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Abstract

Applying a hedonic di�erence-in-di�erences framework to a census of residential property transactions
in New York City 2003-2017, we estimate the price e�ects of three �ood risk signals: 1) the Biggert-
Waters Flood Insurance Reform Act, which increased premiums; 2) Hurricane Sandy; and 3) new FEMA
�oodplain maps. Estimates are negative for all three signals and some are large: properties included in the
new �oodplain after escaping �ooding by Sandy experienced 18 percent price reductions. We investigate
possible mechanisms, including selection of properties into the market and residential resorting. Finding
no evidence for these, we develop a parsimonious theoretical model to study changes in �ood beliefs.
The model allows decomposition of our reduced-form estimates into the e�ects of insurance premium
changes and belief updating. Resulting estimates suggest that new maps induced substantially larger
belief changes than insurance reform. (JEL: Q54, Q58, R30, G22)
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1 Introduction

Sea-level rise and growing storm intensity from climate change are increasing �ood risk [Cleetus, 2013].

Integrated assessment models forecast that under warming of 2.5 degrees Celsius, the majority of damages

will stem from sea-level rise and natural disasters, including �ooding [Nordhaus and Boyer, 2000]. The extent

to which such forecasts are realized depends on human behavior. Decisions about coastal retreat, adaptation,

and insurance takeup will all in�uence realized �ood damages, so understanding them is important. We study

residential property market responses to three �ood risk signals: 1) the Biggert-Waters Flood Insurance

Reform Act, which increased �ood insurance premiums; 2) Hurricane Sandy; and 3) new �oodplain maps

produced by the Federal Emergency Management Agency (FEMA). Exploiting demographic data and a

coverage cap in �ood insurance contracts, we investigate the possible mechanisms behind these responses,

including buyer sorting, selection into transactions, changes in insurance premiums, and belief updating.

The quasi-experimental risk signals we study provide unusual opportunities to examine behavioral re-

sponses to climate change; this is particularly true of the updated �oodplain maps. In general such responses

are di�cult to disentangle from confounding trends, as both climate parameters and many economic out-

comes evolve continuously over time. If agents are inattentive, however, then risk signals may produce

sudden behavioral responses. Such inattention could be rational [Sims, 2006, Ellis, 2018] or the result of

optimization failure [Kahneman, 2003].1 In the case of the new �oodplain maps, an inattentive New York

property market participant would have confronted as many as three decades of climate change in a single

day. This allows us to disentangle climate change from other time-varying factors.

Using a census of residential property transactions from the New York City Department of Finance

2003-2017, we estimate treatment e�ects in a hedonic di�erence-in-di�erences framework. Our identifying

assumption is that absent the three treatments, the average sale prices of treated properties would have

evolved in parallel with the average sale prices of una�ected properties. Graphs of pre-treatment trends

in sale prices suggest the common trends assumption is reasonable in all three cases. The richness of our

property transactions data allows us to employ speci�cations with tax lot �xed e�ects, using only repeated

sales for identi�cation.

We �nd the Biggert-Waters Act of 2012, which rolled back premium subsidies on many National Flood

Insurance Program (NFIP) policies, decreased sale prices of impacted properties by approximately 1.7 per-

cent. This estimate is imprecise, and we cannot reject a hypothesized null e�ect. Flooding during Sandy

decreased prices by 5 to 7 percent for minimally inundated properties, and 8 to 13 percent for properties

that experienced average inundation. Finally, we investigate e�ects on the prices of properties included in

the �oodplain under updated maps.2 We �nd that prices of Sandy-�ooded properties included in the new

�oodplain did not change, but prices of non-�ooded properties fell by 18 percent.

These reduced-form price e�ects could have arisen through several mechanisms. Using American Commu-

nity Survey data, we �rst test for di�erential sorting. Previous literature [Lindell and Hwang, 2008, Kellens

et al., 2011, 2012, Mills et al., 2016] has shown that education and duration of residence, for example, are

correlates of risk preferences and perceptions. We �nd that while these and other correlates are evolving over

time, changes are strongly similar in our treatment and control groups; there is no evidence of di�erential

1Inattention is not the only reason an agent might update her beliefs in response to a risk signal. Other possible explanations
include biased beliefs and changes in salience.

2FEMA �ood risk maps identify the geographic extent of 100-year and 500-year �oodplains (de�ned as having 1% and 0.2%
annual chance of �ooding respectively). Zones determined to be within the 100-year �oodplain are designated as Special Flood
Hazard Areas and will be the focus of this investigation. Such areas are referred to throughout as the one percent �oodplain or
simply the �oodplain.
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sorting. On the supply side of the property market, risk signals could in�uence selection into our census of

transactions. To test this, we �rst estimate a hedonic model using only pre-treatment data and generate

predicted prices for all observations. We then estimate the e�ects of risk signals on predicted prices. Point

estimates are small and not statistically signi�cant. This suggests selection on observables is not driving our

treatment e�ects. Two possible mechanisms remain: changes in insurance premiums and belief updating.

Both Biggert-Waters and the new �oodplain maps changed future insurance premiums. Theory predicts the

present value of such premium changes may be capitalized into transaction prices. Because many New York

residents have inaccurate beliefs [Botzen et al., 2015], they may also update substantially in response to risk

signals.

To evaluate the importance of beliefs and insurance, we extend the model of Kousky [2010] to include

insurance premiums and forecasts (maps). We derive a novel approximation of derivatives of interest in

terms of Arrow-Pratt risk aversion and value at risk. Coupled with data on insurance premiums, this allows

us to recover belief changes from our reduced-form treatment e�ects. We estimate that the Biggert-Waters

Act induced approximately zero updating among buyers of a�ected properties. In response to minimal

�ooding during Sandy, we �nd the average change in subjective annual �ood probability was from .15 to .2

percentage points. The corresponding estimate for the updated FEMA �oodplain maps is .43 percentage

points for properties that avoided �ooding by Sandy. While these changes are small in absolute terms, they

are large relative to the roughly one percent annual �ood risk estimated by FEMA for properties in Special

Flood Hazard Areas. Our results are consistent with homeowner beliefs lagging objective risk measures.

These �ndings matter because climate change continues to increase �ood risk. In New York City, sea

level is projected to rise by .55 to 1.4 meters by 2100. As a result, �...�ood height return periods that were

∼500 y during the preindustrial era [2.25 meters] have fallen to ∼25 y at present and are projected to fall

to ∼5 y within the next three decades� [Garner et al., 2017]. Understanding the likely behavioral responses

is important not only intrinsically, but also for governments contemplating long-lived defensive investments

and forward-looking policies. Our results suggest that in some settings information signals may generate

more updating than price signals, counter to the priors of many economists and potentially important when

price-based policies face political constraints.3

To the best of our knowledge, our study is the �rst to examine changes in o�cial �ood risk ratings for an

important coastal city�New York has $129 billion in property value within the current �oodplain [Stringer,

2014]. This study is also the �rst to conduct a thorough empirical investigation of mechanisms behind the

e�ects of �ood risk signals on property markets, and the �rst to recover the belief changes implied by reduced-

form estimates. Our paper shares an interest in �ood beliefs with a more structural paper by Bakkensen and

Barrage [2017] set in Providence, Rhode Island; comparisons are given in Sections 7.2 and 7.3. Our work

contributes to the hedonic literature on climate change, which to date has largely focused on agricultural

land [Deschenes and Greenstone, 2007, Schlenker and Roberts, 2009, Ashenfelter and Storchmann, 2010].

It also contributes to the literatures on capitalization of �ood risk [Bin and Polasky, 2004, Kousky, 2010,

Atreya et al., 2013, Bin and Landry, 2013], the NFIP [Kunreuther and Slovic, 1978, Chivers and Flores, 2002,

Michel-Kerjan et al., 2012, Gallagher, 2014],4 and Hurricane Sandy [Ortega and Taspinar, 2017, McCoy and

Zhao, 2018].5 More generally, it speaks to literatures on tail risk perceptions [Botzen et al., 2015] and the

3As discussed in Section 5, the large updating response to information in this setting may result in part from the previous
experience of Hurricane Sandy.

4Other important related papers include: Donnelly [1989], Shilling et al. [1989], Macdonald et al. [1990], Kunreuther [1996],
Harrison et al. [2001], Hallstrom and Smith [2005], Smith et al. [2006], Morgan [2007], Bin et al. [2008a], Pope [2008], Michel-
Kerjan and Kousky [2010].

5Ortega and Taspinar [2017] investigate the magnitudes and persistence of price e�ects of Sandy on residential properties.
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relative e�ectiveness of price and information signals [Ferraro and Price, 2013, Jessoe and Rapson, 2014,

Delaney and Jacobson, 2015].

The rest of the paper proceeds as follows. Section 2 provides policy background and detail on the three

risk signals we study. Section 3 describes our data. Section 4 discusses our empirical approach and Section 5

presents reduced-form results. Section 6 lays out reduced-form robustness checks and corroborating evidence

from Google search data. Section 7 considers empirical evidence on potential mechanisms and develops a

corresponding theoretical model. Approximations of model derivatives permit recovery of belief changes

from reduced-form e�ects. Section 8 concludes.

2 Policy background

The following brief description of the National Flood Insurance Program (NFIP) draws on Michel-Kerjan

[2010] and US Government Accountability O�ce [2008]. Congress created the NFIP in 1968 to provide

residential �ood insurance. The NFIP maps �ood risks, sets premiums, and ultimately underwrites policies.

The 1973 Flood Disaster Protection Act made coverage mandatory for properties that: 1) are located in a

�Special Flood Hazard Area,� an area with annual �ood risk above one percent; and 2) have a mortgage from

a federally regulated �nancial institution. Despite this nominal insurance mandate, noncompliance remains a

problem [Tobin and Calfee, 2005]. In 1983 Congress initiated the �Write Your Own� (WYO) program, which

allows private insurers to administer NFIP policies, though the federal government continues to underwrite

them. Today nearly all NFIP policies are issued under WYO. Coverage of residential structures is capped

at $250,000 per insured property and the cap is the same everywhere.6 Private �ood insurance is available

in some states, but represents just 3 to 4 percent of the overall market [Carrns, 2016, Kousky et al., 2018].7

At inception in 1968, the NFIP o�ered subsidized rates (rates below actuarially fair levels) on existing

homes while charging actuarially fair rates on new structures. This was designed to maintain property values

and encourage participation. Purchasers of properties built (not purchased) before creation of the �rst risk

map in their area continued to be eligible for subsidized rates. On average, premiums for subsidized properties

are approximately 40 percent of the actuarially fair level [Hayes et al., 2007, US Government Accountability

O�ce, 2008]. Premiums often lag behind true risk even for properties that are supposed to face actuarially

fair premiums. This is because: 1) NFIP maps are updated infrequently; and 2) �grandfathering� allows

properties to keep their original risk ratings even when �oodplain maps are updated.

Historically the NFIP maintained �scal balance. However, the 2005 hurricane season, which included

Hurricanes Katrina, Rita, and Wilma, left NFIP with nearly $18 billion in debt. Payouts from Hurricane

Sandy pushed NFIP debt to nearly $30 billion [Cleetus, 2013]. Even as its �scal balance has deteriorated,

NFIP has grown rapidly. In the early 1980s there were roughly 2 million NFIP policies. As of September

2017, the NFIP had more than $1.2 trillion under coverage and approximately 5 million policies in force.8

For more on the history and administrative details of the NFIP, see Michel-Kerjan [2010], Michel-Kerjan

and Kunreuther [2011], and Knowles and Kunreuther [2014].

In response to increasingly negative �scal balance of the NFIP, Congress passed the Biggert-Waters Flood

McCoy and Zhao [2018] consider changes in property investments via permit applications and assessment data. Both papers
�nd signi�cant impacts of damage by Sandy.

6An additional $100,000 in coverage is permitted for the contents of structures. Neither the structure cap nor the contents
cap is indexed to in�ation or the regional price level.

7Florida began to encourage private policies in 2014. As of mid-2016, NFIP covered 1.8mn Florida properties, while private
insurers covered 3,000 properties [Carrns, 2016].

8FEMA Policy Statistics. https://bsa.n�pstat.fema.gov/reports/1011.htm. Last accessed December 15, 2017.
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Insurance Reform Act in 2012. President Obama signed the bill on July 6 and the �rst provisions of the act

took e�ect on July 10. Beginning January 1, 2013, Biggert-Waters called for subsidized premiums to increase

25 percent per year until reaching actuarially fair levels [FEMA, 2013]. It also eliminated grandfathering

of risk ratings. In response to numerous complaints about the premium increases, Congress passed the

Homeowner Flood Insurance A�ordability Act (HFIAA) of 2014. The HFIAA lowered the maximum rate of

premium increase to 18 percent per year. It restored grandfathering for incumbent policy holders, but not

for new buyers of previously grandfathered homes. Because HFIAA did not change long-run premiums for

properties sold after the passage of Biggert-Waters, we do not focus on it.

Hurricane Sandy is important to both the �scal balance of the NFIP and capitalization of risk in New

York City. The storm hit New York on October 29-30, 2012. While Sandy weakened to a post-tropical

cyclone before landfall, it was very large and resulted in a catastrophic storm surge. In total the storm

caused roughly $50 billion in damage, surpassing the costs of all prior US hurricanes except Katrina in 2005,

and led directly to 147 deaths [Blake et al., 2013].

At the time Sandy hit New York City, the existing �oodplain maps had not changed substantially since

1983,9 and the 1983 maps were based on a hydrologic model from the 1960s [US Government Accountability

O�ce, 2008]. FEMA had, however, begun the development of new maps in 2008. The agency issued the

�rst public version of the new maps, the Advisory Base Flood Elevation (ABFE) Maps, on January 28, 2013

[Buckley, 2013]. They came from the agency's new �ood risk models, which re�ected roughly 3.5 inches

of sea level rise and increased storm activity since 1983, but not data from Sandy. Subsequently released

versions of provisional �oodplain maps went by di�erent names, but were largely unchanged. FEMA issued

Preliminary Work Maps June 10, 2013 and Preliminary Flood Insurance Rate Maps (FIRMs) January 30,

2015. The Preliminary FIRMs represented the agency's proposed risk levels for determining premiums under

the NFIP.

New York City appealed the Preliminary FIRMs in June of 2015, arguing the new �oodplains were too

large [Zarrilli, 2015]. Pending the outcome of the appeal, the NFIP insurance mandate did not apply to

properties newly placed in the proposed �oodplain. In October of 2016, FEMA publicly agreed with the

technical complaints of the appeal and announced that it would work closely with the City of New York

to revise the Preliminary FIRMs before they would go into force. It was also announced that construction

permitting decisions in New York City would be based on the Preliminary FIRMs during the revision period,

and that maps of predicted future �oodplain extents would be produced for advisory purposes [FEMA,

2016].10 For a timeline of these events, see Table A1.

Since the events of Hurricane Sandy, a number of infrastructure plans have been proposed to provide

protection against future �ooding. A small number of these proposals have led to feasibility studies and

funded projects. Construction has not begun, however, on any major infrastructure that provides additional

�ood protection beyond that present at the time of Hurricane Sandy. For further discussion of proposed

infrastructure to address �ood risk in New York City, see Appendix A.

9�FEMA's FIRMs [Flood Insurance Rate Maps] have not been signi�cantly updated since 1983, and the New York City
maps are currently being updated by FEMA.� http://www1.nyc.gov/site/�oodmaps/index.page. Last accessed December 15,
2017.

10Predicted future �oodplain extents have been released for the 2020s, 2050s, 2080s and 2100s [Patrick et al., 2015].
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3 Data

Publicly available data on real estate sales in New York City from 2003 to August 2017 are from the New

York City Department of Finance.11 Addresses were geocoded using the Geocoding Services of the New

York State GIS Program O�ce.12 We employ 2012 tax assessment data from the Department of Finance to

estimate the structure value for each transaction.

Information on o�cial �ood risk estimates comes from maps produced by FEMA. We use four di�erent

generations of such maps. The original FIRMs were produced in 1983 and remained essentially unchanged for

30 years. Three updated �ood risk maps for New York City were released on 1/28/2013 (ABFE), 6/10/2013

(Preliminary Work Maps) and 1/30/2015 (Preliminary FIRM). Each of the maps assigns a �ood risk level

to each property in New York City. The updated maps re�ect sea-level rise and changes in storm activity

since 1983, but they do not re�ect Sandy data or climate change forecasts [Buckley, 2013]. Flood inundation

during Hurricane Sandy (also provided by FEMA) is also mapped onto each property. Figure 1 shows a

small section (the area around Coney Island) of each treatment map overlaid onto the geolocated sales data.

