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Abstract

Characteristics-based asset pricing implicitly assumes that factor betas or risk prices
are linear functions of pre-specified characteristics. Present-value identities, such as
Campbell-Shiller or clean-surplus accounting, however, clearly predict that expected
returns are highly non-linear functions of all characteristics. While basic non-linearities
can be easily accommodated by adding non-linear functions to the set of characteristics,
the problem quickly becomes infeasible once interactions of characteristics are consid-
ered. I propose a method to construct a stochastic discount factor (SDF) when the set
of characteristics is extended to an arbitrary—potentially infinitely-dimensional—set
of non-linear functions of original characteristics. The method borrows ideas from a
machine learning technique known as the “kernel trick” to circumvent the curse of di-
mensionality. I find that allowing for interactions and non-linearities of characteristics
leads to substantially more efficient SDFs; out-of-sample Sharpe ratios for the implied
MVE portfolio double.

*Email: sekozak@umich.edu. I thank participants at Michigan, SITE Asset Pricing Theory and Compu-
tation session for helpful comments and suggestions.



1 Introduction

Characteristic-based factor models have been widely used in finance to summarize the cross
section of expected returns since Rosenberg (1974) and Fama and French (1992, 1993a,
1996). The main idea behind such models is that factor betas, factor risk premia, or prices
of risk are functions of some pre-specified observed characteristics. In such cases, Kozak et al.
(2019), Kelly et al. (2018) show that one can, equivalently, seek to explain the cross section of
expected stock returns by working with characteristics-managed (or characteristics-sorted)
portfolios instead of individual stock returns. It is common in the literature to construct
such portfolios as linear sorts in any given pre-specified characteristic. Any non-linearities
and interactions of characteristics are, therefore, ignored by such an approach. In this paper
I argue that non-linearities and interactions of characteristics are important and develop a
method of studying them that does not suffer from the curse of dimensionality.

To understand why nonlinearities and interactions are important, consider a simple model

by Fama and French (2016). With clean surplus accounting, they argue that market-to-book
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In particular, Fama and French argue, that holding everything else constant (i) a lower value
B
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return, (ii) higher expected future earnings imply a higher expected return, and (iii) higher

of M;, or equivalently a higher book-to-market equity ratio implies a higher expected
expected growth in book equity—investment—implies a lower expected return. While, by
the virtue of an identity, the book-to-market ratio, firm’s expected earnings, and investment
must predict future equity returns, the dependence of discount rates on these characteristics
implied by the equation above is clearly highly non-linear. It is, therefore, unlikely that
factors sorted on linear characteristics, one at a time, can summarize the cross-section of
expected returns well. Non-linearities and interactions of characteristics, such as value and
momentum, are potentially important.

An immediate problem that one faces in this context is the curse of dimensionality.
Consider a hundred of characteristics which could be helpful in explaining the cross-section
of expected returns. A naive approach of modeling non-linearities and interactions is to
include portfolios sorted on powers and interactions of the hundred original characteristics.
However, even with first-order interactions of characteristics (sizexmom, valuexmom, etc.)
one already obtains 100 x 101/2 = 5050 potential factors. Allowing for the second- or

higher-order interactions leads to a complete loss of tractability.



I propose a solution to the curse of dimensionality by borrowing ideas from machine
learning techniques known as kernel methods and economic restrictions in Kozak et al. (2018);
Kozak et al. (2019). Istart by an observation in Kozak et al. (2018); Kozak et al. (2019) that a
stochastic discount factor (SDF') can be represented by dominant principal components (PCs)
of characteristics-managed portfolios. In the current context, characteristics can include any
number of interactions of base characteristics, so their number is potentially very high, or
even infinite. The kernel trick allows me to extract a large number of dominant PCs of these
portfolios, even if there are infinitely many of them. Therefore, an SDF can be still well
approximated by a finite number of dominant PCs.

The starting point of my method is the dual PCA problem which focuses on eigenvalue
decomposition of the T" x T' matrix RR’, where R is a T' x N matrix of returns on N assets
of T' time periods.! Eigenvectors associated with largest eigenvalues of this problem can
be shown to be proportional to the principal components of the second-moment matrix of
returns R'R. In this formulation characteristics enter only as inner products. The kernel
trick uses a generalization of an inner product that replaces the original inner product with
some non-linear function, called the kernel.

Suppose we start with a set of K observed stocks’ ¢ and j characteristics at times ¢ and
s, Zy; and Z, ;. For kernels k(Z,;, Z ;) that satisfy certain regularity conditions it can be
shown that there exists a mapping ¢ (Z;;) : R® — RY where L is possibly infinite, and for
which k(Z;4, Zs;) = ¢ (Zis) ¢ (Z,;). That is, the kernel is a dot product of characteristics
to which the transformation ¢(-) has been applied. A non-trivial, arbitrary implicit kernel
function ¢ (+) is chosen in a way that it is never calculated explicitly, allowing the possibility
to use very high-dimensional ¢ (), since we never have to actually evaluate the data in
that space. In other words, certain choices of the kernel k(-,-), which is easy to compute,
lead to the exact same solution as PCA on an extended set of portfolios sorted on original
characteristics, their powers and interactions of an arbitrary (potentially infinite) order. This
problem can be solved at a fixed computational cost which does not increase in the order of
interactions.

The final step is to combine the extracted dominant principal components into a single
mean-variance efficient (MVE) portfolio, or the SDF. I rely on the method in Kozak et al.
(2019) in doing so. In that paper the authors use a Bayesian prior to link mean returns
on factor portfolios and their variance-covariance matrix in a way that (i) rules out near-
arbitrage opportunities, and (ii) prevents portfolio weights of a marginal investor to become

unbounded. The prior proves powerful in combining the multitude of factor portfolios into a

LConnor and Korajczyk (1988) call this method “asymptotic principal components” and provide associ-
ated asymptotic theory.



single SDF. My algorithm provides a large number of principal component portfolios as an
input to their method.

Equipped with these methods, I explore non-linearities and interactions of characteristics
in the cross section of equity returns. First, I focus on a simple motivational example above,
which includes four Fama and French (2016) factors, and the momentum factor based on
Carhart (1997). I quantify the goodness of the model by the maximum out-of-sample Sharpe
ratio on the optimally constructed portfolio of factors. Without interactions, the optimal
portfolio is just a portfolio of five factors. With second-order interactions the number of
factors increases to 20. The method allows me to increase the order of interactions to any
arbitrary (potentially infinite) number at no additional computational cost. I find that higher
order interactions indeed do matter and help increase the Sharpe ratio by a factor of two.

Next, I consider a setting of forty anomaly characteristics and apply the same method
to these data. With only first-order interactions the number of potential factors increases to
almost a thousand. Second or higher order interactions make the problem completely un-
feasible for the standard approach. My method, however, experiences no such shortcomings
and allows me to estimate an SDF corresponding to an infinitely many interactions. Using
these data I again find that allowing for interactions and non-linearities of characteristics
leads to substantially more efficient SDFs and higher out-of-sample Sharpe ratios for the
implied MVE portfolio.

These results survive in the full out-of-sample exercise. I split the sample at the beginning
of 2005, estimate all PC rotations and SDF parameters in the pre-2005 sample and later apply
these estimates to post-2004 data in the full out-of-sample sense. I find that non-linearities
and interactions substantially improve the out-of-sample maximal Sharpe ratios as well.
While the level of Sharpe ratios drops significantly in post-2004 sample—consistent with
the anomaly performance deterioration evidence documented in the literature—allowing for
non-linear effects effectively doubles the out-of-sample Sharpe ratios.

The method recovers the time series of an SDF that prices equity excess returns condi-
tionally through time. I use the SDF to infer the conditional cost of capital on any firm
at any point in time non-parametrically by simply computing covariances of the firm-level
realized returns with the SDF over short windows of daily data. I find that the firm-level
conditional expected returns constructed in this way explain a significant fraction of variation
in the firm-level realized returns.

