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Abstract

We use the roll-out of a large transmission expansion in Texas’ electricity market to
measure the market impacts of the transmission expansion on benefits of increased re-
newable capacity. We find large market benefits leading to a payback period of roughly
14 years. However, total welfare improvements from reduced congestion depend on
how global non-market externalities are internalized by regional policy makers: ac-
counting for non-market externalities reduces the payback period of this project from
14 to less than 9 years. We discuss the finding’s implications for the welfare of regional
decisions to build transmission capacity for the U.S. wholesale electricity market.
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1 Introduction

To mitigate non-market externalities and decrease reliance on imported fossil fuels, the

U.S. federal and various state governments have subsidized both solar and wind electricity

generation capacity for the past 10 years in various ways. The most widely used direct

subsidy to private developers to date in terms of total electricity generation is the federal

production tax credit (PTC) for wind electricity generation.1 The PTC is a large volumet-

ric based subsidy whereby each Megawatt Hour (MWh) of electricity produced entitles

the renewable asset owner to a deductible federal tax credit, regardless of the location

and wholesale price of the electricity generated. Total federal payments of the PTC in

2015 were roughly $4.4 billion.2 Driven by both market conditions and the PTC, in 2015

wind generation was 5.5% of domestic electricity production, roughly 5 times solar gen-

eration and almost 80% of hydroelectric generation according to the Energy Information

Administration.

The structure of electricity markets leads to at least one potential channel for inef-

ficiency from the PTC. Electricity is both homogeneous and non-storable. As a result,

electricity which is produced at one location must be moved via transmission lines to lo-

cations where it is consumed. If there is insufficient transmission capacity there can be

congestion constraints leading to price discrepancies in the wholesale price of electricity

over space (Joskow and Tirole (2005) and Davis and Hausman (2016)). Popular press has

reported how increases in wind capacity are straining the grid and advocates argue that

wind farms require more transmission to fully benefit investors, ratepayers and federal

taxpayers.3

There is reason to believe that transmission line construction cannot be provided ef-

1See https://www.eia.gov/analysis/requests/subsidy/. Renewable Portfolio Standards (RPSs) are
common policies at the state level and implicitly subsidize renewables. Investment Tax Credits (ITCs) are
common for solar investment.

2The PTC for the U.S. was $.023/kWh of generation through 2016 declining to $.0184/kWh for gen-
eration constructed after 2017. See IRS form 8835 (https://www.irs.gov/pub/irs-pdf/f8835.pdf) or
this more general description: http://programs.dsireusa.org/system/program/detail/734. Among all
the states, Texas has the largest wind capacity at roughly 2.5 times the next closest states (California
and Iowa). In Texas, wind generation accounted for 10 percent of electricity generation in 2015 (See:
https://tinyurl.com/kmtadrm).

3Outlets like MIT Technology Review (goo.gl/6s7JDE), Reuters (goo.gl/6s7JDE) and NPR (goo.gl/
qHVZwC) all have been covering this issue recently.
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ficiently by the market: they have high fixed costs and low marginal costs, similar to

telephone lines, and therefore prone to natural monopolies (Joskow and Tirole (2005)).

As a result, regional electricity entities like Independent System Operators (ISOs) often

plan and facilitate their construction passing the cost on to market participants. Thus

the PTC presents a regulatory federalism issue: the PTC didn’t include a complementary

federal policy which explicitly optimized the electricity transmission grid in response to

new wind capacity. Taken effect in 2016, Federal Energy Regulatory Commission (FERC)

order number 1000 implicitly acknowledges this challenge and requires that impacted util-

ities and other regional stakeholders “must consider transmission needs driven by public

policy requirements established by state or federal laws or regulations”.4

This paper estimates the economic benefits of building new large scale transmission

capacity conditional on large increases in wind capacity facilitated by a second best policy

like the PTC. To do so we combine a new theoretical model and structural research design.

In the theoretical model, we extend the electricity transmission constraint framework

in Joskow and Tirole (2005) to wind generation. The Joskow and Tirole (2005) model

considers a simple transmission system with two nodes: one with excess demand (net

demand) which serves as an importer, and the other with excess supply (net supply)

which serves as an exporter. Unconstrained transmission capacity allows trade between

the two nodes until nodal prices are equal. Deviations from a single network price imply

congestion in the model. In a straightforward extension, we add intermittent renewable

generation to the model and show how the shadow cost of any transmission constraint

changes with increased intermittent renewable generation. We also show how increases in

transmission capacity decrease price differences between exporting and importing regions

when renewables generate.

In the empirical section we use quasi-experimental variation in the construction of a

large ∼$7 billion transmission expansion in ERCOT (Texas’ electricity grid) to estimate

economic benefits of the expansion. The expansion was called the Competitive Renewable

Energy Zones (CREZ) project and added significant transmission capacity between wind

generation locations in west Texas and load centers in the south, central and east Texas.

4See https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp.
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CREZ construction occurred mainly between 2011 and 2014. We use hourly wind gener-

ation, hourly wholesale real time and day ahead price data, and hourly load data from

2011-2016 to estimate how wind generation impacts price discrepancies (e.g., through

shifts in the net demand and net supply curves) across space as more CREZ lines are

completed.

Identification comes from both the timing of incremental completion of the CREZ

expansion over the five years in our sample and inclusion of hour-month-year and day-of-

sample fixed effects. Our identifying assumption is that variation in CREZ construction

across the same hour of a day (e.g., 6am) within a month. Put another way, we rely on

changes in the completion of CREZ lines in the same hour of a day within a month being

exogenous to net supply and net demand shifts. We present evidence in support of this

identifying assumption by showing how price gaps across ERCOT systematically close as

a function of CREZ completion.

The key empirical feature in our approach is that we directly estimate the slopes of

the net supply and net demand curves in ERCOT and combine them with the theoretical

model of congestion and wind generation. The parameters combined with the structure in

the theoretical model allows us to construct congestion costs for each hour in our data and

compare them to a counterfactual in which wind generation would be traded freely until

prices between generation centers in West ERCOT and load centers in North ERCOT,

South ERCOT and Southeastern ERCOT (e.g., Houston) are equal.5 We leverage the

unique spatial distribution of wind and load centers and regulatory history in ERCOT

to combine the theoretical and empirical models to perform the analysis in addition to

robustness checks.6 Our approach is far more transparent and parsimonious than a re-

search design which uses an engineering simulation of the ERCOT market. A simulation

research design focusing on CREZ and wind generation would need to simulate the entire

ERCOT transmission network, the market behavior of each market participant and the

algorithm used to allocate production as a function of bids and load. While this model

5In this sense we build on other structural work like Borenstein, Bushnell, and Wolak (2002).
6Texas is an ideal case study for three main reasons: First, ERCOT has the largest share of wind

generation in the country. Second, ERCOT has a sufficient history of wind generation data to identify the
model. Third, ERCOT is its own electricity interconnection meaning that imports and exports between
Texas and other states are minimized.
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might capture some complexities like network loop flows, we provide evidence that our

more parsimonious approach is sufficient for evaluating CREZ impacts.

Consistent with transmission constraints preventing trade, our results show a price gap

of ∼$5/MWh in 2011 before much of CREZ was completed and a ∼$.50/MWh price gap

in 2015 after CREZ was mostly finished. The decrease in price dispersion is an economic

benefit: electricity production costs decrease on the whole due to more trade. The main

channel for the benefits is the additional electricity traded between the West and other

higher production cost areas of ERCOT thereby equalizing marginal producers’ costs over

space. Using hourly data we show that traded wind generation is the primary driver of

the decreased price dispersion. The reason wind generation in particular matters is that

wind generation occurs in locations where there is little demand for electricity. Thus

transmission lines are required to bring that electricity to more valuable load centers.

We calculate that annual wholesale electricity market benefits from CREZ conditional on

extant wind generation is roughly $500M/year due to reduced transmission constraint loss

from increased trade.

