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Abstract
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1 Introduction

The question of what drives asset returns has been the focus of finance researchers for several

decades. The seminal work of Campbell (1991) introduced simple but powerful methods to measure

the relative importance of discount rate news and cash flow news for explaining the risk in asset

returns. As asset prices and macroeconomic indicators follow common business cycles, fluctuations

in asset returns, discount rate news, and cash flow news must reflect macroeconomic sources of

risk. In this paper, I ask what these sources of risk are.

The theoretical asset pricing literature provides various answers to this question. Models that

rely on different types of systematic shocks (long-run consumption risk, volatility risk, preference

shocks, risk aversion shocks, economic disasters, demographic risk, learning-induced shocks, etc.)

have similar success in matching high magnitudes of risk premia, presence of return predictability,

and low correlations between returns and cash flows. As a result, they provide similar decomposition

of risk in asset returns in terms of cash flow news and discount rate news. This makes it difficult

to distinguish different economic explanations of unexpected variation in asset returns.

The objective of this paper is to propose an empirical methodology that can deliver new ev-

idence suitable for supporting or disqualifying competing economic shocks spanning risk in asset

returns. The methodology has two stages: (i) identification of orthogonal aggregate shocks and

(ii) their subsequent characterization. As key characteristics of aggregate shocks, I use empirical

properties of multiperiod risk sensitivities of expected buy-and-hold returns. I construct a term

structure of multiperiod risk sensitivities and label it a term structure of risk in expected returns.

The signs of the level and of the slope of the term structure of risk in the data and in equilib-

rium models show promise in distinguishing alternative theories of the risk-return tradeoff in asset

markets.

As an application, I explore which sources of consumption risk can explain variation in stock

returns and fluctuations in cash flow news and discount rate news. I find that a theory based

on multiple sources of risk in the variance of consumption growth can account for the salient

properties of the term structure of risk in expected returns. Three shocks, which are originated in
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the variance of consumption growth, are responsible for 94% of risk in the one-period stock returns:

a jump in the variance of consumption growth (jump in variance), a regular shock in the variance

of consumption growth (regular variance shock), and a shock that drives the long-run mean of

the variance in consumption growth (variance trend shock). The variance trend shock spans time-

variation in discount rate news, whereas the jump in variance, the regular variance shock, and the

direct dividend shock span time-variation in discount rate news. Cash flow news and discount rate

news contribute about equally to the unexpected variation in the one-quarter stock returns.

My methodology identifies shocks by modeling log asset returns, cash flow growth, and a

predictive variable, implied by a present-value identity (Campbell and Shiller, 1989), jointly with

economic states in a state-space model.1 The choice of economic states and types of shocks that feed

these states represent a shock identification scheme. Many alternative theories rely on importance of

latent states such as a macroeconomic volatility or a persistent component in expected consumption

growth, whose estimation is challenging. The observation equation in the state-space model, which

relates the observable predictive variable to the state vector, provides valuable statistical power for

identification of latent states and subsequently aggregate shocks. Different statistical properties of

alternative economic shocks, such as frequency of their arrival (rare shocks versus regular shocks),

persistence (shocks originated in a persistent state variable or in a random walk), and size (small

versus large shocks, one-sided versus two-sided shocks), facilitate shock identification.

My methodology delivers informative description of the aggregate shocks by quantifying their

relative importance for risk in asset returns and cash flow growth at alternative investment horizons.

I use an entropy-based measure of risk, and therefore, I can characterize both normal and nonnormal

shocks in a unified fashion. I formalize these quantitative descriptions in new metrics labeled the

incremental expected return (IER) and the incremental expected dividend (IED). A collection of

IERs for alternative horizons constitutes a term structure of risk in expected returns. A collection

of IEDs for alternative horizons constitutes a term structure of risk in expected cash flow growth.

A theory of dynamic value decomposition (for a comprehensive review, see Borovička and

Hansen (2016) and references therein) and especially the toolkit of shock elasticities of Borovička

1Prominent examples of a present-value model in equities, foreign exchange, and fixed income respectively
are Campbell and Shiller (1989), Froot and Ramadorai (2005), and Campbell and Ammer (1993).
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and Hansen (2014) inspire the design of the IERs and IEDs. The IERs and IEDs advance

methods of dynamic value decomposition to nonnormal shocks, thereby representing a unique

toolbox for quantifying nonnormal and heteroskedastic shocks across alternative horizons. Put

simply, an introduction of these metrics opens up a door for analyzing quantitative characteristics

of alternative sources of risk premia in different asset markets across multiple horizons.

The empirical analysis, which illustrates how my methodology works for examining the risk-

return tradeoff in the aggregate U.S. stock market, proceeds in two steps. In the first step, I

set up a reduced-form state-space model of the joint dynamics of stock returns, dividend growth,

consumption growth, and the price-dividend ratio. I take into account the parameter restrictions

implied by Campbell and Shiller’s (1989) loglinearization of a gross stock return. I impose three

distinct shock identification schemes on the innovations of the state-space model. These three iden-

tification schemes differ with respect to the choice of state variables, which span time-variation in

the price-dividend ratio, and with respect to the choice of shocks, which span unexpected variation

in the state variables.

I consider three identification schemes that are based on aggregate shocks, which play a promi-

nent role in leading asset pricing theories. In the first identification scheme, labeled “Long-Run

Risk,” I hypothesize that shocks in the expected consumption growth and in the variance of con-

sumption growth are the main sources of time-variation in the price-dividend ratio. In the second

scheme, labeled “Consumption Disasters,” I hypothesize that the time-varying probability of rare

consumption disasters is the only source of time-variation in the price-dividend ratio. In the third

scheme, labeled “Consumption Uncertainty,” I assume that multiple sources of risk in the variance

of consumption growth, such as a regular variance shock, a variance trend shock, and occasional

jumps, span time variation in the price-dividend ratio.

In the second step, I evaluate which of the three identification schemes are consistent with

implications of structural models that feature the same state-space representation, and therefore

the same shocks. To this end, I follow the idea of Christiano, Eichenbaum, and Evans (1999), who

select realistic identifying assumptions for macroeconomic shocks by comparing the theoretical and

empirical impulse response functions (IRFs). The IRFs characterize multiperiod implications
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of normal homoskedastic shocks, whereas sources of risk premia, the focus here, are nonnormal.

As a result, instead of IRFs for log returns, I use IERs, which are developed specifically for

characterizing nonnormal shocks across alternative horizons in the presence of heteroskedasticity.

I select realistic shock-identifying assumptions by comparing the theoretical and empirical IERs.

The empirical state-space model, which I estimate, implies the empirical term structures of risk,

whereas the structural models in Bansal and Yaron (2004), Wachter (2013), and Drechsler and

Yaron (2011) imply the theoretical term structures of risk.

Of the three evaluated identifications, only “Consumption Uncertainty” produces shocks whose

properties are comparable both in the data and in the model. Armed with this identification, I

decompose unexpected variation in the one-period stock returns and analyze the sources of cash

flow news and discount rate news. I find that 94% and 6% of risk in the one-period stock returns,

respectively, relate to the multiple shocks in the variance of consumption growth and a direct

dividend shock. The term structures of the IERs and IEDs indicate that at horizons longer than

10 years, revisions of multiperiod discount rates reflect exclusively risk exposures of returns to the

variance trend risk, whereas revisions of multiperiod expected cash flow growth reflect exclusively

risk exposures of dividends to the regular variance shock, jump in variance, and the direct dividend

shock. Taken together, these findings have important implications for macrofinance modeling: both

cash flow news and discount rate news, as represented by multiple sources of risk in the variance of

consumption growth, play a crucial role in aggregate stock market risk. Cash flow news account for

53%, whereas discount rate news account for 47% of risk in the one-period aggregate stock returns.

The analysis reveals discrepancies between the empirical and theoretical IERs associated

with the long-run risk and time-varying consumption disasters. In Bansal and Yaron (2004), the

slope of the term structure of the long-run risk is positive (longer holding period returns have

higher sensitivities to the shock), whereas in the data it is negative (shorter holding period returns

have higher sensitivities to the shock). In Wachter (2013), the level of the term structure of

the disaster shock is negative (returns drop upon arrival of a consumption disaster), whereas in

the data it is positive (returns rally upon arrival of a consumption disaster). The cross-equation

restrictions inherent to the structural models cause a tension between the empirical and theoretical

term structures of risk.
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Given that “Consumption Uncertainty” is the realistic shock-identifying scheme, I decompose

the joint variation in discount rate news and cash flow news into transitory and permanent com-

ponents and characterize their economic drivers. The transient component in stock prices and

dividends is the variance trend shock. The permanent components are the jump in the variance

of consumption growth, the regular variance shock, and the direct dividend shock. To the best

of my knowledge, this is the first study that provides an economic interpretation of the transitory

and permanent components in stock prices and dividends, thereby complementing the influential

evidence of Cochrane (1994).

Two sources of permanent risk in stock prices and dividends, the regular variance shock and

the jump in variance, resemble the asset pricing innovation of Bryzgalova and Julliard (2018) to

which consumption growth responds slowly. As a result, my empirical findings have at least two

interesting implications for the interaction of macroeconomy and asset markets. First, I uncover

macroeconomic underpinnings of the common source of risk in the cross section of bonds and stock

returns that Bryzgalova and Julliard (2018) identify. Second, my results suggest a refinement of

the definition of the long-run risk in consumption growth. A common innovation in the first and

higher-order moments of log consumption growth holds promise for understanding the risk-return

tradeoff in asset markets.

Last but not least, I identify the economic sources of predictability. The identification “Con-

sumption Uncertainty” suggests that the variance trend shock drives predictability in gross returns,

whereas the regular variance shock and the jump in variance drive predictability in dividend growth.

Consistent with Binsbergen and Koijen (2010), I find that the persistence of expected dividend

growth is lower than the persistence of expected log returns. As my empirical facts pinpoint the

economic sources of return and dividend predictability, they complement the important empirical

evidence of Binsbergen and Koijen (2010) in a nontrivial way.

Related literature

The methodology in this paper is inspired by the influential literature in applied macroeco-

nomics that uses techniques of impulse response function matching for testing and estimating
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stochastic general equilibrium models. See, for example, Christiano, Eichenbaum, and Evans

(2005), Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide (2016), Giacomini (2013), and

Guerron-Quintana, Inoue, and Kilian (2017) and references therein. I combine the ideas in this lit-

erature with recents advances in the theory of dynamic value decomposition (Borovička and Hansen,

2014; Borovička, Hansen, Hendricks, and Scheinkman, 2011; Borovička, Hansen, and Scheinkman,

2014; Hansen, 2012), whose methods I extend to nonnormal shocks. As a result, I develop an em-

pirical approach that can characterize how alternative sources of risk premia propagate in expected

returns and cash flows across alternative horizons.

Trajectories of how alternative shocks affect discount rates and expected cash flows are in-

formative about the multiperiod interaction of cash flow risk exposures with prices of risk. As a

result, term structures of risk in expected returns and cash flow growth are useful moments for

understanding the multiperiod risk-return tradeoff in asset markets. In this regard, my approach

complements the recent literature on the term structure of risk premia in different asset classes

(for example, Backus, Boyarchenko, and Chernov, 2018 and Binsbergen and Koijen, 2017). The

current focus is on the term structure of expected returns on the same asset but at different holding

periods, rather than on the term structure of expected returns on short-term and long-term assets,

as in the aforementioned papers.

My paper is also related to the literature on predictability of returns and cash flows from the

perspective of the present-value identity (for a comprehensive review see Koijen and Nieuwerburgh

(2011) and references therein). Binsbergen and Koijen (2010), Piatti and Trojani (2017), and

Rytchkov (2012) use a latent variable approach within present-value models to quantify the mag-

nitude of return predictability and dividend growth predictability. They specify exogenous models

for expected returns and expected cash flow growth with multiple shocks but do not relate them to

macroeconomic risk. My focus is different. While I also exploit present-value relationships, I relate

time variation in predictive variables to multiple sources of consumption risk. As a result, latent

states in my approach are necessarily economic state variables featured in leading asset pricing

models.

The paper is organized as follows. Section II introduces the methodology for identifying
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aggregate shocks and describing their quantitative properties in the term structure of expected

returns and expected cash flow growth. Section III sets up a measurement exercise for examining

aggregate sources of risk in the term structure of expected stock returns and expected dividends and

discusses empirical findings. Section IV provides critical assessment of the methodology. Section V

concludes. Five appendices contain supplementary material: explicit formulation of the empirical

model under different identification schemes, description of the estimation output, solutions to the

equilibrium models that provide theoretical term structures of risk, analysis of theoretical term

structures of risk, and discussion of how the empirical IERs and IEDs relate to the cross section of

prices on dividend strips of different maturities. The Online Appendix introduces three tractable

cases of shock elasticities for nonnormal shocks, provides a full description of the IERs and IEDs

in the equilibrium and empirical models, and sketches the estimation algorithm.

2 Methodology

One of the central questions in asset pricing is which shocks drive returns. Empirical and the-

oretical asset pricing literatures pursue independent agendas to provide an answer to the question.

The focus of the empirical literature is on the dynamics of normal homoskedastic innovations

in discount rates and expected cash flow growth. Researchers use implications of vector autoregres-

sions (VARs) (i) to analyze how cash flow news and discount rate news contribute to the variance of

log returns and (ii) to decompose innovations in prices and cash flows into transient and permanent

components. The prominent example of the former is Campbell (1991); the prominent example of

the latter is Cochrane (1994). The cash flow news and discount rate news are endogenous functions

of aggregate structural shocks; the latter is the object of interest of the theoretical literature.2

The theoretical literature has a wide range of structural models describing how different eco-

nomic shocks interact with preferences. Researchers evaluate plausibility of alternative risk mech-

anisms by calibrating the corresponding models to a standard set of moments in the data. Given

that the existing models match the moments similarly well, it is hard to select a preferred model.

2I use the terms structural shocks and economic shocks interchangeably.
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Nevertheless, one message from this analysis emerges forcefully: nonnormal and/or heteroskedastic

shocks play a special role in asset markets and macroeconomy. Nonnormal shocks justify high

risk premia and the presence of heavy tails in the distribution of asset returns and macroeconomic

fundamentals; heteroskedastic shocks serve as sources of time-varying risk premia.3

To make further progress, I use lessons from both literatures and design an empirical method-

ology for examining properties of alternative structural shocks in the term structures of expected

returns and cash flow growth. The methodology has two stages: (i) identification of economic

shocks and (ii) characterization of economic shocks in the term structure of discount rates and

expected cash flow growth. It applies universally to normal and nonnormal shocks and allows for

heteroskedasticity. Thus, the methodology suits the analysis of alternative sources of time-varying

risk premia well. As an output, the methodology (i) decomposes risk in asset returns, as well as

fluctuations in cash flow news and discount rate news into orthogonal structural shocks; (ii) iden-

tifies economic sources of transitory and permanent risks in asset prices and cash flows; and (iii)

relates predictability to economic sources of risk. In short, the methodology provides an economic

interpretation of the key aspects of risk in asset returns.

A starting point of my approach is the present-value identity that relates an observable valua-

tion ratio to multiperiod discount rates and expected multiperiod log cash flow growth. Campbell

and Shiller (1989), Lettau and Ludvigson (2001), Froot and Ramadorai (2005), Gourinchas and

Rey (2007), and Campbell and Ammer (1993) among others use present-value identities in different

asset classes. As any predictive variable is an endogenous function of economic state variables, its

innovation is an endogenous function of orthogonal structural shocks. As a result, shock identifica-

tion is a necessary step towards quantifying the role of individual structural shocks on multiperiod

discount rates and expected cash flows.

I address the identification problem by modeling the joint dynamics of log returns log rt,t+1, log

cash flow growth log gdt,t+1, and the predictive variable log δt in a state-space model and imposing

identifying restrictions. The vector Yt = (log rt−1,t log gdt−1,t, y
′
t)
′ combines the log return and the

3In discrete-time asset pricing models, shocks, which drive stochastic variance or time-varying intensity
of jumps, can also be nonnormal.
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log cash flow growth with a vector of state variables yt (to be defined shortly) and follows an

autoregressive process with a matrix of shocks Wt+1. The observation equation is a linear mapping

between the predictive variable log δt and the state vector yt,

Yt+1 = A+BYt +Wt+1, (1)

log δt = a+ b′yt + wt, (2)

where wt ∼ N (0, σ2δ ) is an observation error orthogonal to the shocks in Wt. The shocks in Wt+1

can be either normal or nonnonrmal and may exhibit heteroskedasticity. A choice of the state

vector yt and a vector of structural shocks εt such that Wt = W (εt), serves as shock-identifying

assumptions.4

Macro-finance theory guides the choice. First, through the first-order optimality conditions,

equilibrium models explicitly specify economic state variables (for example, expected consumption

growth, demographic uncertainty, default intensity, etc.) which span time variation in the predictive

variable or serve as alternative predictive variables.5 Second, different structural models advocate

shocks of different size (crashes versus regular movements), persistence (shocks originated in a

persistent variable, random walk, or white noise), and frequency of arrival (rare versus regular

events) as main drivers of expected returns and cash flows. The shocks may affect variables of

interest contemporaneously or with a lag, positively or negatively, and may or may not have a

non-zero permanent impact. As a result, every structural model as a collection of state variables

and aggregate shocks with specific characteristics serves as an identification scheme.

