraction mapping with modulus 6 € (0,1). Then, we obtain
(i) There ezists a unique fized point V; € C ((Xy)n X (Xn)n) (That is, TV; =V;).
.. 0 n n
(ii) For any Vi( lec ((xy) X (Xn) ).

Tj‘/;(o) _ V; V;(O) _ V'Z

géﬂ'\
u

forj=0,1,2,---.
u

Proposition 1.3 is also called the Banach fixed point theorem. The main idea of proving this follows

three steps. First, by arbitrary choosing Vi(o) from C ((Xy)n X (Xn)n)7 a Cauchy sequence {V;(j )}j can be
inductively generated from 7, i.e., Vi(l) = TVZ-(U), Vi@) = TVi(l), -+-. Second, TV; =V is verified by using
the discounting property of 7. Regardless of a starting point, 7 yields ultimate convergence to a unique
fixed point V;. By Proposition 1.3, for our model, V;* is the same as the unique fixed point V; and the vector

of optimal decisions is Y}, (). The way of getting Y%, (-) and V;* (-)’s are in the main text.

2 QML estimation

2.1 Model identification

This subsection will discuss the identification issue. From Rothenberg (1971), " and 0" are observationally
equivalent if L,r (0' | {Ym}tT:1> = L1 (9”| {Ym};‘rzl) a.e. Hence, 0y € © is identifiable if and only if

there is no other § € © is observationally equivalent. Identification of 6y in this setting comes from the



information inequality: (i) for any 6 € ©, E <ln LT <0| {Ynt}tT:1>> <FE (ln L7 (90| {Ynt}thl)), and (ii)
Lot (e\ {Ynt}le) = Loy (90\ {Ynt}le) a.e. in {Yp}7, if and only if

E (1n Loz (9\ {Ynt}L)) —E (m Lot (eo| {Ym}le)) .

The information inequality comes from concavity of the logarithmic function. The expected (concen-

trated) log-likelihood function? is
T
Qur (01,8,02) = —71n27r—71na + = ln|R (61 Z (1 (6) Tt 9))

for € ©, where £yt () = Ry, (01) Yot — (I + pWo) Y,y ( ) — (I, + 6L (A1) I1,,) X,43. First, note that

1 < /a X
ol (01,8) = arggax@w (01,8,0¢) = — ; E ( i (0) Jnni (9>) :
and B (01) = axg maxQur (01,5,02) = [T Ky (01) Ju o 00)] S K (00) JuE (2 (01))

where Xpr (61) = (I, + 6 L% (01) T1,) Xty Xt = Xy (01,0) and
Zn (01) = [Bo (02) B (Yol + poWa) = (7L + pWa)] Yoy + R (61) By [RuBo + il

If 61 = 010, T Tt (010) = Jnfgmﬂo. Hence, J, Zn: (01) represents the misspecified Jantﬁo if we evaluate it
at 01 € O1\{01,0}. For 6; € ©1\ {010}, Jn ( nt (01) — ntﬂo) shows the misspecification error. Given the
identification of 01, we obtain the identification condition for £y: lim, 7. % Zthl X! Jp X, exists and

is nonsingular.

Using S,,r (01) and o z,nT (61) = sznT (01, 8,1 (01)), we derive the concentrated expected log-likelihood

at 04 is

1 1 1
Qnr,c (01) = Qnr (91,57@ (61) 7U§,nT (01, Bnr (91))) D) [In2r +1] - 5 lnag,nT (61) + n In[R;, (61)]
with Qnrc (01,0) = —3 [In27 + 1] — 3In 02 + + In |Ry|. Then,
1
Qutye (01) = Qure (B10) = —[no?,p(61) —InoZy] + - I [ Ry (61)] = In | Ry ]
1 1 1
= ~n|(020)? Byt = S n| (02 (01)7 Byt (01)
1

- 3{zmletonm, - Snlo2r 00 17 00 R 00}

?Note that we can apply the information inequality to a concentrated log-likelihood function.



Hence, we obtain the unique identification condition for 6 o under large n and T

1 1
lim [ I |oéo Ry Ryt = —Infod,p(00) R, Y (01) Ry (m)@ #0 (4)

n,T—oco | N

for 01 # 019 where

T
2t (0) = S B (8, (01,8 (02)) Juue (00, B (01)))
t=1
1 « - N T . 3 —Lop
— WZE Znt (01) — Xt (01) ngs(el)Jnxns(el)] ZX (01) JpZns (1)
t=1 s=1

X Jy (Znt 01) — Xy (61) Zx (01) ans(el)] ZX (01) JnZns (671)

+L°1tr (Ry YR, (01) JuRn (61) ByY) + 0(1)

n —
= Ug,nT,l(el) + Uz,nT,z(el) +o(1),

T

1 ! - -
2mw17J;E(mm = Kot (02) By (02)) i (Zut (61) = R (61) B (61))

and 02,,75(01) = %tr (R, YRy, (61) JuRn (61) R,"). We observe that o2, (61) consists of two parts. The
first term, aanrﬂl(&l), is a quadratic function of the difference between two approximation functions for
JuXniBy. The second term, o2, .,(61), comes from E (c‘,~';ml?gl’]%;1 (01) Jn Ry (61) R,‘Llc‘:’m). Note that the

identification condition (4) can be written as

2
. T¢0 1 -1/ p—-1 1 -1 -1
lim |In : +—-In|R,"R," | ——In|R,"(01) R, (01)|| #0
n,T—o0 [ <U§,nT,1(91) + Uz,nT,2(01)> n } ‘ n ‘ ( ) ( )‘

If 0, is close to 01 o, azmT’l (61) is close to zero. Around 6 g, hence, az7nT72(01) plays a main role in identifying

9170.

2.2 Derivation of the concentrated joint log-likelihood function

For estimation, we assume the following structure on m,,; to derive the joint log-likelihood function.

Assumption 2.1 (7’) For each b Myt = ’I’]:Z) + ’rl;jzt where n}rzv = (77?, e 77];:}), and n;)zt = (7711)t7 T 7"7%t)/'

.. !/ !/
(it) My, = XntB1,0+WanXniBao+aroln+Ent where B1g = (B110, - Brx0) and o= (B21.0, > B2r0)
are respectively coefficients of Xpi and W, Xy, For each t, oo is a period-specific shock and Epy =

;. . . L. .
(€1, ,€nt) 18 an n-dimensional vector of idiosyncratic shocks.



(i1i) The arp and Ene are independently generated across time t.

(v) Xnt ) is generated by
Xtk = AknXnt—1k + Cnko + ek oln + Vark (5)

where A n = Vi 0ln + proWn with maxg=1... i [|Arnlly <1, and Vo = (Vara, -+, Vo) denotes a distur-

bance term of Xpt, which is independent with the (t — 1)-period agents’ information set.

We assume that (i), (ii), (i) and (iv) are known to all agents.

Assumption 2.1 (i) means n),,, is additively separable. By Assumption 2.1 (ii), the time-variant part 02,
is composed of two parts: (i) observable (to econometricians) part Xy o + WnXni82 and (ii) unobserv-
able (to econometricians) shocks oy ol,, + Ept. In general, X,,; means own exogenous characteristics while
Wp X, describes rivals’ exogenous characteristics (which capture externalities and/or contextual effects).
Assumption 2.1 (iii) implies also that for any ¢, E; (a¢y1) = 0 and Ey (E441) = Opx1. Assumption 2.1 (iv)
assumes stationarity of X, . By Assumption 2.1 (iv) and supposing ¢, 0 = h1 kn“’ for some coefficient

hl,ka

Mot + 6Et (L;Hn (nn,t—i-l ))

K oo
= Z (I + Z 6ZDTL,ZA§€,H> (B1poln + BakoWn) Xtk

k=

1
+ ( (I + Z 5 Dn l) + Z Z (5 Dnl (Z Ak n) 617]{;70]-71 + 627k70Wn) hl,k‘) 77,7;;} + at,Oln + gnt-

k=11=1

=time-invariant component part

The time-invariant components are absorbed in individual specific effects denoted by ¢, 0 = (c1,--- cn)

For notational convenience, define D,, , = > /2, 51_1Dn7lA§;nl for each k. Then, the part of observables is

K [e%)
> (In +) 51DnJA§c,n> (B1 kol + BokoWn) Xntk (6)

k=1 =1

K

(Bikoln + BaoWn) Xtk + Y 0Dk Akn (Bipoln + BaroWn) Xntk:
1 k=1

I
M=

i

first term second term
The first term in (6) describes the part of X, ;’s affecting Y,,; directly at time ¢. The second term in (6)

captures effects of (discounted) expected future characteristics based on current available information.



For our econometric model, assume that €; (i = 1,--- ,n and t = 1,--- ,T) has zero mean and finite
variance 030 and also V,,; . has zero mean and finite variance O'%/ w0 for each k. The main parameters are

A0s Yo» Pos B1o and By . Let 01 be the true 6; = (A, 7,p)". Let Ry, (1) be the spatial-time filter evaluated

at 61 so that R, = Ry, (010). The parameters vy, -+, Vi 0, P1,00 *** » Pi,o drive the dynamics of Xy, x’s.
For possible values of those parameters, let vy = (v1, -+ ,7x) and py = (py,- -, px)’. Then,
/
0= ( ,1a13,1a/3,2a0—?7’7/)(7p,)(70—%/,17"' 70—%/7K) (7)

is the set of parameters for estimation, where 6 is the true value of 6. The dimension of the parameters is

4 4+ 5K. To distinguish the true individual- or time-specific effects, we add the subscript ”0” to ay and c,.

Hence, the data generating process (DGP) consists of

K
RnYnt = ('VOITL + pOWn) Yn,tfl + Z (In + 5Dn,kAk,n) (Bl,k,[)ln + 52,]@,0Wn) Xnt,k + Cpo + atoln + gnt (8)
k=1

and

Xnt,k: = Ak:,an,t—l,k: + Cn,k,0 + at,k,Oln + Vnt,k for k = 17 t 7K (9)

where D, ;. is a function of (61,0,7x,0,Px,0)- The reduced form of equation (8) is

K
Yor = AnYni1+ > Ry BxknXntk + Ry (Cno + cioln + Ent) (10)
k=1

where A, = R, (voln + poWn), and Bx pn = (In + 6DnkAkn) (B1poln + BopoWn) for & = 1,--- | K.
Let ar = (a1, ---,ar) and ary = (a1, ,aT,k)' for k = 1,--- K. To derive the log-likelihood

function for equation (8), assume that for each i*" column (i** individual) of (Ents Vot 1, ,Vm,K)/ “

1.1.d.N <0(1+K)><17 diag (O’S’U, U%/,LO’ . ,037K70)). Given (Y0, Xn0), the joint density of {Ynant}tT:l is

T
f (an T 7YnT7 an e >XnT§ 9) = H f (Ynta Xnt| {Yn87 an}z;}) ) 0)
t=1
T
= H f <Ynt’Xnta {YnSa an}i;%) ; 9) ' f (th‘ {Yn& an}i;%) ; 9)
t=1
T
= [/ Vel Xt Yop1560) - f (Xt X 15 6)
t=1
T K
= H f (Ynt‘th Yn,t—l; ‘9) ’ H f (Xnt,k|Xn,t—1,k‘; 9) .
t=1 k=1



The first and second equalities come from the relation between the joint probability and the conditional
probabilities. By observing (10), we have the third equality. Since V;x, and V1, are uncorrelated for

k1 # ko, the last equality holds. The corresponding log-likelihood function will be

I Ly (0, e, {ens} iy s @, {am}f_l) (11)
nT(K + 1) nT
= fﬁln%rf?lna ;1n0Vk+Tln|R (61)]

K
1
1 (0, ¢y o) Ent (0, cnyar) = > > Vot (Vs Pis € @7 ) Vat k (Vi Ps ©nkes QT 1)

2
206 t=1 t=1 k=1 20 Vik
where £ (97 Cn, OéT) =R, (91) ('YI + pW, ) n,t—1 — Zszl BXJc,n(e)Xnt,k — ¢y — ayly, and

Vot ke (Vs P> Sk @1 k) = Xg ke — ('YkIn + pWn) X t—16 — €k — g lp for k=1,--- K. Since ¢, and ar

are linear parameters, we have the following concentrated log-likelihood function

K
T(K +1 T T
In Lo, (6) = _n(2+>1nQ7r—nQIncfz—n2Zlna%k+Tln|Rn(91)| (12)
k=1
T ~ T K 1
22 0t (0) Tnni (0) =D > o= Viiek (0o £1) TVt (1 )
7€ o1 t=1 k=1 " Vk

where Eut (0) = Ry, (01) Yot — (VI + pW,) Y, M L= S Bx g (0) Xt g, and
Vot (Vs 1) = Xtk = (vl + 0 W) X1(1,t)—1,k fork=1,.--, K.

2.3 Some notations on derivatives

For further steps, consider the relationships by the mean value theorem, which defines various quantities of

Cé‘,k (0), etc., :

(Mo =A)-Cpy (8) + (o =) - C) 1. (8) + (o — p) - CF 1, (6)
R (01) Ry ' Bx i — Bxkn (0) = | + (Bypo — Brg) - O™ (0) + (Bopo — Bag) - Co3F (0)
(Yeo =) - O (8) + (oo — pi) - C (6)

where k =1,--- , K, 6 lies between 6 and 6y and
C,ik (0) = —Rux(01) Ry ' Bx jon + 0D (01, Vi, P1) Ak (Vies P (51,kfn + BQ,kWn)y
Cl,k (0) = =Ry (01) Ry, " Bx on + 6Dk (01, Y, 21) Ak (Vis 1) (Bridn + B2k Wh),
Ch . (0) = —=Rup(01) R, Bx k. + 0Dy k (01, Vs o) Ak (Vs 1) (BrpIn + B Wa),
Coil™ (0) = (L + 6D (01,7 1) Ao (Vi) for k=1, K,



i (0) = (I + Dy (1.7 p1) Akn (Vs 1)) W for k=1, K,

CZ:: (0) = 6 (D 01,7k 1) Ak (Vs P1) + D (01, vk, 08)) (B el + BopWa) for k=1,--- | K,

Cﬁji (0) = 6 (D (01,75 ) Ak (Vis ) + Dok (01,7, ) Wa) (B1pIn + BopWa) for k = 1,--- K,
and 6 lies between 6 and 0. These defined C’s would be used later on.

9D 1 (01,755P%)

2 . Other second order derivatives are defined

Fork=1,---, K, denote Dy xx x(01, 71, p1) =

similarly.