For each map, Table A2 presents counts of properties in our main sample assigned to each of the four NFIP

�ood risk levels.

In this paper, we say a property is �in the �oodplain� or �in the one percent �oodplain� if it falls into

what FEMA calls a �high-risk zone� (VE or A). O�cially estimated annual �ood risk for such properties

is one percent or greater. We call properties in zones X and X500 �outside the �oodplain.� Of the 29,698

properties in our main sample that were �ooded by Hurricane Sandy, 10,067 were in Zone X and 8,652 were

in Zone X500 (under the 1983 maps), meaning they were not in FEMA's one percent �oodplain. Of the

18,719 properties outside the one percent �oodplain that nonetheless �ooded during Sandy, 3,757 (or about

�fth) were still not included in the �oodplain by the ABFE maps released three months later.

Our sample is comprised of properties in New York's Tax Class 1: �Most residential property of up

to three units (family homes and small stores or o�ces with one or two apartments attached), and most

condominiums that are not more than three stories.�13 We exclude transactions less than $100,000 because

they may not be arm's-length (e.g. they may be deals among family members). We also exclude transactions

greater than $6.75 million, which is above the 99th percentile among Tax Class 1 sales, to limit the in�uence

of outliers.14 Our robustness checks employ data on properties in Tax Class 2: residential properties that

include more than three units as well as most condos and co-ops in large complexes.

Three distinct geographic identi�ers are used to control for cross-sectional di�erences. The neighborhood,

tax block, and tax lot of each property are provided by the City of New York. There are 247 distinct

neighborhoods, nearly 13,000 tax blocks, and approximately 260,000 unique tax lots included in the main

sample. This yields an average of ~1,498 sales in each neighborhood and ~29 in each block. Within each

tax lot, we observe an average of 1.4 sales (of the same property at di�erent times).

Monthly data on web searches for �ood-risk-related search terms are from Google Trends 2004-2016.

The �nest available geographic resolution is a metropolitan area. For a given search term, Google Trends

provides a normalized measure of �interest� so that the maximum value achieved in the period equals 100

11Data are available here: http://www1.nyc.gov/site/�nance/taxes/property-annualized-sales-update.page.
12See http://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1278.
13https://www1.nyc.gov/site/�nance/taxes/de�nitions-of-property-assessment-terms.page. Last accessed December 15, 2017.

Figure A1 presents transaction counts in our main sample by year and borough.
14The exclusion of transactions based on a comparison of the reported sale price to the assessed value of the property was

also considered. Results are similar, but because the assessment data are not available until 2008, sample sizes are substantially
reduced, especially for the repeated sales sample.
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and all other values are fractions of this maximum level.15

Descriptive statistics for our primary samples are in Table A4. The average sale price in the broader

sample, in 2010 dollars, is approximately $597,000.16 Three percent of transactions occur in the old (1983)

�oodplain and eight percent of transactions occur in the new (post-2013) �oodplain. One percent of ob-

servations (~4100 transactions) are treated by Biggert-Waters, two percent (~9200 transactions) by Sandy,

and two percent by new �oodplain maps. �Treatment� here denotes transactions that take place in the

a�ected geographic area after the date of the relevant risk signal. Treatment groups are proportionately

small, limiting the potential for spillover e�ects into the broader real estate market. Summary statistics for

the repeated-sales sample are also presented in Table A4. There are 80,375 unique properties in this group.

4 Empirical strategy

We estimate di�erence-in-di�erences hedonic models whose theoretical underpinnings derive from Rosen

[1974]. Our identifying assumption is common trends: had the treated properties not been treated, their

average potential outcome (sale price) would have di�ered from the average potential outcome among control

properties only by a constant. One can evaluate this assumption indirectly by examining pre-treatment

trends. We do so for each treatment in turn using Figures 2, 3, and 4, which plot time series of residual sale

prices, net of block dummies.

• Biggert-Waters: Figure 2 shows that sale prices in the 1983 �oodplain moved in parallel with sale prices

outside the �oodplain until after Biggert-Waters became law on July 6, 2012. Many properties in the

1983 �oodplain also �ooded during Sandy in late October 2012, so the peak-to-trough drop apparent in

the �gure re�ects both events. This raises an important point of interpretation for our Biggert-Waters

estimate. If the e�ect of Biggert-Waters had not fully realized by the time Sandy struck, then our

Biggert-Waters estimate is a lower bound on the magnitude of the true e�ect and our Sandy estimate

is an upper bound.

• Sandy: Figure 3 plots three series: 1) properties not �ooded by Sandy; 2) properties �ooded by Sandy

and located in the 1983 �oodplain; and 3) properties �ooded by Sandy and located outside the 1983

�oodplain. Sale prices for �ooded properties moved closely in parallel with sale prices for non-�ooded

properties 2003-2012.

• New �oodplain maps: Figure 4 also plots three series: 1) properties outside the new �oodplain; 2)

properties in the new �oodplain and �ooded by Sandy; and 3) properties in the new �oodplain and not

�ooded by Sandy. Groups 1 and 2 exhibit common trends throughout the �gure. Group 3 generally

moves in parallel with the other two, but exhibits higher variance. In particular, it diverges upward

2011-2012 before converging to group 1 just before the release of the ABFE maps in January 2013.

If group 3 prices would have increased relative to group 1 prices absent the new maps, then our new

map estimates for properties not �ooded by Sandy will be biased upward (downward in magnitude).

The brief March 2014 spike in group 3 prices coincides with the passage of the HFIAA (see Section

2) and may re�ect short-lived buyer optimism about the law. This short-run deviation from long-run

equilibrium prices will likewise bias our new map estimates upward (downward in magnitude). In

15https://www.google.com/trends/. �Numbers represent search interest relative to the highest point on the chart for the
given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular.
Likewise a score of 0 means the term was less than 1% as popular as the peak.� Last accessed December 15th, 2017.

16Sales prices are converted to 2010 dollars using the S&P/Case-Schiller Home Price Index for New York City (NYXRSA).
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Table 4 we present estimates from a triple-di�erence speci�cation that show these small deviations

from parallel trends do not meaningfully bias our double-di�erence estimates. (Appendix Figure A2

provides evidence that the parallel trends assumption is satis�ed in this triple-di�erence speci�cation.)

While we have pointed out a few areas of concern, the common trends assumption looks broadly reasonable.

Conditional on that assumption, our di�erence-in-di�erences models will recover causal e�ects.

Four years after treatment, none of the �gures show clear evidence that prices in any treatment group

are returning to baseline.17 This is potentially inconsistent with Gallagher [2014], which �nds a relatively

smooth decline in insurance takeup beginning two years after a �ood event. It is possible that the price

e�ects we estimate will decay in the future. It is also possible they will not, as the risk signals we study are

qualitatively di�erent. First, Gallagher [2014] examines only �ood experience, which may be comparable to

Sandy but not to Biggert-Waters or the new maps. Second, market participants may have interpreted the

risk signals we study as informative about climate change. Most New York City residents (79%) believe the

scienti�c consensus on climate change [Howe et al., 2015], and media frequently linked Hurricane Sandy to

climate change [Barrett, 2012, "It's Global Warming, Stupid"]. In this context risk signals might reasonably

be expected to produce persistent e�ects.18

In a typical hedonic analysis, property and building attributes that may be correlated with the non-market

good of interest are included to avoid bias. Because our data contain few measures of such attributes, we rely

instead on large sets of �xed e�ects. If properties within the cells de�ned by these �xed e�ects are su�ciently

similar, this approach e�ectively addresses potential endogeneity from unobserved property attributes.

The primary estimating equation is as follows.

ln (Ynblwt) = α1Ol + α2Sl + α3Nl + α4OlSl + α5OlNl + α6SlNl + α7OlSlNl (1)

+ β1OlPBW,t

+ γ1SlPS,tOl + γ2SlPS,t!Ol + γ3SlPS,tOlDl + γ4SlPS,t!OlDl

+ δ1NlPN,tSl + δ2NlPN,t!Sl

+ ηn + θw + εnblwt

In Equation 1, n indexes neighborhood, b block, l lot, w year-week, and t date. O is a dummy for the old

�oodplain and PBW is a dummy for a sale after the passage of the Biggert-Waters Act. S is a dummy for

Sandy �ooding, D is depth of Sandy inundation, and PS is a dummy for a sale after Sandy. N is a dummy

for the new �oodplain and PN is a dummy for a sale after the issue of the new �oodplain maps. Variables

preceded by a logical not (for example, !O) denote dummies that equal one when the indicated dummy

equals zero and vice versa. Terms pre-multiplied by coe�cients α control for cross-sectional di�erences across

treatment and control groups. We employ neighborhood dummies ηn in our least saturated speci�cations,

then move to block dummies ηb and tax lot dummies ηl. The last approach leaves only within-tax-lot

(within-property) variation to identify treatment e�ects and so omits the perfectly collinear cross-sectional

variables. Because we include a vector of year-week dummies θw to control �exibly for secular time trends,

the �post� dummies do not enter separately.

The Biggert-Waters Act enters the equation in standard fashion and the relevant parameter is β1. We

17There is possible evidence of convergence at the very end of our sample among properties in the new �oodplain that were
not �ooded by Sandy, but this is sensitive to how one estimates the local regression.

18When considering the price e�ects of Sandy in New York City through the end of 2017, Ortega and Taspinar [2017] similarly
�nd �persistent price reduction a�ecting all �ood zone properties�.
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interact the Sandy treatment with indicators for being in or out of the 1983 (old) �oodplain, and with depth

of inundation. (The triple and quadruple interactions involving Sandy and the new �oodplain maps allow

for heterogeneous double-di�erence e�ects; they do not imply a triple- or quadruple-di�erence estimation

strategy.19) The marginal e�ects of Sandy on properties that experienced near-zero inundation (γ1 and γ2)

re�ect very little physical damage. We hypothesize that near-zero inundation will produce larger e�ects for

properties that were outside the old �oodplain: γ2 < γ1. The parameters γ3 and γ4 capture marginal e�ects

of inundation. We interact the new maps treatment with indicators for being �ooded or not �ooded by Sandy.

This allows us to test the hypothesis that inclusion in the 2013 (new) �oodplain produced stronger impacts

on properties that were not �ooded by Sandy: δ2 < δ1. We pool across the new map releases discussed in

Section 2, as all but a handful of properties in our estimation sample do not change status across releases.

5 Reduced-form results

Table 1 presents estimates corresponding to Equation 1. All speci�cations include year-week �xed e�ects.

Column 1 employs neighborhood �xed e�ects. Column 2 moves to block �xed e�ects applied to the same

sample. In column 3 the sample changes to properties for which we observe repeated sales, but the speci�-

cation again includes block �xed e�ects. Finally column 4 adds lot �xed e�ects, using only repeated sales of

the same property to identify treatment e�ects. Only one dimension of the analysis�either speci�cation or

sample�changes between adjacent columns. Standard errors are clustered at the Census Tract level, allowing

for arbitrary covariances of εnblwt across properties and over time within a tract.20

The estimated e�ect of Biggert-Waters is negative in three of four speci�cations, and near -1.7 percent

in the repeated sales speci�cation, but all these estimates are imprecise. One cannot reject a hypothesized

null e�ect at any conventional level of signi�cance. These point estimates are similar to the hedonic Biggert-

Waters e�ects estimated by Bakkensen and Barrage [2017], who �nd e�ects ranging from -1 to -7 percent.

As mentioned in Section 4, if the e�ects of Biggert-Waters had not fully realized by the time Sandy hit in

late October 2012, then our estimates represent lower bounds on the magnitude of the true response.

Equation 1 interacts the Sandy treatment variable SlPS,t with dummies for being in or out of the old

(1983) �oodplain (Ol and !Ol) and a continuous measure of Sandy inundation (Dl). That is, we allow the slope

and intercept of the Sandy treatment to depend on whether a property was in the o�cial �oodplain when the

storm hit. We interpret the intercepts (�Sandy*in old FP� and �Sandy*not in old FP�) as e�ects on properties

that were �ooded by Sandy (Sl = 1), but for which the level of inundation was near zero.21 The inundation

slopes (�Sandy*in old FP*depth� and �Sandy*not in old FP*depth�) potentially re�ect both unrepaired

damage and other mechanisms. While inundation estimates vary somewhat over speci�cations and samples,

they are in the range from -1.8 to -3.8 percent per foot of �ood depth in seven of eight cases. There is no

evidence that the marginal e�ect of inundation is di�erent for properties inside and outside the old (1983)

�oodplain, but the pattern of results for the estimated intercepts is di�erent. In speci�cations with richer

cross-sectional controls (columns 2 and 4), properties outside the old �oodplain show statistically signi�cant

19Estimating Equation 1 with γ1SlPS,tOl + γ2SlPS,t!Ol is equivalent to estimating with σ1SlPS,t + σ2SlPS,tOl; parameter
relationships are σ1 = γ2 and σ2 = γ1 − γ2. In principle one could also include σ3OlPS,t. Conditional on the other included
variables this would yield the marginal e�ect of Sandy on old-�oodplain properties that did not experience �ooding. As a
practical matter, this is an extremely small group of properties. In unreported results, estimates σ̂3 are negative but imprecise
and do not meaningfully change our estimates of interest.

20There are 24,765 clusters in columns 1-2 and 21,400 clusters in columns 3-4. The average number of observations per cluster
is 14.9 in columns 1-2 and 9.6 in columns 3-4.

21FEMA generally records �oods up to 5 inches of inundation as zeros; these are colloquially known within the agency as
�carpet soaker� �oods [US Government Accountability O�ce, 2008].
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negative responses of -3.5 and -6.5 percent, respectively. Corresponding estimates for properties inside the

old �oodplain are smaller in magnitude, at +3.1 and -4.8 percent, respectively, and are not statistically

signi�cant. While we do not have su�cient precision to reject a null hypothesis of equal parameters inside

and outside the �oodplain, these estimates are suggestive of di�erent mechanisms at work. From column

4, the marginal e�ects of Sandy at average inundation are −.0476 + (−.0180/ft ∗ 4.69ft) = −.13 in the old

�oodplain and −.0650 + (−.00618/ft ∗ 2.22ft) = −.08 outside it. These estimates are roughly comparable

to those in Ortega and Taspinar [2017], 11 and 17 log points for �ooding depths below and above 5.5 feet.22

In a similar spirit, Equation 1 interacts the new map treatment with dummies for being �ooded or not

during Sandy. In columns 2-4 the estimated e�ect of new maps on properties �ooded by Sandy is small in

magnitude (from -1.5 to -2.7 percent) and not statistically distinguishable from zero at the �ve percent level.

The estimated e�ect of new maps on properties not �ooded by Sandy, in contrast, ranges from -12 to -18

percent (-13 to -20 log points) in these speci�cations, with one percent statistical signi�cance maintained in

all columns. Estimates in the repeated sales sample (columns 3-4) are larger, which is potentially consistent

with selection, but we cannot reject a null hypothesis of equal parameters across any pair of columns. To put

these magnitudes in context, note that Hallstrom and Smith [2005] and Carbone et al. [2006] �nd a similar

response (-19 percent) to a near-miss by Hurricane Andrew in Lee County, Florida. Bakkensen and Barrage

[2017] estimate 12.7 percent price declines in Providence by 2040 in their benchmark simulation, and 16.1

percent when nearly half of all agents are over-optimistic ex ante. Bin and Landry [2013] �nd prices of North

Carolina properties in the �oodplain declined 6 to 20 percent following Hurricanes Fran and Floyd. These

prior results suggest both that the magnitude of our estimate is plausible and that it does not come from

some peculiarity of New York City. It is possible that the new �oodplain maps would have produced smaller

e�ects had Sandy not struck in the previous year.

6 Robustness

6.1 Reduced-form robustness

Tables 2 and 3 report the results from the block and lot �xed e�ects speci�cations (employed in columns

2 and 4 of Table 1) re-estimated on alternative samples and using alternative speci�cations respectively.

Estimates are generally similar to our primary results; we comment only on the di�erences.

