
Empirical Asset Pricing via Machine Learning∗

Shihao Gu

Booth School of Business

University of Chicago

Bryan Kelly

Yale University, AQR Capital

Management, and NBER

Dacheng Xiu

Booth School of Business

University of Chicago

This Version: November 20, 2018

Abstract

We synthesize the field of machine learning with the canonical problem of empirical asset pric-

ing: measuring asset risk premia. In the familiar empirical setting of cross section and time series

stock return prediction, we perform a comparative analysis of methods in the machine learning

repertoire, including generalized linear models, dimension reduction, boosted regression trees,

random forests, and neural networks. At the broadest level, we find that machine learning offers

an improved description of expected return behavior relative to traditional forecasting methods.

Our implementation establishes a new standard for accuracy in measuring risk premia summa-

rized by an unprecedented out-of-sample return prediction R2. We identify the best performing

methods (trees and neural nets) and trace their predictive gains to allowance of nonlinear predic-

tor interactions that are missed by other methods. Lastly, we find that all methods agree on the

same small set of dominant predictive signals that includes variations on momentum, liquidity,

and volatility. Improved risk premia measurement through machine learning can simplify the in-

vestigation into economic mechanisms of asset pricing and justifies its growing role in innovative

financial technologies.
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1 Introduction

In this article, we conduct a comparative analysis of machine learning methods for finance. We do

so in the context of perhaps the most widely studied problem in finance, that of measuring equity

risk premia.

1.1 Primary Contributions

Our primary contributions are two-fold. First, we provide a new benchmark of accuracy in measuring

risk premia of the aggregate market and individual stocks. This accuracy is summarized two ways.

The first is an unprecedented high out-of-sample predictive R2 that is robust across a variety of

machine learning specifications. Second, portfolio strategies that leverage machine learning return

forecasts earn annualized Sharpe ratios in excess of 2.0.

Return prediction is economically meaningful. The fundamental goal of asset pricing is to un-

derstand the behavior of risk premia.1 If expected returns were perfectly observed, we would still

need theories to explain their behavior and empirical analysis to test those theories. But risk premia

are notoriously difficult to measure—market efficiency forces return variation to be dominated by

unforecastable news that obscures risk premia. Our research highlights gains that can be achieved

in prediction and identifies the most informative predictor variables. This helps resolve the prob-

lem of risk premium measurement, which then facilitates more reliable investigation into economic

mechanisms of asset pricing.

Second, we synthesize the empirical asset pricing literature with the field of machine learning.

Relative to traditional empirical methods in asset pricing, machine learning accommodates a far

more expansive list of potential predictor variables and richer specifications of functional form. It is

this flexibility that allows us to push the frontier of risk premium measurement. Interest in machine

learning methods for finance has grown tremendously in both academia and industry. This article

provides a comparative overview of machine learning methods applied to the two canonical problems

of empirical asset pricing: predicting returns in the cross section and time series. Our view is that the

best way for researchers to understand the usefulness of machine learning in the field of asset pricing

is to apply and compare the performance of each of its methods in familiar empirical problems.

1.2 What is Machine Learning?

The definition of “machine learning” is inchoate and is often context specific. We use the term to

describe (i) a diverse collection of high-dimensional models for statistical prediction, combined with

(ii) so-called “regularization” methods for model selection and mitigation of overfit, and (iii) efficient

algorithms for searching among a vast number of potential model specifications.

1Our focus is on measuring conditional expected stock returns in excess of the risk-free rate. Academic finance
traditionally refers to this quantity as the “risk premium” due to its close connection with equilibrium compensation
for bearing equity investment risk. We use the terms “expected return” and “risk premium” interchangeably. One
may be interested in potentially distinguishing among different components of expected returns such as those due to
systematic risk compensation, idiosyncratic risk compensation, or even due to mispricing. This paper does not make
a distinction among their various origins and instead attempts to directly measure expected returns as precisely as
possible.
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The high-dimensional nature of machine learning methods (element (i) of this definition) enhances

their flexibility relative to more traditional econometric prediction techniques. This flexibility brings

hope of better approximating the unknown and likely complex data generating process underlying

equity risk premia. With enhanced flexibility, however, comes a higher propensity of overfitting

the data. Element (ii) of our machine learning definition describes refinements in implementation

that emphasize stable out-of-sample performance to explicitly guard against overfit. Finally, with

many predictors it becomes infeasible to exhaustively traverse and compare all model permutations.

Element (iii) describes clever machine learning tools designed to approximate an optimal specification

with manageable computational cost.

1.3 Why Apply Machine Learning to Asset Pricing?

A number of aspects of empirical asset pricing make it a particularly attractive field for analysis with

machine learning methods.

1) Two main research agendas have monopolized modern empirical asset pricing research. The

first seeks to describe and understand differences in expected returns across assets. The second

focuses on dynamics of the aggregate market equity risk premium. Measurement of an asset’s risk

premium is fundamentally a problem of prediction—the risk premium is the conditional expectation

of a future realized excess return. Machine learning, whose methods are largely specialized for

prediction tasks, is thus ideally suited to the problem of risk premium measurement.

2) The collection of candidate conditioning variables for the risk premium is large. The profession

has accumulated a staggering list of predictors that various researchers have argued possess forecast-

ing power for returns. The number of stock-level predictive characteristics reported in the literature

numbers in the hundreds and macroeconomic predictors of the aggregate market number in the

dozens.2 Additionally, predictors are often close cousins and highly correlated. Traditional predic-

tion methods break down when the predictor count approaches the observation count or predictors

are highly correlated. With an emphasis on variable selection and dimension reduction techniques,

machine learning is well suited for such challenging prediction problems by reducing degrees of free-

dom and condensing redundant variation among predictors.

3) Further complicating the problem is ambiguity regarding functional forms through which the

high-dimensional predictor set enter into risk premia. Should they enter linearly? If nonlinearities

are needed, which form should they take? Must we consider interactions among predictors? Such

questions rapidly proliferate the set of potential model specifications. The theoretical literature offers

little guidance for winnowing the list of conditioning variables and functional forms. Three aspects

of machine learning make it well suited for problems of ambiguous functional form. The first is its

diversity. As a suite of dissimilar methods it casts a wide net in its specification search. Second, with

methods ranging from generalized linear models to regression trees and neural networks, machine

2Green et al. (2013) count 330 stock-level predictive signals in published or circulated drafts. Harvey et al. (2016)
study 316 “factors,” which include firm characteristics and common factors, for describing stock return behavior. They
note that this is only a subset of those studied in the literature. Welch and Goyal (2008) analyze nearly 20 predictors
for the aggregate market return. In both stock and aggregate return predictions, there presumably exists a much larger
set of predictors that were tested but failed to predict returns and were thus never reported.
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learning is explicitly designed to approximate complex nonlinear associations. Third, parameter

penalization and conservative model selection criteria complement the breadth of functional forms

spanned by these methods in order to avoid overfit biases and false discovery.

1.4 What Specific Machine Learning Methods Do We Study?

We select a set of candidate models that are potentially well suited to address the three empirical

challenges outlined above. They constitute the canon of methods one would encounter in a graduate

level machine learning textbook.3 This includes linear regression, generalized linear models with pe-

nalization, dimension reduction via principal components regression (PCR) and partial least squares

(PLS), regression trees (including boosted trees and random forests), and neural networks. This is

not an exhaustive analysis of all methods. For example, it excludes methods like support vector

machines that are more commonly employed in classification problems as opposed to continuous

variable prediction. Nonetheless, our list is designed to be representative of predictive analytics tools

from various branches of the machine learning toolkit.

1.5 Main Empirical Findings

We conduct a large scale empirical analysis, investigating nearly 30,000 individual stocks over 60

years from 1957 to 2016. Our predictor set includes 94 characteristics for each stock, interactions

of each characteristic with eight aggregate time series variables, and 74 industry sector dummy

variables, totaling more than 900 baseline signals. Some of our methods expand this predictor set

much further by including nonlinear transformations and interactions of the baseline signals. We

establish the following empirical facts about machine learning for return prediction.

Machine learning shows great promise for empirical asset pricing. At the broadest level, our

main empirical finding is that machine learning as a whole has the potential to improve our empirical

understanding of expected asset returns. It digests our predictor data set, which is massive from

the perspective of the existing literature, into a return forecasting model that dominates traditional

approaches. The immediate implication is that machine learning aids in solving practical investments

problems such as market timing, portfolio choice, and risk management, justifying its role in the

business architecture of the fintech industry.

Consider as a benchmark a panel regression of individual stock returns onto three lagged stock-

level characteristics: size, book-to-market, and momentum. This benchmark has a number of attrac-

tive features. It is parsimonious and simple, and comparing against this benchmark is conservative

because it is highly selected (the characteristics it includes are routinely demonstrated to be among

the most robust return predictors). Lewellen (2015) demonstrates that this model performs about

as well as larger and more complex stock prediction models studied in the literature.

In our sample, which is longer and wider (more observations in terms of both dates and stocks)

than that studied in Lewellen (2015), the out-of-sample R2 from the benchmark model is 0.16% per

month for the panel of individual stock returns. When we expand the OLS panel model to include

3See, for example, Hastie et al. (2009).
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our set of 900+ predictors, predictability vanishes immediately—the R2 drops deeply into negative

territory. This is not surprising. With so many parameters to estimate, efficiency of OLS regression

deteriorates precipitously and therefore produces forecasts that are highly unstable out-of-sample.

This failure of OLS leads us to our next empirical fact.

Vast predictor sets are viable for linear prediction when either penalization or dimension reduction

is used. Our first evidence that the machine learning toolkit aids in return prediction emerges from

the fact that the “elastic net,” which uses parameter shrinkage and variable selection to limit the

regression’s degrees of freedom, solves the OLS inefficiency problem. In the 900+ predictor regression,

elastic net pulls the out-of-sampleR2 into positive territory at 0.09% per month. Principal component

regression (PCR) and partial least square (PLS), which reduces the dimension of the predictor set

to a few linear combinations of predictors, further raise the out-of-sample R2 to 0.28% and 0.18%,

respectively. This is in spite of the presence of many likely “fluke” predictors that contribute pure

noise to the large model. In other words, the high-dimensional predictor set in a simple linear

specification is at least competitive with the status quo low-dimensional model, as long as over-

parameterization can be controlled.

Allowing for nonlinearities substantially improves predictions. Next, we expand the model to

accommodate nonlinear predictive relationships via generalized linear models, regression trees, and

neural networks. We find that trees and neural nets unambiguously improve return prediction with

monthly stock-level R2’s between 0.27% and 0.39%. But the generalized linear model, which intro-

duces nonlinearity via spline functions of each individual baseline predictor (but with no predictor

interactions), fails to robustly outperform the linear specification. This suggests that allowing for

(potentially complex) interactions among the baseline predictors is a crucial aspect of nonlinearities

in the expected return function. As part of our analysis, we discuss why generalized linear models

are comparatively poorly suited for capturing predictor interactions.

Shallow learning outperforms deeper learning. When we consider a range of neural networks

from very shallow (a single hidden layer) to deeper networks (up to five hidden layers), we find that

neural network performance peaks at three hidden layers then declines as more layers are added.

Likewise, the boosted tree and random forest algorithms tend to select trees with few “leaves” (on

average less than six leaves) in our analysis. This is likely an artifact of the relatively small amount

of data and tiny signal-to-noise ratio for our return prediction problem, in comparison to the kinds

of non-financial settings in which deep learning thrives thanks to astronomical datasets and strong

signals (such as computer vision).

The distance between nonlinear methods and the benchmark widens when predicting portfolio

returns. We build bottom-up portfolio-level return forecasts from the stock-level forecasts produced

by our models. Consider, for example, bottom-up forecasts of the S&P 500 portfolio return. By

aggregating stock-level forecasts from the benchmark three-characteristic OLS model, we find a

monthly S&P 500 predictive R2 of −0.11%. The bottom-up S&P 500 forecast from the generalized

linear model, in contrast, delivers an R2 of 0.86%. Trees and neural networks improve upon this

further, generating monthly out-of-sample R2’s between 1.39% to 1.80% per month. The same

pattern emerges for forecasting a variety of characteristic factor portfolios, such as those formed on
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the basis of size, value, investment, profitability, and momentum. In particular, neural networks

produce a positive out-of-sample predictive R2 for every the factor portfolio we consider.

More pronounced predictive power at the portfolio level versus the stock level is driven by the

fact that individual stock returns behave erratically for some of the smallest and least liquid stocks

in our sample. Aggregating into portfolios averages out much of the unpredictable stock-level noise

while boosting the signal strength. This also helps detect the predictive benefits of machine learning.

The economic gains from machine learning forecasts are large. Our tests show clear statistical

rejections of the panel regression benchmark and other linear models in favor of nonlinear machine

learning tools. The evidence for economic gains from machine learning forecasts—in the form of

portfolio Sharpe ratios—are likewise impressive. For example, an investor who times the S&P 500

based on bottom-up neural network forecasts enjoys a 21 percentage point increase in annualized

out-of-sample Sharpe ratio, to 0.63, relative to the 0.42 Sharpe ratio of a buy-and-hold investor.

And when we form a long-short decile spread directly sorted on stock return predictions from a

neural network, the strategy earns an annualized out-of-sample Sharpe ratio of 2.35. In contrast, an

analogous long-short strategy using forecasts from the benchmark panel regression delivers a Sharpe

ratio of 0.89.

The most successful predictors are price trends, liquidity, and volatility. All of the methods we

study produce a very similar ranking of the most informative stock-level predictors, which fall into

three main categories. First, and most informative of all, are price trend variables including stock

momentum, industry momentum, and short-term reversal. Next are liquidity variables including

market value, dollar volume, and bid-ask spread. Finally, return volatility, idiosyncratic volatility,

market beta, and beta squared are also among the leading predictors in all models we consider.

An interpretation of machine learning facts through simulation. In Appendix A we perform Monte

Carlo simulations that support the above interpretations of our analysis. We apply machine learning

to simulated data from two different data generating processes. Both produce data from a high

dimensional predictor set. But in one, individual predictors enter only linearly and additively, while

in the other predictors can enter through nonlinear transformations and via pairwise interactions.

When we apply our machine learning repertoire to the simulated datasets, we find that linear and

generalized linear methods dominate in the linear and uninteracted setting, yet tree-based methods

and neural networks significantly outperform in the nonlinear and interactive setting.

1.6 What Machine Learning Cannot Do

Machine learning has great potential for improving risk premium measurement, which is funda-

mentally a problem of prediction. It amounts to best approximating the conditional expectation

E(ri,t+1|Ft), where ri,t+1 is an asset’s return in excess of the risk-free rate, and Ft is the true and

unobservable information set of market participants. This is a domain in which machine learning

algorithms excel.

But, ultimately, these improved predictions are only measurements. The measurements do not

tell us about economic mechanisms or equilibria. Machine learning methods on their own do not

identify deep fundamental associations among asset prices and conditioning variables. When the
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objective is to understand economic mechanisms, machine learning may still be useful. It requires

the economist to add structure—to build a hypothesized mechanism into the estimation problem—

and decide how to introduce a machine learning algorithm subject to this structure. A nascent

literature has begun to make progress marrying machine learning with equilibrium asset pricing (for

example, Kelly et al., 2017; Feng et al., 2017), and this remains an exciting direction for future

research.

1.7 Literature

Our work extends the empirical literature on stock return prediction, which comes in two basic

strands. The first strand models differences in expected returns across stocks as a function of stock-

level characteristics, and is exemplified by Fama and French (2008) and Lewellen (2015). The typical

approach in this literature runs cross-sectional regressions4 of future stock returns on a few lagged

stock characteristics. The second strand forecasts the time series of returns and is surveyed by

Koijen and Nieuwerburgh (2011) and Rapack and Zhou (2013). This literature typically conducts

time series regressions of broad aggregate portfolio returns on a small number of macroeconomic

predictor variables.

These traditional methods have potentially severe limitations that more advanced statistical tools

in machine learning can help overcome. Most important is that regressions and portfolio sorts are

ill-suited to handle the large numbers of predictor variables that the literature has accumulated over

five decades. The challenge is how to assess the incremental predictive content of a newly proposed

predictor while jointly controlling for the gamut of extant signals (or, relatedly, handling the multiple

comparisons and false discovery problem). Our primary contribution is to demonstrate potent return

predictability that is harnessable from the large collection of existing variables when machine learning

methods are used.

Machine learning methods have appeared sporadically in the asset pricing literature. Rapach et al.

(2013) apply LASSO to predict global equity market returns using lagged returns of all countries.

Several papers apply neural-networks to forecast derivatives prices (Hutchinson et al., 1994; Yao

et al., 2000, among others). Khandani et al. (2010) and Butaru et al. (2016) use regression trees

to predict consumer credit card delinquencies and defaults. Sirignano et al. (2016) estimate a deep

neural network for mortgage prepayment, delinquency, and foreclosure. Heaton et al. (2016) develop

a deep learning neural network routine to automate portfolio selection.

Recently, variations of machine learning methods have been used to study the cross section of

stock returns. Harvey and Liu (2016) study the multiple comparisons problem using a bootstrap

procedure. Giglio and Xiu (2016) and Kelly et al. (2017) use dimension reduction methods to estimate

and test factor pricing models. Moritz and Zimmermann (2016) apply tree-based models to portfolio

sorting. Kozak et al. (2017) and Freyberger et al. (2017) use shrinkage and selection methods to,

respectively, approximate a stochastic discount factor and a nonlinear function for expected returns.

The focus of our paper is to simultaneously explore a wide range of machine learning methods to

4In addition to least squares regression, the literature often sorts assets into portfolios on the basis of characteristics
and studies portfolio averages—a form of non-parametric regression.
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study the behavior of expected stock returns, with a particular emphasis on comparative analysis

among methods.

2 Methodology

This section describes the collection of machine learning methods that we use in our analysis. In

each subsection we introduce a new method and describe it in terms of its three fundamental ele-

ments. First is the statistical model describing a method’s general functional form for risk premium

predictions. The second is an objective function for estimating model parameters. All of our esti-

mates share the basic objective of minimizing mean squared predictions error (MSE). Regularization

is introduced through variations on the MSE objective, such as adding parameterization penalties

and robustification against outliers. These modifications are designed to avoid problems with overfit

and improve models’ out-of-sample predictive performance. Finally, even with a small number of

predictors, the set of model permutations expands rapidly when one considers nonlinear predictor

transformations. This proliferation is compounded in our already high dimension predictor set. The

third element in each subsection describes computational algorithms for efficiently identifying the

optimal specification among the permutations encompassed by a given method.