A classic VAR of an asset return, cash flow growth, and a predictive variable in logs is a special

case of the state-space model given in expressions (1)-(2). The two are equivalent if (i) a = 0,

b = 1, σδ = 0 and (ii) shocks in Wt+1 are normal and homoskedastic. The present-value identity

implies that there are two distinct (orthogonal) shocks in the VAR. Standard identifying restrictions

4If the system (1)-(2) is only subject to normal and homoskedastic shocks, then W is a linear multivariate
mapping between Wt and εt.

5The system (1)-(2) does not imply that variation in log δt spans return and cash flow predictability. The
vector yt can include alternative observable predictive variables that have zero correlation with the predictive
variable implied by the present-value identity. In such a case, the corresponding elements of the vectors a
and b are null. Similarly, in the absence of observable states, all but one latent states can have explanatory
power for expected returns and cash flow growth over and above that of the variable log δt.
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from macroeconomics, such as zero contemporaneous restrictions (Sims, 1980), long-run restrictions

(Blanchard and Quah, 1989), or sign restrictions (Uhlig, 2005), can identify such shocks.6 The

shock identification implies an explicit representation of the innovations in log returns, log rt,t+1 −

Et log rt,t+1, as a linear combination of (orthogonal) structural shocks, thereby characterizing which

shocks contribute most to the risk in the one-period log returns.

Alternatively, the classic VAR also serves as a base model for quantifying the impact of cash

flow news and discount rate news on the contemporaneous innovations in log returns via a famous

decomposition of Campbell (1991)7

log rt,t+1 − Et log rt,t+1︸ ︷︷ ︸
innovations in log returns

≈ (Et+1 − Et)
∞∑
j=0

ρj log gdt+j,t+j+1︸ ︷︷ ︸
cash flow news

− (Et+1 − Et)
∞∑
j=1

ρj log rt+j,t+j+1︸ ︷︷ ︸
discount rate news

. (3)

This decomposition does not require shock identification. Cash flow news are compounded, scaled

(by powers of ρ, where ρ is a constant of loglinear approximation) innovations in the cash flow

growth; discount rate news are compounded scaled innovations in the log expected returns. In

practice, cash flow news and discount rate news can be correlated, in contrast to structural shocks.

As a result, the conditional variance V art(log rt,t+1), as a measure of risk in log returns, is a sum of

the conditional variances of cash flow news and of discount rate news and the non-zero covariance

term between them. The presence of the covariance term complicates an economic interpretation

of the main driver of risk in stock returns.

In the context of the classic VAR, a famous apparatus of IRFs is a natural bridge between

characterization of risk in one-period log returns in terms of structural shocks and in terms of

discount rate and cash flow news. I fix the notation and recall the definition of the IRF before

spelling out the relationship explicitly.

The IRF of the future one-period log return log rt+j,t+j+1 associated with some type of

6For example, innovations in the VAR can be spanned by: (i) a shock that drives the observable state
variable log δt, and a cash flow shock that has no permanent impact on asset prices or (ii) a shock that drives
the observable state variable log δt, and a shock that has no contemporaneous impact on asset returns. These
structural shocks do not have macroeconomic interpretation.

7For exchange rates and bonds, the decomposition is exact.
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risk εi measures the sensitivity of the first conditional moment of the log return distribution

Et(log rt+j,t+j+1) to the shock εit+1,

IRF(log rt+j,t+j+1, εit+1) = Et+1(log rt+j,t+j+1|εit+1)− Et(log rt+j,t+j+1).

The cumulative impulse response function of the τ -period log return log rt,t+τ is the sum of the

IRFs of the one-period log returns log rt+j,t+j+1 over j = 0, τ − 1, or alternatively the sensitivity

of the τ -period discount rate Et(log rt,t+τ ) to the shock εit+1,

IRF(log rt,t+τ , εit+1) =
τ∑
j=0

IRF(log rt+j,t+j+1, εit+1) = Et+1(log rt,t+τ |εit+1)− Et(log rt,t+τ ).

(4)

Due to linearity of the VAR, the revision of a future one-period discount rate is the sum of the

impulse response functions of the corresponding one-period discount rate with respect to all shocks

in the economic environment:

(Et+1 − Et) log rt+j,t+j+1︸ ︷︷ ︸
revision of Et(log rt+j,t+j+1)

=
∑
εit+1

[Et+1(log rt+j,t+j+1|εit+1)− Et(log rt+j,t+j+1)]︸ ︷︷ ︸
IRF of the discount rate associated with εit+1

.

A similar relationship holds for the revision of a future cash flow growth

(Et+1 − Et) log gdt+j,t+j+1︸ ︷︷ ︸
revision of Et(log gdt+j,t+j+1)

=
∑
εit+1

[
Et+1(log gdt+j,t+j+1|εit+1)− Et(log gdt+j,t+j+1)

]
︸ ︷︷ ︸
IRF of the cash flow growth associated with εit+1

.

The decomposition of Campbell (1991), formulated in expression (3), shows that the revisions of

discount rates and cash flow growth are the elements of the cash flow news and discount rate news.

As a result, risk in log returns can be represented as a sum of cash flow and discount rate news

or alternatively as a scaled sum of IRFs of log returns and log cash flow growth across all types

of shocks arriving at each period of time. Thus, identification of structural shocks is a natural

starting point for the joint analysis of risk sensitivities of log returns, multiperiod discount rates,

and expected cash flow growth.

In an economic environment with a time-varying risk premium, that is, with nonnormal and

heteroskedastic shocks, risk affects returns not only directly but also indirectly. Structural shocks

11



propagate through the time-varying variance, skewness, kurtosis, and all the other higher-order mo-

ments of the log return distribution. Classic homoskedastic VARs cannot describe these dynamics,

and consequently IRFs cannot capture how higher-order shocks contribute to risk in asset returns.

These limitations prompt a new approach.

My new approach builds on two important extensions of the classic paradigm of impulse

response functions implied by VARs. First, I use multivariate state-space models (1)-(2) with

nonnormal and heteroskedastic shocks to estimate a realistic distribution of log returns. Second,

I examine how every structural shock contributes to risk in multiperiod log returns, by measuring

the sensitivity of logEtrt,t+τ to the shock for alternative τ . As the log expected return is a scaled

sum of all conditional cumulants κjt of the log return distribution,

logEtrt,t+τ =
∞∑
j=1

κjt(log rt,t+τ )/j! = Et(log rt,t+τ )︸ ︷︷ ︸
κ1t(log rt,t+τ )

+
V art(log rt,t+τ )

2!︸ ︷︷ ︸
κ2t(log rt,t+τ )/2!

+
κ3t(log rt,t+τ )

3!
+ · · ·

︸ ︷︷ ︸
entropy of log rt,t+τ

,

the risk sensitivity of logEtrt,t+τ captures how the shock affects all the cumulants of the log return

distribution in one number. This is in contrast to the classic cumulative IRF , which measures the

impact of individual shocks only on the first cumulant of the log return distribution, Et log rt,t+τ ,

as in (4). The difference between the IER and IRF is in the impact of shocks on the entropy of

the log return.

I label the risk sensitivity of log expected return logEtrt,t+τ to an individual shock the In-

cremental Expected Return (IER). I use the term incremental because the IER quantifies the

incremental effect of the individual shock on expected returns, taking into account the presence of

and interaction among multiple sources of risk in the economic environment. I measure the IER as-

sociated with a shock εit+1 as a difference in log expected returns, when the economic environment

does and does not experience an injection of an additional amount of risk ∆i at time t+ 1,

IER(rt,t+τ , εit+1) = logEt(r̃t,t+τ |ε̃it+1 = εit+1 + ∆i)− logEt(rt,t+τ ). (5)

The log return log r̃t,t+τ is subject to the sequence of the same shocks as the log return log rt,t+τ
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with the exception of the shock ε̃it+1 = εit+1 + ∆i, which exceeds εit+1 by a fixed amount of risk

∆i.

In the environment with normal and homoskedastic shocks

logEtrt,t+τ = Et log rt,t+τ + c(τ),

where c(τ) is a horizon-specific constant variance of log returns. As the variance is constant and

all the higher-order moments are zero, the risk sensitivity of the log expected return logEtrt,t+τ

is equal to the risk sensitivity of the expected log return Et log rt,t+τ . Thus, in this case the IER

coincides with the IRF for log returns. In the environment with normal heteroskedastic shocks,

the IER coincides with the shock return elasticity of Borovička and Hansen (2014), but not the

IRF . The shock return elasticity measures the marginal sensitivity of logEtrt,t+τ to an individual

shock, and therefore by construction it accounts for nonlinear interaction across shocks.

Similar to the shock elasticity, the IER is related to the nonlinear impulse responses that

Gallant, Rossi, and Tauchen (1993), Koop, Pesaran, and Potter (1996), and Gourieroux and Jasiak

(2005) develop. These nonlinear impulse responses differ in the definition of a primitive shock,

implementation, and applications.8 My contribution is in adopting a notion of a nonlinear impulse

response for asset pricing applications and in providing an explicitly tractable characterization of

the sensitivities of expected multiperiod returns to both normal and nonnormal shocks.

To the best of my knowledge, this paper is the first to discuss how to characterize the impact

of nonnormal shocks on discount rates, thereby extending the methods of dynamic value decompo-

sition (Borovička, Hansen, and Scheinkman, 2014; Hansen, 2012) to the case of nonnormal sources

of risk. This extension is useful for the asset pricing literature as it allows analysis of horizon-

dependent sensitivities of expected returns to alternative sources of time-varying risk premia. The

only predecessor of this extension is the paper of Borovička, Hansen, Hendricks, and Scheinkman

8Gallant, Rossi, and Tauchen (1993) examine the effect of the perturbation of an economic variable rather
than the effect of the perturbation of a shock on the dynamic system. Koop, Pesaran, and Potter (1996)
construct stochastic impulse responses. Conditional on a shock, the average impulse response of Koop,
Pesaran, and Potter (1996) coincides with the impulse response of Gallant, Rossi, and Tauchen (1993).
Gourieroux and Jasiak (2005) show how to construct independent and identically distributed innovations
for general nonlinear processes and examine the effects of perturbations of these type of innovations on the
dynamic system.
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(2011), which explores the sensitivity of expected cash flows and expected returns to the risk of

regime shifts. Being inspired by the approach of marginal sensitivities, I extend the notion of shock

elasticity to the case of nonnormal shocks. In the example that follows shortly, I discuss why and

how the IER and shock elasticity differ for nonnormal shocks.

In a similar way, I measure the risk sensitivity of the multiperiod expected cash flow growth.

I label the corresponding metric an incremental expected dividend (IED)

IED(gdt,t+τ , εit+1) = logEt(g̃
d
t,t+τ |ε̃it+1 = εit+1 + ∆i)− logEt(g

d
t,t+τ ). (6)

I collect IER(rt,t+τ , εit+1) and IED(gdt,t+τ , εit+1) for alternative τ and refer to them as a term

structure of risk εit+1 in expected returns and in expected dividends, respectively.

The level and the shape of term structures of risk are informative moments about the mul-

tiperiod risk-return tradeoff in the marketplace. They reflect (i) whether a positive shock shifts

realized and expected returns and cash flows up or down, (ii) whether the corresponding impact

is horizon-dependent, and (iii) which shock exerts the largest impact at different horizons. In em-

pirical applications, term structures of risk play at least two broad important roles. First, they

economically describe risk in asset returns by identifying economic shocks, which span fluctuations

in discount rate news and cash flow news, drive predictability in returns and cash flow growth, and

have permanent impact on asset prices and cash flows. Second, they represent new moments that

can be used for evaluating economic mechanisms in macro-based asset pricing models, that is, for

testing, calibrating, and estimating structural models.

Before I turn to an empirical application, I illustrate how to compute the IER for normal and

nonnormal shocks in a simple example below.

Example. Basics on the incremental expected return

I posit that the log return follows a jump-diffusion model with stochastic variance vt and
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stochastic jump intensity λt

log rt,t+1 = r + µλλt + ξv
1/2
t εrt+1 + γzt+1,

vt+1 = (1− ϕv) + ϕvvt + σvεvt+1,

λt+1 = (1− ϕλ) + ϕλλt + σλελt+1 + zt+1,

where jump zt+1 is a Poisson mixture of Gamma distributions

zt+1|pt+1 ∼ Γ(pt+1, θ), and pt+1 ∼ Poisson(hλλt),

shocks εrt+1, εvt+1 and ελt+1 are standard normal random variables, independent of each other,

over time, and of jumps zt+1. The central stochastic component of jump risk pt+1 controls how

many jumps of average size θ arrive per period of time.9

I compute the IERs in two steps. In the first step, I represent the logarithm of the expected

multiperiod return as the log expected value of an exponential function of the state variables at

time t and shocks at time t+ 1

logEtrt,t+τ = logEt(rt,t+1 · Et+1(rt+1,t+τ ))

= logEt(exp(c0(τ) + cv(τ)vt + cλ(τ)λt + dr(τ)v
1/2
t εrt+1 + dv(τ)εvt+1 + dλ(τ)ελt+1

+ dz(τ)zt+1)), (7)

9Strictly speaking, an autoregressive process is not a suitable choice for modeling nonnegative random
variables such as the variance factor or jump intensity, as it does not eliminate the possibility of a negative
realization of the variable of interest. In the context of this illustrative example, such a modeling choice
is for simplicity and without loss of generality. In empirical work, I model persistent nonnegative random
variables as autoregressive gamma processes (Gourieroux and Jasiak, 2006; Le, Singleton, and Dai, 2010).
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where

c0(τ) = r +A0(τ − 1) +Av(τ − 1)(1− ϕv) +Aλ(τ − 1)(1− ϕλ),

cv(τ) = Av(τ − 1)ϕv,

cλ(τ) = µλ +Aλ(τ − 1)ϕλ,

dr(τ) = ξ,

dv(τ) = Av(τ − 1)σv,

dλ(τ) = Aλ(τ − 1)σλ,

dz(τ) = γ +Aλ(τ − 1).

Horizon-specific A0(τ), Av(τ), and Aλ(τ) define the term structure of expected returns

logEt(rt,t+τ ) = A0(τ) +Av(τ)vt +Aλ(τ)λt

and satisfy the recursive system

A0(τ) = r +A0(τ − 1) +Av(τ − 1)(1− ϕv) +Aλ(τ − 1)(1− ϕλ) +A2
v(τ − 1)σ2v/2

+ A2
λ(τ − 1)σ2λ/2,

Aλ(τ) = µλ + θhλ(γ +Aλ(τ − 1))/(1− (γ +Aλ(τ − 1))θ) +Aλ(τ − 1)ϕλ, (8)

Av(τ) = ξ2/2 +Av(τ − 1)ϕv (9)

with initial conditions A0(1) = r, Av(1) = ξ2/2, and Aλ(1) = µλ + γθhλ/(1 − γθ). This step is

instrumental for separating multiperiod effects of shocks arriving at time t + 1 from the effects

of shocks arriving at any other time and is inspired by the temporal entropy decomposition of

Borovička and Hansen (2014) (see Section 3).

In the second step, I compare the expected return in the underlying economic environment

with the expected return in the environment that experiences an injection of an additional amount

of risk next period. Specifically, I use expression (7) to measure how an additional amount of risk

∆i, associated with a specific structural shock εit+1, shifts the trajectory of multiperiod expected
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returns

IER(rt,t+τ , εrt+1) = logEt(r̃t,t+τ |ε̃rt+1 = εrt+1 + ∆r)− logEt(rt,t+τ )

= logEt(exp(c0(τ) + cv(τ)vt + cλ(τ)λt + dr(τ)v
1/2
t (εrt+1 + ∆r) + dv(τ)εvt+1

+ dλ(τ)ελt+1 + dz(τ)zt+1))− logEt(exp(c0(τ) + cv(τ)vt + cλ(τ)λt

+ dr(τ)v
1/2
t εrt+1 + dv(τ)εvt+1 + dλ(τ)ελt+1 + dz(τ)zt+1)) = dr(τ)v

1/2
t ∆r.(10)

Similarly,

IER(rt,t+τ , εvt+1) = logEt(r̃t,t+τ |ε̃vt+1 = εvt+1 + ∆v)− logEt(rt,t+τ ) = dv(τ)∆v, (11)

IER(rt,t+τ , ελt+1) = logEt(r̃t,t+τ |ε̃λt+1 = ελt+1 + ∆λ)− logEt(rt,t+τ ) = dλ(τ)∆λ. (12)

For a normal shock, that does not affect the future variance or other higher-order cumulants

of the log return distribution, the IER coincides with the IRF . For example,

IRF(rt,t+τ , εr,t+1) = Et(log rt,t+τ |εrt+1 = ∆r)− Et(log rt,t+τ ) = dr(τ)v
1/2
t ∆r,

that is the same as IER(rt,t+τ , εrt+1) given in expression (10).