Since electricity production has unpriced negative externalities (CO2 and other air

pollutants) we perform a back of the envelope calculation for benefits of mitigated fossil

fuel generation from increased trade of wind electricity. To do so we use the technique

developed in Zivin, Kotchen, and Mansur (2014) and updated in Holladay and LaRiv-

iere (2017) to calculate marginal hourly forgone emissions in ERCOT due to additional

transmission capacity. This technique complements the more granular emissions work of

Fell, Kaffine, and Novan (2017) to size the non-market impacts of CREZ’s construction

through increased trade of wind generation. If 10% of generation from wind was curtailed

in this period due to transmission capacity constraints the non-market impacts of CO2

alone using a price per ton estimate of $37 are roughly $115M/year. That number ignores

other unpriced pollutants like PM 2.5, making it a lower bound. Adding in non-market

benefits of roughly $200M/year in Fell, Kaffine, and Novan (2017) implies annual non-

market benefits of roughly $300M/year. In sum, we estimate annual benefits of CREZ

conditional on installed wind capacity at roughly $800M/year. Thus, we find that the

gains from CREZ depends on the valuation for non-market benefits and lead to a payback

period of less than 9 years.
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There are notable asymmetries in the incidence of CREZ. Our net supply and net de-

mand parameters imply that west ERCOT ratepayers saw their wholesale electricity prices

increase while ratepayers in the rest of ERCOT saw their rates decrease. Thus the mech-

anism for how transmission projects are paid for across ratepayers becomes important.

Conversely, generators in west ERCOT received higher wholesale prices while generators

in the rest of ERCOT earned decreased wholesale prices. In ERCOT wind blows at night

implying that baseload generators took the brunt of CREZ’s price decreases in ERCOT

outside of the West. For example, in late 2017 ERCOT approved the decommissioning

of ∼4,000 MWh of coal fired generation. While it is beyond the scope of this paper to

make causal statements about retirement decisions, the decision to retire those plants was

certainly not helped by CREZ. Importantly, these incidence measures are transfers from

one set of stakeholders to another so they don’t factor in our benefit cost analysis. In sum,

we find evidence that generators in west ERCOT benefit from CREZ whereas generators

in other ERCOT regions lose.

The policy implications of this paper speak directly to the policy debate playing out

in the popular press on transmission line construction. Our estimates indicate that the

benefits of additional transmission in ERCOT has a payback period of roughly 14 years

when not accounting for carbon and something closer to 9 years when valuing carbon at

standard worldwide values of $37/ton. Insofar as these ERCOT results are externally

valid, the social gains from additional transmission ride very much on how CO2 and air

pollution reductions are valued by ISOs. At a high level, the key metric for external

validity is the spatial correlation of renewable generation and load. The results are likely

to hold in Iowa where generation is relatively large compared to load. In California, roof

top solar has tighter spatial correlation meaning that transmission capacity might be less

important.

This paper adds to a growing literature on renewable energy policy in the U.S. There is

a large literature on environmental impacts or possible environmental impacts of wind gen-

eration (Cullen (2013), Novan (2015), Holladay and LaRiviere (2017)). Our work focuses

on a different question: market inefficiencies brought about by policies aimed at increasing

renewable generation. As a result, our work is more in line with how renewables have im-

pacted or can interact with various market conditions (Callaway, Fowlie, and McCormick
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(2018), Gowrisankaran, Reynolds, and Samano (2016) and Cullen and Reynolds (2017)).

While don’t investigate investment dynamics empirically like Cullen and Reynolds (2017)

and instead focus on transmission expansion’s impact on extant capacity, we do discuss

the implications of transmission expansion on investment decisions. The only other eco-

nomics paper to study CREZ we are aware of is Fell, Kaffine, and Novan (2017) which

identifies how wind generation substitutes for different types of fossil fuel generation in the

rest of ERCOT before, during and after CREZ’s construction and focuses on non-market

implications of CREZ.

Our contribution, however, is primarily on transmission constraints and the economics

of the electricity sector and the challenges of layered national and regional energy pol-

icy. In terms of net supply and net demand, Borenstein, Bushnell, and Wolak (2002)

focuses on imported electricity into California to evaluate the relative efficiency of Cali-

fornia’s restructured electricity markets. More broadly, there is a large literature on how

deregulation and market power impacts strategic bidding behavior of market participants

(Puller (2007), Bushnell, Mansur, and Saravia (2008), Mansur (2008), Fowlie (2009), Ito

and Reguant (2016), Mercadal (2018)). Further, ERCOT in particular has received atten-

tion related to strategic bidding behavior and efficiency (Hortacsu and Puller (2008) and

Hortacsu, Luco, Puller, and Zhu (2017)).

Our research design approach doesn’t address strategic bidding and market power

structurally; transmission constraint loss can be reduced directly through increased trade

or indirectly through reduced market power from increased trade. We discuss implications

of market power and also perform robustness checks by trimming our sample to periods

were market power is the least likely to occur but we don’t disentangle to relative import

of increased trade versus reductions in market power from increased trade. The closest

paper to ours is Davis and Hausman (2016) which addresses the impacts of changes in

transmission constraints, among other market outcomes, due to a nuclear plant shutdown.

We are not aware of any empirical work in the economics literature which evaluates the

market and non-market welfare impacts of new transmission construction.

The rest of the paper is organized as follows. Section 2 describes the theoretical model

framework. Section 3 introduces basic background about the CREZ project. Section 4

introduces datasets used in this paper. Section 5 shows level impacts of wind generation
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on electricity prices in ERCOT and impacts of wind generation on electricity price dis-

crepancies across geographical regions. Section 6 calculate transmission constraint loss

associated with wind generation and discusses incidence of the CREZ project. Section 7

concludes.

2 Theoretical Model

We use the Joskow and Tirole (2005) framework to define the shadow cost of a transmission

constraint then add intermittent renewables to their model. Their model starts with the

simplest possible transmission network: a system with two nodes. Node “A” can export

electricity to a population center in node “B”. Both node A and node B have generation

capacity but in node B, load is often much larger than in node A. In this case it is optimal

for node A to export electricity to node B until prices in the A and B are identical.

Thus node A is an exporting node and node B is an importing node. Only if there are

transmission constraints will there be a discrepancy in prices.

We now formalize the intuition above and extend it so that the node A also has

wind generation capacity. First consider node A in isolation. Consistent with renewable

electricity being must take, the price of electricity in node A is determined by “net load”.

We define net load in node A as load minus wind generation (LAt −Wt) for any period t.

Following Joskow and Tirole (2005), we assume that the price of electricity in node A is

equal to linear marginal costs of fossil fuel generation: PAt = aA+ bA(LAt −Wt). Similarly,

the price of electricity in node B which is assumed to have no wind generation is also equal

to linear marginal costs: PBt = aB + bBL
B
t . Note that if there is market power in node B,

slope coefficient bB encompasses information on both marginal costs and exercised market

power of suppliers.

In both nodes, then, electricity has a positive price determined by the costs of the

marginal fossil fuel electricity generator. For example, LAt −Wt must be supplied by fossil

fuel generators at node A and LBt must be supplied by fossil fuel generators at node B.

The linear slope coefficient defines how increases in fossil fuel generation map to wholesale

prices at each node.

In this model, an increase in wind generation decreases the price of electricity at

market settlement point near wind farms (e.g., node A). Conditional on load, inelastic
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demand of electricity and must take wind generation implies estimating the price impacts

of increased wind generation recovers the shape of the marginal cost curve. The magnitude

of the decrease is an empirical question we estimate in the next section.

Now allow trade so that node A can export electricity to node B. For convenience and

consistent with the subsequent data, assume that PAt < PBt in the absence of trade. In

that case, node A always exports a weakly positive amount of electricity by assumption.

The marginal cost of exporting a given amount of electricity, Qt from node A to node B is

a function of load, wind generation and costs parameters in node A which we call the “net

supply curve”: PAt = aA + bA(LAt −Wt) + bAQt. In the context of traded electricity Qt,

the term bA(LAt −Wt) shifts the intercept of node A’s supply function up and down but

does not impact the slope since wind is must take.7The net supply curve is upward sloping

if we plot PAt as a function of Qt since the marginal cost of generating more electricity

from fossil fuels is increasing in the amount of exports.

Node B’s demand function for imported electricity from node A is downward sloping

in the price charged by node A and the intercept is a function of their own load and cost

parameters. We thus define the net demand function as: PBt = aB + bBL
B
t − bBQt. Here,

bB represents the cost of node B to procure electricity internally.8 As a result, node B’s

net demand function is downward sloping to reflect the opportunity cost of imports either

through additional domestic fossil fuel production at the node B, or the cost of importing

from a third party which is not part of the explicit model. Without barriers to trade,

prices in node A and node B will be equal in equilibrium.

Lastly, assume there is also a transmission capacity K. The transmission capacity K

means there can be violations of the law of one price between node A and node B. This

is represented in Figure 1 which shows how adding wind generation to the Joskow and

Tirole (2005) model impacts the shadow cost of transmission constraints. Q = K∗ is the

unconstrained level of trade but K is the constrained level of trade and η is the resultant

price discrepancy between node A and B. The figure also shows how capacity constraints

7A richer model might include a slight readjust of the merit order when the wind blows which would
affect the slope. That additional complexity is second order to our focus here.