As we present each method, we aim to provide a sufficiently in-depth description of the statistical

model so that a reader having no machine learning background can understand the basic model

structure without needing to consult outside sources. At the same time, when discussing the com-

putational methods for estimating each model, we are deliberately terse. There are many variants of

each algorithm, and each has its own subtle technical nuances. To avoid bogging down the reader

with programming details, we describe our specific implementation choices in Appendix C and refer

readers to original sources for further background.

In its most general form, we describe an asset’s excess return as an additive prediction error

model:

ri,t+1 = Et(ri,t+1) + εi,t+1, (1)

where

Et(ri,t+1) = g?(zi,t). (2)

Stocks are indexed as i = 1, ..., Nt and months by t = 1, ..., T . For ease of presentation, we assume

a balanced panel of stocks, and defer the discussion on missing data to Section 3.1. Our objective is

to isolate a representation of Et(ri,t+1) as a function of predictor variables that maximizes the out-

of-sample explanatory power for realized ri,t+1. We denote those predictors as the P -dimensional

vector zi,t, and assume the conditional expected return g?(·) is a flexible function of these predictors.

Despite its flexibility, this framework imposes some important restrictions. The g?(·) function

depends neither on i nor t. By maintaining the same form over time and across different stocks, the

model leverages information from the entire panel which lends stability to estimates of risk premia

for any individual asset. This is in contrast to standard asset pricing approaches that re-estimate a

cross-sectional model each time period, or that independently estimate time series models for each
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stock. Also, g?(·) depends on z only through zi,t. This means our prediction does not use information

from the history prior to t, or from individual stocks other than the ith.

2.1 Sample Splitting and Tuning via Validation

Important preliminary steps (prior to discussing specific models and regularization approaches) are

to understand how we design disjoint sub-samples for estimation and testing and to introduce the

notion of “hyperparameter tuning.”

The regularization procedures discussed below, which are machine learning’s primary defense

against overfitting, rely on a choice of hyperparameters (or, synonymously, “tuning parameters”).

These are critical to the performance of machine learning methods as they control model complexity.

Hyperparameters include, for example, the penalization parameters in LASSO and elastic net, the

number of iterated trees in boosting, the number of random trees in a forest, and the depth of

the trees. In most cases, there is little theoretical guidance for how to “tune” hyperparameters for

optimized out-of-sample performance.

We follow the most common approach in the literature and select tuning parameters adaptively

from the data in a validation sample. In particular, we divide our sample into three disjoint time

periods that maintain the temporal ordering of the data. The first, or “training,” subsample is used

to estimate the model subject to a specific set of tuning parameter values.

The second, or “validation,” sample is used for tuning the hyperparameters. We construct fore-

casts for data points in the validation sample based on the estimated model from the training sample.

Next, we calculate the objective function based on forecast errors from the validation sample, and iter-

atively search for hyperparameters that optimize the validation objective (at each step re-estimating

the model from the training data subject to the prevailing hyperparameter values).

Tuning parameters are chosen from the validation sample taking into account estimated param-

eters, but the parameters are estimated from the training data alone. The idea of validation is to

simulate an out-of-sample test of the model. Hyperparameter tuning amounts to searching for a de-

gree of model complexity that tends to produce reliable out-of-sample performance. The validation

sample fits are of course not truly out-of-sample because they are used for tuning, which is in turn an

input to the estimation. Thus the third, or “testing,” subsample, which is used for neither estimation

nor tuning, is truly out-of-sample and thus is used to evaluate a method’s predictive performance.

Further details of our sample splitting scheme are provided in Appendix B.

2.2 Simple Linear

We begin our model description with the least complex method in our analysis, the simple linear

predictive regression model estimated via ordinary least squares (OLS). While we expect this to

perform poorly in our high dimension problem, we use it as a reference point for emphasizing the

distinctive features of more sophisticated methods.
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Model. The simple linear model imposes that conditional expectations g?(·) can be approxi-

mated by a linear function of the raw predictor variables and the parameter vector, θ,

g(zi,t; θ) = z′i,tθ. (3)

This model imposes a simple regression specification and does not allow for nonlinear effects or

interactions between predictors.

Objective Function and Computational Algorithm. Our baseline estimation of the simple

linear model uses a standard least squares, or “l2”, objective function:

L(θ) =
1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g(zi,t; θ))
2 . (4)

Minimizing L(θ) yields the pooled OLS estimator. The convenience of the baseline l2 objective func-

tion is that it offers analytical estimates and thus avoids sophisticated optimization and computation.

2.2.1 Extension: Robust Objective Functions

In some cases it is possible to improve predictive performance by replacing equation (4) with a

weighted least squares objective such as

LW (θ) =
1

NT

N∑
i=1

T∑
t=1

wi,t (ri,t+1 − g(zi,t; θ))
2 . (5)

This allows the econometrician to tilt estimates towards observations that are more statistically or

economically informative. For example, one variation that we consider sets wi,t inversely proportional

to the number of stocks at time t. This imposes that every month has the same contribution to

the model regardless of how many stocks are available that month. This also amounts to equal-

weighting the squared loss of all stocks available at time t. Another variation that we consider sets

wi,t proportional to the equity market value of stock i at time t. This value-weighted loss function

underweights small stocks in favor of large stocks, and is motivated by the economic rational that

small stocks represent a large fraction of the traded universe by count while constituting a tiny

fraction of aggregate market capitalization.5

Heavy tails are a well known attribute of financial returns and stock-level predictor variables.

Convexity of the least squares objective (4) places extreme emphasis on large errors, thus outliers

can undermine the stability of OLS-based predictions. The statistics literature, long aware of this

problem, has developed modified least squares objective functions that tend to produce more stable

forecasts than OLS in the presence of extreme observations.6 In the machine learning literature,

a common choice for counteracting the deleterious effect of heavy-tailed observations is the Huber

5As of Fama and French (2008), the smallest 20% of stocks comprise only 3% of aggregate market capitalization.
An example of a statistically motivated weighting scheme uses wi,t inversely proportional to an observation’s estimated
error variance, a choice that potentially improves prediction efficiency in the spirit of generalized least squares.

6Classical analyses include Box (1953), Tukey (1960), and Huber (1964).
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robust objective function, defined as

LH(θ) =
1

NT

N∑
i=1

T∑
t=1

H (ri,t+1 − g(zi,t; θ), ξ) , (6)

where

H(x; ξ) =

{
x2, if |x| ≤ ξ;
2ξ|x| − ξ2, if |x| > ξ.

.

The Huber loss, H(·), is a hybrid of squared loss for relatively small errors and absolute loss for

relatively large errors, where the combination is controlled by a tuning parameter, ξ, that can be

optimized adaptively from the data.7

While this detour introduces robust objective functions in the context of the simple linear model,

they are easily applicable in almost all of the methods that we study. In our empirical analysis we

study the predictive benefits of robust loss functions, as well as alternative weighting schemes, in

multiple machine learning methods.

2.3 Penalized Linear

The simple linear model is bound to fail in the presence of many predictors. When the number of

predictors P approaches the number of observations T , the linear model becomes inefficient or even

inconsistent.8 It begins to overfit noise rather than extracting signal. This is particularly troublesome

for the problem of return prediction where the signal-to-noise ratio is notoriously low.

Crucial for avoiding overfit is reducing the number of estimated parameters. The most common

machine learning device for imposing parameter parsimony is to append a penalty to the objective

function in order to favor more parsimonious specifications. This “regularization” of the estimation

problem mechanically deteriorates a model’s in-sample performance in hopes that it improves its

stability out-of-sample. This will be the case when penalization manages to reduce the model’s fit

of noise while preserving its fit of the signal.

Objective Function and Computational Algorithm. The statistical model for our penalized

linear model is the same as the simple linear model in equation (3). That is, it continues to consider

only the baseline, untransformed predictors. Penalized methods differ by incorporating a new term

in the loss function:

L(θ; ·) = L(θ)︸︷︷︸
Loss Function

+ φ(θ; ·)︸ ︷︷ ︸
Penalty

. (7)

There are several choices for the penalty function φ(·). We focus on the popular “elastic net” penalty,

7OLS is a special case of the (6) with ξ =∞. While most theoretical analysis in high-dimensional statistics assume
that data have sub-Gaussian or sub-exponential tails, Fan et al. (2017) provide a theoretical justification of using this
loss function in the high-dimensional setting as well as a procedure to determine the hyperparameter.

8We deliberately compare P with T , instead of with NT , because stock returns share strong cross-sectional depen-
dence, limiting the incremental information contained in new cross-section observations.
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which takes the form

φ(θ;λ, ρ) = λ(1− ρ)
P∑
j=1

|θj |+
1

2
λρ

P∑
j=1

θ2
j . (8)

The elastic net involves two non-negative hyperparameters, λ and ρ, and includes two well known

regularizers as special cases. The ρ = 0 case corresponds to the LASSO and uses an absolute value,

or “l1”, parameter penalization. The fortunate geometry of the LASSO sets coefficients on a subset

of covariates to exactly zero. In this sense, the LASSO imposes sparsity on the specification and can

thus be thought of as a variable selection method. The ρ = 1 case corresponds to ridge regression,

which uses an l2 parameter penalization, that draws all coefficient estimates closer to zero but does

not impose exact zeros anywhere. In this sense, ridge is a shrinkage method that helps prevent

coefficients from becoming unduly large in magnitude. For intermediate values of ρ, the elastic net

encourages simple models through both shrinkage and selection.

We adaptively optimize the tuning parameters, λ and ρ, using the validation sample. Our imple-

mentation of penalized regression uses the accelerated proximal gradient algorithm and accommo-

dates both least squares and Huber objective functions (see Appendix C.1 for more detail).

2.4 Dimension Reduction: PCR and PLS

Penalized linear models use shrinkage and variable selection to manage high dimensionality by forcing

the coefficients on most regressors near or exactly to zero. This can produce suboptimal forecasts

when predictors are highly correlated. A simple example of this problem is a case in which all of the

predictors are equal to the forecast target plus an iid noise term. In this situation, choosing a subset

of predictors via LASSO penalty is inferior to taking a simple average of the predictors and using

this as the sole predictor in a univariate regression.

The idea of predictor averaging, as opposed to predictor selection, is the essence of dimension

reduction. Forming linear combinations of predictors helps reduce noise to better isolate the signal in

predictors, and also helps de-correlate otherwise highly dependent predictors. Two classic dimension

reduction techniques are principal components regression (PCR) and partial least squares (PLS).

PCR consists of a two-step procedure. In the first step, principal components analysis (PCA)

combines regressors into a small set of linear combinations that best preserve the covariance structure

among the predictors. In the second step, a few leading components are used in standard predictive

regression. That is, PCR regularizes the prediction problem by zeroing out coefficients on higher

order components.

A drawback of PCR is that it fails to incorporate the ultimate statistical objective—forecasting

returns—in the dimension reduction step. PCA condenses data into components based on the covari-

ation among the predictors. This happens prior to the forecasting step and without consideration of

how predictors associate with future returns.

In contrast, partial least squares performs dimension reduction by directly exploiting covariation

of predictors with the forecast target.9 PLS regression proceeds as follows. For each predictor j,

9See Kelly and Pruitt (2013, 2015) for asymptotic theory of PLS regression and its application to forecasting risk
premia in financial markets.

12



estimate its univariate return prediction coefficient via OLS. This coefficient, denoted ϕj , reflects the

“partial” sensitivity of returns to each predictor j. Next, average all predictors into a single aggregate

component with weights proportional to ϕj , placing the highest weight on the strongest univariate

predictors, and the least weight on the weakest. In this way, PLS performs its dimension reduction

with the ultimate forecasting objective in mind. To form more than one predictive component, the

target and all predictors are orthogonalized with respect to previously constructed components, and

the above procedure is repeated on the orthogonalized dataset. This is iterated until the desired

number of PLS components is reached.

Model. Our implementation of PCR and PLS begins from the vectorized version of the linear

model in equations (1)–(3). In particular, we reorganize the linear regression ri,t+1 = z′i,tθ+ εi,t+1 as

R = Zθ + E, (9)

where R is the NT × 1 vector of ri,t+1, Z is the NT × P matrix of stacked predictors zi,t, and E is

a NT × 1 vector of residuals εi,t+1.

PCR and PLS take the same general approach to reducing the dimensionality. They both con-

dense the set of predictors from dimension P to a much smaller number of K linear combinations of

predictors. Thus, the forecasting model for both methods is written as

R = (ZΩK)θK + E. (10)

ΩK is P ×K matrix with columns w1, w2, . . . , wK . Each wj is the set of linear combination weights

used to create the jth predictive components, thus ZΩK is the dimension-reduced version of the

original predictor set. Likewise, the predictive coefficient θK is now a K×1 vector rather than P ×1.

Objective Function and Computational Algorithm. PCR chooses the combination weights

ΩK recursively. The jth linear combination solves10

wj = arg max
w

Var(Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, . . . , j − 1. (11)

Intuitively, PCR seeks the K linear combinations of Z that most faithfully mimic the full predictor

set. The objective illustrates that the choice of components is not based on the forecasting objective

at all. Instead, the emphasis of PCR is on finding components that retain the most possible common

variation within the predictor set. The well known solution for (11) computes ΩK via singular value

decomposition of Z, and therefore the PCR algorithm is extremely efficient from a computational

standpoint.

In contrast to PCR, the PLS objective seeks K linear combinations of Z that have maximal

predictive association with the forecast target. The weights used to construct jth PLS component

10For two vectors a and b, we denote Cov(a, b) := (a− ā)ᵀ(b− b̄), where ā is the average of all entries of a. Naturally,
we define Var(a) := Cov(a, a).
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solve

wj = arg max
w

Cov2(R,Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, . . . , j − 1. (12)

This objective highlights the main distinction between PCR and PLS. PLS is willing to sacrifice how

accurately ZΩK approximates Z in order to find components with more potent return predictability.

The problem in (12) can be efficiently solved using a number of similar routines, perhaps the most

prominent being the SIMPLS algorithm of de Jong (1993).

Finally, given a solution for ΩK , θK is estimated in both PCR and PLS via OLS regression of

R on ZΩK . For both models, K is a hyperparameter that can be determined adaptively from the

validation sample.

2.5 Generalized Linear

Linear models are popular in practice, in part because they can be thought of as a first order approx-

imation to the data generating process. When the “true” model is complex and nonlinear, restricting

the functional form to be linear introduces approximation error due to model misspecification. Let

g?(zi,t) denote the true model and g(zi,t; θ) the functional form specified by the econometrician. And

let g(zi,t; θ̂) and r̂i,t+1 denote the fitted model and its ensuing return forecast. We can decompose a

model’s forecast error as:

ri,t+1 − r̂i,t+1 = g?(zi,t)− g(zi,t; θ)︸ ︷︷ ︸
approximation error

+ g(zi,t; θ)− g(zi,t; θ̂)︸ ︷︷ ︸
estimation error

+ εi,t+1︸ ︷︷ ︸
intrinsic error

.

Intrinsic error is irreducible; it is the genuinely unpredictable component of returns associated with

news arrival and other sources of randomness in financial markets. Estimation error, which arises

due to sampling variation, is determined by the data. It is potentially reducible by adding new obser-

vations, though this may not be under the econometrician’s control. Approximation error is directly

controlled by the econometrician, and is potentially reducible by incorporating more flexible speci-

fications that improve the model’s ability to approximate the true model. But additional flexibility

raises the risk of overfitting and destabilizing the model out-of-sample. In this and the following

subsections, we introduce non-parametric models of g(·) with increasing degrees of flexibility, each

complemented by regularization methods to mitigate overfit.

Model. The first and most straightforward nonparametric approach that we consider is the

generalized linear model. It introduces nonlinear transformations of the original predictors as new

additive terms in an otherwise model. Generalized linear models are thus the closest nonlinear

counterparts to the linear approaches in Sections 2.2 and 2.3.

The model we study adapts the simple linear form by adding a K-term spline series expansion

of the predictors

g(z; θ, p(·)) =
P∑
j=1

p(zj)
′θj , (13)
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where p(·) = (p1(·), p2(·), . . . , pK(·))′ is a vector of basis functions, and the parameters are now a

K ×N matrix θ = (θ1, θ2, . . . , θN ). There are many potential choices for spline functions. We adopt

a spline series of order two:
(
1, z, (z − c1)2, (z − c2)2, . . . , (z − cK−2)2

)
, where c1, c2, . . . cK−2 are

knots.

Objective Function and Computational Algorithm. Because higher order terms enter

additively, forecasting with the generalized linear model can be approached with the same estimation

tools as in Section 2.2. In particular, our analysis uses a least squares objective function, both

with and without the Huber robustness modification. Because series expansion quickly multiplies

the number of model parameters, we use penalization to control degrees of freedom. Our choice

of penalization function is specialized for the spline expansion setting and is known as the group

LASSO. It takes the form

φ(θ;λ,K) = λ

P∑
j=1

(
K∑
k=1

θ2
j,k

)1/2

. (14)

As its name suggests, the group LASSO selects either all K spline terms associated with a given

characteristic or none of them. We embed this penalty in the general objective of equation (7).

Group LASSO accommodates either least squares or robust Huber objective, and it uses the same

accelerated proximal gradient descent as the elastic net. It has two tuning parameters, λ and K.11

2.6 Boosted Regression Trees and Random Forests

The model in (13) captures individual predictors’ nonlinear impact on expected returns, but does not

account for interactions among predictors. One way to add interactions is to expand the generalized

model to include multivariate functions of predictors. While expanding univariate predictors with

K basis functions multiplies the number of parameters by a factor of K, multi-way interactions

increase the parameterization combinatorially. Without a priori assumptions for which interactions

to include, the generalized linear model becomes computationally infeasible.12

As an alternative, regression trees have become a popular machine learning approach for incor-

porating multi-way predictor interactions. Unlike linear models, trees are fully nonparametric and

possess a logic that departs markedly from traditional regressions. A tree “grows” in a sequence

of steps. At each step, a new “branch” sorts the data leftover from the preceding step into bins

based on one of the predictor variables. This sequential branching slices the space of predictors into

rectangular partitions, and approximates the unknown function g?(·) with the average value of the

outcome variable within each partition.