For a normal shock that drives the variance and/or other higher-order cumulants of the log

return distribution, the IER is distinct from the IRF . For example,

IRF(rt,t+τ , εv,t+1) = Et(log rt,t+τ |εvt+1 = ∆v)− Et(log rt,t+τ ) = 0,

whereas IER(rt,t+τ , εvt+1) 6= 0 (see expression (11)). The IER(rt,t+τ , εvt+1) captures the sensi-

tivity of the conditional variance of returns to the variance shock over and above the risk sensi-

tivity of the expected log return reflected in the cumulative IRF(rt,t+τ , εvt+1). In its turn, the

IER(rt,t+τ , εvt+1) is equal to the shock elasticity of Borovička and Hansen (2014). As the shock

elasticity is a marginal sensitivity to normal risk, it accounts for any type of nonlinearity in models

with normal shocks. In the context of the current example, the presence of the stochastic variance

vt introduces nonlinearity in the interaction between the shock εvt+1 and shocks εrt+j for j ≥ 1.

Computation of the sensitivity of expected returns to jumps involves comparison of expected

returns in the baseline environment and in the environment with some additional amount of jump
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risk. The prior literature has faced the challenge to define an additional amount of jump risk in

the context of nonlinear impulse responses. Jump risk is defined as an interaction of two random

variables: (i) one random variable controls how many jumps occur per period of time and (ii) the

other variable controls the size of the jump. The core of the problem is in the question of whether

extra jump risk has to be related to an increase in the probability of a jump arrival or to an increase

in the average size of a jump. See Backus (2014) for a discussion on this issue.

I overcome this challenge by using an insight from Gourieroux and Jasiak (2006) and represent

the jump shock zt+1 as a stochastic process

zt+1 = θhλt︸︷︷︸
Et(zt+1)

+ (2hθ2λt)
1/2︸ ︷︷ ︸

V ar
1/2
t (zt+1)

εzt+1.

I bundle together the risks associated with the jump arrival and jump size into one random variable

εzt+1. I infer the sensitivity of expected returns logEtrt,t+τ to the crash risk zt+1 by measuring

the sensitivity of the expected returns to the shock εzt+1. This is a legitimate and sensible exercise

because the shock εzt+1 fully characterizes jump uncertainty. The shocks εzt+1 ∼ D(0, 1) have

nonzero moments of order higher than 1.10 As a result,

IER(rt,t+τ , εzt+1) = logEt(r̃t,t+τ |ε̃zt+1 = εzt+1 + ∆z)− logEt(rt,t+τ ) = (2hθ2λt)
1/2dz(τ)∆z.

The choice of ∆r, ∆v, ∆λ, and ∆z is a matter of normalization and depends on an application of

interest. They can be constant or state-dependent. Here IER(rt,t+τ , εrt+1) and IER(rt,t+τ , εzt+1)

are state-dependent because the corresponding ∆r and ∆z are constant, whereas the shocks εrt+1

and εzt+1 enter the data-generating process for the log return with time-varying variances. For an

unconditional analysis, the state-dependent IERs can be evaluated at the long-run means of the

jump intensity and the variance, that is, setting λt = 1 and vt = 1.

In the definition of the IER for the jump risk, there is one step in which I ignore the asymmetry

of the distribution of εzt+1: I do not take into account that symmetric shifts of a random variable

εzt+1 by ∆z to the right and to the left are associated with different probabilities. To account

10Notation D stands for a probability distribution function different from the standard normal distribution.
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for the asymmetry, I extend the notion of the shock elasticity of Borovička and Hansen (2014) to

nonnormal shocks (see Online Appendix). As the shock elasticities are marginal sensitivities, they

are associated with the effect of an infinitesimal change in the amount of risk on the variables of

interest. For the purpose of my empirical exercise, the toolkit of the IERs and IEDs can be used

without loss of generality. The concept of generalized shock elasticities has advantage in a problem

of dissecting multiperiod risk premia into contributions of individual shocks that arrive at different

times. Such an exercise is not the focus of this paper.

In applied research, a natural object of interest is risk sensitivity of discount rates and cash

flow growth of an infinite investment horizon. Understanding whether or not the cumulative effect

of risk on asset prices and/or cash flows is zero leads to an identification of a transitory or permanent

component, respectively, in asset prices and cash flows.11 This is interesting on its own but also

important for empirical analyses of policy shocks on asset markets.

The infinite-horizon risk sensitivity of a discount rate and cash flow growth is the limiting

case of the multiperiod IERs and IEDs, respectively. In this example, the infinite-horizon risk

sensitivities of expected returns are

IER(rt,t+∞, εrt+1) = d∗rv
1/2
t ∆r,

IER(rt,t+∞, εvt+1) = d∗v∆v,

IER(rt,t+∞, ελt+1) = d∗λ∆λ,

IER(rt,t+∞, εzt+1) = d∗z∆z,

where d∗r = ξ, d∗v = A∗vσv, d∗λ = A∗λσλ, d∗z = γ +A∗λ, and A∗v and A∗λ solve the following system of

two equations

Aλ = θhλ(γ +Aλ)/(1− (γ +Aλ)θ) +Aλϕλ + µλ, (13)

Av = ξ2/2 +Avϕv. (14)

The system represented in expressions (13)-(14) is a steady state counterpart of the system given

by expressions (8)-(9).

11Here I follow the lead of Cochrane (1994) and label the shock εit+1 a transitory component in asset
prices or cash flows, if its impact on the discount rate or cash flow growth of an infinite horizon is zero.
Otherwise, the shock is a permanent component in asset prices or cash flows.
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For correct identification of transient and permanent components in asset prices and cash

flows, it is imperative to account for the impact of higher-order risk on expected returns and cash

flow growth. In the presence of shock heteroskedasticity, the infinite-horizon IRFs of log returns

and cash flow growth cannot identify permanent and transitory shocks in asset prices and cash

flows.

For example, consider the limiting IER and the cumulative infinite-horizon IRF associated

with the intensity shock ελt+1

IER(rt,t+∞, ελt+1) = A∗λσλ∆λ,

IRF(rt,t+∞, ελt+1) = (µλ + γθhλ)σλ∆λ/(1− ϕλ),

where A∗λ is a stable root (Hansen and Scheinkman, 2012) of the quadratic equation

A2
λ(1− ϕλ)θ +Aλ(θhλ − (1− ϕλ)(1− γθ)− µλθ) + µλ(1− γθ) + γθhλ = 0.

The necessary condition for the infinite-horizon IER to be equal to zero is

µλ = − θhλγ

1− θγ
,

whereas the necessary condition for the cumulative infinite-horizon IRF to be equal to zero is

µλ = −γθhλ.

The conditions are different unless there is no contemporaneous exposure of the log return to the

jump risk γ = 0. As a result, if (i) µλ = −γθhλ and (ii) a researcher uses the IRF , then she

concludes that the intensity shock is transient, whereas in fact it is permanent.

In macroeconomics, it is customary to identify aggregate shocks by alluding to the sensitivi-

ties of the infinite-horizon macroeconomic variables to shocks, also known as long-run restrictions

(Blanchard and Quah, 1989; King and Watson, 1991). As standard macroeconomic models feature

normal shocks, the long-run restrictions are formulated in terms of the infinite-horizon IRFs. With

an introduction of the apparatus of the IERs and IEDs, the long-run restrictions can be used to

identify economic sources of risk premia in asset prices and cash flows. This opens up an avenue

for a new line of empirical work in finance.
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3 Empirical term structure of risk in expected stock

returns

In this section, I set up an econometric framework to examine how multiple sources of con-

sumption risk affect the term structure of expected aggregate stock returns and cash flow growth.

First, I identify candidate sources of consumption risk and study how they interact with expected

returns and cash flows at alternative horizons. Second, I use implications of the economic theory to

select a realistic set of shock-identifying assumptions. Armed with the realistic shock identification,

I describe which economic shocks span risk in asset returns and fluctuations in discount rate news

and cash flow news; determine permanent and transient shocks; and identify economic sources of

return and dividend predictability.

A Setup

Motivated by the present-value identity described in Campbell and Shiller (1989), I model

jointly the dynamics of the log gross stock return log rt,t+1, the log dividend growth log gdt,t+1 and the

log price-dividend ratio log δt in a state-space model (1)-(2). I identify alternative macroeconomic

shocks that are known as the leading sources of the level and/or time-variation in the equity risk

premium in the asset pricing theory. I explore three compelling hypotheses of the sources of stock

price fluctuations. The first hypothesis, “Long-Run Risk,” relies on the importance of shocks that

drive the long-run growth prospects of the macroeconomy. The second hypothesis, “Consumption

Disasters,” highlights the importance of rare large negative shocks in consumption growth, also

known as disasters, along with the shocks that drive the time-varying probability of disaster arrival.

The third hypothesis, “Consumption Uncertainty,” emphasizes the role of alternative shocks in the

variance of consumption growth: regular variance shock, jump in variance, and the shock that

drives the long-run mean of the variance (variance trend shock). These different variance shocks

may reflect different aspects of macroeconomic variance risk, for example, those related to business-

cycle variation and tightness of financial conditions, as in Adrian and Rosenberg (2008).

Different hypotheses imply different composition of the state vector yt in the model (1)-(2).
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As all the hypotheses rely on the multiple sources of consumption risk, the log consumption growth

log gct is the common component in yt. A persistent component in the expected consumption growth

xt and the conditional variance of consumption growth vt are the other two components in yt in the

“Long-Run Risk,” yt = (log gct , xt, vt)
′. The time-varying probability of consumption disasters λt

is the only additional component in yt in the “Consumption Disasters,” yt = (log gct , λt)
′. Finally,

the variance of consumption growth vt and its long-run trend v∗t complement the state vector yt in

the “Consumption Uncertainty,” yt = (log gct , vt, v
∗
t )
′.

I translate the hypotheses into three distinct shock identification schemes and apply them to

the reduced-form innovations of the model (1)-(2). I label the shock identification schemes in the

same way as the hypotheses that underlie them. In the “Long-Run Risk,” the vector of innovations

Wt+1 is mapped into a vector of shocks εt+1 = (εdt+1, εct+1, εxt+1, εvt+1)
′, where εct+1 ∼ N (0, 1)

is a direct shock in consumption growth, εxt+1 ∼ N (0, 1) is a shock into the persistent component

of expected consumption growth xt+1, εvt+1 ∼ D(0, 1) is a variance shock, and εdt+1 ∼ N (0, 1) is a

direct shock in the log dividend growth. The stochastic variance vt follows the scalar autoregressive

gamma process of order 1, vt ∼ ARG(1),

vt+1 = (1− ϕv) + ϕvvt + σv(1− ϕv + 2ϕvvt)
1/2εvt+1,

and therefore the shock εvt+1 is nonnormal. The components of the vector εt+1 are orthogonal to

each other.

In the “Consumption Disasters,” the vector of innovations Wt+1 is mapped into a vector of

shocks εt+1 = (εdt+1, εct+1, ελt+1, ε
c
zt+1)

′. The shocks εdt+1 and εct+1 are defined as above. The

shock εczt+1 ∼ D(0, 1) is a consumption disaster risk, and the shock ελt+1 ∼ D(0, 1) is a disaster

intensity risk. The shock εczt+1 reflects unpredictable variation in rare large negative jumps in

consumption growth, also known as consumption disasters. Mathematically, the jump zct+1 (the

negative of the consumption disaster) is a Poisson mixture of gammas: zct+1 ∼ Γ(jct+1, θc). Its

central ingredient jct+1 is a Poisson random variable jct+1 ∼ Poisson(hλλt), which controls how

many jumps of average size θc arrive per period of time

zct+1 = θchλλt + (2θ2chλλt)
1/2εczt+1.
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The (scaled) disaster probability λt follows the scalar autoregressive gamma process of order 1,

λt ∼ ARG(1),

λt+1 = 1− ϕλ + ϕλλt + σλ((1− ϕλ + 2ϕλλt)/2)1/2ελt+1.

Naturally, the shocks εczt+1 and ελt+1 are nonnormal. The components of the vector εt+1 are

independent of each other.

In the “Consumption Uncertainty,” the vector of innovations Wt+1 is mapped into a vector

of shocks εt+1 = (εdt+1, εct+1, εvt+1, ε
∗
vt+1, ε

v
zt+1)

′. The shocks εdt+1, εct+1, and εvt+1 have

the same economic interpretation as before, while the shock ε∗vt+1 ∼ D(0, 1) drives the time-

variation in the trend of the stochastic variance of consumption growth. The shock εvzt+1 reflects

unpredictable variation in the jump zvt+1. The jump in variance zvt+1 is modeled as a Poisson

mixture of gammas: zvt+1|jvt+1 ∼ Γ(jvt+1, θv). Its central ingredient jvt+1 is a Poisson random variable,

jvt+1 ∼ Poisson(hvvt), which controls how many jumps of average size θv arrive in the consumption

variance per period of time

zvt+1 = θvhvvt + (2θ2vhvvt)
1/2εvzt+1.

The (scaled) stochastic variance of consumption growth follows the scalar autoregressive gamma

process of order 1 with jumps zvt+1 and the time-varying long-run trend driven by v∗t , which itself

follows an autoregressive gamma process of order 1

vt+1 = (1− ϕ̃v)v∗t + (1− ϕv)v + ϕvvt + σv(((1− ϕv)v + 2ϕvvt)/2)1/2εvt+1 + zvt+1,

v∗t+1 = (1− ϕ∗v)v∗ + ϕ∗vv
∗
t + σ∗v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
t )/2)1/2ε∗vt+1.

Naturally, the shocks εvt+1, ε
∗
vt+1, and εvzt+1 are nonnormal. The elements of the vector εt+1 are

independent of each other.

Every identification scheme implies that all the cumulants of the conditional distributions of log

consumption growth and log stock returns are time-varying. Naturally, the sources of time-variation

are identification specific. For example, according to the “Long-Run Risk,” the stochastic variance

of consumption growth vt is the source of heteroskedasticity in the innovations Wt+1. Alternatively,
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the identification “Consumption Disasters” implies that the disaster intensity factor λt accounts

for the heteroskedasticity. Finally, the “Consumption Uncertainty” implies that the two variance

factors vt and v∗t drive time-variation in the conditional moments of the innovations Wt+1. The

identification-specific state vector yt spans time-variation in the first conditional moments of log

consumption growth and log stock returns. As a result, the basic properties of consumption growth

and stock returns are similar across the identification schemes, yet their economic underpinnings

are different.

The state-space system (1)-(2) features the cross-equation restrictions implied by Campbell-

Shiller’s (1989) loglinearization of a gross stock return

log rt,t+1 ≈ κ0 + κ1 log δt+1 − log δt + log gdt,t+1,

where κ0 and κ1 are constants of the loglinear approximation. As a result, the log return equation

does not have any independent source of variation beyond the shocks that drive the state vector yt

and cash flow growth log gdt−1,t. There are no other restrictions in the system. Appendix A explicitly

formulates the state-space model (1)-(2) in the context of the aforementioned identification schemes.

Identification of structural shocks in the state-space model (1)-(2) is similar to but not exactly

the same as shock identification in structural VARs in macroeconomics. The stark difference is in

statistical properties of structural shocks that work as identifying restrictions. I formulate iden-

tifying restrictions in terms of the size, frequency of arrival, and persistence of structural shocks.

For example, εxt+1 is a shock that arrives every period, is relatively small, and originates in the

persistent component of the expected consumption growth. Alternatively, zct+1 is a shock that

arrives infrequently, is positive and large, and originates in the observable consumption growth. In

macroeconomics, structural shocks are normal disturbances identified by contemporaneous restric-

tions (Sims, 1980), long-run restrictions (Blanchard and Quah, 1989), or sign restrictions (Uhlig,

2005). I borrow contemporaneous zero restrictions from macroeconomics to identify the direct

consumption shock εct+1 and the direct dividend shock εdt+1; both are normal as defined above.
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B Data and preliminaries

I conduct my empirical analysis on a sample of quarterly U.S. real consumption growth, real

stock returns, and price-dividend ratios from the second quarter of 1947 through the fourth quarter

of 2015. The National Income and Product Accounts tables of the Bureau of Economic Analysis

provide consumption and price data. Real consumption is measured as per capita expenditure

on nondurable goods and services deflated by the corresponding price index (PCE). The Center

for Research in Security Prices provides monthly value-weighted return data with and without

dividends on the value-weighted portfolio of all NYSE, Amex, and NASDAQ stocks. Quarterly

dividends are constructed by aggregating monthly cash flows implied by the difference in gross

returns with and without dividends. To remove seasonality in dividend payments, the measure

of quarterly dividends in quarter t is the average of the dividends in quarters t − 3, t − 2, t − 1,

and t. The nominal returns and dividends are converted to real variables by the PCE deflator.

The log growth rates of consumption and cash flows represent the consumption growth and the

dividend growth, respectively. This procedure of variable construction is standard and follows

Bansal, Dittmar, and Lundblad (2005) and Hansen, Heaton, and Li (2008), among others.

I estimate the joint dynamics of consumption growth, stock returns, dividend growth, and the

price-dividend ratio specified in expressions (1)-(2) under three different identification schemes. I

use the Bayesian MCMC methods, as they allow me to identify latent states (stochastic variance

of consumption growth, intensity of consumption disasters, time-varying trend in the stochastic

variance of consumption growth) and jumps (consumption disasters and jumps in the variance of

consumption growth) in the data. Appendix B provides the description of the estimation output;

the Online Appendix discusses the details of the estimation procedure.