2.4 Al,nT and A2’nT

Here are the components of Ay ,7 and As 7, relevant for asymptotic bias of the QMLE:

/
(_RnART_Ll ('Y[)In + poWn)) (Ul,nT,fl + U2,nT,71)
K (_Rn)\Rgl) BX,k,nAk,n — Jng"T
A\ 1 T + Zk:l U3,TLT,]€,—1
A, = 2 \Vw +0Dnx kAkn (B1k0ln + BoroWn) Akm ;
’ /
_ _ _ _Rn/\R;l B k,n &
+&) (=R R\ Tnnr + 4y Vark ( ) B In&nr
I +0Dnxk Ak (B1k0ln + BaroWn) |
L B i , =
(=Roy Ry (YoIn + poWn) + 1) (Urnr,—1 + Uz 1)
—}-ZK (—Rn'ngl) BX,k:,nAk,n (,_73 _— Jng_nT
k=1 LR, —
Afly,nT = 0-310 % +5Dn'y,kAk,n (/317];,0171 + /827k70Wn) Ak:,n )
’ /
_ _ _ —-R, R;l BX,k,n _
+E (=R Ry TnEar + >kt Vot (F i) InEnt
i +0Dy kA (B1k0ln + Bk oWn)
— , -—
(_RnpRr_Ll (’YOIn + POWn) + Wn) (Ul,nT,fl + UQ,nT,fl)
—-R, R;Ll BX,k,nAk,n _ JngnT
) . /T +38 (=Fuo) Usnrk,—1
Al,nT = a2,V n +5an7kAk,n (Bl,k,()[n + ﬁ2,k,0Wn) Akm )
’ /
. . _ —RupRyt) Bx jn .
+E (=R YR, ) Tnnr + S pey Vi, (=B 2n) TnEnr
I +0Dnp e Akn (B1 k000 + BakoWn) |
Af}f;} = U%O \/% ([(In + 5Dn,kAk,n) Ak,n] ﬁ?),nT,k,—l)/ JngnT + VriT,k (In + 5Dn,kAk,n)l JngnTa
Af?ﬁl% = 0%0 \/% ([(In + 5Dn,kAk,n) WnAk,an] U?),nT,k,fl)/ Jng_nT + V»,;TJg [(In + 6Dn,kAk,n) Wn]/ Jng_nTv
o? G c
A1,nT = 2013’0 %E;LTJngnTv
_ / _
A”/X,lc T 021 (5 (Dn,'yx,k,kAk,n + Dn,k) (Bl,k,oln + ﬁ2,k,0Wn) Ak,nU3,nT7k,—1) In&nt
1,nT = n ,

0
_ / — _ _
o, Vi (5 (DAt + Do) (Brgoln + BooWa) ) Tnur + 204 sy Vi

10



_ / _
31 (5 (Dn,pxyk,kAk,n + Dn,kWn) (ﬁl,k,OIn + /627k70Wn) WnAk,nU3,nT,k,—1> JngnT

oo

/

PX.k __ T 1 Y77 &

A1,nT - n "‘ggo nT,k <5 (Dnvpx,k,kAk,n + Dn,kWn> (51,k,01n + 52,k,0Wn) Wn) Inént )
+ U} W J.V,
02 o 3nTk—1"nn nT.k
) K,

vk _ 1 Ty ¥

Ay = 5% o 2 VarkIn Vot k,

A = L [tr (~RaxRy") — tr (Ju(~ BBy )] A0 = /L [t (~Ruy B ) — tr (Ju(~Ron B )],
AS,nT = \/% [tr (_RnpRﬁl) —tr (Jn(_RnpRﬁl))]’ Ag,lnT = Ok x1, Ag?nT = Orx1, Ag?nT = \/? !

9.2 9
n 206,0

2
VX, k PX k vk T_ 1
A2,nT =0, A2,nT =0, and A?,nT = \/g%%/ko fork=1,--- K.

2.5 Some lemmas for the asymptotic properties of QMLESs

Note that Y,,; can be represented by

Y0 Y0 et ABRL I Bx knAL L, (Coko + - hgkoln)
Yoo = (13)

+ ZZO:O AZR;l (Cno + Oét,h,oln)

nonstochastic component of Y+

0o 0o K h p—1 g
Zh:(] Zg:O Zk:l Aan BX,k,nAkan,tfhfg,k
o] h p—1
+ Zh:O Aan gnﬂf—h

+

TV
stochastic component of Yyt

Hence, the main stochastic component of Y;,; is

oo oo K 0
SN AR Bx g AL Vii—h—gk + > ANR En . (14)
h=0 g=0 k=1 h=0

To investigate (14), define Uyt = > 5oy E;’OZO Zszl PonQngkVai—n—gk and Ug ny = > 7 o Ppp&p—p where
{Pun}72 and {Qng,k};io |K_| are nx n uniformly bounded (in n) matrices. Then, the stochastic component
(14) takes the form of Ujns + Usyye. Similarly, the main stochastic component of X, is verified by
Uz ek = Z;io Px ng i Vnt—g,k Where {meg,k};’ozo |§:1 are n X n uniformly bounded (in n) matrices for each
k. The following assumptions and lemmas are fundamental in our asymptotic analysis and similar to Yu et

al. (2008) and Lee and Yu (2010).

Assumption 2.2 For all i, t, and k, €; i.i.d.(O,ag’O), Vit ks i.i.d.(O,a%/kO), and €’s and v’s are inde-

pendent. Suppose E |eit|4+77 < 00 and maxy=i.. g E \vit,k|4+" < oo for some n > 0.

11



Assumption 2.3 Y 77° abs(Pun), D plg e OZk 1 @bs(Pup)abs(Qngx) and 32 abs(Px g k) are uni-
formly bounded.

Assumption 2.4 (i) D, denotes an n x 1 nonstochastic and all of elements are uniformly bounded in
n and t. (ii) Let By, Bipi, -+ ,Bink, Boni, -, Bank be n xn nonstochastic and uniformly bounded

matrices.

Assumption 2.5 T goes to infinity. n is an increasing function of T.

an L™ (6o)

nT,c

Note that the first order condition (except for Bo% ,k=1,--- K) at § = 0y takes the linear

quadratic form,

T
1 _ 3
\/ﬁ § |:g7/‘LtB¢/],n‘]ngnt - 0'2’0757" (BQ:TL)

t=1

~~ -~

Linear term I Quadratic term I

1 T K 1 T K
+—— V! B) Jnbnt + —— X! B} TV,
nt,kP2,X knJ/ncnt n,t—1,kP3, X knnVntk

v t=1 k=1 vl = 5

T K
1 . 3
— E BynYni-1+ E B1,x knXni—1,k + Dnt
Ti= k=1

3
N~

Vv Ve
Cross term I Linear term II

where By, ,,, By n, {BLX’k,n}kK:l, {BQ’X’kyn}’i{zl and {Bg,X7k7n}kK:1 are uniformly bounded (in n). The follow-

ing lemmas 2.1 and 2.2 describe stochastic orders of linear and/or quadratic terms.

Lemma 2.1 (Quadratic and cross terms) Suppose Assumptions 2.2, 2.4 (ii) and 2.5 hold. Then,

(i) 7 Zthl & Bnéni—E <7%T ZtT:I vlztBngnt> =0p (\/%) where E£ (nLT Zthl B 5nt) = ;07 ot (Bn) =
O (1).

(it) L& 1 ByEnr — E (L€ 1 Bnénr) = O, ( o ) where E (L€ Bn&Eur) = %agotr (Bn) =0 (%).
(ii1) 7 3i—1 Yok Vg g Bkt = ( ) Note that E <nT Sty Yt Vi Bun kgnt) 0.

(iv) £ 545 VigsBraaur = 0y (74

(v) th 1Zk 1VnthanVntk

. Note that E (E Zk,‘:l VTiT’kBLn,kgnT) =0.

<LT ZtT=1 Zszl Vy{thZ,n,kVnt,k) =0, <\/%> where

K
1
(TZT Z Z nt, k;BQ n, kVnt k) = n Z 0-%/7k’0t,r (B2,n,k) =0 (1) .

t=1 k=1 k=1

(vi) 230, Vo Ban e Var s — (% YK VAT’kBQ’n,kVnTk) :Op< L ) where

1 & | K .
E <n kzl V’r:T,kBQJL,kVTLT,k) — ﬁ kz:l 0'%/7k70t7“ (B2,Tb,k) = O <T> .

12



Lemma 2.2 (Linear terms) Suppose Assumptions 2.2, 2.3 and 2.5 hold. Then,
(Z) % Z?:l .[’Ug_’n’tiangnt = Op (\/%) . Note that E (niT Z?:l I[‘j{l,n,t*l‘Bng~’mf) = 0.

(ZZ) nT t 1 é,n,t—angﬂt—E (ﬁ Z?:l ~é,n,t—angmf) = OP (ﬁ) where E (% Z?:l ~IZ,’rL,t—angnt) =
0 (T) Note that

T—2 T—2
1 - 1 1
~E (U1 —1Bubnr) = s Z(T — 1o otr (PhyBn) — —a > holotr (P}, By)
h=0 h=0
1 1 1

=0(1)

(iti) % Z?:l Dy Byéns and % ZtT:1 25:1 D%tBLn,kf/nt,k have Oy (\/:ﬁ>
- T K T 5 T K T =
(iv) % Doim1 D ke1 Ué,n,t—l,kBl,n,kgnt =0p (\/:ﬁ) Note that E (% Dot Dk Ul3,n,t—1,k;BLn,k5nt) =

E (% Zthl Z?:l ﬁg,n,t—l,kBLn,kV”tvk) =0 (%) Note that

1 K _ 11 K oo 1
n 2B sz BinaVar) = o' <Z ZU%/,k,OP)I(,nh,kBl,n,k> +0 <T2> :

k=1 k=1 h=0

alnLﬁfT)C( 00) (

To derive the asymptotic distribution of éml,nTa consider the stochastic component of 20 except
L™ (6
for M7 k=1,--- 7[{).

aUV,k

n

T
= Z gnt,i
t=1 1

—1

T (Ulm,t—l + U27n,t—1)/ gnt + D;Ltgnt + (E;LtBnEnt - Ug}otr (Bn))

S =)

K / K / K !
=1 \ T2 k1 Us g1 66nt + 2 k1 Vi e Bt + 251 Us g1 1 Vit

and

§nt,i = Ulit—1 +u24t—1+ 5 U3 i t—1,k + 5 5 by n,ij kUit + dnt i | €it
k=1 j=1
2
+bn,ii(€ it + 2€t E bn 4j€it E U3,i,t—1,k Vit k
7j=1

where w141, u2,¢—1, u3,i,t—1 and dys; denotes respectively the i-th element of Uy 5 ¢—1, U2nt—1, Uspi—1.k

and Dp¢. bpij, b1 nijk, b2.n,ijk and b3, 4, denote respectively the (4, j)-component of By, Bip i, Bank and

13



L™ (0 )
Bs , 1. Also, na+c(o)7 k=1, ---, K take the quadratic form,
oV,k
1 T T n
UVk
nTk 20% Z th Vatk — (”_ 1) UVko Zzgm,z,k
TVk0 =1 t=1 i=1
1—1 i1 _1
where fnt k= (M/:o) (vfm — 0’%/7,6’0> + 2051 1 22:1 <%‘\L/T1:o> vj for k=1,--- , K. Note that the expec-

tations of s, and s_ Tk 's are E (s,1) = Zthl 2?21 E (éntﬂ-) =0and F (s ) Zt 1 ZZ W E ( nti k) =

0 for £k = 1,---, K using the statistical independence between ¢; and v;;’s. Let ,u,(3) =F (e?t), u”ﬂo =

E (U?t,k)’ uég =F ( ) and M&/?@O =F ( (U k) for k=1, ---, K. Next, consider calculating the variance of

S, note that
(i-0) E (ZtTfl S (Uing1 + Uzpg1) Enil (Upns1 + [UQ,n,sfl))
i-a

= TZk 1 Us OJVk otT (Zf 0 Zhl 0 th 0@ Sf—hak nhg thn,f—hhk) + TU?,O” (Xhzo PonPan) »
(i-b) E (thl 25:1 (Utnt—1+ Uz pi1) gntgnsDns> =0,

(i-c) E (Zthl S (Uinge1 + Usni1) Ene (EyBrns — ol otr (Bn))) =0,

E (Zf:l Yo by (Ui + Uzne1) Eni sUs st k)

=T34y 02000 ot (Z?O:o 2 h=o P)'c,nf,kPnhQn,f—h,k) )

(o) B (S S0 S Uit + Uaeed) € (Vi Brniéis)) = 0
(i-f) E (Z;le 23:1 (Utnt—1 + UQ,n,t—l)/gnt' (Zszl Uls,ms—l,kvnsyk)) =0,
(ii-a) (Zt 1 Zs 1 ;LththILSDnt) = Ug,o Zthl Dy D,
(i-b) E <Zt:1 2321 Dy Ent: (g;LSBngnS - ‘72,0”’ (Bn))> = /‘230) Z;:l 2 im1 dntibnii;
(o) B (S0 S S DUy e 1x) =0,
(i-d) E (zf S S DLl Bk Vs k)
(i-e) E (Zt D IAED Y A ntgntvns kUn,s—1,3 k)
iy (5 S0 (G = ot (Bu) (B — ol (52)
=T ((/é% - 30670) Yoy bm-i + 0ty (tr B2) + tr (BB, )))
(i) B (7 S0y SR (EBafui — 02t (Ba) - €U 1%) =0,
(ili-c) E (Zthl Ele Zszl (EniBnént — ‘727075 7 (Bn)) - &\sB1mkVns ’f) =0,
(iii-d) E (zle S a1 Yoy (Eni Bt — 02 tr (Bn)) - Vi, Unsmt 3k> =0,
(iv-a) E (Zthl Zstl Zszl Z{il U;z,t—1,3,k5nt57’zsUn,s—1,3,l) = TUe,o Zszl U%/,k,otr ( heso P)/(,nhPXvnh> )
(iv-b) E (Zthl Ele Ei{:l Ellil ]‘U;L,t—l,?),k:g €55 By 1 Vs, l) =0,

14



( E (Zt 1 Zs 1 Zk 1 Zl 1 nt 13k5ntV7;s,zUn,s—1,3,l> =0,

(v-a) E (Zt:l POHED DD Pril] Vot ke BLn et By 1, Vs, l) =To?, it oV otT (BLkaL”’k) ’

( E (Zthl Zstl ZkK:1 leil Vét,kBl,n,kgntva;s,lwn,s—l,&l) =0,

(vi-a) (Z?:l ZST:1 ZkK:1 Zzl; [U%,t—l,g,kVnt,kvés,zUn,s—l,?»l) = TZkK:I U%/,k,otr (Zﬁ“;o Pﬁc,nhPX,nh) :

Then, we obtain the variance of s,, agnT = Var (spr):

o0
2 Tza it [ 3 S° @ kPl Pas@og | + T gt (zza;hpnh) 15)
h=0

f=0h1=0ho=0

K o0 o0
+2T Z 02 00 otT Z Z P p ik Prah@nf—nk | + 020 Z D! Dy,
k=1 f=0h=0 —

T n
+2#S3 Z Z dnt,ibngi +T (( — 3o, 0) Z b2 i T 20?70757‘ (B?Z))

tKl i=1 _ ; .
+To?, Z ok olr ( (Z P)/thPX,nh) + Bi7n7kBl,n,k) +T Z oV olr <Z P)/gnhPX,nh> '

k=1 h=0 =1 heo

2
Also, 0202 = Var( nTk) =(n-— 1)T40+ <<u$3€0 — 30“1%0) ("T_l) + 20‘\1/14:0) for k=1,---,K. Since
<Y, ¥ ko0 k, &, k,

2
E (snTsZ%k) =0forallk=1,--- ,K and F ( S, 1 ksnTl> = 0 for all k£ # [, we can apply the Cramér-Wold

(w)
device to verify the asymptotic distribution of the main statistic, MLT(QO). Here is the detailed proof

strategy:

Step 1: The first step is to verify the asymptotic distribution of the univariate random variables, s,

2 V
and 7% . That is, 222 % N(0,1) and L% % N(0,1) for all k = 1,--- , K. Similar to Yu et al. (2008),
4 SnT a%/
nTk

we apply the central limit theorem of the martingale difference array. The idea of proof is following. At

first, we consider the o-field,

fn,t,i = 0-(611"" y€Enly S E€LE—1," "y Ent—1, €1ty " 7€’it) (16)

and Fpo0 = {&,Q} where Q denotes the sample space. Let Fp, ;0 = Fpnt—1, as a convention. By us-
ing statistical independence between €; and v ;’s, we have E (gnt7i|.7:n’t7i,1) =0, F (6nt,i|fﬂ,t*17n) =0,
E < fo;@\fnm 1) =0,and E < e Faaa n) = 0. From these with %41 C Fp i and Fri—1,0 C Frro,
we construct the martingale difference arrays {fnm», Fogiit=1,--- nandt=1,--- ,T}, and

0.2
{ﬁnf’fk,fn,m :i=1,---,nandt=1,--- ,T} fork=1,---, K. Toapply the CLT to s,,; = Zle S Enti
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o? o? . oy
and s 7, = Zthl Y€ nf‘i’“k, we need to check two sufficient conditions: for all &k

+n
2+77 ka
1 2+77 z : z :E |’£7‘Ltl 0, 2+77 2 : 2 :E nt,z,k —0
Osnr =1 i=1 o'%/ t=1 =1
nT,k

and (11) o2 Zt 121 1E(£ntz|fmt,l 1) - 1’ o2 Zt 121 1E< nt1k|fntl 1) & 1. The first condi-

nTk:
tion is a Liapounov’s condition and the second one is for convergence of the conditional variances to the

unconditional variances.

