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1. Introduction

Attempts to forecast stock market returns are plagued by instability in the under-
lying prediction models as evidenced by a large empirical literature. For example,
Péastor and Stambaugh (2001) identify multiple breaks in a model linking equity risk
premiums to changes in stock market volatility. Similarly, Lettau and Van Nieuwer-
burgh (2008), Pettenuzzo and Timmermann (2011), Dangl and Halling (2012) and
Johannes et al. (2014) find evidence of unstable parameters in the relation between
stock market returns and the lagged dividend-price ratio.

Such instability is plausibly a defining feature of return predictability. Indeed, we
would expect predictable patterns to ‘self-destruct’ as investors attempt to exploit
them. Schwert (2003), Green et al. (2011), and McLean and Pontiff (2016) test this
idea and find evidence that abnormal returns tend to diminish after they become pub-
lic knowledge. This mechanism is less relevant to the extent that return predictability
reflects a time-varying risk premium. However, even in this case, changes in insti-
tutions, regulations, and public policy can shift the correlation between observable
predictor variables and the underlying risk factors and cause model instability. For
example, firms may shift away from paying dividends towards repurchasing shares if
taxes on dividends rise, leading to changes in the relation between dividend yields
and future stock returns.

Model instability poses severe challenges to attempts at successfully predicting
stock market returns. Using the full historical sample to estimate the parameters of
a return forecasting model is not an attractive option if the parameters change over
time since the resulting estimates may be severely biased. Conversely, using a shorter
window of time (possibly after a break has occurred) leads to larger estimation error
and less accurate forecasts.

Strategies for modeling the dynamics in the parameters of the return predic-
tion model face two key challenges as pointed out by Lettau and Van Nieuwerburgh
(2008). First, investors may have difficulty detecting breaks in real time. Second,
and equally importantly, if a break is detected with little delay, only few observations
from the current regime are available to estimate the parameters of the forecasting

model, potentially leading to volatile and inaccurate return forecasts. Overcoming

!Paye and Timmermann (2006) and Rapach and Wohar (2006) undertake a series of econometric
tests for model instability and find significant evidence of breaks in the relation between aggregate
stock market returns and a variety of predictor variables proposed in the finance literature.



these challenges has proven difficult. Indeed, in their empirical analysis Lettau and
Van Nieuwerburgh (2008) find that regime shifts in the dividend-price ratio cannot
be exploited to improve out-of-sample forecasts of stock returns.

In this paper we propose an approach that addresses each of these concerns, in
the process uncovering new insights into the sources of model instability and its
economic consequences. We address the first challenge (slow detection of breaks) by
exploiting information in the cross-section of stock returns, enabling breaks to be
detected relatively quickly in real time. We address the second challenge (imprecise
model estimates) by adopting a Bayesian approach that uses economically motivated
priors to shrink the parameters towards sensible values that rule out shifts that are
implausibly large in an economic sense. Specifically, following Pastor and Stambaugh
(1999), we specify a prior on the intercept of the return equation which does not
imply implausible Sharpe ratios. Moreover, following Wachter and Warusawitharana
(2009) the prior on the slope coefficient of the predictor is centered on zero with a
relatively tight variance implying that investors are skeptical about the existence of
predictability. If a break has been recently detected, the few data points from the
current regime will be unable to shift the slope estimate far from zero. However, as
the length of the regime increases, the degree of shrinkage towards zero is reduced.

The key identifying assumption in our analysis is that the timing of breaks is rel-
atively homogeneous across stocks. This assumption allows us to exploit the benefits
from pooling cross-sectional and time-series information. To the extent that informa-
tion dissemination across different segments of the market is relatively efficient, we
would expect that the power of different predictor variables should carry over from
the aggregate stock market to individual stocks or portfolios. This suggests that in-
stability in return prediction models can be more effectively detected and estimated in
the context of a panel that pools return information across multiple stock portfolios.
For example, if a predictor ceases to predict returns on the aggregate stock market
portfolio, we would expect to find a similar effect on industry portfolios at approxi-
mately the same time. Exploring the simultaneous timing of breaks may allow us to
both increase our ability to detect breaks and accurately determine their timing.?

While we assume that any breaks affect all stocks at the same time, we allow the

intercept, slope, and variance parameters to differ across stocks, thus capturing any

2Bekaert et al. (2002) estimate a single common structural break in Vector Autoregressive models
to date world equity market integration. They also find that using multiple series reduces the
confidence interval around the estimated break date.



heterogeneity in the equity premium and volatility characteristics of individual stocks.
Exploiting cross-sectional information to estimate shifts in model parameters turns
out to be crucial to our ability to detect breaks in real time and generate forecasts
that use information since the most recent break.?

Our main analysis focuses on a return prediction model that uses the lagged
dividend-price ratio as a predictor variable. We jointly model predictability on 30
industry portfolios using monthly returns data over the 90-year period 1926-2015.
Market forecasts can then be constructed as a weighted sum of the individual industry
forecasts. Empirically, we find evidence of ten breaks corresponding to a little more
than one break on average per decade. Our approach also identifies secular shifts in
return volatility.*

To help frame the question addressed in this paper, consider an investor who
was using the dividend-price ratio to predict stock returns during the financial crisis
in 2008-2009. As the crisis grew deeper, investors would plausibly have questioned
whether the ability of the dividend-price ratio to predict future returns had deteri-
orated. Such concerns would have been well founded. Figure la plots month-by-
month snapshots of the estimated (posterior) probability that a new break occurred
in a panel return forecasting model that uses the dividend-price ratio. The likelihood
that a break has occurred increases smoothly from the end of 2007 to the fall of 2008
before stabilizing in early 2009. This increase in the likelihood that a break has oc-
curred has an important effect on the estimated slope coefficient of the dividend-price
ratio (shown in Figure 1b) which declines from 0.25 prior to the crisis to 0.08 in early
2009. This example shows how, in real time, our approach would have detected the
reduced predictability of stock returns from the dividend-price ratio and, accordingly,
have adjusted the sensitivity of the forecasts to this predictor variable.

Following earlier studies such as Campbell and Thompson (2008), Goyal and
Welch (2008) and Rapach et al. (2010), we assess the predictive accuracy of our return
forecasts using a variety of statistical and economic performance measures. For the
market portfolio, we find that the return forecasts from the panel break model are
significantly more accurate than those produced by the historical average (Goyal and

Welch 2008), a time-series model, or a panel model with no breaks. Specifically, our

3Polk et al. (2006), Hjalmarsson (2010) and Bollerslev et al. (2018) also consider predictability
of stock returns and volatility in a panel setting.

4Conventional approaches to model time-varying volatility tend to capture more short-lived pe-
riods of volatility clustering. See Andersen et al. (2006) for a review of the literature on volatility
forecasting.



panel-break approach generates significantly more accurate out-of-sample forecasts
with improvements in the R? value for the market portfolio exceeding 0.5% against
all of the three benchmarks.? Moreover, an out-of-sample asset allocation analysis for
a modestly risk averse investor with mean-variance utility suggests that the return
forecasts from the panel break model generate certainty equivalent returns around
2% per annum relative to the benchmarks.

Having identified breaks as being important to the return processes for a set of
industry portfolios, we next explore whether break risk exposure has implications for
the cross-section of stock returns. In particular, we compute the break sensitivity
of individual stocks’ returns by comparing return forecasts from (panel) models with
and without breaks. Firms whose risk premium process is most strongly affected by
breaks are found to earn significantly higher returns than firms whose risk premia are
less sensitive to breaks. This finding is robust to adjusting for exposure to market,
size and value risk factors and the effect is economically large as average risk-adjusted
returns of stocks with high break sensitivity exceed those of stocks with low break
sensitivity by more than four percent per annum. Thus, we find strong evidence that
exposure to break risk is priced in the cross-section.

Return predictability can arise either from predictability in risk premia or from
predictability in cash flow growth. While risk premia are unobservable, we can proxy
for cash flows through dividends. We therefore undertake a separate analysis of
dividend growth predictability and explore whether any breaks separately identified
in the dividend process line up with the breaks found in the returns data. We find
that, indeed, the vast majority of breaks in stock returns are preceded by breaks to
dividend growth. This suggests that investors’ awareness of breaks in the underlying
dividend growth process is a driver of breaks in stock market returns.

The remainder of the paper is set out as follows. Section 2 lays out our panel-
break approach and compares it to existing methods from the literature on return
predictability. Section 3 conducts our empirical analysis and reports evidence of struc-
tural breaks. Section 4 evaluates the return forecasts of a set of industry portfolios
and the market portfolio. Section 5 conducts a cross-sectional analysis of break risk
premia, while Section 6 analyzes breaks in the dividend process. Section 7 performs

robustness checks, and Section 8 concludes.

5For the 30 industry portfolios we find that our approach generates significantly more accurate
forecasts in between 24 and 26 cases measured relative to the three benchmarks without a single
case in which our forecasts are significantly worse than the benchmark forecasts.



2. Methodology

This section reviews alternative approaches to capturing instability in return pre-
diction models and introduces our panel data approach to estimating breaks that
simultaneously affect multiple return series. Our main specification is a heteroge-
neous panel model with an unknown number of breaks occurring at unknown times.
While we allow the magnitude of shifts to parameters to vary across portfolios, we
assume that the timing of the breaks is common in the cross-section.

Our approach differs from conventional return prediction models in two regards:
first, it uses panel data, as opposed to the more conventional single-equation time-
series approach used throughout the literature; second, it allows for breaks.

To quantify the importance of each of these differences, we compare our approach
to (i) a pure time-series approach that allows for breaks, thus highlighting the im-
portance of using cross-sectional (panel) information; and (ii) a constant-parameter
panel model that uses the same cross-sectional information as our approach, allowing
us to gauge the importance of allowing for breaks. We explain the basic methodology
below. Throughout the analysis, we assume a cross-section of N return series and T’

time-series observations.®

2.1. Portfolio-specific Breaks and Parameters

The most general return prediction model we consider assumes that both the model
parameters and breaks are unit-specific and so allows for the maximum degree of
flexibility in how the individual return series are modeled. This yields a time-series
model which is applied to the cross-section of the N return series on a unit-by-unit
basis. Following standard practice in the return predictability literature, we focus on
prediction models that include an intercept and a single predictor which can either
be specific to each portfolio, X;;, or be the same (market-wide) predictor, X;. In each
case, excess returns on the ith asset at time t, r;, is our dependent variable.
Suppose the data generating process is time-varying and subject to an unknown
number of stock- or portfolio-specific breaks, K;, which split the sample into K; + 1
distinct regimes for the ith portfolio. Moreover, let 7; = (751, ..., Tix,) denote a K;-

vector of breakpoints for the ith series. The time-series model fitted to each return

8For a more detailed and formal exposition of the econometric properties of the methods described
in this section, see Smith et al. (2018).



series in the cross-section takes the form”
Tit = Hik; +/Bik;iXt—1+€it7 t:Tiki—1+17"'aTiki7 kl = 17"'aK’i+17 (]-)

where g, and [, denote the intercept and slope coefficients in the k;th regime
and the error term is assumed to be Normally distributed ¢; ~ N (0, U?k,-) for k; =
1;---7Ki+ 1, andt:Tiki,1+1,...,Tiki.