Before discussing the empirical properties of identified shocks, I highlight several intrinsic

features of the IERs which are important for the future analysis. First, as the IERs measure

the effect of a shock arriving at time t+ 1 on the multiperiod expected returns log(Etrt,t+τ ), they

quantify a cumulative effect of risk on asset prices from t + 1 to t + τ . Second, the one-period

IER (τ = 1) measures the effect of a shock on the one-period realized log return.12 Therefore,

12When computing the IERs, I condition on amount of risk ∆i, which I add to the economic environment.
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the one-period IER signals whether a specific shock is good (positive return sensitivity) or bad

(negative return sensitivity). I define the slope of the term structure of risk as the absolute value

of the difference between the 10-year horizon IER and the one-quarter horizon IER. As a result,

a negative (positive) slope manifests higher risk sensitivity at shorter (longer) horizons.

The IERs and IEDs scale up and down depending on the choice of normalization for a

risk perturbation ∆i (see formulas (5) and (6)). Normalization determines two characteristics of

risk sensitivities: (i) state-dependence and (ii) magnitude. As the empirical focus of this paper

is on the unconditional properties of structural shocks, I compute state-independent risk sensi-

tivities. I add an additional amount of risk to the economic environment by perturbing a state

variable but I assign the effect of this perturbation to a specific shock that feeds the state vari-

able. I set ∆i to be equal to the ratio of one standard deviation of the perturbed state vari-

able to one standard deviation of the log return (log dividend growth) in the case of the IER

(IED). For example, for the IER(rt,t+τ , εvt+1) in the “Long-Run Risk,” ṽt+1 = vt+1 + ∆v, where

∆v = [V ar(vt)/V ar(log rt,t+1)]
1/2; whereas for the IER(rt,t+τ , ε

c
zt+1) in the “Consumption Disas-

ters,” zct+1 = z̃ct+1 + ∆c
z, where ∆c

z = [V ar(zct )/V ar(log rt,t+1)]
1/2.

C Empirical findings

I use an estimated state-space model (1)-(2) under mulitple shock identification schemes to an-

alyze properties of economic shocks in the term structure of expected returns and dividend growth.

The implied term structures of risk are empirical moments that equilibrium models featuring the

same economic shocks are expected to match.

Independently of shock-identifying restrictions, the empirical term structure of expected buy-

and-hold stock returns has a significant negative slope (Table I). The slope is the difference between

the long-term and short-term per-period expected returns. The significant slope reveals the presence

of the multivariate mean-reversion in returns (Cochrane, 2001). The negative sign indicates that

shorter holding period returns exhibit higher sensitivity to at least one economic shock in each

identification scheme. As I quantitatively describe the IERs for alternative structural shocks, I
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can identify this shock in every identification scheme, thereby revealing the economic source of

return predictability.

Different identification schemes feature alternative economic shocks, and therefore imply dif-

ferent sources of return predictability. A natural question is how to choose the right one, or alter-

natively how to distinguish across shock-identifying assumptions. The economic theory guides the

choice of a realistic shock identification scheme. I follow the idea of Christiano, Eichenbaum, and

Evans (1999), who select realistic identifying restrictions for macroeconomic shocks by comparing

theoretical and empirical impulse response functions. I choose shock-identifying assumptions that

imply similar term structures of the IERs in the data and in equilibrium models. I rely on the

IERs rather than the IRFs for log returns because I describe the properties of nonnormal shocks

in the presence of heteroskedasticity, which IRFs cannot quantify. The empirical properties of

the term structure of risk in expected returns are informative moments for distinguishing different

theories of the risk-return tradeoff in the aggregate stock market. As the data generating process

for log returns is an endogenous outcome of equilibrium models, the comparison of empirical and

theoretical term structures of risk corresponds to an implicit test of cross-equation restrictions.13

Every identification scheme is based on a set of identifying restrictions formulated in terms

of the collection of state variables and shocks characterized by size, frequency of arrival, and

persistence. There are families of equilibrium models that share similar state-space representations

with similar underlying shocks. I characterize the theoretical term structures of risk associated

with the economic shocks of interest through the lens of the most parsimonious equilibrium models

that imply or nest the identification schemes “Long-Run Risk,” “Consumption Disasters,” and

“Consumption Uncertainty.”

The class of equilibrium models that motivates the “Long-Run Risk” identification scheme

includes the models of Bansal and Yaron (2004), Bansal and Shaliastovich (2013), and Colacito

and Croce (2011). I use the model of Bansal and Yaron (2004) to describe the theoretical term

13The term structure of risk in expected cash flow growth is less informative about the properties of
competing theories of the risk-return tradeoff in asset markets. In endowment economies, a cash flow growth
process is specified exogenously, and therefore, model-implied term structures of risk in expected cash flow
growth does not encode interaction between preferences and macroeconomic risk.
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structures of risk for the long-run risk εxt+1 and the variance shock εvt+1. The equilibrium models

of Du (2013), Farhi and Gabaix (2016), Gabaix (2012), Gourio (2013), Tsai (2014), and Wachter

(2013) represent theoretical settings in support of the hypothesis “Consumption Disasters.” I the-

oretically characterize the shocks featured in the “Consumption Disasters” through the lens of

the model in Wachter (2013). The equilibrium models of Benzoni, Collin-Dufresne, and Goldstein

(2011), Branger, Rodrigues, and Schlag (2018), Drechsler (2013), and Drechsler and Yaron (2011)

have multiple sources of variance risk as in the identification “Consumption Uncertainty.” I use a

parsimonious version of the model in Drechsler and Yaron (2011) without the long-run risk xt to

characterize theoretical term structures of risk for the multiple sources of the variance risk.

I rely on the original calibrations of the equilibrium models (Table II) to describe quantita-

tively theoretical term structures of risk in expected returns and expected dividends. As I use

the restricted version of the model in Drechsler and Yaron (2011), I slightly modify the original

calibration to guarantee that the restricted model successfully reproduces the key macroeconomic

and asset pricing moments. I compare the signs of the levels and the signs of the slopes of the

theoretical and empirical term structures of risk in expected returns. These two simple metrics

parsimoniously and informatively summarize the properties of gross return predictability in the

models and in the data. I complete the characterization of shocks by also comparing the empirical

and theoretical term structures of risk in expected dividends with respect to the same metrics of

the level and the slope.

Identification “Consumption Uncertainty.”

Figure 1 illustrates the term structures of risk for the multiple sources of variance risk featured

in the identification “Consumption Uncertainty” in the data and in the equilibrium model. For

every shock, the implications of the equilibrium model are in line with the empirical properties of

the multiperiod risk sensitivities of expected returns. As a result, the identification “Consumption

Uncertainty” passes the hurdle of a realistic shock identification scheme. I use this identification

scheme for an economic analysis of the risk-return tradeoff in the aggregate stock market.

Figure 1 and Table III show that the variance trend shock ε∗vt+1 is the sole source of return

predictability. Upon arrival of a positive shock ε∗vt+1 that increases the long-run mean of the

28



stochastic variance of consumption growth, the realized log return decreases, whereas the expected

future one-period stock returns slightly increase. As a result, the cumulative effects of the shock on

the expected multiperiod returns are negative but less so than the contemporaneous effect of the

shock on the one-period realized return. Hence, there is a negative and significant slope of the term

structure of ε∗vt+1 in expected returns. The term structure of the IERs for the regular variance

shock εvt+1 and the term structure of the IERs for the jump in variance εvzt+1 have negative levels

and insignificant slopes.

As the dividend process is part of the state-space model (1)-(2), I also describe the term

structure of risk in expected dividends. Figure 2 illustrates that the IEDs for the regular variance

shock εvt+1 and for the jump in variance εvzt+1 are negative, whereas the IEDs for the variance

trend shock ε∗vt+1 are positive for short horizons and insignificant for medium-term and long-term

horizons. Table III shows that the term structures of shocks εvt+1 and εvzt+1 exhibit significant

positive slopes. As a result, the regular variance shock and the jump in variance are sources

of dividend predictability and their individual impacts on expected dividends are monotonically

increasing with an investment horizon. As it is substantially more difficult to detect dividend

predictability than return predictability, the credible intervals for the slopes of the term structure

of risk in expected dividends are much wider than those for the term structures of risk in expected

returns.

Based on the nature of economic shocks which drive return and dividend predictability, the

trend variance factor v∗t (shock ε∗vt drives return predictability) spans time-variation in expected

returns, whereas the stochastic variance factor vt (shocks εvt and εvzt drive dividend predictabil-

ity) spans time-variation in expected dividends. Therefore, as in Binsbergen and Koijen (2010),

expected returns exhibit higher persistence than expected dividends: the trend variance factor v∗t

has an annual persistence equal to 0.94, whereas the variance factor vt has an annual persistence

equal to 0.53.14 The analysis of the permanent effects of the multiple sources of risk in the vari-

ance of consumption growth on stock prices and dividends shows that the trend variance shock

14The 95% credible interval for the estimate of the annual persistence in expected returns is [0.9201,
0.9536], whereas the 95% credible interval for the estimate of the annual persistence in expected dividends
is [0.4273, 0.6322]. Binsbergen and Koijen (2010) report the annual persistence of expected returns of 0.932,
and the annual persistence of expected dividend growth of 0.354.
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is a transitory component, whereas the other two variance shocks are the permanent components

(Table IV). This evidence results in identifying restrictions for the source of return predictability

in the aggregate stock market – zero permanent effects on stock prices and dividends – that can be

utilized in empirical work.

The identification “Consumption Uncertainty,” similar to other identification schemes, features

the direct shock in consumption growth εct+1 and the direct shock in dividend growth εdt+1. The

extant asset pricing literature suggests the limited role of these shocks in the risk-return tradeoff in

the aggregate stock market. Therefore I discuss these shocks briefly and mainly for completeness.

The shocks originate in the observable variables and do not drive time-variation in conditional

cumulants of the log return and log dividend distributions. Thus, the term structures of these

shocks in expected dividends and expected returns are flat. The levels of these term structures are

set equal to the exposures of the log consumption growth and log dividend growth to the shocks.

Next, I address the main question, which shocks span risk in stock returns? I start with a one-

period decomposition of risk in log returns and log dividend growth into contributions of structural

shocks, as measured by average entropy (Table V). The multiple sources of risk in the variance of

consumption growth, εvzt+1, εvt+1, and ε∗vt+1, contribute 94%, whereas the direct dividend shock

contributes only 6% in the aggregate stock return risk. Despite the sizeable exposure of the log

return to the direct dividend shock, the contribution of this shock is small. This is because the

shock εdt+1 does not affect the stochastic variance or other higher-order moments of the log return

distribution unlike the variance shocks. The direct dividend shock εdt+1 contributes 95%, whereas

the trend variance shock contributes the remaining 5% in the risk of quarterly dividend growth. The

direct dividend shock εdt+1 and the variance trend shock ε∗vt+1 are the sources of the conditional

covariance between the log returns and log dividend growth.

It is customary to relate risk in one-period log returns to fluctuations in cash flow news and

discount rate news. Figure 3 shows the risk sensitivities of expected returns and dividend growth to

different economic shocks at alternative investment horizons.15 These sensitivities can be viewed as

15To facilitate comparison, I rescale the IERs and IEDs so that they represent the sensitivities of expected
returns and expected dividends to risk perturbations of the same size. I perturb each shock by ∆i and fix
state variables at their unconditional means.
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the revisions of multiperiod discount rates and expected cash flow growth adopted to an economic

environment with heteroskedastic nonnormal shocks. Revisions in long-term discount rates and

long-term expected cash flow growth proxy for discount rate news and cash flow news. As discount

rate news do not take into account the contemporaneous effect of the shock on the one-period log

return, I accordingly adjust the multiperiod IERs by subtracting the one-period IER from them.

Panel A of Figure 3 shows that the long-term expected returns are sensitive to the variance

trend shock εvt+1. Panel B shows that the long-term expected cash flows are sensitive to the

regular variance shock εvt+1, the jump in variance ε∗vt+1, and the direct dividend growth shock

εdt+1. As a result, the trend variance shock spans exclusively cash flow news, whereas the regular

variance shock, jump in variance, and the direct dividend shock span exclusively discount rate

news. Taken this evidence and the decomposition of risk in stock returns in Table V, cash flow

news and discount rate news contribute in about equal proportions to the risk in stock returns:

53% and 47%, respectively.

To the best of my knowledge, this is the first paper that explicitly interprets economic sources of

risk driving cash flow news and discount rate news, thereby complementing the influential evidence

in Campbell (1991). The realistic shock-identifying restrictions suggest that the cash flow news and

discount rate news should not be viewed as competing aspects of risk in asset returns as they both

(i) originate in the variance of consumption growth and (ii) are at the forefront of the risk-return

tradeoff in the aggregate stock market.

Identification “Long-Run Risk”

There is a clear discrepancy between theoretical and empirical term structures of risk for

shocks featured under the identification “Long-Run Risk.” Figure 4 and Table III illustrate that

the empirical term structure of the long-run risk εxt+1 has a significant negative slope, whereas the

theoretical term structure has a positive slope. In the data, upon arrival of a positive shock εxt+1,

which increases expected future consumption growth, the realized gross return goes up, whereas

the one-period expected future returns go down but not enough to offset the contemporaneous

effect of the shock on the realized return. In the model, a positive shock εxt+1 positively affects
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the one-period realized log return and future expected returns. As a result, the sign of return

predictability in the model is different from that in the data.

In the data, the variance shock εvt+1, similar to the long-run risk shock εxt+1, exhibits the

term structure of risk with a significant negative slope. Upon arrival of a positive shock εvt+1 that

increases future variance, the realized gross return goes down, whereas the one-period expected

future returns go up but not enough to offset the contemporaneous effect of the shock on the

realized return. As a result, the level of the term structure of risk is negative across horizons from

one quarter to ten years, and the risk sensitivities gradually approach zero. In the model, the risk

sensitivities of expected returns to the variance shock changes the sign from negative to positive

at horizons longer than fifteen quarters. As the term structure of εvt+1 has the same shape but

different level in the model and in the data, the quantitative role of the variance risk is distorted

in the equilibrium model. The data suggest either a higher exposure of cash flows to the variance

shock and/or a higher price of the variance risk than those in the original calibration of Bansal and

Yaron (2004).

The term structure of IEDs also exhibits disagreement between the model and the data (Figure

5). First, the expected multiperiod dividends have negative sensitivities to the long-run risk shock

εxt+1 and the variance shock εvt+1 in the data but positive risk sensitivities in the model. The

slope of the term structure of IEDs for εxt+1 is negative in the data, but positive in the model.

The absolute values of the slopes are similar in the data and in the model, and therefore the model

exhibits a realistic magnitude of dividend predictability but implies the wrong sign of predictability.

As a next step, I investigate whether the tension between the empirical and theoretical term

structures of risk in expected returns are pervasive or calibration specific. The main source of

tension is in the slope of the term structure of the long-run risk shock εxt+1: it is positive in the

theory but negative in the data.16 As Appendix D shows, the necessary condition for generating

the negative slope in the equilibrium model is to use a calibration with a negative parameter of the

intertemporal elasticity of substitution. This condition is economically implausible, and therefore

16The difference in the level of the term structure of εvt+1 in the model and in the data can be resolved
by introducing a negative exposure of the one-period dividend growth log gdt,t+1 to the variance shock εvt+1.
Panel B of Figure 5 supports such a mechanism.
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the properties of the theoretical IERs for εxt+1 are calibration invariant. This result suggests that

going forward it may be fruitful to focus on a different definition of long-run consumption risks, that

is, to consider different identification restrictions for the long-run risk shocks. The cointegration-

based long-run consumption risks of Bansal, Dittmar, and Kiku (2009) or common persistent

innovations in the first and second moments of consumption growth of Backus, Boyarchenko, and

Chernov (2018) seem like natural alternatives to explore in future research.

Identification “Consumption Disasters”

Figures 6 and 7 illustrate the theoretical and empirical properties of the IERs and IEDs for

the shocks featured under the identification “Consumption Disasters.” Upon arrival of a positive

disaster intensity shock ελt+1, which increases the probability of a disaster, the realized log return

goes down, whereas the expected future one-period returns go slightly up. Taken together, the

risk sensitivities of the multiperiod expected returns are negative and decreasing in absolute value

with an investment horizon. The theoretical properties of the term structures of ελt+1 in expected

returns are broadly in line with the data, with some quantitative differences at short horizons. Table

III shows that the slope of the IERs for the disaster intensity shock is negative and significant,

and therefore the disaster intensity shock is the source of return predictability.

In the data, upon arrival of a consumption disaster, the realized return and realized dividend

growth slightly increase, whereas future one-period expected returns and dividends do not change.

As a result, expected returns and dividend growth of any investment horizon have similar risk

sensitivities to εczt+1. Instead, the equilibrium model posits that the consumption disaster coincides

with a bigger negative shock in dividend growth, thereby implying that the theoretical IERs and

IEDs for εczt+1 are negative and sizable.