Given the spatial correlation in property values it could be that the values of properties near the border

of the treated area are impacted by spillovers from nearby properties. Columns 1 and 2 of Table 2 report

the estimates of the block �xed e�ects and lot �xed e�ects speci�cations after properties within 50 meters

of the original one percent �oodplain boundary (inside and outside) are dropped from the samples. Another

potential issue is that time-varying unobserved amenities may be positively correlated in space. If so, using

properties from all over New York City to construct a counterfactual price path might introduce bias and the

control group should instead include only nearby properties. We re-estimate our main analyses excluding

properties more than 500 meters outside the original �oodplain. Estimates are reported in columns 3 and 4

of Table 2. Our main analysis focuses on properties in Tax Class 1, i.e. residential properties with three or

fewer units. As a placebo test, we estimate models using properties in Tax Class 2: residential buildings with

four or more units and individually owned units in such buildings. Such properties are plausibly una�ected

22Following Hurricane Sandy, the State of New York set aside funds to purchase severely damaged properties at pre-�ood
market rates. As of October 2016, only 132 such acquisitions had occurred [New York City Mayor's O�ce of Housing Recovery
Operations, 2016]. It is therefore unlikely that this program is meaningfully biasing our estimates.

10



by the risk signals we consider, as they are typically many �oors above ground level and commonly obtain

�ood insurance on the private market [Dixon et al., 2013].23 Estimates in columns 5 and 6 of Table 2 show

no signi�cant e�ects from any of the �ood risk signals.

Our preferred speci�cation includes a �xed e�ect for each week in the sample. Columns 1 and 2 of

Table 3 report estimates from a speci�cation with �xed e�ects in sale date. While the temporal �xed e�ects

applied so far account for uniform time trends across New York City, area-speci�c trends remain a concern.

Columns 3 and 4 include borough by year-month �xed e�ects. Estimated intercept changes from Sandy

remain negative and statistically signi�cant, but under lot �xed e�ects the magnitude becomes greater for

properties in the old �oodplain. Point estimates for the Biggert-Waters Act are positive, but not statistically

signi�cant. Time-varying lot-level unobservables like storm damage and remodeling remain a potential threat

to identi�cation. In Appendix Table A5, we present estimates from a speci�cation with tax-lot-speci�c linear

trends. Standard errors increase by a factor of roughly 4 and no estimate is statistically signi�cant. Point

estimates are similar to those from our preferred speci�cation for all signals except Biggert-Waters, for

which the estimate becomes positive.24 Our discussion has characterized the intercept change from Sandy as

potentially suggestive of di�erent mechanisms inside and outside the old �oodplain. To probe the stability

of this empirical pattern, we include a quadratic in Sandy inundation in columns 5 and 6. Under lot �xed

e�ects the estimated intercept change is greater in magnitude for properties inside the old �oodplain, but

the estimate is very imprecise, with a standard error of more than 10 log points.

It is possible that expected future defensive investments bias our estimates upward (downward in mag-

nitude). Appendix A describes New York's proposed investments, and Appendix Table A6 estimates the

impact of the announcement of the most developed proposal, Manhattan's �BIG U.� While the small number

of Tax Class 1 transactions in Manhattan severely limits precision, we �nd no positive e�ect of the proposed

additional �ood protection.

Last among our speci�cation checks, we consider a triple-di�erence model. The dimensions along which

we di�erence are: 1) time; 2) space; and 3) tax class. Intuitively, we estimate double-di�erence e�ects for

Tax Class 2 and subtract these from the double-di�erence e�ects for Tax Class 1. The estimating equation

is similar to Equation 1, but each variable now enters both alone (giving the e�ect on Tax Class 2) and

as an interaction with an indicator variable for Tax Class 1.25 The resulting estimates appear in Table 4.

Standard errors are larger those from Table 1, but most point estimates are strongly similar. In columns 1

and 2 the e�ect of new maps on properties un�ooded by Sandy is smaller (-9 and -12 log points) than in our

double-di�erence speci�cation (-15 and -13 log points) and not statistically signi�cant (p = .11 in column 2).

In columns 3 and 4 the estimates of this e�ect are -16 log points (statistically signi�cant at the �ve percent

level), similar to the corresponding double-di�erence estimates (-16 and -19.8 log points).

6.2 Descriptive evidence from Google Trends

Risk signals can produce the sale price e�ects estimated above only if the marginal buyer receives them.

Using data from Google Trends, we provide descriptive, non-causal evidence consistent with signal di�usion.

23Meldrum [2016] �nds e�ects of NFIP risk rating on condominium prices in cross-sectional models. The setting of that
study is quite di�erent: low-rise condominiums in Boulder County, CO, frequently including ground-level common property like
parking lots and swimming pools. New York condominiums in large buildings plausibly face much less risk.

24This speci�cation is extremely demanding. Estimating a �xed e�ect and slope for each tax lot requires more than 160,000
parameters in a sample of just over 200,000 observations. Because a lot-speci�c a�ne function will �t two sale prices perfectly,
identi�cation comes only from properties that sell three or more times, which potentially exacerbates selection. The estimated
e�ect of the new �oodplain maps on properties not �ooded by Sandy changes from -.198 in our preferred speci�cation to -.167
(not statistically signi�cant) in the speci�cation with tax lot �xed e�ects and tax lot linear trends.

25The Tax Class 1 dummy also enters the triple-di�erence speci�cation alone.
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Figure 5 plots Google searches for ��oodplain� in New York City and the entire United States, residualized

on month of year dummy variables 2004-2016.26 We limit the horizontal range of the plot in order to

focus on the period in which the risk signals occurred. The global maximum of the New York City series

occurs in January 2013, the month in which the �rst updated FEMA maps (the ABFE maps) were released.

This is consistent with the marginal buyer of a property included in the new �oodplain learning about the

maps around this time. We do not observe the locations or identities of those searching, however, so the

correlation is merely suggestive. Later releases of the preliminary work maps (June 2013) and preliminary

FIRMs (January 2015) do not produce discernible e�ects on the time series. This is consistent with later

releases, which left the ABFE �oodplain largely unchanged, conveying little new information to the marginal

buyer. There is a large local maximum associated with Hurricane Sandy and a very small one associated

with the Biggert-Waters Act, again consistent with transmission of the signal to the marginal buyer.

It is possible these correlations arise from omitted confounders. To test this, Figure 5 includes a similar

time series for the entire United States. The US series shows no evidence of local maxima associated with

any of the �ood risk signals we study. This suggests that the New York City maxima do not arise from

nationwide time-varying confounders.

7 Mechanisms

7.1 Candidate mechanisms

In this section we present empirical evidence on possible mechanisms for our reduced-form results: 1) sorting;

2) selection; 3) insurance premiums; and 4) beliefs.

First let us consider sorting. If the risk preferences or perceptions of the marginal buyer were evolving

di�erently in the treatment and control groups, that could cause prices to diverge. We test for sorting

on known correlates of risk preferences and perceptions, speci�cally: gender, age, ethnicity, permanence of

residents, education, and income [Lindell and Hwang, 2008, Kellens et al., 2011, 2012, Mills et al., 2016].27

Table 5 presents changes in these characteristics from the 5-year period prior to our treatments (2007-2011)

to the 5-year period during and after treatments (2012-2016), calculated separately for Census Tracts in

the new one percent �oodplain and outside.28 We �nd no evidence that correlates of risk preferences or

perceptions shift di�erentially. In fact, the only signi�cant di�erence in Table 5 is in the mean sale price of

residential properties, consistent with our reduced-form estimates in Table 1. The statistical power of these

tests may be low because ACS aggregates re�ect all residents, rather than new residents. Our choice of a

long post-treatment period partially mitigates this problem by making new residents a higher fraction of the

total, but we cannot categorically exclude the possibility of sorting.

The second potential mechanism is selection into the set of observed transactions. Under tax lot �xed

e�ects such selection is not a potential source of bias, but it could raise external validity concerns. To test

for selection we use transactions prior to June 1, 2012 to estimate log price as a function of quartics in lot

area, �oor area, building age, and number of units.29 We then calculate �tted values for all transactions and

estimate treatment e�ects on these �tted values. Intuitively, we are testing whether observable characteristics

26There is seasonality in such searches, including a predictable increase during the Atlantic hurricane season.
27Measures of risk preferences and perceptions are not available at the geographic and temporal resolution necessary to

directly assess sorting.
28In Table 5 we include a Census Tract in the �oodplain group if any part of it overlaps the �oodplain. The groups of Tracts

overlapping with the treatment geographies of the other risk signals are largely similar.
29These are the only well-populated lot-level variables available in our transactions data.
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of transacted properties change such that we would expect price changes unrelated to the treatments we

study. Appendix Table 6 presents these estimates, which are everywhere less than 3.2 log points in magnitude

and generally not statistically signi�cant. In particular, estimates for the updated �oodplain maps are less

than 2 log points in magnitude and none are statistically signi�cant. In addition, we employ the method of

Oster [2017] to bound the selection on unobservables that would be required to explain away our large e�ects

of new �oodplain maps on properties not �ooded by Sandy. The estimated value of Oster's δ parameter

corresponding to column four of Table 1 (our preferred speci�cation) is -1.8.30 For our estimate to arise solely

from selection on unobservables, the covariance of unobservables with treatment, scaled by the variance of

those unobservables, would have to be opposite in sign and at least 1.8 times larger than the corresponding

ratio for the observables in our estimating equation. Intuitively, because R2 = .72 in this regression, there

is limited scope for unobservables to matter and selection would have to be particularly severe to generate

our estimate.

We can say little about the importance of insurance premiums using our data. Our negative point

estimates for the Biggert-Waters Act (Table 1) are consistent with capitalization of insurance premiums,

but could also come from another mechanism like risk salience. Prior literature has investigated premium

capitalization. Harrison et al. [2001] �nd less than full capitalization of �ood insurance premiums, but also

�nd that capitalization responds in the expected direction to NFIP rule changes. Comparing homes in the

one percent �oodplain to those in the .2 percent �oodplain, Bin et al. [2008b] �..�nd that the capitalized

values of the insurance premiums are in close agreement with the sales price di�erentials.�

Finally, it is possible that changes in beliefs (subjective �ood risk) are partially responsible for the

observed price changes. To evaluate this candidate mechanism, we exploit the $250,000 NFIP structure

coverage cap. Below the cap, one would expect little or no relationship between structure value and the

map e�ect, because there is no uninsured value and premiums increase slowly in structure value.31 Above

the cap, marginal e�ects potentially re�ect belief updating over risk to uninsured structure value. In this

range one would expect a negative relationship between structure value and the map e�ect, because the same

hypothesized change in p is being multiplied by larger uninsured value for more costly structures. We test

these predictions by estimating e�ects of the updated �oodplain maps in $100,000 structure value bins.32

Figure 6 displays the new map e�ects on transaction prices for properties that had (left panel) and had

not (right panel) been �ooded in Sandy. Estimates for Sandy-�ooded properties are small and statistically

insigni�cant. Estimates for properties not �ooded by Sandy are near zero for properties with structure value

below the cap, consistent with buyers internalizing this feature of the insurance contract. Estimates are

large, marginally signi�cant, and negative for properties with uninsurable structure value above the cap.

The magnitude of the marginal e�ects increases monotonically in structure value above the cap, consistent

with belief updating.

7.2 Theory: beliefs and insurance premiums

The empirical evidence of Section 7.1 points to beliefs as the most important mechanism behind our esti-

mated reduced-form price e�ects. To better understand this relationship, we must impose some theoretical

structure. A priori such structure should accommodate both �ood insurance and changes in beliefs. Given

30These estimates are from Oster's psacalc Stata package. We conservatively assume that R2 for a model including the
unobservables would equal 1.

31Because small �oods are more common than big ones, the marginal cost of $100 in coverage declines in structure value.
32Structure values are based on the portion of total property value not assigned to land in 2012 assessment data from the

NYC Department of Finance.
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the importance of risk preferences in this setting, it should also allow for curvature of the utility function.

Within the class of models with these features, we strive for maximum parsimony.

With these goals in view, we extend the model of Kousky [2010], which descends from Smith [1985]

and MacDonald et al. [1987]. Housing supply is assumed �xed, with the number of units strictly greater

than the number of agents. Prices are a function of a vector of structural, locational, and environmental

characteristics Z and an agent's subjective probability of a �ood event, p. The hedonic function is thus

H(Z, p). The model is static, supposing an agent whose beliefs are stationary in the absence of parameter

shocks. Such stationarity could come from inattention [Sims, 2006, Kahneman, 2003] or myopia [Thaler et al.,

1997], coupled with the type of permanent updating in response to large shocks described by Kozlowski et al.

[2017]. This type of updating is one possible explanation for the large divergences between �ood beliefs and

objective risks documented in Botzen et al. [2015]. Appendix D presents an alternative, dynamic model in

which subjective �ood probability pt rises over time to re�ect anticipated climate change.

Let Y be exogenous income and X consumption of a numeraire good. The budget constraint is then

Y = X + H(Z, p). The �ood insurance contract is the same in all locations, with premium I, anticipated

�ood loss L, and insurance payout V .33 To simplify theoretical exposition, we assume all agents purchase

insurance, but in the empirical calculations of Section 7.3 we adjust for time-varying, incomplete insurance

takeup.34 Then we have state-dependent budget constraints

X1 = Y −H(Z, p)− I − L+ V (2)

X0 = Y −H(Z, p)− I

where X1 and X0 are consumption levels in the �ood and non-�ood states of the world respectively.

Given the lack of evidence for di�erential sorting in Table 5, we assume a representative agent. The agent

is assumed to have a twice continuously di�erentiable von Neumann-Morgenstern utility function such that
∂U
∂X > 0 and ∂2U

∂X2 < 0, but no functional form is assumed. Relative to Bakkensen and Barrage [2017], this

model sacri�ces heterogeneity in beliefs but avoids imposing risk neutrality (linear utility), which may be

undesirable in studying �ood risks. Expected utility can then be written simply.

EU = pU(X1,Z) + (1− p)U(X0,Z) (3)

The subjective probability of a �ood, p, is a function of a property's o�cial �oodplain designation F ,

experience with past �ooding events E, and �ood insurance premiums I.35 Thus the anticipated magnitude

of losses (conditional on �ooding) depends on F, E, and I. Insurance premiums depend only on the o�cial

�ood zone F and the characteristics of the property Z. Expected utility can now be rewritten.

EU = p(F,E, I)U (Y −H(Z, p(F,E, I))− I(Z, F )− L(F,E, I) + V (Z),Z) (4)

+(1− p(F,E, I))U (Y −H(Z, p(F,E, I))− I(Z, F ),Z)

33Within SFHAs, risk ratings and premia for new policies are approximately equal everywhere. Di�erences do arise because
of varying structure elevations (e.g. a house on 6-foot stilts requires a lower premium), but we abstract from such variation.

34That is, in our theoretical model we treat insurance takeup as exogenous. This allows us to remain agnostic about the
source of observed low takeup rates; possibilities include hyperbolic discounting, biased beliefs, mispricing by the NFIP, and
many others.

35Previous models of this type have not allowed beliefs to depend on insurance premiums; we hypothesize that a consumer
whose premiums change may update her belief about the riskiness of her property.
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The agent maximizes expected utility by choosing a location, which implies an attribute-belief bundle

(Z, p). As in previous work [Smith, 1985, MacDonald et al., 1987], we assume a housing equilibrium under

which all agents enjoy equal expected utility EU . Under this assumption one can directly di�erentiate

expected utility (rather than the �rst-order conditions of the agent's problem) with respect to a parameter

of interest and set the resulting derivative to zero. Intuitively, when a parameter changes the hedonic function

must change to maintain equilibrium expected utility.

7.2.1 Biggert-Waters

The passage of the Biggert-Waters Act served as a shock to insurance premiums, I, because it removed

(over time) subsidies that had previously kept premiums arti�cially low. Di�erentiating EU with respect

to I, subject to the budget constraints, allows us to solve for the marginal e�ect of a change in insurance

premiums on housing prices.