Following existing studies such as Pastor and Stambaugh (2001), we estimate this

break model to each individual return series using the algorithm of Chib (1998).
2.2. Pooled Breaks and Portfolio-specific Parameters

With both portfolio-specific parameters and break dates, the model in equation (1)
assumes that each cross-sectional unit is independent. However, increased power in
break detection can be achieved by combining information from the cross-section
of portfolio returns. Our panel approach therefore estimates breaks by pooling the
information from the cross-section to identify the timing of the K common breaks,

while still estimating the parameters for each individual series

rit = Wikt Bk Xt—1+€ir, 1=1,...,N, t=m_1+1,..., T, k=1,..., K+1.
(2)

Again, we assume that the error-term is Normally distributed with unit-specific vari-

ance €; ~ N(0,0%) in the (common) kth regime and 7 = (7, ..., 7x1) for all 4.8

Popular model specifications from the finance literature can be obtained as special
cases of equation (2). In particular, the historical average or prevailing mean model of
Goyal and Welch (2008) is obtained by setting K = 0 and omitting X;_;. Similarly,
a conventional panel model with no breaks is obtained when K = 0.

Stock returns typically exhibit high levels of correlation due to their loadings
on common factors. While these correlations do not directly affect our forecasts of
expected stock returns, ignoring them can reduce the increased break detection power
obtained by using panel data rather than the individual time series of returns (Kim
2011; Baltagi et al. 2016) and so it is important to address this point. Note that a

strategy of directly estimating the full covariance matrix of the residuals is infeasible

"For convenience we assume that 7,0=0 and 7; K;+1 =T for all i.
8The posterior distribution and estimation of this model are detailed in Appendices A and B,
respectively.



since it severely delays break point detection.” Instead, we assume that correlations
across residual returns are generated by a set of common factors. For example, in the

case of a single market return factor, 7asx: ¢, we have

Tit = ik + B Xi—1 + €t t=m1+1,..., 7, k=1,...K +1,

€it = Yik" Mkt + Vit, (3)

where ;. denotes the factor loading for the ¢th asset in regime k, and v;; denotes the
idiosyncratic residuals. The theoretical properties of this approach are presented in
Smith et al. (2018).1°

2.3. Out-of-sample Return Forecasts

At each point in time, we generate out-of-sample return forecasts for the: =1,..., N
industry portfolios by loading the slope estimate on the predictor variable from the

final regime and adding the intercept estimate:
Fitr1 | K = g1 + Birc 11X (4)

Note that this step incorporates uncertainty surrounding the break locations but
conditions on the number of breaks K.'' To handle uncertainty about the number
of breaks, let K,,;, and K,,.., respectively, denote the lowest and highest number of
breaks that are assigned a nonzero posterior probability by our estimation procedure.

We then apply Bayesian Model Averaging to integrate out uncertainty about K:

9To see this, note that a cross-sectional dimension of only N = 30 requires estimating 525
parameters in each regime, consisting of 3N = 90 regression parameters and N, = (N 2_N)/2 =435
correlations. A regime duration shorter than 525/N = 18 periods would therefore require estimating
more parameters than we have observations within that regime. In our empirical application, every
single break is detected with a considerably shorter delay than this.

FEmpirically, capturing correlation in the residuals of the individual asset return series through
their exposure to the common market factor appears to work very well. For example, the absolute
value of the pairwise correlation averaged across 30 industry portfolios in our industry portfolio
application is reduced from 0.74 to 0.13 after accounting for the market factor, while the cross-
sectional dependence test statistic of Pesaran (2004) is reduced from 168.84 to 2.39, which is no
longer significant at the 1% level.

HFor simplicity, we do not formally state the Bayesian Model Averaging that is done over the
break locations. Avramov (2002) reports that Bayesian Model Averaging improves performance
when forecasting stock returns in the presence of model uncertainty.



Kma:c

fi,t+1 = Z p(K ‘ IUX)fi,tH ’ K (5)

in which r denotes the excess returns on the N portfolios across the T time periods
and X denotes the T" observations on the predictor.
Next, using a bottom-up approach, we forecast the aggregate market return as

the value-weighted average of the underlying N forecasts

N
kat,tH = Zwitﬁ'tﬂa (6)

i=1
where w; = (wyy, . .., wy) denotes the vector of (predetermined) value weights on the

N assets at time ¢.

Our out-of-sample return forecasts are generated recursively with an initial “warm-
up” sample of ten years. Hence, the initial parameters of each model are estimated
using data from July 1926 through June 1936 and a forecast is made at June 1936
for July 1936. We then expand the estimation period by one month and estimate the
parameters of each model using data from July 1926 through July 1936 and produce
a return forecast for August 1936. This process is repeated until finally we estimate
the parameters of each model using data from July 1926 through November 2015 and

generate the forecast for December 2015.

2.4. Prior Distributions

Our Bayesian methodology combines information in the data transmitted through
the likelihood function with prior information. Essentially, we assume conventional
conjugate Normal priors over the regression coefficients and inverse gamma priors on
the variance parameters within each regime.'> The hyperparameters that determine
the frequency of breaks to the coefficients are set so that a break occurs on average
roughly once per decade.

Importantly, we let the key prior parameters be economically motivated. Given
evidence of weak return predictability such as Goyal and Welch (2008), we center
our prior for £ at zero. Moreover, inspired by Wachter and Warusawitharana (2009),

we explore an economically motivated prior distribution that allows investors to have

2Further details of the shape of the priors are provided in Appendix A.



different views regarding the degree to which excess returns are predictable. In the
absence of breaks, if the slope coefficient 5 on the predictive variable is equal to
zero, this implies no predictability, and the predictive regression is simply the ‘no
predictability’ benchmark model, i.e., the historical average. A Bayesian analysis
allows many different degrees of predictability reflecting the scepticism of the investor
as to whether excess returns are predictable. For instance, if £ is normally distributed
with zero mean and variance o3, then setting 03 = 0 implies a dogmatic prior belief
that excess returns are not predictable, while aé — oo specifies a diffuse prior over
the value of 8 implying that all degrees of predictability (and hence values of the R?
from the predictive regression) are equally likely. An intermediate view suggests the
investor is sceptical about predictability but does not rule it out entirely.

As noted by Wachter and Warusawitharana (2009) it is undesirable to place a
prior directly on 3; since a high variance of the predictor o3 might lower the prior
on B; whereas a large residual variance o? might increase it. To address this point,
we scale (3; to account for these two variances, placing instead the prior over this

‘normalised beta’
ox
U Bif' (7)

Our prior on 7; is
p(n:) ~ N(0,07), (8)

which by (7) is equivalent to placing the following prior on f;

o2
p(8) ~ N (0. 207 )
We compute 0% as the empirical variance of the predictor variable over the full sample
available at the time the recursive forecast is made.!

Linking the prior distribution of 5; to ox and o; is an attractive feature because it
implies that the distribution on the R? from the predictive regression is well-defined.
In population, for a single risky asset the proportion of the total variance that origi-

nates from variation in the predictable component of the return is

R2 512 O-g( _ 7]12

: = = =1,...,N 10
i e U 1o

13Computing 0% using only data available in the most recent regime is less robust due to the
possibility of very short regimes.



which implies that no risky asset can have an R? that is ‘too large’.

The informativeness of the prior is determined by ¢, which is constant across
all i. We refer to Wachter and Warusawitharana (2009) for a full explanation but
provide the main results here for completeness. When o, = 0 the investor assigns
all probability to an R? value of zero for all 4. Figure 2 displays how investors
assign more weight to a positive R? as o, increases. Specifically, when o, = 0.02,
investors assign 0.0003 probability to R? values greater than 0.005. When o, = 0.04,
investors assign 0.075 probability to R? values greater than 0.005. When o,, = 0.06,
investors assign 0.235 probability to R? values greater than 0.005. For large values of
oy, investors assign approximately equal probabilities to all values of R?. Our main
empirical analysis considers a moderate degree of predictability by setting o, = 0.04
following Wachter and Warusawitharana (2009), but we also explore the robustness
of the results when this parameter is adjusted.

It may also be desirable to specify that high Sharpe Ratios are a priori unlikely. A
high absolute value of the intercept term combined with a low residual variance would
imply a high Sharpe Ratio. In the spirit of Pastor and Stambaugh (1999) we multiply
the prior standard deviation of the intercept term o,,, by the corresponding estimated
residual standard deviation in the kth regime for the ¢th portfolio 0;,. Because the
intercept term has a prior mean of zero, a low residual variance reduces the overall
variance of the intercept, thereby making a large absolute intercept value and hence
a high Sharpe Ratio improbable. As the residual variance increases, the probability
assigned to large absolute intercept values increases accordingly. Following Pastor
and Stambaugh (1999), we adopt a moderate prior belief in the empirical analysis by

setting the prior intercept variance o, equal to 5%.'
3. Empirical Results: Evidence of Breaks

This section introduces our return data and predictor variables and presents empirical

evidence on the location and number of breaks identified by our approach.

18ee also Avdis and Wachter (2017) who report that maximum likelihood estimation that incor-
porates information about dividends and prices results in an economically meaningful reduction in
the equity premium estimate that is more reliable relative to the commonly used sample mean.

10



3.1. Data

As our dependent variable, we use monthly returns on 30 value-weighted industry
portfolios from July 1926 through December 2015 sourced from Kenneth French’s
website, all computed in excess of a one-month T-bill rate. We also source monthly
returns excluding dividends from French’s website, and the 5 x 5 portfolios sorted on
size and book-to-market or on size and momentum. We also source monthly aggregate
data on the three factors of Fama and French (1993).

Our lead predictor is the aggregate dividend-price ratio using 12-month moving
sums of dividends on the S&P 500, but we also consider predictors such as the
one-month Treasury-bill rate, the term spread (the difference between the long term
yield on government bonds and the Treasury-bill rate), and the default spread (the
yield spread between BAA- and AAA-rated corporate bonds), all sourced from Amit

Goyal’s website.

3.2. Fvidence of Breaks

We first consider the evidence of breaks in the return prediction model. To this end,
the top panel in Figure 3 plots the posterior probability distribution for the number
of breaks estimated on the full sample of 90 years of data for the model that uses the
lagged dividend-price ratio as a predictor. The mode (and mean) for the number of
breaks is 10, with approximately 90% of the probability mass distributed between 9
and 10 breaks. These estimates suggest a break occurring roughly once per decade.