8In a more complicated network, the marginal costs of electricity generators at other nodes also deter-
mines the slope of the net demand curve. This could also be the implicit cost of reducing load to avoid
blackouts.
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lead to losses through decreased trade (the shaded triangle) we call a transmission con-

straint loss (TCL). This loss is not necessarily a deadweight loss, however, since the costs

of adding transmission capacity may outweigh the gains.

Quantity (MWh)

Price (Dollars/MWh) SA

DB

K

aA + bA(L
A
t −Wt)

aB + bBL
B
t

PA
t

PB
t

ηt TCL

K∗

bA

bB

Wt increase shifts curve down

Figure 1: Impact of change in wind generation on shadow cost of transmission constraint.

Figure 1 shows that conditional on a given amount of transmission, η in any given

time period is a function of wind generation conditional on load levels. More precisely,

we constrain the quantity of traded electricity to be K and plug in the export supply and

demand equations for Qt:

η = PB − PA = (aB + bBL
B
t − bBK)− (aA + bA(LAt −Wt) + bAK)

= aB − aA + bBL
B
t − bALAt + bAWt − (bB + bA)K (1)

Equation (1) explicitly shows the relationship between the shadow cost of the trans-

mission constraint (e.g., η), model parameters and model dynamics. For example, the

foregone benefits of “complete” trade due to transmission constraints varies as the net de-

mand and supply curves shift up and down due to different net load and wind generation
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levels. An increase in wind generation shifts node A’s supply function to the right: since

wind is must take generation it will decrease the cost of meeting a given level of load in

node A from fossil fuel generation. Figure 2 shows that when wind generation increases

from W0 to W1, the net supply curve shift to the right. As a result, the price in node

A decreases from pA0 to pA1 , thus increasing the price gap between A and B, with more

wind generation and transmission constraint level K.9 Put another way, the shadow cost

of a transmission constraint increases with wind generation: ∂η
∂Wt

= bA > 0. This makes

intuitive sense: there is no change in node B but the price of electricity decreases in node

A. Changes in load in node A and B affect η in a similarly straightforward manner.

Quantity (MWh)

Price (Dollars/MWh)

S1
A

K

aA + bA(L
A −W1)

aB + bBL
B
0

η1

bA

bB

D0
B

η0

aA + bA(L
A −W0)

S0
A

PA
0

PA
1

Figure 2: Net Supply Shock

This model also shows that the shadow price of constraint is decreasing in capacity:

∂η
∂K = −(bB+bA) < 0. This is consistent with additional capacity allowing more trade and

therefore a decrease in price discrepancies. In our subsequent empirical analysis, increases

in K can be thought of as the increase in transmission capacity from the construction on

9This is only true when there are transmission constraints. So we will use data before the CREZ project
to identify the slope. Same for the slope of net demand curve below.
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CREZ power lines in Texas.

Figure 1 shows the price gap between exporting area and importing area (i.e. η)

should be equal to the sum of the capacity gap (i.e. K∗ − K) times the slope of net

supply curve (i.e. bB) and capacity gap times the slope of the net demand curve (i.e. bA).

To simplify notation, we denote 4K = K∗ −K|K∗ > K, which is the gap between the

actual transmission capacity and the optimal transmission capacity. Note that 4K is only

positive when K∗ > K and otherwise takes the value of zero according to this definition.

More precisely the price gap is:

bB4K + bA4K = η (2)

Solving for 4K, we have:

4K =
η

bB + bA
(3)

The transmission constraint loss (TCL) can thus be calculated as the area of the shaded

triangle in Figure 1:

TCL =
1

2
η4K =

η2

2(bB + bA)
(4)

In any given time period, we can calculate a TCL for the market with observed η and

estimated bB and bA. We use equation (4) to calculate the TCL associated with renewables

when there are binding capacity constraints compared to when there are none.

From a welfare perspective, we can also write down the objective function of the

regulator conditional on a particular level of installed wind capacity. This final step

relates TCL to deadweight loss (DWL) from inefficient levels of transmission investment.

To do so we introduce two additional functions. The first is a joint density of load in

node B and wind generation in node A: F (LBt ,Wt) ∀ t. For simplicity, we ignore load in

the exporting region. The second expression is a convex function governing the cost of
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transmission expansion: c(K). The function c(K) is a one time cost paid for K. Thus,

optimal expected investment in transmission capacity is given by following maximization

problem:

argmaxK − ΣT
t=1

∫ ∫
1

2
ηt∆KtdF (LBt ,Wt)− c(K). (5)

Equation (5) is the negative of expected TCLs over some time period T . We subsume

discount factors for simplicity. Recalling that η is a function of transmission constraints

K, the key feature of equation (5) is the non-linearity of the product ηt∆Kt in K. This

creates the non-linearities in how TCLs relate to changes in K. Importantly, this model is

made more complex due to the joint probability distribution dF (LBt ,Wt). The interaction

of the function is the product ηt∆Kt and dF (LBt ,Wt) is key innovation of our approach

relative to other models of transmission constraints or wind generation.

Plugging in for the definition of ∆K, η and simplifying, the first order condition is:

1

2
ΣT
t=1

∫ ∫
ηt + (bB + bA)(K∗t −K)dF (LBt ,Wt) =

∂c(K)

∂K
(6)

Equation (6) shows the well-known three components of supply decisions of a social

planner. The first term η represents the benefits on the extensive margin from increasing

transmission capacity by one unit. The second term (bB + bA)(K∗t −K) = (bB + bA)∆Kt

represents the benefit on the intensive margin due to increased transmission capacity.

Finally, the cost of additional capacity is given by ∂c(K)
∂K which is an engineering calculation.

The analysis to this point ignores all non-market gains from increased transmission ca-

pacity but the model can easily be extended to include them. Since renewables have zero

emissions, there are additional gains from reducing TCLs proportional to the marginal

damage of each unit of renewable generation exported to the importing region. For ex-

ample, increase transmission of renewables decreases the need to burn fossil fuels which

release CO2 and air pollutants which harm human health and indirect economic value to

the ecosystem. If we assume that all generation in the importing region is due to fossil

fuel generation with some non-market marginal cost of ψ, then expected additional gains

from increasing K are ΣT
t=1

∫ ∫
ψ∆KdF (LBt ,Wt). In calculating benefits from additional

transmission capacity in the empirical section we include these benefits using estimates of
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ψ taken from the literature. We let ψ vary by time of day and month of year to reflect

changes in marginal emissions over time.

In the empirical section below we take the model to the data in five crucial ways. First,

we estimate the impact of wind generation on ERCOT hub level prices. This provides

validation of within node dynamics. Second, we estimate wind generated annual price

dispersion across ERCOT by year and compare that to increased CREZ completion to

verify across node model dynamics. Third, we estimate net supply and net demand slopes

for each ERCOT zone pair. Fourth, we construct the implied transmission constraint (e.g.,

Kt) and TCL for each hour in the data. Fifth, we aggregate hourly TCLs and back of the

envelope non-market costs to get annual estimates of benefits due to CREZ completion.

In steps three through five we include a robustness check where we allow the net supply

and net demand slopes to be non-linear.

Any model must make simplifying assumptions. We discuss in the empirical section

the relationship between both market power and the production tax credit for the model.10

We also don’t model curtailment decisions of wind generators who might curtail generation

during periods of wind due to negative prices induced by transmission constraints. The

presence of curtailment implies that the market savings from the paper will be lower

bounds. A lack of curtailment data available for ERCOT makes adding curtailment to

the analysis implausible.

3 Background

In 2014 ERCOT finished construction of a multi-billion dollar expansion of the ERCOT

transmission line network to connect remote windy regions in Texas to populations cen-

ters.11 The expansion was long planned and understanding its evolution is useful for

understanding our research design and the broader policy context for how Independent

System Operators (ISOs) participate in transmission expansions.

In the U.S. Federal Energy Regulatory Commission (FERC) and Public Utility Com-

10At a high level, market power increases the within node marginal cost curve and thus increases the
net demand curve for that region. The production tax credit changes none of the dynamics of the model
since the model conditions on wind capacity.