Figure 1 shows an example with two predictors, “size” and “b/m.” The left panel describes how

the tree assigns each observation to a partition based on its predictor values. First, observations are

sorted on size. Those above the breakpoint of 0.5 are assigned to Category 3. Those with small size

11For additional details, see Appendix C.1.
12Parameter penalization does not solve the difficulty of estimating linear models when the number of predictors is

exponentially larger than the number of observations. Instead, one must turn to heuristic optimization algorithms such
as stepwise regression (sequentially adding/dropping variables until some stopping rule is satisfied), variable screening
(retaining predictors whose univariate correlations with the prediction target exceed a certain value), or others.
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Figure 1: Regression Tree Example
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Note: This figure presents the diagrams of a regression tree (left) and its equivalent representation (right) in
the space of two characteristics (size and value). The terminal nodes of the tree are colored in blue, yellow,
and red, respectively. Based on their values of these two characteristics, the sample of individual stocks is
divided into three categories.

are then further sorted by b/m. Observations with small size and b/m below 0.3 are assigned to

Category 1, while those with b/m above 0.3 go into Category 2. Finally, forecasts for observations in

each partition are defined as the simple average of the outcome variable’s value among observations

in that partition.

Model. More formally, the prediction of a tree, T , with K “leaves” (terminal nodes), and depth

L, can be written as

g(zi,t; θ,K,L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (15)

where Ck(L) is one of the K partitions of the data. Each partition is a product of up to L indicator

functions of the predictors. The constant associated with partition partition k (denoted θk) is

defined to be the sample average of outcomes within the partition.13 In the example of Figure 1, the

prediction equation is

g(zi,t; θ, 3, 2) = θ11{sizei,t<0.5}1{b/mi,t<0.3} + θ21{sizei,t<0.5}1{b/mi,t≥0.3} + θ31{sizei,t≥0.5}.

Objective Function and Computational Algorithm. To grow a tree is to find bins that best

discriminate among the potential outcomes. The specific predictor variable upon which a branch

is based, and the specific value where the branch is split, is chosen to minimize forecast error.

The expanse of potential tree structures, however, precludes exact optimization. The literature has

developed a set of sophisticated optimization heuristics to quickly converge on approximately optimal

trees. We follow the algorithm of Breiman et al. (1984), which we describe in detail in Appendix

13We focus on recursive binary trees for their relative simplicity. Breiman et al. (1984) discuss more complex tree
structures.
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C.2. The basic idea is to myopically optimize forecast error at the start of each branch. At each

new level, we choose a sorting variable from the set of predictors and the split value to maximize the

discrepancy among average outcomes in each bin.14 The loss associated with the forecast error for a

branch C is often called “impurity.” We choose the most popular l2 impurity for each branch of the

tree:

H(θ, C) =
1

|C|
∑
zi,t∈C

(ri,t+1 − θ)2, (16)

where |C| denotes the number of observations in set C. Given C, it is clear that the optimal choice of

θ: θ = 1
|C|
∑

zi,t∈C ri,t+1. The procedure is equivalent to finding the branch C that locally minimizes

the impurity. Branching halts when the number of leaves or the depth of the tree reach a pre-specified

threshold that can be selected adaptively using a validation sample.

Among the advantages of a tree model are that it is invariant to monotonic transformations of

predictors, that it naturally accommodates categorical and numerical data in the same model, that it

can approximate potentially severe nonlinearities, and that a tree of depth L can capture (L−1)-way

interactions. Their flexibility is also their limitation. Trees are among the prediction methods most

prone to overfit, and as a result are rarely used without some form of regularization. In our analysis,

we consider two “ensemble” tree regularizers that combine forecasts from many different trees into

a single forecast.15

Boosting. The first regularization method is “boosting,” which recursively combines forecasts

from many over-simplified trees.16 Shallow trees on their own are “weak learners” with minuscule

predictive power. The theory behind boosting suggests that many weak learners may, as an ensemble,

comprise a single “strong learner” with greater stability than a single complex tree.

The details of our boosting procedure, typically referred to as gradient boosted regression trees

(GBRT), are described in Algorithm 3 of Appendix C.2. It starts by fitting a shallow tree (e.g., with

depth L = 1). This over-simplified tree is sure to be a weak predictor with large bias in the training

sample. Next, a second simple tree (with the same shallow depth L) is used to fit the prediction

residuals from the first tree. Forecasts from these two trees are added together to form an ensemble

prediction of the outcome, but the forecast component from the second tree is shrunken by a factor

ν ∈ (0, 1) to help prevent the model from overfitting the residuals. At each new step b, a shallow tree

is fitted to the residuals from the model with b−1 trees, and its residual forecast is added to the total

with a shrinkage weight of ν. This is iterated until there are a total of B trees in the ensemble. The

final output is therefore an additive model of shallow trees with three tuning parameters (L, ν,B)

which we adaptively choose in the validation step.

14Because splits are chosen without consideration of future potential branches, it is possible to myopically bypass
an inferior branch that would have led to a future branch with an ultimately superior reduction in forecast error.

15The literature also considers a number of other approaches to tree regularization such as early stopping and post-
pruning, both of which are designed to reduce overfit in a single large tree. Ensemble methods demonstrate more
reliable performance and are scalable for very large datasets, leading to their increased popularity in recent literature.

16Boosting is originally described in Schapire (1990) and Freund (1995) for classification problems to improve the
performance of a set of weak learners. Friedman et al. (2000) and Friedman (2001) extend boosting to contexts beyond
classification, eventually leading to the gradient boosted regression tree.
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Random Forest. Like boosting, a random forest is an ensemble method that combines forecasts

from many different trees. It is a variation on a more general procedure known as bootstrap aggrega-

tion, or “bagging” (Breiman, 2001). The baseline tree bagging procedure draws B different bootstrap

samples of the data, fits a separate regression tree to each, then averages their forecasts. Trees for

individual bootstrap samples tend to be deep and overfit, making their individual predictions in-

efficiently variable. Averaging over multiple predictions reduces this variation, thus stabilizing the

trees’ predictive performance.

Random forests use a variation on bagging designed to reduce the correlation among trees in

different bootstrap samples. If, for example, firm size is the dominant return predictor in the data,

then most of the bagged trees will have low-level splits on size resulting in substantial correlation

among their ultimate predictions. The forest method de-correlates trees using a method known as

“dropout,” which considers only a randomly drawn subset of predictors for splitting at each potential

branch. Doing so ensures that, in the example, early branches for at least a few trees will split on

characteristics other than firm size. This lowers the average correlation among predictions to further

improve the variance reduction relative to standard bagging. Depth L of the trees and number

of bootstrap samples B are the tuning parameters optimized via validation. Precise details of our

random forest implementation are described in Algorithm 4 of the appendix.

2.7 Neural Networks

The final nonlinear method that we analyze is the artificial neural network. Arguably the most

powerful modeling device in machine learning, neural networks have theoretical underpinnings as

“universal approximators” for any smooth predictive association (Hornik et al., 1989; Cybenko,

1989). They are the currently preferred approach for complex machine learning problems such as

computer vision, natural language processing, and automated game-playing (such as chess and go).

Their flexibility draws from the ability to entwine many telescoping layers of nonlinear predictor

interactions, earning the synonym “deep learning.” At the same time, their complexity ranks neural

networks among the least transparent, least interpretable, and most highly parameterized machine

learning tools.

Model. We focus our analysis on traditional “feed-forward” networks. These consist of an “input

layer” of raw predictors, one or more “hidden layers” that interact and nonlinearly transform the

predictors, and an “output layer” that aggregates hidden layers into an ultimate outcome prediction.

Analogous to axons in a biological brain, layers of the networks represent groups of “neurons” with

each layer connected by “synapses” that transmit signals among neurons of different layers. Figure

2 shows two illustrative examples.

The number of units in the input layer is equal to the dimension of the predictors, which we

set to four in this example (denoted z1, ..., z4). The left panel shows the simplest possible network

that has no hidden layers. Each of the predictor signals is amplified or attenuated according to

a five-dimensional parameter vector, θ, that includes an intercept and one weight parameter per

predictor. The output layer aggregates the weighted signals into the forecast θ0 +
∑4

k=1 zkθk; that

is, the simplest neural network is a linear regression model.
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Figure 2: Neural Networks
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Note: This figure provides diagrams of two simple neural networks with (right) or without (left) a hidden layer.
Pink circles denote the input layer and dark red circles denote the output layer. Each arrow is associated
with a weight parameter. In the network with a hidden layer, a nonlinear activation function f transforms
the inputs before passing them on to the output.

The model incorporates more flexible predictive associations by adding hidden layers between

the inputs and output. The right panel of Figure 2 shows an example with one hidden layer that

contains five neurons. Each neuron draws information linearly from all of the input units, just as in

the simple network on the left. Then, each neuron applies a nonlinear “activation function” f to its

aggregated signal before sending its output to the next layer. For example, the second neuron in the

hidden layer transforms inputs into an output as x
(1)
2 = f

(
θ

(0)
2,0 +

∑4
j=1 zjθ

(0)
2,j

)
. Lastly, the results

from each neuron are linearly aggregated into an ultimate output forecast:

g(z; θ) = θ
(1)
0 +

5∑
j=1

x
(1)
j θ

(1)
j .

Thus, in this example, there are a total of 31= (4 + 1)× 5 + 6 parameters (five parameters to reach

each neuron and six weights to aggregate the neurons into a single output).

There are many choices to make when structuring a neural network, including the number of

hidden layers, the number of neurons in each layer, and which units are connected. Despite the

aforementioned “universal approximation” result that suggests the sufficiency of a single hidden

layer, recent literature has shown that deeper networks can often achieve the same accuracy with

substantially fewer parameters.17

In small data sets, simple networks with only a few layers and nodes often perform best, as it

becomes difficult to support a rich parameterization without a very large number of observations.

Selecting a successful network architecture by cross-validation is in general a difficult task. Thanks

17Eldan and Shamir (2016) formally demonstrate that depth—even if increased by one layer—can be exponentially
more valuable than increasing width in standard feed-forward neural networks. Ever since the seminal work by Hinton
et al. (2006), the machine learning community has experimented and adopted deeper (and wider) networks, with as
many as 152 layers for image recognition (e.g., He et al., 2016).

19



to recent advances in training and regularizing neural networks, which we discuss in detail below, we

only need to determine the maximum number of neurons for each layer as well as the total number

of layers.

We consider a variety of network architectures having up to five hidden layers. Our shallowest

neural network has a single hidden layer of 32 neurons, which we denoted NN1. Next, NN2 has

two hidden layers with 32 and 16 neurons, respectively; NN3 has three hidden layers with 32, 16,

and 8 neurons, respectively; NN4 has four hidden layers with 32, 16, 8, 4 neurons, respectively; and

NN5 has five hidden layers with 32, 16, 8, 4, and 2 neurons, respectively. We choose the number of

neurons in each layer according to the geometric pyramid rule (see Masters, 1993). All architectures

are fully connected so each unit receives an input from all units in the layer below. By comparing

the performance of NN1 through NN5, we can infer the trade-offs of network depth in the return

forecasting problem.18

There are many potential choices for the nonlinear activation function (such as sigmoid, hy-

perbolic, softmax, etc.). We use the same activation function at all nodes, and choose a popular

functional form in recent literature known as the rectified linear unit (ReLU), defined as19

ReLU(x) =

0 if x < 0

x otherwise.

Our neural network model has the following general formula. Let K(l) denote the number of

neurons in each layer l = 1, ..., L. Define the output of neuron k in layer l as x
(l)
k . Next, define the

vector of outputs for this layer (augmented to include a constant, x
(l)
0 ) as x(l) = (1, x

(l)
1 , ..., x

(l)

K(l))
′. To

initialize the network, similarly define the input layer using the raw predictors, x(0) = (1, z1, ..., zN )′.

The recursive output formula for the neural network at each neuron in layer l > 0 is then

x
(l)
k = ReLU

(
x(l−1)′θ

(l−1)
k

)
, (17)

with final output

g(z; θ) = x(L−1)′θ(L−1). (18)

The number of weight parameters in each hidden layer l is K(l)(1 +K(l−1)), plus another 1 +K(L−1)

weights for the output layer.

Objective Function and Computational Algorithm. We estimate the neural network

weight parameters by minimizing the penalized l2 objective function of prediction errors.20

The high degree of nonlinearity and nonconvexity in neural networks, together with their rich

parameterization, make brute force optimization highly computationally intensive (often to the point

18We confine the choices of architectures to a small set of five based on our limited sample size (compared to typical
neural network applications).

19See, e.g., Jarrett et al. (2009), Nair and Hinton (2010), and Glorot et al. (2011).
20Hornik et al. (1989) and White (1989) show that, under reasonable regularity conditions, neural network estimation

via l2 error minimization produces consistent and asymptotically normal forecasts.
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of infeasibility). A common solution uses stochastic gradient descent (SGD) to train a neural network.

Unlike standard descent that uses the entire training sample to evaluate the gradient at each iteration

of the optimization, SGD evaluates the gradient from a small random subset of the data. This

approximation sacrifices accuracy for enormous acceleration of the optimization routine.

For the same reasons described above (severe nonlinearity and heavy parameterization), regular-

ization of neural networks requires more care than the methods discussed above. In addition to l1

penalization of the weight parameters, we simultaneously employ four other regularization techniques

in our estimation: learning rate shrinkage, early stopping, batch normalization, and ensembles.

A critical tuning parameter in SGD is the learning rate, which controls the step size of the

descent. It is necessary to shrink the learning rate toward zero as the gradient approaches zero,

otherwise noise in the calculation of the gradient begins to dominate its directional signal. We adopt

the “learning rate shrinkage” algorithm of Kingma and Ba (2014) to adaptively control the learning

rate (described further in Algorithm 5 of the Appendix C.3).21

Next, “early stopping” is a general machine learning regularization tool. It begins from an initial

parameter guess that imposes parsimonious parameterization (for example, setting all θ values close

to zero). In each step of the optimization algorithm, the parameter guesses are gradually updated to

reduce prediction errors in the training sample. At each new guess, predictions are also constructed

for the validation sample, and the optimization is terminated when the validation sample errors begin

to increase. This typically occurs before the prediction errors are minimized in the training sample,

hence the name early stopping (see Algorithm 6). By ending the parameter search early, parameters

are shrunken toward the initial guess, and this is how early stopping regularizes against overfit. It is

a popular substitute to l2 penalization of θ parameters because it achieves regularization at a much

lower computational cost.22 Early stopping can be used alone, or together with l1-regularization as

we do in this paper.

“Batch normalization” (Ioffe and Szegedy, 2015) is a simple technique for controlling the variabil-

ity of predictors across different regions of the network and across different datasets. It is motivated

by the phenomenon of internal covariate shift in which inputs of hidden layers follow different distri-

butions than their counterparts in the validation sample. This issue is constantly encountered when

fitting deep neural networks that involve many parameters and rather complex structures. For each

hidden unit in each training step (a “batch”), the algorithm cross-sectionally de-means and variance

standardizes the batch inputs to restore the representation power of the unit.

Finally, we adopt an ensemble approach in training our neural networks (see also Hansen and

Salamon, 1990; Dietterich, 2000). In particular, we use multiple random seeds to initialize neural

network estimation and construct predictions by averaging forecasts from all networks. This reduces

21Relatedly, random subsetting at each SGD iteration adds noise to the optimization procedure, which itself serves
as a form of regularization. See, Wilson and Martinez (2003).

22Early stopping bears a comparatively low computation cost because it only partially optimizes, while the l2-
regularization, or more generally elastic net, search across tuning parameters and fully optimizes the model subject to
each tuning parameter guess. As usual, elastic net’s l1-penalty component encourages neurons to connect to limited
number of other neurons, while its l2-penalty component shrinks the weight parameters toward zero (a feature known
in the neural net literature as “weight-decay”). In certain circumstances, early stopping and weight-decay are shown
to be equivalent. See, e.g., Bishop (1995) and Goodfellow et al. (2016).
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prediction variance because the stochastic nature of the optimization can cause different seeds to

produce forecasts.23

2.8 Performance Evaluation

To assess predictive performance for individual excess stock return forecasts, we calculate the out-

of-sample R2 as

R2
oos = 1−

∑
(i,t)∈T3(ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

, (19)

where T3 indicates that fits are only assessed on the testing subsample, whose data never enter into

model estimation or tuning. The R2
oos pools prediction errors across firms and over time into a grand

panel-level assessment of each model.

A subtle but important aspect of our R2 metric is that the denominator is the sum of squared

excess returns without demeaning. In many out-of-sample forecasting applications, predictions are

compared against historical mean returns. While this approach is sensible for the aggregate index or

long-short portfolios, for example, it is flawed when it comes to analyzing individual stock returns.

Predicting future excess stock returns with historical averages typically underperforms a naive fore-

cast of zero by a large margin. That is, the historical mean stock return is so noisy that it artificially

lowers the bar for “good” forecasting performance. We avoid this pitfall by benchmarking our R2

against a forecast value of zero. To give an indication of the importance of this choice, when we

benchmark model predictions against historical mean stock returns, the out-of-sample monthly R2

of all methods rises by roughly three percentage points.

To make pairwise comparisons of methods, we use the Diebold and Mariano (1995) test for

differences in out-of-sample predictive accuracy between two models. While time series dependence

in returns is sufficiently weak, it is unlikely that the conditions of weak error dependence underlying

the Diebold-Mariano test apply to our stock-level analysis due of potentially strong dependence in

the cross section. We adapt Diebold-Mariano to our setting by comparing the cross-sectional average

of prediction errors from each model, instead of comparing errors among individual returns. More

precisely, to test the forecast performance of method (1) versus (2), we define the test statistic

DM12 = d̄12/σ̂d̄12 , where

d12,t+1 =
1

n3

n3∑
i=1

((
ê

(1)
i,t+1

)2
−
(
ê

(2)
i,t+1

)2
)
, (20)

ê
(1)
i,t+1 and ê

(2)
i,t+1 denote the prediction error for stock return i at time t using each method, and n3 is

the number of stocks in the testing sample T3. Then d̄12 and σ̂d̄12 denote the mean and Newey-West

standard error of d12,t over the testing sample. This modified Diebold-Mariano test statistic, which

is now based on a single time series d12,t+1 of error differences with little autocorrelation, is more

23Estimation with different seeds can run independently in parallel which limits incremental computing time.
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likely to satisfy the mild regularity conditions needed for asymptotic normality, and in turn provides

appropriate p-values for our model comparison tests.

2.9 Variable Importance and Marginal Relationships

Our goal in interpreting machine learning models is modest. We aim to identify covariates that have

an important influence on the cross-section of expected returns while simultaneously controlling for

the many other predictors in the system.

We discover influential covariates by ranking them according to a notion of variable importance.

We denote the importance of a given input variable j as VIj , and define it as the reduction in

predictive R2 from setting all values of predictor j to zero, while holding the remaining model

estimates fixed (see Kelly et al., 2017).

We also trace out the marginal relationship between expected returns and each characteristic by

fixing the remaining characteristics at their means. Despite obvious limitations, such a plot is an

effective tool for visualizing the first-order impact of covariates in a machine learning model.