() 2
. 1 OlnL,;(0o) . oy . . .
Step 2: Note that T 9 consists of s, and Syt k- Since we know the variances and covariances

1 alnngc(ao) d

2
of s, and sii‘; i» the Cramér-Wold device can be applied. Then, we have

N (0, 8y,) where

V/nT 00
QQO = hmT—>oo QOo,nT'
Lemma 2.3 Suppose Assumptions 2.2 - 2.5 hold. If the sequence an o2 . 18 bounded away from zero, then
US:TQ;‘ —> N(O, 1).

Lemma 2.4 Suppose Assumptions 2.2 - 2.5 hold. Then,

(i) ﬁ Zf:l ~,1,n,t—1Bn®17nyt*1 - E% ZtT:1 ~,1,n,t—an®17n7t*1 =0y (ﬁ) where
En%r ZtT:1 ~/1,n,t71Bn@l,n,t—l =0(1),

(11) % Zthl ~’1’n7t_anH~J2,n,t,1 =0, (\/%) where E% Z,:T:1 ~’17n7t_1BnH~J27n,t,1 =0,

(iii) i ﬁé,n,tlen[‘U?,nﬂf—l ~Eqp Yo ~/2,n,t71Bn®27”7t—1 =0p (\/%) where
E% Zthl I[NJIZ,n,t—anIDZn,t—l = 0(1):

(iv) niT ZtT:1 D;ntBn@l,n,t—l =0, (ﬁ) where Dy 1s an n X 1 time-variant deterministic vector with
all its elements bounded for all n and t, and E% Zle D;LtBn@l,m_l =0,

(v) % Zle D;tBn[UZn,tfl =0y (ﬁ) where Eﬁ Zle DalmtBn@Zn,t*l =0,
(vi) for k,l=1,--- | K,

T T
1 ~ ~ 1 ~ ~ 1
T ; Us i1 4xBnUsmi—10 — B ; U3 -1,6BnUs 11 = Op (\/ﬁ>

where E-L ST T[jg,n’t_Lan@s,,n,t—l,l =0(1),

(vii) fork=1,--- | K, % Ethl D;LtBn@?:,n,t—l,k =0, (—) where E-+ e Zt . D}, Bn®3,n,t—1,k =0,

nT

16



(viii) fork=1,--- | K,

T
1 <~ . . 1 . . . 1
— Ui -1 + Uy, ,t—1> B,Uspi—16 — EF—; g <U1, -1+ Ug, ,t—l) B, U3 pi—11 = O <>
nT & " " neen nT & " " nEesn P\VnT

where E% Zle (Iﬁl,n,tfl + @2,n,t71) Bn®3,n,t—1,k =0(1).

From Lemma 2.4, we have the following results:

1 T ( 1 T - ) 1
— E B v g yo =0,
7’LT n,t—1 n, t 1 nT n,t— 1 t 1 ( ﬁnT)

t=1

where E-L 23;1 ffn(;l,anf/(_ll = O(1) from Lemma 2.4 (vi) and (vii),

n,t

T T

. () () 1 () () 1
(ll) nT;Xﬂt lkB Xnt 1l_EnT§X’nt lkB Xnt 1,0 — OP \/ﬁ
where th 1 nt)lkB”Xr(Lt)ll = 0O(1) from Lemma 2.4 for k,l =1,--- , K, and
1 7o) 1 v (=) 1
111 nTtZ:; n,t nt 1,k nth:;Yn,t B Xnt 1k_0 <\/ﬁ>

where B Zt 1Y, ) 1B Xr(l t) 1k = O(1) from Lemma 2.4 (iv)-(v) and (vii)-(viii) for k =1,--- K.

2.6 Proofs of theorems: consistency and asymptotic normality

Proof of Theorem 4.1. We firstly show the uniform convergence of -t In L7 (0) — Qur (6) %, 0 uniformly

in 6 € ©. The main issue is whether the terms

> €00 (0) T (0) = B (£1(0) Juuu (6) )|

t=1

nT

and i 300, ntk(’Yk,Pk)J Vtk (Vi 1) — E(‘Z;t,k (Vs P&) T Vit (%P}Q)] for k = 1,---, K converge

to zero in probability uniformly in 6 € ©. Let

Ent (0) = EX(0) + R, (0 15nt+2 2(01)Ry Bx k. — Bx g (0)) Vit k-

17



a | BaO)R (voln + poWa) = (vIn + pWh, ) Yoi—1 + GuoRn(01) Ryl

where &£/ (0) = X . Consider
+ > ey (Ru(61) Ry ' Bx ke — Bx e (6)) (Ak nXnt—1k + Qg oln )
1 X
ﬁ Z 1/115 (9) In&nt (9)
t=1
1 - X
_ ﬁ25$’ (0) JEA +—Z$A' Ry, (61) R; '€
t=1
2 . .
+ > EX(0) Jn (Ru(01) Ry Bx kn — Bx ki (0)) Vit + = Z ! RVR! (01) JuRy (01) Ry e
1t=1

Z N'I,’LtRT_Ll,R;’L (91) Jn (Rn(el)Rr_LlBX,k,n - BX,k,n (9)) Vnt,k

K T
1 N )
+= 2 20D Vg (B0 R B = Bxen (9)) T (Ba(01) By Byt = Bx1in (9)) V-
k=11=1 t=1
and
1 - -
ﬁzvrit,k(%c:pk)‘]v (Vie» Pk)
t=1
1
= > Fhacin (o =) I+ (o0 = o) W) I (v = 96) T+ (Prp = £1) W) K10
t=1

T
5 1 5 N
Z ni1k (ko = 7&) In + (pro — 1) W) JnVirw + T > Ve rnVark:
t=1

Since (i) 6 is bounded in the compact parameter space © and (ii) R, (¢1) and R, ! are uniformly bounded in
6 € © and (iii) Bx kn (0) and Bx j , are uniformly bounded in § € ©, R,, (61) R;'—1I, and Bx gn—DBx jn (0)
(for k =1,--- ,K) are also uniformly bounded in § € ©. By using Lemmas 8 and 15 in Yu et al. (2008),

therefore,

nLT ; (04 (0) Juwt (0) = E (&1, (6) Juu 8))] 20

and TZt 1 [ nt,k (Vi PE) I Vntk (Vi ox) — B (‘N/Atk (Vs P) JnVnt,k (’Ym/)k))] 50 uniformly in 6 € ©.

Since 02, val, R O'V’K are bounded away from zero,

Lz (6) = Qur (0)

1
nT
I G - -, - »
T Z 207, Z [Vm,k Yis P&) In Vot ke (Vier 1) — B (Vnt,k (Yis Pi) In Vit i (’Yimpk)ﬂ —0

18



uniformly in 6 € ©.

Secondly, we shall show that @, () is uniformly equicontinuous in § € ©. Note that

T K
nLT Z FE ( J 57“5 (9)) = {4nT,1 (9) + qnT,2 (91) + Z qnT,3,k (0) + 0(1)
t=1 k=1

K (7 ” K —-1)(T-1 K
and o 3 Y B (Vét,k (Vs 1) Vit e (Ve pk)) = S g (v o) + ERED K 63+ o(1)

where
i
1 i 2 (01) Ryt (YoIn + poWa) — (WIn + pW3)) Yai—1 + GuoRn (61) Ryt
QnTl -
nT i3 +Zk 1 (Rn (61) Ry Bx o — Bx e (0)) (Ak:n nyt— 11c+04tkol>

(Rn (01) R, (voIn + poWh) — (vIn + pWi )) -1+ duoRn (61) R,

XJn )
+ Zi(:l (Rn (‘91) RngX,k,n - BX,k,n (9)) (Ak nin,t—1k + Oét k Ol )
T—-1 2 —17 -1
an’g (91) = nT 0'670757“ (Rn Rn (91) Jan (91) Rn ) s
r—1, -1 ! -1
I3,k (0) = Wav,k,otr ((Rn (01) Ry, 'Bx en — Bxen (0)) Jn (Rn (01) Ry, "Bx en — Bx in (9))> ,

X;L,tfl,k ((Vk,o — ) In + (Pk,o — Pp) Wn),
XJn ((Vk0 = V) In + (Pro — Px) Wn) Xnt—1k

To show the uniform equicontinuity of Q,7 (#), we should verify (i) Ino? is uniformly continuous, (ii)

and gnrak (Vi P) = =5 25:1]5 fork=1,--- K.

In a%/’k, k =1,---,K, are uniformly continuous, (ili) 11In|R, (61)| is uniformly equicontinuous, and (iv)
qnt1(0), anr2 (01), {@nr 3.k (9)}521 and {qn7 4.k (anOk)}f:l are uniformly equicontinuous.

(i) and (ii) hold because o2, U%ﬂ, e ,a%,’K are bounded away from zero in ©. Consider (iii). For 61,

012 in O,

1 1
~In|R, (61,0)] = —In|Ry (612)]

1 — . 1 = - 1
= ot (Rox (61) Ry (61)) - (M — X2) + i (Rny (61) By (61)) - (v — 72) + tr (Rup (61) ByM (61)) - (p1 — p2)
where 611 = A, v1,01)s 012 = (X2, 79, ps)" and 6y lies between 01,1 and 012. Since Ry (61), Rny (61),
Ry, (01) and R, ! (61) are uniformly bounded for all #; in ©, %tr (Rn)\ (91) Rt (@1)), %tr (Rm (61) R (01))
and %tr (Rnp (91) Rt (91)) are bounded. Hence, we have the uniform equicontinuity of 1 ~In|Ry (01)|. Last,
we consider (iv). By the Taylor expansion, for 6,, 6, € ©

dq1,n7 (0)

891 (QCL - Qb)

qnT,1 (Qa) — 4nT,1 <9b) =
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()

where 0 lies between 6, and 6, and the components of %
E%E?:12 Ry (01) Ry (( oIn + PoWi) Yot + ol )

Oanra(0) 30 (R (1) Ry Bx g — Bx g (0)) (Ak nXn,t—1,k + kol )
(R (01) Ry (voIn + poWn) — (YIn + pWa)) Yot 1 + G oRn (61) Ryl
38 (Rn (1) Ry Bx jon — Bx gk () (Ak,n nt—1k + dt,k,oln)
where Bx jnx (0) = 0Dk (01,7 pr) Ak (Vi &) (Bridn + BopgWn), /

(Rur (61) Ry (Yol + poWa) — In) Yoio1 + G0 Ry (61) Ryl ]
+ 38 (Ruy (1) R\ Bx ko — Bx g (0)) (Ak nXnt—1,k T Qt koln )
(Rn (61) Ryt (voIn + poWa) — (VIn + pWn)) Yo i1 + GuoRn (61) Ry M
+ 3 (Ra (1) Ry By jon — Bx g (0)) (Ak,n X i1,k + @t,k,oln>
where Bx iy (0) = 6Dpr i (01,75 1) Ak (Vi £1) (Bridn + B2 i Wh),
FLST (Rup (01) Ry* (voIn + poWi) — Wi) Y1 + 0By (01) Ry,
Oanr.1(0) + 3y (Rup (01) Ry ' Bx ko — Bx jonp (0)) (Ak nXnt—1k + Ct k,0ln )
(Rn (61) Ryt (voIn + poWa) — (YIn + pW)) Yiio1 + G0 Ry (61) Ryl
+ 30 (R (01) Ry 'Bx gon — Bx i (0)) (Ak: nXnt-1k + @t 0ln >
where Bx kn,p (0) = 0Dppk (01,75 P&) Ak (Vi 1) (B1xdn + B i W),
_E% Zthl 2 [(In + 0Dk (01, Y P&) Aken (Vi P1)) (Ak nXnt—1k Tt koln )]I
aqggf,fg) T [ (Ra (61) Ry (oI + poWn) = (VI + pWi)) Vg1 + o R (61) Ry M |
! I + 3y (Ra (01) Ry 'Bx e — Bxon (0)) (Akn nyi—1k T Qt koln ) |
—-E 1T =12 [(I + 6Dk (01, Vi Pk) Ak (Vies P1)) W, (Ak nXnt—1) + dt,k,oln)
)
)

are

n

1 T
Eﬁ Zt:l 2

OqnT1(01) _
0y

n

n

[E—
~

aqgﬁT;'fa) Y (B (00) By (YoIn + W) = (YIn + pWn)) Yo p-1 + G0 B (01) By
n +ZkK:1 (R (61) Ry'Bx kn — Bx i (0 (Ak:n bt + el ) | ,
—EL ZtT:12 0 (D (9177k7pk)14k,n(’7k,pf)+Dn7k (01,7, P1)) ],
Sanra®) ' X (Brn + B2 Wa) (Ak,an,t—1 k 0tk oln )
o7 ¥ (Rn (61) Ri* (YoIn + poWin) — (YIn + pWi)) Vi1 + G0 Rn (61) Rl
' +Z§=1 (R” (01) R;,' Bx i — Bx kn (‘9>) (Akn nit—1,k + Qtkoln ) |
—BLST 9 8 (Do ke (015 Y 1) Ak (Vis 2) + Dk (01,735 1)) W ,

94n 71 (6) X (Brln + BapWh) <Akn nt—1,k + Qrk,0ln )
)
o (R (01) Ry (voln + poWa) = (YIn + pWa)) Yo -1 + @uoRn (01) Ry ]

X Jn
+ 30 (R (01) Ry ' Bx jon — Bx i (0)) (Ak:,an,t—l,k + dt,k,oln>
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9qnt,1(0) d aanéil(o) =0fork=1.---. K
80' y Y °

=0, an
2
0o? ) vk

Since (i) Ry (61), Ruy (01), Rup (01), Rty Dok (01, V5, £1)s Dk (01, Vi £1)s Doy e (01, Vi £1)
Dok (01, Vi Pr)> Dy k(01,75 ) and Dy, . 1 (01, v, py) (for all k) are uniformly bounded, (ii) 6 is bounded

-
B Y1 2,

take Yy, t—1, Xpi—11s, Gt olp and & ol and By, is an n x n uniformly bounded matrix,

tBan = O(1) from Lemma 2.4 where Znt can

9qnT,1 (9)
06’

in the compact parameter space © and (iii)

is bounded.