11https://www.texastribune.org/2013/10/14/7-billion-crez-project-nears-finish-aiding-wind-po/.
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missions (PUCs) typically jointly pay for transmission expansion through tariffs. FERC is

self-funded and can levy fees to upstream market participants like electricity producers in

order to act as an independent standard setter and regulator. PUCs can allow distributors

to charge rates that will recover transmission investment costs thus increasing fees to rate

payers. As a result, an ISO will often make the case for transmission line construction

but actually assessing payments for the new construction involves negotiation between a

variety of different agencies.

Figure 3: CREZ lines locations, wind capacity and urban centers in ERCOT

In 2008 ERCOT published a study which laid the groundwork for construction of new
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transmission lines which would connect remote but windy parts of northern and western

Texas to load centers in the east and south.12 The report followed the Public Utility

Commission of Texas (PUCT) designation of five zones in northwest Texas as Competitive

Renewable Energy Zones (CREZ) predisposed to high potential levels of wind generation.

The report analyzed how to add transmission to the grid under four investment scenarios

ranging from low to high wind capacity levels (12,000 MW to 24,400 MW of installed

capacity). At the time, there were roughly 7,000 MW of installed capacity in ERCOT.

The ISO’s involvement (ERCOT in this case) in identifying the usefulness of expanded

transmission is typical of how transmission expansions occur.

Table 1 Timing of CREZ’s Construction

Year Length (miles) % Length Spend ($ 1000s) % Spend

2009 154.6 0.062 138,089 0.042
2010 478.7 0.253 137,759 0.084
2011 89.8 0.289 90,808 0.111
2012 136 0.344 159,226 0.159
2013 1290.3 0.859 2,427,627 0.895
2014 255.5 0.962 292,428 0.983
2015 39.1 0.977 13,871 0.987
2016 57 1 41,927 1

NOTE: CREZ line construction and spend by date.
All distances in miles and all dollar figures are in thousands of each years’ dollars.

Figure 3 shows a snapshot of 2017 windfarm locations in ERCOT (circles of radius

proportional to wind farm capacity), the location of CREZ transmission lines, and the

location of population centers in Texas. The point of CREZ is clear from the Figure:

connect windfarms in the west (node A in the theoretical model) to population centers in

north, south and Houston hubs (node B in the theoretical model). There were three types

of construction for the CREZ infrastructure: new construction, rebuilds and expansions

of existing transmission capacity.

Table 1 shows the timing of CREZ’s construction by year from 2009 to 2016 in two

different ways: by total miles of construction and total spend of CREZ lines.13 Each row

12https://www.nrc.gov/docs/ML0914/ML091420467.pdf.
13All data are taken from snl.com’s database, which itself is a curated database from publicly available

sources like ERCOT press releases.
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describes the total miles and dollars for any CREZ project completed in that year in our

data. By both metrics, 2013 stands out as the year in which CREZ construction peaks.

As a percent of total CREZ construction mileage, 2013 saw an increase from 34% to 86%

of total. The dollar spent analog is even more stark as 2013 saw an increase from 16% to

90%.

4 Data

We use hourly data from ERCOT to estimate transmission constraint loss (TCL) both

before and after the construction of the CREZ lines. As shown in Figure 4, ERCOT is a

power market which contains much of Texas. Moreover, ERCOT is its own interconnection

meaning that trade of electricity between ERCOT and other FERC electric power markets

is very small. For this reason, ERCOT is an ideal area of study because, unlike more

integrated markets like CAISO which imports and exports to other regions, out of ERCOT

are less of a concern (Borenstein, Bushnell, and Wolak (2002)).

The other reason we focus on ERCOT is its large capacity for wind generation over

our 2011-2016 study window. Figure 5 shows total installed wind capacity in ERCOT

over time. Wind capacity in ERCOT is increasing over our sample period with a sharp

rise in capacity beginning in the second half of 2014. Figure 5 also shows that even before

much CREZ expansion, there was a very significant wind capacity presence in ERCOT

(> 9,000 MW).
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Figure 4: FERC Electric Power Markets
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Figure 5: Wind Capacity in ERCOT by Month

We focus our analysis on price discrepancies across different electricity zones within

ERCOT at different points in CREZ’s construction timeline. ERCOT is divided into four

electricity zones: West, North, South and Houston. ERCOT provides hourly zonal load

levels (e.g., electricity demand), zonal day ahead prices of electricity, zonal real time prices

of electricity, and wind generation. The day ahead price is the result of a disaggregated

bidding process that clears over 90% of electricity the day before its needed. The real time

price is another market which facilitates any additional electricity needed at the realized

delivery time. These markets clear at more granular levels but we use hourly hub (zonal)

prices in our study, as is common in the literature (Davis and Hausman, 2016).

Figures 6 and 7 shows how ERCOT zones are divided across Texas, wind capacity

levels over space and county level populations. The figures show wind farms are located

in the West zone (i.e. northwest of Texas) but there are no population centers. In the
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context of the theoretical model presented above, the West zone serves as the “node A”

exporting electricity to the other zones when the wind blows. Each of other three zones

contains at least one population center: the South includes Austin and San Antonio, the

North includes Dallas, and Houston includes the Houston MSA.

Figure 6: Load Zones in ERCOT. The color of the circles indicates capacity levels of the

wind farms (red having more capacity and green less).

Figure 7 shows the spatial distribution of population and wind capacity. The color of

the circles indicates capacity levels of the wind farms (red having more capacity and green

less). Figure 7 shows population by county. The majority of wind capacity lies west and
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north of the population centers where load is concentrated.14

Figure 7: Wind Farms in ERCOT (Texas)

We merge several ERCOT datasets for the main analysis: 1) Hourly zone level prices,

which are average nodal prices weighted by load for each electricity zone; 2) Hourly load

14The exception is the South where coastal wind generate electricity. Those coastal winds, though, have
a different temporal generation pattern that the majority of capacity in the North and West. Since coastal
wind are highly correlated with wind on land in west Texas, it creates measure error in our wind generation
variable below and attenuates our estimates toward zero, but would not lead to bias, making our analysis
on transmission constraint losses a lower bound.
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at the zone level; 3) Total hourly wind generation data from ERCOT. We also use the

CREZ completion data shown above disaggregated to the daily level. We merge these

datasets by their respective time stamps.15 All merging and analysis were performed with

STATA and our code is available upon request.

We focus our analysis on year 2011-2016. There are other reasons for choosing this

time period in addition to quasi-experimental variation in transmission capacity from

incremental CREZ completion. First, natural gas prices were relatively flat and had been

relatively low since 2009, mitigating their impact on wholesale electricity prices. Second,

load levels in ERCOT were relatively flat, as they were in the rest of the US.

In order to identify the slopes of the net supply and the net demand curves, we take

advantage of net supply shocks and net demand shocks and inelastic hourly demand char-

acterizing electricity markets. According to the theoretical model, changes in either load

or wind generation in one or both regions will shift the net supply and net demand curves.

To identify the net demand curve we would ideally like to exogenously shift the net supply

curve. Alternatively, to identify the net supply curve we would like to hold the net supply

curve fixed and exogenously shift the net demand curve.

However, due to transmission constraints and not observing unconstrained equilibrium

prices, that standard identification strategy will not work. In our case, though, we can

leverage transmission constraints to identify the net supply and net demand curves. With

binding transmission constraints, an increase in wind generation will only decrease the

price of electricity in the west as the net supply curve shifts out. The reason is the inability

to trade. It is as if demand is perfectly inelastic in the west when there is a transmission

constraint with respect to wind driven price changes. The decrease in price with binding

transmission constraints allows us to identify the slope of the net supply curve as shown in

the theoretical section. Similar intuition holds for identifying net demand. We will discuss

the identification strategy in details below.

Ideally, we would like hourly wind generation and load data from each zone. However,

we do not observe wind generation in each zone but rather total wind generation for

ERCOT for each hour as provided by ERCOT. Fortunately, we can rely on the spatial

15Prices and load data was provided by ERCOT but aggregated by SNL. Wind generation data was
directly from ERCOT.
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distribution of wind generation in ERCOT. Since the vast majority of ERCOT wind farms

are located in the West zone (e.g., the net exporting region in the theoretical model),

we use total wind generation in ERCOT to proxy wind generation in the West zone.16

For the regions containing Dallas and Houston, we view this as a relatively innocuous

assumption given the lack of windfarms in those zones, but in South ERCOT there does

exist some wind capacity. In the empirical section this creates downward bias if hourly

wind generation in different zones is positively correlated. Increasing wind generation in

the exporting region is offset by increasing wind generation in the importing region. This

amounts to contamination in the importing region biasing the effect of “treatment” (e.g.,

wind generation’s impact on price discrepancies from transmission constraints) downward

when comparing west Texas to south Texas. Since we estimate net supply and net demand

curves at the region level, we feel this data aggregation issue does not invalidate the

analysis.