The kernel trick has been widely used in the machine learning literature, especially in
the context of Support Vector Machines (SVMs) and Kernel PCA (Schélkopf et al. (1997)).
The application in this paper is different in several ways. Relative to SVMs, my approach

is based on economically-driven regularization via the prior which links mean returns and



covariances from Kozak et al. (2019). Relative to the Kernel PCA, the “kernel trick” is not
applied directly to the data points themselves (returns), but characteristics which underly
portfolio sorts. Therefore, while the method allows me to study arbitrary non-linearities and
interactions in characteristics, importantly, the SDF (and the MVE portfolio) is linear in
individual stock returns, that is, non-linearities appear only in variables used to sort stocks
into portfolios.

Several recent papers argued that non-linearities and interactions should be important in
the cross section of expected returns. Kozak et al. (2019) manually construct portfolios sorted
on first-order interactions of all characteristics. Their approach is analogous to using the
second-order polynomial kernel in this paper, but becomes infeasible for higher dimensions.
Freyberger et al. (2017) allow for flexible non linearities in individual characteristics and
show they are important. Their paper, however, ignores interactions, due to the curse of

dimensionality.



2 Methodology

2.1 Characterizing the SDF
2.1.1 Characteristics-based factors

One of the primary goals of empirical asset pricing is to find and characterize the empirical
SDF, which summarizes the cross section of expected return on all available assets. I will
focus on the projection of the “true” SDF, M;,,, pricing N US stocks’ excess returns R 1,

on these returns:

My = 1= ¥, (Rt — BlRia]) (2)

where b; is an N x 1 vector of SDF coefficients. This SDF is normalized every period
in a way that makes the constant term equal to unity, period by period. Additionally, note
that in the above formulation I subtract unconditional means from factor returns. The
normalization, therefore, requires that b, absorbs variation in conditional means, E; [R;11],
variances, and covariances of returns.

Next, I assume that an econometrician has access to a set of K characteristics-based
instruments for each of the N stocks, Z; (with dimensions N x K), that can capture all
time-series and cross-sectional variation of b; across all stocks. With no loss of generality I

parameterize b; as linear in derived (expanded) characteristics (henceforth features), ®(Z;):
bi = ®(Z;)b, (3)

where ® (Z;) = (¢ (Z1) , s ¢ (Ze )+ RV>XE — RVNXL g an arbitrary non-linear trans-
form of the K original instruments for each of the N stocks into L features; each of the ¢ (Z; ;)
maps K characteristics of a stock ¢ into L features; and b is an L x 1 vector of constants.
For example, Z; can contain instruments such as log-market equity, book-to-market ratio, or
profitability. Non-linearities and interactions of characteristics, such as B/M x ME, value
X momentum, are potentially important and can be easily accommodated via a transform
d(Zy).

The parametrization (3) allows me to move away from estimating SDF coefficients for
each stock at each point in time, to estimating them as a single function of characteristics
that applies to all stocks over time.

Next, I plug in the parametrization (3) into (2) to obtain the following SDF:

My = 1=V (Fya — E[Fn]) (4)



where F; 1 = ®(Z;)'Ry11 is a vector of characteristics-based factors, formed as linear
sorts on features ®(7;).

Note that classical approaches to factor models correspond to a simple case of ®(Z;) = Z;.
For instance, Fama and French (1992) specify three characteristics: (i) market weights,
leading to the value-weighted aggregate market factor; (ii) market equity of each company
— the “size” (SMB) factor; and (iii) book-to-market ratios — the “value” (HML) factor.?
Their SDF is given by M = 1 — by Fy; — boFsyp — b3Fya. Hou et al. (2015) proposes
a similar SDF based on four factors, while Barillas and Shanken (2018) uses six factors.
Similarly Kozak et al. (2019) consider portfolios as linear sorts on fifty underlying anomaly
characteristics and show how to estimate an SDF with such a plethora of factors. Kozak
et al. (2019) further consider the case of first-order interactions by explicitly constructing
portfolios based on such interactions.

Note that time variation in b, can be captured via time-series instruments in addition
to any cross-sectional instruments. To accommodate such a case a set of factors needs
to be extended to include all kronecker products of factors and time-series instruments:
Fii1 = ®F, 1. Alternatively, we can assume that any time variation in aggregate risk prices
is reflected in the cross-section and thus can be captured through higher-order interactions
of only cross-sectional instruments. For example, suppose there is a momentum factor and
its price of risk is driven by aggregate market/book ratio. Further, suppose value stocks
load more on M/B shocks than growth stocks do. Value and momentum characteristics,
and their interaction, span the strategy of long value-momentum, short growth-momentum
stocks. Even though the value characteristic is cross-sectionally normalized, it results in a
multiplicative interaction, which to a large extent mimics having only a momentum factor

but with a time-varying price of risk.

2.1.2 Estimating the SDF: economically motivated priors

In general, estimating the SDF in (4) is not easy when the number of factors is large. Indeed,
the Markowitz portfolio approach procedure can be quite unreliable with a large number of
assets. Instead, I rely on the approach proposed in Kozak et al. (2019). The basic idea of

the approach lies in linking means and covariances via an economically motivated prior:
(2
o~ N (07 _22> ) (5)
T

where p is a vector of expected factor returns, E[F}|, and ¥ = E[(F, — E F,)'(F;, — E F})]

2Technically, Fama and French (1992) parameterize ®(-) as a step functions that delivers their long-short
portfolio construction.



is their covariance matrix, 7 = tr[X], and x is a constant that controls the strength of the
prior.? Kozak et al. (2019) argue that this prior imposes two important economic restrictions:
(i) absence of near-arbitrage opportunities, and (ii) finite portfolio holdings (SDF weights)
of marginal investors.*

Combining prior with sample data on mean factor returns p we get the posterior mean
of the SDF coefficients b:

b=(S+71k) " p, (6)

where v = —7= is the penalty parameter and 7' is the number of time-period observations.
Kozak et al. (2019) argue that this solution can be interpreted as a solution to a problem

minimizing Hansen and Jagannathan (1991) distance subject to an L?-norm penalty on b'b:
b= arg mbin {(m—2b) 7" (1 — Zb) +b'b}, (7)

or, equivalently, minimizing an OLS objective subject to a penalty on the model-implied

maximum squared Sharpe ratio:
b= arg mbin {(7n—%b) (n — Zb) +b'Sh} . (8)

The penalty term in (7) effectively down-weights contributions of low-variance PCs to
the overall maximal Sharpe ratio. To see this, consider a transformed SDF expressed in

terms of principal components of original factors. The corresponding SDF coefficients are

z d; AP
b= (=) PP
" (dj + 7) d; ®)

2
Note that contribution of each PC to SDF' variance is (dd—jm) ﬂ%j. This contribution is
7 b2

decreasing in d;, so the estimator focuses primarily on large-variance PCs, that is, an SDF

given by:

should be well approximated by dominant principal components (Kozak et al. (2018)). If we

could extract sufficiently many dominant PCs of F}, we can approximate an SDF well.

Proposition 1. An SDF is well approximated by dominant PCs of factor portfolios. There-
fore, if we could extract sufficiently many dominant PCs of Fy, we can approrimate an SDF

well.

Proof. See Kozak et al. (2019). O

3

K can be interpreted as the square root of expected maximal squared Sharpe ratio under the prior.

4They show that the lowest power on ¥ that is consistent with aforementioned restrictions is two. Further,
they argue that the prior in (5) is the flattest (least restrictive) Bayesian prior within the family of Normal
priors which satisfies these two conditions.



2.2 The Kernel Trick

Let R; denote an N x 1 vector of excess returns on N assets and X; = ®(Z;) denote an

N x L matrix of features. Rotate returns into managed portfolios:
Fio = Xt,Rt+1a

where F; is an L x 1 vector of returns on rotated portfolios.