Thus, gn7,1 (f) is uniformly equicontinuous. For uniformly equicontinuous of ¢,72(01), it suffices to show
%O’?)Ot’r (R, VR], (61) JnRy, (61) Ry, ") is uniformly equicontinuous. By using the expansion of R,, (61) R;,*—I,
for 9171, 9172 in © we have

2
O¢

7{0 [tr (RV R, (011) JuRn (011) Ry Y) — tr (Ry VR, (61.2) JuRa (612) RyY)]

—2(A1 = ) tr (Jn (—Ran(01)RyY)) = 2(v1 — vo)tr (Jn (—Rny(01)Ry1Y))
“2py = po)tr (T (~Rup(8)RY))

+ (A= A2) (A + A2 — 2X0) tr (( A (01)R1) T (—Rn,\(él)REI)>
%y | A2 = 72) =0 (A = A2) + (i — Aea)) B <( Rox(01)R71)" T, (—Rm(él)R;l))
S 2= (o p2) = o (A = 2) + apr = Aap)) tr (= Rar 0B T (—Rap(01) Ry )

(1 = 72) (11 + 72 = 270) (= Ruy 00 B ) T (R (01) B3 1) )
+2 (=70 (p1 = p2) = po (71 = 72) + (Y191 — Y2p2)) 7"( Ry (01)B;Y) (—Rnp(él)Rﬁl)>

| + (o1 = p2) (1 + P2 — 290) tr (( faw<aofz])’Jﬁ(—fauxel>R;1)) _

where 6; lies between 01,1 and 612. Since Ry, (01), Rpy (61), Rny (01), Ryp(01) and R! are uniformly
bounded, we obtain the uniform equicontinuity of ¢,72 (¢1). To show the uniform equicontinuity of g, 3 . ()
fork=1,---
%tr <(Rn (0) R, 'Bx kn — Bxkm (9))’ Jn (Rn (0) R,'Bx kn — Bxkm (0))) By employing the expansion

’K7

, K, it is enough to verify that property of

of R, (0) Ry, Bx pn — Bx g (0), we have the following decomposition: for 61, 62 in © and k = 1,---
the difference
ot |t <(Rn (61) Ry Bx jon — Bxtgon (61)) Jn (Rn (61) Ry Bx g — Bxkn (91)))
n —tr ((Rn (92) R,_LlBX,k,n - BX,k,n (92)), JIn (Rn ((92) R;lBX’k’n — BX,k,n (92)))

is

THRO (01— Xa) (M + Ao — 20) - 17 (O, () JuCy, (6))
2 (=0 (11 = 72) = %0 (A1 = A2) + (= Aeva)) - tr (G (0)' 1uC, (9) )
—memmrwg—%@rm@+mm—&@»wﬁmgwJO (0))
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+2 (=0 (Brg1 — Brrz) = Brro (A1 —A2) + (A1B1 g1 — 2By pa)) - tr (C qulk (9))
+2 (=Xo (Bag1 — Bakz) — 52,k,o (A1 = X2) + (MiBogy — A2Baga)) - tr <C7){k )" 05214 (‘9)>
+2 ( Ao (% 1 %,2) = Vo (A1 = A2) + ()\I’Yk,l - )‘27k,2)) tr (Cr)L\k ( )/ In CNX (_)>

+2 (=20 (1 = Pr2) = Pro (M1 = A2) + (Mpgr — A2py2)) - tr (C’\ 6)" Jn CpX (7)>

+(v1 —72) (V1 + 72— 270) - tr <C;lk (6)' InCy ), (é)>
+2 (=0 (p1 — p2) — po (71 — v2) + (v1p1 — V2p2)) - T (C‘Zk J CZIC { )
nk

(
(—70 (51 k1 51,k,2) - Bl,k,o (71 —72) + (7151,k 1~ V2061 K 2 (CV Cflk (9)>
+2 (—’Yo (52 k1~ 52,k,2) 52 k,0 (v1 —72) + (7152,k,1 - 72/82,k 2 tr (C7 C’ka (é)>
(=70 (Vi = Y2) = Yo (1 = 72) + (V1761 — V2Vk2)) - BT ( . (0 )/ CWX (0 ))
( /

+2 (=70 (P2 — Prz) = Pro (1 = ¥2) + (NPt = YaPi2)) - tr (c;k (0) JaCl" (0))

+(p1 = p2) (1 + p2 = 200) - tr (Cg,k (0) 1.2, (0))

+2 (—Po (51,1@,1 - /Bl,k,2) - 51,k,0 (p1 — p2) + (P151,k 1= P2bh k 2 “tr (C J Crﬂzlk (é)>

+2 (*Po (ﬁzk,l — BQ,k,Z) — Bako(p1 — p2) + (P152,k 1~ P2Ba 2 tr ( J Cfi: (§)>

+2 (=p0 (V1 = r2) = o (p1 = p2) + (P1Vk1 — P2Yk2)) -t (Cfi k(0)'J CZ’E (7))

+2 (=po (Pr1 — Pr2) — Pxko (P1— p2) + (P1Px1 — P2pr2)) - tr (CZ k(0 ) CZ)?; (é)>

+ (Brgs = Bira) (Birs + Bira —2B1x0) - tr (Cflkk (é)/ Jncf,lk’k (é))

+2 (~Brio (Baka — Baiz) = Bawo (Bria = Bria) + (BriaBous = Briraboia))tr (C (0) 1.C25" (9))
+2 (B0 (k1 —Vr2) = Yro Brra — Brrz) + (BrraVes — BrraVre)) - tr (Cﬁl (9) JnCZfli’k (é)>

+2 (—51,k,o (Pk,1 - Pk,2) — Pk,0 (51,k,1 - 51,k,2) + (51,k,1pk,1 - Bl,k,Zpk,Q)) tr (Orﬁzlkr (9) Janl’f];’k (9)>

+ (Bog1 — Bakz) (Bags + Baga —269x0) - tr (Cf,zék (‘9)/ Jncf?k’k (é))

+2 (=Boso (Ve1 —Vh2) = Yro (Bak1 — Bakz) + (BoriVx ks — Bok2Vxka)) - tr <Cr€,2k7k 6)' C?fzi (6 ))
+2 (—ﬁz,k,o (Pk,1 - Pk,2) — Pk,0 (52,k,1 - 52,k,2) + (52,k,1px,k,1 - 52,k,2px,k,2)) “tr (Cf,zk’k (9)/ ‘]"sz)l(c (é)>

+ (ve1 — Ye2) (Vb1 + VE2 — 29k0) - BT (CZ’;'“ (9), JnCka (é)>

+2 (= V1o (Pk1 = Pr2) = Pro (Vea — Vo) + (Vk1Pe1 — VeoPro)) - tr (CZf;i’k (0)" JuCox " (@))

+ (i1 = Pr2) (Prg + Pz = 20k0) - 17 (Q’Zﬁi’k (8) T Cpx’k (9))]

Since Ry, (01), Ry (61), Rny (01), Ryp (01), Ry, L Dok (01,7 Pr)> Dok (01, Vs Px)> Doy ke (015 Vs P&)s D e (01, V5 Pk
Doy o (01,74 pi) and Dy (01,74 i) (for all k = 1, , K) are uniformly bounded for any 6 in ©, we

obtain the uniform equicontinuity of ¢,7 3 (f). Last, the uniform equicontinuity of {gn7.4 1 (71, pk)}le can

X!
. 1 T n,t—1,k
be verified because — >, F ! -

In [Xn,t—l,k Wan,t—l,k] =0 (1) forallk=1,--- K.

By combining the results by the two steps above and the identification uniqueness assumption, we obtain

22



Ormint — 0p. W

Proof of Theorem 4.2. By the Taylor expansion,

N ()

~ 1 82 In LnTc (enT) 1 dln LnTc (90)
T (gm n -0 = 1 - ’ - A n -A n
Vi (Bmir ~ o) ( nT 0600 JnT 09 R

— ~ 2
where 0,7 lies between 6y and 0,,; ,7. Note that —%%{W contains the first and second derivatives
2 2
of Ry, (01) and {Dy,x (61,74, )}y, the difference between —%%{W and —%%ﬁd@’fw can be

characterized by (from the Taylor approximation) § — 6y multiplied by some function containing up to the
third derivatives of R,, (61) and {Dy, (61, V%, %)} szl. Because we assume existence and uniform bounded-
ness of the first, second and third derivatives of R, (61) and {Dy, 1 (61,7, px)} szl, we can apply the similar
strategies of (38) and (39) in Yu et al. (2008), and show that

1 82 In LnT c (9nT) 1 82 In LnT c (90) —
_ ’ S s L L 7 = |0, — 0ol - O, (1 17
< nT 0600 ( nT 0600 ) [ = o]l - O (1) (17)
and
1 92In Lyr. (o) 1
o ; —Soomr | =0, | — ) . 18
( nT 9000 %o T) ’ <\/7TT> e
Hence,
i 9% 1n LnT,c (énT) - i 02 1n LnT,c (énT) i 0%In LnT,c (00)
nT 0006’ N nT 0006’ nT 0000’
1 82 In LnT c (00)
~ = ST Y Sont ) + Soom
< nT 0000 o, T) 200,01
_ 1
— Bur 60| -0, (1) + O, (W) -
Note that H@nT — 90H = 0, (1) by Theorem 4.1 in the main text and Yy, 7 is nonsingular in # in some
2 n ol
neighborhood of 8y under large n and T by Assumption 4.8. Hence, —%m%%—w is invertible and it
is of Oy, (1). Then, we have
VAT (D — o) = (5 Z 0 Lo (r) O amnE ) A A
n mlnT 0) — nT 8089/ \/ﬁ 90 1,nT 2,nT
o) —o,() —o(VR)+o(Va)+on(dr) =
which implies éml,nT_HO =0, (max (%, %, %) . Since (i) g, = lim7_.o 3¢, 7 exists and is nonsingular,

(i) Ay pr = \/?an,l(ﬁg) + O( %) + O, ﬁ) by Lemmas 2.1 and 2.2, (iii) Ag,r = \/%an,g(%) and
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(iv) \/%aln%ig(eo) < N (0,€,) by Lemma 2.3, we obtain the desired asymptotic distribution result for

VnT (9ml,nT - 90)-

Proof of Corollary 4.3 By Theorem 4.2, we have

- n__ T _ _ n T 1
vnT (le,nT - 90) +4/ Tanl,nTan,l (6o) + 1/ EZQO];TLTGTLQ (6o) + Oy, (max (ﬂ / T3 \/n:’ \/T))

4N (0,25,190,%5)

. e -
Since eml nT — eml,nT - 7{ [ 29 nTa” 1( )] |9:9ml,nT T n [ 29 7, 2( )} |9:éml,nT’
V nT <9ml nT — 90) i) N (07 2901990 90 ) lf

\/? ([ 9_,11@%,1(9)] |9:9ml,nT - g_o{nTan,l(Go)) 2o (19)

\/Z ([29 nrn,2(0 )} |0ty oz — ZgofnTan,2(90)> 2. (20)

Assume 75 — 0, % — 0, (19) and (20) can hold. First, consider (19). From the proof of (i), ¥,

O.nT ezéml,nT -
1 111
Yo nT—l—O <max<\/ﬁ,7,ﬁ)>. Hence,

and

([ Q;Tan,l(e)} |9:@ml7nT - Eg_ol’nTan,l(‘go)) (21)

(29_,31T|9:Z)mlynT - 29_017”7“) an,l(éml,nT) \/ TxgolnT (an,l(éml,nT) - an,1(90)>

1 11 A _ N
: O <maX <\/717T T )) an,l(eml,nT) \/;290 nT (an,l(aml,nT) - an,l(eo)) .

Since Oy — 00 = O, (max (L 4 l)) and an1(0g) = O (1), (19) will be valid if %an,l(énﬂ is sto-

%%m

VaT? T’ n

chastically bounded, where 8,7 lies between 9ml,nT and #y. For this, we will show %an,l(ﬁ) is uniformly
bounded in a neighborhood of 8y. Since a, 1(9) includes W, R,‘ll(Ql), Ry (01), Ruy(01), Rnp(01), An(61),
00 Al (6y), 202, Yoo kn(%m/’k) and 55— for k= -+, K, therefore, %an’l(ﬁ) consists of W,
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351(91), Rn,)v\(el)a Rn,)\’y(el)v Rn,)\p(el)v Rn,'y’y(al)7 Rn,’yp(el)a Rn,pp(el)a _ﬁ

0 0
axbn Y61) = —R.'(61) Rax(61) R, (61), %Rﬁl(el) = —R, (61) Ry (1) R, (61),
0
%Rﬁlwl) = —R.'(61) Rup (61) R, (61)

a [e.0]

ﬁZAZ 0) = —ZhAh L(01)Rox(01) R L (61) An(61),
h=0 h=1

8 [e.e] o0

872’42 (01) = D hATH01) (—Rury(01) R, (01) An(61) + R, (01))
h=0 =

a o0 o0 3 B

87)2145; (61) = D RAL(61) (—Rup(61)R, " (61) An(61) + R, (61) W) ,
h=0 =

a oo oo 3
WZA W) = DAL v 1),
h=1
a o
TZA ,n(’Ykapk) = ZhAh 1 ’7k7/0k W
k h=0
and —5- L forall k=1, ---,K. By Assumptions 4.3 and 4.5, all these components above are uniformly
V

bounded. It implies that 9, ap,1(0) is uniformly bounded in a neighborhood of 6y. Lastly, (20) can be
shown. Note that

\/Z ([Z;iTamg(G)] |9=9mz,nT o EgolmTa”v?(eO)) (22)

/T _ 5 /T 5
= n (Ze nrlo— Omimr Eeol,n:r’> an,2(Ominr) + ZeolnT (an,2(9ml,nT) - an,2(90)) .

By the same logic of showing (19), we have to show %ang(ﬁ) is uniformly bounded in a neighborhood of

0. However, this can be directly verified because ay, 2(0) just contains R, 1(61), R, (01), Ry (01), Rnp(01),

2(172, 20 for k=1,--- K. As 0,7 2, o, all of elements in %an 1(0,7) and %anQ(énT) are Op(1). W

Proof of Theorem 4.4 (i). Since Yt = R ((voln + poWa) Yo t—1 + Zk 1 Bx knXnt i + €no + aroly +

T

. 1

Cn,ml(e) = fZ(R (91) nt_(lyl +PW nt I_ZBan ntk)
t=1

_ 1 i (Rn(el)Rﬁl (YoIn + poWn) — (vIn + pWi, )) t—1
T t=1 + 25:1 (Rn(gl)RngXJg,n - BXJC,n (9)) Xnt,k =+ R (Gl)R (cn() + Oétol + gnt)

Hence, by the mean value theorem, for each 6 € ©,

én,ml(e) = % Z?:l ()\0 - )\) : [(_Rn)\ (él) R ) (('}’OI + pOW ) n,t—1 + Cpo + gnt) + Zk 1 CT)L\k (é) Xnt,ki|
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++ 3 (o =) {(—Rm (01) RY) ((oIn + poWn) Yoot + €no + Ent) + Yaao1 + Xy Ch (0) Xnt,k]
+1 2121 (po— p)- [(_Rnp (61) Ry Y) ((voln + poWa) Yae1 + €no + Ent) + WY1 + Spy Cr i (9) Xnt,k]
+7 DRFARD Sy (B1ko = Bik) - CrﬁL,lk’ (0) Xuts + 7 POYARD Sy (Bako — Bog) - Cff?;; (6) Xtk

7 S et (o = 1) - Gk (0) Xuer + 5 300 S0l (oo — 21) - k™ (8) Xow

+cpo + % Z;f:l &, where 0 lies between 6 and 6y and because 2;{21 oy = 0.