Table 2 Summary Statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

Real Time Price (West) 43,795 30.01 80.80 -367.6 4,493
Day Ahead Price (West) 43,795 32.25 64.66 -28.07 2,636
Real Time Price (South) 43,795 31.90 79.87 -169.9 4,351
Day Ahead Price (South) 43,795 33.89 63.55 5 2,634
Real Time Price (North) 43,795 31.67 79.52 -22.48 4,484
Day Ahead Price (North) 43,795 33.72 64.06 2 2,635
Real Time Price (Houston) 43,795 32.22 82.03 -55.94 4,374
Day Ahead Price (Houston) 43,795 34.19 63.60 5.010 2,634
Wind Generation 43,795 3,807 2,409 7 13,812
Load (West) 43,795 2,554 454.4 1,599 4,263
Load (South) 43,795 9,465 2,452 5,293 17,329
Load (North) 43,795 12,898 3,546 6,958 25,626
Load (Houston) 43,795 10,895 2,551 6,457 19,929

Table 2 shows the summary statistics of the wind generation, price and load at the

16In some specifications, we also assign wind generation to each zone according to their capacities.
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zone level. There are several implications. First, load in the West zone is far lower than all

other regions on average, which is consistent with our model assumption (Low load around

exporting region). The max observed load in the west is less than the minimum observed

load in any of the other zones. Load in the West zone is also lower than wind generation on

average, which makes it possible to export electricity to other population centers with large

load (even without accounting for Western zone fossil fuel generation). Second, the average

prices for all the zones in the DA market range from $32.25-34.13/MWh.17 The average

price in the West zone is lower than all other zones. In theory, without market power or

transmission constraints these prices would be identical.18 In this paper, the key input to

the analysis is whether the discrepancies systematically vary with wind as predicted by

the theoretical model and then are ameliorated with new line construction. Third, real

time (RT) prices are systematically lower than DA prices for various institutional reasons

which are beyond the scope of this paper. There is a growing literature attempting to

solve the “DART spread puzzle”. We do, though, estimate separate regressions for the

DA and RT markets but focus on the DA market due to its volume relative to the RT

market.

17This is higher than the nodal prices. Hub prices are average nodal prices weighted by load, and nodes
around large load areas usually have high prices.

18Line loss is another possible explanation but it acts as a tax on far away transmission increasing all
prices but theoretically preserving the equimarginal principle across zones.
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Figure 8: Average Day Ahead Electricity Prices by Wind Generation Levels

Figure 8 shows average electricity prices for West and North ERCOT in our sample

broken out by wind generation deciles. The Figure is consistent with intuition that wind

generation in ERCOT is negative correlation with load in ERCOT; prices are falling

in wind generation. The Figure shows that during high wind days wholesale electricity

prices are on average lower in the West than in the North. The Figure also shows that

even though prices are roughly the same for low wind generation deciles, they are slightly

higher in the North, although not in an economically significant way.

5 Reduced Form Results

We first investigate how wind generation affects wholesales electricity prices in levels. This

serves to provide evidence of the first order effect that wind offsets higher marginal cost

fuel. In the theoretical model the price impact is the shifting intercept of the net supply

curve in the exporting region. We then investigate the impact of wind generation on price

gaps across zones in ERCOT directly, which is the main contribution of this research.
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5.1 Wind Generation and Prices

We first aggregate all ERCOT data and estimate the impact of wind on ERCOT wide

average electricity prices controlling for load and many other fixed effects. Given the

changes in transmission capacity over time we pick a single year, 2015, to increase internal

validity. To account for possible nonlinear effects of wind generation and correlation

between wind generation and load, we use a semi-parametric model to estimate the effects.

For expositional clarity we divide hourly wind generation into 13 equal length (1000 MWh)

bins ranging from 0-1000 MWh to 12,000-13,000 MWh, of which the first bin is served

as baseline. Because wind generation is not uniform each bin doesn’t have the same

number of observations. We further divide load into 8 bins with an identical number of

observations.19 We then estimate the following equation:

Pt =

8∑
j=1

13∑
i=1

βij1{Bini(Wt)}1{Binj(Lt)}+ δhm + λd + εt (7)

where Pt is wholesale electricity price (real time or day ahead prices) at time t, Wt is wind

generation at time t, Lt is load at time t, 1{Bini(Wt)} is an indicator for wind generation

bin i, 1{Binj(Lt)} is an indicator for load bin j, δhm is the month-hour fixed effects, λd is

the day fixed effects, εt is the error term. There are 13 wind generation bins. By adding

month-hour fixed effects, identification comes from variation in load and wind within a

month and across all identical hours (e.g., the 2pm hour in May, 2015). By further adding

day of sample fixed effects, we further control for daily factors that could potentially

affect prices. Standard errors are clustered by sample day to account for possible serial

correlation within sample day.20 βij ’s are coefficients of interest, which indicates the price

change by increasing wind generation from bin 1 (almost zero) to bin j conditional load

level at bin i.

Figures 9 show estimation results from equation (7) for day ahead for ERCOT-wide

19Since we are focusing on the effects of wind generation, we divide wind generation into equal length
bin for easy interpretation. To ensure certain amount of observations in each bin, we further divide load
into bins with same number of observations. We could divide both into equal length bin or both into bins
with same number of observations. The trend of the effects will not be affected much.

20We also cluster the standard errors by sample week in one of our robustness checks to account for
serial correlation within a week.
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prices (RT price results are larger and shown in the Appendix). Each subplot describes

the size of a load bin and the y-axis shows the change in hourly DA prices. For all load

levels electricity prices visually decrease as wind generation increases. The differences

across wind generation levels are not always statistically significant but within a load bin

the pattern is clear. We do not observe higher effects for large load bins. The pattern

is more stark for real time than day ahead prices. There is an approximate $0.5/MWh

decrease in average day ahead time prices and $0.7/MWh decrease in average real time

prices per 1GWh increase in wind generation. The former is about 1.5% of the average

electricity prices, while the latter is about 2.2% of the average electricity prices.

Figure 9: Effects of Wind Generation on Day Ahead Prices in ERCOT

There are several implications from the results: First, wind generation decreases elec-

tricity prices averaged at the hub level. We take this as evidence that short run variation

in wind generation can shift the net supply curve as indicted by the model. Therefore the
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primitive extension of the Joskow and Tirole model appears valid: when wind generation

increases, it offsets fossil fuel generation.21

Second, the effects of wind generation on prices appear linear conditional on all load

levels (e.g., within subplot fixed effects seem roughly linear). We assume a linear net

supply and net demand curves leveraged below as a result. If net supply and net demand

curves are nonlinear, we would observe nonlinear effects of wind generation at different

wind generation and load levels as well. Thus, we use linear specifications in our following

analysis. We could straightforwardly extend the analysis to be non-parametric, however.

Third, there is no evidence that the price effects of wind generation on electricity prices

vary systematically by load (e.g., across subplot effects). At the hub level, then, what the

load level is on average when the wind blows may be a second order concern. We discuss

this implication in more detail below.

5.2 Wind Generation, CREZ and Price Discrepancies

In this section, we test whether wind generation increases price discrepancies across re-

gions, as posited in the model of renewables and transmission constraints presented above.

We test whether the price discrepancies decrease after new CREZ transmission lines are

completed. We later estimate the slopes of the net supply and net demand curves and

TCLs for each hour with different wind generation and CREZ completion levels in the

next section.

In order to show evidence of transmission constraints, we estimate the following equa-

tion:

ηt = α0 + α1CREZt + θ1(Wt − LAt ) + LBt θ2 + εt (8)

where ηt is the price gap between the west zone and one of the other zones at time t (Node

B price minus Node A price in the theoretical model), Wt is the wind generation in the west

Texas at time t, LAt is load in west Texas at time t, LBt is load in other ERCOT regions at

time t, CREZt is the percentage of CREZ completion (We denote %100 as 1) as a function

of time. We thus estimate three unique regressions, one for each west/non-west zone pair.

21The results are even more stark when doing the same analysis for the west region only.
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For example the average 2012 CREZ value is .344 and .859 in 2013. Wt−LAt is net supply

and LBt is net demand calculated from the hourly data, both of which serve as control

variables. The error term εt is idiosyncratic. α0 + θ1(Wt−LAt ) +LBt θ2 is the average price

discrepancy before the CREZ program at different levels of net supply and net demand.