The main source of disagreement between the theoretical and empirical risk sensitivities of

expected returns to the shocks featured in the “Consumption disasters” is in the level of the term

structure of disaster risk εczt+1.
17 As a next step, I investigate whether it is possible to overcome

the tension by recalibrating the equilibrium model. Appendix D provides the necessary condition

17The quantitative differences in the term structure of ελt+1 in the model and in the data can be resolved
by recalibrating the equilibrium model to exhibit a higher price of the disaster intensity risk.
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to generate positive theoretical IERs. The condition implies a negative leverage parameter that

relates the dividend claim to the consumption claim. This necessary condition is economically

implausible, and therefore the tension between the term structures of disaster risk εczt+1 in the data

and in the model is pervasive.

Given that the negative skewness of consumption growth and stock returns is a robust fea-

ture of the data, equilibrium models with jump risk in consumption growth and stock returns

hold promise. The facts documented in this paper suggest that future models of consumption

disaster risk should feature less than perfectly correlated arrivals of consumption disasters and re-

turn crashes. Muir (2017) discusses several interesting theoretical alternatives that can meet this

requirement.

D Macroeconomic implications

Empirical properties of return predictability examined within the present-value model imply

that the identification scheme “Consumption Uncertainty” features realistic shock-identifying as-

sumptions. The equilibrium model is consistent with the stylized facts which describe the empirical

term structures of risk in expected dividends and returns. Naturally, there could be alternative

shock-identifying restrictions, beyond those considered in this paper, which can be classified as

realistic. I do not pursue an exhaustive analysis of different identifying assumptions, but instead

examine macroeconomic implications of the shocks featured in the identification “Consumption

Uncertainty.”

Under the identification “Consumption Uncertainty,” there is a negative contemporaneous

correlation between the expected consumption growth and the conditional variance of consumption

growth, implied by a negative parameter B34 in Table BIII. Independently Backus, Chernov, and

Zin (2014) and Bryzgalova and Julliard (2018) advocate for the same feature in the data. Backus,

Chernov, and Zin (2014) analyze multiperiod properties of alternative models of the real pricing

kernel and conclude that one solution to generate a realistic slope of the yield curve is to specify

the interaction between the conditional mean and variance of consumption growth. Bryzgalova
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and Julliard (2018) identify a slow reaction of consumption to the common innovations in bonds

and stock returns and conclude that the corresponding equilibrium model with stochastic volatil-

ity should include a contemporaneous leverage effect, that is a nonzero correlation between the

conditional mean and conditional variance of log consumption growth.

Under identification “Consumption Uncertainty,” the regular variance shock εvt+1 and jump

in variance εvzt+1 are the sources of correlation between the first and second moments of the log

consumption growth. These shocks are the prototype of the asset pricing innovation of Bryzgalova

and Julliard (2018), to which consumption growth responds slowly. Bryzgalova and Julliard (2018)

document the following properties of their asset pricing innovation: (i) consumption reacts to the

innovation over the period of two to four years; and (ii) the innovation accounts for about 27% of

the time series variation of the consumption process and for about 79% of time series variation in

stock returns. Table V shows that the shocks εvt+1 and εvzt+1 explain about 10.65% of the average

entropy of the one-period log consumption growth and 46.59% of the average entropy of the one-

period log returns. Figure 8 illustrates that consumption growth responds to these shocks slowly

with a peak reached at the horizon of 5 years. As a result, the basic properties of the dynamic

interaction between asset returns and consumption growth in my empirical analysis and that of

Bryzgalova and Julliard (2018) are consistent with each other. This is not a trivial result, because

Bryzgalova and Julliard (2018) identify the asset pricing innovation from the cross section of bonds

and stock returns, whereas I identify the multiple sources of variance risk from the macro-based

present-value model for the aggregate stock market. Differences in empirical settings drive some

quantitative differences in empirical results, but the common spirit of the findings is striking.

The economic environment under the identification scheme “Consumption Uncertainty” also

features the contemporaneous negative correlation between consumption growth and the market

variance. Parameters h33, h34, and h35 in Table BIII indicate that the contemporaneous correlation

between consumption growth and its variance is negative, whereas the market variance itself is a

function of the variance factor of consumption growth vt and the long-run variance factor v∗t . The

negative correlation generates a more pronounced negative skewness of the consumption growth

distribution when the market variance is high, which by itself is a stylized fact according to, for

example, Figure 2 in Bekaert and Engstrom (2017).
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The contemporaneous correlation between consumption growth and asset returns is small be-

cause the sources of variance risk that are priced in the aggregate stock market work similar to

the long-run risk of Bansal and Yaron (2004). These shocks affect consumption growth contempo-

raneously but the main pricing affect comes through the continuation utility. In this respect, my

empirical findings suggest a refinement of the definition of the long-run risk. Perhaps, future re-

search should model the persistent long-lived shocks in consumption growth as common innovations

in the first and higher-order moments of the log consumption growth distribution.

4 Discussion

There is a wide scope for applications of the empirical approach presented in this paper. First,

the current setting can be extended to include alternative aggregate shocks, for example, shocks

that drive the surplus-consumption ratio as in Campbell and Cochrane (1999) or shocks that pertain

to the “bad environment-good environment” process for the consumption growth of Bekaert and

Engstrom (2017), etc. Here I choose the hypotheses “Long-Run Risk,” “Consumption Disasters,”

and “Consumption Uncertainty” for two reasons. First, they provide excellent examples of shocks

that generate similar properties of observable macroeconomic and financial variables, but represent

fundamentally different risk channels. Second, as the term structures of risk are tractable, these

cases are illustrative and pedagogical.

Furthermore, the proposed measurement procedure for the fundamental sources of risk can be

successfully used in other asset markets, such as the fixed income market or the foreign exchange

market. The empirical analyses of Froot and Ramadorai (2005) and Campbell and Ammer (1993),

which use the present-value identities for currencies and bonds, respectively, can serve as a starting

point for quantifying the term structures of risk in expected foreign exchange returns and expected

bond returns. The dynamics of cross sectional risk premia are also of interest and can be analyzed

by measuring the term structures of risk in the cross sections of returns and cash flows. Bansal,

Dittmar, and Lundblad (2005), Hansen, Heaton, and Li (2008) and Zviadadze (2017) are examples

that follow this route.
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The empirical term structures of risk summarize properties of the data through the lens of a

flexible empirical model. A natural question is whether the empirical results are robust with respect

to the choice of the state vector and observable variables spanned by the elements of the state vector.

As the ultimate goal is to make progress towards understanding economically interpretable channels

driving the fluctuations in asset prices and cash flows, the economic theory guides the choice. A

realistic empirical identification scheme would have implications consistent with the implications

of the underlying equilibrium model. Only the number of alternative risk mechanisms advocated

in the theory limit the number of possible identification schemes.

A related question is, what is the best unit of observation in the analysis of risk sensitivities

across different horizons, a gross return or an excess return? My first choice is to examine the risk

sensitivities of expected gross returns. The data exhibit similar properties of gross and excess return

predictability (see, for example, Cochrane, 2008). In equilibrium models, a different number of state

variables may drive expected gross returns and expected excess returns. For example, in the model

of Bansal and Yaron (2004) the long-run risk xt and consumption variance vt drive the expected

gross returns, whereas vt alone drives the expected excess returns. As a result, the equilibrium

models that match excess return predictability (a standard moment to target in calibration) may

imply a wrong sign of the gross return predictability. Such a shortcoming goes undetected, if the

empirical analysis focuses on the term structure of risk in excess returns.

I characterize theoretical term structures of risk through the lens of calibrated equilibrium

models. One could question robustness of my empirical results with respect to choices I have to

make: (i) the decision interval of a representative agent, (ii) the use of loglinear approximations to

solve the equilibrium models of interest, or (iii) the choice of a predictable variable (for example,

price-dividend ratio versus price-earnings ratio). But for a simple and intuitive reason, it is unlikely

any of these concerns are critical: I rely on very basic metrics that describe the shocks in the data

and in equilibrium models: signs of the slope and of the level of the term structures of risk. The

level indicates whether the shock impacts returns (cash flows) positively or negatively upon its

arrival; the slope indicates whether returns (cash flows) with shorter holding periods are more or

less sensitive to risk. These implications are robust to the aforementioned choices.
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I use empirical properties of return predictability to obtain stylized facts distinguishing alter-

native identification schemes. Multiperiod properties of return predictability naturally encode a

multiperiod risk-return tradeoff in financial markets, that is a multiperiod interaction of risk expo-

sures and associated with them compensations. A recent literature on the term structure of risk

premia in asset markets (see Bansal, Miller, and Yaron, 2017; Binsbergen, Brandt, and Koijen, 2012;

Binsbergen, Hueskes, Koijen, and Vrugt, 2013; Dahlquist and Hasseltoft, 2013; Dew-Becker, Giglio,

Le, and Rodriguez, 2017; Giglio, Maggiori, and Stroebel, 2015; and Gormsen, 2018, among others)

use cross section of zero-coupon assets with different maturities to shed light on how risk in different

assets is priced across alternative investment horizons. As I do not use a cross section of zero-coupon

assets in my estimation, I view my empirical methodology as a complementary approach to this lit-

erature. Specifically, I provide an explicit empirical characterization of economically-interpretable

shocks in the term structure of expected returns and cash flow growth. This evidence is impor-

tant for characterizing the risk-return tradeoff in asset markets and for guiding future progress in

equilibrium modeling.

As Appendix E shows, the empirical objects, which I measure, do not have direct implications

for the term structure of zero-coupon assets, unless I impose assumptions about risk preferences.

Introduction of risk preferences implies cross-equation restrictions on the parameters of the state-

space model (1)-(2), and therefore the corresponding estimation results lose interpretation of styl-

ized facts. As the latter is an undesirable feature of my empirical analysis, I interpret documented

in this paper term structures of risk as complementary shock-based evidence on the multiperiod

risk-return tradeoff in the aggregate stock market.

5 Conclusion

This paper develops a measurement procedure for the fundamental sources of risk in the term

structure of expected returns and/or expected cash flow growth. I identify alternative structural

shocks in the macro-based state-space model that describes the joint evolution of asset returns, cash

flows, and economic states. The observation equation that maps the predictive variable implied
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by the present-value identity into economic states ties together the ingredients of the state-space

model and incorporates shock-identifying restrictions. I introduce two metrics, labeled the IER

and IED, in order to quantify an incremental effect of a structural shock on future τ -period buy-

and-hold expected returns and cash flow growth. These metrics are applicable to normal and

nonnormal shocks that may exhibit heteroskedasticity, and therefore are suitable for describing

empirical properties of alternative sources of time-varying risk premia.

As an application, I examine the term structure of aggregate risk in expected stock returns and

dividends. The economic theory guides my choice of a realistic identification scheme. The analysis

of the term structures of the IERs and IEDs suggests that (i) the multiple sources of risk in the

variance of consumption growth span 94% of risk in the one-period stock returns, (ii) the variance

trend shock spans discount rate news, (iii) the jump in variance, the regular variance shock, and

the direct dividend shock span cash flow news. The quantitative results have implications for a

longstanding question about the relative importance of cash flow news and discount rate news in

the risk of asset returns. Both are at the forefront of the risk-return tradeoff in the aggregate

stock market: cash flow news account for 53%, whereas discount rate news account for 47% of

the aggregate stock market risk. I leave it for future research to explore microfoundations of the

multiple sources of risk in the variance of consumption growth.
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Table I
Slope of the term structure of expected returns

The slopes of the empirical term structures of expected returns in the identification schemes
“Long-Run Risk,” “Consumption Disasters,” and “Consumption Uncertainty.” The slope is
the difference between the per-period log expected return of the holding period of 10 years
and the log expected return of the holding period of 1 quarter, log(Etrt,t+40)/40− logEtrt,t+1.
Quarterly. In percent.

Median Credible Interval, 95%

“Long-Run Risk” -0.21 [-0.23, -0.19]
“Consumption Disasters” -0.09 [-0.13, -0.07]
“Consumption Uncertainty” -0.19 [-0.29, -0.05]
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Table II
Calibrations of theoretical models and data

A model in spirit of Bansal and Yaron (2004):

log gct+1 = gc + xt + γcv
1/2
t εct+1,

xt+1 = ϕxxt + γxv
1/2
t εxt+1,

vt+1 = (1− ϕv) + ϕvvt + σv((1− ϕv + 2ϕvvt)/2)1/2εvt+1,

log gdt+1 = gd + µxxt + γdv
1/2
t εdt+1.

The calibration inputs are gc = 0.0045, γc = 0.0135, ϕx = 0.9383, γx = 0.0010, ϕv = 0.9615, σv = 0.0653,
gd = 0.0045, µx = 6, γd = 0.0653, α = −9, ρ = 1/3, β = 0.998, κ0 = 0.0449, κ1 = 0.9923.
A model in spirit of Wachter (2013):

log gct+1 = gc + γcεct+1 − zct+1,

jct+1|λt ∼ Poisson(hλλt), zct+1|jct+1
∼ Gamma(jct+1, θc)

λt+1 = (1− ϕλ) + ϕλλt + σλ[((1− ϕλ) + 2ϕλλt)/2]1/2ελt+1,

log gdt+1 = gd + ϕdγcεct+1 + γdεdt+1 − ϕdzct+1.

The calibration inputs are gc = 0.063, γc = 0.01, hλ = 0.0075, ϕλ = 0.9802, σλ = 0.1743, ϕd = 2.6,
gd = 0.0163, γd = 0, θc = 0.2, α = −2, ρ = 0, β = 0.997, κ0 = 0.0449, κ1 = 0.9923.
A model in spirit of Drechsler and Yaron (2011):

log gct+1 = gc + γcv
1/2
t εct+1,

vt+1 = (1− ϕ̃v)v∗t + (1− ϕv)v + ϕvvt + σv(((1− ϕv)v + 2ϕvvt)/2)1/2εvt+1 + zvt+1,

v∗t+1 = (1− ϕ∗v)v∗ + ϕ∗vv
∗
t + σ∗v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
v)/2)1/2ε∗vt+1,

jvt+1|vt ∼ Poisson(hvvt), zvt+1|jvt+1
∼ Gamma(jvt+1, θv)

log gdt+1 = gd + µvvt + µ∗vv
∗
t + γ∗εvv

∗
t+1 + γεdv

1/2
t εdt+1 + γzdz

v
t+1.

The calibration inputs are gc = 0.0045, γc = 0.0108, ϕ∗v = 0.995, σ∗v = 0.1025, v∗ = 1/2, ϕv = 0.955,
θv = 0.8, hv = 0.025, ϕ̃v = ϕv + θvhv, σv = 0.18, v = (1 − ϕv − θvhv)/(v · (1 − ϕv)), g

d = 0.0185,
µv = −0.0169, µ∗v = −0.0013, γ∗εv = 0.01, γεd = 0.025, γzd = −0.2, α = −9, β = 0.9985, ρ = 1/3,
κ0 = 0.0449, κ1 = 0.9923. In all models, I model stochastic variance factors and jump intensity factors
as autoregressive gamma processes instead of autoregressive processes, as in the original papers. Such a
modification does not change the implications of the models but guarantees that stochastic variances and
jump intensities are well-defined and never reach negative values. Quarterly. In percent.

BY W DY Data

Log equity premium 1.1785 1.0356 0.9778 1.4971
Std dev of equity return 10.1507 7.6654 16.5649 8.1712
Mean consumption growth 0.4500 0.4750 0.4500 0.4750
Std dev of consumption growth 1.3821 2.6490 1.0808 0.5067
Mean dividend growth 0.4500 1.2350 0.6000 0.6821
Std dev of dividend growth 6.7601 9.3807 4.6530 2.3355
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Table III
Slope of the term structure of risk in expected returns and

expected dividends

Panel A presents the slopes of the term structures of risk in the identification “Long-Run
Risk;” Panel B presents the slopes of the term structures of risk in the identification “Con-
sumption Disasters;” Panel C presents the slopes of the term structures of risk in the
identification “Consumption Uncertainty.” The slopes are measured as the difference in
the absolute values of the risk sensitivities at the horizon of 40 quarters and 1 quarter:
the slope in IERs is |IER(rt,t+40, shockt+1)| − |IER(rt,t+1, shockt+1)|, the slope in IEDs is
|IED(gdt,t+40, shockt+1)| − |IED(gdt,t+1, shockt+1)|. The median and 95% credible interval.

Slope in IERs Slope in IEDs
Median Credible Interval, 95% Median Credible Interval, 95%

Panel A. The “Long-Run Risk”

εxt+1 -3.23 [-3.53, -2.90] -0.89 [-1.21, -0.60]
εvt+1 -0.94 [-1.55, -0.34] 0.84 [-0.24, 2.08 ]

Panel B. The “Consumption Disasters”

ελt+1 -2.78 [-3.12, -2.49,] -0.65 [-2.69, 0.75]
εczt+1 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Panel C. The “Consumption Uncertainty”

εvt+1 -0.23 [-0.89, 1.40] 4.04 [0.84, 11.70]
ε∗vt+1 -3.35 [-4.58, -2.17] -3.29 [-6.22, 1.36]
εvzt+1 -0.08 [-0.33, 0.40] 1.37 [0.37, 3.27]
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Table IV
Permanent impact of shocks of stock prices and dividends

Panel A presents the permanent impacts of structural shocks on stock prices and dividends
in the identification “Long-Run Risk;” Panel B presents the permanent impacts of structural
shocks on stock prices and dividends in the identification “Consumption Disasters;” Panel
C presents the permanent impacts of structural shocks on stock prices and dividends in the
identification “Consumption Uncertainty.” The median and 95% credible interval.