The lower panel in Figure 3 plots the posterior probability for the location of the
breaks. The timing for most of the breaks appears to be quite well defined with clear
spikes in the posterior probabilities in 1929, 1933, 1972, 1998, and 2008. Thus, the
break dates coincide with major economic events such as the Great Depression, the
oil price shocks of the 1970s, the Asian Financial crisis and the bailout of LTCM, and
the financial crisis of 2008. Interestingly, the posterior probability mass is quite dis-
perse during the recent financial crisis, indicating that its effect on different industry
portfolios was not confined to a single month but diffused gradually through time.
Note also that there are long periods without any evidence of model instability, e.g.,
the twenty-year period from 1950 to 1970.

15The estimated break dates do not change if we include the size and value factors alongside the
market factor in our panel regression.
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The breakpoints identified by our panel approach are very different from those
obtained from the breakpoint algorithm of Chib (1998) applied to the univariate
time series of returns on the individual industry portfolios. In fact, for each of the
industry portfolios the univariate breakpoint model fails to detect a single break,
always favoring the model with zero breaks which receives, on average, 91.21% of the
posterior model probability. This suggests that the univariate tests have too weak
power to identify breaks off individual return series.!®

Our heterogeneous panel break model allows the parameters of the equity premium
processes for different industry portfolios to be affected more or less severely by breaks
and it can be insightful to analyze which industries exhibit the greatest sensitivity
to breaks. To explore this point, for each of the industry return series we compute
the standard deviation of the estimated intercept, slope and volatility parameters
across the 11 regimes. The top panel in Table 1 reports the standard deviation in
parameters across regimes (our measure of break sensitivity) for the top and bottom
five industries as ranked by the sensitivity of the slope coefficients to breaks. The
table shows that, indeed, not all industries are equally affected by breaks. Returns
on the oil industry portfolio exhibit the greatest sensitivity to breaks, followed by
financials and telecommunication firms. Least sensitive to breaks are the returns on

stocks in the services and wholesale industries.

3.3. Bvolution in Return Forecasts

Figure 4 shows out-of-sample forecasts of market returns from the heterogeneous
panel model with (dotted red line) and without (dashed purple line) breaks and the
prevailing mean model (solid black line). The forecasts generated from the prevailing
mean model are much smoother than the other ones. Return forecasts from the two
panel models display higher volatility than the prevailing mean model and are also

quite different from each other, indicating the importance of allowing for breaks.

3.4. Real-time Detection of Breaks

A key challenge when generating return forecasts in a setting that accounts for insta-

bility is how quickly the model is able to identify breaks in real time. Severe delays

6pgstor and Stambaugh (2001) identify breaks in returns based on assumptions about joint
movements in the mean and variance of returns.
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in breakpoint detection can lead to poor forecasting performance, particularly if the
distance between breaks is relatively short, causing some regimes to be overlooked
altogether. Conversely, if shifts to parameter values can be identified with little de-
lay, this opens the possibility of improved forecasting performance. The ability to
detect breaks in real time is therefore of central importance to investors seeking to
re-allocate their portfolios in a timely manner.

To shed light on this issue, Figure 5 plots the break dates estimated in real time.
The real-time breakpoint detection performance of the model with pooled breaks and
portfolio-specific parameters works as follows. The initial model is estimated using
the first ten years of data. Next, the estimation window is expanded by one month
and the model is re-estimated until we reach the end of the sample, recording the
break dates identified at each point in time. The vertical line in the figure marks
the first period at which the model is estimated given the initial training window
of ten years (120 monthly observations) while the 45 degree line (to the right of the
vertical line) marks the points at which a break could first be detected, corresponding
to a delay of zero. Circles on the graph mark the break dates as estimated in real
time with horizontal bands of circles indicating that an initial break date estimate
is confirmed to have occurred as subsequent data arrive. The figure is dominated
by these bands whose initial points start with only a short delay from the 45 degree
line, demonstrating the ability of the procedure to rapidly detect the onset of a break.
Conversely, initial break estimates that are not supported by subsequent data, appear
as isolated circles outside the horizontal bands and are indicative of “false alarms”.
There are not too many instances in which the approach detects what subsequently
turns out to be spurious breaks.

Lettau and Van Nieuwerburgh (2008) and Viceira (1997) find evidence of in-
stability in time-series predictive regressions of the aggregate market return on the
dividend-price ratio. They also find that such instability cannot be exploited to gen-
erate more accurate out-of-sample return forecasts because their univariate method
is unable to detect breaks in real time. Figure 5 shows that, by incorporating cross-
sectional information from multiple return series, our panel break procedure has in-
creased break detection power relative to the time-series approach.

To further highlight this point, Figure 6 plots the number of months before a
break was first detected in real time, measured relative to the full-sample (ex-post)
estimate of the break date. The majority of breaks in the dividend-price ratio model
were detected within five to seven months of their occurrence, with the longest delay

being 9 months.
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The ability of our panel break approach to identify breaks with relatively little de-
lay stands in marked contrast to the long delays typically associated with breakpoint

modeling in the context of univariate time-series.
4. Evaluation of Return Forecasts

This section compares the predictive performance of our heterogeneous panel break
model with a univariate time-series break model, a heterogeneous panel model with-
out breaks, and the simple historical average, the latter serving as a ‘no predictability’
benchmark. We report both statistical and economic measures of forecasting perfor-
mance, the latter based on how a risk averse mean-variance investor would utilize the

forecasts from the different return prediction models.
4.1. Out-of-sample Forecasting Performance

To evaluate the accuracy of the return forecasts, Figure 7 plots the cumulative sum
of squared error differences (C'SSED) obtained by subtracting the sum of squared
errors produced by our panel break forecasts from the sum of squared errors generated

by each of the benchmark models:

t

CSSED, = Z(eémkﬂ' - e%brkﬂ')? (11)
=1

in which epgy,;» and epy, - denote the respective forecast time ¢ errors from the bench-
mark and our panel break model. Positive and rising values of the CSSED measure
represent periods where the panel break model outperforms the benchmark, while
negative and declining values suggest that the panel break model is underperforming.
Moreover, if the performance of the panel break model measured against the bench-
mark is dominated by a few observations, this will show up in the form of sudden
spikes in these graphs. In contrast, a smooth, upwardsloping graph indicates more

stable outperformance of the panel break model measured against the benchmark.
Figure 7 presents plots of the CSSED values for the market portfolio and three
representative industries (oil, financials and telecommunications). The plots show
that the heterogeneous panel break model consistently outperforms its competitors
over the 80-year sample. For the market portfolio (top left hand corner), the CSSED

curve for the panel model with breaks measured relative to the prevailing mean model
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rises throughout the out-of-sample period with no long spells of underperformance.
The strong performance against the historical average is particularly impressive given
that this benchmark has been found by Goyal and Welch (2008) to be very difficult to
beat out-of-sample. A similarly strong performance is seen for the panel break model
measured against the panel model without breaks or against the univariate market
model that allows for breaks.

Similar improvements in predictive accuracy from the panel break model are seen
in the plots for the three industry portfolios displayed in Figure 7. The plots continue
to show clear and consistent improvements against the prevailing mean and univari-
ate time-series model while the improvements against the no-break panel model are
more concentrated towards the last 15 years of the sample for the oil and telecom-
munications industries.

We evaluate the forecasting performance of the panel break model relative to the

benchmark using the out-of-sample R? measure of Campbell and Thompson (2008):
R}, =1— MSPEpy/MSPEp,. (12)

Here M SPEpy and MSP Ep,,; denote the mean squared prediction error (MSPE)
for the panel break and benchmark models, respectively. A positive R% o value
indicates that the panel break model outperforms the benchmark, while a negative
value indicates it underperforms.

Figure 8 plots histograms of the R, 4 values for each of the thirty industry port-
folios and the market portfolio based on comparisons of the forecasting performance
of our proposed panel breaks model relative to the three benchmark models. For
the 31 portfolios our method outperforms all three benchmarks 29 times. Moreover,
many of the R% ¢ values are economically large: Campbell and Thompson (2008)
estimate that even an R, ¢ value as small as one-half of one percent on monthly data
is economically large for a mean-variance investor with moderate risk aversion.

Table 2 uses the test statistic of Diebold and Mariano (1995) to more formally
evaluate the statistical significance of the relative performance of the panel break
model against the three benchmarks. The table shows that the panel break model
performs significantly better than the benchmark at the 10% level for 25, 24, and 26
of the 30 industry portfolios including the market index compared to the predictive
performance of the heterogeneous panel model with no breaks, the prevailing mean,
and the time-series break model, respectively. Using the test statistic of Clark and

West (2007) which allows for nested models, this outperformance is significant at the
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10% level for 27, 26, and 27 of the 31 portfolios relative to the no-break panel model,
the prevailing mean model and the univariate time-series model, respectively. Con-
versely, the panel break model does not underperform relative to these benchmarks
at the 10% level for any of the 31 portfolios.

These findings underline that the improvements in predictive accuracy that we
observe for the panel break model is not simply a result of expanding the information
set from a univariate time-series setting to a panel setup that incorporates cross-
sectional information. Conversely, allowing for breaks in a univariate setting also does
not produce nearly the same gains in predictive accuracy as the panel break model.
Rather, it is the joint effect of using cross-sectional information in a panel setting and
allowing the return forecasts to account for breaks that generates improvements in
predictive accuracy.

The results also demonstrate that our panel model with breaks has the ability to
adapt to breaks, and thus handle model instability, while simultaneously reducing the
effect of estimation error which has so far plagued real-time (out-of-sample) return
forecasts, see Lettau and Van Nieuwerburgh (2008). Key to the improved forecasting
performance is our ability to detect breaks to return prediction models with little
delay, combined with our use of economically-motivated priors which dampen the
adverse effect of estimation error which tends to greatly reduce the accuracy of return

forecasts inside new regimes.

4.1.1. Forecasting Performance in the Aftermath of Breaks

To the extent that pooling cross-sectional information helps the panel break model
speed up learning, we would expect forecasting performance to be particularly good
in the immediate aftermath of a break, particularly if the break is large in magnitude.