The unconditional covariance of returns (assume F; are mean-zero) is given by:

T
1 1
L= SFF =2 ; X/R 1R, X, (10)
= vec (X)' diag (R) diag (R) vec (X), (11)

where F is a matrix of all stacked factors FY, vec (X) = [X}, X3, ..., X}] is an L x TN matrix
and diag (R) is an NT x T matrix with Ry, Rs, ..., Ry on the diagonal. We are interested in
extracting N dominant PCs of ¥ for any given ®(-).

Note that we can instead extract PCs of F'F” as in Connor and Korajczyk (1988), in
which case the eigenvectors become the (scaled) principal components corresponding to the

initial problem.® Therefore, I proceed with the eigenvalue-decomposition of a T' x T' matrix
Q:

Q = diag (R)" vec (X) vec (X)' diag (R), (12)
(G R A R g
TxNT  TNxL LxTN  NTxT
where
XX o XX
vec (X) vec (X)) = : ,
——— N —’
TNxL  LxTN XrX| o XpXh

NTXNT
where each X, X! is an N x N matrix consisting of all inner products of features for each

pair of stocks (7, j) at times ¢ and s, respectively:

XtXé = (Zt) o (Zs)l =K (Zta Zs) ) (13)

where K (Z;,Z;) is the N x N matrix of kernels, k(Z,;, Zs ;) for stocks (i,7), and Z is a
matrix of observed characteristics. Note that in the standard linear PCA approach Kelly
et al. (2017) features exactly coincide with base characteristics, X;; = ¢ (Z;;) = Z;;. In that

5To see this, start with the singular-value decomposition of F, F = UDV’, and let P = UD denote the
matrix of principle component variables. Next, notice that K = FF’ = UD?U’ and hence we can compute
P from eigenvalue decomposition of K. Appendix B provides a more formal argument.



case, each of the kernels is given by x (Z;, Zs ;) = Z} ;Z,; — the inner product of observed
characteristics of stocks ¢ and j for observations given at times t and s, respectively.

In general, however, the set of features X; = ® (Z;) is potentially much larger than the set
of observed characteristics Z;. Inner products of features thus involve a large—potentially in-
finite—number of multiplications and additions corresponding to all elements in ¢ (Z; 5). For
instance, we might want to include powers of basic characteristics to capture non-linearities
as in Freyberger et al. (2017). Similarly, interactions of basic characteristics can be im-
portant, such as value-momentum, value-size etc. Even if only first-order interactions are
included, as in Kozak et al. (2019), the size of the characteristics space grows exponentially,
making most classical techniques infeasible. Higher-order non-linearities lead to even worse
curse of dimensionality.

The “kernel trick”—a popular technique in machine learning—offers an alternative ap-
proach designed to sidestep the curse of dimensionality. Note that equation (13) does not
require ¢ (+) in explicit form — they are only needed as dot products. Therefore, we are able
to use these dot products without actually performing the map ¢ (-): for some choices of a
kernel x(-,-), it can be shown by methods of functional analysis that there exists a map into
some dot product space RL (possibly of infinite dimension) such that & (-, ) computes the
dot product in the space of features R”.

Vert et al. (2004) list the following two results for kernels:

Theorem 2.1. For any kernel k on a space X, there exists a Hilbert space F and a mapping
¢: X — F such that
r(z,2) = (¢(2), 9(2)), Vr,2' € X,

where (u,v) represents the dot product in the Hilbert space between any two points u,v € F.
Proof. See Aronszajn (1950). O

Proposition 2. Any algorithm for vectorial data that can be expressed only in terms of dot
products between vectors can be performed implicitly in the feature space associated with any

kernel, by replacing each dot product by a kernel evaluation.

6 A Hilbert space is a vector space endowed with a dot product (a strictly positive and symmetric bilinear
form), that is complete for the norm induced. R? with the classic inner product is an example of a finite-
dimensional Hilbert space.
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2.2.1 Examples of Kernels

Kernels which have successfully been used in Support Vector Machines (Scholkopf et al.
(1996)) include: (i) polynomial kernels

K(x,y) = (c+x-y)", (14)

for two vectors of characteristics x and y for some two stocks, and a free parameter c,
trading off the influence of higher-order versus lower-order terms in the polynomial; and (ii)

radial basis functions .
2
wlx.y) = exp (5 Ix - vIF). (19

where o2

is a constant controlling the roughness of the kernel.
It can be shown that polynomial kernels of degree d correspond to a map ¢ (-) into a
feature space which is spanned by all products of d entries of an input pattern, e.g., for the

case of N =2; d =2; ¢ =0 as in Scholkopf et al. (1997):

(X : Y)2 = (fﬁi L1122, T2d1, 133)@%7 y1y2’y2y1,y§)/- (16)

In other words, in this simple case kernel evaluation is mathematically equivalent to replacing
the set of two characteristics (xy,x9) for each stock with features (%, 1129, w1, 23). In case
of ¢ # 0, the expanded set of features also includes original characteristics (x1, z2) with their
weight relative to the second-order terms governed by c.

It can be shown that the radial kernel in (15) corresponds to a map ¢ (-) into an infinitely-

dimensional feature space.

2.2.2 Centering

Recall K (Z;,Z;) = ®(Z;) ® (Z;)', where X; = ®(Z;) = (¢(Z41) -, ¢ (Zen))'. In practice,
to preserve the interpretation of features as long-short portfolios, we want to center each
feature in the cross-section, that is, subtract the mean across all N observations.

In particular, we are looking for a kernel sub-matrix based on de-meaned characteristics,

K= Ia(Xj,Xj) = ((Di - ‘I)z‘) ((I)j - (I>j)/,

where ® = M® and M = 151}

It turns out that we can compute K even when the mapping ¢ is infinitely-dimensional

11



by double-centering the kernel matrix :

K=K-&® —&;®,+ &, =K - KM - MK+ MKM (17)
=[I-M)K(I—-M). (18)

2.3 Approximate SDF

Going back to equation (12), and using centered features, we obtain:

RIK (X1, X)) Ry, - RK(X1,Xr)Ryr

Q= , (19)

RLE (Xr, X1) Ry -+ ROK (X, Xr)Rr Tt
where K denotes a double-centered kernel matrix given by K = (I — M) K (I — M) with
M = %11’ . Note that 2 does not depend on the number of features we consider. For a fixed
T we can therefore solve problems corresponding to infinitely dimensional spaces of features
Xis-

The last step is to compute eigenvectors of €2, which are the datapoints projected on
the respective principal components, that is, eigenvectors coincide with PCs of the original

problem.

2.4 The Algorithm

1. Map K observed stock’s s characteristics at time ¢, Z; 5, into an L-dimensional space
of features X; , = ¢ (Z;,), where ¢ (Z; ) : R — RE; L is high dimensional, possibly
infinite, since interactions of characteristics are important. Note, however, that ¢ (-) is

never calculated explicitly.

2. Rotate the problem (of finding largest N PCs of F}) in a way that only inner products
of ¢(+) need to be computed.

3. Replace the inner products by a kernel. The kernel allows me to operate in a high-
dimensional, implicit feature space without ever computing the implied features in that

space — the “kernel trick”.

4. Extract largest N PCs using the kernelized matrix — these correspond to PCs of all
managed portfolios based on ¢ (Z; ).

12



5. Use these PCs as input to the algorithm in Kozak et al. (2019) to construct an SDF.
Note that this SDF is equivalent to an SDF constructed from an expanded set of fea-
tures, which include original characteristics, as well as their non-linear transformations
and interactions, possibly infinitely many. Also note that while the constructed SDF
allows for non-linearities in characteristics, it is still linear in returns, that is, it is just

a portfolio of original underlying equities.