Impact on stock prices Impact on dividends
Median Credible Interval, 95% Median Credible Interval, 95%

Panel A. The “Long-Run Risk”

εxt+1 -0.91 [-1.21, -0.50] 0.22 [-0.07, 1.11]
εvt+1 0.08 [-0.58, 0.69] -2.40 [-4.19, -0.48]

Panel B. The “Consumption Disasters”

ελt+1 2.86 [1.25, 3.94] -2.26 [-4.46, -0.45]
εczt+1 0.04 [0.01, 0.07] 0.13 [0.05, 0.24]

Panel C. The “Consumption Uncertainty”

εvt+1 -1.57 [-3.99, -0.51] -5.90 [-14.70, -2.04]
ε∗vt+1 2.38 [-0.37, 7.18] -4.26 [-28.08, 6.77]
εvzt+1 -0.54 [-1.12, -0.21] -2.03 [-4.13, -0.78]
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Table V
Entropy decomposition

Decomposition of average entropy of the one-quarter log returns, dividend growth, and con-
sumption growth into contributions of multiple sources of risk in vt+1 (εvt+1 and εvzt+1), vari-
ance trend shock (ε∗vt+1), direct consumption risk (εct+1), and direct dividend risk (εdt+1). In
percent.

Entropy of log rt,t+1 Entropy of log gdt,t+1 Entropy of log gct+1

εvt+1 and εvzt+1 46.59 0.32 10.65
[18.70, 60.09] [0.02, 1.87] [3.62, 22.39]

ε∗vt+1 47.37 4.74 2.91
[34.28, 73.94] [1.95, 8.60] [0.78, 5.94]

εct+1 0.01 0.12 [86.40]
[0.00, 0.06] [0.00, 0.85] [76.48, 91.79]

εdt+1 6.19 94.60 0.00
[4.60, 8.12] [90.41, 97.40] [0.00, 0.00]
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Figure 1

Term structure of risk in expected stock returns. Identification

“Consumption Uncertainty.”
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The blue solid lines correspond to the empirical term structures of risk in expected returns; vertical bars

indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term structures of

risk. The red dashed lines correspond to the theoretical term structures of risk implied by the parsimonious

version of the model of Drechsler and Yaron (2011). Panel A illustrates the term structures of risk in expected

returns for the regular variance shock εvt+1. Panel B illustrates the term structures of risk in expected returns

for the variance trend shock ε∗vt+1. Panel C illustrates the term structures of risk in expected returns for the

jump in variance εvzt+1. Quarterly.
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Figure 2

Term structure of risk in expected dividend growth. Identification

“Consumption Uncertainty.”
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The blue solid lines correspond to the empirical term structures of risk in expected dividend growth; vertical

bars indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term

structures of risk. The red dashed lines correspond to the theoretical term structures of risk implied by the

parsimonious version of the model of Drechsler and Yaron (2011). Panel A illustrates the term structures of

risk in expected dividend growth for the regular variance shock εvt+1. Panel B illustrates the term structures

of risk in expected dividend growth for the variance trend shock ε∗vt+1. Panel C illustrates the term structures

of risk in expected dividend growth for the jump in variance εvzt+1. Quarterly.
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Figure 3

Term structures of revisions of expected returns and dividend

growth. Identification “Consumption Uncertainty.”
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Panel B. Revisions of expected multiperiod dividend growth

This figure plots the term structures of revisions of expected stock returns (Panel A) and dividend growth

(Panel B). The blue thick lines correspond to the revisions associated with the regular variance shock εvt+1.

The red dashed lines correspond to the revisions associated with the variance trend shock ε∗vt+1. The magenta

dotted lines correspond to the revisions associated with the jump in variance εvzt+1. The thin brown lines

correspond to the revisions associated with the direct consumption shock. The black marked lines correspond

to the revisions associated with the direct dividend shock. The IERs and IEDs are normalized so that their

magnitudes are comparable across the shocks. I set ∆i = 1 and evaluate IERs and IEDs at the unconditional

means of the state variables. Quarterly.
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Figure 4

Term structure of risk in expected stock returns. Identification

“Long-Run Risk.”
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The blue solid lines correspond to the empirical term structures of risk in expected returns; vertical bars

indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term structures

of risk. The red dashed lines correspond to the theoretical term structures of risk implied by the model of

Bansal and Yaron (2004). Panel A illustrates the term structures of risk in expected returns for the long-run

risk εxt+1. Panel B illustrates the term structures of risk in expected returns for the variance risk εvt+1.

Quarterly.
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Figure 5

Term structure of risk in expected dividend growth. Identification

“Long-Run Risk.”
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The blue solid lines correspond to the empirical term structures of risk in expected dividend growth; vertical

bars indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term

structures of risk. The red dashed lines correspond to the theoretical term structures of risk implied by

the model of Bansal and Yaron (2004). Panel A illustrates the term structures of risk in expected dividend

growth for the long-run risk εxt+1. Panel B illustrates the term structures of risk in expected dividend

growth for the variance risk εvt+1. Quarterly.
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Figure 6

Term structure of risk in expected stock returns. Identification

“Consumption Disasters.”

5 10 15 20 25 30 35 40
Investment horizon in quarters

-5

-4

-3

-2

-1

Pa
ne

l A
. I

ER
 fo

r 

5 10 15 20 25 30 35 40
Investment horizon in quarters

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Pa
ne

l B
. I

ER
 fo

r 
c z

The blue solid lines correspond to the empirical term structures of risk in expected returns; vertical bars

indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term structures

of risk. The red dashed lines correspond to the theoretical term structures of risk implied by the model of

Wachter (2013). Panel A illustrates the term structures of risk in expected returns for the disaster intensity

shock ελt+1. Panel B illustrates the term structures of risk in expected returns for the disaster shock εczt+1.

Quarterly.
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Figure 7

Term structure of risk in expected dividend growth. Identification

“Consumption Disasters.”
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The blue solid lines correspond to the empirical term structures of risk in expected dividend growth; vertical

bars indicate 95% credible intervals. See Table III for statistical significance of the slopes of the term

structures of risk. The red dashed lines correspond to the theoretical term structures of risk implied by the

model of Wachter (2013). Panel A illustrates the term structures of risk in expected dividend growth for the

disaster intensity shock ελt+1. Panel B illustrates the term structures of risk in expected dividend growth

for the disaster shock εczt+1. Quarterly.
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Figure 8

Term structures of risk in expected consumption growth.
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This figure plots the term structures of risk in expected consumption growth logEtg
c
t,t+τ . IECG stands for

the incremental expected consumption growth. The blue thick lines correspond to the term structures of risk

associated with the regular variance shock εvt+1. The red dashed lines correspond to the term structures

of risk associated with the variance trend shock ε∗vt+1. The magenta dotted lines correspond to the term

structures of risk associated with the jump in variance εvzt+1. The thin brown lines correspond to the term

structures of risk associated with the direct consumption shock. The sensitivities of expected consumption

growth to the shocks are normalized so that their magnitudes are comparable across the shocks. I set ∆i = 1

and evaluate risk sensitivities of consumption growth at the unconditional means of the state variables.

Quarterly.
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A Appendix

A The state-space model under different identification schemes

I estimate the state-space model (1)-(2) for the vector Yt = (log rt−1,t, log gdt−1,t, y
′
t)
′ and the price-

dividend ratio log δt

Yt+1 = A+BYt +Wt+1,

log δt = a+ b′yt + wt

and impose different shock identification schemes. The shock identification schemes are determined by the

composition of the state vector yt and the mapping between the reduced-form innovations Wt and a vector

of structural shocks εt. The elements of the vector εt have the mean of zero and the standard deviation of

1 but do not necessarily follow the standard normal distribution.

A.1 The “Long-Run Risk” identification scheme

In the “Long-Run Risk” identification scheme, yt = (log gct , xt, vt)
′ and εt+1 =

(εdt+1, εct+1, εxt+1, εvt+1)′. The shocks Wt+1 are heteroskedastic; the stochastic variance factor vt is

the only source of heteroskedasticity. The mapping between the reduced-form innovations Wt+1 and struc-

tural shocks εt+1 is defined as Wt+1 = H(vt)εt+1, where H(vt) is a matrix with 5 rows and 4 columns, whose

entries depend on the stochastic variance vt.

The state-space system features the cross-equation restrictions implied by Campbell-Shiller’s (1989)

linearization of a gross stock return

log rt,t+1 ≈ κ0 + κ1 log δt+1 − log δt + log gdt,t+1.

In addition, I impose the following parameter restrictions: A4 = B41 = B42 = B43 = B45 = 0 (persistent

component xt has a mean of zero and depends only on its own lag), B34 = 1 (identification of xt); A5 =

1 − B55, B51 = B52 = B53 = B54 = 0 (the stochastic variance factor has a mean of one and follows an

autoregressive gamma process of order one); B11 = B12 = B21 = B22 = B31 = B32 = 0 (the lagged log

return and the lagged dividend growth are not state variables). Furthermore, I find that the parameters b1,

B13, B23, and h12 are not statistically significant (the log-price dividend ratio does not contemporaneously

load on the consumption growth; the log return and log dividend growth do not depend on the lagged
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consumption growth; the direct consumption shock does not contemporaneously affect the log return); and

that fixing them at zero does not change the implications of the model. For parsimony, I fix them at zero.

The matrix H(vt) has the following representation

H(vt) =


h11v

1/2
t h12v

1/2
t h13v

1/2
t h14σv((1− ϕv + 2ϕvvt)/2)1/2

h11v
1/2
t h12v

1/2
t (h13 − κ1b2h43)v

1/2
t (h14 − κ1b3 − κ1b2h44)σv((1− ϕv + 2ϕvvt)/2)1/2

0 h32v
1/2
t h33v

1/2
t h34σv((1− ϕv + 2ϕvvt)/2)1/2

0 0 h43v
1/2
t h44σv((1− ϕv + 2ϕvvt)/2)1/2

0 0 0 σv((1− ϕv + 2ϕvvt)/2)1/2

 .

The entry in the third row and first column of the matrix H(vt) is set to zero, as an identifying assumption

for the direct dividend shock εdt+1: contemporaneously the shock affects the dividend growth, but not the

consumption growth. The zero entries in the fourth row are identifying restrictions for the direct dividend

and direct consumption shocks (neither affect xt contemporaneously). The zero entries in the fifth row of

the matrix H(vt) are due to the variance factor following an autoregressive gamma process of order one.

The second row of the matrix H(vt) is not free: it is related to the other rows of the matrix H(vt), as well as

the parameters of the vector b through the cross-equation restrictions implied by Campbell-Shiller’s (1989)

loglinearization of a gross stock return.

A.2 The “Consumption Disasters” identification scheme

In the “Consumption Disaster” identification scheme, yt = (log gct , λt)
′ and εt+1 =

(εdt+1, εct+1, ελt+1, ε
c
zt+1)′. The shocks Wt+1 are heteroskedastic; the disaster intensity factor λt is the

only source of heteroskedasticity. The mapping between the reduced-form innovations Wt+1 and structural

shocks εt+1 is defined as Wt+1 = H(λt)εt+1, where H(λt) is a matrix with 4 rows and 4 columns, whose

entries depend on the stochastic jump intensity λt.

The state-space system features the cross-equation restrictions implied by Campbell-Shiller’s (1989)

loginearization of a gross stock return

log rt,t+1 ≈ κ0 + κ1 log δt+1 − log δt + log gdt,t+1.

In addition, I impose the following parameter restrictions: A4 = 1 − B44, B41 = B42 = B43 = 0, h44 = 0

(the jump intensity factor has a mean of one and follows an autoregressive gamma process of order one);

B11 = B12 = B21 = B22 = B31 = B32 = 0 (the lagged log return and the lagged log dividend growth are

not state variables); h34 = −1 (identification of the consumption disaster zct+1). Furthermore, I find that
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b1, B13 and B23 are not statistically significant and that fixing them directly at zero does not change the

implications of the model. For parsimony, I fix them at zero.

The matrix H(λt) has the following representation

H(λt) =


h11 h12 h13σλ((1− ϕλ + 2ϕλλt)/2)1/2 h14(2θ2chλλt)

1/2

h11 h12 (h13 − κ1b2)σλ((1− ϕλ + 2ϕλλt)/2)1/2 h14(2θ2chλλt)
1/2

0 h32 h33σλ((1− ϕλ + 2ϕλλt)/2)1/2 h34(2θ2chλλt)
1/2

0 0 σλ((1− ϕλ + 2ϕλλt)/2)1/2 0

 .

The entry in the third row and first column of the matrix H(λt) is set to zero, as an identifying

assumption for the direct dividend shock εdt+1: the shock contemporaneously affects the dividend growth

but not the consumption growth. The fourth row of the matrix H(λt) has zero entries, because the jump

intensity factor λt follows an autoregressive gamma process of order one. The second row of the matrix H(λt)

is not free: it is related to the other rows of the matrix H(λt), as well as the parameters of the vector b

through the cross-equation restrictions implied by Campbell-Shiller’s (1989) loglinearization of a gross stock

return. Even though there are four shocks and three independent equations, the system is just-identified. The

shock εczt+1 is identified thanks to the assumption that consumption disasters zct+1 are rare, big, negative

shocks. The identification of the other three shocks is standard: a system of three equations with three

independent shocks is just-identified, if it features three zero restrictions. The three zero-restrictions here

are H31(λt) = H41(λt) = H42(λt) = 0.

A.3 The “Consumption uncertainty” identification scheme

In the “Consumption Uncertainty” identification scheme, yt = (log gct , vt, v∗t )′, εt+1 =

(εdt+1, εct+1, εvt+1, ε
∗
vt+1, ε

v
zt+1)′. The shocks Wt+1 are heteroskedastic; the stochastic variance fac-

tors vt and v∗t are the sources of heteroskedasticity. The mapping between the reduced-form innovations

Wt+1 and structural shocks εt+1 is defined as Wt+1 = H(vt, v
∗
t )εt+1, where H(vt, v

∗
t ) is a matrix with 5 rows

and 5 columns, whose entries depend on the stochastic variance vt and its long-run mean factor v∗t .

The state-space system features the cross-equation restrictions implied by Campbell-Shiller’s (1989)

loglinearization of a gross stock return

log rt,t+1 ≈ κ0 + κ1 log δt+1 − log δt + log gdt,t+1.

In addition, I impose the following parameter restrictions: A4 = (1−B44)v (v = (1−B44−θvhv)/[2(1−B44)]),

B41 = B42 = B43 = 0, B45 = 1 − B44 − θvhvv (the variance factor vt follows an autoregressive gamma
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process of order one with jumps and time-varying long-run mean); A5 = (1 − B55)v∗ (v∗ = 1/2), B51 =

B52 = B53 = B54 = 0 (the variance factor v∗t follows an autoregressive gamma process of order one);

B11 = B12 = B21 = B22 = B31 = B32 = 0 (the lagged log return and the lagged log dividend growth are

not state variables). Furthermore, I find that b1, B13, B23, B35 are statistically insignificant and that fixing

them at zero does not change the implications of the model. For parsimony, I fix them at zero.

The matrix H(vt, v
∗
t ) has the following representation

H(vt, v
∗
t ) =


h11v

1/2
t h12v

1/2
t H13(vt, v

∗
t ) H14(vt, v

∗
t ) H15(vt, v

∗
t )

h11v
1/2
t h12v

1/2
t H23(vt, v

∗
t ) H24(vt, v

∗
t ) H25(vt, v

∗
t )

0 h32v
1/2
t H33(vt, v

∗
t ) H34(vt, v

∗
t ) H35(vt, v

∗
t )

0 0 H43(vt, v
∗
t ) 0 H45(vt, v

∗
t )

0 0 0 H54(vt, v
∗
t ) 0

 ,

where

H13(vt, v
∗
t ) = h13σv(((1− ϕv)v + 2ϕvvt)/2)1/2,

H14(vt, v
∗
t ) = h14σ

∗
v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
t )/2)1/2,

H15(vt, v
∗
t ) = h15(2θvhvvt)

1/2,

H23(vt, v
∗
t ) = (h13 − κ1b2)σv(((1− ϕv)v + 2ϕvvt)/2)1/2,

H24(vt, v
∗
t ) = (h14 − κ1b3)σ∗v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
t )/2)1/2,

H25(vt, v
∗
t ) = (h15 − κ1b2)(2θvhvvt)

1/2,

H33(vt, v
∗
t ) = h33σv(((1− ϕv)v + 2ϕvvt)/2)1/2,

H34(vt, v
∗
t ) = h34σ

∗
v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
t )/2)1/2,

H35(vt, v
∗
t ) = h35(2θvhvvt)

1/2,

H43(vt, v
∗
t ) = σv(((1− ϕv)v + 2ϕvvt)/2)1/2,

H45(vt, v
∗
t ) = (2θvhvvt)

1/2,

H54(vt, v
∗
t ) = σ∗v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
t )/2)1/2.