3 An Empirical Study of US Equities

3.1 Data and Over-arching Model

We obtain monthly total individual equity returns from CRSP for all firms listed in the NYSE,

AMEX, and NASDAQ. Our sample begins in March 1957 (the start date of the S&P 500) and ends

in December 2016, totaling 60 years. The number of stocks in our sample is almost 30,000, with

the average number of stocks per month exceeding 6,200.24 We also obtain the Treasury-bill rate to

proxy for the risk-free rate from which we calculate individual excess returns.

In addition, we build a large collection of stock-level predictive characteristics based on the

cross section of stock returns literature. These include 94 characteristics (61 of which are updated

annually, 13 updated quarterly, and 20 updated monthly). In addition, we include 74 industry

dummies corresponding to the first two digits of Standard Industrial Classification (SIC) codes. We

provide the details of these characteristics in Table A.5.25

We also construct eight macroeconomic predictors following the variable definitions detailed in

Welch and Goyal (2008), including dividend-price ratio (dp), earnings-price ratio (ep), book-to-

24We include stocks with prices below $5, share codes beyond 10 and 11, and financial firms. We find it unnecessary
to filter out such stocks, as the literature typically does, when constructing characteristics-sorted portfolios. Our results
are qualitatively identical and quantitively unchanged if we filter out these firms.

25The 94 predictive characteristics are based on Green et al. (2013), and we adapt the SAS code available from
Jeremiah Green’s website and extend the sample period back to 1957. Our data construction differs by adhering more
closely to variable definitions in original papers. For example, we construct book-equity and operating profitability
following Fama and French (2015). Most of these characteristics are released to the public with a delay. To avoid the
forward-looking bias, we assume that monthly characteristics are delayed by at most 1 month, quarterly with at least
4 months lag, and annual with at least 6 months lag. Therefore, in order to predict returns at month t + 1, we use
most recent monthly characteristics at the end of month t, most recent quarterly data by end t − 4, and most recent
annual data by end t− 6. Another issue is missing characteristics, which we replace with the cross-sectional median at
each month for each stock, respectively.
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market ratio (bm), net equity expansion (ntis), Treasury-bill rate (tbl), term spread (tms), default

spread (dfy), and stock variance (svar).26

All of the machine learning methods we consider are designed to approximate the over-arching

empirical model Et(ri,t+1) = g?(zi,t) defined in equation (2). Throughout our analysis we define the

baseline set of stock-level covariates zi,t as

zi,t = xt ⊗ ci,t, (21)

where ci,t is a Pc × 1 matrix of characteristics for each stock i, and xt is a Px × 1 vector of macroe-

conomic predictors (and are thus common to all stocks, including a constant). Thus, zi,t is a P × 1

vector of features for predicting individual stock returns (with P = PcPx) and includes interac-

tions between stock-level characteristics and macroeconomic state variables. The total number of

covariates is 94× (8 + 1) + 74 = 920.

The over-arching model specified by (2) and (21) nests many models proposed in the literature

(Rosenberg, 1974; Harvey and Ferson, 1999, among others). The motivating example for this model

structure is the standard beta-pricing representation of the asset pricing conditional Euler equation,

Et(ri,t+1) = β′i,tλt. (22)

The structure of our feature set in (21) allows for purely stock-level information to enter expected

returns via ci,t in analogy with the risk exposure function βi,t, and also allows aggregate economic

conditions to enter in analogy with the dynamic risk premium λt. In particular, if βi,t = θ1ci,t, and

λt = θ2xt, for some constant parameter matrices θ1 (K×Pc) and θ2 (K×Px), then the beta-pricing

model in (22) becomes

g?(zi,t) = Et(ri,t+1) = β′i,tλt = c′i,tθ
′
1θ2xt = (xt ⊗ ci,t)′ vec(θ′1θ2) =: z′i,tθ, (23)

where θ = vec(θ′1θ2). The over-arching model is more general than this example because g?(·) is

not restricted to be a linear function. Considering nonlinear g?(·) formulations, for example via

generalized linear models or neural networks, essentially expands the feature set to include a variety

of functional transformations of the baseline zi,t predictor set.

We divide the 60 years of data into 18 years of training sample (1957 - 1974), 12 years of validation

sample (1975 - 1986), and the remaining 30 years (1987 - 2016) for out-of-sample testing. Because

machine learning algorithms are computationally intensive, we avoid recursively refitting models each

month. Instead, we refit once every year as most of our signals are updated once per year. Each time

we refit, we increase the training sample by one year. We maintain the same size of the validation

sample, but roll it forward to include the most recent twelve months.27
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Table 1: Monthly Out-of-sample Stock-level Prediction Performance (Percentage R2
oos)

OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

+H +H +H +H +H

All -4.60 0.16 0.18 0.28 0.09 0.19 0.27 0.30 0.35 0.38 0.39 0.37 0.35

Top 1000 -14.21 0.15 -0.10 -0.05 0.10 0.17 0.62 0.53 0.44 0.58 0.72 0.67 0.69

Bottom 1000 -2.13 0.37 0.29 0.36 0.18 0.28 0.29 0.27 0.41 0.45 0.46 0.42 0.40

O
LS-3+H

PLS
PC
R

EN
et+H

G
LM

+H

R
F

G
B
R
T+H

N
N
1

N
N
2

N
N
3

N
N
4

N
N
5

R
2 o
o
s

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
All
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Note: In this table, we report monthly R2
oos for the entire panel of stocks using OLS with all variables (OLS), OLS using

only size, book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model (GLM),
random forest (RF), gradient boosted regression trees (GBRT), and neural networks with one to five layers (NN1–NN5).
“+H” indicates the use of Huber loss instead of the l2 loss. We also report these R2

oos within subsamples that include
only the top 1,000 stocks or bottom 1,000 stocks by market value. The lower panel provides a visual comparison of the
R2

oos statistics in the table (omitting OLS due to its large negative values).

3.2 The Cross Section of Individual Stocks

Table 1 presents the comparison of machine learning techniques in terms of their out-of-sample

predictive R2. We compare thirteen models in total, including OLS with all covariates, OLS-3

(which pre-selects size, book-to-market, and momentum as the only covariates), PLS, PCR, elastic

net (ENet), generalized linear model with group lasso (GLM), random forest (RF), gradient boosted

regression trees (GBRT), and neural network architectures with one to five layers (NN1,...,NN5).

For OLS, ENet, GLM, and GBRT, we present their robust versions using Huber loss, which perform

better than the version without.

The first row of Table 1 reports R2
oos for the entire pooled sample. The OLS model using all 920

features produces an R2
oos of −4.60%, indicating it is handily dominated by applying a naive forecast

of zero to all stocks in all months. This may be unsurprising as the lack of regularization leaves OLS

26The monthly data are available from Amit Goyal’s website.
27Note that we do not use cross-validation in order to maintain the temporal ordering of the data.
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Figure 3: Time-varying Model Complexity

1985 1990 1995 2000 2005 2010 2015

#
 o

f 
C

h
ar

.

0

20

40

60
Enet+H

1985 1990 1995 2000 2005 2010 2015

#
 o

f 
C

o
m

p
.

0

20

40

60
PCR

1985 1990 1995 2000 2005 2010 2015

#
 o

f 
C

o
m

p
.

0

2

4

6
PLS

1985 1990 1995 2000 2005 2010 2015

#
 o

f 
C

h
ar

.

0

20

40

60

80
GLM+H

1985 1990 1995 2000 2005 2010 2015

T
re

e 
D

ep
th

0

2

4

6
RF

1985 1990 1995 2000 2005 2010 2015

#
 o

f 
C

h
ar

.

20

25

30

35
GBRT+H

Note: This figure demonstrates the model complexity for elastic net (ENet), PCR, PLS, generalized linear model with
group lasso (GLM), random forest (RF) and gradient boosted regression trees (GBRT) in each training sample of
our 30-year recursive out-of-sample analysis. For ENet and GLM we report the number of features selected to have
non-zero coefficients; for PCR and PLS we report the number of selected components; for RF we report the average
tree depth; and for GBRT we report the number of distinct characteristics entering into the trees.

highly susceptible to in-sample overfit. However, restricting OLS to a sparse parameterization, either

by forcing the model to include only three covariates (size, value, and momentum), or by penalizing

the specification with the elastic net—generates a substantial improvement over the full OLS model

(R2
oos of 0.16% and 0.09% respectively). Figure 3 summarizes the complexity of each model at each

re-estimation date. The upper left panel shows the number of features to which elastic net assigns

a non-zero loading. In the first ten years of the test sample, the model typically chooses fewer than

five features. After 2000, the number of selected features rises and hovers between 20 and 40 (we

discuss the identities of leading predictors in the next subsection).

Regularizing the linear model via dimension reduction improves predictions even further. By

forming a few linear combinations of predictors, PLS and especially PCR, raise the out-of-sample

R2 to 0.18% and 0.28%, respectively. Figure 3 shows that PCR typically uses 20 to 40 components

in its forecasts. PLS, on the other hand, fails to find a single reliable component for much of the

early sample, but eventually settles on three to six components. The improvement of dimension

reduction over variable selection via elastic net suggests that characteristics partially redundant and

fundamentally noisy signals. Combining them into low-dimension components averages out noise to

better reveal their correlated signals.
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Table 2: Annual Out-of-sample Stock-level Prediction Performance (Percentage R2
oos)

OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

+H +H +H +H +H

All -34.86 2.87 2.93 3.08 1.78 2.60 3.28 3.09 2.64 2.70 3.40 3.60 2.79

Top -54.86 2.77 1.84 1.64 1.90 1.82 4.80 4.07 2.77 4.24 4.73 4.91 4.86

Bottom -19.22 5.30 5.36 5.44 3.94 5.00 5.08 4.61 4.37 3.72 5.17 5.01 3.58

O
LS-3+H

PLS
PC
R

EN
et+H

G
LM

+H

R
F

G
B
R
T+H

N
N
1

N
N
2

N
N
3

N
N
4

N
N
5

R
2 o
o
s

0

1

2

3

4

5

6
All

Top

Bottom

Note: Annual return forecasting R2
oos (see Table 1 notes).

The generalized linear model with group lasso penalty fails to improve on the performance of

purely linear methods (R2
oos of 0.19%). The fact that this method uses spline functions of individual

features, but includes no interaction among features, suggest that univariate expansions provide

little incremental information beyond the linear model. Though it tends to select more features than

elastic net, those additional features do not translate into incremental performance.

Boosted trees and random forests are competitive with PCR, producing fits of 0.27% and 0.30%,

respectively. Random forests generally estimates shallow trees, with one to five layers on average.

To quantify the complexity of GBRT, we report the number of features used in the boosted tree

ensemble at each re-estimation point. In the beginning of the sample GBRT uses around 20 features

to partition outcomes, with this number increasing to 30 later in the sample. In terms of complexity,

all methods exhibit the same pattern that the number of reliable features increases over time. This is

likely due to increasing trends in cross section size and improvements in characteristic data coverage

and quality.

Neural networks are the best performing nonlinear method, and the best predictor overall. The

R2
oos is 0.35% for NN1 and peaks at 0.39% for NN3. These results point to the value of incorporating

complex predictor interactions, which are embedded in tree and neural network models but that are

missed by other techniques. The results also show that in the monthly return setting, the benefits
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Table 3: Comparison of Monthly Out-of-Sample Prediction using Diebold-Mariano Tests

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

OLS+H 3.81 3.82 3.85 3.81 3.83 3.91 3.94 3.96 3.96 3.98 3.97 3.96
OLS-3+H 0.23 1.72 -0.80 0.63 1.55 1.93 1.98 2.83 3.01 2.61 2.63
PLS 1.58 -0.71 0.08 1.39 1.61 1.52 2.29 2.43 2.18 2.15
PCR -1.51 -1.62 0.06 0.48 0.54 1.13 1.20 0.94 0.85
ENet+H 1.00 1.59 1.79 2.09 2.02 2.19 1.92 1.94
GLM+H 1.21 1.59 1.70 2.55 2.76 2.44 2.33
RF 0.66 0.66 1.12 1.30 0.94 0.90
GBRT+H 0.24 0.73 0.83 0.53 0.46
NN1 0.87 1.11 0.49 0.31
NN2 0.10 -1.09 -1.20
NN3 -1.03 -1.92
NN4 -0.47

Note: This table reports pairwise Diebold-Mariano test statistics comparing the out-of-sample stock-level prediction
performance among thirteen models. Positive numbers indicate the column model outperforms the row model. Bold
font indicates the difference is significant at 5% level or better.

of “deep” learning are limiting, as four and five layer models fail to improve over NN3.28

The second and third rows of Table 1 break out predictability for large stocks (the top 1,000 stocks

by market equity each month) and small stocks (the bottom 1,000 each month). These are based

on the full estimated model (using all stocks), but focuses on fits among the two subsamples. The

baseline patterns that OLS fares poorly, regularized linear models are an improvement, and nonlinear

models dominate carries over into subsamples. Tree methods and neural nets are especially successful

among large stocks, with R2
oos’s ranging from 0.53% to 0.72%. This dichotomy provides reassurance

that machine learning is not merely picking up small scale inefficiencies driven by illiquidity.29

Table 2 conducts our analysis at the annual horizon. The comparative performance across dif-

ferent methods is similar to the monthly results shown in Table 1, but the annual R2
oos is nearly

an order of magnitude larger. Their success in forecasting annual returns likewise illustrates that

machine learning models are able to isolate risk premia that persist over business cycle frequencies

and are not merely capturing short-lived inefficiencies.

While Table 1 offers a quantitative comparison of models’ predictive performance, Table 3 assesses

the statistical significance of differences among models at the monthly frequency. It reports Diebold-

Mariano test statistics for pairwise comparisons of a column model versus a row model. Diebold-

Mariano statistics are distributedN (0, 1) under the null of no difference between models, thus the test

statistic magnitudes map to p-values in the same way as regression t-statistics. Our sign convention

is that a positive statistic indicates the column model outperforms the row model.

28Because we hold the five neural nets architectures fixed and simply compare across them, we do not describe their
estimated complexity in Figure 3.

29As an aside, it is useful to know that there is a roughly 3% inflation in out-of-sample R2s if performance is
benchmarked against historical averages. For OLS-3, the R2 relative to the historical mean forecast is 3.74% per
month! Evidently, the historical mean is such a noisy forecaster that it is easily beaten by a fixed excess return
forecasts of zero.
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The first conclusion from Table 3 is that the performance differences among regularized linear

models are all insignificant. Restricting OLS to only use three predictors, reducing dimension via PLS

or PCA, and penalizing via elastic net produce statistically indistinguishable forecast performance.

They are also indistinguishable from the generalized linear model with group lasso penalty. Random

forest and boosted trees uniformly improve over linear models, but the improvements are at best

marginally significant. Neural networks are the only models that produce large and significant

statistical improvements over linear and generalized linear models. They also improve over tree

models, but the difference is not statistically significant.

3.3 Which Covariates Matter?

We now investigate the relative importance of individual covariates for the performance of each model.

First, for each method, we calculate variable importance for stock-level characteristics according to

Section 2.9 within each training sample of our recursive out-of-sample procedure, and average these

into a single importance measure for each predictor. Figure 4 reports the variable importance for the

top 20 stock-level characteristics for each method. Variable importances within a given model are

normalized to sum to one, giving them the interpretation of relative importance for that particular

model.

Figure 5 reports overall rankings of characteristics for all models. We rank the importance of

each characteristic for each method, then sum their ranks. Characteristics are ordered so that the

highest total ranks are on top and the lowest ranking characteristics are at the bottom. The color

gradient within each column shows the model-specific ranking of characteristics from least to most

important (lightest to darkest).30

Figures 4 and 5 demonstrate that models are generally in close agreement regarding the most

influential stock-level predictors, which can be grouped into four categories. The first are based on

recent price trends, including five of the top seven variables in Figure 5: short-term reversal (mom1m),

stock momentum (mom12m), momentum change (chmom), industry momentum (indmom), recent

maximum return (maxret), and long-term reversal (mom36m). Next are liquidity variables, including

turnover and turnover volatility (turn, std turn), log market equity (mvel1), dollar volume (dolvol),

Amihud illiquidity (ill), number of zero trading days (zerotrade), and bid-ask spread (baspread). Risk

measures constitute the third influential group, including total and idiosyncratic return volatility

(retvol, idiovol), market beta (beta), and beta-squared (betasq). The last group includes valuation

ratios and fundamental signals, such as earnings-to-price (ep), sales-to-price (sp), asset growth (agr),

and number of recent earnings increases (nincr).

Figure 4 shows that characteristic importance magnitudes for penalized linear models and dimen-

sion reduction models are highly skewed toward momentum and reversal. Trees and neural networks

are more democratic, drawing predictive information from a broader set of characteristics.

30Figure 5 is based on the average rank over 30 recursing training samples. Figure A.1 presents the ranks for each of
the recursing sample, respectively. The rank of important characteristics (top third of the covariates) are remarkably
stable over time. This is true for all models, though we show results for one representative model (NN3) in the interest
of space.
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Figure 4: Variable Importance By Model
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Note: Variable importance for the top 20 most influential variables in each model. Variable importance is an average
over all training samples. Variable importances within each model are normalized to sum to one.
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Figure 5: Characteristic Importance
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Table 4: Variable Importance for Macroeconomic Predictors

PLS PCR ENet+H GLM+H RF GBRT+H NN1 NN2 NN3 NN4 NN5

dp 12.52 14.12 2.49 4.54 5.80 6.05 15.57 17.58 14.84 13.95 13.15
ep 12.25 13.52 3.27 7.37 6.27 2.85 8.86 8.09 7.34 6.54 6.47
bm 14.21 14.83 33.95 43.46 10.94 12.49 28.57 27.18 27.92 26.95 27.90
ntis 11.25 9.10 1.30 4.89 13.02 13.79 18.37 19.26 20.15 19.59 18.68
tbl 14.02 15.29 13.29 7.90 11.98 19.49 17.18 16.40 17.76 20.99 21.06
tms 11.35 10.66 0.31 5.87 16.81 15.27 10.79 10.59 10.91 10.38 10.33
dfy 17.17 15.68 42.13 24.10 24.37 22.93 0.09 0.06 0.06 0.04 0.12
svar 7.22 6.80 3.26 1.87 10.82 7.13 0.57 0.85 1.02 1.57 2.29
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Note: Variable importance for eight macroeconomic variables in each model. Variable importance is an average over
all training samples. Variable importances within each model are normalized to sum to one. The lower panel provides
a complementary visual comparison of macroeconomic variable importances.