To see if this holds, Figure 9 graphs the cumulative difference in the sum of
squared errors as a function of the time since the initial break detection, measured in
months, i.e., in break point ‘event time’. Specifically we compute the squared forecast
errors each month following the detection of each break in the out-of-sample period
and then take the mean of the squared errors in each period across the breaks. For
example, in the first month following break detection, we average across the squared
forecast errors in the period immediately following each of the breaks that are detected
over the out-of-sample forecasting window. Our panel-break method outperforms the
competing benchmarks by the largest margin in the short period after a break is

detected, demonstrating the value from using our panel procedure to detect the onset
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of a break more quickly in real time.
4.2. Economic Utility from Return Forecasts

In addition to evaluating the statistical performance of forecasts from our panel break
model relative to a variety of benchmarks, it is important to evaluate their economic
performance. For each of the 31 portfolios (including the market) we therefore com-
pute the utility gain to a mean-variance investor who at each period allocates his
portfolio between a single risky asset and risk-free T-bills.!” In this one-period-ahead
forecasting exercise, at time ¢ the mean-variance investor allocates a portion of his
portfolio to equities in period ¢ 4+ 1 based on forecasts of the mean and variance of
excess returns denoted 71 and 67, both computed using only information available

at time ¢'8

I 7
/\2 b
A 01

(13)

WBmkt =

Figure 10 shows the distribution of utility gains across the 31 portfolios that we
consider here. Allocations are based on the out-of-sample return forecasts that use
the dividend-price ratio as a predictor. We show annualized certainty equivalent
(CER) values for the panel breaks model relative to the utility obtained from the
three benchmark specifications, i.e., a panel model with no breaks, a prevailing mean
model computed for each portfolio, and time-series forecasts fitted separately to the
individual industry portfolios, in each case allowing for breaks.

The plots show that the panel break model generates positive CER values for at
least 28 of the 31 portfolios, regardless of the benchmark. Moreover, the estimated
utility gain from using the panel-break forecasts is generally economically large. For
the market portfolio it is 2% per annum when measured against the forecasts from
the no-break panel model or the time series model with breaks, and it exceeds 1.5%
relative to the prevailing mean model.

If breaks in the model parameters do not strongly affect a particular industry
portfolio, it is unlikely that a model that accounts for such breaks can significantly

outperform a model that ignores breaks. To see if this holds, Table 3 explores the

17A small set of studies that explore the utility gain to a mean-variance investor include Campbell
and Thompson (2008), Goyal and Welch (2008) and Rapach et al. (2010).

8Following Campbell and Thompson (2008), we use a five year rolling window of monthly stock
returns to estimate the variance of stock returns, assume a risk aversion coefficient of A = 3 and
restrict the portfolio weights to fall between 0% and 150% to rule out short-selling and highly
leveraged positions.
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relation between the magnitude of the break, as measured by the mean squared
difference between the forecasts from the panel models with and without breaks, and
the utility gains for that portfolio, again measured using the panel models with and
without breaks. The calculations assume a mean-variance investor with a coefficient
of risk aversion of three. To keep it simple, we show only results for the upper and
lower quartile of industries, ranked by mean squared forecast difference.

We find that those industries for which breaks have the biggest effect on the
forecasts (upper quartile) generally lead to higher utility gains both in absolute and
relative terms, while industries whose return forecasts are least affected by breaks

(lower quartile) are associated with the smallest utility gains.
4.2.1. Industry Allocation Analysis

We next explore the utility gain of a mean-variance investor who each period allocates
his wealth between the risk-free rate and a risky portfolio constructed from the 30
industry portfolios (see e.g. Avramov and Wermers (2006) and Banegas et al. (2013)).
Let 1,41 denote the return on the risky portfolio at time ¢+1 in excess of the risk-free
rate rf.41. The return on the risky portfolio is constructed from the returns on the 30
industry portfolios at time ¢t + 1, 7,1, and the corresponding portfolio value weights
wy11. Using our panel break model at each time ¢ we determine the weight vector w;
to allocate among the 30 industry portfolios in the next period, i.e., we solve for the

w; that maximizes the expected utility

A,
E[U(rppe1 | A)] = rps + wifer — §W£Stwta (14)

subject to the summability constraint %wit =1, and wy € [0,1] fori = 1,...,N
to preclude any leverage or short sellinzgz 1of individual industries.!” The covariance
matrix, S;, is estimated using the residuals from the return prediction model up to
time ¢. This process is repeated for each time period out-of-sample.

Table 4 shows the time-series average industry allocations under the four different
return forecasts.?’ There are some notable differences across the different forecasts.

For example, the average allocation to services is only 16% under the historical average

TImposing constraints on the portfolio weights is akin to applying shrinkage on the variance-
covariance estimates which can lead to performance improvements in mean-variance analysis. See
Jagannathan and Ma (2003) and DeMiguel et al. (2007).

20To preserve space, we omit industries that have an allocation of less than 0.01 for every model.
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model, but close to 40% under the three other approaches. Conversely, the two panel
models allocate substantially more (13% and 24%, for the break and no-break models,
respectively) to the smoke industry than the historical average (9%). In turn, the
univariate time-series model allocates most (23%) to telecommunications, with the
allocation from the panel break model (5%) in a distant second place.

The top panel of Table 5 reports the resulting out-of-sample utility gains from
these optimized allocations across industry portfolios. Specifically, the table shows
the annualized CER values for the panel break model measured relative to the three
benchmarks, in each case using the dividend-price ratio as a predictor (top line).
Relative to the historical average forecasts, the CER value of the panel break model
is 2.19% per annum. Average gains in the CER value of the panel break model remain
large—approximately 2% per annum-—when measured against the univariate time-series
and no-break panel models.

Furthermore, the improved predictive performance in the immediate aftermath of
a break being detected translates into even larger utility gains during these periods.
Table 5 also reports utility gains computed using only those time periods that occur
within two years of a break first being detected (‘After breaks’). The annualized CER
value of 3.02% is even higher reflecting the ability of our approach to exploit the rapid
detection of breaks for utility gains.

These results suggest that the panel-break forecasts of returns on the individ-
ual industry portfolios could have been used out-of-sample to generate economically

meaningful improvements over forecasts from the three benchmarks.

5. Is there a Break Risk Factor?

Our panel breakpoint methodology can detect breaks that are pervasive in the sense
that they simultaneously affect the returns of multiple stocks or portfolios. We next
explore whether these breaks can be characterized as a risk factor that is priced in the
cross-section, that is, whether stocks with greater exposure to break risk earn higher
returns.

To evaluate this hypothesis, we first create out-of-sample forecasts from the het-
erogeneous panel models with and without breaks, using monthly data on individual
US stocks traded on the NYSE, AMEX or NASDAQ stock exchanges at some point
during our sample period from July 1926 through December 2015. We use CRSP
data on 7,299 different stocks. For each stock, we use the lagged dividend-price ratio

on the market as the predictor. Further, we use an initial warm-up estimation period
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of ten years so the out-of-sample analysis begins in 1936.2
For each stock, 7, and each month in the sample, ¢, we then compute the difference
between the forecast from the panel break model (741 pprx) and the forecast from

the panel model without breaks (711 nvoBrk):
BRKi11 =| Pits1,PBrk — Tit+1.NoBrk |s i=1,...N, t=120,..., T —1. (15)

We expect BRK ;1 to be larger for stocks with greater exposure to break risk.

We next investigate whether such exposures translate into higher risk premia.
5.1. Fama and MacBeth Regressions

We evaluate the ability of our break risk measure to explain the cross-section of

returns by estimating the following cross-sectional regression each month
Tit = Aot + AuBRKy + Xoy Zy + eq (16)

in which Z;; contains three control variables, namely size (log(ME)), value (log(B/M))
and return performance measured over the previous year excluding the most recent
month (PR1Y R), for the ith stock at time t. Next, following the conventional Fama-
MacBeth methodology, we use the time-series estimates of Aj; and Ay to evalute the
mean and standard deviation of these slope coefficients.

The top panel of Table 6 displays the results. The break risk factor has nearly as
much power as book-to-market in explaining the cross-section of stock returns and
has approximately one-and-a-half times the power of the market size and momentum
according to the test statistics. Average returns are also higher for firms exposed to
break risk than those not exposed.

We also present results of alternative proxies of the break risk factors (columns
2-5 in Table 6). Our second measure uses the root-squared difference between the
forecasts produced by the panel models with and without breaks. The third, fourth
and fifth measures use the absolute difference at each time point in the intercept, slope
and volatility parameters, respectively, estimated from the panel models with and
without breaks. All five measures are statistically significant using Newey and West

(1987) heteroscedasticity-adjusted t-statistics, although the third measure (based on

21The unbalanced panel this introduces is readily handled by our methodology.
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the intercept) has the least power (t-statistic of 2.62) to explain the cross-section of
expected returns.

Following Novy-Marx (2013), the bottom panel of Table 6 reports results from the
same analysis performed using the break risk measures that have been demeaned by
industry using the 49 industries of Fama and French (1997). The results are broadly
similar except the t-statistic of every break risk measure is increased, suggesting that
adjusting the risk measure by industry obtains even more power to explain the cross-
section of expected returns.

From herein we focus on the break risk factor measured by the absolute differ-
ence between the forecasts produced by the panel models with and without breaks
presented in equation (15) because it is the measure that has the most power in

explaining the cross-section of expected returns.

5.2. Sorts on Break Sensitivity

Running Fama and MacBeth (1973) regressions using individual stocks places a lot of
emphasis on nano- and micro-cap stocks that make up a considerable share of the num-
ber of stocks but only account for a small fraction of the total market capitalisation.
The regressions may also be sensitive to outliers and impose a potentially misspecified
parametric relation between the variables. Any subsequent inference may therefore
be compromised. To alleviate this concern, we construct value-weighted portfolios
sorted according to our instability risk factor and provide a nonparametric test of the
hypothesis that exposure to break risk predicts average returns in the cross-section.

Table 7 displays results for the portfolios sorted on our break risk factor. The
first row (“Low”) shows results for the bottom quintile of stocks ranked by break
sensitivity, while the fifth row (“High”) shows results for the stocks that are most
sensitive to breaks. Column one shows the average monthly return earned by each
quintile portfolio, followed by the alpha and slope coefficients obtained from time-
series regressions of the portfolio returns on the three factors of Fama and French
(1993) - market (MKT), size (SMB) and value (HML) - with ¢-statistics reported in
brackets below.

Returns to the break-sorted portfolios are monotonically increasing with our risk
factor with the high-sensitivity portfolio earning a 0.27% higher average monthly
return than the low-sensitivity portfolio, corresponding to an annualized return pre-
mium of 3.24% for the quintile of firms with the highest break exposure compared with

the quintile of firms least exposed to this source of risk. This premium is significant
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at the 5% level with a t-statistic of 2.18.

Turning to the risk-adjusted performance from the three-factor regressions, once
again we see monotonically increasing values of alpha as we move from the least to
the most break-sensitive stocks. Moreover, the alpha estimate of both the least break-
sensitive stocks (at -0.18% per month) and the most break-sensitive stocks (at 0.17%)
are both significantly different from zero, as is their difference which, at 0.35% per
month or more than 4% annualized, is economically large.

To alleviate concerns about transaction costs raised by Novy-Marx and Velikov
(2015) and Hou et al. (2017) we follow Chordia et al. (2017) and perform the same
analysis omitting all stocks with a price below $3 or a market capitalisation below the
20th percentile of the NYSE capitalisation distribution. The bottom panel of Table 7
displays the results. The results, while marginally weaker, tell the same basic story.