In order to construct the average price discrepancy, we will take expectations of E[ηt]

to recover mean price discrepancies. The parameter of interest is α1 which is the price

discrepancy impact at full CREZ construction (i.e., % 100 completion when CREZt = 1).

We expect E[ηt]to be positive in presence of transmission constraints. We expect α1 to

be negative since the model shows new transmission lines cause price discrepancies to

decrease with lower transmission constraints. Standard errors are clustered by sample

day to account for possible serial correlation within sample day. In the Appendix, we

show robustness checks where standard errors are clustered by sample week to allow more

possible serial correlation.

While the above regression examines the impacts of CREZ’s completion on the price

gap between regions, we also quantify the joint impacts of wind generation and CREZ on

price discrepancies by estimating the following equation:

ηt = α+ β0(Wt − LAt ) + γ0L
B
t + β1CREZt × (Wt − LAt ) + γ1CREZt × LBt + δhmy + λd + εt (9)

where δhmy’s are the year-month-hour fixed effects, ηd’s are the day fixed effects, all else as

above. The coefficients of interest are those on the variables representing the net supply

and net demand curves. (Wt − LAt ) is net supply; it is increasing in wind generation and

decreasing in load in west Texas (e.g. node A from the theory model). LBt is net demand;

it is increasing in load in other ERCOT regions (e.g. node B in the theory model). β0

and γ0 are the impacts of decreases in net supply shock and increases in net demand

shock on price discrepancies in the absence of CREZ lines. The model predicts them to

be positive if transmission constraints bind. β1 and γ1 represent the marginal impact

of CREZ construction on net supply changes and net demand changes. The theoretical

model predicts them to be negative if CREZ relieves congestion allowing wind generation

to be more easily traded with more transmission lines. Thus, we test the null hypothesis

that H0 : β1 = 0 against the alternative that H0 : β1 < 0. Further, if the CREZ expansion

completely eliminated the TCLs, we expect that β0 = −β1.
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By adding year-month-hour fixed effects and day fixed effects, variation of identification

mainly come from variation within a year-month across a specific hour (e.g., 2pm) as

before. In using this short run variation for identification we are more confident that

load and wind generation are exogenous to fossil fuel input prices which aren’t likely to

vary systematically within a year-month, let alone a year-month-hour. We thus rely on

these fixed effects to control for variation in wholesale electricity prices due to longer run

changes in fuel input prices.22 In some regressions, we only add year-month-hour fixed

effects (without sample day fixed effects) to allow more identifying variation.

5.3 Price Discrepancy Results

Table 3 Impacts of CREZ on Price Gap

(1) (2) (3) (4) (5) (6)
VARIABLES South RT South DA North RT North DA Houston RT Houston DA

Percent Completion -5.864*** -4.650*** -6.206*** -5.353*** -5.511*** -4.322***
(0.632) (0.334) (0.462) (0.290) (0.654) (0.322)

Net Supply (West) 0.817*** 0.535*** 0.779*** 0.491*** 0.960*** 0.575***
(0.0526) (0.0259) (0.0407) (0.0241) (0.0785) (0.0264)

Net Demand (South) 0.105 -0.00994
(0.0714) (0.0291)

Net Demand (North) 0.0180 -0.0329**
(0.0268) (0.0154)

Net Demand (Houston) 0.247*** 0.136***
(0.0771) (0.0290)

Constant 3.492*** 3.975*** 4.251*** 4.578*** 1.774* 2.492***
(0.723) (0.334) (0.621) (0.313) (1.010) (0.374)

Observations 52,575 52,575 52,575 52,575 52,575 52,575
R-squared 0.022 0.107 0.056 0.193 0.013 0.111

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.

Table 3 shows results from Equation (8) where we don’t allow CREZ completion to

interact with the net supply nor net demand curve for both DA and RT prices. This table

22Residents usually sign up relatively long contracts with utility and the retail price is also different from
the wholesales price, so demand (load) will not be endogenously affected by wholesales prices in short run.
Wind generation has almost zero marginal cost, hence wind farm owners will always want to bid zero to
sell their electricity, so they will not be affected by wholesales prices in short run either.
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shows CREZ completion impacts on price differences over space conditional on net supply

and net demand. Column (1) (2) show results between the West zone and the South zone,

Column (3) (4) show results between the West zone and the North zone, and Column (5)

(6) show results between the West zone and the Houston zone. Column (1) (3) (5) are

results for real time markets, and Column (2) (4) (6) are results for day ahead markets.

In this table and all tables below, net supply and net demand are in units of 1,000MWh

(or 1 GWh).

We can use Table 3 to get high level impacts of the CREZ line construction. From

Table 2, average wind generation is 3.8 GWh, average load in the West is 2.6 GWh, and

average load in the South is 9.5 GWh. Column (2) shows that the average DA (RT)

price gap between the West zone and the South zone is 3.8 + 0.54 × (3.8 − 2.6) − 0.01 ×

9.5 = $4.35/MWh ($5.5/MWh). After the CREZ construction, the price gap drops by

$4.65/MWh ($5.8/MWh). Results in other regions can be interpreted similarly. The

impacts of CREZ are large in all regions and don’t qualitatively change in size (e.g., the

value of the CREZ coefficient is roughly the size of the average price gap). These finds

are consistent with CREZ relieving congestion.

Figures 10 shows results by replacing CREZ percentage completion in (8) by a set of

year dummies. This highlights the evolution of how the wind weighted price gap changes

over time. In Figure 10, price gap decreases each year as CREZ lines are completed. The

biggest drop in the price gap is in 2011 and 2012 despite only 15.9% of CREZ being com-

pleted at that time. The large drop is consistent with building transmissions lines that are

likely to have the biggest impact in prices first. This makes sense: a regulator constructing

a large infrastructure project should build in places that have the highest marginal benefit

first. Also, the price gap increases slightly in 2016. One possible explanation is that wind

capacity in 2015 increases while CREZ construction is effectively fixed. Lastly, we take

this as evidence that the first order effects of CREZ can be inferred using a model which

doesn’t recreate the entire ERCOT transmission network.
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Figure 10: Price Gap By Year
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Table 4 Impacts of CREZ and Wind Generation on Day Ahead Price Gap

(1) (2) (3) (4) (5) (6)
VARIABLES South DA South DA North DA North DA Houston DA Houston DA

Net Supply (West) 2.066*** 1.662*** 2.154*** 1.665*** 2.200*** 1.725***
(0.119) (0.104) (0.103) (0.0948) (0.108) (0.0990)

Net Demand (South) -0.0923 0.000750
(0.446) (0.203)

Net Supply (West)*Percent -1.980*** -1.625*** -2.158*** -1.662*** -2.044*** -1.662***
(0.127) (0.111) (0.108) (0.100) (0.115) (0.108)

Net Demand (South)*Percent 0.0582 0.0958
(0.473) (0.224)

Net Demand (North) -0.0984 0.00351
(0.0802) (0.127)

Net Demand (North)*Percent 0.110 0.0584
(0.0866) (0.139)

Net Demand (Houston) -0.396** -0.260
(0.185) (0.171)

Net Demand (Houston)*Percent 0.669*** 0.609***
(0.209) (0.204)

Observations 52,575 52,575 52,575 52,575 52,575 52,575
R-squared 0.415 0.652 0.526 0.784 0.470 0.710
Year-Month-Hour FE YES YES YES YES YES YES
Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.

Table 4 reports the results from Equation (9) for day ahead markets when we allow

CREZ to interact with the net supply and net demand curves. Real time market results

are in the Appendix. Column (1) (2) show results between the West zone and the South

zone, Column (3) (4) show results between the West zone and the North zone, and Column

(5) (6) show results between the West zone and the Houston zone. For all columns, year-

month-hour fixed effects are added, which controls for hourly pattern of prices within

sample month. Column (2) (4) and (6) further control for sample day fixed effects, then

the identifying variation only comes from variation across a given hour in a month not

common to hours in the same day. Column (2) (4) and (6) are our preferred specification.

The primary coefficients of interest are the interactions of CREZ with the net supply

and net demand curves. Before CREZ, an increase in the net supply (Wt − Lt) in the

West zone of 1GWh increased the price gap between the West zone and the South zone
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increases by $2.154/MWh in day ahead markets. The increased price discrepancy when

wind generation increases is consistent with transmission constraints. Comparing full

completion of CREZ to no CREZ project (e.g., CREZ goes from 0 to 1), the impact of a

net supply increase on price dispersion drops by $2.158/MWh in day ahead markets. We

take this as evidence that the strategic behavior studied in previous work is not a primary

factor in the price spreads across zones in ERCOT due to wind generation although we

discuss extensions in the discussion section (Hortacsu and Puller (2008) and Hortacsu,

Luco, Puller, and Zhu (2017)).