13



3 Results

3.1 Simulations

I simulate a factor model where loadings § depend on non-linear functions of base (simulated)
characteristics. I then use and compare four methods to extract latent factors: (i) standard
PCA using the cross-section of individual stocks; (ii) PCA using the cross-section of managed
portfolios constructed as linear functions of base characteristics; (iii) PCA using the cross-
section of managed portfolios that include non-linear functions/interactions used to obtain 3
— this should work well by design; (iv) a kernel-based PCA method in this paper—henceforth
CK-PCA (Characteristics-Kernel PCA)— with the Gaussian kernel.

Concretely, I simulate 20 years of data and a cross section of 1,000 stocks. I assume a
single factor model (e.g., CAPM). An econometrician has access to five characteristics which

he believes could contain useful signals for betas. The true (simulated) model is given by:

Riv1i = Bii X Fip1 + €41, (20)

where 3,; = ci’li) X cii) X cgf?. That is, the true beta is an interaction of three of the

five characteristics an econometrician has access to. The remaining two characteristics are
useless.

In such a setup using one characteristic at a time—assuming linearity in characteristics—
would not typically recover the underlying factor or its corresponding betas. To verify this
conjecture, as well as test the ability of the CK-PCA method in addressing this problem, I

use each of the four methods mentioned above to recover Fyy; and S ;.

3.1.1 Recovered factor

Method (i) fail to recover the time-series of the factor F;. Method (iii), which sorts stocks
into portfolio based on the product of the first three characteristics, works by design.

Next, I investigate the ability of the PCA applied to portfolios sorted linearly on charac-
teristics (method (ii) from above) and CK-PCA method (method (iv), this paper) to recover
the true factor. Figure 1 shows the time series of the true (simulated) factor and the recov-
ered factor using two methods: (1) PCA applied to five managed portfolios sorted linearly
on each of the characteristics (method (ii) from above) in Panel (a); and (2) CK-PCA using
Gaussian (radial) kernel in Panel (b).

Panel (a) of the figure shows that PCA applied to portfolios sorted linearly on charac-
teristics, one at a time, as in Kelly et al. (2018); Kozak et al. (2019) is unable to find the
correct factor. The CK-PCA method in Panel (b), on the other hand, works well in recover-

14
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Figure 1: Simulated and extracted factor returns. The figure plots simulated and
recovered factor returns based on the model in (20) using two methods: (a) PCA using the
cross-section of managed portfolios constructed as linear functions of base characteristics,
and (b) an agnostic CK-PCA (Characteristics-Kernel PCA) method that uses the Gaussian

kernel.

ing the true factor. The correlation between the true factor and the factor extracted using
this method is 0.98 (it is only 0.13 for the method in Panel (a)). The time-series of returns
on the true factor (blue) and the extracted factor (red) in Panel (b) Figure 1 match very

closely.

3.2 Empirical analysis
3.2.1 Data

I start with the universe of U.S. firms in CRSP. I construct two independent sets of char-
acteristics. The first set relies on characteristics underlying the four factors from Fama
and French (2015), excluding the value-weighted market, and the momentum factor from

Carhart (1997). The second set is based on forty equity characteristics underlying common
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“anomalies” in the literature, constructed as in Kozak et al. (2019).

In order to focus exclusively on the cross-sectional aspect of return predictability, remove
the influence of outliers, and keep constant leverage across all portfolios, I perform certain
normalizations of characteristics that define our characteristics-based factors. First, similarly
to Asness et al. (2014); Freyberger et al. (2017); Kozak et al. (2019), I perform a simple rank
transformation for each characteristic. For each characteristic ¢ of a stock s at a given time

)

t, denoted as ¢,

I sort all stocks based on the values of their respective characteristics
and rank them cross-sectionally (across all s) from 1 to n;, where n; is the number of stocks
at t for which this characteristic is available.” I then normalize all ranks by dividing by n,+1
to obtain the value of the rank transform:
. rank (c!
Ty, = —( s’t). (21)
’ ¢ + ]_
Next, I normalize each rank-transformed characteristic rc;t by first centering it cross-

sectionally and then dividing by sum of average deviations from the mean of all stocks:

i i
. (rei, —rcj) (22)
Fst = 1~ ‘ i _fi"
e 2521 TCsy — TC
where r¢i = nit >om rct,. The resulting zero-investment long-short portfolios of transformed

characteristics zéjt are insensitive to outliers and have the average absolute weight equal to
unity. Finally, I combine all transformed characteristics 27, for all stocks into a matrix of
instruments Z;.® Interaction with returns, F; = Z, | R;, then yields one factor for each
characteristic.

To ensure that the results are not driven by very small illiquid stocks, I exclude small-cap
stocks with market caps below 0.01% of aggregate stock market capitalization at each point
in time.” In all of our analysis I use daily returns from CRSP for each individual stock. Using
daily data allows me to estimate second moments much more precisely than with monthly
data and focus on uncertainty in means while largely ignoring negligibly small uncertainty
in covariance estimates (with exceptions as noted below). I adjust daily portfolio weights on
individual stocks within each month to correspond to a monthly-rebalanced buy-and-hold

strategy during that month. Table 1 in the Appendix shows the annualized mean returns

If two stocks are “tied”, I assign the average rank to both. For example, if two firms have the lowest
value of ¢, they are both assigned a rank of 1.5 (the average of 1 and 2). This preserves any symmetry in
the underlying characteristic.

8If zé’t is missing I replace it with the mean value, zero.

9For example, for an aggregate stock market capitalization of $20tn, I keep only stocks with market caps
above $2bn.
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for the anomaly portfolios.

3.2.2 Constructing an SDF

[ use the algorithm in Section 2.4 to construct an SDF (or an MVE portfolio) based on
the set of anomaly portfolios. In particular, I use the CK-PCA method to construct the
T x T kernel matrix € in (19). Next, I compute 7" dominant eigenvectors of this matrix. As
explained earlier, these (scaled) eigenvectors exactly coincide with the 7' largest principal
components of a variance-covariance matrix of returns formed on all non-linear functions
and interactions of characteristics underlying the specific kernel function. Next, I use these
T largest PCs as an input to the method in Kozak et al. (2019) to construct an SDF. The
scaling of the PCs is preserved, so the shrinkage method pays more attention to PCs with
higher variance. At each point the output of the method is a single time series of an SDF, or,
equivalently, returns on the mean-variance efficient portfolio, which aggregates information
in all (implied) characteristics-sorted portfolios.

The method requires choosing two parameters: (i) s (or, equivalently, v) in the prior in
(5) and (7), which has an economic interpretation of the root expected squared Sharpe ratio
under the prior, and (ii) a kernel-specific parameter, such as ¢ in polynomial kernel in (14)
or o2 in radial kernel in (15). I pick both parameters using the K-fold cross validation.

Specifically, for v, I divide the historic data into K = 5 equal sub-samples. Then, for
each possible v, I compute a vector of SDF coefficients, b, by applying (6) to K — 1 of
these sub-samples. I evaluate the “out-of-sample” (OOS) fit of the resulting model on the
single withheld subsample. Consistent with the penalized objective (8), I compute the OOS

R-squared as

— A , — A
e . (ﬂ2 - 22[?) (ﬁ2 — 225>
s Jil iz

where the subscript 2 indicates an OOS sample moment from the withheld sample. I repeat

: (23)

this procedure K times, each time treating a different sub-sample as the OOS data. I then
2

00s*

average the R? across these K estimates, yielding the cross-validated R2 .. Finally, I choose

2

00Ss”*

« that generates the highest R
Lastly, I pick the kernel specific parameter in order to maximize the out-of-sample Sharpe

ratio of an SDF implied by the given kernel, for an optimal choice of v above.