For robustness, we re-run our analysis with an augmented set of characteristics that include five

placebo “characteristics.” They are simulated according to the data generating process (A.1) in Ap-

pendix A. The parameters are calibrated to have similar behavior as our characteristics dataset but

are independent of future returns by construction. Figure A.2 in Appendix E presents the variable

importance plot with five noise characteristics highlighted. The table confirms that the most influen-

tial characteristics that we identify in our main analysis are unaffected by the presence of irrelevant

characteristics. Noise variables appear up among the least informative characteristics, along with sin

stocks, dividend initiation/omission, cashflow volatility, and other accounting variables.

Table 4 shows the importance of macroeconomic predictor variables (again normalized to sum

to one within a given model). All methods agree that the aggregate book-to-market ratio is a

critical predictor, whereas market volatility has little role in any model. PLS and PCR place similar

weights on all other predictors, potentially because these variables are highly correlated. Linear

and generalized linear models strongly favor bond market variables including default spread and

treasury rate. Nonlinear methods (trees and neural networks) place great emphasis on exactly those

predictors ignored by linear methods—including term spreads and issuance activity.
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Many accounting characteristics are not available at the monthly frequency, which might explain

their low importance in Figure 5. To investigate this, appendix Figure A.3 presents the rank of

variables based on the annual return forecasts. Price trend variables become less important compared

to the liquidity and risk measures, although they are still quite influential. The characteristics that

were ranked in the bottom half of predictors at the monthly horizon remain largely unimportant at

the annual horizon. The exception is industry (sic2) which shows substantial predictive power at the

annual frequency.

3.3.1 Marginal Relationship Between Characteristics and Expected Returns

Figure 6 traces out the model-implied marginal impact of individual characteristics on expected

excess returns. Our data transformation normalizes characteristics to the (-1,1) interval, and holds

all other variables fixed at their median value of zero. We choose four illustrative characteristics

for the figure, including size (mvel1), momentum (mom12m), stock volatility (retvol), and accruals

(acc).

First, Figure 6 illustrates that machine learning methods identify patterns similar to some well

know empirical phenomena. For example, expected stock returns are decreasing in size, increasing

in past one-year return, and decreasing in stock volatility. And it is interesting to see that all

methods agree on a nearly exact zero relationship between accruals and future returns. Second, the

(penalized) linear model finds no predictive association between returns and either size or volatility,

while trees and neural networks find large sensitivity of expected returns to both of these variables.

For example, a firm that drops from median size to the 20th percentile of the size distribution

experiences an increase in its annualized expected return of roughly 2.4% (0.002×12×100), and a

firm whose volatility rises from median to 80th percentile experiences a decrease of around 3.0% per

year, according to GBRT or NN3, and these methods detect nonlinear predictive associations. The

inability of linear models to capture nonlinearities can lead them to prefer a zero association, and

this can in part explain the divergence in the performance of linear and nonlinear methods.

3.4 Portfolio Forecasts

So far we have analyzed predictability of individual stock returns. Next, we compare forecasting

performance of machine learning methods for aggregate portfolio returns. There are a number of

benefits to analyzing portfolio-level forecasts.

First, because all of our models are optimized for stock-level forecasts, portfolio forecasts provides

an additional indirect evaluation of the model and its robustness. Second, aggregate portfolios tend

to be of broader economic interest because they represent the risky-asset savings vehicles most

commonly held by investors (via mutual funds, ETFs, and hedge funds). And, by studying value-

weighted portfolios, we can assess the extent to which a model’s predictive performance thrives in

the most valuable (and most economically important) assets in the economy. Third, the distribution

of portfolio returns is sensitive to dependence among stock returns, with the implication that a good

stock-level prediction model is not guaranteed to produce accurate portfolio-level forecasts. Bottom-
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Figure 6: Marginal Relationship Between Expected Returns and Characteristics
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Note: Marginal relationship between expected excess returns with individual characteristics (holding all other covariates
fixed at their median values).
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Table 5: Monthly Portfolio-level Out-of-Sample Predictive R2

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

S&P 500 -0.11 -0.86 -2.62 -0.38 0.86 1.39 1.13 0.84 0.96 1.80 1.46 1.60

Big Growth 0.41 0.75 -0.77 -1.55 0.73 0.99 0.80 0.70 0.32 1.67 1.42 1.40
Big Value -1.05 -1.88 -3.14 -0.03 0.70 1.41 1.04 0.78 1.20 1.57 1.17 1.42
Big Neutral 0.12 -0.81 -2.39 -0.46 0.41 1.05 1.03 1.33 0.78 1.81 1.93 1.93
Small Growth 0.35 1.54 0.72 -0.03 0.95 0.54 0.62 1.68 1.26 1.48 1.53 1.44
Small Value -0.06 0.40 -0.12 -0.57 0.02 0.71 0.90 0.00 0.47 0.46 0.41 0.53
Small Neutral -0.01 0.78 -0.10 -0.25 0.36 0.41 0.38 0.58 0.55 0.68 0.62 0.72

Big Conservative -0.24 -0.17 -1.97 0.19 0.69 0.96 0.78 1.08 0.67 1.68 1.46 1.56
Big Aggressive -0.12 -0.77 -2.00 -0.91 0.68 1.83 1.45 1.14 1.65 1.87 1.55 1.69
Big Neutral -0.36 -1.65 -3.20 -0.11 0.76 0.99 0.73 0.54 0.62 1.62 1.44 1.60
Small Conservative 0.02 0.75 0.48 -0.46 0.55 0.59 0.60 0.94 0.91 0.93 0.99 0.88
Small Aggressive 0.14 0.97 0.06 -0.54 0.19 0.86 1.04 0.25 0.66 0.75 0.67 0.79
Small Neutral -0.04 0.53 -0.17 0.08 0.45 0.23 0.20 0.73 0.60 0.81 0.73 0.80

Big Robust -0.58 -0.22 -2.89 -0.27 1.54 1.41 0.70 0.60 0.84 1.14 1.05 1.21
Big Weak -0.24 -1.47 -1.95 -0.40 -0.26 0.67 0.83 0.24 0.60 1.21 0.95 1.07
Big Neutral -0.08 -1.02 -2.77 -0.21 0.10 1.46 1.44 0.95 1.00 1.78 1.70 1.73
Small Robust -0.77 0.77 0.18 -0.32 0.41 0.27 -0.06 -0.06 -0.02 0.06 0.13 0.15
Small Weak 0.02 0.32 -0.28 -0.25 0.17 0.90 1.31 0.84 0.85 1.09 0.96 1.08
Small Neutral 0.22 1.05 0.09 0.03 0.48 0.76 0.97 1.08 1.04 1.19 1.12 1.18

Big Up -1.53 -2.54 -3.93 -0.21 0.40 1.12 0.68 0.46 0.85 1.28 0.99 1.05
Big Down -0.10 -1.20 -2.05 -0.26 0.36 1.09 0.77 0.48 0.89 1.34 1.17 1.36
Big Medium 0.24 1.38 0.57 0.01 1.32 1.56 1.37 1.60 1.76 2.28 1.83 2.01
Small Up -0.79 0.42 -0.36 -0.33 -0.33 0.31 0.40 0.23 0.60 0.67 0.55 0.61
Small Down 0.40 1.16 0.47 -0.46 0.62 0.93 1.20 0.80 0.97 0.97 0.97 0.96
Small Medium -0.29 0.03 -0.61 -0.56 -0.20 0.11 0.18 0.05 0.29 0.41 0.30 0.45

Note: In this table, we report the out-of-sample predictive R2s for 25 portfolios using OLS with size, book-to-market,
and momentum, OLS-3, PLS, PCR, elastic net (ENet), generalized linear model with group lasso (GLM), random forest
(RF), gradient boosted regression trees (GBRT), and five architectures of neural networks (NN1,...,NN5), respectively.
“+H” indicates the use of Huber loss instead of the l2 loss. The 25 portfolios are 3 × 2 size double-sorted portfolios
used in the construction of the Fama-French value, investment, and profitability factors, as well as momentum.

up portfolio forecasts allow us to evaluate a model’s ability to transport its asset predictions, which

occur at the finest asset level, into broader investment contexts.

Our assessment of forecast performance up to this has point been entirely statistical, relying on

comparisons of predictive R2. The final advantage of analyzing predictability at the portfolio level

is that we can assess the economic contribution of each method via its contribution to risk-adjusted

portfolio return performance.

3.4.1 Pre-specified Portfolios

We build bottom-up forecasts by aggregating individual stock return predictions into portfolios.

Given the weight of stock i in portfolio p (denoted wpi,t) and given a model-based out-of-sample
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forecast for stock i (denoted r̂i,t+1), we construct the portfolio return forecast as

r̂pt+1 =
n∑
i=1

wpi,t × r̂i,t+1.

This bottom-up approach works for any target portfolio whose weights are known a priori.

We form bottom-up forecasts for 25 of the most well known portfolios in the empirical finance

literature, including the S&P 500, six size and value portfolios, six size and investment portfolios,

six size and profitability portfolios, and six size and momentum portfolios. In all cases, we create

the portfolios ourselves using CRSP market equity value weights. Our portfolio construction differs

slightly from the actual S&P 500 index and the characteristic-based Fama-French portfolios (Fama

and French, 1993, 2015), but has the virtue that we can exactly track the ex ante portfolio weights

of each.31

Table 5 reports monthly out-of-sample R2s over our 30-year testing sample. Regularized linear

methods fail to outperform naive constant forecasts of the S&P 500. In contrast, all nonlinear models

have substantial positive predictive performance. The one month out-of-sample R2 is 0.86% for the

generalized linear model and reaches as high as 1.80% for the three-layer neural network. As a

benchmark for comparison, nearly all of the macroeconomic return predictor variables in the survey

of Welch and Goyal (2008) fail to produce a positive out-of-sample forecast R2. Kelly and Pruitt

(2013) find that PLS delivers out-of-sample forecasting R2’s around 1% per month for the aggregate

market index, though their forecasts directly target the market return as opposed to being bottom-up

forecasts. And the most well-studied portfolio predictors, such as the aggregate price-dividend ratio,

typically produce an in-sample predictive R2 of around 1% per month Cochrane (2007), smaller

than what we find out-of-sample. The patterns in S&P 500 forecasting performance across models

carry over to long-short factor portfolios. Nonlinear methods excel. Random forests and NN3–NN5

produce positive R2
oos for every portfolio analyzed, and the performance of NN3 is most dominant.

Boosted trees, NN1, and NN2 also produce positive R2
oos for all but one portfolio. The generalized

linear model R2
oos is positive for 22 out of 25 portfolios. Linear methods, on the other hand, are

mixed but on balance appear unsuccessful in bottom-up portfolio return forecasting. Performance

tends to be better for “big” portfolios compared to “small.” In short, machine learning methods, and

nonlinear methods in particular, produce unusually powerful out-of-sample portfolio predictions.

It is difficult to assess the economic importance of predictions from R2 alone. For example,

Campbell and Thompson (2008) show that small improvements in R2 can map into large utility

gains for a mean-variance investor. They show that the Sharpe ratio (SR∗) earned by an active

investor exploiting predictive information (summarized as a predictive R2) improves over the Sharpe

31Our version of the S&P 500 is weighted by market equity value, which differs slightly from its actual float-
weighted construction. And our Fama-French portfolio sorts differ due to minor differences in data filtering, with
average correlation as high as 97.9% across all portfolios. Using our own weights allows for more precision in our
analysis because exact float weights and Fama-French constructions are difficult to perfectly track.
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Table 6: Implied Sharpe Ratio Improvements

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

S&P 500 - - - - 0.11 0.17 0.14 0.11 0.12 0.21 0.17 0.19

Big Growth 0.05 0.09 - - 0.08 0.11 0.09 0.08 0.04 0.18 0.15 0.15
Big Value - - - - 0.10 0.19 0.15 0.12 0.17 0.21 0.16 0.19
Big Neutral 0.02 - - - 0.06 0.13 0.13 0.17 0.10 0.22 0.23 0.23
Small Growth 0.03 0.14 0.07 - 0.09 0.05 0.06 0.15 0.11 0.13 0.13 0.13
Small Value - 0.08 - - 0.00 0.14 0.17 0.00 0.10 0.09 0.09 0.11
Small Neutral - 0.08 - - 0.04 0.04 0.04 0.06 0.06 0.07 0.07 0.08

Big Conservative - - - 0.02 0.08 0.11 0.09 0.12 0.08 0.18 0.15 0.16
Big Aggressive - - - - 0.11 0.26 0.22 0.18 0.24 0.26 0.23 0.24
Big Neutral - - - - 0.10 0.12 0.09 0.07 0.08 0.19 0.17 0.19
Small Conservative 0.00 0.08 0.05 - 0.06 0.06 0.07 0.10 0.10 0.10 0.11 0.09
Small Aggressive 0.03 0.15 0.01 - 0.04 0.14 0.16 0.05 0.11 0.12 0.11 0.13
Small Neutral - 0.05 - 0.01 0.04 0.02 0.02 0.07 0.06 0.08 0.07 0.08

Big Robust - - - - 0.17 0.16 0.08 0.07 0.10 0.13 0.12 0.14
Big Weak - - - - - 0.12 0.14 0.05 0.11 0.19 0.16 0.17
Big Neutral - - - - 0.02 0.20 0.20 0.14 0.15 0.24 0.23 0.23
Small Robust - 0.08 0.02 - 0.04 0.03 - - - 0.01 0.01 0.02
Small Weak 0.00 0.06 - - 0.03 0.16 0.21 0.15 0.15 0.18 0.16 0.18
Small Neutral 0.03 0.12 0.01 0.00 0.06 0.09 0.11 0.12 0.12 0.13 0.12 0.13

Big Up - - - - 0.05 0.13 0.08 0.06 0.10 0.14 0.11 0.12
Big Down - - - - 0.06 0.15 0.11 0.07 0.13 0.18 0.16 0.18
Big Medium 0.05 0.23 0.11 0.00 0.22 0.25 0.23 0.26 0.28 0.34 0.29 0.31
Small Up - 0.05 - - - 0.04 0.05 0.03 0.07 0.08 0.06 0.07
Small Down 0.07 0.17 0.08 - 0.10 0.15 0.18 0.13 0.15 0.15 0.15 0.15
Small Medium - 0.00 - - - 0.01 0.02 0.01 0.03 0.05 0.04 0.05

Note: Improvement in annualized Sharpe ratio (SR∗−SR) implied by the full sample Sharpe ratio of each portfolio to-
gether with machine learning predictive R2

oos from Table 5. Cases with negative R2
oos imply a Sharpe ratio deterioration

and are omitted.

ratio (SR) earned by a buy-and-hold investor according to

SR∗ =

√
SR2 +R2

1−R2

We use this formula to translate the predictive R2
oos of Table 5 (along with the full-sample Sharpe

ratio of each portfolio) into an improvement in annualized Sharpe ratio, SR∗ − SR, for an investor

who exploiting machine learning predictions for portfolio timing. The results are presented Figure

6. For example, the buy-and-hold Sharpe ratio of the S&P 500, which is 0.42 in our sample, can be

improved to 0.63 by a market-timer exploiting forecasts from the NN3 model. For characteristic-based

portfolios, nonlinear machine learning methods can help improve Sharpe ratios by anywhere from

a few percentage points to over 30 percentage points (in the case of the “Big Medium” momentum

portfolio).

We also analyze bottom-up predictions for annual rather than monthly returns. The comparative

37



Table 7: Annual Portfolio-level Out-of-Sample Predictive R2

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

S&P 500 -3.31 0.43 -7.17 0.26 2.07 8.80 7.28 9.99 12.02 15.68 15.30 13.15

Big Growth 3.36 4.88 -4.04 3.62 0.49 9.50 5.86 8.76 8.54 12.42 9.95 7.56
Big Value -11.82 -6.92 -10.22 -2.13 2.44 7.14 6.93 7.47 11.06 11.67 13.37 10.03
Big Neutral -1.65 3.09 -6.58 1.19 1.24 8.52 6.91 8.31 11.51 14.60 12.92 9.95
Small Growth 6.11 10.81 8.94 8.41 4.31 8.05 3.75 7.24 6.37 7.48 6.60 4.81
Small Value 4.25 2.87 3.19 0.21 0.03 6.20 2.13 3.96 5.52 6.84 2.60 7.23
Small Neutral 0.36 5.21 2.10 2.29 2.29 4.18 1.78 6.46 5.55 6.68 3.69 6.14

Big Conservative -8.34 -2.42 -9.77 -3.77 5.17 8.44 5.26 -1.31 8.64 9.65 12.47 6.09
Big Aggressive -0.92 1.89 -4.72 1.36 2.00 7.42 6.67 11.00 11.74 13.08 11.27 10.67
Big Neutral -6.97 -1.62 -9.42 2.03 2.43 9.62 8.39 10.88 13.03 15.61 15.75 13.56
Small Conservative 1.30 6.36 5.01 3.19 2.35 4.60 0.62 5.31 5.39 5.97 4.22 4.71
Small Aggressive 5.53 5.12 2.88 1.04 0.37 6.43 3.23 2.50 4.50 5.50 1.47 6.56
Small Neutral 1.20 5.84 3.52 4.46 3.59 7.08 2.96 8.41 7.13 8.68 5.77 8.47

Big Robust -7.17 -2.55 -9.18 1.33 5.42 7.61 6.60 12.55 12.04 13.92 15.29 13.35
Big Neutral -1.31 5.46 -4.57 -3.18 -2.12 6.24 4.47 4.18 6.23 9.47 3.70 2.95
Big Weak -1.81 3.09 -7.15 -1.02 -1.12 9.62 7.62 4.41 9.95 11.39 11.73 8.40
Small Robust -2.33 0.93 -0.20 0.76 3.72 0.41 -0.87 2.92 3.67 4.47 0.86 4.19
Small Weak 4.72 9.89 5.68 2.15 -1.11 7.53 3.10 -0.48 1.53 2.96 1.61 1.08
Small Neutral 4.91 7.99 4.40 4.60 3.58 9.21 5.75 10.03 7.39 9.82 7.06 9.09

Big Up -24.02 -11.77 -19.16 -5.11 0.52 6.15 6.21 4.26 11.44 11.11 14.48 10.62
Big Down -2.32 0.39 -2.79 -0.15 0.71 7.64 5.53 3.58 8.78 9.54 10.32 6.79
Big Medium 7.54 10.24 7.36 6.25 3.83 7.73 5.38 8.74 9.61 11.36 9.96 6.22
Small Up -5.47 3.82 0.71 -2.83 1.57 1.84 -0.19 -4.22 0.70 1.12 -1.42 2.83
Small Down 4.72 5.59 4.84 2.87 0.50 7.23 3.49 3.24 4.63 5.90 3.28 5.22
Small Medium -1.71 -0.49 -1.70 -1.80 0.81 2.00 -0.40 -1.64 1.96 1.79 0.51 3.49

Note: In this table, we report the out-of-sample predictive R2s for 25 portfolios using OLS with size, book-to-market,
and momentum, OLS-3, PLS, PCR, elastic net (ENet), generalized linear model with group lasso (GLM), random forest
(RF), gradient boosted regression trees (GBRT), and five architectures of neural networks (NN1,...,NN5), respectively.
“+H” indicates the use of Huber loss instead of the l2 loss. The 25 portfolios are 3 × 2 size double-sorted portfolios
used in the construction of the Fama-French value, investment, and profitability factors, as well as momentum. The
results are based on prediction at the annual horizon.

patterns in predictive performance across methods is the same in annual and monthly data. Table 7

demonstrates the superiority of nonlinear methods, and in particular neural networks. NN3 continues

to dominate for the market portfolio, achieving an R2
oos of 15.68%, along with large and positive R2

ooss

for all characteristic-based long-short portfolios.