Taken together, an increase in net supply led to no increase in price dispersion after

CREZ completion. The relative magnitudes of wind generation and load in the west shown

in Table 2 are consistent with wind generation being the reason. As before, Figure 11 show

the impacts of net supply increases on price dispersion by year. The marginal impact of

net supply increases on price dispersion clearly falls over time as before.

These results are consistent with transmission constraints in the theoretical model.

After the full completion of the CREZ project, wind generation has almost no statisti-

cally significant effect on price dispersion indicating that post-CREZ there is enough free

transmission capacity to trade wind generation across space. The effects of net demand

is almost zero in most of the specifications, indicating relatively flat net demand curves.

Results in other regions can be interpreted similarly. Figure 11 shows the marginal im-

pacts of net supply by year as we did with average price gaps visually showing identical

intuition.
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Figure 11: Effects of Net Supply on Price Gap By Year

6 Transmission Constraint Losses and Incidence of CREZ

6.1 Transmission Constraint Losses

The theoretical model gives us a framework to quantify foregone gains from increased

trade between exporting and importing regions (i.e. TCLs). In order to do so, we first
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estimate the slopes of the net supply and net demand curves directly. Whereas in the

regression specifications above we estimated the impact of wind generation on the price

gap between two zones to test for evidence of transmission constraints, we now estimate

the slope of the net demand and net supply curves directly using price levels.

To identify net demand and net supply slope coefficients, we would like to take ad-

vantage of exogenous net demand shocks to estimate the slope of net supply curve and

an exogenous net supply shock to identify net demand. However, there are endogeneity

issues with that simple identification strategy in our context share by estimating supply

and demand curves for a standard consumer good. When we estimate the slope of net

demand curve, it needs to be held unchanged when net supply shock occurs. Hence, we

need to control for net demand when we are looking at how net supply change affect prices.

Similarly, we need to control for net supply when we look at how net demand change affect

prices. As a result, we would have to include both net demand and net supply in the same

regression and they serve as each others’ control.23

Our identification strategy for both curves relies on inelastic demand, the must take

nature of wind generation and the presence of transmission constraints. First, assume that

there are capacity constraints such that there is a price gap between the exporting region

(node A) and importing region (node B). In practice, we can trim our estimating sample

to hours where there is a price gap between west ERCOT and other zones. As shown

in Figure 2, when there is a positive net supply shock, which shifts the net supply curve

to the right (or downwards), the price in the West will drop.24 Using only net supply

shocks from wind generation and price change in the exporting region (node A in the

theory model, West Texas in ERCOT), we can identify the slope of the net supply curve

(e.g., bA in the theoretical model) conditional on existence of transmission constraints.

Put another way, during periods in which the transmission constraint binds, variations in

load and wind generation in the exporting region trace out the export region net supply

23There is non-trivial correlation between net demand and net supply stemming from correlation between
load and wind generation, and correlation between load across zones. This correlation would contaminate
both estimates without adequate controls and we are not convinced that two-way fixed effects would control
for all correlation of net supply and net demand. The normal instruments for wind generation and load
(e.g. wind speed and weather variables like temperature) cannot solve the potential correlation issue either
since they don’t satisfy the exclusion restriction. Therefore, we propose a unique method in our context
taking advantage of the constrained prices in importing and exporting regions to estimate the slopes.

24The exception is if there is no capacity constraint and the net demand curve is fully flat.
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curve, and variations in load in the import region trace out the import region net demand

curve.25 Specifically, the slope term is given by:

bA =
pA1 − pA0
W1 −W0

(10)

Similarly, as shown in Figure 12, we use demand shock from load in Node B to identify

the slope of the net demand curve under transmission constraints. When load in Node B

increases from L0 to L1, the net demand curve shift to the right. As a result, the price in

Node B increases from pB0 to pB1 . Therefore, the slope of the net demand curve (e.g., bB

in the theoretical model) is given by:

bB =
pB1 − pB0
L1 − L0

(11)

25Without binding transmission constraints, this identification strategy does not work and the normal
supply and demand endogeneity woul persist.
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Figure 12: Net Demand Shock

Since the formula for slopes of net supply and net demand curves from Equation (10)

and (11) are conditional on existence of transmission constraints, we use the response of

prices on net supply shock and net demand shock under transmission constraints to identify

the slopes. In our analysis below, we restrict the estimating sample to time periods with a

price gap between the West and any other zone of at least $2/MWh. Qualitative results are

identical when we trimmed the estimating sample to include time periods to include only

2011-2013 before CREZ completion, which we show in the Appendix. Thus, we condition

on there being evidence of transmission constraints consistent with the theoretical model

to identify net supply and net demand parameters.

On the trimmed sample, we estimate the slopes of the net supply and net demand

curves by the following equations:

pAt = α+ β(Wt − LAt ) + γ2L
B
t + δhmy + λd + εt (12)
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pBt = α+ β2(Wt − LAt ) + γLBt + δhmy + λd + εt (13)

where pAt is the price in the West, pBt is the price in any other zones, all else are the same as

above. The absolute value of β in Equation (12) gives us the slope of the net supply curve,

which is identified from net supply shock from either increasing wind generation or/and

decreasing load in Node A under transmission constraints as Equation (10). Similarly, γ

in Equation (13) gives us the slope of the net demand curve, which is identified from net

demand shock from increasing load in Node B under transmission constraints as Equation

(11).

By adding year-month-hour fixed effects and day fixed effects, variation of identifica-

tion mainly come from variation within a year-month across a specific hour (e.g., 2pm)

as before. Identifying the parameters with short run variation means load and wind gen-

eration are exogenous to fossil fuel input prices which aren’t likely to vary systematically

within a year-month, let alone a year-month-hour. We thus rely on these fixed effects to

control for variation in wholesale electricity prices due to longer run changes in fuel input

prices. Note that β estimated above is expected to be negative, so we take the absolute

value for the slope and calculation below.

Table 5 Identification of Net Supply and Net Demand Curves West and North DA

(1) (2) (3) (4) (5) (6)
P(North) P(West) P(North) P(West) P(North) P(West)

VARIABLES P(Gap)> 1 P(Gap)> 1 P(Gap)> 2 P(Gap)> 2 P(Gap)> 5 P(Gap)> 5

Net Demand (North) 0.705*** 1.030*** 0.543** 1.024*** 0.609** 1.013***
(0.225) (0.298) (0.237) (0.333) (0.269) (0.325)

Net Supply (West) -0.804*** -2.226*** -0.766*** -2.438*** -0.724*** -2.272***
(0.156) (0.194) (0.192) (0.248) (0.223) (0.311)

Observations 10,371 10,371 7,326 7,326 4,421 4,421
R-squared 0.748 0.762 0.861 0.855 0.920 0.900
Year-Month-Hour FE YES YES YES YES YES YES
Sample Day FE YES YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table 5 shows parameter estimates from equations (12) and (13) on the 2011-2016 data

for the West Zone and the North Zone. Estimates from the South and Houston zones are

available upon request, but we don’t provide them here in the interest of brevity. We trim

sample where the price difference between the west and other zones is at least $2/MWh

for all analysis. We also show how point estimates remain very stable as we change the

strength of the price dispersion in the estimating sample to be more aggressive (gap of $1

or more) to more conservative (gap of $5 or more). Results for the subset of hours pre-

CREZ completion in 2014 is shown in the Appendix and offer very similar point estimates

with larger standard errors, as expected given the smaller sample.26

Our main specification is when the price gap is at least $2/MWh in Table 5 columns

(3) and (4). Due to us leveraging price dispersion which we attribute to a binding trans-

mission constraint as our identification strategy, the slope coefficients on net demand from

the North and net supply from the West are .543 an -2.438 respectively. The table shows

the coefficients are consistent across specifications. Both coefficients are statistically sig-

nificant. The estimated signs are reversed relative to the theoretical model since increases

in the net supply curve decrease prices in ERCOT West, whereas the opposite is true in

ERCOT North for net demand. The Appendix describes a semi-parametric technique we

use to infer if there are non-linearities in the net demand and net supply curves between

the west and the North. We find no significant evidence of non-linearity in the net demand

curve and modest increasing net supply slope for high levels of net supply (14% increase

significant at the 10% level).