3.2.3 Five Fama-French-Carhart factors

Cross-validated Sharpe ratios implied by the optimal SDF. In Figure 2 I plot

maximum cross-validated Sharpe ratios delivered by a kernel for a specific choice of a kernel
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Figure 2: Cross-validated Sharpe ratios (Fama-French-Carhart 5 factors). Max-
imum cross-validated Sharpe ratios delivered by a kernel for a specific choice of a kernel
parameter, denoted as c¢. Each point on the blue solid line corresponds to an SDF with a
parameter v selected optimally via cross validation, for a given value of the kernel param-
eter c¢. The dotted line shows the level of the cross-validated Sharpe ratio for the linear
kernel (method (ii) — PCA on characteristics-managed portfolios), which does not depend
on c. Panel (a) uses the polynomial kernel of the second order. Panel (b) uses the Gaussian
(radial) kernel.

parameter, denoted as c¢. Each point on the blue solid line corresponds to an SDF with a
parameter v selected optimally via cross validation, for a given value of the kernel parameter
c. The dotted line shows the level of the cross-validated Sharpe ratio for the linear kernel
(method (ii) — PCA on characteristics-managed portfolios), which does not depend on c.
Recall that ¢ controls the weight on higher-order terms relative to the weight on lower-order
terms. In particular, high levels of ¢ approximately corresponds to the linear kernel, as the
higher-order terms are ignored. Figure 2 shows that for high values of ¢ the cross-validated
Sharpe ratios of the non-linear kernel indeed converge to that of the linear one. Similarly,
low values of ¢ correspond to a kernel that puts most weight on higher-order terms (e.g., for

polynomial kernel of the second order, only second-order terms are used as ¢ — 0). Panel
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(a) of Figure 2 shows that such a kernel underperforms relative to the linear one.

Panel (a) of the figure uses the polynomial kernel of the second order. Recall that this
kernel is equivalent to PCA on characteristics-managed portfolios where the set of character-
istics is expanded to include all interactions and second powers of base characteristics. The
panel shows that including second-order terms improves the cross-validated Sharpe ratios
from around 0.31 to 0.47.

Grey “+” markers depict an empirical rank of the kernel matrix € in (19). In the case
when c is large, which approximately corresponds to the linear kernel, we indeed see that the
rank converges to the number of base characteristics (five for Fama-French-Carhart factors).
For very low values of c—when only second-order terms are present, the rank converges to
the number of second order terms, 5 x 6/2 = 15. For medium range values of ¢ both first-
and second-order terms are present, for the total rank of 15 + 5 = 20.

Panel (b) uses the radial kernel. Recall that this kernel implicitly allows for an infinite
number of interactions. The kernel more than doubles the cross-validates Sharpe ratios: they
increase to about 0.75 relative to the linear kernel. As expected, for large values of ¢ the
rank of the kernel matrix converges to the number of base characteristics — five. For small
values of ¢, however, any arbitrary interactions are allowed for, so the rank of the kernel

matrix is maximal and equals the total number of time-series observations — roughly 12,000.

Which features matter most? Figure 3 explores the importance of each characteristic
and their interactions/non-linearities in the final SDF. First, I construct an optimal SDF
corresponding to a given kernel: second-order polynomial kernel in Panel (a) and Gaussian
(radial) kernel in Panel (b). Second, I project this SDF onto a set of managed portfolio
returns (scaled to have same volatility) based on original characteristics, their first-order
interactions, second and third powers of characteristics. Lastly, I sort characteristics based
on the absolute magnitude of an SDF coefficient on its managed portfolio. I report these
characteristics, as well as the cumulative R? when this characteristics is added to an SDF.

For the second-order polynomial kernel the projection trivially achieves the R-squared of
one, since the set of variables includes all first- and second-order transforms of characteristics.
Even for a small number of factors, below 15, the cumulative R-squared approximately equals
one, as can be seen from Panel (a) of Figure 3. However, this is no longer the case for the
radial kernel — the R-squared of the projection is not equal to one, and remains significantly
lower than one for a small number of included features. For instance, with fifteen features it
remains below 0.5, as can be seen from Panel (b) of the figure.

The figure shows which characteristics are the most important ones for a given kernel. As

the Panel (a) shows, base characteristics such as value, investment, and size are important
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Figure 3: Important features (Fama-French-Carhart 5 factors). The figure shows
characteristics that correspond to largest SDF coefficients and their contribution to the

cumulative R? when added to an SDF. Panel (a) uses the polynomial kernel of the second

order. Panel (b) uses the Gaussian (radial) kernel.

for the polynomial kernel, as well as some their interactions with momentum. Similar char-

acteristics are also important for the radial kernel, as can be seen from Panel (b). However,
3 inv® become important for the construction of an SDF.

higher-order terms, such as mom

To conclude, exploiting non-linearities in the five Fama-French-Carhart characteristics
does indeed allow me to recover the MVE portfolio and the corresponding pricing kernel

better than in the case when linearity in characteristics is assumed. Figure 4 depicts empirical

performance of the MVE portfolio implied by each of the two SDF's.

3.2.4 Forty anomaly factors
I now repeat the same exercise for forty anomaly portfolios — the main dataset.
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Figure 4: MVE portfolio returns (Fama-French-Carhart 5 factors). The figure de-
picts empirical performance of the MVE portfolio implied by an SDF constructed using the
second-order polynomial kernel (Panel a) and using the Gaussian (radial) in Panel (b).

Cross-validated Sharpe ratios implied by the optimal SDF. In Figure 5 I plot
maximum cross-validated Sharpe ratios delivered by a kernel for a specific choice of a kernel
parameter, denoted as c. The figure shows that the second-order polynomial kernel increases
cross-validate Sharpe ratios only mildly. On the other hand, the Gaussian (radial) kernel
in Panel (b) more than doubles cross-validated Sharpe ratios (from around 1.5 to above 3).

This improvement corresponds to mid-range values of the kernel parameter c.

Which features matter most? [ now investigate which characteristics or features matter
most for constructing an optimal SDF or the MVE portfolio with maximal Sharpe ratios.
In Figure 6 I project this SDF onto a set of managed portfolio returns (scaled to have
same volatility) based on original characteristics, their first-order interactions, second and
third powers of characteristics. Lastly, I sort characteristics based on the absolute magnitude
of an SDF coefficient on its managed portfolio. I report these characteristics, as well as the

cumulative R? when this characteristics is added to an SDF.
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Figure 5: Cross-validated Sharpe ratios (40 anomaly factors). Maximum cross-
validated Sharpe ratios delivered by a kernel for a specific choice of a kernel parameter,
denoted as c¢. Each point on the blue solid line corresponds to an SDF with a parameter
v selected optimally via cross validation, for a given value of the kernel parameter ¢. The
dotted line shows the level of the cross-validated Sharpe ratio for the linear kernel (method
(ii) — PCA on characteristics-managed portfolios), which does not depend on c¢. Panel (a)
uses the polynomial kernel of the second order. Panel (b) uses the Gaussian (radial) kernel.

For the second-order polynomial kernel mostly only base linear characteristics are impor-
tant, as can be seen from Panel (a) of Figure 6. Moreover, with a relatively small number of
such characteristics nearly maximal cross-validated R-squared can be achieved. The situation
is different for the 40 anomaly portfolios and the radial kernel. The cumulative R-squared
stays around 0.6 even with more than 30 features. Moreover, many of the features with
largest SDF coefficients are interactions, rather than base linear characteristics.

The method highlights the importance of non-linearities in characteristics when seeking
for an optimal SDF, once again. In Figure 7 I show the time-series of the SDF's corresponding
to the two kernels. Qualitatively the two SDFs have similar patterns; however, the SDF

corresponding to the Gaussian kernel achieves much higher cross-validated Sharpe ratios.
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Figure 6: Important features (40 anomaly factors). The figure shows characteristics
that correspond to largest SDF coefficients and their contribution to the cumulative R? when
added to an SDF. Panel (a) uses the polynomial kernel of the second order. Panel (b) uses

the Gaussian (radial) kernel.