The out-of-sample S&P 500 forecasting performance in Table 5 is based on a 30-year testing

sample. Kelly and Pruitt (2013) emphasize that out-of-sample R2
oos can be sensitive to choice of

testing sample. The upper left panel of Figure A.4 plots R2
oos for S&P 500 index returns based on a

wide range of testing samples. Our findings are not specific to a particular test sample—for all sample

splits, NN3 remains dominant and the relative rankings of other methods is roughly preserved. The

robustness of our findings to sample split also holds for our stock-level analyses. The upper right

panel shows that our stock-level panel R2
oos is robust to testing sample choice, and the lower panels

show that this remains true among sub-cohorts of large and small stocks.
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Table 8: Performance of Machine Learning Portfolios

OLS-3+H PLS PCR

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) -0.41 0.19 6.52 0.10 -0.85 -0.05 6.73 -0.03 -0.92 -0.49 7.02 -0.24
2 -0.08 0.40 5.28 0.26 -0.26 0.31 6.02 0.18 -0.29 0.15 6.20 0.08
3 0.15 0.59 4.82 0.42 0.04 0.46 5.66 0.28 0.03 0.38 5.51 0.24
4 0.37 0.72 4.45 0.56 0.29 0.64 5.32 0.41 0.27 0.54 5.24 0.35
5 0.57 0.77 4.49 0.60 0.51 0.70 5.19 0.47 0.49 0.65 5.06 0.44
6 0.78 0.67 4.66 0.49 0.71 0.77 5.14 0.52 0.69 0.72 4.96 0.51
7 0.98 0.64 5.15 0.43 0.92 0.78 5.11 0.53 0.89 0.91 5.14 0.61
8 1.20 0.64 5.98 0.37 1.17 0.87 5.23 0.58 1.13 1.13 5.17 0.75
9 1.44 0.76 7.10 0.37 1.50 1.10 5.34 0.71 1.45 1.34 5.44 0.85
High(H) 1.81 1.84 8.52 0.75 2.15 1.51 5.79 0.90 2.09 1.91 6.08 1.09

H-L 2.22 1.65 6.41 0.89 3.01 1.56 4.45 1.22 3.01 2.40 4.65 1.79

ENet+H GLM+H RF

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) 0.06 -0.31 7.01 -0.15 -0.43 -0.51 6.94 -0.25 0.26 -0.33 7.13 -0.16
2 0.33 0.39 6.03 0.22 0.02 0.33 6.08 0.19 0.41 0.32 5.68 0.19
3 0.50 0.62 5.13 0.42 0.28 0.54 5.59 0.33 0.49 0.52 5.31 0.34
4 0.63 0.63 4.83 0.45 0.49 0.64 5.40 0.41 0.56 0.60 5.21 0.40
5 0.76 0.71 4.77 0.52 0.66 0.71 5.20 0.47 0.62 0.63 5.14 0.42
6 0.89 0.75 4.97 0.52 0.81 0.79 4.97 0.55 0.68 0.73 5.10 0.50
7 1.02 0.78 5.26 0.51 0.97 0.82 4.92 0.58 0.75 0.85 5.19 0.57
8 1.16 0.85 5.51 0.53 1.14 0.99 5.09 0.67 0.81 0.90 5.33 0.58
9 1.34 1.03 5.92 0.60 1.37 1.29 5.59 0.80 0.89 1.17 5.64 0.72
High(H) 1.65 1.80 7.31 0.86 1.84 1.64 6.34 0.90 1.07 1.83 6.78 0.93

H-L 1.59 2.12 5.48 1.34 2.27 2.15 4.39 1.70 0.81 2.16 5.34 1.40

GBRT+H NN1 NN2

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) -0.03 -0.38 6.67 -0.20 -0.47 -0.80 7.47 -0.37 -0.37 -0.82 7.97 -0.36
2 0.16 0.43 5.66 0.26 0.14 0.21 6.24 0.12 0.19 0.17 6.44 0.09
3 0.27 0.55 5.45 0.35 0.43 0.45 5.58 0.28 0.43 0.43 5.48 0.27
4 0.36 0.77 5.34 0.50 0.64 0.64 5.05 0.44 0.59 0.65 4.86 0.46
5 0.46 0.68 5.28 0.45 0.80 0.73 4.75 0.53 0.73 0.72 4.59 0.54
6 0.54 0.78 5.12 0.53 0.96 0.85 4.69 0.63 0.85 0.81 4.50 0.62
7 0.62 0.65 5.19 0.44 1.12 0.82 4.72 0.60 0.98 0.86 4.55 0.65
8 0.71 0.94 5.27 0.61 1.33 0.97 4.94 0.68 1.13 0.92 4.82 0.66
9 0.81 1.11 5.26 0.73 1.64 1.21 5.49 0.76 1.40 1.13 5.46 0.72
High(H) 1.02 1.70 6.57 0.90 2.46 2.13 7.30 1.01 2.32 2.36 8.03 1.02

H-L 1.04 2.08 4.25 1.70 2.93 2.93 4.81 2.11 2.69 3.18 4.90 2.25

NN3 NN4 NN5

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) -0.39 -0.96 7.77 -0.43 -0.28 -0.90 7.87 -0.40 -0.21 -0.76 7.93 -0.33
2 0.17 0.13 6.42 0.07 0.25 0.18 6.57 0.09 0.25 0.24 6.58 0.13
3 0.42 0.53 5.47 0.34 0.47 0.46 5.60 0.28 0.46 0.51 5.67 0.31
4 0.59 0.68 4.90 0.48 0.61 0.59 4.91 0.41 0.59 0.61 5.07 0.42
5 0.73 0.77 4.70 0.57 0.72 0.66 4.55 0.50 0.70 0.65 4.58 0.49
6 0.86 0.81 4.54 0.62 0.82 0.77 4.45 0.60 0.80 0.77 4.43 0.60
7 0.99 0.90 4.58 0.68 0.92 0.86 4.51 0.66 0.90 0.85 4.60 0.64
8 1.16 0.97 4.85 0.69 1.07 1.05 4.80 0.76 1.04 0.91 4.88 0.65
9 1.44 1.16 5.50 0.73 1.32 1.22 5.60 0.75 1.30 1.24 5.54 0.77
High(H) 2.30 2.23 7.78 0.99 2.28 2.35 7.95 1.02 2.19 2.21 7.78 0.98

H-L 2.69 3.19 4.77 2.32 2.56 3.25 4.79 2.35 2.39 2.97 5.05 2.03

Note: Performance of equal-weighted decile portfolios sorted on out-of-sample machine learning return forecasts.
“Pred”, “Avg”, “Std”, and “SR” report the predicted monthly returns for each decile, the average realized monthly
returns, their realized standard deviations, and annualized Sharpe ratios, respectively.
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3.4.2 Machine Learning Portfolios

Next, rather than assessing forecast performance among pre-specified portfolios, we design a new set

of portfolios to directly exploit machine learning forecasts. At the end of each month, we calculate

one-month-ahead out-of-sample stock return predictions for each method. We then sort stocks into

deciles based on each model’s forecasts. We reconstitute portfolios each month using equal weights

(the most natural weighting choice given that our objective functions minimizes equal weighted

forecast errors). Finally, we construct a zero-net-investment portfolio that buys the highest expected

return stocks (decile 10) and sells the lowest (decile 1).

Table 8 reports results. Out-of-sample portfolio performance aligns very closely with machine

learning forecasts. Realized returns increase monotonically with machine learning forecasts from

every method (with minor exceptions, such as decile 7 of NN1). The neural network models again

dominate linear models and tree-based approaches. In particular, for all but the most extreme deciles,

the quantitative match between predicted returns and average realized returns using neural networks

is extraordinarily close. The best 10–1 strategy comes from NN4, which returns on average 3.3% per

month (39.0% on an annualized basis). Its monthly volatility is 4.8% (16.6% annualized), amounting

to an annualized out-of-sample Sharpe ratio of 2.35.

The top panel of Table 9 reports drawdowns and portfolio turnover, and risk-adjusted perfor-

mance of 10–1 spread portfolios from each method. We define maximum drawdown of a strategy

as

MaxDD = max
0≤t1≤t2≤T

(Yt1 − Yt2)

where Yt is the cumulative log return from date 0 through t. Not only do neural network portfolios

have higher Sharpe ratios than alternatives, they also have the smaller drawdowns. The maximum

drawdown experienced for the NN3 strategy is 14.8%, versus 64.7% maximum drawdown for OLS-3.

Random forest and GBRT see drawdowns as large as 50.2% and 35.2%, respectively. Likewise, NN3’s

worst one month performance is a 10.2% loss, which is the least extreme monthly loss among all

models.

We define the strategy’s average monthly turnover as

Turnover =
1

T

T∑
t=1

(∑
i

|wi,t+1 − wi,t(1 + ri,t+1)|

)
,

where wi,t is the weight of stock i in the portfolio at time t, and Bt represents the set of long positions

and St short positions. For NN1 through NN5, turnover is consistently around 110% per month,

and turnover for tree-based methods and penalized regression is slightly higher. For comparison,

the monthly turnover of a 10–1 momentum spread is 172.56% per month, while for a size decile

spread it is 22.87%. Given the large role of price trend predictors selected by all machine learning

approaches, it is perhaps unsurprising that their outperformance is accomplished with comparatively

high portfolio turnover.

The bottom panel of Table 9 reports risk-adjusted performance of machine learning portfolios

based on factor pricing models. In a linear factor model, the tangency portfolio of the factors
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Table 9: Drawdowns, Turnover, and Risk-adjusted Preformance of Machine Learning Portfolios

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

+H +H +H +H

Drawdowns and Turnover

Max DD(%) 64.74 35.51 34.17 35.25 27.05 50.22 35.24 19.70 23.72 14.84 18.66 21.73

Max 1M Loss(%) 38.69 25.05 22.22 34.11 16.92 34.94 22.87 16.98 23.72 10.15 18.66 21.71

Turnover(%) 156.78 76.92 106.79 143.61 129.22 113.91 136.82 110.87 112.08 113.07 114.08 113.57

Risk-adjusted Performance

Mean Ret. 1.65 1.56 2.40 2.12 2.15 2.16 2.08 2.93 3.18 3.19 3.25 2.97

FF3 α 1.43 1.39 2.44 1.96 2.15 2.09 2.08 2.89 3.20 3.20 3.24 2.98

R2 4.92 12.75 11.59 4.35 3.85 8.64 0.31 8.89 7.28 8.45 8.34 8.38

IR 0.79 1.18 1.90 1.27 1.72 1.42 1.69 2.17 2.35 2.43 2.44 2.14

FF5 α 1.64 0.96 2.01 1.58 1.74 1.82 1.95 2.66 2.97 3.00 3.03 2.73

R2 7.05 25.10 23.50 10.96 15.28 14.97 4.09 12.59 10.03 10.74 11.11 11.43

IR 0.92 0.88 1.68 1.06 1.49 1.28 1.62 2.05 2.21 2.30 2.32 1.99

FF5+Mom α 1.88 0.82 1.76 1.34 1.54 1.75 1.78 2.62 2.93 2.98 2.95 2.68

R2 17.46 32.91 43.77 26.27 31.80 16.59 16.81 13.19 10.59 10.88 13.61 12.25

IR 1.11 0.79 1.72 0.98 1.47 1.24 1.58 2.02 2.19 2.29 2.29 1.96

Note: The top panel reports the maximum drawdown of a strategy (“Max DD”), its most extreme negative monthly
return (“Max 1M Loss”), and its average monthly percentage change in holdings (“Turnover”). The bottom panel
report average monthly returns in percent as well as alphas, information ratios (IR), and R2 with respect the Fama-
French three-factor model (“FF3”), the Fama-French five-factor model (“FF5’), and the Fama-French five-factor model
augmented to include the momentum factor (“FF5+MOM”).

themselves represents the maximum Sharpe ratio portfolio in the economy. Any portfolio with

a higher Sharpe ratio must possess alpha with respect to the model. From prior work, the out-of-

sample factor tangency portfolios of the Fama-French three and five-factor models have Sharpe ratios

of roughly 0.8 and 1.3, respectively (Kelly et al., 2017). It is unsurprising then that portfolios formed

on the basis of machine learning forecasts earn large and significant alphas versus these models. A

six-factor model (that appends a momentum factor to the Fama-French five-factor model) explains

as much as 50% of the average return for strategies based on linear models, but explains only about

10% of for neural network-based portfolios. As a result, neural networks have information ratios

ranging from 2.02 to 2.44 versus the Fama-French model variants.

The cumulative performance for the long and short sides of all strategies is plotted in Figure 7,

along with the cumulative market excess return as the benchmark. NN3 dominates the other models

by a large margin in both direction. Moreover, the long side of the portfolio performs better whereas

the short side mainly helps for hedging post-2000.

We report the performance of the value-weighted machine learning portfolios in Tables A.6 and

A.7 of the appendix. The relative performance of these portfolios is unchanged, though the Sharpe

ratios of all long-short portfolios are lower than their equal-weighted counterparts. The OLS-3+H

achieves 0.27, random forest and GBRT achieves 0.87 and 0.94, and neural network Sharpe ratios

reach 1.25 (NN3). Our forecasts are derived from an equal-weighted forecast error objective, thus it is

likely that a value-weighted statistical objective would produce improved machine learning portfolios.
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Figure 7: Cumulative Return of Machine Learning Portfolios
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Note: Cumulative log returns of portfolios sorted on out-of-sample machine learning return forecasts. The solid and
dash lines represent long (10%) and short (10%) positions, respectively. The shaded periods show NBER recession
dates. All portfolios are equal-weighted.

4 Conclusion

Using the empirical context of return prediction as a proving ground, we perform a comparative

analysis of methods in the machine learning repertoire. At the highest level, our findings demonstrate

great promise that machine learning methods can help improve our empirical understanding of asset

prices. Neural networks and, to a lesser extent, regression trees, are the best performing methods. We

isolate the source of their predictive advantage to accommodation of nonlinear interactions between

the baseline predictors that is missed by other methods. We also find that “shallow” learning

outperforms “deep” learning, which differs from the typical conclusion in other fields such as computer

vision or bioinformatics, and is undoubtedly due to the comparative dearth of data and low signal-

to-noise ratio in asset pricing problems. Machine learning methods are most valuable for forecasting

larger and more liquid stock returns and portfolios. Lastly, we find that all methods agree on a fairly

small set of dominant predictive signals, the most powerful predictors being associated with price

trends and include return reversal and momentum. The next most powerful predictors are measures

of stock liquidity, stock volatility, and valuation ratios.

The overall success of machine learning algorithms for return prediction brings promise for both

economic modeling and for practical aspects of portfolio choice. With better measurement through

machine learning, risk premia become less shrouded in estimation error, thus the challenge of iden-

tifying reliable economic mechanisms behind asset pricing phenomena becomes less steep. Finally,

our findings help justify the growing role of machine learning throughout the architecture of the

burgeoning fintech industry.
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Internet Appendix

A Monte Carlo Simulations

To demonstrate the finite sample performance of all machine learning procedures, we simulate a

(latent) 3–factor model for excess returns rt+1, for t = 1, 2, . . . , T :

ri,t+1 = g?(zi,t) + ei,t+1, ei,t+1 = βi,tvt+1 + εi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, βi,t = (ci1,t, ci2,t, ci3,t),

where ct is an N × Pc matrix of characteristics, vt+1 is a 3 × 1 vector of factors, xt is a univariate

time series, and εt+1 is a N × 1 vector of idiosyncratic errors. We choose vt+1 ∼ N (0, 0.052 × I3),

and εi,t+1 ∼ t5(0, 0.052), in which their variances are calibrated so that the average time series R2 is

50% and the average annualized volatility is 30%.

We simulate the panel of characteristics for each 1 ≤ i ≤ N and each 1 ≤ j ≤ Pc from the

following model:

cij,t =
2

n+ 1
rank(c̄ij,t)− 1, c̄ij,t = ρj c̄ij,t−1 + εij,t, (A.1)

where ρj ∼ U [0.9, 1], and εij,t ∼ N (0, 1), so that the characteristics feature some degree of persistence

over time, yet is cross-sectionally normalized to be within [−1, 1]. This matches our data cleaning

procedure in the empirical study.

In addition, we simulate the time series xt from the following model:

xt = ρxt−1 + ut, (A.2)

where ut ∼ N (0, 1− ρ2), and ρ = 0.95 so that xt is highly persistent.

We consider two cases of g?(·) functions:

(a) g?(zi,t) =(ci1,t, ci2,t, ci3,t × xt)θ0, where θ0 = (0.02, 0.02, 0.02)′;

(b) g?(zi,t) =
(
c2
i1,t, ci1,t × ci2,t, sgn(ci3,t × xt)

)
θ0, where θ0 = (0.04, 0.03, 0.012)′.

In both cases, g?(·) only depends on 3 covariates, so there are only 3 non-zero entries in θ, denoted

as θ0. Case (a) is simple and sparse linear model. Case (b) involves a nonlinear covariate c2
i1,t, a

nonlinear and interaction term ci1,t × ci2,t, and a dummy variable sgn(ci3,t × xt). We calibrate the

values of θ0 such that the cross-sectional R2 is 25%, and the predictive R2 is 5%.

Throughout, we fix N = 200, T = 180, and Px = 2, while comparing the cases of Pc = 100 and

Pc = 50, corresponding to P = 200 and 100, respectively, to demonstrate the effect of increasing

dimensionality.