These results provide cross-sectional evidence of the existence of a break risk
factor. They suggest that stocks whose equity premium processes are most sensitive
to the type of breaks identified by our methodology earn both higher average returns
(about 3% per year) and higher risk premia (about 4% per year) than stocks with

the lowest sensitivity to breaks.

5.8. Break Ezxposure and Company Characteristics

The alpha estimates in Table 7 account for exposure to the Fama-French market, size
and book-to-market factors. This is important because break risk exposure could well
be correlated with size or book-to-market characteristics at the firm level. Whether
such a relation exists is what we next explore.

To this end, we first re-estimate a separate set of panel break models using returns
on a set of 5 x 5 portfolios sorted either on size and book-to-market or on size and
momentum. We then rank the 25 portfolios by the sensitivity of their (dividend-price
ratio) slope coefficient computed as the standard deviation of the estimated slopes
across the different regimes. Results from this analysis are shown in Table 8.

Looking at the 25 portfolios sorted on size and book-to-market ratio (top panel),
small firms’ return processes are seen to be the most sensitive to breaks, while big
firms are the least sensitive. Moreover, differences are large as the small firms have
two to three times as large a sensitivity as large firms do.

Though size matters more to break sensitivity than book-to-market value does,
there is also a clear relation between firms’ book-to-market ratios and their break

sensitivity. In fact, conditional on firm size there is a monotonically decreasing rela-
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tion between book-to-market ratio and break sensitivity as returns on value firms are
more sensitive to breaks than returns on growth firms.

The bottom panel in Table 8 shows similar findings for the stocks sorted on size and
momentum. Once again, small firms’ returns are more sensitive to breaks than large
firms. Moreover, conditional on firm size there is a monotonically increasing relation
between prior returns and break sensitivity as “loser” stocks with the smallest prior
returns are more sensitive to breaks than are “winner” stocks.

These findings suggest that firms normally thought of as being riskier (small firms
and value firms) also have greater exposure to breaks in their return processes. Firms
with poor prior-year return performance also tend to be more exposed to break risk
which could be explained by occasional large resurgences in the returns of ‘losers’
documented by Daniel and Moskowitz (2016).

6. Breaks in Dividend Growth and Return Predictability

Return predictability can arise from two principal sources, namely predictability of
cash flow growth or predictability of equity risk premia. Because they are not directly
observable, inference on variation in equity risk premia is dependent on how these
are modeled. In contrast, we can obtain good proxies for cash flows. This section
therefore explores whether the breaks identified in the return prediction models are
linked to shifts in the underlying dividend growth process.??

Predictability of dividend growth is still being contested. For example, Cochrane
(2007) argues that there is little evidence that dividend growth can be predicted.
Conversely, van Binsbergen et al. (2010) report annual out-of-sample R? values of
13.9-31.6% for dividend growth rates, using a present value filtering approach. Chen
(2009) and Kelly and Pruitt (2013) also present evidence of dividend growth pre-
dictability.

Such disagreement regarding dividend growth predictability could be caused by
time-variation in predictability, i.e., dividends could be highly predictable in certain
regimes while largely unpredictable in other ones. To address this question, we run

a predictive regression with the dividend growth series for the 30 industry portfolios

22Qur analysis is also relevant for past work on the predictive power of the dividend-price ratio
(or dividend yield) over stock returns. Lettau and Ludvigson (2005) find that forecasts of dividends
and forecasts of stock returns covary over the business cycle, implying that positively correlated
fluctuations in expectations of both dividend growth and returns have counterbalancing effects on
the log dividend-price ratio.
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as the dependent variable and an intercept, an autoregressive term and a lagged
predictor (the dividend-price ratio) on the right-hand-side.?

Table 9 displays the posterior mean and standard deviation of the estimated in-
tercept, AR(1) slope, dividend-price ratio slope, and the volatility obtained from our
heterogeneous panel break model. The predicted dividend growth rate varies in a
wide range that spans high-growth states with a large positive intercept and AR(1)
coefficient (regime eight) and states with negative expected dividend growth (regimes
one and three). The AR(1) coefficient is highly significant and positive in nine out of
ten regimes. Similarly, the estimated slope of the dividend-price ratio is negative in
nine of ten regimes as we would expect if forecasts of higher future dividend growth
lead to higher current prices and thus a smaller dividend-price ratio.?*

The bottom row of Figure 11 displays the estimated break dates identified by
our panel break model. Blue triangles mark the posterior modes of the break dates
estimated from the heterogeneous panel break model fitted to dividend growth, while
red triangles mark the modes of break dates fitted to the model for excess returns.
Note that the 1929 break identified by the return prediction model goes undetected by
the dividend growth model. This is likely because our dividend growth sample begins
in 1928 and it can be difficult to detect breaks at the very beginning of the sample
(Bai and Perron 1998). The remainder of the posterior modes of estimated break
dates are very close to their original modes when excess returns are the dependent
variable. In fact, every remaining break from the return model is estimated within
one year of the original break date estimate except for an additional break identified
in the 1990s and the break in 1986 being overlooked. The results across the other
three predictive variables listed in the upper rows are even stronger.

Interestingly, the breaks in the dividend growth regression lead the breaks in
the excess return regression. Ignoring the first break identified by the excess return

regression (since the corresponding break is not detected by the dividend growth

230ur dividend measure is constructed as follows. First, we extract a monthly dividend yield
for each industry portfolio as the difference between the monthly CRSP returns with and without
dividends D;/P;—1 = (D¢ + P;)/Pi—1 — P;/P;—1. Next, we construct a monthly price index for
each industry portfolio using the corresponding returns without dividends P;/P;_;. Multiplying
the dividend yield by the price index gives us a monthly dividend series D, for each industry

t

portfolio which we use to compute 12-month cumulative dividends as D}? = > D;. Finally,
t=—11

we construct the year-on-year dividend growth rate for each portfolio at each time period Gy =

log(D}?) —log(D}2 ,).

24The only case where the AR(1) and dividend-price ratio coefficients have the wrong sign is in
regime 2. This reversal of sign can sometimes happen in short-lived regimes due to collinearity
between the regressors.
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regression), the break in the dividend growth panel model leads the break in the
return model by an average of 23 months. Further ignoring the first of the two breaks
in the mid-1990s (for which the break dates from the two models are very different),
the dividend growth model detects breaks that lead the return model by 12 months,
on average. This evidence is suggestive that prior breaks in the dividend growth rate
do, at least in part, explain the observed breaks in the return prediction models.

As a final piece of evidence on the link between breaks to the dividend growth
process and breaks to returns, we analyze whether those industry portfolios whose
equity premium processes are most strongly affected by breaks tend to be the same
industries whose dividend growth rates are most sensitive to breaks. We use the same
methodology as in the analysis of break sensitivity for the industry return processes
and, once again, rank industries by the standard deviation (across regimes) in the
slope coefficient on the dividend yield. The bottom panel in Table 1 shows that those
industries whose return equations are most (least) affected by breaks tend to be the
same industries whose dividend growth processes are most (least) sensitive to breaks.
This evidence provides cross-sectional support to our earlier finding that breaks to

the dividend growth process is an important driver of breaks to the return process.

7. Robustness of results

This section undertakes a number of exercises to (i) investigate whether breaks are
common across portfolios; (ii) establish the general validity of our empirical findings
to other predictor variables from the finance literature; and (iii) explore the sensitivity

of our findings to our choice of priors.

7.1. Are breaks common across portfolios?

Our analysis assumes that the timing of the breaks is common although its impact can
differ across assets. To investigate whether this assumption is reasonable, we run our
estimation procedure using the same model but replacing the excess returns on the
30 industry portfolios with two alternative sets of returns, namely (i) Fama-French

5 x 5 portfolios sorted on size and book-to-market, and (ii) 5 x 5 portfolios sorted on
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size and momentum.?®

Figure 12 plots the posterior modes for the break locations identified separately
using the original industry portfolios, the two sets of 5 x 5 portfolios sorted on size
and either book-to-market or momentum, or the complete set of individual stocks.
For the size and book-to-market portfolios, the locations of all but one of the breaks
(the 1987 break which was previously identified in 1996) are estimated within one
year of the original posterior modes, while the break in 2010 is overlooked altogether.
The very similar break dates imply that our common break assumption is reasonable.
For the portfolios sorted on size and momentum, our procedure detects one break
in 1933 while previously two breaks were detected in 1932 and 1934, respectively.
Otherwise the break dates are very similar. For all portfolio sorts, as well as for
the cross-section of individual stocks, the results are similar across the other three
predictors we consider.

The small magnitude in the differences in break date estimates suggest that breaks
affect portfolios with very different characteristics at roughly the same time and
indicate that our common break assumption is a reasonably accurate description of

our data.

7.2. Results using other predictors

Up to this point we focused our analysis on a return prediction model that uses the
dividend-price ratio as a predictor variable. However, a variety of other predictor
variables have been proposed in the literature on return predictability so we next
consider three additional predictor variables in common use, namely the one-month
T-bill rate, the default spread, and the term spread. Robustness of the performance of
our panel breaks approach for these additional predictors will increase our confidence
in the broader success and applicability of our approach.

We undertake the same analysis as that conducted for the model that uses the
dividend-price ratio as a predictor. Again, all forecasts are generated recursively
out-of-sample with a ten-year warm-up period.

To preserve space we do not show as many details of the analysis as we did for the

model that uses the dividend-price ratio as a predictor. However, it is worth noting

25Since the power to detect breaks increases with the size of the cross-section N it is preferable
to select portfolio sorts such that N is close to the original value of 30. Portfolio sorts involving
investment or profitability begin only in 1963 and thus are not suitable for our robustness check.
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that a similar number of breaks is identified for the models that use the three other
predictor variables. For example, the model that uses the T-bill rate as a predictor
identifies 9 breaks, the locations of which are very similar to those for the model based
on the dividend-price ratio (Figure 13a). Moreover, the ability to detect these breaks
with little delay continues to hold for this predictor (Figure 13b).

In fact, the ability of our approach to identify breaks in ‘real time’ holds across
all predictors. To illustrate this, Figure 6 shows the distribution of the delays in
detecting breaks for all four predictors. The vast majority of breaks are detected
with a delay of a few months although a few breaks get detected with a longer delay.

Figure 14 summarizes our findings through plots of the difference in the cumulative
sum of squared errors for our panel break approach measured relative to that of
the three benchmarks described earlier. For simplicity, we focus our analysis on the
market portfolio, but similar plots are obtained for the majority of industry portfolios.
We see clear evidence that our panel break approach consistently produces more
accurate forecasts than the alternatives.