3.2.5 Out-of-sample analysis

The analysis so far has been based purely on cross validation in a given sample. While
the SDF parameters are always picked in an out-of-sample sense, the two regularization
parameters k and c are selected in sample. In addition, PC portfolios are constructed using
full sample as well. I now perform a full out-of-sample evaluation of the method as follows.
I truncate the sample on January 1, 2005 and use the data only prior to this period to
conduct the SDF estimation, which includes the construction of PC factors as well as the
computation of the SDF coefficients on these factors. I use the characteristics and returns
data in the post-2004 sample together with the estimates from the first half of the sample
to construct the OOS SDF (or, equivalently, the MVE portfolio returns). I then empirically
evaluate the performance of such an OOS MVE portfolio in the post-2004 sample.

To construct the PC portfolios I need to project returns on portfolios sorted on all
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Figure 7: MVE portfolio returns (40 anomaly factors). The figure depicts empirical
performance of the MVE portfolio implied by an SDF constructed using the second-order
polynomial kernel (Panel a) and using the Gaussian (radial) in Panel (b).

features, onto corresponding eigenvectors. In turns out that this projection can be done
without explicitly computing the features, analogously to the “kernel trick” idea discussed
above. Appendix B provides more details on how to construct OOS PC portfolio returns.

Figure 8 depicts the maximum cross-validated Sharpe ratios in the in-sample pre-2005
period (solid) and full out-of-sample Sharpe ratios in the post-2004 period (dashed), delivered
by a kernel for a specific choice of a kernel parameter, denoted as ¢. The dotted line shows
the level of the cross-validated Sharpe ratio for the linear kernel (method (ii) — PCA on
characteristics-managed portfolios), which does not depend on ¢. Panel (a) uses the Gaussian
kernel applied to five Fama-French-Carhart factors. Panel (b) applies the same kernel to forty
anomaly characteristics.

The figure shows that the level of Sharpe ratios in the out-of-sample period deteriorates
substantially, which is expected and is due to the overall anomaly returns deterioration in
the latest part of sample (e.g., McLean and Pontiff (2016)). In spite of this, the choice of
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Figure 8: Out-of-sample Sharpe ratios. Maximum cross-validated Sharpe ratios in the
in-sample pre-2005 period (solid) and full out-of-sample Sharpe ratios in the post-2004 period
(dashed), delivered by a kernel for a specific choice of a kernel parameter, denoted as ¢. The
dotted line shows the level of the cross-validated Sharpe ratio for the linear kernel (method
(ii) — PCA on characteristics-managed portfolios), which does not depend on c¢. Panel (a)
uses the Gaussian kernel applied to five Fama-French-Carhart factors. Panel (b) applies the
same kernel to forty anomaly characteristics.

the kernel parameter ¢ selected by cross validation in the in-sample portion of the sample
generally translated well to the optimal level of ¢ in the out-of-sample period. The plot
shows that for five Fama-French-Carhart characteristics using the radial kernel the out-of-
sample Sharpe ratios in the latest part of the sample are around 0.2, while they are close
to zero when using managed portfolios which are linear in the five base. Similarly, for the
radial kernel and forty anomaly characteristics, the OOS Sharpe ratios more than doubles
compared relative to the linear kernel.

Figure 9 below shows the OOS MVE portfolio returns for the two estimated SDF (solid
red line) as well as their in-sample estimates (solid dotted) in the pre-2005 portion of the

sample. The solid blue line shows the full-sample estimates for comparison.
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Figure 9: OOS MVE portfolio returns. The figure depicts empirical performance of
the MVE portfolio implied by an SDF constructed using the Gaussian kernel applied to
five Fama-French-Carhart factors (Panel a) and forty anomaly characteristics-based factors
(Panel b). The solid blue line shows the full sample estimates. Red dotted line shows the
in-sample estimates. The solid red line depicts pure OOS MVE portfolio returns.

3.2.6 Pricing individual stock returns

The method delivers a daily SDF and daily MVE portfolio returns. I use these estimates
to compute a non-parametric estimate of conditional risk premia on individual equities. To
accomplish this, I compute rolling covariance of the SDF with daily equity-level returns, and
use the asset pricing equation E[M R] = 0 to infer the implied discount rate on each stock.
Finally, T use these estimates of discount rates to compute the predictive panel R-squared
— a fraction of variation explained by my method. I compare these estimates to Kelly et al.
(2018).

I find that the firm-level conditional expected returns constructed in this way explain a

significant fraction of variation in the firm-level realized returns.

[TO BE COMPLETED)]
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3.3 Conclusions

In this paper I argue that interactions and non-linearities in SDF loadings on character-
istics are important in recovering the empirical pricing kernel. I develop a method which
uses economically-motivated regularization and allows for arbitrary non-linearities in SDF
loadings on characteristics. Relative to the linear case, such an SDF is much more efficient;
the out-of-sample Sharpe ratio of the implied MVE portfolio is effectively doubled. While
the method allows me to study arbitrary non-linearities and interactions in characteristics,
importantly, the SDF (and the MVE portfolio) is linear in individual stock returns, that is,
non-linearities appear only in variables used to sort stocks into portfolios.

The method recovers the time series of an SDF that prices equity excess returns condi-
tionally through time. I use the SDF to infer the conditional cost of capital on any firm
at any point in time non-parametrically by simply computing covariances of the firm-level
realized returns with the SDF over short windows of daily data. I find that the firm-level
conditional expected returns constructed in this way explain a significant fraction of variation
in the firm-level realized returns.

At the heart of the CK-PCA method is the “kernel trick” technique. It substitutes the
inner product of characteristics in the PCA problem with a generalized inner product—the
kernel. The resulting procedure is equivalent to PCA in the space of “features” — character-
istics that include any non-linear functions and interactions of the original characteristics.
Therefore, certain choices of the kernel, which is easy to compute, lead to the exact same
solution as PCA on an extended set of portfolios sorted on original characteristics, their
powers and interactions of an arbitrary (potentially infinite) order. This problem can be

solved at a fixed computational cost which does not increase in the order of interactions.
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A Variable definitions

A.1 Anomaly characteristics

Anomaly definitions and descriptions are based on the list of characteristics compiled by
Kozak et al. (2019). All accounting variables are properly lagged. For annual rebalancing,
returns from July of year ¢t to June of year ¢ + 1 are matched to variables in December of
t — 1. Returns from January to June of year ¢ are matched to variables in December of
year t — 2. Financial variables with a subscript “Dec” below are computed using the same
timing convention. Flow variables (like dividends or investment) are annual totals as of the
measurement date, unless otherwise specified. For monthly rebalancing, returns are matched
to the latest quarterly report, lagged one month. Additional lagging (if required) is reported
for each variable below individually. All subindices below are measured in months. A time

subscript t refers to the time at which a portfolio is formed.

1. Size (size). Follows Fama and French (1993b). size = MEj,,. The CRSP end of June

price times shares outstanding. Rebalanced annually.

2. Value (annual) (value). Follows Fama and French (1993b). value = BE/ME. At the
end of June of each year, we use book equity from the previous fiscal year and market

equity from December of the previous year. Rebalanced annually.

3. Gross Profitability (prof). Follows Novy Marx (2013). prof = GP/AT, where GP

is gross profits and AT is total assets. Rebalanced annually.

4. Piotroski’s F-score (F-score). Follows Piotroski (2000). F-score = 1ig~o+1aroa>0+
lcro>o0+ lcros1B + 1apTa<0pLTT=0DLTT_12=0 T 1AATL>0 + 1EqIss<0 + 1aams>o0 + 1aaTO>0,
where IB is income before extraordinary items, ROA is income before extraordinary
items scaled by lagged total assets, CFO is cash flow from operations, DTA is total
long-term debt scaled by total assets, DLTT is total long-term debt, ATL is total
current assets scaled by total current liabilities, Eqlss is the difference between sales of
of common stock and purchases of common stock recorded on the cash flow statement,
GM equals one minus the ratio of cost of goods sold and total revenues, and ATO

equals total revenues, scaled by total assets. Rebalanced annualy.