∂H

∂I
=

[U(X1)− U(X0)] ∂p∂I − p
∂U
∂X1

∂L
∂I −

[
p ∂U
∂X1

+ (1− p) ∂U∂X0

]
p ∂U
∂X1

+ (1− p) ∂U∂X0

(5)

Recall that we assumed a twice continuously di�erentiable utility function. Then by the intermediate value

theorem there exists a point Xc on [X1, X0] such that ∂U
∂Xc

= p ∂U
∂X1

+ (1 − p) ∂U∂X0
. By the mean value

theorem, there exists a point Xm on [X1, X0] such that ∂U
∂Xm

= 1
X0−X1

´X0

X1

∂U
∂X (X) dX. Then we can replace

U(X1)− U(X0) = (X1 −X0) ∂U
∂Xm

= (V − L) ∂U
∂Xm

. Our derivative now becomes

∂H

∂I
=

[
(V − L) ∂U

∂Xm

]
∂p
∂I

∂U
∂Xc

−
p ∂U
∂X1

∂L
∂I

∂U
∂Xc

− 1

To this point, no approximations have been required. We next employ �rst-order Taylor expansions to

approximate numerator marginal utilities in terms of denominator marginal utility ∂U
∂Xc

. We obtain ∂U
∂Xm

≈
∂U
∂Xc

+ (Xm −Xc)
∂2U
∂X2

c
and ∂U

∂X1
≈ ∂U

∂Xc
+ (X1 −Xc)

∂2U
∂X2

c
. Our derivative is now

∂H

∂I
≈

[
(V − L)

(
∂U
∂Xc

+ (Xm −Xc)
∂2U
∂X2

c

)]
∂p
∂I

∂U
∂Xc

−
p
(
∂U
∂Xc

+ (X1 −Xc)
∂2U
∂X2

c

)
∂L
∂I

∂U
∂Xc

− 1 (6)

We wish to simplify this expression using the de�nition of Arrow-Pratt absolute risk aversion r (X) = −
∂2U
∂X2
∂U
∂X

[Arrow, 1970, Pratt, 1964]. Reversing the order of the numerator subtractions and dividing yields

∂H

∂I
≈ (V − L) [1 + (Xc −Xm) r (Xc)]

∂p

∂I
− p [1 + (Xc −X1) r (Xc)]

∂L

∂I
− 1 (7)

To the best of our knowledge, this approximation is novel. It is potentially applicable in other settings,

particularly those involving low-probability events. In the expression above, Xc is the point on [X1, X0] at

which the marginal utility of consumption is equal to the expected value of marginal utility of consumption

across �ood and non-�ood states. If subjective �ood probability p is small, Xc will be in the neighborhood of

X0. Xm is point at which the marginal utility of consumption attains its average over the interval [X1, X0].

The model predicts a negative e�ect of increased premiums on home prices by way of three channels: 1)

increased subjective �ood probability in term one; 2) an increase in expected �ood severity in term two, and

3) increased premiums in term three. Alternatively one can simplify in terms of relative risk aversion; see
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Appendix B.

7.2.2 Hurricane Sandy

In the analogous derivative for Hurricane Sandy, E denotes �ood experience.

∂H

∂E
=

[U(X1)− U(X0)] ∂p∂E − p
∂U
∂X1

∂L
∂E

p ∂U
∂X1

+ (1− p) ∂U∂X0

(8)

As before, we can simplify this expression.

∂H

∂E
≈ (V − L) [1 + (Xc −Xm) r (Xc)]

∂p

∂E
− p [1 + (Xc −X1) r (Xc)]

∂L

∂E
(9)

Flood experience decreases property values through two channels: 1) increased subjective �ood probability

in term one; 2) an increase in expected �ood severity in term two.36

7.2.3 Updated Flood Risk Maps

Updated �oodplain maps (F ) may provide new information on properties not previously included in the

one percent �oodplain, and may increase the salience of o�cial risk estimates among properties previously

included. The housing response by an optimizing consumer is characterized by the following.

∂H

∂F
=

[U(X1)− U(X0)] ∂p∂F − p
∂U
∂X1

∂L
∂F −

[
p ∂U
∂X1

+ (1− p) ∂U∂X0

]
∂I
∂F

p ∂U
∂X1

+ (1− p) ∂U∂X0

(10)

Again we can approximate in terms of observables.

∂H

∂F
≈ (V − L) [1 + (Xc −Xm) r (Xc)]

∂p

∂F
− p [1 + (Xc −X1) r (Xc)]

∂L

∂F
− ∂I

∂F
(11)

The model predicts a negative e�ect of the updated �oodplain maps on home prices by way of three channels:

1) increased subjective �ood probability in term one; 2) an increase in expected �ood severity in term two,

and 3) increased future premiums in term three.

7.3 Estimated belief changes

We next use the analytical results from Section 7.2 to build a bridge from our reduced-form results to belief

changes. Equations 7, 9, and 11 characterize the marginal e�ects on property values of changes in insurance

premiums, �ood experience, and o�cial �ood zone designation. Values for each of these marginal e�ects have

been empirically estimated and reported in Table 1. In our most saturated speci�cations, marginal e�ects are

identi�ed from repeated sales of the same property, so they re�ect the valuations of di�erent marginal buyers.

Under the strong assumption that all buyers are identical, these di�erences in valuation arise solely from

belief changes. If there is heterogeneity in beliefs but preferences are identical, then di�erences in valuation

arise from both changes in beliefs and sorting on beliefs. In either case we recover the di�erences in �ood

beliefs of marginal buyers induced by our three signals (∂p∂I ,
∂p
∂E , and

∂p
∂F respectively). Our calculations

require estimates of several structural parameters, which we now discuss.

36Our model does not include a channel by which E a�ects property values directly via �ood damage; that is, Z is not treated
as a function of E. This is partly for expositional simplicity and partly because the empirical evidence of Table A5 suggests
unrepaired damage is not a �rst-order source of bias in our empirical estimates.

16



As explained in Section 7.2, if p is small then Xc is close to X0, consumption in the non-�ood state.

In such a setting, it is reasonable to employ estimates of Arrow-Pratt absolute risk aversion derived from

ordinary periods, rather than the aftermath of a disaster. Empirical evidence generally supports the Arrow

hypothesis that absolute risk aversion decreases in wealth [Arrow, 1970, Bar-Shira et al., 1997, Guiso and

Paiella, 2008]. New York City home buyers are among the wealthiest people in the world, so we want to

employ one of the smaller estimates. Many of the empirical papers in this literature estimate lower bounds

on absolute risk aversion on the order of 10−3 [Saha et al., 1994, Cramer et al., 2002, Sydnor, 2010]. We

adopt r (Xc) = 1.2∗10−3 from Saha et al. [1994].37 Appendix Table A7 shows the results of our calculations

for di�erent values of r(Xc).

To annualize our marginal e�ects, we employ a 2.6 percent discount rate consistent with both Giglio et al.

[2016] and Bracke et al. [2018]. These studies estimates discount rates by comparing the prices of extremely

long-term leases (99 to 1,000 years) to outright purchases of property, and obtain strongly similar estimates

from the United Kingdom and Singapore. Appendix Table A8 shows the results of our calculations under

di�erent assumed discount rates.

As noted by Kousky [2010], in theory we cannot disentangle changes in subjective �ood probability from

changes in anticipated damages. For the calculations below we assume anticipated damages are �xed, that is
∂L
∂I = ∂L

∂E = ∂L
∂F = 0. There is empirical support for this assumption. Gallagher [2014] �nds that the increase

in NFIP insurance uptake following a �ood does not depend on �ood severity, noting that homeowners �do

not appear to use new �oods to learn about expected �ood damages.� If this assumption does not hold, then

our estimates are upper bounds on the magnitude of updating.

Our model derivatives assume some level of insurance coverage, but empirically uptake of �ood insurance

has been quite low. A study by the RAND Corporation found that �55 percent of the one-to four-family

homes in� the one percent �oodplain �had federal �ood insurance on the eve of Hurricane Sandy� [Dixon et al.,

2013]. We therefore assume that the valuations of ~55% of buyers in the �oodplain are well-characterized

by the presented equations, while the valuations of the other 45% are simpler. Such buyers do not face a

premium increase in response to the passage of the Biggert-Waters Act (∂H∂I = 0),38 nor are they a�ected by

the NFIP mandate under the new maps ( ∂I∂F = 0). To account for premium subsidies, we rely on a City of

New York estimate that 75 percent of NFIP policies in e�ect during Sandy were eligible for subsidies [NYC,

2013].

7.3.1 Biggert-Waters

As reported in Column 4 of Table 1, the Biggert-Waters Act reduced transaction price by 1.73 percent among

properties in the one percent �oodplain. Since neither uninsured nor unsubsidized properties experienced a

shock to insurance premiums from the Biggert-Waters Act, we introduce the following adaption of Equation

7.
∂H

∂I
≈ 0.55

{
0.75

[
(V − L) (1 + (Xc −Xm) r (Xc))

∂p

∂I
− 1

]
+ 0.25(0)

}
+ 0.45 (0)

37Note von Neumann-Morgenstern expected utility is unique up to an a�ne transformation and Arrow-Pratt absolute risk
aversion is invariant to a�ne transformations [Arrow, 1970, Kreps, 1990]. Therefore Arrow-Pratt absolute risk aversion is unique
and it is reasonable to borrow an estimate from another population, provided that population has similar preferences.

38The Biggert-Waters Act also included some provisions to increase enforcement of NFIP coverage mandates on federally
backed mortgage, but it is not clear that such provisions would signi�cantly change the expected rate of uptake.
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We require an estimate of Xc −Xm. Under diminishing absolute risk aversion, if Xc were equal to X0, then

Xm would lie on the interval
[
X1,

X0+X1

2

]
.39 We approximate using the midpoint of this interval Xm ≈

1
2

(
X1 + X0+X1

2

)
= X1

2 + X0+X1

4 = 3
4X1 + 1

4X0 and substitute to obtain Xc −Xm ≈ X0 −
(

3
4X1 + 1

4X0

)
=

3
4 (X0 −X1) = 3

4 (L− V ).

We calculate expected uninsured loss V −L as follows. As of 2012, NFIP policies in New York City covered

an average of $231k in damages [FEMA, 2012], so payout V equals min(L, $231k) for insured properties and

zero for uninsured properties.40 From Aerts et al. [2013], we calculate that annual expected �ood damage in

New York is .6 percent of structure value S̄. If a property is uninsured, V −L = 0− .006∗ S̄. If a property is
insured, V −L depends on the distribution of loss for severe �oods (L > V ). We calibrate a property-speci�c

loss distribution based on Aerts et al. [2013] and integrate over V −L (for details, see Appendix C). For each

property, we then compute a weighted average of V − L across insured and uninsured states, using the 55

percent insurance rate and 45 percent uninsurance rate as weights. Next we average over properties in the

treatment group. Applying the 2.6 percent discount rate yields a present value of V − L = −$21, 082.

Based on the lot �xed-e�ects speci�cation in Table 1, we estimate: ∂H
∂I = −1.73%, or a reduction of

$8,512 (based on the average sale price in the old �oodplain of $492k) due to the premium increase under

the Biggert-Waters Act. This is equivalent to a $221 loss to the expected annual �ow of hedonic value, so
∂H
∂I = −$221. Rather than a 1 unit change in insurance premiums, we are interested in the increase from

the Biggert-Waters Act, which removed (over time) subsidies for NFIP insurance.41 FEMA estimates that

on average, subsidized premiums were 60% of the actuarially fair level [GAO, 2013; Hayes and Neal, 2011],

so by eliminating these subsidies, Biggert-Waters led to 66% premium increases. The City of New York

estimates that �the average NFIP premium paid on 1- to 4-family residential policies in New York City� was

approximately $1000 in 2012 [NYC, 2013]. The increase in annual premiums is thus: 0.66 ∗ $1000 = $660.

Combining these elements, we now have the following.

∂H

∂I
≈ 0.55

{
0.75

[
(V − L)

(
1 +

3

4
(L− V ) r (X0)

)
∂p

∂I
− 1

]}
⇒

−$221 ≈ (0.55) (0.75)

[
(−$21, 082)

(
1 +

3

4
($21, 082)

(
1.2 ∗ 10−3

)) ∂p

∂I
− $660

]
⇒ (12)

∂p

∂I
≈ −.0003

Taken at face value, this calculation implies that a 66 percent increase in future �ood insurance premiums

led to a decrease in the subjective annual �ood probability of 0.03 percentage points. We interpret this

result as an imprecise zero. That is, the observed change in property values from the Biggert-Waters Act

corresponds almost perfectly to what one would expect if agents internalized expected future premiums but

did not update �ood beliefs. Under an assumption of risk neutrality (r (X0) = 0), this estimate would

be ∂p
∂I ≈ −.0059, implausible in both sign and magnitude. Accounting for risk aversion is important for

recovering belief changes.

39The assumption of diminishing absolute risk aversion is in keeping with theoretical prediction of Arrow [1970] and a large
empirical literature [Saha et al., 1994, Guiso and Paiella, 2008, Sydnor, 2010]. Assuming ∂U

∂X
> 0, diminishing absolute risk

aversion requires

(
∂2U
∂X2

)2

∂U
∂X

− ∂3U
∂X3 < 0. Because Xc < X0, the right endpoint of the interval containing Xm is less than X0+X1

2
.

40Alternatively, one could employ the NFIP structure coverage cap of $250k. This does not meaningfully change the results
of our calculations.

41In addition to the simplifying assumptions already imposed, we are now using derivatives to investigate non-marginal
changes in the values of interest. While we believe the resulting estimates are useful, they are not precise structural parameter
estimates.
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7.3.2 Hurricane Sandy

Our reduced-form estimates show no evidence of updating in response to the depth of Sandy inundation, as

the estimated marginal e�ects of depth inside and outside the �oodplain are similar (see Section 5). Therefore

we focus on estimated changes in intercept, which re�ect near-zero levels of �ooding. From column 4 of Table

1, the marginal e�ect of Sandy at near-zero inundation is −.0476 for properties that were in the �oodplain

at the time of the storm, and −.0650 for properties outside the �oodplain. The average price in the areas

�ooded by Sandy but outside the old �oodplain is approximately $540k, so the change in annual hedonic

�ow from such properties is ∂H
∂E = −.0650 ∗ $540K ∗ 0.026 = −$913. The value of V − L (calculated as

described in Section 7.3.1) is -$22,075, giving us the following.

∂H

∂E
≈ (V − L)

[
1 +

3

4
(L− V ) r (X0)

]
∂p

∂E
⇒

−$913 ≈ (−$22, 075)

[
1 +

3

4
($22, 075)

(
1.2 ∗ 10−3

)] ∂p
∂E
− 0⇒ (13)

∂p

∂E
≈ .0020

Again accounting for risk aversion is important, as imposing risk neutrality yields an estimate greater than

four percentage points. Applying our Equation 13 for properties inside the old �oodplain yields ∂p
∂E = .0015,

or .15 percentage points.

7.3.3 Updated �ood risk maps

We focus on properties included in the new (2013) one percent �oodplain by the updated maps, but which

did not �ood during Sandy. The mean pre-treatment sale price of such properties is $524k. Taking our

reduced-form estimate (converted from log points to percentage) from column 4 of Table 1 yields: ∂H
∂F =

−.18 ∗ $524K ∗ 0.026 = −$2, 452. For the group impacted by this treatment, V − L = −$22, 272.

The expected change in insurance premiums associated with an assignment to the one percent �oodplain

depends on each property's previous designation. Of the 27,953 properties in the larger analytical sample

that are designated as within the one percent �oodplain by the updated �ood risk maps, ~12,000 (42

percent) were within the old �oodplain and so face no premium increase, while ~16,000 (58 percent) are

newly designated. Among properties outside the �oodplain, approximately 20 percent had coverage at a

premium of roughly $506 [Dixon et al., 2013]. In the period following Hurricane Sandy and the updated

�oodplain maps, NFIP takeup in New York City rose to approximately 75 percent (see Appendix Figure A3),

so an additional 55 percent could be expected to purchase coverage at a premium of roughly $1500 [Dixon

et al., 2013]. The average expected change in insurance cost among newly designated properties is then

(.20 ∗ $994) + (.55 ∗ $1500) = $1024. Averaging across properties in the new �oodplain that were in the old

�oodplain and newly designated properties yields the expected change in premiums: .42 ∗ $0 + .58 ∗ $1024 =

$594.42

Returning to Equation 11 and plugging in values for observables yields the following.