Table 2 supplements the graphical analysis with more formal results. The panel
break model continues to perform well for the three alternative predictors, generating
Diebold-Mariano test statistics that indicate significant improvements over the three
benchmarks for between 20 and 25 of the 31 industry and market portfolios. We see
significant underperformance for only one case out of a total of 372 pair-wise forecast
comparisons across predictor variables and benchmarks. Even stronger results are
obtained using the Clark-West test statistic for which the panel break model signifi-
cantly outperforms the three benchmarks for between 22 and 28 of the 31 portfolios.

Turning to the economic value associated with the panel break forecasts, the
CER values in Table 5 show that the forecasts from the panel break model, when
implemented in a simple mean-variance investment strategy, continue to generate
utility gains in the neighborhood of 2% per annum measured relative to an investment
strategy based on the historical average, a pure time-series (break) model, or a no-
break panel model.

These results corroborate the more detailed analysis of the model that used the
dividend-price ratio as a predictor of stock returns and so suggest that our findings

are not sensitive to using a particular predictor variable.
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7.8. Sensitivity of Results to Priors

Table 10 displays the results of a prior sensitivity analysis. Specifically, we adjust one
hyperparameter at a time from our baseline specification and re-estimate the model.
First, adjusting the hyperparameter ¢ that controls our prior expected regime duration
from 10 years to 5 (20) years results in the detection of 12 (8) breaks. The significant
outperformance of the panel break model against each of the three benchmarks for
the majority of portfolios is unaffected by adjusting this prior; neither is it affected by
reasonable adjustments to the hyperparameter b that controls the prior volatility or
o, that controls the prior dispersion of the intercept. Adjusting the hyperparameter
0727 to economically plausible values also has little impact on the forecasts. However,
allowing this parameter to become very large which implies implausibly high R? values
leads to a marked deterioration in the accuracy of the forecasts, corroborating the
findings of Wachter and Warusawitharana (2009).

8. Conclusion

A large literature on predictability of stock market returns has found evidence of
model instability, suggesting that the parameters of commonly-used return prediction
models change markedly over time. Such model instability helps explain why out-
of-sample return forecasts often are found to perform poorly compared to a simple
constant-expected return benchmark as found by Goyal and Welch (2008). While
model instability is, thus, known to affect return forecasts, exploiting it has so far
proved largely elusive due to the noisy nature of returns and the low predictive power
of return prediction models which makes detecting and quantifying the effects of shifts
in parameter values exceedingly difficult using data on individual return series; see
Lettau and Van Nieuwerburgh (2008).

In this paper, we develop an approach that exploits cross-sectional information
to detect breaks from the joint dynamics of multiple return series. While our ap-
proach assumes the timing of the breaks to be the same, the effects of any breaks
are allowed to differ across individual return series. Empirically, we find that us-
ing cross-sectional information in a panel break model substantially increases our
ability to detect breaks in return prediction models. Importantly, our approach has
the ability to accurately detect breaks in real time with very little delay. Combined
with economically-motivated priors, this means that out-of-sample return forecasts

generated by our panel break model are consistently more accurate than forecasts gen-
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erated by a variety of extant approaches from the literature, with gains in predictive
accuracy being particularly large shortly after a break has occurred.

Investors use return predictions as an input into their portfolio allocation decisions
and so the possibility of breaks to the process generating expected returns can itself
be viewed as a risk factor with the potential to have a sizeable impact on investment
performance. Consistent with this, we find strong cross-sectional evidence in support
of the presence of a break risk factor. Firms whose returns are most sensitive to break
risk tend to earn higher risk-adjusted returns than firms that are less sensitive to this

source of risk, suggesting that break risk is priced in the cross-section.
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Appendix A. Priors
We now provide details of the prior distributions used by our return prediction models.
Appendix A.0.1. Prior on the Regime Durations

Unit-specific Breaks: Chib (1998)’s method restricts the regime duration of each

time-series in the cross-section to follow a geometric prior distribution

-1

Liks.
pk’z’ki) = pk,kl; (1 - pki’%)’ ki = L... 7Ki +1, (Al)

p(lik;
in which the prior nontransition probability py,, follows a conjugate beta distribution

L(g+h) 4 b1
)= I et ki=1,... K A2

Common Breaks: Koop and Potter (2007) note that such a monotonically decreas-
ing geometric prior on the regime durations enforced by Chib (1998)’s algorithm may
be unrealistic and therefore suggest specifying a Poisson distribution instead. In the
panel break model we develop the regime durations have a Poisson prior distribution

Uk —Ag
Are

L7

where the Poisson intensity parameter \; has a conjugate Gamma prior distribution

dC
I'(c)

in which ¢ and d are the hyperparameters of A = (A1,..., Agy1).

p(A) = N lem Ak k=1,...,K +1, A4
k

Appendiz A.0.2. Priors on Parameters 8 and o

The estimation of the panel break model is simplified by specifying conjugate priors

on the error-term variances o and on the regression coefficients 6 conditional on the

error-term variances 02.2% For consistency we use the equivalent prior specification

26For ease of exposition, let X denote a (2 x T') matrix that combines a unit vector of length T
with the predictor X. This results in § = (u, §) containing estimates of both the intercept and slope
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for the model with unit-specific breaks and parameters.

For the model with common breaks and unit-specific parameters we specify an

inverse gamma prior over the regime-specific variances for i =1,..., N
p(o2) = b—aar(aﬂ)exp —i k=1 K+1 (A.5)
ik F(a) ik 0i2k 3 P . .

and a Normal prior with zero mean is placed over the regression coefficients condi-

tional on the variances

— —k _ 1 _
p(elk | O-'LQk) =27 /2(gz2k) /2 | V/B | 1/2 exp (_Welk‘/@ 19214:) 7k = 1a v 7K + 17

o
2 0
Vo= ("“ ) 2).
0 o;/ox

Appendix A.1. Prior Elicitation

(A.6)

For the empirical application we assume that a break occurs approximately every
decade for the heterogeneous panel break model we develop and the benchmark time-
series break model. This is in line with findings in earlier studies such as Pastor and
Stambaugh (2001). Specifically, we set our hyperparameter values as d = h = 2 and
c = g = 240 to give a prior expected regime duration of 120 periods. We further set
a = 2 and b = 0.0049 to give a prior expected error-term variance equal to 0.0049
which is the average of the variance of the excess returns across all the portfolios using
the full sample. The choice of hyperparameter values for o, and o,, and the scaling of
o, with the empirical variance of the predictive variable using the full sample available

at the time each forecast is made ox, have been explained in Section 2.4.
Appendix A.2. Posterior Distribution
Inference is performed on the posterior distribution which combines information in

the data with prior information supplied by the user. We now explicitly detail the

posterior distributions of the different models we consider.

coefficient.
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2

Unit-specific Breaks and Parameters: Letting ©; = (6;,07), the posterior dis-

tribution of the model with unit-specific breaks and parameters is

Ki+1
7 ba
p(0; |7, X, 1) = (o-izi)*((liki+ﬁ)/2+a+l)(27T)*(’f+liki)/2 | Vi |*1/2 —
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in which 7, = (mmi,ﬁl, e 77%‘7;%) and

1 c 1
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(2xlik,) Xﬂ'krl+1 s XT“%

Pooled Breaks and Unit-specific Parameters The posterior distribution of the

model with pooled breaks and unit-specific parameters is

N K+1 .
by |1/2 b F(ak)
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S =Vl + XX, (A.9)

Pik:EkaTik, Zzl,,N
ELk =a-+ (lk)/2,

~ 1
bir = 5 (2 + rigri Py o),  i=1,...,N,
in which ry = (rir,_,41,...,7ir,) and
1 |
Xy = _
(2><lk) X7k71+1 e XTk

36

)|



Appendix B. Estimation of the Model

This appendix provides details of the procedures used to estimate the different mod-
els considered in the paper. The model with unit-specific breaks and parameters is
repeatedly estimated for each time-series in the cross-section using the multiple break-
point model of Chib (1998). This procedure estimates a series of models each with
a different number of breaks and subsequently uses the marginal likelihood approach
of Chib (1995) to derive the posterior model probabilities and determine the optimal
number of breaks. Given the popularity of Chib (1998)’s algorithm along with the
desire to save space we do not present the details of the algorithm here.

In contrast, the models with common breaks analyse the entire cross-section at
once using an alternative estimation procedure that introduces the number of breaks
as a parameter in the model and performs inference over this parameter by jumping
between different numbers of breaks. The proportion of the Markov chain Monte
Carlo run that is spent at each number of breaks approximates the posterior model
probabilities (Green 1995). Our estimation approach has a range of desirable prop-
erties relative to Chib (1998); we refer the reader to Smith and Timmermann (2017)
for a thorough discussion.

Briefly, we simulate the breakpoint vector 7 in two steps. First, a global movement
is provided by attempting either to add or remove a breakpoint on each sweep of
the Markov chain Monte Carlo run. Second, to ensure the estimated breakpoint
locations converge to their true values all that is required is a small perturbation of
each breakpoint delivered by a random-walk Metropolis-Hastings step. Finally the

parameters can be sampled from their full conditional distributions.
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Table 1: Ranking of Industries by break magnitudes: Returns and dividend growth

s.d. across regimes
Industry Size of break rank Intercept Slope Volatility

Returns
Oil 1 0.091 0.130 0.077
Fin 2 0.090 0.115 0.054
Telem 3 0.085 0.112 0.054
Beer 4 0.087 0.099 0.053
Util 5 0.083 0.090 0.049
Books 26 0.025 0.066 0.037
Other 27 0.025 0.064 0.032
Fabpr 28 0.020 0.060 0.034
Whisl 29 0.017 0.057 0.032
Servs 30 0.015 0.052 0.028
Dividend growth
Oil 1 0.061 0.095 0.069
Telem 2 0.059 0.084 0.062
Fin 3 0.060 0.082 0.059
Util 4 0.058 0.077 0.051
Buseq 5 0.046 0.074 0.048
Whisl 26 0.018 0.035 0.019
Servs 27 0.011 0.032 0.017
Other 28 0.010 0.030 0.015
Books 29 0.009 0.027 0.013
Meals 30 0.008 0.024 0.010

Rank correlation
0.89 0.92 0.90

Table 1: Break magnitude for returns and dividend growth. This table reports the
standard deviation of the regime-specific intercept, slope and volatility posterior mean estimates
from our heterogeneous panel break model when the dependent variable is excess returns (top
panel) or dividend growth (bottom panel) and the predictive variable is the dividend-price
ratio. The portfolios are ranked in terms of break size according to the standard deviation of
the regime-specific slope estimates. The bottom line reports the correlation between industry
ranks based on movements across regimes in the intercept, slope and volatility estimates for the
return and dividend growth models.
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Table 2: Statistical significance of gains in predictive accuracy