5. Debt Issuance (debtiss). Follows Spiess and Affleck-Graves (1999). debtiss = 1ppiss<o-
Binary variable equal to one if long-term debt issuance indicated in statement of cash

flow. Updated annually.
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6.

10.

11.

12.

13.

14.

Share Repurchases (repurch). Follows Ikenberry et al. (1995). repurch = lprsrics0-
Binary variable equal to one if repurchase of common or preferred shares indicated in

statement of cash flow. Updated annually.

Share Issuance (annual) (nissa). Follows Pontiff and Woodgate (2008). nissa =
shrouty,, / shroutj,,_12, where shrout is the number of shares outstanding. Change
in real number of shares outstanding from past June to June of the previous year.
Excludes changes in shares due to stock dividends and splits, and companies with no

changes in shrout.

AACT-ACHE-ALCT4+ADLC+ATXP—-ADP

Accruals (accruals). Follows Sloan (1996). accruals = (RTTAT 23/
where AACT is the annual change in total current assets, ACHE is the annual change
in total cash and short-term investments, ALCT is the annual change in current lia-
bilities, ADLC is the annual change in debt in current liabilities, ATXP is the annual
change in income taxes payable, ADP is the annual change in depreciation and amorti-
zation, and (AT + AT_15)/2 is average total assets over the last two years. Rebalanced

annually.

Asset Growth (growth). Follows Cooper et al. (2008). growth = AT/AT_;5. Rebal-

anced annually.

Asset Turnover (aturnover). Follows Soliman (2008). aturnover = SALE/AT. Sales

to total assets. Rebalanced annually.

Gross Margins (gmargins). Follows Novy Marx (2013). gmargins = GP/SALE,

where GP is gross profits and SALE is total revenues. Rebalanced annually.

Earnings/Price (ep). Follows Basu (1977). ep = IB/MEp... Net income scaled by
market value of equity. Updated annually.

Cash Flow / Market Value of Equity (cfp). Follows Lakonishok et al. (1994). cfp
= (IB 4+ DP)/MEpe.. Net income plus depreciation and amortization, all scaled by

market value of equity measured at the same date. Updated annually.

Net Operating Assets (noa). Follows Hirshleifer et al. (2004). noa = (AT - CHE) -
(AT - DLC - DLTT - MIB - PSTK - CEQ), where AT is total assets, CHE is cash and
short-term investments, DLC is debt in current liabilities, DLTT is long term debt,
MIB is non-controlling interest, PSTK is preferred capital stock, and CEQ is common
equity. Updated annually.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Investment (inv). Follows Chen et al. (2011); Lyandres et al. (2007). inv = (APPEGT
+ AINVT)/AT_;5, where APPEGT is the annual change in gross total property, plant,
and equipment, AINVT is the annual change in total inventories, and AT _, is lagged

total assets. Rebalanced annually, uses the full period.

Investment-to-Capital (invcap). Follows Xing (2008). invcap = CAPX/PPENT.
Investment to capital is the ratio of capital expenditure (Compustat item CAPX) over

property, plant, and equipment (Compustat item PPENT).

Invetment Growth (growth). Follows Xing (2008). growth = CAPX/CAPX_i.
Investment growth is the percentage change in capital expenditure (Compustat item
CAPX).

Sales Growth (sgrowth). Follows Lakonishok et al. (1994). sgrowth = SALE/SALE_ 5.

Sales growth is the percent change in net sales over turnover (Compustat item SALE).

Leverage (lev). Follows Bhandari (1988). lev = AT/MEp... Market leverage is the
ratio of total assets (Compustat item AT) over the market value of equity. Both are

measured in December of the same year.

Return on Assets (annual) (roaa). Follows Chen et al. (2011). roaa = IB/AT. Net

income scaled by total assets. Updated annually.

Return on Equity (annual) (roea). Follows Haugen and Baker (1996). roea =
IB/BE. Net income scaled by book value of equity. Updated annually.

Sales-to-Price (sp). Follows Barbee Jr et al. (1996). sp = SALE/MEp.. Total
revenues divided by stock price. Updated annually.

Momentum (6m) (mom). Follows Jegadeesh and Titman (1993). mom = S7_, 7.
Cumulated past performance in the previous 6 months by skipping the most recent

month. Rebalanced monthly.

Industry Momentum (indmom). Follows Moskowitz and Grinblatt (1999). indmom
= 1"&1L111<(2:?:1 rind) In each month, the Fama and French 49 industries are ranked on

their value-weighted past 6-months performance. Rebalanced monthly.

Momentum (1 year) (mom12). Follows Jegadeesh and Titman (1993). moml2 =
le; ry—;. Cumulated past performance in the previous year by skipping the most

recent month. Rebalanced monthly.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Momentum-Reversal (momrev). Follows Jegadeesh and Titman (1993). momrev =
S, 7. Buy and hold returns from ¢ — 19 to t — 14. Updated monthly.

Long-term Reversals (Irrev). Follows DeBondt and Thaler (1985). lrrev = Y200 .7, .
Cumulative returns from ¢t — 60 to ¢ — 13. Updated monthly.

Value (monthly) (valuem). Follows Asness and Frazzini (2013). valuem = BEQ_3/ME_;.

Book-to-market ratio using the most up-to-date prices and book equity (appropriately

lagged). Rebalanced monthly.

Share Issuance (monthly) (nissm). Follows Pontiff and Woodgate (2008). nissm
= shrout;_13 / shrout,_;, where shrout is the number of shares outstanding. Change
in real number of shares outstanding from ¢ — 13 to ¢ — 1. Excludes changes in shares

due to stock dividends and splits, and companies with no changes in shrout.

Return on Book Equity (roe). Follows Chen et al. (2011). roe = IBQ/BEQ_3,
where IBQ is income before extraordinary items (updated quarterly), and BEQ is

book value of equity. Rebalanced monthly.

Return on Market Equity (rome). Follows Chen et al. (2011). rome = IBQ/ME_4,
where IBQ is income before extraordinary items (updated quarterly), and ME is market

value of equity. Rebalanced monthly.

Short-term Reversal (strev). Follows Jegadeesh (1990). strev = r;_;. Return in the
previous month. Updated monthly.

Idiosyncratic Volatility (ivol). Follows Ang et al. (2006). ivol = std(R;; — BiRnm.: —
$;SMB; — h;HML;). The standard deviation of the residual from firm-level regression
of daily stock returns on the daily innovations of the Fama and French three-factor

model using the estimation window of three months. Lagged one month.

Beta Arbitrage (beta). Follows Cooper et al. (2008). beta = [;_go.t—1. Beta with
respect to the CRSP equal-weighted return index. Estimated over the past 60 months
(minimum 36 months) using daily data and lagged one month. Updated monthly.

Seasonality (season). Follows Heston and Sadka (2008). season = 7 | 74 jx12.
Average monthly return in the same calendar month over the last 5 years. As an
example, the average return from prior Octobers is used to predict returns this October.

The firm needs at least one year of data to be included in the sample. Updated monthly.
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36. Industry Relative Reversals (indrrev). Follows Da et al. (2013). indrrev = r_; —
rindwhere r is the return on a stock and 7™ is return on its industry. Difference
between a stocks’ prior month’s return and the prior month’s return of its industry
(based on the Fama and French 49 industries). Updated monthly.

ME¢_13 ) _
ME:_60

2?213 ry_;, where r is the log return on the stock and ME is total market equity.
Updated monthly.

37. Composite Issuance (ciss). Follows Daniel and Titman (2006). ciss = log(

38. Price (price). Follows Blume and Husic (1973). price = log(ME/shrout), where ME
is market equity and shrout is the number of shares outstanding. Log of stock price.
Updated monthly.

39. Firm Age (age). Follows Barry and Brown (1984). age = log(1 + number of months
since listing). The number of months that a firm has been listed in the CRSP database.

40. Share Volume (shvol). Follows Datar et al. (1998). shvol = 3 S, volume,_; /shrout,.
Average number of shares traded over the previous three months scaled by shares out-

standing. Updated monthly.