The entry in the third row and first column of the matrix H(vt, v
∗
t ) is set to zero, as an identifying

assumption for the direct dividend shock εdt+1: the shock contemporaneously affects the dividend growth,

not the consumption growth. The fourth and fifth rows of the matrix H(vt, v
∗
t ) have zero entries because

the variance factors follow the autoregressive gamma processes of order one. As a result, the shocks εvt+1
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and ε∗vt+1 are identified; the shock εvzt+1 is identified thanks to the assumption that jumps zvt+1 are relatively

rare, big, positive movements in the stochastic variance vt+1. The second row of the matrix H(vt, v
∗
t ) is not

free: it is related to the other rows of the matrix H(vt, v
∗
t ), as well as the parameters of the vector b through

the cross-equation restrictions implied by Campbell-Shiller’s loglinearization of a gross stock return.

B Estimation output

I use the data displayed in Panels A, B, and C of Figure B1 to estimate the state-space model (1)-(2).

I consider three shock identification schemes. Figure B1 and Table BI contain the estimation output from

the identification scheme “Long-Run Risk;” Figure B2 and Table BII contain the estimation output from

the identification scheme “Consumption Disasters;” Figure B3 and Table BIII contain the estimation output

from the identification scheme “Consumption Uncertainty.”
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Table BI
The state-space model. Identification “Long-Run Risk.”

Parameter estimates

I estimate

Yt+1 = A+BYt +Wt+1,

log δt = a+ b′yt + wt,

with parameter restrictions B11 = B12 = B13 = B21 = B22 = B23 = B31 = B32 = A4 = B41 = B42 = B43 =
B45 = B51 = B52 = B53 = B54 = h12 = 0, A2 = A1 − κ0 − κ1a + a, A5 = 1 − B55, B55 = ϕv, B34 = 1,
B24 = B14 + b2 − κ1b2B44, B25 = B15 + b3 − κ1b3ϕv, b1 = 0, h21 = h11, h22 = h12, h23 = h13 − κ1b2h43,
h24 = h14 − κ1b3 − κ1b2h44, which guarantee identification and satisfy regularity conditions and Campbell
and Shiller’s (1989) loglinear approximation. κ0 = 0.0499 and κ1 = 0.9923. The median and 95% credible
interval. Appendix A.1 contains the full description of the model.

Parameter Estimate Credible interval, 95%

A1 0.0110 (0.0090, 0.0128)
A3 0.0073 (0.0067, 0.0082)
B14 -6.0708 (-8.6412, -4.6009)
B15 0.0061 (0.0042, 0.0081)
B33 0.1673 (0.1281, 0.1975)
B35 -0.0034 (-0.0041, -0.0029)
B44 0.9687 (0.9531, 0.9756)
B55 0.9786 (0.9764 0.9815)
h11 0.0219 (0.0209, 0.0227)
h13 0.0718 (0.0674, 0.0758)
h14 -0.1611 (-0.2107, -0.1011)
h32 0.0050 (0.0048, 0.0052)
h33 5.49e-4 (1.81e-4, 7.98e-4)
h34 -0.0057 (-0.0089, -0.0030)
h43 4.61e-4 (4.14e-4, 5.32e-4)
h44 7.30e-4 (0.0002, 0.0011)
σv 0.1803 (0.1614, 0.1968)
a 5.1495 (5.2030, 5.0892)
b2 169.77 (150.33, 190.88)
b3 -0.2603 (-0.3139, -0.2001)
σδ 0.0040 (0.0031, 0.0053)
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Table BII
The state-space model. Identification “Consumption Disasters.”

Parameter estimates

I estimate

Yt+1 = A+BYt +Wt+1,

log δt = a+ b′yt + wt,

with parameter restrictions A2 = A1 − κ0 − κ1a+ a, B11 = B12 = B13 = B21 = B22 = B23 = B31 = B32 =
B41 = B42 = B43 = h44 = 0, A4 = 1−B44, B44 = ϕλ, B24 = B14+b2−κ1b2B44, h14 = −1, h24 = h14, b1 = 0,
h21 = h11, h22 = h12, h23 = h13 − κ1b2, which guarantee identification and satisfy regularity conditions and
Campbell and Shiller’s (1989) loglinear approximation. κ0 = 0.0499 and κ1 = 0.9923. The median and 95%
credible interval. Appendix A.2 contains the full description of the model.

Parameter Estimate Credible interval, 95%

A1 -0.0029 (-0.0113, -0.0013)
A3 3.33e-3 (3.31e-3, 3.34e-3)
B14 0.0177 (0.0160, 0.0261)
B33 0.3328 (0.3312, 0.3345)
B34 2.31e-4 (2.99e-5, 4.96e-4)
B44 0.9885 (0.9801 0.9900)
h11 0.0221 (0.0217 , 0.0224)
h12 0.0033 (0.0027 , 0.0039)
h13 -0.9998 (-1.0240, -0.9808)
h14 -2.2810 (-2.6412, -1.9018)
h32 4.37e-3 (4.36e-3, 4.38e-3)
h33 -0.0119 (-0.0124, -0.0114)
σλ 0.0587 (0.0527, 0.0660)
θc 0.0040 (0.0026, 0.0064)
hλ 0.0591 (0.0076, 0.0979)
a 5.9514 (5.7987, 6.1179)
b2 -1.0622 (-1.2288, -0.9075)
σδ 0.0045 (0.0033, 0.0062)
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Table BIII
The state-space model. Identification “Consumption

Uncertainty.” Parameter estimates

I estimate Yt+1 = A+BYt +Wt+1,

log δt = a+ b′yt + wt,

with parameter restrictions B11 = B12 = B13 = B21 = B22 = B23 = B31 = B32 = B41 = B42 = B43 =
B51 = B52 = B53 = B54 = b1 = 0, A2 = A1−κ0−κ1a+a, A4 = (1−B44)v, where v = (1−B45)/(1−B44)/2,
A5 = (1−B55)v∗, where v∗ = 1/2, B24 = B14+b2−κ1b2B44, B25 = B15+b3−κ1b3B55, B45 = 1−B44−θvhv,
B44 = ϕv, B55 = ϕ∗v, h21 = h11, h22 = h12, h23 = h13 − κ1b2, h24 = h14 − κ1b3, h25 = h15 − κ1b2,
h31 = h41 = h42 = h44 = h51 = h52 = h53 = h55 = 0, which guarantee identification and satisfy regularity
conditions and Campell and Shiller’s (1989) loglinear approximation. κ0 = 0.0499 and κ1 = 0.9923. The
median and 95% credible interval. Appendix A.3 contains the full description of the model.

Parameter Estimate Credible interval, 95%

A1 -0.0015 (-0.0180, 0.0106)
A3 0.0050 (0.0039, 0.0062)
B14 0.0063 (-0.0122, 0.0278)
B15 0.0295 (-0.0056, 0.0666)
B33 0.2710 (0.2199, 0.3004)
B34 -0.0015 (-0.0005, -0.0026)
B44 0.8735 (0.7839 , 0.9283)
B55 0.9857 (0.9692, 0.9941)
h11 0.0264 (0.0242, 0.0288)
h12 -8.85e-4 (-0.0024 0.0008)
h13 -0.2589 (-0.3560, -0.1113)
h14 -1.6197 (-1.8630, -1.4545)
h15 -0.2643 (-0.3622, -0.1301)
h32 0.0048 (0.0046, 0.0051)
h33 -0.0032 (-0.0056, -0.0014)
h34 -0.0196 (-0.0276, -0.0113)
h35 -0.0048 (-0.0070, -0.0026)
σv 0.2320 (0.1870, 0.2916)
σ∗v 0.0648 (0.0586, 0.0720)
θv 0.9568 (0.8014, 1.1727)
hv 0.0199 (0.0132, 0.0353)
a 6.0346 (5.7979, 6.2475)
b2 -0.2629 (-0.3622, -0.1176)
b3 -1.7652 (-1.9923, -1.5824)
σδ 0.0100 (0.0098, 0.0101)
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Figure B1. Data and estimated states in the “Long-Run Risk.”

47:II 59:III 72:I 84:III 97:I 09:III
-0.015

-0.005

0.005

0.015

0.025
Panel A. Consumption growth

47:II 59:III 72:I 84:III 97:I 09:III

Panel B. Stock returns

-0.4
-0.3

0

0.3

47:II 59:III 72:I 84:III 97:I 09:III
4

5

6
Panel C. Log price-dividend ratio

47:II 59:III 72:I 84:III 97:I 09:III
0

2

4

6

Panel D. Latent states

-0.006

0

0.006

0.012

Panels A, B, C display quarterly observations of log consumption growth, log stock returns, and log price-

dividend ratio, respectively. Panel D displays the mean path of the stochastic variance factor (dashed blue

line) with the 95% credible interval (thin solid lines) and the mean path of the expected consumption growth

(dashed red line) with the 95% credible interval (thin solid lines). The sample period: second quarter of

1947 to fourth quarter of 2015. Grey bars are the NBER recessions. Quarterly.
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Figure B2. Data and estimated states in the “Consumption

Disasters.”
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Panels A, B, C display quarterly observations of log consumption growth, log stock returns, and log price-

dividend ratio, respectively. Panel D displays consumption disaster risk (blue lines) and jump risk in stock

returns (red lines). A brown line corresponds to the estimated jump intensity hλλt, the dashed lines corre-

spond to the 95% credible interval. The sample period: second quarter of 1947 to fourth quarter of 2015.

Grey bars are the NBER recessions. Quarterly.
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Figure B3. Data and estimated states in the “Consumption

Uncertainty.”
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Panels A, B, C display quarterly observations of log consumption growth, log stock returns, and log price-

dividend ratio, respectively. Panel D displays the mean path of the stochastic variance factor (dashed brown

line) with the 95% credible interval (thin brown lines), right axes, and the mean path of the variance factor

v∗t (dashed red line) with the 95% credible interval (thin red lines), left axes. Self-exciting jumps in variance

(blue bars) are displayed on Panel D, left axes. The sample period: second quarter of 1947 to fourth quarter

of 2015. Grey bars are the NBER recessions. Quarterly.
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C Solutions of the equilibrium models

C.1 Solution of the model of Bansal and Yaron (2004)

The model for consumption growth with stochastic variance is

log gct+1 = gc + xt + γcv
1/2
t εct+1,

xt+1 = ϕxxt + γxv
1/2
t εxt+1,

vt+1 = (1− ϕv) + ϕvvt + σv((1− ϕv + 2ϕvvt)/2)1/2εvt+1.

A representative agent has recursive preferences

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ, (15)

µt(Ut+1) = [Et(U
α
t+1)]1/α.

I divide expression (15) by ct, denote ut = Ut/ct and gct+1 = ct+1/ct and obtain

ut = [(1− β) + βµt(ut+1g
c
t+1)ρ]1/ρ. (16)

Next, I solve a recursive problem that is a log-linear approximation of the Bellman equation (16)

log ut ≈ b0 + b1 logµt(g
c
t+1ut+1),

where

b1 = βeρ log µ/(1− β + βeρ log µ),

b0 =
1

ρ
log ((1− β) + βeρ log µ)− b1 logµ.

I guess the value function

log ut = u+ pxxt + pvvt

and compute

log ut+1 + log gct+1 = u+ gc + (pxϕx + 1)xt + pvvt+1 + γcv
1/2
t εct+1 + pxγxv

1/2
t εxt+1.

The cumulant generating function for the variance vt ∼ ARG(1)

κ(s; vt+1) =
ϕvs

1− sσ2
v/2

vt −
(1− ϕv) log (1− sσ2

v/2)

σ2
v/2

,
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and therefore,

logµt(ut+1g
c
t+1) = u+ gc − (1− ϕv) log (1− αpvσ2

v/2)

ασ2
v/2

+ (pxϕx + 1)xt

+

(
α

2
γ2c +

α

2
p2xγ

2
x +

ϕvpv
1− αpvσ2

v/2

)
vt,

logµ = u+ gc +
α

2
p2xγ

2
x +

α

2
γ2c +

pvϕv
1− αpvσ2

v/2
− (1− ϕv) log (1− αpvσ2

v/2)

ασ2
v/2

,

log(ut+1g
c
t+1)− logµt(ut+1g

c
t+1) =

(1− ϕv) log (1− αpvσ2
v/2)

ασ2
v/2

−
(
α

2
γ2c +

α

2
p2xγ

2
x +

ϕvpv
1− αpvσ2

v/2

)
vt

+ pvvt+1 + γcv
1/2
t εct+1 + pxγxv

1/2
t εxt+1.

I solve the following system of three equations in three unknowns u, px, and pv in order to verify the guess

of the value function

u =
1

1− b1

(
b0 + b1g

c − b1
(1− ϕv) log (1− αpvσ2

v/2)

ασ2
v/2

)
,

px =
b1

1− b1ϕx
,

pv = b1

(
α

2
γ2c +

α

2
p2xγ

2
x +

ϕvpv
1− αpvσ2

v/2

)
.

The quadratic equation for pv has two roots. I choose the root that satisfies the requirement of stochastic

stability (Hansen, 2012).

Next, I obtain the pricing kernel

logmt,t+1 = log β + (ρ− 1) log gct+1 + (α− ρ)(log (ut+1g
c
t+1)− logµt(ut+1g

c
t+1))

= log β + (ρ− 1)gc + (α− ρ)
(1− ϕv) log (1− αpvσ2

v/2)

ασ2
v/2︸ ︷︷ ︸

m

+ (ρ− 1)︸ ︷︷ ︸
mx

xt−(α− ρ)

(
α

2
γ2c +

α

2
p2xγ

2
x +

ϕvpv
1− αpvσ2

v/2

)
︸ ︷︷ ︸

mv

vt

+ (α− ρ)pv︸ ︷︷ ︸
mεv

vt+1 + (α− 1)γc︸ ︷︷ ︸
mεc

v
1/2
t εct+1 + (α− ρ)pxγx︸ ︷︷ ︸

mεx

v
1/2
t εxt+1

= m+mxxt +mvvt +mεcv
1/2
t εct+1 +mεxv

1/2
t εxt+1 +mεvvt+1.
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The model for the dividend growth is

log gdt,t+1 = gd + µxxt + γdv
1/2
t εdt+1.

I guess that the price-dividend ratio log δt is

log δt = q0 + qxxt + qvvt,

and derive the process for the log stock return as

log rt,t+1 = κ0 + κ1 log δt+1 + log gdt,t+1 − log δt

= k0 + (k1 − 1)q0 + gd︸ ︷︷ ︸
r

+ (µx + qx(k1ϕx − 1)︸ ︷︷ ︸
rx

)xt −qv︸︷︷︸
rv

vt

+ k1qv︸︷︷︸
rεv

vt+1 + k1qxγx︸ ︷︷ ︸
rεx

v
1/2
t εxt+1 + γd︸︷︷︸

rεd

v
1/2
t εdt+1,

where

κ0 = log (1 + δ)− log (δ) · δ
1 + δ

,

κ1 =
δ

1 + δ
,

δ = E(δt),

or in compact form

log rt,t+1 = r + rxxt + rvvt + rεxv
1/2
t εxt+1 + rεdv

1/2
t εdt+1 + rεvvt+1.

I use the law of one price Et[mt,t+1rt,t+1] = 1 to obtain three equations in three unknowns q0, qx, and qv

qx =
µx + ρ− 1

1− k1ϕx
,

−qv +
ϕv(k1qv +mεv)

1− (k1qv +mεv)σ2
v/2

+D = 0,

q0 =
1

1− k1

(
k0 + gd +m− (1− ϕv) log (1− (rεv +mεv)σ

2
v/2)

σ2
v/2

)
,

where

D = mv +m2
εc/2 + (rεx +mεx)2/2 + r2εd/2.

The quadratic equation for qv has two roots. I choose one that satisfies the requirement of stochastic stability

(Hansen, 2012).
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C.2 Solution of the model of Wachter (2013)

The model for consumption growth with time-varying consumption disasters is

log gct+1 = gc + γcεct+1 − zct+1,

jct+1|λt ∼ Poisson(hλλt),

zct+1|jct+1
∼ Gamma(jct+1, θc),

λt+1 = 1− ϕλ + ϕλλt + σλ[(1− ϕλ + 2ϕλλt)/2]1/2ελt+1,

where−zct+1 is a consumption disaster. The random variable zct+1 is modeled as a Poisson mixture of gammas,

zct+1 ∼ Γ(jct+1, θc); its central component jct+1 ∼ Poisson(hλλt) controls how many jumps of average size θc

arrive per period of time. The mean of jct+1 is a jump arrival rate hλE(λt) = hλ. The normalized jump

intensity λt follows the scalar autoregressive process of order one λt ∼ ARG(1) with the scale parameter

σ2
λ/2, the degrees of freedom 2(1−ϕλ)/σ2

λ, and the serial correlation ϕλ. The normal shocks εct+1 ∼ N (0, 1)

and εdt+1 ∼ N (0, 1) are orthogonal to each other. The nonnormal shock ελt+1 has a mean of zero and a

standard deviation of one and is orthogonal to εct+1 and εdt+1.