42This calculation assumes market participants expected the new maps to take legal e�ect with probability 1. If participants
attached subjective probability less than 1 to this event, then the calculation that follows understates belief updating.
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∂H

∂F
≈ (V − L)

(
1 +

3

4
(L− V ) r (X0)

)
∂p

∂F
− p (1 + (L− V ) r (X0))

∂L

∂F
− ∂I

∂F
⇒

−$2, 452 ≈ (−$22, 272)

(
1 +

3

4
($22, 272)

(
1.2 ∗ 10−3

)) ∂p

∂F
− p (0)− $594⇒ (14)

∂p

∂F
≈ .0043

The map treatment increases subjective �ood probability by .43 percentage points, greater than both our

estimates of Sandy updating (.15 and .2 percent) and our approximate zero response to the Biggert-Waters

Act. Given that FEMA classi�es annual �ood risks greater than one percent as high, the response to the

updated �oodplain maps is proportionally quite large. This estimated belief change is roughly one �fth of the

di�erence between �optimists� and �realists� in Bakkensen and Barrage [2017], and similar to the updating

generated by a �ood in their simulations. As in previous calculations, risk aversion matters; imposing risk

neutrality returns an estimate of nearly 10 percentage points. Even allowing for optimization failures, such

a large estimate is grossly implausible.

8 Conclusion

This study examines the e�ect of three di�erent �ood risk signals on sale prices of small residential properties

in New York City. It �nds the Biggert-Waters Act decreased sale prices by 1.7 percent (not statistically

signi�cant) and Sandy �ooding decreased home values by 8 to 13 percent. The e�ect of the new FEMA

�oodplain maps on properties �ooded by Sandy is near zero, while the e�ect on properties not �ooded by

Sandy is approximately -18 percent.

We investigate possible mechanisms for these price e�ects, �nding no evidence of residential sorting or

selection on the supply side of the market. Using the NFIP structure coverage cap, we �nd evidence that the

large price e�ect on properties that escaped Sandy �ooding, but were included in the new �oodplain map, is

driven by properties with substantial structure value above the cap. This is consistent with belief updating

being an important mechanism behind observed behavioral responses. In light of these �ndings, we develop

a parsimonious theoretical model that includes insurance, beliefs, and risk aversion.

Using a novel approximation of derivatives from this model, we decompose our estimated price e�ects

into changes in expected future premiums and updating. We �nd no evidence of belief updating in response

to the Biggert-Waters Act's premium increases. Flood experience with Sandy increases subjective annual

�ood probability by as much as .2 percentage points, while the new �oodplain maps increase it by as much

as .43 percentage points. The latter two changes are proportionally large, ranging from 20 to 43 percent of

FEMA's roughly 1 percent estimated annual risk for properties in the �oodplain. If such updating leads to

optimizing responses, these results suggest that e�orts to publicize risk maps could yield considerable welfare

bene�ts.

Our �ndings suggest several potential improvements to the NFIP program. They emphasize the impor-

tance of more rapidly updating old NFIP maps to accurately re�ect current risks. They indicate that creation

and publicity of forecast �ood risk maps that re�ect climate change, as required by the Biggert-Waters Act

of 2012, could produce large bene�ts at relatively low cost by facilitating better-informed buying decisions,

insurance choices, and defensive investments.43 More regular updates to �ood risk information could also

43NOAA has produced forecast maps of sea-level rise in New York; see https://toolkit.climate.gov/tool/sea-level-rise-tool-
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allow increasing risk to be capitalized smoothly rather than discretely, spreading the costs across homeowner

cohorts. Congress might also consider extending the NFIP insurance mandate to the current .2 percent

�oodplain, which would force disclosure of risk to a larger set of prospective home buyers. Such steps are

particularly important in New York City, where climate researchers project an increase in the depth of the

500-year �ood from 3.4 meters to 4-5 meters above an increased sea level by the end of the century [Garner

et al., 2017].

sandy-recovery-new-york-city.
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9 Figures
Figure 1: Treatment groups in Coney Island

Maps depict Coney Island in south Brooklyn (Kings County). This is an example; our analyses include all �ve boroughs of

New York City. Floodplain and inundation maps are from FEMA. Black dots represent properties for which sales are

observed in the transaction data from the New York City Department of Finance 2003-2017. The one percent �oodplain

consists of �ood zones A and V. Zone �Shaded X� is the .2 percent �oodplain, and zone X is not considered to be within a

�oodplain as the annual �ood risk is estimated to be less than 0.2 percent.
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Figure 2: E�ect of Biggert-Waters
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Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

Sample is restricted to properties in Tax Class 1. The dependent variable is log property value, residualized on block �xed e�ects.

Plotted lines are local linear regressions, with default Stata kernel and bandwidth. �Not in old �oodplain� denotes properties not in

the 1983 �oodplain. �In �oodplain� denotes properties in the 1983 �oodplain.
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Figure 3: E�ect of Sandy
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Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

Sample is restricted to properties in Tax Class 1. The dependent variable is log property value, residualized on block �xed e�ects.

Plotted lines are local linear regressions, with default Stata kernel and bandwidth. "Not �ooded" denotes properties not �ooded by

Sandy. "Flooded, in old �oodplain" denotes properties in the 1983 �oodplain (which was in e�ect when Sandy struck) and �ooded by

Sandy. "Flooded, not in old �oodplain" denotes properties not in the 1983 �oodplain and �ooded by Sandy. The greater post-Sandy

fall in prices for properties within the old �oodplain is explained by inundation depth (see Table 1).
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Figure 4: E�ect of new �oodplain maps
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Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

Sample is restricted to properties in Tax Class 1. The dependent variable is log property value, residualized on block �xed e�ects.

Plotted lines are local linear regressions, with default Stata kernel and bandwidth. "Not in new FP" denotes properties outside the

2013 �oodplain. "In new FP, �ooded" denotes properties in the 2013 �oodplain that �ooded during Sandy. "In new FP, not �ooded"

denotes properties in the 2013 �oodplain that did not �ood during Sandy.
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Figure 5: Google searches for ��oodplain,� in New York City and nationwide
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Data from Google Trends for the search term ��oodplain� in New York City and the entire United States, 2004-2016. The horizontal

range of the plot is limited for clarity. Google normalizes these data such that the maximum search volume over the period equals 100.

The vertical axis re�ects residuals from a regression of the full time series on month-of-year dummies. Dashed vertical lines correspond

to �ood risk signals.
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Figure 6: Heterogeneous new map e�ects by structure value
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Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

Sample is restricted to properties in Tax Class 1. Reported coe�cient estimates are based on the larger sample using block �xed e�ects

(as in column 2 of Table 1). Structure values are estimated by netting out land value from 2012 assessment data from the New York

City Department of Finance. Sales observations are divided into bins based on the estimated structure value at the time of the sale.

Indicator variables for each of those bins are added to the main speci�cation laid out in Equation 1, both directly and interacted with

all treatment group and treatment period indicator variables and interactions. "In New Floodplain - Sandy Flooded" denotes properties

in the 2013 �oodplain that �ooded during Sandy. "In New Floodplain, Not �ooded" denotes properties in the 2013 �oodplain that did

not �ood during Sandy.
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10 Tables

Table 1: E�ects of �ood risk signals on log transaction prices

(1) (2) (3) (4)
Neighborhood FE Block FE Block FE Lot FE

Biggert-Waters -0.0213 -0.0308 0.0100 -0.0173
(0.0265) (0.0280) (0.0387) (0.0463)

Sandy*in old FP 0.0621 0.0313 -0.0326 -0.0476
(0.0472) (0.0458) (0.0624) (0.0799)

Sandy*not in old FP -0.0112 -0.0355∗∗ -0.0182 -0.0650∗

(0.0185) (0.0173) (0.0254) (0.0350)

Sandy*depth*in old FP -0.0377∗∗∗ -0.0329∗∗∗ -0.0261∗∗∗ -0.0180∗

(0.00696) (0.00613) (0.00854) (0.00996)

Sandy*depth*not in old FP -0.0374∗∗∗ -0.0219∗∗∗ -0.0259∗∗∗ -0.00618
(0.00652) (0.00550) (0.00881) (0.0149)

Floodplain maps*Sandy -0.0153 -0.0273 -0.0267 -0.0159
(0.0219) (0.0180) (0.0266) (0.0376)

Floodplain maps*no Sandy -0.149∗∗∗ -0.131∗∗∗ -0.164∗∗∗ -0.198∗∗∗

(0.0338) (0.0273) (0.0386) (0.0497)
N 370030 370030 204536 204536

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and

inundation maps are from FEMA. Estimates correspond to Equation 1. Dependent variable is log sale price. All columns include year-

week �xed e�ects. Cross-sectional �xed e�ects are indicated in column headings. Standard errors, clustered at the Census Tract level,

in parentheses. The estimated e�ect of map treatment on non-�ooded properties, -.198 in the most saturated speci�cation, corresponds

to a -18 percent change: e−.198 − 1 = −.179.
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Table 2: Robustness: alternative samples

Exclude 50M Boundary 500M Bu�er as Cntrl Tax Class 2
(1) (2) (3) (4) (5) (6)

Block FE Lot FE Block FE Lot FE Block FE Lot FE
Biggert-Waters 0.0114 0.0913 -0.0163 -0.0105 0.00545 0.0276

(0.0394) (0.0664) (0.0269) (0.0492) (0.0728) (0.0578)

Sandy*in old FP -0.0174 -0.212 0.0275 -0.0528 0.214 0.0396
(0.0820) (0.134) (0.0444) (0.0915) (0.153) (0.0955)

Sandy*not in old FP 0.0105 -0.160 0.00439 -0.0352 -0.00685 0.00491
(0.0662) (0.105) (0.0183) (0.0412) (0.0638) (0.0591)

Sandy*depth*in old FP -0.0283∗∗∗ -0.0250∗ -0.0254∗∗∗ -0.0105 -0.0265 -0.00484
(0.00800) (0.0141) (0.00574) (0.0112) (0.0331) (0.0149)

Sandy*depth*not in old FP -0.0278∗∗∗ -0.00277 -0.0200∗∗∗ -0.00348 -0.0281 -0.0221
(0.00852) (0.0314) (0.00605) (0.0167) (0.0224) (0.0204)

Floodplain maps*Sandy -0.0317 0.0946 -0.0257 0.000987 -0.00147 -0.0123
(0.0595) (0.0892) (0.0194) (0.0435) (0.0534) (0.0520)

Floodplain maps*no Sandy -0.171∗∗ -0.328∗∗ -0.0913∗∗∗ -0.144∗∗ -0.00779 -0.0394
(0.0664) (0.128) (0.0274) (0.0572) (0.0713) (0.0574)

Observations 342115 188594 117370 55212 405431 315313

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps

are from FEMA. Except where speci�ed, the sample is restricted to properties in Tax Class 1. Estimates correspond to Equation 1, and di�erent

samples are considered. Columns 1 & 2 are estimated after properties within 50 meters of the �oodplain boundary are dropped from the sample.

Columns 3 & 4 report estimates based on a sample excluding properties >500m outside the boundary of the �oodplain. Tax Class 2 properties

(residential properties with >3 units) in New York City are used for the placebo estimates reported in Columns 5 & 6. Dependent variable is log sale

price. All columns include year-week �xed e�ects. Cross-sectional �xed e�ects are indicated in column headings. Block FE estimates are based on

the larger neighborhood �xed e�ects sample (cf. column 2 of Table 1) while the Lot FE estimates use the repeated sales sample. Standard errors,

clustered at the Census Tract level, in parentheses.
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Table 3: Robustness: alternative speci�cations

Sale Date FE Boro*Yr-Mo FE Depth-Squared
(1) (2) (3) (4) (5) (6)

Block FE Lot FE Block FE Lot FE Block FE Lot FE
Biggert-Waters -0.0317 -0.0153 0.0304 0.0715 -0.0308 -0.0171

(0.0281) (0.0463) (0.0261) (0.0440) (0.0280) (0.0463)

Sandy*in old FP 0.0308 -0.0445 -0.0813∗ -0.138∗ 0.00320 -0.139
(0.0457) (0.0801) (0.0432) (0.0774) (0.0635) (0.105)

Sandy*not in old FP -0.0354∗∗ -0.0626∗ -0.0893∗∗∗ -0.0750∗∗ -0.0306∗ -0.0267
(0.0172) (0.0357) (0.0172) (0.0353) (0.0185) (0.0382)

Sandy*depth*in old FP -0.0324∗∗∗ -0.0185∗ -0.0120∗∗ 0.000365 -0.0214 0.0149
(0.00605) (0.00987) (0.00577) (0.00960) (0.0205) (0.0303)

Sandy*depth*not in old FP -0.0218∗∗∗ -0.00914 -0.0194∗∗∗ -0.00940 -0.0285∗∗ -0.0573∗

(0.00553) (0.0153) (0.00558) (0.0142) (0.0132) (0.0348)

Floodplain maps*Sandy -0.0280 -0.0134 -0.0353∗ -0.0223 -0.0249 0.00320
(0.0179) (0.0379) (0.0181) (0.0380) (0.0186) (0.0393)

Floodplain maps*no Sandy -0.129∗∗∗ -0.203∗∗∗ -0.122∗∗∗ -0.184∗∗∗ -0.131∗∗∗ -0.198∗∗∗

(0.0276) (0.0494) (0.0276) (0.0483) (0.0273) (0.0498)

Sandy*depth2*in old FP -0.00107 -0.00306
(0.00183) (0.00252)

Sandy*depth2*not in old FP 0.00113 0.00844
(0.00231) (0.00644)

Observations 369530 203823 370030 204536 370030 204536

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps

are from FEMA. Estimates correspond to Equation 1 with noted variations. The estimates in Columns 1 & 2 use date-speci�c (rather than year-week)

�xed e�ects. Note that sales which share a sale date with no other observation in the main sample are excluded from these analyses, resulting in

reduced sample sizes. Columns 3 & 4 report estimates which include borough-year-month �xed e�ects, and the results in Columns 5 & 6 add a

squared term (in addition to the linear term) for �ood depth interacted with the indicator variables for �oodplain, �ooded by Sandy, and post-Sandy.

These �nal two columns include the standard year-week �xed e�ects. Dependent variable is log sale price. Cross-sectional �xed e�ects are indicated

in column headings. Block FE estimates are based on the larger, neighborhood �xed e�ects sample while the Lot FE estimates use the repeated sales

sample as a starting point. Standard errors, clustered at the Census Tract level, in parentheses.
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Table 4: Robustness: triple-di�erence speci�cation

(1) (2) (3) (4)
Neighborhood FE Block FE Block FE Lot FE

Class 1*Biggert-Waters -0.0328 -0.0363 -0.0146 -0.0555
(0.0733) (0.0791) (0.0710) (0.0744)

Class 1*Sandy*in old FP -0.0855 -0.182 -0.0343 -0.0616
(0.147) (0.161) (0.119) (0.125)

Class 1*Sandy*not in old FP 0.0176 -0.0287 -0.00123 -0.0643
(0.0859) (0.0665) (0.0686) (0.0700)

Class 1*Sandy*depth*in old FP -0.0306 -0.00641 -0.0378∗ -0.0135
(0.0270) (0.0338) (0.0214) (0.0184)

Class 1*Sandy*depth*not in old FP -0.0413 0.00627 -0.00684 0.0206
(0.0296) (0.0232) (0.0235) (0.0249)

Class 1*Floodplain maps*Sandy -0.0163 -0.0258 -0.0434 -0.00988
(0.0725) (0.0565) (0.0573) (0.0656)

Class 1*Floodplain maps*no Sandy -0.0900 -0.123 -0.161∗∗ -0.158∗∗

(0.0886) (0.0763) (0.0692) (0.0744)
N 776245 776245 528272 528272

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017.