B Out-of-sample construction of PCs

PCA in feature space of characteristics requires finding eigenvalues A\ > 0 and nonzero

eigenvectors v € H of the estimated covariance matrix,

T
S=T"Y &(Z) R R ®(2y), (24)

t=1
of the centered and non-linearly transformed characteristics Z; via a transform ®(Z;). The
eigenequation v = \v, where v is the eigenvector corresponding to the eigenvalue A > 0 of

C, can be written in an equivalent form as
<q)<Zt),Rt+17 E'U) =) <®(Zt)/Rt+1a U> s t= ]_7 2, ceny T. (25)

Because
T

So=T"Y ®(Z) Ryy1 (2(Z) R, v) (26)

t=1
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all solutions v with nonzero eigenvalue A are contained in the span of ®(Z;)' Ry , ..., ®(Z71) Rry1.

So, there exist coefficients, ay,t = 1,2, ...,T, such that

v="> a®(Z) Ry (27)

t=1

Substituting in the expression for v, we get that

T T

T o < (Z0) Riv1, Y ®(Z) Rk+1> (©(Zy) Ris1, (Z;) Rjs1) = (28)
=1 k=1

= )\Zak (Z1) Riy1, ©(Z1) Risa), (29)

for all t =1,2,...,T. Define the (T x T)-matrix K = (K,;) , where
Kij = (®(2i) Ris1, ©(x;) Rj1). (30)

Note that K will generally be a huge matrix. Then, the eigenequation above can be

written as K2a = TAKa, where o = (aq, -+ ,ar)’, or as
Ka = )\, (31)

where A = T)\. Note that we can express the eigenvalues and vectors, (5\, a), of K in
terms of those, (A, v), for X.

Consider now a projection of a new (out-of-sample) datapoint, given by {Z;, R;1}. Its
nonlinear principal component scores corresponding to ® are given by the projection of
®(Z;)'Riy1 € H onto the eigenvectors vy, € H,

T
(U, @(Z) Risr) = A2 0wl ®(Z) Rior, (20 Rewr), k=1,2,...T,  (32)
=1

where the )\;1/2 term is included so that {vy, v} = 1.
Using the kernel trick, the nonlinear principal component scores of ®(Z;) R;y1 can be

expressed as

T
(U, ®(Ze) Risr) = 0,2 owiREGK(Zi Z) Rewr, k=1,2,..T, (33)

=1
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where ay; is the kth eigenvector of the matrix K. Therefore, PC realizations can be easily
computed for new observations without knowing the transform ¢(-) explicitly. It only requires
applying the kernel function to the new and existing 7' sample datapoints, and weighting
these kernels using the corresponding eigenvector.

I use this fact to construct out-of-sample PCs for any kernel. For the linear kernel,
for example, this construction exactly matches the PCs constructed using classic PCA on
the covariance matrix. Likewise, for the second-order polynomial kernel, recovered PCs are
identical to the ones based on PCA of the covariance matrix based on an expanded set
of characteristics which includes all second-order terms. For the radial kernel PCs can be
recovered only using this kernelized approach, however.

Lastly, consider an existing datapoint at time ¢ and the realization of the kth principal
component of features (projection onto an eigenvector): (vg, ®(Z;)' Ryy1) = )\,;1/2 oKy =
)\,;1/2(K04k)t = A;l/Q(Akak)t X oy ¢, where (A), stands for the tth row of A. Therefore, the kth
principal component of the covariance matrix in (24) is proportional to the kth eigenvector
of the matrix K.

C Solution method

Computing the T" x T kernelized matrix 2 using daily data requires a significant amount of
computations. Each element of this 12,000 x 12,000 matrix requires computing the kernel
matrix of size N x N, where NN is the number of stocks. Each of the elements of the latter
matrix is an inner product of all characteristics on two stocks. Lastly, this problem has to
be solved multiple times to cross validate the parameter c¢. Overall, with daily data and 32
cross-validated values, roughly 10'® arithmetic operations need to be performed.

Although there is a large fixed cost to solving this problem using daily data, importantly,
there is no incremental cost to allowing higher-order interactions among features. Indeed,
the algorithm simply requires replacing the kernel function evaluation with a different one
(e.g., raising to a higher power), which have negligible impact on the overall computation
time. Similarly, expanding the set of original characteristics is relatively cheap — it increases
complexity linearly. For classical PCA approaches the cost is polynomial, O(L?), where L is
the number of characteristics.

I solve the problem using the C++ CUDA framework for GPU computing on an Nvidia
Titan V GPU. Importantly, the problem is massively parallelizable and can be very efficiently
implemented on a GPU.1° The overall runtime for the anomaly dataset using daily data and

32 cross-validation values is less than an hour.

10Modern GPUs, such as Titan V, can perform around 10'? arithmetic operations per second.
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Table 1: Part I: Mean annualized returns on anomaly portfolios, %

The table lists all basic “anomaly” characteristics used in my analysis and shows annualized mean

returns on managed portfolios which are linear in characteristics. Columns (1)-(3) show mean
annualized returns (in %) for managed portfolios corresponding to all characteristics in the full
sample, pre-2005 sample, and post-2005 sample, respectively. All managed portfolios’ returns are
based on a monthly-rebalanced buy-and-hold strategy and are further rescaled to have standard
deviations equal to the in-sample standard deviation of excess returns on the aggregate market
index. The sample is daily from 11/01/1973 to 12/29/2017.

(1) (2) (3)

Full Sample Pre 2005 Post 2005
1. Size -5.0 -5.5 -3.7
2. Value (A) 8.1 11.2 0.3
3. Gross Profitability 1.5 1.6 1.1
4. F-score 4.8 7.8 -2.6
5. Debt Issuance 0.8 0.9 0.6
6. Share Repurchases 5.5 6.2 3.8
7. Net Issuance (A) -6.8 -9.6 0.2
8. Accruals -6.9 -9.2 -1.0
9. Asset Growth -7.8 -10.7 -0.6
10. Asset Turnover 2.6 2.9 1.8
11. Gross Margins -1.0 -1.1 -0.6
12. Earnings/Price 5.4 7.6 -0.2
13. Cash Flows/Price 8.8 11.9 1.1
14. Net Operating Assets -9.3 -9.8 -7.9
15. Investment/Assets -9.3 -11.2 -4.3
16. Investment/Capital -3.7 -4.0 -3.2
17. Investment Growth -6.5 -8.5 -1.4
18. Sales Growth -4.8 -5.5 -3.0
19. Leverage 8.4 10.2 3.6
20. Return on Assets (A) -7.9 -9.1 -4.9
21. Return on Book Equity (A) -4.9 -6.4 -1.2
22. Sales/Price 9.6 12.0 3.6
23. Momentum (6m) 0.7 3.4 -6.1
24. Industry Momentum 5.9 8.4 -1.9
25. Momentum (12m) 5.4 9.5 -4.9
26. Momentum-Reversals -9.3 -11.3 -4.2
27. Long Run Reversals -8.8 -11.1 -2.9
28. Value (M) 9.9 12.3 3.9
29. Net Issuance (M) -8.1 -10.1 -3.1
30. Return on Equity 8.2 11.9 -1.2

continued on next page...
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Table 1: Part II: Mean annualized returns on anomaly portfolios, %

(1) (2) (3)
31. Return on Market Equity 16.7 23.3 0.2
32. Short-Term Reversals -14.5 -17.9 -6.0
33. Idiosyncratic Volatility 0.8 0.2 2.1
34. Beta Arbitrage 0.6 0.5 0.8
35. Seasonality 14.0 22.0 -6.1
36. Industry Rel. Reversals -27.7 -35.5 -8.0
37. Composite Issuance -7.8 -10.1 -1.8
38. Price -11.5 -11.0 -12.6
39. Age -1.2 -1.5 -0.5
40. Share Volume -0.3 0.5 -2.4
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