A representative agent is averse to consumption risk and has a recursive utility

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ, (17)

µt(Ut+1) = [Et(U
α
t+1)]1/α.

I divide expression (17) by ct, denote ut = Ut/ct and gct+1 = ct+1/ct and obtain

ut = [(1− β) + βµt(ut+1g
c
t+1)ρ]1/ρ. (18)

I solve a recursive problem that is a log-linear approximation of the Bellman equation (16)

log ut ≈ b0 + b1 logµt(g
c
t+1ut+1), (19)

where

b1 = βeρ log µ/(1− β + βeρ log µ),

b0 =
1

ρ
log ((1− β) + βeρ log µ)− b1 logµ.

I guess the value function

log ut = u+ pλλt (20)
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and compute

log(ut+1g
c
t+1) = (u+ gc) + γcεct+1 + pλλt+1 − zct+1,

logµt(ut+1g
c
t+1) = (u+ gc) +

αγ2c
2

+
ϕλλtpλ

1− αpλσ2
λ/2
− (1− ϕλ) log (1− αpλσ2

λ/2)

ασ2
λ/2

− θchλλt
1 + αθc

, (21)

log(ut+1g
c
t+1)− logµt(ut+1g

c
t+1) = γcεct+1 + pλλt+1 − zct+1 −

ϕλpλλt
1− αpλσ2

λ/2
− αγ2c

2

+
(1− ϕλ) log (1− αpλσ2

λ/2)

ασ2
λ/2

+
θchλλt
1 + αθc

.

I substitute (20) and (21) in equation (19) and solve for the parameters u and pλ of the value function.

For pλ, I have the following quadratic equation

C2p
2
λ + C1pλ + C0 = 0,

where

C2 = ασ2
λ/2,

C1 = b1ϕλ − 1−Aασ2
λ/2,

C0 = A,

A = − b1hλθc
1 + αθc

.

I solve it and choose the root that satisfies the requirement of stochastic stability (Hansen, 2012). Next, I

find u

u =
1

1− b1

(
b0 + b1g

c +
αb1γ

2
c

2
− b1(1− ϕλ) log (1− αpλσ2

λ/2)

ασ2
λ/2

)
.

The pricing kernel is

logmt,t+1 = log β + (ρ− 1) log gct+1 + (α− ρ)(log(ut+1g
c
t+1)− logµt(ut+1g

c
t+1))

= m+mλλt +mελλt+1 +mεcεct+1 +mzz
c
t+1,

74



where

m = log β + (ρ− 1)gc + (α− ρ)
(1− ϕλ) log (1− αpλσ2

λ/2)

ασ2
λ/2

− αγ2c (α− ρ)

2
,

mλ = −(α− ρ)

(
ϕλpλ

1− αpλσ2
λ/2
− θchλ

1 + αθc

)
,

mεc = (α− 1)γc,

mz = −(α− 1),

mελ = (α− ρ)pλ.

The model for the dividend growth is

log gdt,t+1 = gd + ϕdγcεct+1 + γdεdt+1 − ϕdzct+1.

I guess that the price-dividend ratio is

log δt+1 = q0 + qλλt+1

and compute the implied process for the log return

log rt,t+1 = k0 + k1 log δt+1 + log gdt,t+1 − log δt

= [k0 + k1q0 − q0 + gd]− qλλt + k1qλλt+1 + ϕdγcεct+1 + γdεdt+1 − ϕdzct+1

= r + rλλt + rελλt+1 + rεcεct+1 + rzz
c
t+1 + rεdεdt+1,

where

r = k0 + k1q0 − q0 + gd,

rλ = −qλ,

rελ = k1qλ,

rεc = ϕdγc,

rεd = γd,

rz = −ϕd.

I use the law of one price Et(rt,t+1mt,t+1) = 1 to obtain two equations in two unknowns q0 and qλ

r +m− (1− ϕλ) log (1− (mελ + rελ)σ2
λ/2)

σ2
λ/2

+
1

2
(mεc + rεc)

2 +
1

2
r2εd = 0,

mλ + rλ +
ϕλ(mελ + rελ)

1− (mελ + rελ)σ2
λ/2

+
(mz + rz)hλθc

1− (mz + rz)θc
= 0.

The quadratic equation for qλ has two roots. I choose one that satisfies the requirement of stochastic stability

(Hansen, 2012).
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C.3 Solution of the restricted version of the model of Drechsler and Yaron

(2011)

The model for consumption growth with stochastic variance vt, which has a time-varying long-run

mean driven by v∗t and self-exciting jumps zvt , is

log gct+1 = gc + γcv
1/2
t εct+1,

vt+1 = (1− ϕ̃v)v∗t + (1− ϕv)v + ϕvvt + σv(((1− ϕv)v + 2ϕvvt)/2)1/2εvt+1 + zvt+1,

v∗t+1 = (1− ϕ∗v)v∗ + ϕ∗vv
∗
t + σ∗v(((1− ϕ∗v)v∗ + 2ϕ∗vv

∗
v)/2)1/2ε∗vt+1,

jvt+1|vt ∼ Poisson(hvvt),

zvt+1|jvt+1
∼ Gamma(jvt+1, θv),

where ϕ̃v = ϕv + θvhv, v
∗ = 1/2, and v = 1−ϕ̃v

(1−ϕv)/2 , so that E(vt) = 1 and E(v∗t ) = 1/2.

A representative agent has recursive preferences

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ, (22)

µt(Ut+1) = [Et(U
α
t+1)]1/α.

I divide expression (22) by ct, denote ut = Ut/ct and gct+1 = ct+1/ct and obtain

ut = [(1− β) + βµt(ut+1gt+1)ρ]1/ρ. (23)

Next, I solve a recursive problem that is a log-linear approximation of the Bellman equation (16)

log ut ≈ b0 + b1 logµt(g
c
t+1ut+1),

where

b1 = βeρ log µ/(1− β + βeρ log µ),

b0 =
1

ρ
log ((1− β) + βeρ log µ)− b1 logµ.

I guess the value function

log ut = u+ pvvt + p∗vv
∗
t
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and compute

log ut+1 + log gct+1 = u+ gc + pvvt+1 + γcv
1/2
t εgt+1 + p∗vv

∗
t+1,

logµt(ut+1g
c
t+1) = u+ gc − (1− ϕv)v log (1− αpvσ2

v/2)

ασ2
v/2

− (1− ϕ∗v)v∗ log (1− αp∗vσ∗2v /2)

ασ∗2v /2

+
α

2
γ2c vt +

ϕvpvvt
1− αpvσ2

v/2
+

pvθvhvvt
1− αpvθv

+
ϕ∗vp

∗
vv
∗
t

1− αp∗vσ∗2v /2
+ pv(1− ϕ̃v)v∗t ,

logµ = u+ gc +
α

2
γ2g −

(1− ϕv)v log (1− αpvσ2
v/2)

ασ2
v/2

− (1− ϕ∗v)v∗ log (1− αp∗vσ∗2v /2)

ασ∗2v /2

+
pvϕv

1− αpvσ2
v/2

+
pvθvhv

1− αpvθv
+ pv(1− ϕ̃v)v∗ +

p∗vϕ
∗
vv
∗

1− αp∗vσ∗2v
.

I solve the following system of three equations in three unknowns u, pv, and p∗v in order to verify the

guess of the value function

u =
1

1− b1

(
b0 + b1g

c − b1
(1− ϕv)v log (1− αpvσ2

v/2)

ασ2
v/2

− b1
(1− ϕ∗v)v∗ log (1− αp∗vσ∗2v /2)

ασ∗2v /2

)
,

pv = b1

(
α

2
γ2c +

ϕvpv
1− αpvσ2

v/2
+

pvθvhv
1− αpvθv

)
,

p∗v = b1

(
pv(1− ϕ̃v) +

p∗vϕ
∗
v

1− αp∗vσ∗2v /2

)
and obtain the model for the pricing kernel

logmt,t+1 = log β + (ρ− 1)gc +
(α− ρ)(1− ϕv)v log (1− αpvσ2

v/2)

ασ2
v/2

+
(α− ρ)(1− ϕ∗v)v∗ log (1− αp∗vσ∗2v /2)

ασ∗2v /2︸ ︷︷ ︸
m

+

(
− (α− ρ)ϕvpv

1− αpvσ2
v/2
− (α− ρ)pvθvhv

1− αpvθv
− α(α− ρ)

2
γ2c

)
︸ ︷︷ ︸

mv

vt

+

(
− (α− ρ)p∗vϕ

∗
v

1− αp∗vσ∗22 /2
− (α− ρ)pv(1− ϕ̃v)

)
︸ ︷︷ ︸

m∗
v

v∗t

+ (α− 1)γc︸ ︷︷ ︸
mεc

v
1/2
t εct+1 + (α− ρ)pv︸ ︷︷ ︸

mεv

vt+1 + (α− ρ)p∗v︸ ︷︷ ︸
m∗
εv

v∗t+1.

The model for the log dividend growth is

log gdt,t+1 = gd + µvvt + µ∗vv
∗
t + γ∗εvv

∗
t+1 + γεdv

1/2
t εdt+1 + γzdz

v
t+1.
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I guess that the log price-dividend ratio log δt is a linear function of states

log δt = q0 + qvvt + q∗vv
∗
t

and derive the implied stochastic process for the log stock return

log rt,t+1 = κ0 + κ1 log δt+1 + log gdt,t+1 − log δt

= k0 + (k1 − 1)q0 + gd︸ ︷︷ ︸
r

+ (µv − qv)︸ ︷︷ ︸
rv

vt + (µ∗v − q∗v)︸ ︷︷ ︸
r∗v

v∗t

+ k1qv︸︷︷︸
rεv

vt+1 + (k1q
∗
v + γ∗εv)︸ ︷︷ ︸
r∗εv

v∗t+1 + γεd︸︷︷︸
rεd

v
1/2
t εdt+1 + γzd︸︷︷︸

rz

zvt+1,

where

κ0 = log (1 + δ)− log (δ) · δ
1 + δ

,

κ1 =
δ

1 + δ
,

δ = E(δt),

or in compact form

log rt,t+1 = r + rvvt + r∗vv
∗
t + rεdv

1/2
t εdt+1 + rεvvt+1 + r∗εvv

∗
t+1 + rzz

v
t+1.

I use the law of one price Et[mt,t+1rt,t+1] = 1 to obtain three equations in three unknowns q0, qv, q
∗
v

m+ r − (1− ϕv)v log (1− (mεv + rεv)σ
2
v/2)

σ2
v/2

− (1− ϕ∗v)v∗ log (1− (m∗εv + r∗εv)σ
∗2
v /2)

σ∗2v /2
= 0,

mv + rv +
m2
εc

2
+
r2εd
2

+
(mεv + rεv)ϕv

1− (mεv + rεv)σ2
v/2

+
(mεv + rεv + rz)θvhv

1− (mεv + rεv + rz)θv
= 0, (24)

m∗v + r∗v + (1− ϕ̃v)(mεv + rεv) +
(m∗εv + r∗εv)ϕ

∗
v

1− (m∗εv + r∗εv)σ
∗2
v /2

= 0. (25)

I choose the stochastically stable roots (Hansen, 2012) of the cubic equation (24) in qv and quadratic equation

(25) in q∗v .
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D Term structures of risk in expected returns in the models of

Bansal and Yaron (2004) and Wachter (2013)

In this appendix, I analyze whether alternative calibrations of the equilibrium models of Bansal and

Yaron (2004) and Wachter (2013) can match the empirical properties of the term structures of risk in expected

returns.

D.1 The term structure of risk in expected returns in the model of Bansal and

Yaron (2004)

As it concerns term structures of risk, the main disagreement of the model in Bansal and Yaron (2004)

with the data is in the sign of the slope of the term structure of εxt+1 in expected returns. The sign in the

data is negative and significant, whereas it is positive in the original calibration of the equilibrium model. I

analyze whether an alternative calibration of the equilibrium model can deliver a negative sign.

Given the representation of stock returns in terms of economic states and shocks

log rt,t+1 = r + rxxt + rvvt + rεxv
1/2
t εxt+1 + rεdv

1/2
t εdt+1 + rεvvt+1,

xt+1 = ϕxxt + γxv
1/2
t εxt+1,

vt+1 = (1− ϕv) + ϕvvt + σv((1− ϕv + 2ϕvvt)/2)1/2εvt+1,

the term structure of εxt+1 in expected returns is defined as

IER(rt,t+τ , εxt+1) = (rεx/γx +Ax(τ − 1))∆x,

where

Ax(1) = rx,

Ax(τ) = rx +Ax(τ − 1)ϕx = rx(1 + ϕx + · · ·+ ϕτ−1x ).

Therefore

IER(rt,t+1, εxt+1) = rεx∆x/γx,

IER(rt,t+τ , εxt+1) = (rεx/γx + rx(1 + ϕx + · · ·+ ϕτ−2x ))∆x for τ > 1.

The term structure of εxt+1 has a negative slope, |IER(rt,t+τ , εxt+1)| − |IER(rt,t+1, εxt+1)| < 0, and

a positive level IER(rt,t+τ , εxt+1) ≥ 0 (τ = 1, 40), if
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1. rεx/γx > 0,

2. rx < 0,

3. rεx/γx + rx(1 + ϕx + · · ·+ ϕτ−2x ) ≥ 0 for τ = 1, 40.

Appendix C.1 shows, that the parameters rx and rεx are the following functions of the deep parameters of

the model:

rx = µx + qx(κ1ϕx − 1) = µx +
µx + ρ− 1

1− κ1ϕx︸ ︷︷ ︸
=qx

(κ1ϕx − 1) = 1− ρ,

rεx = κ1qx = κ1
µx + ρ− 1

1− κ1ϕx
.

The second necessary condition rx < 0 is equivalent to ρ > 1. The parameter ρ is related to the parameter

of the elasticity of the intertemporal substitution IES = (1 − ρ)−1, and therefore ρ > 1 means IES < 0. A

negative value of IES is economically implausible, and therefore, the necessary condition cannot be satisfied.

D.2 The term structure of risk in expected returns in the model of Wachter

(2013)

As it concerns term structures of risk, the main disagreement of the model in Wachter (2013) with the

data is in the sign of the level of the term structure of εczt+1 in expected returns. The sign in the data is

positive and significant, whereas it is negative in the original calibration of the equilibrium model. I analyze

whether an alternative calibration of the equilibrium model can deliver a positive sign.

Given the representation of log stock returns in terms of economic states and shocks

log rt,t+1 = r + rλλt + rελλt+1 + rεcεct+1 + rzz
c
t+1 + rεdεdt+1,

λt+1 = (1− ϕλ) + ϕλλt + σλ((1− ϕλ + 2ϕλλt)/2)1/2ελt+1,

jct+1|λt ∼ Poisson(hλλt),

zt+1|jct+1
∼ Gamma(jct+1, θc),

the term structure of εczt+1 in expected returns is

IER(rt,t+τ , ε
c
zt+1) = rz∆z.
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Appendix C.2 shows rz = −ϕd, and therefore the term structure of disaster risk in expected returns has

a positive level IER(rt,t+τ , ε
c
zt+1) ≥ 0, if ϕd < 0. The negative value of the parameter ϕd implies that

the dividend claim is a levered consumption claim with a negative leverage parameter. This condition is

economically implausible, and therefore the necessary conditions cannot be satisfied.

E From the term structures of risk in expected returns and divi-

dend growth to the prices of dividend strips

Under different shock-identifying assumptions, I empirically characterize logEt(g
d
t,t+τ ) and

logEt(rt,t+τ ). I denote dt a dividend payment at time t and notice that the price pdt (τ) of a dividend

claim with maturity τ quarters is

pdt (τ) = Et(mt,t+τ · dt+τ ) = Et

(
dt,t+τ
rt,t+τ

·mt,t+τrt,t+τ

)
= Et

(
dt,t+τ
rt,t+τ

)
· Et(mt,t+τrt,t+τ )

+ covt

(
dt,t+τ
rt,t+τ

,mt,t+τrt,t+τ

)
.

By the law of one price, Et(mt,t+τrt,t+τ ) = 1, and therefore,

pdt (τ) = Et(mt,t+τ · dt+τ ) = Et

(
dt,t+τ
rt,t+τ

)
+ covt

(
dt,t+τ
rt,t+τ

,mt,t+τrt,t+τ

)
.

While I can characterize empirically Et

(
dt,t+τ
rt,t+τ

)
and the associated term structure of risk, the conditional

covariance covt

(
dt,t+τ
rt,t+τ

,mt,t+τrt,t+τ

)
cannot be characterized without modeling the pricing kernel mt,t+τ .

For example, if an agent, who prices assets, has a log utility, than mt,t+1 = 1/rt,t+1, and therefore the

covariance term is equal to 0. However, in the presence of assumptions about risk preferences, internal

consistency of the state-space model (1)-(2) implies that the joint dynamics of consumption, returns, and

dividends must feature cross-equation restrictions. The implied parameter restrictions drastically change

interpretation of the estimated term structures of risk: they are not any longer stylized facts but implications

of the specific equilibrium pricing kernel. As a result, I cannot characterize prices on dividend strips pdt (τ)

without further assumptions.
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