Floodplain and inundation maps are from FEMA. The sample is restricted to properties in Tax Classes 1 and 2. Estimates

correspond to a triple-di�erence variant of Equation 1, where the third dimension of di�erence is tax class. Dependent

variable is log sale price. All columns include year-week �xed e�ects. Cross-sectional �xed e�ects are indicated in column

headings. Standard errors, clustered at the Census Tract level, in parentheses.
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Table 5: Correlates of risk preferences, by overlap with new �oodplain

Census Tracts:
Di�erence in means
(2012-2016) - (2007-2011)

Outside
Floodplain

Overlap w/
Floodplain

Di�erence in
Di�erences

Census Tract Population 146.357*** 185.266*** -38.908

(9.641) (21.826) (23.860)

Share Population Male .002 .003 .000

(0.002) (0.058) (0.058)

Share >25 Pop: Less than HS Diploma -.016 -.018 .002

(0.014) (0.077) (0.078)

Share of Population: Age <5 .001 .001 -.001

(0.007) (0.044) (0.044)

Share of Population: Age >64 .008 .007 .001

(0.009) (0.058) (0.059)

Share of Population: White -.011*** -.010 -.001

(0.002) (0.012) (0.012)

Share of Population: Black -.009*** -.003 -.007

(0.002) (0.016) (0.016)

Share of Population: Native Born -.007*** .001 -.008

(0.002) (0.026) (0.026)

Share of Population: Non-Citizen -.007** -.004 -.003

(0.003) (0.030) (0.030)

Mean Household Size .006 .002 .003

(0.052) (0.456) (0.459)

Share >15 Population: Married -.006 .005 -.011

(0.011) (0.022) (0.024)

Household Median Income 4,598.69*** 4,332.68*** 266.00

(338.97) (681.62) (761.25)

Unemployment Rate -.010*** -.007 -.003

(0.001) (0.005) (0.005)

Share HH that Moved In Before 2000 -.097*** -.097 .000

(0.008) (0.075) (0.075)

Share Units Owner Occupied -.005* .003 -.008

(0.003) (0.023) (0.023)

Mean Room Count -.065 -.074 .009

(0.040) (0.447) (0.448)

Mean Year Built of Sales -2.810 -3.972 -1.162

(12.618) (9.802) (0.968)

Median Rent 176.05*** 184.11*** -8.06

(4.45) (9.98) (10.93)

Mean Sale Price 126,185.22 61,389.70 -64,795.52**

(425,677.25) (270,229.06) (32,237.53)

Census Tract Count 1,746 418 2,164

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors in parenthesis. Means for each statistic are calculated for each Census

Tract in New York City for the 2007-2011 pre-period and 2012-2016 post-period. Year Built and Sale Price are taken from

the main analytical sample; all other variables are taken from the American Community Survey (ACS) 5-year samples

corresponding to the pre- and post-periods. These estimates are based on surveys taken (and sales) across the whole period,

and the resulting estimates should therefore be considered to �describe the average characteristics of the population and

housing over the period� [US Census Bureau, 2011]. The sample periods were selected to avoid overlap and because more

recent ACS data are not yet available. Standard errors for the ACS data take into account uncertainty in ACS estimates

following methods in US Census Bureau [2008]. Census Tracts are considered to overlap with the �oodplain if there is any

overlap between the geographic boundaries of the tract and the one percent �oodplain as delineated in the Preliminary

FIRMs.
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Table 6: Tests for sample selection

(1) (2) (3) (4)
Neighborhood FE Block FE Block FE Lot FE

Biggert-Waters 0.00810 -0.0000171 0.0133 -0.00121
(0.0130) (0.00924) (0.0113) (0.00675)

Sandy*in old FP 0.00783 0.0175 0.0319∗ 0.0227∗

(0.0246) (0.0236) (0.0188) (0.0129)

Sandy*not in old FP 0.000484 -0.000695 0.00516 -0.00635
(0.00896) (0.00853) (0.00740) (0.00595)

Sandy*depth*in old FP -0.00525∗∗ -0.00529∗∗ -0.00632∗∗ -0.00372
(0.00261) (0.00230) (0.00254) (0.00235)

Sandy*depth*not in old FP -0.00289 -0.00183 0.000851 0.00455
(0.00250) (0.00217) (0.00289) (0.00306)

Floodplain maps*Sandy 0.00823 0.00608 -0.0104 -0.00794
(0.0123) (0.0128) (0.00782) (0.00610)

Floodplain maps*no Sandy 0.0123 0.0168 -0.0196 -0.00836
(0.0144) (0.0113) (0.0134) (0.00725)

N 370030 370030 204536 204536

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and

inundation maps are from FEMA. Estimates correspond to Equation 1, but with the dependent variable constructed as follows. We

use transactions prior to June 1, 2012 to estimate log price as a function of quartics in lot area, �oor area, building age, and number

of units. We then calculate �tted values for all transactions and these values comprise the dependent variable in the table above.

Intuitively, we are testing whether observable characteristics of transacted properties change such that we would expect price changes

unrelated to the treatments we study. All columns include year-week �xed e�ects. Cross-sectional �xed e�ects are indicated in column

headings. Standard errors, clustered at the Census Tract level, in parentheses.
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A Flood defenses in New York City

This paper has focused on information signals that were anticipated to lead to increases in perceived �ood

risk levels and decreases in home prices. The announcement of �ood protection infrastructure, on the other

hand, could increase property values through the expectation of reductions in future �ood risks. There has

been much discussion of such �ood-protection infrastructure in New York City since Hurricane Sandy.

In the four years since Sandy came ashore, very little additional protection has been put into place, and

most proposals aimed at the installation of such additional protective measures are still in very early stages.

The credibility and timing of any claims regarding protection provided through such programs is highly

uncertain, and thus not yet expected to markedly impact future perceived �ood risks. The only major �ood-

protection infrastructure proposal that appears to have gained signi�cant traction is the �BIG U�, which

proposed a series of barriers be installed around the southern tip of Manhattan. Unfortunately, our focus

on small residential properties in this investigation leaves us with very few observations in the potentially

impacted area as there are very few small residential properties in Lower Manhattan. Nevertheless, this

section applies our empirical strategy to the announcement of the BIG U and provides descriptions and

maps of other major �ood-protective infrastructure projects in New York City.

As early as 2013, plans were put forth to defend New York City against future major �ood events.

Such plans can be divided into those that aim to provide harbor-wide protections and those through which

local investments are intended to provide protection to speci�c high-risk areas. Two primary harbor-wide

protection alternatives have been proposed. The �rst involves three movable barriers, one each at the

Narrows, Arthur Kill, and in the upper reaches of the East River. The second proposal relies on only

two barriers, one in the upper reaches of the East River, and the second spanning from the Rockaway

Peninsula to Sandy Hook, NJ (at ~5 miles, the widest proposed span by far, p. 49, PlaNYC, 2013). Any

harbor-wide plan would be exceedingly expensive (estimates are on the order of $20 billion), need to overcome

signi�cant approval hurdles and environmental impact assessments, require forti�cation of coastlines adjacent

to proposed barriers, and possibly exacerbate �ood damage in nearby areas outside the protected areas (p.

49, PlaNYC, 2013). For these reasons and others, such harbor-wide protective plans have fallen out of favor,

and recent activities have been focused exclusively on a diverse range of more localized coastal protective

strategies (OneNYC Report, 2013).44

The most prominent of the localized protection proposals is the BIG U, also known as the Dryline.

This proposal was one of six winners of the 2014 Rebuild by Design competition sponsored by the U.S.

Department of Housing and Urban Development (HUD) and intended to support innovative solutions to

prepare communities impacted by Hurricane Sandy for future uncertainties. The competition awarded $930

million to six projects in the coastal regions impacted by Hurricane Sandy, of which $335 million was allocated

to the BIG U proposal. Put simply the BIG U proposed the installation of a protective barrier along the

waterfront from the southern tip of Manhattan to 42nd Street along the East River and up to 57th Street

along the Hudson River (see Figure A4).

Since the competition, the BIG U, has garnered further funding commitments from HUD and the City of

New York. It has also been split up into a number of pieces, two of which have become active projects. The

44One exception to this trend is the Blue Dunes proposal which seeks to provide protection to a large section of the Mid-
Atlantic coastline through the construction of a chain of barrier islands ~10 miles o� the coast to break large wave and
surge events before they reach the populated coastline behind. This proposal has not garnered any serious funding, and
while it has generated discussion, especially among the academic community, there is currently no plan or timeline for its
implementation. See the proposal website for more information: http://www.rebuildbydesign.org/our-work/all-proposals/
finalist/blue-dunes--the-future-of-coastal-protection.
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�rst has been titled the East Side Coastal Resiliency (ESCR) Project and is considered to be fully funded

with $510 million budgeted (Mayor's O�ce of Recovery & Resillency Map, accessed 2/24/2017). The ESCR

Project is currently in the design phase (OnceNYC 2016 Progress Report) with construction expected to

begin in 2018 (Architeets Newspaper, 2016). The second project that has thus far come out of the BIG U

proposal is known as the Lower Manhattan Coastal Resiliency (LMCR) Project and has been split further

into two distinct project areas. Work in the Two Bridges area, on the East River between the Manhattan

and Brooklyn Bridges, has been allocated $203 million and is in the planning phase, while studies are still

underway and additional funding is being sought for coastal defenses of the waterfront extending from the

Brooklyn Bridge, around the tip of Manhattan to the northern end of Battery Park City (Mayor's O�ce

of Recovery & Resillency Map, accessed 2/24/2017).45 �Actionable concept designs� are expected for the

LMCR in 2018 (Architects Newspaper, 2016).

The initial funding of the BIG U proposal came on June 2, 2014, when it was announced as the largest

winner of the Rebuild by Design competition.46 We will treat this date as the beginning of the period during

which property prices may re�ect the value of future �ood protection provided under the proposal. We

consider all properties behind the barriers described in the BIG U proposal as potentially bene�ting from

reductions in perceived future �ood risk, and thus increased property values. Table A6 presents the results of

our main speci�cation with the initial BIG U funding added as an additional information signal. While the

neighborhood �xed e�ects speci�cation suggests large and signi�cant e�ects in the anticipated direction, the

better controlled speci�cations are unable to identify any signi�cant e�ects of the BIG U proposal on the sale

prices of small-residential properties. Alternative speci�cations - for example using alternative announcement

dates, considering only properties �ooded by Sandy or in some de�nition of the one percent �oodplain as

potentially bene�ting from the BIG U proposal, or considering only properties in the areas behind the ESCR

and LMCR Projects as impacted - yield similarly unconvincing results in focused speci�cations. It is worth

noting that our analytical sample includes only 1,357 sales that fall behind the barriers proposed by the BIG

U, and only 286 are characterized as within the one percent �oodplain under the updated de�nitions.

Below we provide basic information on four other large-scale infrastructure projects that have been

proposed and gained some level of o�cial support or recognition. Figure A5 depicts the location of each of

these proposals as well as that of the BIG U.

• The Living Breakwaters Project was funded with $60M through the HUD Rebuilding by Design

competition to install breakwaters o� of Staten Island's southern tip with the stated goal of reducing

erosion and attenuating wave action (Project Web Page). Early design work is currently underway

with a �nal design expected by early 2018, and construction slated to begin thereafter.

• Red Hook Integrated Flood Protection System (IFPS) is a project seeking to protect the Red

Hook neighborhood in Brooklyn through a series of �ood protection measures (gates, walls, raised

roads, etc.). The initial announcement of the project was made December 14, 2014 (Governor's An-

nouncement), and the project has received $100M in funding commitments from City and Federal

sources. Three possible plans have been put forth and a series of public meetings were held in 2016 to

inform the community about the project and the possible plans (Project Website).

45The BIG U proposes development along the East River from East River Park to Battery Park. The transformation of this �J�
shape to a �U� through protecting the Lower West Side of Manhattan is never talked about, though the line of protection is often
drawn all the way up the West Side. A single mention of the �Westside Highway as a �raised natural landscape� was found (in this
video at 3:14), but this does not appear to be part of the BIG U project (https://www.nytimes.com/2016/01/19/nyregion/new-
york-city-to-get-176-million-from-us-for-storm-protections.html?_r=0).

46Though the BIG U Proposal was released to the public on April 3, 2014, as one of nearly 150 competitors in the Rebuild
by Design competition, it was the selection of the proposal for funding which raised it to prominence.
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• Atlantic Coast of New York: East Rockaway Inlet to Rockaway Inlet and Jamaica Bay:

The United States Army Corps of Engineers (USACE) has maintained Rockaway Beach since 1977.

In 2003, a study was commenced to reevaluate the �long-term protection� of the area. Funding was

inconsistent until the Disaster Relief Appropriates Act of 2013 (following Sandy). The new recommen-

dations for the management of the area were released to the public in July 2016 focusing on expensive,

long-term infrastructure construction ($3-4B over 50-year period) to provide �long-term coastal storm

risk reduction for Rockaway and Jamaica Bay� [USACE, 2016c]. The recommended plan would provide

some degree of coastal �ood protection to Coney Island in addition to Jamaica Bay and the Rockaway

Peninsula (see Figure A5). The recommended plan aims to provide protection with a height of 17feet

above average water levels with an estimated total cost of $3.78B (Study Report), but no funding

source or time frame for the project have been identi�ed.

• South Shore of Staten Island, NY: Coastal Storm Risk Management: The USACE released

an Interim Feasibility Report in Oct 2016 (amended in Dec 2016) which recommended that barriers

to address storm damages from water levels up to 15.6 feet above still water elevation (2 feet higher

than Hurricane Sandy Storm tide) be constructed along the Southern Shore of Staten Island with

an estimated total cost of $571M (ACE Interim Feasibility Report, 2016). The plan involves the

construction of a series of levees, �oodwalls, and seawalls spanning from Great Kills Park to Fort

Wadsworth along the northern end of Staten Island's southeast shore. Original funding for the study

of coastal storm risk management in the area was set up in May 1999 and work on the assessment

began in August of 2000. Funding ran out prior to the completion and release of a report. Additional

funding was allocated in 2009 (part of the ARRA stimulus) and then again in the Disaster Relief

Appropriates Act of 2013 (following Sandy). The Draft Feasibility Report was released in June 2015.

While the design phase of the project is currently underway, no de�nitive schedule has been laid out

or funding source identi�ed (Fact Sheet and ACE Page).

Each of these projects has characteristics that inhibit the application of our empirical methods to estimate

the e�ects their announcements might have had on property values. The Living Breakwaters Project has

been very slow moving, will cover a fairly small region at the southern tip of Staten Island, and doesn't seek to

provide full protection, but only to mitigate damages. The Red Hook IFPS project similarly seeks to protect

a very small area, and the proposed plans vary signi�cantly in the speci�cs of which areas might actually

bene�t. While the two USACE projects aim to provide protection to large areas (and many residential

properties), their announcements simply come too late for us to provide useful assessments of their e�ects.

Further, it is far from certain when and to what extent the protections outlined in these proposals might be

implemented.
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B Relative risk aversion

In our primary model of Section 7.2 we approximate derivatives in terms of Arrow-Pratt absolute risk

aversion. Alternatively, one can simplify using Arrow-Pratt relative risk aversion ρ (X) = −
∂2U
∂X2
∂U
∂X

X. Beginning

from Equation 6, factor Xc out of the subtractions to obtain

∂H

∂I
≈

[
(V − L)

(
∂U
∂Xc

+
(
Xm
Xc
− 1
)
∂2U
∂X2

c
Xc

)]
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∂I
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−
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(
∂U
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+
(
X1
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− 1
)
∂2U
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c
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∂L
∂I

∂U
∂Xc

− 1

Reversing the order of the subtractions and applying the de�nition of relative risk aversion yields

∂H

∂I
≈ (V − L)

[
1 +

(
1− Xm

Xc

)
ρ (Xc)

]
∂p

∂I
− p

[
1 +
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)
ρ (Xc)

]
∂L

∂I
− 1

We do not employ the simpli�cation in terms of ρ (X) in this paper.

C Expected loss

Suppose a truncated exponential distribution f (L) over loss L, with support on
[
0, S̄

]
. The upper endpoint

S̄ is structure value, the maximum possible loss. In general the expected loss over such a distribution is as

follows.

E [L] =

Ŝ̄
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Lf (L) dL

=

Ŝ̄
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Let us now set S̄ = 1, which will allow us to interpret losses as a percentage of structure value. Aerts et al.

[2013] calculate annual expected loss of roughly .6 percent, or .006 in decimal terms. Matching this expected

loss and solving numerically for λ yields λ = 166.67. With this parameter in hand, we can now calculate

the expected loss over uninsured value for properties with NFIP coverage rate c = $250,000
S̄

(that is, coverage
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rate is the cap divided by the structure value).

E [L | c] =
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From above, we have the form of the de�nite integral.
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This can be evaluated for any property by plugging in λ = 166.67 and coverage rate c = $250,000
S̄

.
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D Dynamic model

Our primary theoretical model of Section 7.2 assumes subjective �ood probability p is time-invariant unless

shocked by new information through F (o�cial �ood risk rating), E (�ood experience), or I (insurance

premium). In this section we relax that assumption, allowing for time-varying belief pt = p0 (F,E, I) + γt.