For each Monte Carlo sample, we divide the whole time series into 3 consecutive subsamples of

equal length for training, validation, and testing, respectively. Specifically, we estimate each of the

two models in the training sample, using PLS, PCR, Ridge, Lasso, Elastic Net (ENet), generalized
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linear model with group lasso (GLM), random forest (RF), gradient boosted regression trees (GBRT),

and the same five architectures of neural networks (NN1,...,NN5) we adopt for the empirical work,

respectively, then choose tuning parameters for each method in the validation sample, and calculate

the prediction errors in the testing sample. For benchmark, we also compare the pooled OLS with

all covariates and that using the oracle model.

Table A.1: Comparison of Predictive R2s for Machine Learning Algorithms in Simulations

Model (a) (b)

Parameter Pc = 50 Pc = 100 Pc = 50 Pc = 100

R2(%) IS OOS IS OOS IS OOS IS OOS

OLS 7.50 1.14 8.19 -1.35 3.44 -4.72 4.39 -7.75
OLS+H 7.44 1.25 8.08 -1.16 3.38 -4.56 4.27 -7.50
PCR 2.69 0.90 1.70 0.43 0.65 0.02 0.41 -0.01
PLS 6.24 3.48 6.19 2.82 1.02 -0.08 0.99 -0.17
Lasso 6.04 4.26 6.08 4.25 1.36 0.58 1.36 0.61
Lasso+H 5.96 4.27 6.00 4.26 1.27 0.59 1.27 0.62
Ridge 6.46 3.89 6.67 3.39 1.66 0.34 1.76 0.23
Ridge+H 6.36 3.90 6.54 3.40 1.58 0.35 1.67 0.25
ENet 6.04 4.26 6.08 4.25 1.35 0.58 1.35 0.61
ENet+H 5.96 4.27 6.00 4.26 1.27 0.59 1.27 0.62
GLM 5.91 4.11 5.94 4.08 3.38 1.22 3.31 1.17
GLM+H 5.84 4.13 5.88 4.10 3.32 1.27 3.23 1.22
RF 8.37 3.37 8.23 3.27 8.09 3.03 8.29 3.06
GBRT 7.09 3.35 7.04 3.28 6.50 2.76 6.41 2.82
GBRT+H 7.16 3.46 7.09 3.39 6.47 3.12 6.37 3.22
NN1 6.54 4.42 6.78 4.31 5.57 2.77 5.82 2.60
NN2 6.50 4.40 6.71 4.30 6.31 3.12 6.40 2.91
NN3 6.48 4.37 6.63 4.22 6.02 2.97 6.12 2.70
NN4 6.49 4.32 6.63 4.17 5.96 2.82 6.11 2.56
NN5 6.43 4.27 6.60 4.19 5.71 2.65 5.65 2.20
Oracle 6.22 5.52 6.22 5.52 5.86 5.40 5.86 5.40

Note: In this table, we report the average in-sample (IS) and out-of-sample (OOS) R2s for models (a) and (b) using
Ridge, Lasso, Elastic Net (ENet), generalized linear model with group lasso (GLM), random forest (RF), gradient
boosted regression trees (GBRT), and five architectures of neural networks (NN1,...,NN5), respectively. “+H” indicates
the use of Huber loss instead of the l2 loss. “Oracle” stands for using the true covariates in a pooled-OLS regression.
We fix N = 200, T = 180, and Px = 2, comparing Pc = 100 with Pc = 50. The number of Monte Carlo repetitions is
100.

We report the average R2s both in-sample (IS) and out-of-sample (OOS) for each model and

each method over 100 Monte Carlo repetitions in Table A.1. Both IS and OOS R2s are relative

to the estimator based on the IS average. For model (a), Lasso and ENet deliver the best and

almost identical OOS R2. This is not surprising given that the true model is sparse and linear

in the input covariates. More advanced methods such as RF, NN, and GBRT tend to overfit, so

their performance is slightly worse. By contrast, for model (b), these methods clearly dominate

Lasso and ENet, because the latter cannot capture the nonlinearity in the model. GLM is slightly

better, but is dominated by NNs, RF, and GBRT. OLS is the worst in all settings, not surprisingly.

PLS outperforms PCR in the linear model (a), but is dominated in the nonlinear case. When

Pc increases, IS R2s tend to increase whereas OOS R2s decrease. Hence, the performance of all
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methods deteriorates as overfitting exacerbates. Using Huber loss improves the OOS performance

for all methods. RF, GBRT plus Huber loss remain the best choices for the nonlinear model. The

comparison among NNs demonstrates a stark trade-off between model flexibility and implementation

difficulty. Deeper models potentially allow for more parsimonious representation of the data, but

their objective functions are more involved to optimize. For instance, the APG algorithm used in

Elastic Net is not feasible for NNs, because its loss (as a function of weight parameters) is non-convex.

As shown in the table, shallower NNs tend to outperform.

Table A.2: Comparison of Predictive R2s for Alternative Prediction Horizons in Simulations

Model (a) (b)

Horizon Quarter Halfyear Annual Quarter Halfyear Annual

R2(%) IS OOS IS OOS IS OOS IS OOS IS OOS IS OOS

OLS 14.20 -0.91 25.32 -0.04 34.63 -0.04 7.57 -12.63 13.64 -21.59 19.59 -29.96
OLS+H 14.15 -0.78 25.24 0.15 34.55 0.07 7.50 -12.45 13.48 -21.30 19.28 -29.65
PCR 3.01 0.66 5.15 1.21 7.26 1.39 0.69 0.00 1.25 -0.01 1.68 -0.21
PLS 10.94 4.91 20.03 8.10 26.22 8.35 1.38 -0.38 1.86 -0.35 2.68 -0.74
Lasso 10.60 7.66 18.89 13.69 24.73 16.69 2.46 1.03 3.89 1.22 4.58 0.49
Lasso+H 10.54 7.66 18.73 13.70 24.39 16.70 2.40 1.05 3.72 1.28 4.23 0.59
Ridge 11.81 6.03 21.22 10.07 28.76 11.71 3.10 0.39 5.31 0.46 6.59 0.05
Ridge+H 11.73 6.05 21.03 10.08 28.39 11.72 3.02 0.40 5.07 0.49 6.12 0.12
ENet 10.60 7.67 18.90 13.67 24.90 16.65 2.46 1.02 3.89 1.20 4.59 0.48
ENet+H 10.54 7.67 18.74 13.69 24.57 16.66 2.39 1.05 3.73 1.25 4.22 0.58
GLM 10.39 7.23 19.01 12.56 26.71 15.29 5.86 2.01 9.79 2.93 12.76 1.82
GLM+H 10.33 7.24 18.87 12.58 26.49 15.38 5.78 2.04 9.50 3.04 12.17 2.10
RF 13.79 5.94 23.08 10.95 30.87 14.07 12.50 4.78 19.28 6.94 22.40 6.35
GBRT 12.13 6.48 20.85 12.02 28.19 15.22 9.93 4.85 15.37 7.00 17.93 6.28
GBRT+H 12.15 6.66 21.01 12.15 28.36 15.44 9.84 4.90 15.50 7.01 18.01 6.29
NN1 11.87 7.55 21.17 12.92 28.97 15.71 9.93 4.18 16.78 6.25 20.77 5.77
NN2 11.63 7.57 20.85 13.22 28.10 16.08 10.41 4.59 16.49 6.62 20.17 5.75
NN3 11.66 7.59 20.61 13.02 27.94 16.07 10.11 4.52 16.40 6.59 19.64 5.67
NN4 11.65 7.52 20.55 12.99 27.75 15.94 10.15 4.43 16.37 6.41 19.58 5.58
NN5 11.51 7.43 20.49 13.05 27.70 15.67 10.05 4.15 16.31 6.12 19.01 5.32
Oracle 10.86 9.66 19.10 16.73 25.05 21.30 8.90 8.31 13.11 12.28 13.39 11.98

Note: In this table, we report the average in-sample (IS) and out-of-sample (OOS) R2s for models (a) and (b) using
Ridge, Lasso, Elastic Net (ENet), generalized linear model with group lasso (GLM), random forest (RF), gradient
boosted regression trees (GBRT), and five architectures of neural networks (NN1,...,NN5), respectively. “+H” indicates
the use of Huber loss instead of the l2 loss. “Oracle” stands for using the true covariates in a pooled-OLS regression.
We fix N = 200, T = 180, Px = 2 and Pc = 100, comparing the performance of different horizons. The number of
Monte Carlo repetitions is 100.

Table A.2 presents the same IS and OOS R2s for prediction conducted for different horizons,

e.g., quarterly, half-yearly, and annually. We observe the usual increasing/hump-shape patterns of

R2s against prediction horizons documented in the literature, which is driven by the persistence of

covariates. The relative performance across different models maintains the same.

Next, we report the average variable selection frequencies of 6 particular covariates and the

average of the remaining P − 6 covariates for models (a) and (b) in Table A.3, using Lasso, Elastic

Net, and Group Lasso and their robust versions. We focus on these methods because they all impose

the l1 penalty and hence encourage variable selection. As expected, for model (a), the true covariates
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Table A.3: Comparison of Average Variable Selection Frequencies in Simulations

Model (a)

Parameter Method ci1,t ci2,t ci3,t ci1,t × xt ci2,t × xt ci3,t × xt Noise

Pc = 50 Lasso 0.95 0.94 0.65 0.53 0.51 0.85 0.09
Lasso+H 0.95 0.94 0.60 0.53 0.51 0.86 0.09
ENet 0.95 0.94 0.65 0.54 0.51 0.86 0.09
ENet+H 0.95 0.94 0.61 0.54 0.51 0.86 0.09
GLM 0.95 0.95 0.72 0.61 0.63 0.90 0.13
GLM+H 0.95 0.95 0.70 0.62 0.60 0.90 0.13

Pc = 100 Lasso 0.95 0.94 0.65 0.52 0.49 0.85 0.06
Lasso+H 0.95 0.94 0.60 0.52 0.49 0.86 0.06
ENet 0.95 0.94 0.65 0.53 0.49 0.86 0.06
ENet+H 0.95 0.94 0.61 0.53 0.49 0.86 0.06
GLM 0.95 0.94 0.72 0.58 0.61 0.90 0.09
GLM+H 0.95 0.94 0.68 0.59 0.59 0.90 0.10

Model (b)

Parameter Method ci1,t ci2,t ci3,t ci1,t × xt ci2,t × xt ci3,t × xt Noise

Pc = 50 Lasso 0.26 0.26 0.39 0.27 0.31 0.75 0.04
Lasso+H 0.25 0.25 0.37 0.25 0.28 0.75 0.03
ENet 0.26 0.25 0.39 0.27 0.31 0.76 0.04
ENet+H 0.25 0.24 0.37 0.25 0.29 0.75 0.03
GLM 0.80 0.54 0.68 0.68 0.64 0.82 0.21
GLM+H 0.79 0.54 0.70 0.70 0.61 0.83 0.22

Pc = 100 Lasso 0.25 0.25 0.37 0.25 0.31 0.75 0.02
Lasso+H 0.25 0.24 0.34 0.23 0.29 0.75 0.02
ENet 0.25 0.25 0.37 0.25 0.31 0.76 0.02
ENet+H 0.25 0.24 0.34 0.23 0.29 0.75 0.02
GLM 0.80 0.52 0.67 0.65 0.57 0.81 0.14
GLM+H 0.80 0.51 0.69 0.66 0.55 0.82 0.14

Note: In this table, we report the average variable selection frequencies of 6 particular covariates for models (a) and (b)
using Lasso, Elastic Net (ENet), and generalized linear model with group lasso (GLM), respectively. “+H” indicates
the use of Huber loss instead of the l2 loss. Column “Noise” reports the average selection frequency of the remaining
P − 6 covariates. We fix N = 200, T = 180, and Px = 2, comparing Pc = 100 with Pc = 50. The number of Monte
Carlo repetitions is 100.
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(ci1,t, ci2,t, ci3,t× xt) are selected in over 85% of the sample paths, whereas correlated yet redundant

covariates (ci3,t, ci1,t × xt, ci2,t × xt) are also selected in around 60% of the samples. By contrast,

the remaining covariates are rarely selected. Although model selection mistakes are unavoidable,

perhaps due to the tension between variable selection and prediction or for finite sample issues,

the true covariates are part of the selected models with high probabilities. For model (b), while

no covariates are part of the true model, the 6 covariates we present are more relevant, and hence

selected substantially more frequently than the remaining P − 6 ones.

Finally, we report the average VIPs of the 6 particular covariates and the average of the remaining

P −6 covariates for models (a) and (b) in Table A.4, using random forest (RF) and gradient boosted

regression trees (GBRT), along with neural networks. We find similar results for both models (a)

and (b) that the 6 covariates we present are substantially more important than the remaining P − 6

ones. All methods work equally well.

Overall, the simulation results suggest that the machine learning methods are successful in sin-

gling out informative variables, even though highly correlated covariates are difficult to distinguish.

This is not surprising, as these methods are implemented to improve prediction, for which purpose

the best model often does not agree with the true model, in particular when covariates are highly

correlated.

B Sample Splitting

We consider a number of sample splitting schemes studied in the forecast evaluation literature (see,

e.g., West, 2006). The “fixed” scheme splits the data into training, validation, and testing samples.

It estimates the model once from the training and validation samples, and attempts to fit all points

in the testing sample using this fixed model estimate.

A common alternative to the fixed split scheme is a “rolling” scheme, in which the training and

validation samples gradually shift forward in time to include more recent data, but holds the total

number of time periods in each training and validation sample fixed. For each rolling window, one re-

fits the model from the prevailing training and validation samples, and tracks a model’s performance

in the remaining test data that has not been subsumed by the rolling windows. The result is a

sequence of performance evaluation measures corresponding to each rolling estimation window. This

has the benefit of leveraging more recent information for prediction relative to the fixed scheme.

The third is a “recursive” performance evaluation scheme. Like the rolling approach, it gradually

includes more recent observations in the training and validation windows. But the recursive scheme

always retains the entire history in the training sample, thus its window size gradually increases.

The rolling and recursive schemes are computationally expensive, in particular for more complicated

models such as neural networks.

In our empirical exercise, we adopt a hybrid of these schemes by recursively increasing the training

sample, periodically refitting the entire model once per year, and making out-of-sample predictions

using the same fitted model over the subsequent year. Each time we refit, we increase the training

sample by a year, while maintaining a fixed size rolling sample for validation. We choose to not
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Table A.4: Comparison of Average Variable Importance in Simulations

Model (a)

Parameter Method ci1,t ci2,t ci3,t ci1,t × xt ci2,t × xt ci3,t × xt Noise

Pc = 50 RF 21.47 22.52 6.12 6.34 6.32 20.06 0.18
GBRT 23.87 27.83 5.64 6.42 6.02 25.66 0.05
GBRT+H 24.01 27.42 5.33 6.29 6.78 25.87 0.05
NN1 26.73 29.16 5.17 2.96 3.76 25.35 0.07
NN2 26.13 29.02 5.05 3.10 4.02 25.65 0.07
NN3 26.02 28.78 5.02 3.26 3.81 25.59 0.08
NN4 25.94 28.64 5.11 3.10 3.85 25.05 0.09
NN5 25.80 28.68 5.15 3.11 3.77 25.10 0.09

Pc = 100 RF 21.29 22.96 6.10 5.70 6.03 19.23 0.10
GBRT 23.86 27.75 5.32 6.21 5.89 25.48 0.03
GBRT+H 23.82 27.20 5.22 6.04 6.30 26.08 0.03
NN1 25.71 28.36 5.04 2.77 3.44 24.19 0.05
NN2 25.27 27.95 4.69 2.85 3.53 24.78 0.06
NN3 25.15 27.90 4.92 2.89 3.56 24.42 0.06
NN4 25.11 27.67 4.94 3.15 3.61 24.26 0.06
NN5 24.95 27.56 4.79 2.99 3.39 24.17 0.06

Model (b)

Parameter Method ci1,t ci2,t ci3,t ci1,t × xt ci2,t × xt ci3,t × xt Noise

Pc = 50 RF 26.56 6.13 4.87 7.98 4.80 33.24 0.17
GBRT 31.17 7.35 5.83 8.87 6.45 36.39 0.04
GBRT+H 32.05 7.46 5.84 8.87 6.62 35.57 0.04
NN1 55.94 14.35 4.60 3.48 2.95 11.81 0.07
NN2 51.42 13.41 4.19 2.86 2.81 18.47 0.07
NN3 52.26 13.71 4.27 2.97 2.68 16.91 0.08
NN4 51.20 13.62 4.40 3.27 2.78 16.00 0.09
NN5 49.88 13.63 4.46 3.31 2.87 16.19 0.10

Pc = 100 RF 26.49 5.74 4.83 8.01 4.59 31.33 0.10
GBRT 31.56 7.30 5.37 8.61 6.22 36.78 0.02
GBRT+H 32.13 7.47 5.71 8.66 6.31 35.87 0.02
NN1 53.54 13.67 4.55 3.36 2.78 11.84 0.05
NN2 50.30 13.01 4.12 2.77 2.44 17.39 0.05
NN3 50.52 13.14 4.32 2.82 2.49 15.45 0.06
NN4 48.49 12.81 4.31 3.04 2.56 15.08 0.07
NN5 44.26 12.37 4.65 3.52 2.71 15.92 0.09

Note: In this table, we report the average variable importance of 6 particular covariates for models (a) and (b) using
random forest (RF), gradient boosted regression trees (GBRT), and five architectures of neural networks (NN1,...,NN5),
respectively. “+H” indicates the use of Huber loss instead of the l2 loss. Column “Noise” reports the average variable
importance of the remaining P − 6 covariates. We fix N = 200, T = 180, and Px = 2, comparing Pc = 100 with
Pc = 50. The number of Monte Carlo repetitions is 100.

53



cross-validate in order to maintain the temporal ordering of the data for prediction.

C Algorithms in Details

C.1 Lasso, Ridge, Elastic Net, and Group Lasso

We present the accelerated proximal algorithm (APG), see, e.g., Parikh and Boyd (2013) and Polson

et al. (2015)., which allows for efficient implementation of the elastic net, Lasso, Ridge regression,

and Group Lasso for both l2 and Huber losses. We rewrite their regularized objective functions as

L(θ; ·) = L(θ)︸︷︷︸
Loss Function

+ φ(θ; ·)︸ ︷︷ ︸
Penalty

, (C.3)

where we omit the dependence on the tuning parameters. Specifically, we have

φ(θ; ·) =



1

2
λ

P∑
j=1

θ2
j , Ridge;

λ

P∑
j=1

|θj |, Lasso;

λ(1− ρ)
P∑
j=1

|θj |+
1

2
λρ

P∑
j=1

θ2
j , Elastic Net;

λ

P∑
j=1

‖θj‖, Group Lasso.

, (C.4)

where in the Group Lasso case, θ = (θ1, θ2, . . . , θP ) is a K × P matrix.