Hence, we obtain

éi,ml(éml,nT> —Cip

1 & A
= 72 (b duwar)

K
(_RnA (él,nT) R, ) ((voIn + poWhn) Ynt—1 + €no + Ent) + Z C nT Xtk
k=1 i
(V 5 ) (_an (él,nT) R, ) ((voIn + poWhn) Ynt—1 + €no + Ent)
0~ ImlnT) "
1 +Yn7t—l + Zkzl Cn,k (enT) Xnt’k

+
Nl =
(]~

-
Il

(_Rnp (91,nT) R, ) ((voIn + poWhn) Yo t—1 + €no + Ent)

(pO - i)ml,nT) :
+WnYn,t—1 + Zk:l Cz k (enT) Xnt,k

+
Nl =
(]~

-
Il
—

1 e . .
> (Bano- ﬁg,k,ml,nT) (O (Bur) Xuia].

k=1

+
N~
Mﬂ

(ﬂl,k,o - Bl,k,ml,nT) : [Cflkk (On1) Xt k] +

IIMH

[y

t

= 114
Mx

T

. _ 1
(Vo = VkminT) - [Czjfck (apen k} + = Z
T

+
NI =
(]~

(Pr.0 = Prmint) - [C,p;;i’k (6n1) Xnt,k]i

“
I
L
i
o
i

1

E
o

N[~

_l’_

o+
Il

1

where 0,7 lies between 9ml,nT and 6g. Since 9ml,nT — 00 =0, (max ( \/17, %, n)) from Theorem 4.1, the
dominant term of Cz‘,ml(éml,nT) —cip is % Zle eir for each ¢ and the remainder terms except for A T thl €it
is O, (max (ﬁ, %, %)) Therefore, for each i VT <éi,ml(9ml7nT) — ci70> 4, N(O,aao) and éi,ml(éanT)’s

are asymptotically independent with each other.

26



Consider (ii). Using ayp = ayg from Zthl a0 = 0, note that

Ot i (éml,nT) — Qyp

= ()\o — j\mz,nT) ' %l;@

K
(7Rn)\ (él,nT) R ) (('Y()I + poW ) n,t—1 + oo + Ent) Z 07)7/\7]{; (9nT) Xm;k]
k=1

r K
n ( Rn'y (01 nT) R ) (('YOI +P0W ) n,t—1 +at0+5nt) +Ynt 1 +ZC
k=1

+ (70 - ’A}/ml,nT) "

+(Po = Pminr) -~
- " +WnYn,t—1 + Zk—l Cn k (enT) Xnt k

1 (_Rnp (91,nT) R ) ((701 + POW ) n,t—1 + oo + gnt) ]

1

+ -
n

(51,k,0 - BLk,mz,nT) : %l; [Cf},c’k (Capen k} + Z (52 k0 — 62 kel nT) I [Cffk’k (0n1) Xnt s

K

1 — A

El; [CZ’,; (0nr) X k} + Z PE0 — PhminT) -
=1

1 T

+> (k0 = VkminT) -

e
Il
—_

where 0,7 lies between éml o7 and 6. Since @ml’nT — by =0, (max (\/% L l)), the dominant term of
vn (dt7ml(9ml7nT) — Oét0> is flné’n This yields (i) v/ (& mi — o) LA N(0,02,) and (ii) the estimates

Gpmi’s for t =1,--- T are asymptotically independent with each other.

Verifying (iii) can be done by applying 6., a1 — 0o =0y <\/%> if 7 and n% —0. 1

2.7 Calculation of R, (0;) and In |R,, (0)]
For the inner loop (evaluation of spatial-time filter R, (6;))

Note that R, (1) is the spatial-time filter of our model. Since a component of the inner loop is to evaluate
R, (01), we need a numerical approximation method. If we take a high order approximation, a computation
cost of getting R, (A1) increases explosively when n is large. In Table A.1, we provide the performance of
iterations and several approximations for R, (61). For this experiment, we use (row-normalized) rook and
queen matrices for W, and fix n = 49, § = 0.95 and 5 = 0.4. We consider four combinations of (Ao, py):
(0.2,0.2), (0.2,-0.2), (—=0.2,0.2) and (—0.2, —0.2). If |X\o|+7¢+]|po| is small, convergence speed will be rapid.
50 010) = R 010)||_/ |5 010
where ||-||, denotes the spectral norm and Rg)(el,o) is set to be I, — \W,,. By Table A.1, we observe

To measure performance of iterations, we use the relative norm,

that numerical errors decrease when taking more iterations for all cases. By taking the second iteration for
approximation, we observe the dramatic reduction of numerical errors. If signs of A\ and p, are different, it

seems convergence speed becomes rapid.
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For the outer loop (parameter searching)

In evaluating In L, 7. (f), a demanding part is to calculate In|R,, (61)| at each 1 € ©;. Even though we
use conventional SDPD models, evaluating the log-determinant is computationally burdensome when (i) n
is very large or (ii) there are multiple spatial weighting matrices, or (iii) we have a nonlinear specification
(i.e., In|I, — W, (\)| where W, (\) is a nonlinear function of \). Calculating In |R,, (61)| is more demanding
because (i) it is a highly nonlinear function of A, 7, and p, and (ii) it also contains infinite-order polynomials
of W,. Hence, developing technology for calculating In |R,, (/1)| might be meaningful because (i) it can

reduce computation costs and (ii) might suggest an alternative way under large n.

One approach is to change In|R,, (01)| by a function of trace. Consider the form of In|A,| where

A, = B, + C, = B, (I, + D,) where D,, = B,;1C,,. Then, we have
|An| = | Byl - exp (tr (In (I, + D,,))),

where In (I, + D,) is the matrix logarithm of I, + D,.* If |[D,|| < 1 where ||-|| is a proper matrix

norm, In (I, + Dy) can be represented by In (I, + Dy) = —>°%2, EDu) and we have In |An| = In|B,| —

J
g tr((=Dn)?)
=1

Zoo tr(( Dn))

-1 i . Then, a feasible approximation In|A,| ~ In|B,| — >

can be employed in

practice where J is a chosen positive integer.

For example, consider the approximation of In |I,, — A\W,,| where |A\| < 1 with a row normalized W,,. By
using |1, — AW,| = exp (tr (In (I, — AW5))) and In (I, = AW,) = =32 ”Wn , we have In|I,, — A\W,,| =
— Z;O 1 /\]trg. ) . The details can be found in LeSage and Pace (2009). We can apply the same strategy to
our model. Because we know R, (61) = (1 + 0v)I, — AW,, — 0Dy, 1 (01) (vI, + pWy,), the decomposition

[ B (61)] = [(1 + 67)In| - exp (7 (In (In, — Fr (61))))

where F, (61) = 1255 Wn + 1555 Dot (61) (vIn + pWa). If [|F (61)] < 1, we obtain In (I, — F, (61)) =

(i
-2 j01 . It implies In|R, (01)] = n - In(1 + dv) — 2272, t(Fr;il)). In Table A.2, we present the

performance of feasible approximations,

J tr F] (0)
(In|R, (01)’)( J)y="n" In(1+ dv) — Z ( ! )

Jj=1

(23)

where J = 1,2,3,4 and 5. We evaluate the performance of those approximations by considering

supy, co, |(£1n|R, (01)])(J) — LIn|R, (61)|| for J = 1,---,5 where ©1 is set to be [—0.2,0.2] x [0,0.4] x

3See LeSage and Pace (2009), pp. 96-97.
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[—0.2,0.2], n = 49, W), is considered as rook and queen matrix and In |R,, (01)| is directly calculated through
Matlab. We observe the approximations will be finer corresponding to increasing the order J. This result

generally holds for large n.

3 Some additional simulations

In this section, we introduce more simulation results to support our empirical analyses. Via Table A.3, first,
we report simulation results with the same setting in the main draft but 6 = 0.5. The next issue is capturing
the true time-discounting factor (denoted by dp). In recent structural estimation analyses, time-discounting
factor dp is usually a primitive parameter. For dynamic discrete choice models, Komarova et al. (2017)
argue that identifying dg is possible under the limited model specification (linear-in-parameter assumption).
Under a general model specification, we have difficulty in identifying Jq since a log-likelihood function might
be flat around dg. Instead of estimating g, hence, its value might often be selected by economic reasonings
(e.g., long-run interest rates or capital-output ratio) in the empirical macroeconomics literature.. Since there
is no general guidance in selecting dg in the statistical aspect, we want to give some practical evidence to

determine an appropriate (well fitted to data) time-discounting factor in a forward-looking SDPD model.

By Rothenberg (1971), identification under likelihood theory is based on the information inequality:
E(InLyr.(0,0)) < E(InLyr.c(6o,90)) for any 6 € © and 6 € [0,1).

Identification uniqueness is achieved if (g, dp) is the unique maximizer of E (In L,z (6,)): by the strict

information inequality,
E (ln LnT,c (0, (5)) < F (111 LnT,c (00, (50)) for all (0, 5) 7é (90, (50) . (24)

By doing simulations, we evaluate four likelihood measures for different values of d: (i) average empirical joint
log-likelihood (E'In L), (ii) average empirical partial log-likelihood (FIn Ly), (iii) Akaike information criterion

(AIC), and (iv) Bayesian information criterion (BIC).* The four measures are based on the (concentrated)

4
The formulas of the four measures are

]~

In Lnyc ([énT,ml] ,5) )

EWL(5) = }zljlnLnT,c([énT,ml}l,aym(a):% l
=1

l

Il
—

AIC () % zl: (—21n Lot ([9”’"”]1 ,5) 124+ 5K)) . and BIC (6) = % i (—2 In Lop.c ([H"T*"”L ,5) +In(nT) - (4+ 5K))
=1 =1

where I denotes the number of repetitions (set to be 400), In L’IIjT,C (+) represents the log-likelihood function only relevant to the

main SAR equation, and 4 4+ 5K denotes the model’s dimension.
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log-likelihood, so our purpose is to verify the strict information inequality (24) via simulations.

We consider the same DGP process in Monte Carlo simulations of the main text. Throughout the exper-
iment, we fix \g = 0.2, 79 = 0.4, py = 0.2, and all remaining parameters are set to be the same in the main
draft. We consider the six scenarios and evaluate the suggested measures at various d’s (i.e., misspecified
§’s).% The first case represents a forward-looking model (5o = 0.95), small number of observations (n = 49
and T = 10), and a low signal-to-noise ratio (SNR) (K = 1); The second model is generated by dg = 0.95,
(n,T) = (49,10), and a high SNR (K = 2); the third scenario is generated by dp = 0.95, relatively large
number of observations (n = 81 and 7' = 30), and K = 1; the fourth model sets §o = 0.95, (n,T") = (81, 30)
and K = 2; the fifth model is a myopic model, (n,T) = (81,30) and K = 1; The last one is generated
by 09 = 0 with (n,T) = (81,30) and K = 2. First, we evaluate and compare the likelihood measures for
different §’s. This investigation gives validity of employing the suggested likelihood measures when we select
a proper 0 among possible candidate values. For all cases, we observe that the four measures are equivalent
in the sense of selecting dg. Second, we try to evaluate effects of misspecified § on estimating the main
structural parameters Ag, 7y, and py. For that purpose, the bias-corrected QMLE is considered and its

RMSEs are evaluated across various ¢’s. Simulation results are reported via Table A.4 and Figure A.1.
e Model 1: 690 =0.95, K =1 and (n,T) = (49, 10)

The ElnL indicates that § = 0.9 is the best model. However, some irregular zig-zag patterns are
observed in Eln L. If we compare the cases of § = 0 and 0.95, the EIn L chooses the myopic model. It
implies that choosing &g by the likelihood measures may not work in this case. For A9, the RMSE takes
a U-shape in 0 and is minimized at 6 = 0.5. For 7,, the RMSE is minimized at § = 0.9 while the case of

0 = 0.925 shows the best performance for p,. However, it is hard to observe a regular pattern of effects.
e Model 2: g =0.95, K =2 and (n,T) = (49, 10)

In the sense of Eln L, the model with § = 0.99 is the best. We observe Eln L tends to increase from
§ =0tod = 0.99. Around the true value §g = 0.95, however, some irregular behaviors of EIn L are observed.
It means we can distinguish between the two models, (i) myopic and (ii) forward-looking models, while the
true d¢ is difficult to be identified via ElnL. The behaviors of RMSEs are similar to those of Model 1.

However, irregular patterns disappear relative to the Model 1’s case.

’Since we consider Durbin regressors, the exact number of exogenous variables is 4 if K = 2. For this model, 8, 5 o = Bs.9.0

are selected as the true values.
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e Model 3: 6y =0.95, K =1 and (n,T) = (81, 30)

The third model describes that many observations are available relative to the first case in both time
and space dimensions. Under large finite samples, the likelihood measures can distinguish the true forward-
looking model from the myopic one: EInL (0) = —1,799.54 < —1,798.69 = En L (0.95). However, we
do not observe a specific relationship between Eln L (§) and §. Also, the likelihood measures show almost
similar values around the true dp = 0.95 (if 6 = 0.975 and 0.99). In this case, it is hard to choose a correct
time-discounting factor among economically reasonable ¢’s (e.g., 0.95 < §y < 1). The RMSEs of parameters
Ao, and 7, are respectively minimized at the true value do = 0.95. The RMSE for p, is minimized at
0 = 0.7. However, the RMSEs take similar values for 0.7 < § < 1. Compared to Models 1 and 2, having
more observations gives evidence of identifying dg by the likelihood measures and good performance of the

QMLEs around 4.
e Model 4: 69 = 0.95, K =2 and (n,T) = (81, 30)

Via Model 4, we perform an experiment on a high signal-to-noise ratio case by including (significant)
exogenous regressors. Compared to Models 1, 2 and 3, the likelihood measures show smooth behaviors (no
zig-zag pattern) and are optimized around the true dg. It means the more transparent relationship between
ElInL(6) and §. Hence, we can conclude that the likelihood measures perform well in identifying do if we
have sufficient observations with rich exogenous variables. On estimating Ao, 7, and py, the RMSEs are

minimized around the true value dg except for the case of p;.
e Model 5: 09 =0, K =1 and (n,T) = (81,30)

By Models 5 and 6, we consider identification of §y and misspecification errors if the myopic model
(8o = 0) is the true one. The Eln L (§) is optimized at §g = 0 and becomes far from the true one if a large
§ is selected (i.e., Eln L () tends to be a decreasing function of §). Even for the case K = 1 (relatively
low signal), it seems that considering likelihood measures is good to identify Jg if the true model indicates
myopic economic agents. For all parameters, the RMSEs are minimized at the true values and they increase
corresponding to increasing §. In case of the myopic model, therefore, identifying §y can be done via the

likelihood measures and the misspecification errors are consistent with econometric theory.

e Model 6: 09 =0, K =2 and (n,T) = (81, 30)
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Model 6 describes the similar DGP process to Model 5 but the relatively high signal. We observe similar
behaviors of E'ln L () and RMSEs to those of Model 5.

4 Interpretations of our model and some empirical tools

This section introduces some practical and useful tools that are employed in our empirical analyses. Detailed

forms and derivations of those tools and measures are included.

4.1 Cumulative effects

The cumulative effects of x;; ,, on y;; can be calculated by 8(30% = [R,_Ll (In + 0Dy, kAL p) (/Bl,k,OIn + ’827k70W”>]ij .

Jt.k

4.2 Empirical tool I: Rational forecasting

One useful property of employing dynamic models is providing a prediction of future economic variables.
For forecasting horizons h = 1,2, -,

K h h

By (Ynpen) = A Woara+d Y AR Bxpn AL, Xurk + Y AR eno
k=1 g=0 u=0

K h
+ Z Z (AzigR,;lBX’k’nAim) Cn kot AZR;I (Oét,Oln + gnt)

By employing {E; (Yy,141)}5oq, We can forecast the expected agents’ future actions on the MPE. In contrast
to the forecasts from conventional dynamic panel data model (including traditional SDPD models), our

forecasts reflect economic agents’ forward-looking behaviors.