The period-zero subjective probability of a �ood, p0 (F,E, I), is a function of a property's o�cial �oodplain

designation F , experience with past �ooding events E, and �ood insurance premiums I faced by the property

owner. Subjective �ood probability is assumed to grow linearly in time at rate γ, re�ecting the agent's

anticipation of climate change. While linearity is a restrictive assumption, it allows us to make the model

dynamic while maintaining empirical tractability.

The hedonic function is now time-varying: H(Z, pt). Let Y be exogenous income and X consumption of

a numeraire good. The budget constraint is then Y = Xt + H(Z, pt). We denote �ood insurance premium

I (F ), anticipated �ood loss L (F,E, I), and insurance payout V (Z). Then we have state-dependent budget

constraints:

X1t = Y −H(Z, pt)− I (F )− L (F,E, I) + V (Z) (15)

X0t = Y −H(Z, pt)− I (F )

where X1t and X0t are consumption levels in the �ood and non-�ood states of the world respectively. Assume

a twice continuously di�erentiable, time-separable von Neumann-Morgenstern utility function, with ∂U
∂X > 0

and ∂2U
∂X2 < 0. Given a utility discount rate δ, expected utility can then be written as follows.

EU =

T∑
t=0

ptU(X1t,Z) + (1− pt)U(X0t,Z)

(1 + δ)
t (16)

The passage of the Biggert-Waters Act served as a shock to insurance premiums I. As before we assume a

housing equilibrium under which all agents enjoy equal expected utility, which allows us to set the derivative

of expected utility with respect to the insurance premium to zero.

∂
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]}
≡ 0

(17)

We wish to solve for the housing price e�ect ∂H
∂I = ∂H

∂pt

∂pt
∂I . Concretely, we assume linearity of the hedonic

function, H (pt) = π0 +π1pt, and a constant derivative of p0 with respect to I such that ∂pt
∂I = ∂p

∂I for all t.47

This allow us to rearrange terms.
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1
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∂X0t

] (18)

The model predicts a negative e�ect of increased premiums on home prices by way of three channels: 1)

increased subjective �ood probability in term one; 2) an increase in expected �ood severity in term two, and

47Recall that pt = p0 (F,E, I) + γt, so a constant derivative of p0 with respect to I implies a constant derivative of pt with
respect to I.
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3) increased premiums in term three.

This expression is not empirically tractable. We now derive an approximation that will allow us to take

this model to the data. First, distributing the summation allows us to simplify.
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1
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] − 1 (19)

By the intermediate value theorem there exists a point Xct on [X1t, X0t] such that ∂U
∂Xct

= pt
∂U
∂X1t

+ (1 −
pt)

∂U
∂X0t

. If initial subjective �ood probability p0 is small, Xc0 will be in the neighborhood of X0,0. As pt

increases, Xct will decrease relative toX0,t. By the mean value theorem, there exists a pointXmt on [X1t, X0t]

such that ∂U
∂Xmt

= 1
X0t−X1t

´X0t

X1t

∂U
∂X (X) dX. Then we can replace U(X1t) − U(X01) = (X1t −X0t)

∂U
∂Xmt

=

(V − L) ∂U
∂Xmt

. The last equality is possible because H (pt) enters both budget constraints identically; while

X1t and X0t increase over time, the distance between them remains constant at (V − L). Our derivative

now becomes simpler.
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To this point the intermediate value theorem and mean value theorem have allowed us to avoid approximation.

We next employ �rst-order Taylor expansions to approximate numerator marginal utilities in terms of denomi-

nator marginal utility ∂U
∂Xct

. We obtain ∂U
∂Xmt

≈ ∂U
∂Xct

+(Xmt −Xct)
∂2U
∂X2

ct
and ∂U

∂X1t
≈ ∂U

∂Xct
+(X1t −Xct)

∂2U
∂X2

ct
.

Our derivative is now as follows.

∂H

∂I
≈

T∑
t=0

1
(1+δ)t

[
(V − L)

(
∂U
∂Xct

+ (Xmt −Xct)
∂2U
∂X2

ct

)]
∂p
∂I

T∑
t=0

1
(1+δ)t

[
∂U
∂Xct

] −

T∑
t=0

1
(1+δ)t

pt

(
∂U
∂Xct

+ (X1t −Xct)
∂2U
∂X2

ct

)
∂L
∂I

T∑
t=0

1
(1+δ)t

[
∂U
∂Xct

] − 1

(21)

Recall that X1t and X0t are increasing over time, while Xc is moving leftward within the interval [X1t, X0t].

Assuming locally constant absolute risk aversion, Xct = Xc and one can simplify further.

∂H

∂I
≈

∂p
∂I (V − L)

T∑
t=0

1
(1+δ)t

(
∂U
∂Xc

+ (Xmt −Xc)
∂2U
∂X2

c

)
∂U
∂Xc

T∑
t=0

1
(1+δ)t

−

T∑
t=0

1
(1+δ)t

pt

(
∂U
∂Xc

+ (X1t −Xc)
∂2U
∂X2

c

)
∂L
∂I

∂U
∂Xc

T∑
t=0

1
(1+δ)t

− 1 (22)

In the denominator, we can now apply the formula for the sum of a geometric series. We wish to use the

de�nition of Arrow-Pratt absolute risk aversion r (X) = −
∂2U
∂X2
∂U
∂X

[Arrow, 1970, Pratt, 1964]. Reversing the

order of the numerator subtractions and dividing yields the following.
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∂H

∂I
≈

∂p
∂I (V − L)

T∑
t=0

1
(1+δ)t

(1 + (Xc −Xmt) r (Xc))

1−( 1
1+δ )

T+1

1− 1
1+δ

−

T∑
t=0

1
(1+δ)t

pt (1 + (Xc −X1t) r (Xc))
∂L
∂I

1−( 1
1+δ )

T+1

1− 1
1+δ

− 1 (23)

Based on the work of Gallagher [2014], we set ∂L
∂I = 0 and the second term vanishes. It remains to

�nd an empirically useful approximation for Xc − Xmt. In the expression above, Xc is the point on all

[X1t, X0t] at which the marginal utility of consumption is equal to the expected value of marginal utility of

consumption across �ood and non-�ood states. This is true in particular for period zero. If initial subjective

�ood probability p0 is small, Xc will be approximately equal to X0,0. Xmt is the average marginal utility

of consumption over the interval [X1t, X0t]. Under diminishing absolute risk aversion Xm would lie on the

interval
[
X1t,

X0t+X1t

2

]
.48 We approximate using the midpoint of this interval Xmt ≈ 1

2

(
X1t + X0t+X1t

2

)
=

X1t

2 + X0t+X1t

4 = 3
4X1t + 1

4X0t. Next we substitute into Xc −Xmt and obtain the following.

Xc −Xmt ≈ X0,0 −
(

3

4
X1t +

1

4
X0t

)
≈ X0,0 −

1

4
X0t −

3

4
X1t

Now we substitute the budget constraint in the non-�ood state of the world.

Xc −Xmt ≈ (Y −H (p0)− I)− 1

4
(Y −H (pt)− I)− 3

4
X1t

We next add and subtract H (pt) on the right-hand side of the expression.

Xc −Xmt ≈ (Y −H (pt)− I)− 1

4
(Y −H (pt)− I)− 3

4
X1t +H (pt)−H (p0)

≈ 3

4
(X0t −X1t) + (H (pt)−H (p0))

≈ 3

4
(L− V ) + (H (pt)−H (p0))

We previously assumed H (pt) = π0 + π1pt and pt = p0 (F,E, I) + γt. Combining these functions we obtain

H (t) = (π0 + π1p0) + (π1γ) t. For notational convenience, let π0 + π1p0 ≡ Γ0 and π1γ ≡ Γ1 so that

H (t) = Γ0 + Γ1t. Then H (t)−H (0) = (Γ0 + Γ1t)− (Γ0) = Γ1t. Plugging back into our approximation, we

simplify further.

Xc −Xmt ≈
3

4
(L− V ) + Γ1t

48The assumption of diminishing absolute risk aversion is in keeping with theoretical prediction of Arrow [1970] and a large
empirical literature [Saha et al., 1994, Guiso and Paiella, 2008, Sydnor, 2010]. Assuming ∂U

∂X
> 0, diminishing absolute risk

aversion requires

(
∂2U
∂X2

)2

∂U
∂X

− ∂3U
∂X3 < 0.
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This expression can now be substituted into our approximate derivative.

∂H

∂I
≈

∂p
∂I (V − L)

T∑
t=0

1
(1+δ)t

(
1 +

(
3
4 (L− V ) + Γ1t

)
r (Xc)

)
1−( 1

1+δ )
T+1

1− 1
1+δ

− 1 (24)

Following similar steps, we can derive comparable expressions for ∂H
∂E and ∂H

∂F based on the dynamic

model described in Equation 15 and 16:

∂H

∂E
≈

∂p
∂E (V − L)

T∑
t=0

1
(1+δ)t

(
1 +

(
3
4 (L− V ) + Γ1t

)
r (Xc)

)
1−( 1

1+δ )
T+1

1− 1
1+δ

(25)

∂H

∂F
≈

∂p
∂F (V − L)

T∑
t=0

1
(1+δ)t

(
1 +

(
3
4 (L− V ) + Γ1t

)
r (Xc)

)
1−( 1

1+δ )
T+1

1− 1
1+δ

− ∂I

∂F
(26)

These three expressions (for ∂H
∂I ,

∂H
∂E , and

∂H
∂F ) are analogs to Equations 7, 9, and 11 in the main

paper, the di�erence being that the expressions here allow for the anticipated evolution of �ood risk under

climate change. Here again we can use these expressions to estimate the implied changes in subjective risk

perceptions associated with our information signal, just as we did previously. As before, such calculations

require estimates for value at risk (V − L), the utility discount rate δ, and Arrow-Pratt absolute risk aversion

r (Xc). We will use the same values here for these factors that were derived and justi�ed in the main paper.

We must also additionally identify values for Γ1, the rate at which housing expenditures fall over time as

subjective �ood probability increases, and T , the agent's time horizon. Given these inputs, we can obtain

empirical estimates of the objects of ultimate interest: ∂p
∂I ,

∂p
∂E , and

∂p
∂F , the changes in the intercept of the

time series of beliefs pt = p0 (F,E, I) + γt.

D.1 Belief Updating

In order to derive an estimate of the change in housing expenditures in response to increasing �ood risks,

Γ1, we decompose the term into its constituent parts: π1 and γ. π1 characterizes the relationship between

increased �ood risk and home values. A recent review article estimated the price penalty for properties

within the one percent �oodplain to be (on average) 4.6%, suggesting an approximate reduction of 4.6

percent in home prices for a one percent change in �ood risk [Beltrán et al., 2018]. We therefore assume

π1 = −4.6 ∗H (p0) = −$58, 843.

We rely on the work of Garner et al. [2017] to estimate a value for the expected annual change in �ood

risk, γ. Speci�cally, Garner et al. [2017] report that �oods that occur with frequency �∼25 y at present...

are projected to [occur every] ∼5 y within the next three decades� [Garner et al., 2017]. This suggests an

increase in annual �ood risk (for a �xed severity of �ood) from 4% to 20% over a 30 year period, which is

an average annual increase of 16%/30=0.533% per year. We therefore set γ = 0.00533.

The agent's time horizon T depends on preferences and a number of parameters, including p0, γ, π1, and

δ. We bound T as follows. Assuming p0 = 0, it follows that 1−p0
γ = 1−0

.00533 = 187.6, so the agent believes the
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home will certainly be damaged at t = 188. The agent is assumed to abandon the home at that time, so our

bound is T = 187.

D.1.1 Biggert-Waters

Following the same procedure laid out in Section 7.3.1 and applying the 2.6 percent discount rate yields

a present value of (V − L) = −$21, 182. While we use a �nite time horizon in these calculations, the

buyer is assumed to internalize annual expected costs after the end of the time horizon (and in perpetuity)

through lower future sales prices to subsequent buyers. Similarly, the estimate: ∂H
∂I = −1.73% translates to

a reduction of $8,512 (based on the average sale price in the old �oodplain of $492k) in value which impacts

the expected annual hedonic �ow in perpetuity (not only during the time horizon of ownership considered).

This is equivalent to a $221 loss to the expected annual �ow of hedonic value. Thus, on an annual basis,
∂H
∂I = −$221. As before we are interested in the increase in premiums from the Biggert-Waters Act rather

than a one unit change in premiums, thus the minus one is again replaced with: $660. Again, the impacts of

the subsidy rollbacks of Biggert-Waters are assumed to impact only the properties receiving subsidies (~75%

of properties in New York City) and the portion of the population that purchases �ood insurance (about

55% in New York City at the time of Biggert-Waters). Finally, the denominator term of all the expressions

above is:
1−( 1

1+δ )
T+1

1− 1
1+δ

which equals 39.14 for δ = 0.026 and T = 187. This yields:

∂H

∂I
≈ 0.55

0.75


∂p
∂I (V − L)

T∑
t=0

1
(1+δ)t

[
1 +

(
3
4 (L− V ) + π1 ∗ γ ∗ t

)
r (Xc)

]
1−( 1

1+δ )
T+1

1− 1
1+δ

− 1

+ 0.25(0)

+ 0.45 (0)⇒

−$221 ≈ 0.55

0.75


∂p
∂I (−$21, 182)

187∑
t=0

1
(1.026)t

[
1 +

(
3
4 ($21, 082) + (−$58, 843) ∗ (0.00533) ∗ t

)
(1.2 ∗ 10−3)

]
39.14

− $660


⇒

∂p

∂I
≈ −.00074

As in the static model, the negative sign is implausible but the magnitude is very small. Given the associated

assumptions and uncertainty, we do not interpret this as evidence of downward belief revision.

D.1.2 Sandy

Using ∂H
∂E = −$913 and (V − L) = −22, 075, we can estimate the subjective risk updating implied by

our reduced form estimates for properties �ooded by Sandy that were not in the designated one percent

�oodplain. As in the paper, estimates only take into account the change in intercept and should therefore

be interpreted as the e�ect of �ooding once the depth of �ooding is separately controlled for or was zero.
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∂H

∂E
≈

∂p
∂E (V − L)

T∑
t=0

1
(1+δ)t

[
1 +

(
3
4 (L− V ) + π1 ∗ γ ∗ t

)
r (Xc)

]
1−( 1

1+δ )
T+1

1− 1
1+δ

$913 ≈

∂p
∂E (−$22, 075)

187∑
t=0

1
(1.026)t

[
1 +

(
3
4 ($22, 075) + (−$58, 843) ∗ (0.00533) ∗ t

)
(1.2 ∗ 10−3)

]
39.14

∂p

∂E
≈ .0047

This estimate is proportionally large, more than twice the magnitude of the corresponding estimate from

the static model. Such magnitudes cannot be summarily ruled out, given the evidence of Bakkensen and

Barrage [2017] on belief bias and belief updating.

D.1.3 Updated �ood risk maps

In order to consider the impacts of assignment to the one percent �oodplain under the new �ood risk

maps among properties that avoided �ooding from Sandy, we set ∂H
∂F = −$2, 452,(V − L) = −$22, 272, and

∂I
∂F = $594. Please see Section 7.3.3 of the paper for details on the underlying sources and calculations

behind these values. Together with Equation 26, this yields:

∂H

∂F
≈

∂p
∂F (V − L)

T∑
t=0

1
(1+δ)t

[
1 +

(
3
4 (L− V ) + π1 ∗ γ ∗ t

)
r (Xc)

]
1−( 1

1+δ )
T+1

1− 1
1+δ

− ∂I

∂F

−$2, 452 ≈

∂p
∂F (−$22, 272)

187∑
t=0

1
(1.026)t

[
1 +

(
3
4 ($22, 272) + (−$58, 843) ∗ (0.00533) ∗ t

)
(1.2 ∗ 10−3)

]
39.14

− $594

∂p

∂E
≈ .0100

Again this is more than twice the magnitude of the corresponding estimate from the static model.
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E Additional �gures

Figure A1: Sample sales by year and borough
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Transaction data are from the New York City Department of Finance 2003-8/2017. Figure includes only properties in the main sample

and is therefore restricted to properties in Tax Class 1. The majority of sales are in Brooklyn and Queens.
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Figure A2: E�ect of new maps on un�ooded properties, semi-parametric DDD
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As discussed in Section 4, properties un�ooded by Sandy but included in the new �oodplain exhibit a small upward deviation from

the control group in the pre-treatment period, which could bias our DD estimates. To address this potential bias, we �rst implement

a DDD speci�cation; results are in Table 4. It remains possible, however, that the common trends assumption is violated in the DDD

speci�cation. To investigate we estimate a semi-parametric DDD, which corresponds loosely to Column 4 of Table 4, as follows. 1)

We �rst residualize log transaction prices on the full set of lot, year-week, and year-week-class 2 dummies. 2) We then compute a

cross-sectional DD within each sale date: (Tax class 1 - Tax class 2) - (Treatment - Control), where the treatment group is un�ooded

properties included in the new �oodplain and the control group is properties not treated by any one of the three risk signals we study.