Proximal algorithms are a class of algorithms for solving convex optimization problems, in which

the base operation is evaluating the proximal operator of a function, ie., solving a small convex

optimization problem. In many cases, this smaller problem has a closed form solution. The proximal

operator is defined as:

proxγf (θ) = argmin
z

{
f(z) +

1

2γ
‖z − θ‖2

}
.

An important property of the proximal operator is that the minimizer of a convex function f(·)
is a fixed point of proxf (·), i.e., θ? minimizes f(·) if and only if

θ? = proxf (θ?).

The proximal gradient algorithm is designed to minimize an objective function of the form (C.3),

where L(θ) is differentiable function of θ but φ(θ; ·) is not. Using properties of the proximal operator,

one can show that θ? minimizes (C.3), if and only if

θ? = proxγφ(θ? − γ∇L(θ?)).
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This result motivates the first two iteration steps in Algorithm 1. The third step inside the while

loop is a Nesterov momentum (Nesterov (1983)) adjustment that accelerates convergence.

The optimization problem requires the proximal operators of φ(θ; ·)s in (C.4), which have closed

forms:

proxγφ(θ) =



θ

1 + λγ
, Ridge;

λS(θ, λγ), Lasso;
1

1 + λγρ
S(θ, (1− ρ)λγ), Elastic Net;

(S̃(θ1, λγ)ᵀ, S̃(θ2, λγ)ᵀ, . . . , S̃(θP , λγ)ᵀ)ᵀ, Group Lasso.

,

where S(x, µ) and S̃(x, µ) are vector-valued functions, whose ith components are defined by:

(S(x, µ))i =


xi − µ, if xi > 0 and µ < |xi|;

xi + µ, if xi < 0 and µ < |xi|;

0, if µ ≥ |xi|.

, (S̃(x, µ))i =

xi − µ xi
‖xi‖ , if ‖xi‖ > µ;

0, if ‖xi‖ ≤ µ.
.

Note that S(x, µ) is the soft-thresholding operator, so the proximal algorithm is equivalent to

the coordinate descent algorithm in the case of l2 loss, see, e.g., Daubechies et al. (2004), Friedman

et al. (2007). The proximal framework we adopt here allows efficient implementation of Huber loss

and convergence acceleration.

Algorithm 1: Accelerated Proximal Gradient Method

Initialization: θ0 = 0, m = 0, γ;
while θm not converged do

θ̄ ← θm − γ∇L(θ) |θ=θm .
θ̃ ← proxγφ(θ̄).

θm+1 ← θ̃ + m
m+3 (θ̃ − θm).

m← m+ 1.
end
Result: The final parameter estimate is θm.
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C.2 Tree, Random Forest, and Gradient Boosted Tree

Algorithm 2 is a greedy algorithm, see, e.g., Breiman et al. (1984), to grow a complete binary

regression tree. Next, Algorithm 4 yields the random forest, e.g., Hastie et al. (2009). Finally,

Algorithm 3 delivers the gradient boosted tree (Friedman (2001)), for which we follow the version

written by Bühlmann and Hothorn (2007).

Algorithm 2: Classification and Regression Tree

Initialize the stump. C1(0) denotes the range of all covariates, Cl(d) denote the l-th node of depth d.
for d from 1 to L do

for i in {Cl(d− 1), l = 1, ..., 2d−1} do
i) For each feature j = 1, 2, . . . , P , and each threshold level α, define a split as s = (j, α), which
divides Cl(d− 1) into Cleft and Cright:

Cleft(s) = {zj ≤ α} ∩ Cl(d− 1); Cright(s) = {zj > α} ∩ Cl(d− 1),

where zj denotes the jth covariate.
ii) Define the impurity function:

L(C,Cleft, Cright) =
|Cleft|
|C|

H(Cleft) +
|Cright|
|C|

H(Cright), where

H(C) =
1

|C|
∑
zi,t∈C

(ri,t+1 − θ)2, θ =
1

|C|
∑
zi,t∈C

ri,t+1,

and |C| denotes the number of observations in set C.
iii) Select the optimal split:

s∗ ← argmin
s

L(C(s), Cleft(s), Cright(s)).

iv) Update the nodes:

C2l−1(d)← Cleft(s
∗), C2l(d)← Cright(s

∗).

end

end
Result: The output of a regression tree is given by:

g(zi,t; θ, L) =

2L∑
k=1

θk1 {zi,t ∈ Ck(L)} , where θk =
1

|Ck(L)|
∑

zi,t∈Ck(L)

ri,t+1.

For a single binary complete regression tree T of depth L, the VIP for the covariate zj is

VIP(zj , T ) =

L−1∑
d=1

2d−1∑
i=1

∆im (Ci(d− 1), C2i−1(d), C2i(d)) 1{zj ∈ T (i, d)},

where T (i, d) represents the covariate on the i-th (internal) node of depth d, which splits Ci(d− 1) into
two sub-regions {C2i−1(d), C2i(d)}, and ∆im(·, ·, ·) is defined by:

∆im (C,Cleft, Cright) = H(C)− L(C,Cleft, Cright).
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Algorithm 3: Gradient Boosted Tree

Initialize the predictor as ĝ0(·) = 0;

for b from 1 to B do
Compute for each i = 1, 2, . . . , N and t = 1, 2, . . . , T , the negative gradient of the loss function

l(·, ·):a

εi,t+1 ← −
∂l(ri,t+1, g)

∂g
| g=ĝb−1(zi,t)

.

Grow a (shallow) regression tree of depth L with dataset {(zi,t, εi,t+1) : ∀i, ∀t}

f̂b(·)← g(zi,t; θ, L).

Update the model by

ĝb(·)← ĝb−1(·) + νf̂b(·),

where ν ∈ (0, 1] is a tuning parameter that controls the step length.

end

Result: The final model output is

ĝB(zi,t;B, ν, L) =

B∑
b=1

νf̂b(·).

aThe typical choice of l(·, ·) for regression is l2 or Huber loss, whereas for classification, it is more common to use
the following loss function:

l(d, g(·)) = log2 (1 + exp (−2(2d− 1)g(·))) .

Algorithm 4: Random Forest

for b from 1 to B do
Generate Bootstrap samples {(zi,t, ri,t+1), (i, t) ∈ Bootstrap(b)} from the original dataset, for

which a tree is grown using Algorithm 2. At each step of splitting, use only a random subsample,

say
√
P , of all features. Write the resulting bth tree as:

ĝb(zi,t; θ̂b, L) =

2L∑
k=1

θ
(k)
b 1 {zi,t ∈ Ck(L)} .

end

Result: The final random forest output is given by the average of the outputs of all B trees.

ĝ(zi,t;L,B) =
1

B

B∑
b=1

ĝb(zi,t; θ̂b, L).

57



C.3 Neural Networks

It is common to fit the neural network using stochastic gradient descent (SGD), see, e.g., Goodfellow

et al. (2016). We adopt the adaptive moment estimation algorithm (Adam), an efficient version of the

SGD introduced by Kingma and Ba (2014). Adam computes adaptive learning rates for individual

parameters using estimates of first and second moments of the gradients. We denote the loss function

as L(θ; ·) and write L(θ; ·) = 1
T

∑T
t=1 Lt(θ; ·), where Lt(θ; ·) is the penalized cross-sectional average

prediction error at time t. At each step of training, a batch sent to the algorithm is randomly

sampled from the training dataset. Algorithm 6 is the early stopping algorithm that can be used

in combination with many optimization routines, including Adam. Algorithm 7 gives the Batch-

Normalization transform (Ioffe and Szegedy (2015)), which we apply to each activation after ReLU

transformation. Any neuron that previously receives a batch of x as the input now receives BNγ,β(x)

instead, where γ and β are additional parameters to be optimized.

Algorithm 5: Adam for Stochastic Gradient Descent (SGD)

Initialize the parameter vector θ0. Set m0 = 0, v0 = 0, t = 0.

while θt not converged do
t← t+ 1.

gt ← ∇θLt(θ; ·)
∣∣
θ=θt−1

.

mt ← β1mt−1 + (1− β1)gt.

vt ← β2vt−1 + (1− β2)gt � gt.a

m̂t ← mt/(1− (β1)t).

v̂t ← vt/(1− (β2)t).

θt ← θt−1 − αm̂t � (
√
v̂t + ε).

end

Result: The final parameter estimate is θt.

a� and � denote element-wise multiplication and division, respectively.

Algorithm 6: Early Stopping

Initialize j = 0, ε =∞ and select the patience parameter p.

while j < p do
Update θ using the training algorithm (e.g., the steps inside the while loop of Algorithm 5 for h

steps).

Calculate the prediction error from the validation sample, denoted as ε′.

if ε′ < ε then
j ← 0.

ε← ε′.

θ′ ← θ.

else

j ← j + 1.

end

end

Result: The final parameter estimate is θ′.
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Algorithm 7: Batch Normalization (for one Activation over one Batch)

Input: Values of x for each activation over a batch B = {x1, x2, . . . , xN}.

µB ←
1

N

N∑
i=1

xi

σ2
B ←

1

N

N∑
i=1

(xi − µB)2

x̂i ←
xi − µB√
σ2
B + ε

yi ← γx̂i + β := BNγ,β(xi)

Result: {yi = BNγ,β(xi) : i = 1, 2 . . . , N}.

D List of Characteristics

E Additional Tables and Figures
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Figure A.1: Characteristic Importance over Time by NN3
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Note: This figure describes how NN3 ranks the 94 stock-level characteristics and the industry dummy (sic2) in terms
of overall model contribution over 30 recursing training. Columns correspond to the year end of each of the 30 samples,
and color gradients within each column indicate the most influential (dark blue) to least influential (white) variables.
Characteristics are sorted in the same order of Figure 5.

60



Figure A.2: Characteristic Importance with Placebo Variables
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Note: This figure describes how each model ranks the 94 stock-level characteristics, the industry dummy (sic2), and
five placebos in terms of overall model contribution. Columns correspond to individual models, and color gradients
within each column indicate the most influential (dark blue) to least influential (white) variables. Characteristics are
ordered based on the sum of their ranks over all models, with the most influential characteristics on top and least
influential on bottom.
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Figure A.3: Characteristic Importance at Annual Horizon
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Figure A.4: R2
oos by Test Sample Starting Year
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Note: We vary the starting year of our out-of-sample testing period, holding the ending fixed at 2016. E.g., points
corresponding to tick-mark 2002 are based on the 15 year out-of-sample window from 2002 to 2016. The four figures
report the market index R2

oos, panel R2
oos, Top 1000 panel R2

oos, Bottom panel R2
oos of each model for different starting

years.
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Table A.6: Performance of Value-Weighted Machine Learning Portfolios

OLS-3+H PLS PCR

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) -0.42 0.39 5.22 0.26 -0.86 0.27 5.57 0.17 -0.90 0.04 5.92 0.03
2 -0.08 0.60 4.47 0.46 -0.27 0.49 5.10 0.33 -0.29 0.43 5.33 0.28
3 0.15 0.66 4.26 0.54 0.03 0.56 4.71 0.41 0.05 0.55 4.92 0.39
4 0.36 0.66 4.32 0.53 0.29 0.72 4.52 0.55 0.30 0.63 4.72 0.46
5 0.57 0.85 4.63 0.63 0.50 0.72 4.66 0.53 0.51 0.67 4.55 0.51
6 0.77 0.87 5.04 0.60 0.71 0.77 4.67 0.57 0.71 0.86 4.61 0.64
7 0.98 0.73 5.63 0.45 0.92 0.81 4.72 0.60 0.91 0.83 4.57 0.63
8 1.19 0.62 6.53 0.33 1.16 0.85 4.90 0.60 1.15 0.94 4.69 0.70
9 1.42 0.56 7.50 0.26 1.49 0.94 5.01 0.65 1.47 1.18 4.98 0.82
High(H) 1.72 0.90 8.18 0.38 2.03 0.96 5.45 0.61 2.02 1.36 5.61 0.84

H-L 2.14 0.51 6.46 0.27 2.89 0.70 4.35 0.56 2.92 1.32 4.72 0.97

ENet+H GLM+H RF

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) 0.05 0.08 5.64 0.05 -0.42 0.11 5.43 0.07 0.28 0.09 6.09 0.05
2 0.33 0.52 5.07 0.35 0.02 0.46 4.67 0.34 0.41 0.39 5.17 0.26
3 0.49 0.53 4.46 0.41 0.28 0.61 4.49 0.47 0.49 0.57 4.86 0.41
4 0.63 0.64 4.36 0.51 0.48 0.66 4.46 0.52 0.56 0.60 4.70 0.44
5 0.76 0.78 4.32 0.63 0.66 0.75 4.52 0.58 0.62 0.65 4.62 0.49
6 0.88 0.83 4.52 0.63 0.81 0.78 4.55 0.59 0.68 0.64 4.49 0.49
7 1.02 0.81 4.64 0.60 0.97 0.81 4.70 0.60 0.75 0.75 4.63 0.56
8 1.16 0.85 5.01 0.58 1.14 0.90 5.08 0.61 0.81 0.90 5.12 0.61
9 1.33 0.88 5.59 0.55 1.36 0.97 5.49 0.61 0.89 1.20 5.88 0.70
High(H) 1.59 0.80 6.83 0.40 1.76 1.18 6.30 0.65 1.01 1.49 7.18 0.72

H-L 1.54 0.72 5.49 0.45 2.17 1.08 4.52 0.83 0.73 1.40 5.54 0.87

GBRT+H NN1 NN2

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) 0.00 0.03 5.76 0.02 -0.40 -0.37 7.16 -0.18 -0.30 -0.50 7.89 -0.22
2 0.16 0.50 5.00 0.34 0.15 0.40 6.03 0.23 0.18 0.36 6.13 0.21
3 0.27 0.52 4.78 0.37 0.44 0.59 5.13 0.40 0.42 0.59 5.03 0.41
4 0.35 0.62 4.57 0.47 0.64 0.69 4.65 0.51 0.59 0.74 4.61 0.56
5 0.46 0.58 4.56 0.44 0.80 0.74 4.45 0.58 0.73 0.77 4.43 0.60
6 0.54 0.69 4.43 0.54 0.96 0.78 4.36 0.62 0.85 0.85 4.38 0.67
7 0.62 0.58 4.75 0.42 1.12 0.82 4.52 0.63 0.99 0.90 4.59 0.68
8 0.71 0.76 4.88 0.54 1.32 0.78 4.68 0.58 1.15 0.93 4.99 0.65
9 0.81 0.99 5.08 0.67 1.60 0.94 5.09 0.64 1.40 1.01 5.52 0.63
High(H) 0.97 1.20 5.81 0.71 2.18 1.37 6.31 0.75 2.03 1.43 6.95 0.72

H-L 0.97 1.16 4.27 0.94 2.58 1.73 5.62 1.07 2.32 1.94 5.68 1.18

NN3 NN4 NN5

Pred Avg Std SR Pred Avg Std SR Pred Avg Std SR

Low(L) -0.21 -0.51 7.83 -0.23 -0.29 -0.43 7.74 -0.19 -0.15 -0.36 7.63 -0.16
2 0.26 0.32 6.39 0.18 0.20 0.39 6.15 0.22 0.26 0.29 6.36 0.16
3 0.47 0.52 5.29 0.34 0.43 0.49 5.00 0.34 0.46 0.56 5.40 0.36
4 0.61 0.64 4.42 0.50 0.59 0.69 4.49 0.53 0.60 0.62 4.74 0.46
5 0.71 0.71 4.37 0.56 0.73 0.70 4.30 0.56 0.70 0.74 4.45 0.58
6 0.81 0.89 4.39 0.70 0.85 0.92 4.34 0.73 0.79 0.77 4.48 0.60
7 0.92 0.92 4.66 0.68 0.97 0.87 4.72 0.63 0.90 0.88 4.84 0.63
8 1.05 1.08 5.07 0.74 1.12 0.86 5.00 0.60 1.03 0.95 5.20 0.63
9 1.28 1.20 5.79 0.72 1.36 1.07 5.87 0.63 1.26 1.31 5.77 0.79
High(H) 1.99 1.58 7.33 0.74 2.02 1.47 7.11 0.72 1.91 1.55 6.90 0.78

H-L 2.20 2.09 5.78 1.25 2.30 1.90 5.83 1.13 2.06 1.91 6.01 1.10

Note: In this table, we report the performance of prediction-sorted portfolios over the 30-year out-of-sample testing
period. All stocks are sorted into deciles based on their predicted returns for the next month. Column “Pred”, “Avg”,
“Std”, and “SR” provide the predicted monthly returns for each decile, the average realized monthly returns, their
standard deviations, and Sharpe ratios, respectively. All portfolios are value weighted.
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Table A.7: Drawdowns, Turnover, and Subsamples of Value-Weighted Machine Learning Portfolios

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H

Max DD(%) 69.27 69.79 28.13 64.32 35.54 58.51 41.34 78.49 60.54 54.69 61.38 45.58
Max 1M Loss(%) 22.05 17.34 14.26 26.83 17.10 26.79 22.23 20.94 41.93 38.53 37.74 38.39
Turnover(%) 166.12 82.73 112.57 153.64 137.52 129.89 144.54 121.55 122.06 122.57 124.78 124.53

Expansions:
AvgRet 0.44 0.76 1.30 0.89 1.27 1.36 1.34 1.92 2.04 2.17 2.03 1.90
Std 6.22 3.96 4.47 5.22 4.30 4.72 3.93 5.16 5.15 5.19 5.23 5.52
SR 0.24 0.66 1.01 0.59 1.02 1.00 1.18 1.29 1.37 1.44 1.34 1.19

Recessions:
AvgRet 1.22 0.12 1.50 -0.88 -0.76 1.76 -0.55 -0.01 0.99 1.34 0.64 2.03
Std 8.37 7.03 6.68 7.39 5.96 10.57 6.47 8.70 9.29 9.73 9.80 9.54
SR 0.50 0.06 0.78 -0.41 -0.44 0.58 -0.30 -0.01 0.37 0.48 0.23 0.74

Note: In this table, we report more empirical results of prediction-sorted portfolios over the 30-year out-of-sample
testing period. All portfolios are value-weighted. Max DD reports the maximum drawdown of each strategy in over
our sample and Max 1M Loss is the most extreme negative monthly return of each strategy over our sample. Turnover
describes the average monthly percentage change in total holdings. We also report the average return(AvgRet), standard
deviation(Std), sharp ratio(SR) of portfolios during expansions (326 months) and recessions (34 months) according to
NBER recession dates. and recession time. We use NBER recession dummy to divide 360 OOS months into two
partitions. Good time contains 326 months and recession time contains 34 months.
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