4.3 Empirical tool II: Impulse response functions

8[Et(ynﬂt+h)]i _
2T -

Forh=1,2,---, ZZ:O AZ_gRngkaAz | .- Since Yy is linearly transformed by X, s,
bl ,LJ

the impulse response functions only depend on W, and the parameters.
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4.4 Empirical tool ITI: Welfare analyses

Last, we suggest some concepts to give policy implications. Note that i’ is recovered by ¢y :
-1
((I + Z 'D,, l) + Z Z 8Dy, (Z Ay n) (B1xoln + BakoWn) hl,k) Cno-
k=11=1

Given a panel data set {Ym,Xm}t:O, and W, with the identified parameters, Ao, 7o, Po; 51,0, 82,0, Vx,06

Px,0) Cno and {ato}thl, we have the agent i’s recovered per period payoff at time ¢,

K
i (Yots Yni—1, Xnt: Ml s 03 00) = ¢ <Z (Bikoln + BogoWn) Xnws +mly + atﬂln> Yit (25)
k=1
1—
+AoYitwi. Yot + poYitwi. Ynt—1 — %(yit —Yir1)? — 2% v
fori=1,---,nandt=1,---,T. By (25), we can also specify the (approximated) i’s lifetime value :
Vi ({Ynta Yn,tfla Xnta 77:;)’ ato}tzl ; 00) = Z 5t—1ﬂi (Ynt, Yn,tfl, Xm, T]%}, a0 90) . (26)
t=1
Using the same logic, a measure of social welfare is
n
A~ . T ~ . T
W ({00 Yo, X it 00,y 160) = D2 Vi ({¥ots Ve 1, Ko ity 0}, 160 (27)
i=1

Hence, we can evaluate (i) the i’s immediate payoff @; (+), (ii) his/her lifetime value V; (-) and (iii) social
welfare W (-).
In many applications, we would like to know effects of some exogenous characteristics on the i’s lifetime

payoff as well as social welfare. Given {Y,,r, X,,r}, we define

h—1
Xf,:m;l,k (XnT 3 V.00 Pr.0> Cnk,05 Ot e0) = AZ,anf[yk + Z A} nCnk,0 + AZ,naT,oln (28)
s=0
forh=1,2,---,and k=1,--- , K and
h h—1
Y n (Yar, Xor, -, Xurii 00) = A YnT+ZZAh Ry Bx g X gk + O AnRy o (29)
k=1 s=1 s=0
o0
for h =1,2,---. Using the generated { nTJrh,XiTJrh}h AL re-define the measures (25), (26) and (27)
by
@l (Y i Yaren—1s Xpqans s ar.0, {Yaur, Xur} 5 60) (30)

K
= ¢ <Z (ﬁl,kpfn + 52,k,0Wn) XiT—f—h +n, + aT,Oln) Y,k T+h
k=1

1 —x 2
F F F F 2 0 F
+X0€i Y, o nwi Yo ryn + Po (ngn,T-&-h) Wi Yy rip—1 — (e v,k T+h — € e Tih—1)" — 9 (6;Yn T4h)

33



WhereYnFT:YnT,izl,---,nandh:1,2,---,

H
f/z'F ({Yar, Xur};60) = Z 5t71ai (Yn}j‘T—l—hv erTJrh—la XﬁT-&-h?nZ}a aro, {Yor, Xur}; 90) (31)
h=0
fori=1,---,n and
WF ({YnTa XnT} ; 00) = Z ‘Z‘F ({YTLT7 XnT} ; 00) (32)

=1

for some sufficiently large H > 1. From (30), (31), and (32), we conduct a welfare analysis. For example, con-
. !/
sider that a policy change x; 71, for the individual j by A;. Let X,,7 = [$1,T,k: e TR+ Ar - me’k]

where XnT = <XnT,1,"' 7XnT,ka"' 7XnT,K>~ Using XnT, we can evaluate VZF ({YnT,XnT} ;00) and
wF ({YnT, XnT} ;0()). Hence, the (expected) effects of that policy on i’s lifetime value and social welfare

can be specified by the following differences:

Ay, = VF ({YnT,XnT} ;00)—171.F ({Yor, X} :00) and Ay = WF ({ynT,XnT} ;90) W ({Yor, Xor} 3 60) -

References

[1] Blackwell, D. (1965): "Discounted dynamic programming", Annals of Mathematical Statistics 36, 226-
235.

[2] Fuente, A. (2000): "Mathematical methods and models for economists", Cambridge University Press,
United Kingdom.

[3] Komarova, T., F. Sanches, and D.S. Junior (2017): "Joint analysis of the discount factor and payoff

parameters in dynamic discrete choice models", working paper.

[4] Lee, L.F., and J. Yu (2010): "A spatial dynamic panel data model with both time and individual fixed
effects", Econometric Theory 26, 564-597.

[5] LeSage, J., and R. K. Pace (2009): "Introduction to spatial econometrics", Boca Raton, FL, Chapman
and Hall/CRC.

[6] Stokey, N. L., Lucas, R. E. and Prescott E. C. (1989): "Recursive methods in economic dynamics,

Cambridge, MA: Havard University Press.

[7] Yu, J., R. de Jong, and L.F. Lee (2008): "Quasi-maximum likelihood estimators for spatial dynamic
panel data with fixed effects when both n and T are large", Journal of Econometrics 146, 118-134.

34



Table A.1 : Performance of several approximations for R, (6,)

Case 1: (%,70,p0) =(0.2,0.4,0.2)

Case 2: (/10 ' Vor ,00) =(0.2,0.4,-0.2)

A rook A queen A rook A queen

matrix matrix matrix matrix

RP@)-RY@)|/|[RP@)| 02618  0.2498 RP@)-RY@)|/|RO@)] 02390  0.2602
RO@)-RP©@)|/[R?@)]  o.0191 0.0222 RO@)-RP@)|/|[RP@)|  o0.0198 00213
RYG)-RO@)|/[RP@)]  0.0040  0.0046 RY@)-RO@)|/|[R®@)]  0.0020  0.0021
RO@)-RO@)|/|[RP@)|  0.0036  0.0040 RO@)-RO@)|/|[RP@)|  0.0005  0.0004
RO(6)-RO@)]/[R® @) 0.0030 0.0025 RO(6)-RP(6)]/|[R® &) 0.0003 0.0002
RP(@)-RO@)|/|R?@)|  0.0002  0.0001 RP(@)-RO@)|/[R@)| 00000  0.0000

Case 3: (ﬂo, Yo ,00) =(-0.2,0.4,0.2) Case 4: (10,70, ,00) =(-0.2,04,-0.2)

A rook A queen A rook A queen

matrix matrix matrix matrix

[R® (@) -RP@)]/|R® (&) 0.2390 0.2120 |R® @) -RP @) /R (&) 0.2618 0.2634
RO@)-RP@)|/|R?©@)] 00198 0.0201 RO@)-RP@|/[RP@)] 00191 0.0209
[R@@)-RO @)/ |[RP 6] 0.0020 0.0021 IR @)-RO@)|!|[RP 4] 0.0040 0.0037
RO@)-RO@)|/|R®®)] 00005 0.0005 RO@)-RP@)|/|RP@)] 00036  0.0012
IR®@)-RO@)|/|R®@)]  0.0003  0.0003 IR®@)-RO@)|/|[R®@)]  0.0030  0.0004
R(6)-RO@)]/|RC )| 0.0000 0.0000 RP(@)-RY@)|/[R” @) 0.0002 0.0000

Table A.2 : Performance of several approximations for In|R (6))|

Approximation order (J) A rook matrix A queen matrix
J=1 0.0191 0.0118
J=2 0.0031 0.0023
J=3 0.0009 0.0006
J=4 0.0002 0.0002
J=5 0.0001 0.0000