3) We then �t a local polynomial through the date-level DD estimates. The shaded area represents the 95 percent con�dence interval;

note that it understates the variance of these estimates because it ignores the �rst two steps of our procedure. Pre-treatment DD

estimates are small and generally statistically indistinguishable from zero. More importantly, there is no evidence of a pre-treatment

trend in the DD, suggesting that the parallel trends assumption is satis�ed in the DDD speci�cation. Post-treatment DD estimates

show a sharp and statistically signi�cant decline. One can get an approximate visual sense of the DDD estimate by comparing the

average of post-release DD estimates to the average of pre-release DD estimates; the �gure is consistent with the parametric DDD

estimate in Column 4 of Table 4.
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Figure A3: NFIP policies in New York City
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Vertical coordinates are the number of NFIP policies in force in New York City as of the date given by the horizontal co-

ordinate. Data are from FEMA [2018]. Previous versions of this online report were scraped using the Wayback Machine

(https://web.archive.org/web/*/https://bsa.n�pstat.fema.gov/reports/1011.htm). Archived versions are not available for all months.

The oldest available archived version is from Nov. 10, 2012 and records policies in force as of Aug. 31, 2012. NFIP takeup as of this

date was a approximately 55%, so the increase in policies shown in this �gure implies takeup of approximately 75% in the period after

Sandy.
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Figure A4: Lower Manhattan Protective Infrastructure - Proposal and Projects

Data from NYC Map of Recovery and Resiliency (https://maps.nyc.gov/resiliency/, accessed 3/24/2017) and the BIG U Design

Proposal (https://portal.hud.gov/hudportal/documents/huddoc?id=BIG_IP_Briefing_Book.pdf, accessed 3/24/2017). The BIG U

Proposal includes protection for the areas to be protected by the ESCR and LMCR Projects. Construction on the ESCR Project is

slated to begin in 2018 while design and plan for the LMCR Project are also to be �nalized in the same year (Wachs, 2016).

54

https://maps.nyc.gov/resiliency/
https://portal.hud.gov/hudportal/documents/huddoc?id=BIG_IP_Briefing_Book.pdf


F
ig
u
re

A
5
:
F
lo
o
d
-P
ro
te
ct
io
n
In
fr
a
st
ru
ct
u
re
:
P
ro
je
ct
s,
P
ro
p
o
sa
ls
,
a
n
d
S
tu
d
ie
s

U
S
A
C
E
st
a
n
d
s
fo
r
U
n
it
e
d
S
ta
te
s
A
rm

y
C
o
rp
s
o
f
E
n
g
in
e
e
rs
.
D
a
ta

o
n
p
ro
p
o
se
d
p
ro
te
c
ti
v
e
in
fr
a
st
ru
c
tu
re

a
re

p
u
ll
e
d
fr
o
m
:
1
.
N
Y
C
M
a
p
o
f
R
e
c
o
v
e
ry

a
n
d
R
e
si
li
e
n
c
y

(h
t
t
p
s
:
/
/
m
a
p
s
.
n
y
c
.
g
o
v
/
r
e
s
i
l
i
e
n
c
y
/
,
a
c
c
e
ss
e
d
3
/
2
4
/
2
0
1
7
);
2
.
th
e
B
IG

U
D
e
si
g
n
P
ro
p
o
sa
l
(h
t
t
p
s
:
/
/
p
o
r
t
a
l
.
h
u
d
.
g
o
v
/
h
u
d
p
o
r
t
a
l
/
d
o
c
u
m
e
n
t
s
/
h
u
d
d
o
c
?
i
d
=
B
I
G
_
I
P
_
B
r
i
e
f
i
n
g
_
B
o
o
k
.
p
d
f
,
a
c
c
e
ss
e
d

3
/
2
4
/
2
0
1
7
),
3
.
U
S
A
C
E
[2
0
1
6
a
];
4
.
U
S
A
C
E
[2
0
1
6
b
];
a
n
d
5
.
L
iv
in
g
B
re
a
k
w
a
te
rs

W
e
b
si
te

(h
t
t
p
s
:
/
/
s
t
o
r
m
r
e
c
o
v
e
r
y
.
n
y
.
g
o
v
/
l
e
a
r
n
-
m
o
r
e
-
a
b
o
u
t
-
l
i
v
i
n
g
-
b
r
e
a
k
w
a
t
e
r
s
-
p
r
o
j
e
c
t
,
a
c
c
e
ss
e
d

4
/
5
/
2
0
1
7
).

T
h
e
d
e
p
ic
te
d
in
fr
a
st
ru
c
tu
re

fr
o
m

th
e
U
S
A
C
E
A
tl
a
n
ti
c
S
h
o
re
li
n
e
C
o
a
st
a
l
P
ro
te
c
ti
o
n
st
u
d
y
is
th
e
S
to
rm

S
u
rg
e
B
a
rr
ie
r
a
li
g
n
m
e
n
t
C
-1
E
,
d
e
n
o
te
d
a
s
th
e
�l
ik
e
ly
..
.
R
e
c
o
m
m
e
n
d
ed

P
la
n
�.
A
ll
d
e
p
ic
ti
o
n
s
o
f
p
ro
p
o
sa
l
c
o
v
e
ra
g
e
a
n
d
e
x
te
n
ts

a
re

p
ro
v
id
e
d
fo
r
il
lu
st
ra
ti
v
e
p
u
rp
o
se
s
o
n
ly

a
n
d
d
o
n
o
t
c
a
p
tu
re

fe
a
tu
re

ty
p
e
s
o
r
p
la
c
em

e
n
t.

T
h
in

g
ra
y
li
n
e
s
d
e
n
o
te

c
o
u
n
ty
/
b
o
ro
u
g
h

b
o
u
n
d
a
ri
e
s.

55

https://maps.nyc.gov/resiliency/
https://portal.hud.gov/hudportal/documents/huddoc?id=BIG_IP_Briefing_Book.pdf
https://stormrecovery.ny.gov/learn-more-about-living-breakwaters-project


F Additional tables

Table A1: Timeline

Event Date

Biggert-Waters Act 7/6/2012
Hurricane Sandy 10/29-30/2012
ABFE Map Release 1/28/2013
Preliminary Work Maps 6/10/2013
Homeowner Flood Insurance A�ordability Act 3/21/2014
Preliminary FIRMs 1/30/2015
NYC Appeals Preliminary FIRMs 6/26/2015
FEMA Agrees to further Revise Preliminary FIRMs 10/17/2016

Table A2: Property counts in the main sample by �ood zone and map

Map: Original FIRM ABFE Prelim Work Map Prelim FIRM
Date: 1983 1/2013 6/2013 1/2015

VE 151 1,413 29 25
A 8,584 18,938 18,832 18,912

X500 9,104 10,381 11,812 11,814
X 243,443 230,552 230,611 230,533

Notes: Counts include all 261,284 unique properties in the main sample
which sold between 2003 and August 2017. Subcategorizations have been
dropped for simplicity.

Table A3: FEMA �ood risk groups

Description

VE annual �ood risk ≥ 1% and risk of wave action (also called �velocity hazard�)
A annual �ood risk ≥ 1%

X500 1% ≥ annual �ood risk ≥ 0.2%
X annual �ood risk < 0.2%

Notes: Descriptions taken from
http://www.mass.gov/anf/docs/itd/services/massgis/q3�oodzonescodetable.pdf.
Subcategorizations have been dropped for simplicity.
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Table A4: Descriptive statistics, neighborhood and lot �xed e�ects samples

Mean Stdev Min Max
Sale price (2010USD) 596750 458661 85565 8344826
Old �oodplain 0.03 0.18 0.00 1.00
Post Biggert-Waters 0.31 0.46 0.00 1.00
Old �oodplain*Post Biggert-Waters 0.01 0.10 0.00 1.00
Flooded by Sandy 0.08 0.27 0.00 1.00
Post Sandy 0.30 0.46 0.00 1.00
Flooded by Sandy*Post Sandy 0.02 0.16 0.00 1.00
New �oodplain 0.08 0.26 0.00 1.00
Post ABFE 0.29 0.45 0.00 1.00
Post prelim. work maps 0.27 0.44 0.00 1.00
Post prelim. FIRMs 0.17 0.37 0.00 1.00
New �oodplain*post new maps 0.02 0.15 0.00 1.00
Observations 370030

Mean Stdev Min Max
Sale price (2010USD) 569930 440103 85565 8344826
Old �oodplain 0.03 0.18 0.00 1.00
Post Biggert-Waters 0.30 0.46 0.00 1.00
Old �oodplain*Post Biggert-Waters 0.01 0.10 0.00 1.00
Flooded by Sandy 0.07 0.26 0.00 1.00
Post Sandy 0.29 0.45 0.00 1.00
Flooded by Sandy*Post Sandy 0.02 0.15 0.00 1.00
New �oodplain 0.07 0.25 0.00 1.00
Post ABFE 0.28 0.45 0.00 1.00
Post prelim. work maps 0.26 0.44 0.00 1.00
Post prelim. FIRMs 0.16 0.37 0.00 1.00
New �oodplain*post new maps 0.02 0.14 0.00 1.00
Observations 204536

Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

The �rst table includes property sales for which needed spatial, temporal, and control variables are available, and for which non-unique

neighborhood classi�cation exists. The second table summarizes sales observations of properties for which two or more transactions

are observed in the data, and for which other needed spatial, temporal, and control variables are available. This second sample could

alternatively be characterized as being composed of properties with repeated sales in the data.
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Table A5: E�ects of �ood risk signals on log transaction prices, tax lot linear trends

(1) (2)
Lot FE Lot FE

Biggert-Waters -0.0173 0.163
(0.0463) (0.162)

Sandy*in old FP -0.0476 -0.157
(0.0799) (0.316)

Sandy*not in old FP -0.0650∗ -0.0210
(0.0350) (0.196)

Sandy*depth*in old FP -0.0180∗ -0.0399
(0.00996) (0.0342)

Sandy*depth*not in old FP -0.00618 -0.0574
(0.0149) (0.0785)

Floodplain maps*Sandy -0.0159 0.0427
(0.0376) (0.191)

Floodplain maps*no Sandy -0.198∗∗∗ -0.167
(0.0497) (0.205)

N 204536 204536

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Column 1 is identical to column 4 of Table 1, while column 2 adds tax lot linear trends to Equation

1. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and inundation maps are from FEMA.

Dependent variable is log sale price. All columns include year-week �xed e�ects. Cross-sectional �xed e�ects are indicated in column

headings. Standard errors, clustered at the Census Tract level, in parentheses.
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Table A6: E�ects of �ood risk signals including protective infrastructure

(1) (2) (3) (4)
Neighborhood FE Block FE Block FE Lot FE

Biggert-Waters -0.0213 -0.0365 0.00506 -0.0293
(0.0265) (0.0280) (0.0388) (0.0459)

Sandy*in old FP 0.0609 0.0313 -0.0345 -0.0499
(0.0472) (0.0457) (0.0624) (0.0799)

Sandy*not in old FP -0.0112 -0.0372∗∗ -0.0205 -0.0679∗

(0.0185) (0.0173) (0.0253) (0.0351)

Sandy*depth*in old FP -0.0375∗∗∗ -0.0321∗∗∗ -0.0243∗∗∗ -0.0163
(0.00696) (0.00614) (0.00853) (0.0100)

Sandy*depth*not in old FP -0.0373∗∗∗ -0.0221∗∗∗ -0.0256∗∗∗ -0.00544
(0.00648) (0.00560) (0.00886) (0.0150)

Floodplain maps*Sandy -0.0171 -0.0319∗ -0.0335 -0.0255
(0.0218) (0.0181) (0.0266) (0.0378)

Floodplain maps*no Sandy -0.149∗∗∗ -0.131∗∗∗ -0.164∗∗∗ -0.189∗∗∗

(0.0338) (0.0274) (0.0387) (0.0497)

Big U Protection 0.167∗∗∗ -0.114∗ -0.0265 0.000184
(0.0356) (0.0686) (0.0986) (0.113)

N 370030 370030 204536 204536

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Transaction data are from the New York City Department of Finance 2003-2017. Floodplain and

inundation maps are from FEMA. Sample is restricted to properties in Tax Class 1. Estimates correspond to Equation 1. Dependent

variable is log sale price. All columns include year-week �xed e�ects. Cross-sectional �xed e�ects are indicated in column headings.

Standard errors, clustered at the Census Tract level, in parentheses.
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Table A7: Belief updating sensitivity to risk aversion parameter

Coe�. Abs. (1) (2) (3)
Risk

Aversion
r(Xc):

Biggert-
Waters

Sandy*not in
old FP

Floodplain
maps*no
Sandy

Guiso and Paiella [2008]
(1) Baseline 1.2× 10−3 -0.03% 0.20% 0.43%
(2) Lower 1.2× 10−4 -0.20% 1.38% 2.99%
(3) Higher 1.2× 10−2 0.00% 0.02% 0.04%

Cramer et al. [2002]
(4) Employees 1.56 × 10−3 -0.02% 0.15% 0.33%
(5) Entrepreneurs 1.38 × 10−3 -0.03% 0.17% 0.37%

Sydnor [2010]
(6) Low Bound 1.72× 10−3 -0.02% 0.14% 0.30%
(7) Upper Bnd. 1.58× 10−2 0.00% 0.02% 0.03%

Guiso and Paiella [2008]
(8) Low 2.0× 10−4 -0.14% 0.96% 2.07%
(9) High 3.3× 10−2 0.00% 0.01% 0.02%

Values estimated from Equations 7, 9, and 11 as described in the body of the text with the value of

r(X) changed between rows. Row 1 reports our main estimates based on r(X) = 1.2 ∗ 10−3 from Saha

et al. [1994]. Rows 2 and 3 simply de�ate and in�ate (respectively) this value by an order of magnitude.

Columns 4 and 5 use the risk aversion estimates for employees and entrepreneurs identi�ed in Cramer

et al. [2002]. Columns 6 and 7 rely on upper and lower bounds on the median CARA coe�cient from

Sydnor [2010] assuming home owners (observed purchasing insurance with a $500 deductible) have a

lifetime wealth of $1 million. Columns 8 and 9 use the mean coe�cients of absolute risk aversion from

respondents identi�ed as having low vs. high risk aversion in a study by Guiso and Paiella [2008].
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Table A8: Belief updating sensitivity to discount rate

Discount (1) (2) (3)
Rate
δ:

Biggert-
Waters

Sandy*not in
old FP

Floodplain
maps*no
Sandy

Giglio et al. [2016]
(1) Baseline 2.6% -0.03% 0.20% 0.46%

Drupp et al. [2015]
(2) 10th Percentile 1.0% 0.00% 0.01% 0.07%
(3) Mean 2.25% -0.02% 0.13% 0.35%
(4) 90th Percentile 3.0% -0.04% 0.30% 0.61%

(5) Stern [2006] 1.4% -0.01% 0.032% 0.14%
(6) Nordhaus [2013] 4.0% -0.07% 0.70% 1.07%
(7) Gollier [2013] 4.6% -0.09% 1.06% 1.40%

Values estimated from Equations 7, 9, and 11 as described in the body of the text with the discount

rate, δ, changed between rows. Row 1 reports our main estimates based on δ = 0.026 from Giglio et al.

[2016]. Rows 2, 3, and 4 are based on the 10th percentile, mean, and 90th percentile values of the

social discount rate from a survey of 197 experts by Drupp et al. [2015] . Rows 5, 6, and 7 use discount

rate levels suggested by Stern [2006], Nordhaus [2013], and Gollier [2013] respectively.
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