Predictor DM CcwW

t<-1.64 -1.64<t <0 0<t<164 t>164 t<-1.64 -164<t<0 0O<t<l64 t>1.64

No break panel

dp 0 2 4 257 0 2 2 27t
thl 0 3 5 23t 0 3 2 26t
tms 0 4 6 21t 0 4 3 241
dfs 0 6 5 201 0 6 3 29t
Industry prevailing mean
dp 0 2 5 24f 0 2 3 261
thl 0 2 4 25t 0 2 1 28f
tms 1 4 5 211 0 5 3 231
dfs 0 7 3 21t 0 7 2 291
Time series break
dp 0 2 3 267 0 2 2 27t
thl 0 4 4 23t 0 4 1 26°
tms 0 5 5 211 0 5 4 291
dfs 0 6 4 211 0 6 2 23t

Table 2: Statistical significance of forecast improvements. This table reports the sta-
tistical significance of the gains in predictive accuracy for our panel break model relative to the
heterogeneous panel model with no breaks (No break panel), the industry prevailing mean and
the time series model with breaks applied to each portfolio in turn (Time series break) when
forecasting with the dividend-price ratio (dp), the treasury-bill rate (tbl), the term spread (tms),
or the default spread (dfs). Significance is evaluated using the Diebold-Mariano test (DM) and
the procedure of Clark and West (2007) (CW). For each procedure the table displays the number
of portfolios for which our method produces significantly worse, insignificantly worse, insignifi-
cantly better, and significantly better forecasts at the 10% level. { indicates the particular bin
in which the t-statistic for the market portfolio lies.
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Table 3: Magnitude of break by portfolio

Industry Size of break rank MSFD Utility Gain rank

Utility gain

telem
util
oil
buseq
fin
hlth
beer

fabpr
whisl
textls
mines
books
meals
other

N O Ol W N

24
25
26
27
28
29
30

Upper quartile
0.0220
0.0172
0.0148
0.0144
0.0142
0.0140
0.0129

Lower quartile
0.0059
0.0055
0.0050
0.0041
0.0033
0.0029
0.0024

27

2.48
1.63
1.79
1.94
2.40
2.31
1.97

1.45
- 0.34
1.04
0.67
0.15
- 0.47
0.61

Table 3: Magnitude of break by industry. This table lists in descending order the upper
and lower quartile portfolios according to the magnitude of the total impact of breaks on their
respective forecasts (with 1 denoting the largest and 30 denoting the smallest impact). This
magnitude is captured by the mean squared forecast difference (‘MSFD’) between the panel
models with and without breaks. The table also reports the ranking of the utility gain (certainty
equivalent return), expressed as an annualised percentage, for a mean-variance investor with a
risk aversion coefficient of three when forecasting with the panel break model relative to the
panel model without breaks using the dividend-price ratio as the predictive variable.
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Table 4: Industry allocations

Industry Hist avg No brk ts  Pbrk

food 0.01 0.00  0.00 0.00
beer 0.23 0.00 0.11  0.19
smoke 0.09 0.24 0.07 0.13
books 0.00 0.00  0.00 0.02

hlth 0.06 0.02  0.01 0.00
chems 0.14 0.06 0.13 0.04
txtls 0.00 0.01  0.00 0.00

elceq 0.02 0.01  0.00 0.01
autos 0.07 0.02  0.04 0.00

oil 0.04 0.00 0.00 0.00
telem 0.03 0.01 0.23 0.05
servs 0.16 0.45 0.37 042

buseq 0.11 0.17  0.01 0.07
paper 0.02 0.00 0.01 0.00
fin 0.00 0.00 0.01 0.05

Table 4: Industry allocations. This table reports the weight allocated to each of the thirty
industries, averaged across the out-of-sample period, using four alternative approaches to predict
stock returns. We omit industries which have an allocation of less than 0.01 for each model.
‘Hist avg’ denotes the industry prevailing mean, ‘No brk’ denotes the heterogeneous panel model
without breaks, ‘ts’ denotes the time series break model, and ‘Pbrk’ denotes the heterogeneous
panel model with breaks.

Table 5: Utility gains from portfolio investment strategies

Full sample After breaks
Predictor hist avg no brk ts  hist avg mno brk  ts

Investment in 30 industry portfolios

dp 2.19 202 197  3.02 243  2.72
thl 2.04 2.10 234 2.61 2.80  3.06
tms 1.99 242 1.86 2.21 2.57 237
dfs 2.02 1.92 2.29 2.89 2.53 2.72
Market portfolio
dp 1.59 1.92 203 250 246  2.63
thl 1.85 2.02 1.69 2.42 2.64 2.18
tms 2.12 1.62 1.84 2.59 2.20 241
dfs 1.71 1.47  1.89 2.02 1.59 2.21

Table 5: Utility gains. The top panel of this table reports the out-of-sample utility gain
(certainty equivalent return) for a mean-variance investor with a risk aversion of three who at
each period allocates wealth between a risk-free asset (T-bills) and an optimal risky portfolio
that is constructed from the 30 industry portfolios. We report the utility gain measured relative
to each of the three benchmark models, namely, the prevailing mean (hist avg), the panel model
with no breaks (no brk), and the time series break model (ts). The utility gain is computed
first using the full sample and second using only the observations that fall within 24 months of
a break being detected without counting any observation twice. Results are presented for the
four predictors we consider: the dividend-price ratio (dp), the T-bill rate (tbl), the term spread
(tms), and the default spread (dfs). The reported certainty equivalent returns are expressed as
annualised percentages. The bottom panel reports the utility gain for a mean-variance investor
with a risk aversion of three who allocates his wealth between T-bills and the market portfolio.
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Table 6: Fama-Macbeth regressions of returns on break risk factor

Independent variable Slope coefficients (x10%) and (test-statistics)

(1) 2) (3) (4) ()

Break risk measures

BRK 059 054 030 051 0.53
(4.60) (4.27) (2.62) (4.13)  (4.22)

log(B/M) 030 027 025 028 0.31
(5.19)  (5.01) (4.87) (5.14)  (5.33)

log(ME) 0.08 -0.11  -0.11  -0.09  -0.09
(-3.02) (-3.20) (-3.19) (-3.07)  (-3.07)

PRIY R 057 064 059  0.63 0.66

(3.17)  (329) (3.19) (3.23)  (3.31)

Break risk measures demeaned by industry

BRK 071 067 035 065 0.66
(5.62) (5.14) (2.99) (4.95)  (5.08)

log(B/M) 028 028 027  0.29 0.31
(5.09) (5.08) (4.99) (5.12)  (5.23)

log(ME) 0.07 -011 -0.10 -0.09  -0.07
(-2.89) (-3.02) (-2.97) (-2.91) (-2.88)

PRIYR 053 061 055  0.63 0.69

(3.07)  (3.20) (3.10) (3.22)  (3.40)

Table 6: Fama-Macbeth regressions of returns on break risk factor. This table displays
the coefficients and Newey and West (1987) heteroscedasticity-adjusted test-statistics (in brack-
ets below) from Fama-Macbeth regressions of firms’ returns on our break risk factor (BRK).
The first measure of the break risk factor is computed at each time for each firm as the absolute
difference between forecasts produced from our heterogeneous panel model with and without
breaks. The second measure is the root mean squared difference between these forecasts. The
third, fourth and fifth measures are the difference at each point in time between the intercept,
slope and volatility estimates, respectively, from the panel models with and without breaks. We
control for book-to-market [log(B/M)], size [log(ME)] and past performance measured over the
previous year (PR1Y R). The bottom panel presents results from the same analysis in which
the break risk measure has been demeaned by industry and the industries are the 49 industry
portfolios of Fama and French (1997).
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Table 7: Return performance of portfolios of stocks sorted on break sensitivity

Portfolio r o MKT SMB HML
All stocks

Low 0.26 -0.18 1.02 0.01 0.05
(1.98) (-2.04) (22.21) (1.43) (3.93)

2 0.32 -0.06 0.98 0.03 0.13
(2.19) (-1.99) (31.98) (1.69) (2.80)

3 0.44 -0.01 0.94 0.00 -0.09
(2.25) (-1.60) (32.04) (2.06) (-1.21)

4 0.46 0.02 1.01 0.06 0.14
(1.98) (1.01) (24.09) (1.31) (2.02)

High 0.53 0.17 0.96 -0.03 -0.03
(2.58) (2.04) (23.26) (-1.99) (-3.78)

High-low  0.27 0.35 -0.06 -0.04 -0.08
(2.18) (2.97) (-1.05) (-2.03) (-1.55)

Without micro-caps

Low 0.26 -0.13 0.97 0.01 0.02
(1.99) (-2.00) (19.89) (1.44) (2.87)

2 0.28 -0.10 0.99 0.02 0.14
(2.10) (-2.01) (31.68) (1.69) (2.82)

3 0.39 -0.05 0.90 0.00 -0.04
(2.18) (-1.71) (32.00) (2.03) (-1.02)

4 0.47 0.04 0.98 0.02 0.10
(2.01) (1.11) (23.21) (1.01) (2.00)

High 0.49 0.16 0.88 -0.05 -0.02
(2.44) (2.03) (21.06) (-2.03) (-3.59)

High-low 0.23 0.29 -0.09 -0.06 -0.04
(2.10) (2.78) (-1.24) (-2.04) (-1.60)

Table 7: Excess returns to portfolios sorted on break sensitivity. This table displays
monthly value-weighted average excess returns to quintile portfolios sorted according to our
break risk factor measured through the absolute difference in the forecasts from the heteroge-
neous panel models with and without breaks when the dividend-price ratio is the predictor. We
also report coefficients and test-statistics (in brackets below) estimated from time-series OLS
regressions of quintile portfolio returns on the Fama and French factors, i.e., the market (MKT),
size (SMB) and value (HML). The bottom panel presents results for the same analysis removing
all stocks with a price less than $3 or a market capitalisation below the 20th percentile of the
NYSE capitalisation.
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Table 8: Break sensitivity and stock characteristics

s.d. across regimes

Portfolio Size of break rank Intercept Slope Volatility
Size and Value
SMALL.HiBM 1 0.067 0.141 0.088
ME1BE4 2 0.059 0.132 0.078
ME1BE3 3 0.058 0.129 0.078
ME1BE2 4 0.051 0.111 0.069
SMALL.LoBM 5 0.041 0.107 0.067
BIG.HiBM 20 0.032 0.052 0.054
ME5BE4 21 0.028 0.050 0.048
ME5BE3 23 0.024 0.044 0.039
ME5BE2 24 0.021 0.038 0.029
BIG.LoBM 25 0.019 0.030 0.024
Size and Momentum

SMALL.LoPRIOR 1 0.049 0.091 0.087
ME1PRIOR2 2 0.043 0.080 0.082
ME1PRIORS3 3 0.032 0.062 0.075
ME1PRIOR4 4 0.031 0.060 0.071
SMALL.HiPRIOR 5 0.027 0.056 0.052
BIG.LoPRIOR 20 0.029 0.042 0.046
ME5PRIOR2 22 0.020 0.036 0.042
ME5PRIORS 23 0.012 0.025 0.038
ME5SPRIOR4 24 0.009 0.022 0.026
BIG.HiPRIOR 25 0.008 0.020 0.022