Note: For J, refer to equation (23) in Section 2.7.
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Table A.3 : Performance of 6, ; and 6 . when §=0.5
(n,T) =(49,10) A 4 P B, B, 0-82 A 2, 0-\3’1
(ﬂ, p) = (0.2, 0.2)
02 0.4 0.2 0.4 0.4 1 0.4 0.1 1
0 Bias -0.0282  -0.1352  0.0499 0.0314  0.0452  -0.1709  -0.1496  -0.0159  -0.1383
maT  SD 0.0620  0.0499 00760  0.0440  0.0846  0.0645 0.0443 0.0862  0.0612
RMSE 0.0680  0.1441 0.0908 0.0540  0.0958 0.1826  0.1560  0.0875 0.1512
CP 09200  0.1925 0.8850  0.8875 0.9125 0.2075 0.0600  0.9400  0.3050
Ac Bias -0.0007  -0.0289  -0.0021  0.0150  0.0153  -0.0369  -0.0261  -0.0066  -0.0362
miaT  SD 0.0639  0.0555 0.0846 0.0434  0.0840  0.0736  0.0491 0.0952  0.0684
RMSE 0.0639  0.0625 0.0845 0.0458 0.0852  0.0822 0.0556  0.0953 0.0773
CP 0.9425 0.8525 0.9125 0.9325 09400  0.8100  0.8625 0.9125 0.8075
o8 Bias -0.0022  -0.1590  0.0302 0.0097  0.0284  -0.3086
miaT  SD 00576  0.0427  0.0707 0.0412  0.0801 0.0483
RMSE 0.0575 0.1646  0.0768 0.0422 00849 03124
CP 0.9375 0.0225 09300 09450 09250  0.0000
gs¢ Bias 0.0301  -0.0668  -0.0228  -0.0020  0.0082  -0.2294
miaT  SD 0.0583 0.0466  0.0764  0.0405 0.0791 0.0539
RMSE 0.0656  0.0814  0.0796 0.0405 0.0794 02357
CP 0.8950  0.6000 09150  0.9475 0.9400  0.0000
(n,T)=(49,10) A Y P B, B, o’ " Py o
(4,p)=(0.2,-0.2)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
0 Bias -0.0608  -0.1474 00922 0.0262  0.0354  -0.1892  -0.1497  -0.0164  -0.1383
miaT  SD 0.0661 0.0504  0.0816  0.0437  0.0845  0.0641 0.0443  0.0861 0.0612
RMSE 0.0897  0.1558  0.1231 0.0509  0.0915  0.1997  0.1561 0.0875  0.1512
CP 0.8300 01300 07775 0.8900 09175  0.1425  0.0600  0.9400  0.3050
Ac Bias -0.0126  -0.0334  0.0223  0.0133 00106  -0.0476  -0.0261  -0.0070  -0.0362
miaT  SD 0.0693  0.0567  0.0910  0.0433  0.0848  0.0739  0.0491 0.0951 0.0684
RMSE 0.0704  0.0658  0.0936  0.0452  0.0853  0.0878 00556  0.0953  0.0773
CP 09075  0.8325  0.8925 09375 09325 07550  0.8650  0.9050  0.8075
s Bias -0.0813  -0.1705  0.1030  0.0019  0.0141  -0.3262
miaT  SD 0.0601 0.0431 0.0739  0.0409  0.0796  0.0471
RMSE 0.1011 0.1758  0.1267  0.0409  0.0807  0.3295
CP 0.6950  0.0125  0.6925  0.9475  0.9375 _ 0.0000
o3¢ Bias -0.0492  -0.0730  0.0423  -0.0099  -0.0064  -0.2479
miaT  SD 0.0611 0.0471 0.0800  0.0403  0.0788  0.0526
RMSE 0.0784  0.0868  0.0904  0.0415  0.0789  0.2534
CP 0.8525  0.5350  0.8825  0.9425  0.9325  0.0000
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(n,T) = (49,10) 2 2 P B, B, o’ 7, P, o2,
(4,p)=(-0.2,02)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0218 -0.1364 0.0089 0.0236 0.0263 -0.1853 -0.1497 -0.0166 -0.1383
ml,nT SD 0.0646 0.0493 0.0778 0.0433 0.0834 0.0638 0.0443 0.0861 0.0612
RMSE 0.0681 0.1450 0.0782 0.0493 0.0873 0.1960 0.1561 0.0876 0.1512
CP 0.9100 0.1625 0.9625 0.8950 0.9225 0.1425 0.0600 0.9400 0.3050
Ac Bias -0.0032 -0.0302 -0.0028 0.0123 0.0081 -0.0446 -0.0262 -0.0072 -0.0362
ml,nT SD 0.0675 0.0547 0.0864 0.0428 0.0830 0.0735 0.0492 0.0952 0.0684
RMSE 0.0675 0.0624 0.0864 0.0444 0.0833 0.0859 0.0556 0.0954 0.0773
CP 0.9225 0.8325 0.9150 0.9350 0.9400 0.7650 0.8625 0.9050 0.8050
és Bias 0.0166 -0.1613 -0.0114 -0.0033 -0.0001 -0.3284
ml,nT SD 0.0581 0.0419 0.0703 0.0404 0.0780 0.0472
RMSE 0.0603 0.1667 0.0711 0.0405 0.0779 0.3317
CP 0.9425 0.0175 0.9550 0.9450 0.9400 0.0000
és,c Bias 0.0421 -0.0706 -0.0267 -0.0132 -0.0163 -0.2469
ml,nT SD 0.0596 0.0454 0.0762 0.0399 0.0773 0.0528
RMSE 0.0729 0.0839 0.0807 0.0420 0.0789 0.2525
CP 0.8825 0.5500 0.9000 0.9350 0.9325 0.0000
(n,T) = (49,10) A /4 P B, B, o’ A o) oy,
(4,p)=(-0.2,-0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
0‘ Bias -0.0486 -0.1457 0.0657 0.0241 0.0231 -0.1863 -0.1497 -0.0167 -0.1383
ml,nT SD 0.0623 0.0491 0.0762 0.0433 0.0838 0.0646 0.0443 0.0861 0.0612
RMSE 0.0790 0.1537 0.1005 0.0495 0.0868 0.1971 0.1561 0.0876 0.1512
CP 0.8600 0.1250 0.8550 0.8975 0.9300 0.1500 0.0600 0.9375 0.3050
éc Bias -0.0104 -0.0355 0.0290 0.0125 0.0047 -0.0459 -0.0262 -0.0073 -0.0362
ml,nT SD 0.0650 0.0545 0.0856 0.0427 0.0829 0.0743 0.0492 0.0952 0.0684
RMSE 0.0657 0.0650 0.0903 0.0444 0.0830 0.0872 0.0556 0.0953 0.0773
CP 0.9075 0.8050 0.9050 0.9375 0.9375 0.7525 0.8625 0.9050 0.8050
és Bias -0.0535 -0.1675 0.0753 0.0011 0.0021 -0.3189
ml,nT SD 0.0585 0.0422 0.0705 0.0409 0.0798 0.0483
RMSE 0.0792 0.1728 0.1031 0.0409 0.0798 0.3225
CP 0.8075 0.0225 0.8075 0.9475 0.9400 0.0000
és,c Bias -0.0297 -0.0720 0.0452 -0.0085 -0.0135 -0.2357
ml,nT SD 0.0601 0.0459 0.0774 0.0405 0.0790 0.0542
RMSE 0.0670 0.0854 0.0896 0.0414 0.0800 0.2418
CP 0.8775 0.5325 0.8600 0.9400 0.9400 0.0050
(n,T)=(49,30) A 4 2 B, B, 052 7 ) 0\3’1
(4,p)=(0.2,0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0394 -0.0402 0.0341 0.0183 0.0355 -0.0632 -0.0489 -0.0001 -0.0571
ml,nT SD 0.0350 0.0276 0.0426 0.0249 0.0452 0.0393 0.0271 0.0482 0.0379
RMSE 0.0527 0.0487 0.0546 0.0308 0.0574 0.0744 0.0559 0.0482 0.0685
CP 0.8125 0.6675 0.8550 0.8625 0.8675 0.5575 0.4900 0.9275 0.6000
Ac Bias -0.0028 -0.0047 -0.0028 0.0030 0.0055 -0.0088 -0.0048 0.0027 -0.0070
ml,nT SD 0.0355 0.0283 0.0439 0.0246 0.0448 0.0414 0.0281 0.0498 0.0399
RMSE 0.0356 0.0287 0.0440 0.0247 0.0451 0.0423 0.0285 0.0498 0.0405
CP 0.9550 0.9300 0.9575 0.9575 0.9550 0.8925 0.9075 0.9300 0.9125
és Bias -0.0022 -0.0782 0.0123 0.0029 0.0286 -0.2472
ml,nT SD 0.0312 0.0233 0.0387 0.0236 0.0428 0.0306
RMSE 0.0312 0.0816 0.0405 0.0237 0.0514 0.2490
CP 0.9550 0.0775 0.9350 0.9475 0.8850 0.0000
és,c Bias 0.0321 -0.0472 -0.0219 -0.0068 0.0081 -0.2103
ml,nT SD 0.0315 0.0240 0.0397 0.0234 0.0425 0.0321
RMSE 0.0449 0.0529 0.0453 0.0243 0.0432 0.2127
CP 0.8225 0.4550 0.9225 0.9350 0.9575 0.0000
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(n,T)=(49,30) A Y P B, B, 052 7 ) 0\3’1
(4,p)=(02,-02)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0485 -0.0483 0.0342 0.0152 0.0277 -0.0728 -0.0490 -0.0007 -0.0571
ml,nT SD 0.0370 0.0276 0.0451 0.0247 0.0452 0.0391 0.0271 0.0482 0.0379
RMSE 0.0609 0.0556 0.0566 0.0289 0.0530 0.0826 0.0560 0.0482 0.0685
CP 0.7625 0.5575 0.8925 0.8825 0.9000 0.4625 0.4925 0.9300 0.6000
Ac Bias -0.0038 -0.0054 -0.0019 0.0023 0.0036 -0.0109 -0.0048 0.0025 -0.0070
ml,nT SD 0.0379 0.0284 0.0468 0.0246 0.0451 0.0415 0.0281 0.0498 0.0399
RMSE 0.0381 0.0289 0.0467 0.0246 0.0451 0.0429 0.0285 0.0498 0.0405
CP 0.9550 0.9250 0.9500 0.9525 0.9450 0.8825 0.9075 0.9275 0.9125
és Bias -0.0822 -0.0868 0.0537 -0.0053 0.0126 -0.2627
ml,nT SD 0.0323 0.0231 0.0398 0.0233 0.0423 0.0300
RMSE 0.0883 0.0898 0.0669 0.0239 0.0441 0.2644
CP 0.2700 0.0325 0.7225 0.9425 0.9400 0.0000
és,c Bias -0.0474 -0.0508 0.0223 -0.0145 -0.0055 -0.2254
ml,nT SD 0.0329 0.0237 0.0410 0.0232 0.0421 0.0315
RMSE 0.0576 0.0560 0.0466 0.0273 0.0424 0.2275
CP 0.7075 0.3775 0.9375 0.8750 0.9475 0.0000
(n,T) =(49,30) A /4 P B, B, o’ A o) oy,
(4,p)=(-0.2,0.2)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
0‘ Bias -0.0310 -0.0429 0.0104 0.0130 0.0215 -0.0742 -0.0490 -0.0009 -0.0571
ml,nT SD 0.0362 0.0272 0.0454 0.0243 0.0443 0.0393 0.0271 0.0483 0.0379
RMSE 0.0476 0.0508 0.0465 0.0276 0.0491 0.0840 0.0560 0.0482 0.0685
CP 0.8600 0.6200 0.9475 0.8975 0.9275 0.4375 0.4900 0.9325 0.6000
éc Bias -0.0009 -0.0057 -0.0054 0.0019 0.0025 -0.0114 -0.0048 0.0024 -0.0070
ml,nT SD 0.0373 0.0278 0.0471 0.0241 0.0441 0.0417 0.0281 0.0499 0.0399
RMSE 0.0373 0.0284 0.0473 0.0242 0.0441 0.0432 0.0285 0.0498 0.0405
CP 0.9650 09175 0.9325 0.9525 0.9475 0.8800 0.9075 0.9275 0.9125
és Bias 0.0159 -0.0824 -0.0143 -0.0104 -0.0018 -0.2668
ml,nT SD 0.0311 0.0227 0.0400 0.0229 0.0415 0.0302
RMSE 0.0349 0.0855 0.0424 0.0251 0.0415 0.2685
CP 0.9325 0.0350 0.9425 09175 0.9475 0.0000
és,c Bias 0.0436 -0.0509 -0.0285 -0.0178 -0.0161 -0.2256
ml,nT SD 0.0319 0.0232 0.0413 0.0228 0.0415 0.0319
RMSE 0.0540 0.0560 0.0502 0.0289 0.0444 0.2278
CP 0.7450 0.3525 0.8925 0.8550 0.9500 0.0000
(n,T)=(49,30) A 4 2 B, B, 052 7 ) 0\3’1
(4, p)=(-0.2,-0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0369 -0.0489 0.0248 0.0124 0.0169 -0.0760 -0.0490 -0.0011 -0.0571
ml,nT SD 0.0342 0.0271 0.0422 0.0240 0.0438 0.0399 0.0271 0.0483 0.0379
RMSE 0.0503 0.0559 0.0489 0.0269 0.0469 0.0858 0.0560 0.0482 0.0685
CP 0.8275 0.4950 0.9275 0.9025 0.9275 0.4400 0.4900 0.9325 0.6000
Ac Bias -0.0012 -0.0070 -0.0001 0.0018 0.0010 -0.0114 -0.0048 0.0023 -0.0070
ml,nT SD 0.0353 0.0276 0.0440 0.0238 0.0435 0.0425 0.0281 0.0498 0.0399
RMSE 0.0353 0.0285 0.0440 0.0239 0.0435 0.0439 0.0285 0.0498 0.0405
CP 0.9650 0.9300 0.9475 0.9475 0.9500 0.8775 0.9075 0.9275 0.9125
és Bias -0.0593 -0.0842 0.0405 -0.0055 0.0020 -0.2539
ml,nT SD 0.0310 0.0230 0.0383 0.0230 0.0422 0.0309
RMSE 0.0669 0.0873 0.0557 0.0236 0.0422 0.2557
CP 0.5375 0.0350 0.8375 0.9425 0.9425 0.0000
és,c Bias -0.0338 -0.0483 0.0202 -0.0124 -0.0099 -0.2112
ml,nT SD 0.0319 0.0235 0.0398 0.0230 0.0421 0.0326
RMSE 0.0464 0.0537 0.0446 0.0261 0.0432 0.2137
CP 0.7975 0.4050 0.9275 0.9075 0.9475 0.0000
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(n,T) =(81,10) 2 2 P B, B, o’ 7, P, o2,
(4,p)=(02,0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0078 -0.1361 0.0451 0.0245 0.0318 -0.1647 -0.1488 -0.0111 -0.1332
ml,nT SD 0.0493 0.0387 0.0610 0.0376 0.0711 0.0496 0.0342 0.0703 0.0447
RMSE 0.0498 0.1415 0.0758 0.0449 0.0778 0.1720 0.1527 0.0711 0.1405
CP 0.9250 0.0400 0.8450 0.8825 0.9000 0.0650 0.0100 0.9325 0.1550
Ac Bias 0.0062 -0.0280 -0.0021 0.0103 0.0070 -0.0334 -0.0247 -0.0014 -0.0368
ml,nT SD 0.0504 0.0427 0.0678 0.0367 0.0698 0.0566 0.0380 0.0768 0.0497
RMSE 0.0507 0.0510 0.0678 0.0381 0.0701 0.0657 0.0453 0.0767 0.0618
CP 0.9125 0.8100 09125 09175 0.9425 0.8225 0.8575 0.9075 0.7975
és Bias 0.0166 -0.1596 0.0255 0.0035 0.0170 -0.3030
ml,nT SD 0.0465 0.0332 0.0571 0.0352 0.0669 0.0384
RMSE 0.0493 0.1630 0.0625 0.0353 0.0689 0.3054
CP 0.9200 0.0000 0.9000 0.9250 0.9150 0.0000
tés,c Bias 0.0366 -0.0660 -0.0232 -0.0062 0.0019 -0.2273
ml,nT SD 0.0468 0.0359 0.0617 0.0345 0.0654 0.0427
RMSE 0.0594 0.0751 0.0659 0.0350 0.0654 0.2313
CP 0.8300 0.4525 0.9025 0.9150 0.9350 0.0000
(n,T)=(81,10) A /4 P B, B, o’ A o) oy,
(4,p)=(02,-0.2)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
0‘ Bias -0.0426 -0.1462 0.0846 0.0210 0.0268 -0.1802 -0.1488 -0.0114 -0.1332
ml,nT SD 0.0528 0.0389 0.0662 0.0374 0.0705 0.0489 0.0342 0.0702 0.0447
RMSE 0.0678 0.1513 0.1074 0.0429 0.0753 0.1867 0.1527 0.0711 0.1405
CP 0.8575 0.0225 0.6850 0.8875 0.8950 0.0325 0.0100 0.9350 0.1550
éc Bias -0.0070 -0.0316 0.0179 0.0097 0.0055 -0.0422 -0.0247 -0.0016 -0.0368
ml,nT SD 0.0547 0.0435 0.0733 0.0367 0.0701 0.0563 0.0380 0.0768 0.0497
RMSE 0.0551 0.0537 0.0753 0.0379 0.0702 0.0703 0.0453 0.0767 0.0618
CP 0.9225 0.7925 0.8950 0.9225 0.9350 0.7725 0.8575 0.9100 0.7975
és Bias -0.0651 -0.1692 0.0958 -0.0032 0.0062 -0.3196
ml,nT SD 0.0483 0.0332 0.0599 0.0349 0.0659 0.0375
RMSE 0.0810 0.1724 0.1129 0.0350 0.0661 0.3218
CP 0.6775 0.0000 0.5825 0.9025 0.9325 0.0000
és,c Bias -0.0448 -0.0713 0.0381 -0.0134 -0.0106 -0.2450
ml,nT SD 0.0487 0.0360 0.0643 0.0344 0.0649 0.0416
RMSE 0.0661 0.0799 0.0747 0.0368 0.0656 0.2485
CP 0.8075 0.4050 0.8550 0.8975 0.9350 0.0000
(n,T) =(81,10) 2 2 P B, B, o’ 7, P o2,
(4,p)=(-0.2,02)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0074 -0.1365 0.0042 0.0191 0.0189 -0.1754 -0.1488 -0.0116 -0.1332
ml,nT SD 0.0516 0.0377 0.0654 0.0370 0.0697 0.0488 0.0342 0.0702 0.0447
RMSE 0.0521 0.1416 0.0654 0.0416 0.0721 0.1820 0.1527 0.0711 0.1405
CP 0.9550 0.0350 0.9400 0.8925 0.9050 0.0425 0.0100 0.9325 0.1550
Ac Bias 0.0006 -0.0286 -0.0050 0.0089 0.0034 -0.0390 -0.0247 -0.0017 -0.0368
ml,nT SD 0.0534 0.0415 0.0721 0.0361 0.0687 0.0561 0.0380 0.0768 0.0497
RMSE 0.0534 0.0504 0.0722 0.0372 0.0687 0.0683 0.0453 0.0767 0.0618
CP 0.9475 0.8125 0.9175 0.9225 0.9325 0.7950 0.8575 0.9100 0.7975
és Bias 0.0293 -0.1611 -0.0152 -0.0075 -0.0067 -0.3203
ml,nT SD 0.0468 0.0321 0.0592 0.0344 0.0648 0.0375
RMSE 0.0552 0.1643 0.0610 0.0352 0.0651 0.3225
CP 0.8825 0.0000 0.9300 0.8950 0.9275 0.0000
és,c Bias 0.0452 -0.0691 -0.0283 -0.0164 -0.0204 -0.2436
ml,nT SD 0.0475 0.0345 0.0637 0.0339 0.0637 0.0417
RMSE 0.0656 0.0772 0.0696 0.0376 0.0668 0.2472
CP 0.8000 0.3900 0.8900 0.8850 0.9325 0.0000
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(n,T) =(81,10) 2 2 P B, B, o’ 7, P, o2,
(4, p)=(-0.2,-0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0367 -0.1442 0.0550 0.0201 0.0184 -0.1751 -0.1488 -0.0117 -0.1332
ml,nT SD 0.0494 0.0373 0.0629 0.0366 0.0689 0.0492 0.0342 0.0702 0.0447
RMSE 0.0615 0.1490 0.0835 0.0417 0.0713 0.1819 0.1527 0.0711 0.1405
CP 0.8550 0.0200 0.8250 0.8850 0.9100 0.0450 0.0100 0.9350 0.1550
Ac Bias -0.0074 -0.0333 0.0211 0.0094 0.0014 -0.0397 -0.0247 -0.0018 -0.0368
ml,nT SD 0.0508 0.0411 0.0698 0.0357 0.0678 0.0567 0.0380 0.0768 0.0497
RMSE 0.0513 0.0529 0.0729 0.0369 0.0677 0.0691 0.0453 0.0767 0.0618
CP 0.9350 0.7900 0.8775 0.9200 0.9300 0.7800 0.8575 0.9100 0.7975
és Bias -0.0429 -0.1662 0.0664 -0.0030 -0.0024 -0.3105
ml,nT SD 0.0466 0.0321 0.0581 0.0346 0.0653 0.0382
RMSE 0.0633 0.1693 0.0881 0.0347 0.0653 0.3128
CP 0.8025 0.0000 0.7475 0.9000 0.9300 0.0000
és,c Bias -0.0276 -0.0702 0.0389 -0.0117 -0.0166 -0.2323
ml,nT SD 0.0474 0.0346 0.0631 0.0341 0.0644 0.0425
RMSE 0.0548 0.0783 0.0740 0.0360 0.0664 0.2362
CP 0.8700 0.3900 0.8525 0.8975 0.9325 0.0000
(n,T) =(81,30) A /4 P B, B, o’ A o) oy,
(4,p)=(0.2,0.2)
0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
0‘ Bias -0.0224 -0.0408 0.0306 0.0142 0.0278 -0.0555 -0.0480 -0.0025 -0.0501
ml,nT SD 0.0297 0.0213 0.0333 0.0201 0.0393 0.0299 0.0189 0.0364 0.0272
RMSE 0.0372 0.0460 0.0452 0.0245 0.0480 0.0630 0.0516 0.0364 0.0570
CP 0.8500 0.5025 0.8575 0.8725 0.8575 0.4900 0.3025 0.9400 0.5400
éc Bias -0.0007 -0.0037 0.0005 0.0012 0.0042 -0.0054 -0.0035 0.0001 -0.0071
ml,nT SD 0.0300 0.0218 0.0343 0.0198 0.0390 0.0313 0.0196 0.0374 0.0284
RMSE 0.0300 0.0221 0.0343 0.0199 0.0392 0.0317 0.0199 0.0374 0.0292
CP 0.9300 0.9300 0.9350 0.9225 0.9375 0.9100 0.9350 0.9375 0.9275
és Bias 0.0136 -0.0786 0.0093 -0.0006 0.0226 -0.2403
ml,nT SD 0.0268 0.0179 0.0303 0.0190 0.0372 0.0229
RMSE 0.0300 0.0806 0.0317 0.0190 0.0435 0.2414
CP 0.8925 0.0075 0.9375 0.9150 0.8675 0.0000
és,c Bias 0.0349 -0.0464 -0.0189 -0.0085 0.0075 -0.2080
ml,nT SD 0.0270 0.0185 0.0310 0.0188 0.0371 0.0239
RMSE 0.0441 0.0499 0.0363 0.0206 0.0378 0.2093
CP 0.7050 0.2425 0.8825 0.8900 0.9300 0.0000
(n,T)=(8130) A 4 2 B, B, 052 7 ) 0\3’1
(4,p)=(02,-0.2)
0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
A Bias -0.0327 -0.0469 0.0337 0.0121 0.0225 -0.0625 -0.0481 -0.0029 -0.0501
ml,nT SD 0.0317 0.0211 0.0362 0.0200 0.0393 0.0294 0.0189 0.0364 0.0272
RMSE 0.0455 0.0514 0.0494 0.0234 0.0453 0.0691 0.0517 0.0364 0.0570
CP 0.7800 0.3800 0.8500 0.8925 0.8725 0.3900 0.2975 0.9400 0.5400
Ac Bias -0.0025 -0.0044 0.0025 0.0011 0.0036 -0.0069 -0.0035 -0.0000 -0.0071
ml,nT SD 0.0322 0.0218 0.0374 0.0199 0.0393 0.0310 0.0196 0.0374 0.0284
RMSE 0.0323 0.0222 0.0374 0.0199 0.0394 0.0317 0.0199 0.0374 0.0292
CP 0.9275 0.9400 0.9225 0.9200 0.9300 0.9175 0.9350 0.9350 0.9275
és Bias -0.0673 -0.0855 0.0529 -0.0082 0.0081 -0.2552
ml,nT SD 0.0283 0.0176 0.0320 0.0189 0.0368 0.0224
RMSE 0.0730 0.0873 0.0618 0.0206 0.0376 0.2561
CP 0.2675 0.0025 0.6225 0.9025 0.9200 0.0000
és,c Bias -0.0454 -0.0498 0.0259 -0.0156 -0.0052 -0.2227
ml,nT SD 0.0285 0.0182 0.0328 0.0188 0.0367 0.0234
RMSE 0.0536 0.0530 0.0418 0.0244 0.0371 0.2239
CP 0.5850 0.1775 0.8650 0.8275 0.9300 0.0000
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(n,T)=(81,30) A Y P B, B, 052 7 ) 0\3’1
(4,p)=(-0.2,02)
-0.2 0.4 0.2 0.4 0.4 1 0.4 0.1 1
é Bias -0.0189 -0.0419 0.0109 0.0108 0.0185 -0.0623 -0.0481 -0.0032 -0.0501
ml,nT SD 0.0314 0.0208 0.0357 0.0198 0.0389 0.0293 0.0189 0.0364 0.0272
RMSE 0.0367 0.0467 0.0373 0.0225 0.0430 0.0689 0.0517 0.0365 0.0570
CP 0.8725 0.4625 0.9425 0.9000 0.8925 0.3875 0.2975 0.9425 0.5400
Ac Bias -0.0010 -0.0037 -0.0006 0.0009 0.0031 -0.0067 -0.0036 -0.0001 -0.0071
ml,nT SD 0.0321 0.0213 0.0369 0.0196 0.0387 0.0308 0.0196 0.0374 0.0284
RMSE 0.0320 0.0216 0.0369 0.0196 0.0388 0.0315 0.0199 0.0374 0.0292
CP 0.9325 0.9325 0.9275 0.9200 0.9300 0.9200 0.9350 0.9425 0.9275
és Bias 0.0270 -0.0815 -0.0133 -0.0125 -0.0044 -0.2576
ml,nT SD 0.0276 0.0174 0.0315 0.0186 0.0364 0.0223
RMSE 0.0386 0.0833 0.0341 0.0224 0.0366 0.2586
CP 0.8200 0.0050 0.9125 0.8550 0.9225 0.0000
és,c Bias 0.0443 -0.0493 -0.0241 -0.0188 -0.0155 -0.2227
ml,nT SD 0.0281 0.0178 0.0324 0.0185 0.0364 0.0234
RMSE 0.0524 0.0524 0.0403 0.0264 0.0395 0.2239
CP 0.5875 0.1575 0.8925 0.7925 0.9025 0.0000
(n,T) =(81,30) A /4 P B, B, o’ A o) oy,
(2,p)=(-02,-0.2)
-0.2 0.4 -0.2 0.4 0.4 1 0.4 0.1 1
0‘ Bias -0.0272 -0.0465 0.0234 0.0108 0.0155 -0.0631 -0.0481 -0.0032 -0.0501
ml,nT SD 0.0292 0.0205 0.0340 0.0195 0.0383 0.0294 0.0189 0.0364 0.0272
RMSE 0.0399 0.0508 0.0412 0.0223 0.0412 0.0696 0.0517 0.0365 0.0570
CP 0.8125 0.3600 0.8925 0.9000 0.8950 0.4100 0.2975 0.9425 0.5400
éc Bias -0.0018 -0.0052 0.0039 0.0010 0.0023 -0.0069 -0.0036 -0.0002 -0.0071
ml,nT SD 0.0298 0.0210 0.0354 0.0193 0.0380 0.0309 0.0196 0.0374 0.0284
RMSE 0.0298 0.0216 0.0356 0.0193 0.0381 0.0317 0.0199 0.0374 0.0292
CP 0.9375 0.9375 0.9475 0.9275 0.9250 0.9150 0.9350 0.9425 0.9275
és Bias -0.0492 -0.0824 0.0399 -0.0074 0.0001 -0.2448
ml,nT SD 0.0271 0.0174 0.0310 0.0188 0.0367 0.0227
RMSE 0.0561 0.0842 0.0505 0.0201 0.0367 0.2458
CP 0.5100 0.0050 0.7450 0.8975 0.9275 0.0000
és,c Bias -0.0330 -0.0470 0.0241 -0.0134 -0.0091 -0.2088
ml,nT SD 0.0276 0.0178 0.0320 0.0187 0.0367 0.0238
RMSE 0.0430 0.0503 0.0400 0.0229 0.0378 0.2101
CP 0.7150 0.1900 0.8700 0.8525 0.9150 0.0000
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Table A.4 : Likelihood measures for identifying 6, and misspecification errors