Table 8: Break sensitivity and stock characteristics. This table reports the standard
deviation across regimes of the regime-specific intercept, slope and volatility posterior mean
estimates, respectively, from our heterogeneous panel break model fitted to portfolios sorted
on size and value (top panels) and size and momentum (bottom panels) when the predictive
variable is the dividend-price ratio. The portfolios are ranked by the standard deviation of the
regime-specific slope estimates.
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Table 9: Parameter estimates for the dividend growth model

Regime Break dates Intercept AR(1) Dp slope Volatility

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
1 Feb 1931  -0.038 (0.005) 0.135 (0.039) -0.082 (0.023) 0.201 (0.003)
2 May 1933 0.030 (0.004) -0.193 (0.031) 0.057 (0.024) 0.156 (0.003)
3 Aug 1939  -0.127 (0.016) 0.188 (0.043) -0.034 (0.066) 0.216 (0.010)
4 Mar 1945  0.021 (0.002) 0.308 (0.022) -0.029 (0.018) 0.113 (0.001)
5 Oct 1968 0.019 (0.004) 0.515 (0.032) -0.156 (0.022) 0.163 (0.003)
6 Jan 1987 0.027 (0.002) 0.215 (0.029) -0.267 (0.014) 0.147 (0.002)
7 Dec 1998 0.002 (0.005) 0.126 (0.045) -0.305 (0.021) 0.228 (0.004)
8 Sep 2007 0.072 (0.004) 0.430 (0.041) -0.169 (0.019) 0.204 (0.003)
9 May 2009  0.019 (0.009) 0.307 (0.069) -0.205 (0.022) 0.327 (0.006)
10 0.043 (0.010) 0.834 (0.112) -0.187 (0.019) 0.545 (0.007)

Table 9: Dividend growth parameter estimates. This table displays the posterior mean
and standard deviation (s.d.) of the intercept, the slope on the AR(1) term and the slope on the
lagged dividend-price ratio (Dp slope) obtained from the heterogeneous panel break model in
each regime it identifies. The reported values are value-weighted averages across the parameter
estimates on the 30 industry portfolios. We also report the mean and standard deviation of the
volatility parameter. The posterior modes of the identified break dates are also reported.

45



Table 10: Sensitivity of results to priors

Hyp. value K DM CW

t<-1.64 -164<t <0 0<t<164 t>164 t<-164 -164<t<0 0<t<1.64 t>1.64

No-break panel

c=120 12 0 2 6 23f 0 2 4 25T
c=480 8 0 4 5 22f 0 4 4 231
b=1 10 0 4 5 22f 0 4 4 23f
b=10 10 0 3 6 22f 0 3 4 241
o, =0.02 10 0 2 5 24 0 2 3 26"
0, =006 10 1 3 6 21 1 3 4 23f
o, =100 16 141 8 5 4 14t 8 5 4
o, =10% 10 1 4 6 20f 1 4 4 22f
Industry prevailing mean
c=120 0 4 5 22f 0 4 2 25T
c=480 0 4 6 211 0 4 4 23t
b=1 0 5 6 201 0 5 5 211
b =10 0 5 6f 20 0 5 5t 21
o, = 0.02 0 4 3 24f 0 4 2 25T
o, = 0.06 0 4 3 24f 0 4 2 25T
o, = 100 207 5 3 3 217 4 3 3
o, = 10% 1 3 5 22f 0 4 3 241
Time series break
c=120 0 4 5 22f 0 4 3 24f
c=480 0 3 7 217 0 3 5 23f
b=1 0 3 6 22f 0 3 3 25T
b=10 0 5 6 20f 0 5 4 221
o, = 0.02 0 5 6 20 0 5 3t 23
o, = 0.06 0 2 6 23t 0 2 4 25t
o, = 100 15t 4 5 7 16t 3 5 7
o, = 10% 0 5 6 207 0 5 4 221

Table 10: Sensitivity of results to priors. This table reports results when forecasting
excess returns on the 31 portfolios (including the market) using the heterogeneous panel break
model and the dividend-price ratio as the predictive variable. We adjust one hyperparameter
at a time so the hyperparameter value displayed in the table is used alongside all the remaining
values detailed in Section Appendix A.1. The three panels display the statistical significance
of outperformance or underperformance of our model relative to the three benchmarks we con-
sider. Significance is evaluated using the Diebold-Mariano test (DM) and the procedure of Clark
and West (2007) (CW). For each procedure the table displays the number of cases for which
our method produces significantly worse, insignificantly worse, insignificantly better, and signifi-
cantly better forecasts at the 10% level.  indicates the particular bin in which lies the ¢-statistic
for the market return forecasts. In each case, the number of breaks K detected by our model is
also reported.
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Figure 1: This figure displays how an investor could have updated her belief that the global financial
crisis had caused a permanent shift in the return prediction model (top window) and how she could
have used Bayes’ rule to update the slope coefficient on the lagged dividend-price ratio in the return
prediction model (bottom window) using our panel break model. The green dotted line in the top
window graphs period-by-period snapshots of the estimated probability of a break being detected by
the time series model with breaks (ts), averaged across the 30 industry portfolios. The solid black
line (dashed blue line) denotes the correspondingly updated posterior model probability assigned
to an additional break by the panel break model (Pbrk). The vertical red line denotes the time at
which the posterior mode includes a new break.

47



o
o
o]
@ |
— ©
S oS ]
©
®
=)
O
P
r IS
o
(9V]
8
on:100
o
o |
I I I I I
0.000 0.002 0.004 0.006 0.008 0.010

Figure 2: This figure displays the prior probability that the R-squared of a predictive regression
lies below a certain value j, ranging from 0 to 0.01, for different degrees of scepticism regarding
predictability. The investor’s degree of scepticism is captured by the prior standard deviation of the
normalised slope coefficient ¢,. A value of 0 denotes a dogmatic prior, a value of infinity denotes a
diffuse prior, and intermediate values denote scepticism about the existence of return predictability.
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Figure 3: This figure displays the posterior probabilities for the number of breaks (top panel) and

the posterior break dates (bottom panel) obtained from a panel break model that regresses industry
portfolio returns on the lagged dividend-price ratio.
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Figure 4: This figure graphs out-of-sample forecasts of returns on the market portfolio produced
by the panel model with (Pbrk; red dotted line) and without breaks (No brk; purple dashed line)
and the historical average (Hist avg; solid black line) using the dividend-price ratio as the predictive

variable.
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Figure 5: This figure displays the real-time break detection obtained from our panel break model
fitted to 30 industry portfolio return series. The vertical red line denotes the initial estimation period

and the 45 degree line (to the right of the vertical line) denotes the date at which a break could first
be identified. Black circles mark the estimated break dates.
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Figure 6: This figure displays the number of months it took to first detect each of the breaks that
occurred after the initial estimation period when predicting with each of the four predictor variables
we consider, namely, the dividend-price ratio (dp), the T-bill rate (tbl), the term spread (tms), and
the default spread (dfs).
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Figure 7: This figure graphs the cumulative difference in the sum of squared errors for the portfolio
in question obtained from our heterogeneous panel break model relative to each of the benchmark
models. The benchmark models are the heterogeneous panel model with no breaks (‘No brk’), the
industry prevailing mean (‘Hist avg’) and the time-series model with breaks (‘ts’) estimated using
the algorithm of Chib (1998) applied to each portfolio in turn. The dividend-price ratio is the
predictive variable and the portfolio being forecast is detailed in the subcaption of each subfigure.
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Figure 8: This figure displays the out-of-sample R-squared values obtained when comparing the
forecasting performance of our heterogeneous panel break model with the benchmark model in
question for each of the thirty industry portfolios and the market portfolio using the dividend-
price ratio as the predictive variable. The benchmark model for each subfigure is described in the
subcaption. The thick black vertical line marks the out-of-sample R-squared value for the market
portfolio.
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Figure 9: This figure graphs the cumulative difference in the sum of squared errors for the portfolio
in question obtained from our heterogeneous panel break model relative to each of the benchmark
models as a function of the time since initial detection of each break. The squared forecast error is
computed as a function of the time since the break was initially detected for each of the breaks that
onsets over the out-of-sample period, and the average is taken across these breaks. The benchmark
models are the heterogeneous panel model with no breaks (‘No brk’), the industry prevailing mean
(‘Hist avg’), and the time-series model with breaks (‘ts’) estimated using the algorithm of Chib
(1998) applied to each portfolio in turn. The dividend-price ratio is the predictive variable and the
portfolios being forecast are detailed in the subcaption of each subfigure.
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Figure 10: This figure displays the out-of-sample utility gain (certainty equivalent return) to a
mean-variance investor who allocates his wealth between the portfolio in question and the risk-free
rate. Utility gains are reported as annualised percentages obtained when comparing the forecasting
performance of our heterogeneous panel break model with the benchmark model in question for each
of the thirty industry portfolios and the market portfolio when using the dividend-price ratio as the
predictive variable. The benchmark model for each subfigure is described in the subcaption. The
thick vertical black line marks the utility gain for the market portfolio.
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Figure 11: This figure compares the posterior modes of the break dates identified by our panel break
model fitted either to excess returns on 30 industry portfolios (red triangles) or to dividend growth
for the same set of industries (blue triangles). The four rows show results for different predictors,
namely, the dividend-price ratio (dp), the T-bill rate (tbl), the default spread (dfs), or the term
spread (tms).
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Figure 12: This figure displays the posterior break modes estimated from the heterogeneous panel
break model when regressing the dependent variable on an intercept term and the lagged dividend-
price ratio. The dependent variable is either the excess returns on the 30 industry portfolios (blue
triangles), the excess returns on the 5 x 5 portfolios sorted on size and value (red triangles), the
excess returns on the 5 X 5 portfolios sorted on size and momentum (green circles), or the 7,299
individual stocks (black squares).
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Figure 13: This figure displays the posterior probability of the break dates (top panel) and the real-
time break detection (bottom panel) obtained from regressing returns on 30 industry portfolios on
the lagged treasury-bill rate. In the bottom panel, empty black circles denote the estimated break
dates and the vertical red line marks the initial estimation period of ten years. The 45 degree line
(to the right of the vertical red line) marks the time at which a break could first be detected.
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Figure 14: This figure graphs the cumulative sum of squared error differences for return forecasts
of the market portfolio obtained from our panel break model measured relative to three benchmark
models. The benchmark models are the heterogeneous panel model with no breaks (‘No brk’), the
industry prevailing mean (‘Hist avg’) and the time-series break model with breaks (‘ts’) applied
to each portfolio in turn. The predictive variable in question is detailed in the subcaption of each
subfigure.
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