Model 1: 6,=0.95, K=1 and (n,T)=(49,10)

s EhL EnL AIC BIC RMSE RMSE RMSE

-313.816 -105.899 763.632 1048.851 | 0.0730  0.1021  0.0822

01 -313.808 -105.890 763.616 1048.835| 0.0710  0.0973  0.0825
0.2 -313.800 -105.882 763.600 1048.819 | 0.0693  0.0926  0.0830
0.3 -313.792 -105.874 763.585 1048.804 | 0.0678  0.0879  0.0837
0.4 -313.831 -105.891 763.662 1048.881 | 0.0669  0.0835  0.0846
0.5 -313.890 -105.933 763.780 1049.000 | 0.0668  0.0795  0.0862
0.6 -313.844 -105.900 763.688 1048.907 | 0.0669  0.0758  0.0875
0.7 -314.032 -106.030 764.063 1049.283 | 0.0688  0.0728  0.0895
0.8 -313.801 -105.863 763.602 1048.821 | 0.0701  0.0707  0.0911
0.825  -313.883 -105.918 763.766 1048.985| 0.0710  0.0704  0.0918
0.85 -313.835 -105.895 763.671 1048.890 | 0.0716  0.0701  0.0921
0.875  -313.847 -105.906 763.694 1048.914 | 0.0727 0.0699  0.0926
0.9 -313.769 -105.845 763.539 1048.758 | 0.0733  0.0697  0.0933
0.925  -313.822 -105.875 763.644 1048.864 | 0.0696  0.0940  0.0475
0.95 -313.896 -105.908 763.792 1049.011 | 0.0758  0.0698  0.0946
0.975 -313.913 -105.929 763.826 1049.046 | 0.0771  0.0701  0.0956
0.99 -313.772  -105.846 763.544 1048.764 | 0.0773  0.0699  0.0956

Model 2: 6,=0.95, K=2 and (n,T)=(49,10)

s EhL ElnL AIC BIC RMSE RMSE RMSE

-519.571 -104.429 1185.141 1491.333 | 0.0783  0.0997  0.0766

0.1 -519.547 -104.405 1185.094 1491.286 | 0.0758  0.0945  0.0767

0.2 -519.524 -104.381 1185.047 1491.239 | 0.0735 0.0893  0.0770

0.3 -519.500 -104.357 1185.001 1491.192 | 0.0714  0.0842  0.0775

0.4 -519.478 -104.333 1184.955 1491.147 | 0.0697  0.0792  0.0782

0.5 -519.456 -104.309 1184.912 1491.104 | 0.0686  0.0744  0.0792

0.6 -519.436 -104.287 1184.873 1491.064 | 0.0682  0.0702  0.0804

0.7 -519.419 -104.267 1184.838 1491.030 | 0.0689  0.0666  0.0819

0.8 -519.405 -104.250 1184.810 1491.002 | 0.0707  0.0639  0.0837

0.825  -519.402 -104.246 1184.804 1490.996 | 0.0713  0.0634  0.0842
0.85 -519.400 -104.243 1184.799 1490.991 | 0.0721  0.0630  0.0847
0.875  -519.397 -104.240 1184.795 1490.986 | 0.0729  0.0627  0.0852
0.9 -519.524 -104.258 1185.047 1491.239 | 0.0738  0.0629  0.0857

0.925  -519.394 -104.234 1184.787 1490.979 | 0.0748  0.0624  0.0864
0.95 -519.480 -104.285 1184.961 1491.152 | 0.0759  0.0631  0.0871
0.975  -519.391 -104.229 1184.783 1490.974 | 0.0771  0.0625  0.0876
0.99 -519.391 -104.228 1184.782 1490.974 | 0.0778 0.0626  0.0880
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Model 3: 5,=0.95, K=1 and (n,T)=(81,30)

5 EmL EWL AC BIC R'\fISE RIISE RS

11799543 -647.517 3839.086 4534564 | 0.0623 00835  0.0447
01  -1799.422 -647.395 3838.843 4534321 | 00585 00770  0.0429
02  -1799.302 -647.275 3838.604 4534.082 | 00546 00703  0.0412
03  -1799483 -647.446 3838.965 4534443 | 00506 0.0633  0.0397
04  -1799.849 -647.770 3839.698 4535175 | 00471 00563  0.0384
05  -1799.748 -647.663 3839497 4534.974 | 00432 00492  0.0373
06  -1801.327 -649.095 3842654 4538132 | 00413 00426  0.0364
07  -1799504 -647.461 3839180 4534.666 | 0.0368 00359  0.0357
08  -1800353 -648.154 3840706 4536184 | 00361 00361  0.0361
0.825 1799709 -647.566 3839.410 4534.896 | 0.0350 00350  0.0361
0.85  -1799.451 -647.313 3838.902 4534.379 | 0.0347 00347  0.0361
0.875 -1799.629 -647.478 3839.259 4534.737 | 0.0347 0.0347 0.0363
09  -1799.887 -647.701 3839775 4535.252 | 00353 00353  0.0364
0.925 -1799.272 -647.154 3838.544 4534.021 | 0.0346 0.0346 0.0367
095  -1798.600 -646.650 3837.381 4532.859 | 0.0339 00339  0.0368
0.975 -1798.690 -646.649 3837.379 4532.857 | 0.0344 0.0344 0.0371
099  -1798.600 -646.649 3837.380 4532.858 | 0.0348 00348  0.0373

Model 4: 6,=0.95, K=2 and (n,T)=(81,30)

5 EmL EWL  AC BIC R'\fISE RIISE RV

-2953.095 -646.914 6156.189 6880.645 | 0.0678 0.0839 0.0446
01 2052879 -646.699 6155759 6880215 | 00634 00772  0.0426
0.2 -2952.668 -646.487 6155.336 6879.792 | 0.0588 0.0703 0.0407
03 2052463 -646.279 6154925 6879381 | 00540 00632  0.0388
0.4 -2952.266 -646.081 6154532 6878.988 | 0.0490 0.0559 0.0371
05 2052083 -645895 6154166 6878.622 | 00439  0.0484  0.0355
0.6 -2951.921 -645.730 6153.841 6878.297 | 0.0389 0.0410 0.0343
07 2951786 -645591 6153571 6878.027 | 00344 00339  0.0334
0.8 -2951.686 -645.488 6153.371 6877.827 | 0.0310 0.0278 0.0330
0.825 -2951.667 -645.468 6153.334 6877.790 | 0.0305 00266 00330
0.85 -2951.651 -645.452 6153.303 6877.759 | 0.0301 0.0256 0.0330
0.875 -2951.639 -645.438 6153277 6877.733 | 0.0299 00248 00330
0.9 -2951.629 -645.427 6153.258 6877.713 | 0.0298 0.0243 0.0331
0925 -2951.622 -645.419 6153244 6877700 | 0.0299 00240 00332
0.95 -2951.619 -645.415 6153.237 6877.693 | 0.0303 0.0241 0.0334
0975 -2951.619 -645.414 6153237 6877.693 | 0.0308 00244 00336
0.99 -2951.620 -645.415 6153.240 6877.696 | 0.0312 0.0248 0.0337
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Model 5: 5,=0, K=1 and (n,T)=(81,30)

5 EmL  EWL  AC BIC R'\flSE RISE RS
0 -2318.808 -1166.782 4877.617 5573.094 | 0.0275 0.0185 0.0318
005 2318823 -1166.797 4877.647 5573124 | 00284 00189  0.0322
01 2318841 -1166.815 4877.682 5573150 | 0.0300 0.0205  0.0328
015 2318861 -1166.835 4877.722 5573200 | 00321 00230  0.0336
02 2318885 -1166.858 4877.769 5573247 | 0.0348 00262  0.0345
025 2318911 -1166.885 4877.823 5573300 | 00379 00301  0.0355
03 2318942 -1166.915 4877.884 5573.361 | 0.0415 00343 00367
04 2319015 -1166.988 4878.030 5573508 | 0.0498 00439  0.0394
05 2319108 -1167.079 4878215 5573.693 | 0.0594 00546  0.0426
06 2319450 -1167.388 4878.901 5574.378 | 0.0700 0.0658  0.0463
07 2319360 -1167.329 4878720 5574197 | 0.0819 00785  0.0504
0.8 -2319.813 -1167.745 4879.627 5575.104 | 0.0945 0.0917 0.0548
09 2320515 -1168452 4881.029 5576507 | 0.1082  0.1056  0.0598
0.99 -2320.972 -1168.880 4881.945 5577.422 | 0.1219 0.1192 0.0651
Model 6: 6,=0, K=2 and (n,T)=(81,30)
5 EmL  EWL  AC BIC R'\QSE RISE RIVSE
0 -3471.856 -1165.676 7193.712 7918.168 | 0.0253 0.0170 0.0294
0.05 -3471.876 -1165.695 7193.751 7918.207 | 0.0262 0.0178 0.0298
01  -3471.899 -1165719 7193799 7918255 | 0.0279 00197 00303
0.15 -3471.928 -1165.747 7193.855 7918.311 | 0.0303 0.0226 0.0310
02  -3471.961 -1165780 7193.922 7918.378 | 0.0333 00262  0.0319
0.25 -3472.000 -1165.818 7193.999 7918.455 | 0.0368 0.0304 0.0329
03  -3472044 -1165863 7194.089 7918545 | 0.0408 00349 00341
0.4 -3472.154 -1165.971 7194.308 7918.764 | 0.0500 0.0450 0.0369
0.5 -3472.295 -1166.110 7194.590 7919.045 | 0.0605 0.0560 0.0402
0.6 -3472.470 -1166.283 7194940 7919.396 | 0.0723 0.0680 0.0441
07  -3473139 -1166.665 7196278 7920734 | 0.0851 00808  0.0484
0.8 -3474.130 -1167.342 7198.261 7922.717 | 0.0990 0.0944 0.0532
0.9 -3473.964 -1167.428 7197.927 7922.383 | 0.1145 0.1091 0.0590
0.99 -3474.952 -1168.197 7199.903 7924.359 | 0.1288 0.1231 0.0643
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Figure A.1: Likelihood measures for identifying 6, and misspecification errors with figures

e Average sample log likelihood across different o ’s
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e Misspecification errors (in terms of RMSE) for misspecified

Model 1: 6,=0.95, K=1 and (n,T)=(49,10)
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Model 3: 6,=0.95, K=1 and (n,T)=(81,30)
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Model 4: 5,=0.95, K=2 and (n,T)=(81,30)
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