Robustness Checks

Given the importance of the point estimates for subsequent calculation of transmission

constraint loss, we include several robustness checks in the Appendix. First, we allow error

terms to be autocorrelated within sample week rather than sample day to be more conser-

vative. Table A1-A3 show that the standard errors increase slightly but the significance

levels do not change. Second, the CREZ project was almost finished before April 2014,

but wind capacity levels rose rapidly afterward, which may bias our point estimates on the

26We’ve also estimated this model on the entire sample. In those specifications the magnitude of the
slope coefficients falls slightly, which is consistent with changing net supply and net demand curves having
less of an effect on local prices when electricity can be traded freely.
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interaction term downward since any transmission constraints would be exacerbated. We

report the results in Table A4-A6 by only including data before April 2014. The results

become slightly larger in general as expected. Third, we control for loads from all regions

to allow potential interactions among those markets in Table A7-A9. The results do not

change significantly. Finally, we’ve run all specifications without controls to be more di-

rectly in line with the theoretical model (e.g., no controls for load in the other zone) and

all point estimates are very similar. Those results are available upon request. In sum, all

robustness checks show consistent results with our main specification.

Market Power

There is a large literature which shows that market power in electricity markets signif-

icantly influences prices, including in ERCOT (Hortacsu and Puller (2008) and Hortacsu,

Luco, Puller, and Zhu (2017)). Market power occurs when a single electricity supplier is

able to influence market price. In the theoretical model, prices increases from load in-

creases can be from either increasing marginal costs of electricity or increasingly exercised

market power. Transmission constraints preventing trade in electricity markets preventing

trade across nodes and hubs could certainly contribute to market power in ERCOT.

Transmission constraints can cause price increases due to both lack of trade and in-

creased market power due to inability to trade. There is a distinction between price

increases due to lack of trade and market power induced price increases. Price increases

due to lack of trade imply that the lowest cost producers to service an entire market are

not producing. Price increases due to market power imply that the lowest costs producers

can produce, but that market clearing prices are above costs. From a welfare perspective,

then, the precise mechanism through which prices increase in the presence of transmission

constraints, lack of trade or market power from lack of trade, doesn’t matter. If increased

trade reduces prices then it reduces transmission constraint loss.

While our research design doesn’t allow us to fully parse between sources for trans-

mission constraint induced price increases (e.g., lack of trade versus market power), we

can determine if some of our results are consistent with market power. Previous research

highlights that market power is likely to be largest during highest demand hours when a

single firm can impact market prices (Borenstein, Bushnell, and Wolak (2002)). In order

to determine if market power affects the net supply and net demand curve estimates, we
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run our main empirical specification trimming the sample to exclude the top 10% of load

hours for the west and north ERCOT regressions and report them in the Appendix. These

high load hours would be serviced by the steepest part of the MC curve in north ERCOT,

which would be even steeper if market power were exercised. Their inclusion would thus

make the net demand curve steeper and excluding them should make the net demand

curve flatter. There should be no effect on the net supply curve estimate. Thus, if we find

a flatter estimated net demand curve it is consistent with high load hours being serviced

by a steeper part of the north’s marginal cost curve where market power is likely to be

exercised.

We estimate net demand and net supply curve slope coefficients of .385 and -2.465

with the trimmed sample (see Table A11), compared to point estimates of .543 and -2.438

reported in the main specification in this section. The change in the point estimate is 29%

which we view as moderate. Consistent with economic intuition, there is no impact on the

net supply curve. The point estimate for the slope of net demand curve is slightly lower,

though, meaning that the curve is estimated to be slightly flatter. This is consistent

with the theoretical model: by trimming the highest load hours which are serviced by

the steepest part of the North’s marginal cost curve, the estimated net demand curve is

flatter. While far from parsing between transmission constraint loss attributable to lack

of trade versus market power from lack of trade, we view this as at least consistent with

the possibility of reductions in market power being attributable to the CREZ expansion.

It is beyond the scope of this paper and would require a different research design to

precisely disentangle the impacts of lack of trade versus market power from lack of trade.

Most importantly, benefits from reduced market power attributable to more transmission

capacity are benefits that matter for welfare. Even if all benefits from increased transmis-

sion capacity were to accrue due to market power there would still be welfare gains from

the policy, although incidence from the policy would be different.27

The Production Tax Credit

Wind investment was subsidized through the Production Tax Credit (PTC) over the

course of our study. The PTC served to increase the level of wind investment relative to a

27To do a full welfare analysis in that case, the reduced producer surplus from market power would be
partially offset through increased consumer surplus. Our discussion of incidence below has flavors of this.
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baseline of no PTC. Wind generation is must take so that there is no strategic component

to deploy wind generation: when the wind blow wind farms generate. In the model, this

is the shifting of the net supply curve in the exporting node. Thus, the existence of the

PTC doesn’t impact our theoretical nor empirical model for any given level of installed

wind capacity.28

6.2 Calculating TCLs

The main contribution of the paper is leveraging the estimated slope coefficients to de-

termine what the increase in equilibrium electricity trade would have been without trans-

mission constraints. We focus the exposition here on hourly TCLs, the distribution of

those TCLs, and what drives them in the model. As shown in the theory section, we can

use the estimated net supply and new demand coefficients and the theoretical model’s

structure to calculate the spending saved by the CREZ project due to increased trade. In

any hour where we observe price differences between west Texas and other ERCOT zones,

we can use the estimated slopes to determine what equilibrium prices and total traded

electricity would be without transmission constraints. By summing across all hours we do

a simple cost-benefit analysis for the project. Transmission capacity was desired because

the wholesale price of electricity was too high in load centers (North, South, and Hous-

ton) and too low near the majority of windfarms (e.g., West) and there was insufficient

capacity to facilitate renewable electricity trade. Put another way, estimating the slopes

of the net supply and net demand curve combined with the theoretical model provides us

the opportunity to back out the transmission capacity shortfall, ∆Kt, for each hour when

there is a price gap as shown in equation (3). Equation (4) then shows how the imputed

∆Kt maps to a particular hour’s TCL.

We start by showing the imputed hourly ∆Kt as a function of ERCOT wind gener-

ation. These values are a function of the estimated net supply and net demand slope

coefficients between the West Zone and the North Zone by year as show in equation (3)

28Insofar as the PTC did increase installed wind capacity over our sample there are two implications.
First, it makes all of our subsequent transmission constraint loss calculations below lower bounds since wind
capacity increased over the sample but we perform the TCL calculations assuming 2011 levels of capacity.
Insofar as increased capacity biases our coefficients, our pre-April 2014 robustness check addressed this
issue.
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and observed price discrepancies. We focus on these two Zones due to how well they map

to the theoretical model.

Figure 13: Implied transmissions shortfall by year.

Figure 13 shows the yearly imputed transmission capacity gap.29 Each point represents

a single imputed hourly ∆Kt using the formula derived in the theoretical section. In 2011,

when CREZ is still in its early stages, we observe a strong positive relationship between

wind generation on the transmission gap. Recalling equation (3), the non-linearity in

Figure 13 reflects how wind generation correlates with the net supply and demand curve.

The 2011 subplot highlights how, in the context of transmissions constraints, correlation

between wind generation, load and the slope of the net supply and demand curves jointly

determine the implied level of transmission congestion (e.g., a congestion analog of Call-

29In this Figure we’ve dropped the highest observed 20 hours of DA wholesale electricity prices. Those
types of price spikes often occur due to unexpected outages. This trimming procedure narrows the focus
to transmission constraint related price differences.
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away, Fowlie, and McCormick (2018)). There is an increasing convex relationship between

wind generation and implied transmission constraints. The positive relationship still exists

in 2012 and 2013 albeit less intensely. By 2014, the positive relationship no longer exists.

In 2016, there is a mild rebound consistent with continued increases in wind capacity but

stagnant transmission capacity. This is evident in the Figure 13 by observing the support

of observed hourly wind generation levels increasing above 2014 and 2015 levels.

Figure 14: Yearly sum transmission constraint losses for all regions.

The transmission capacity gaps shown in Figure 13 map to hourly TCLs. Figure 14

aggregates these hourly observations to show the annual TCL aggregated across all of

these hours and across all zones and includes 95% confidence intervals are calculated by

delta method. Figure 14 shows TCLs when the transmission gap between the West and

the North is positive and there is positive wind generation. The Figure shows annual

Pre-CREZ losses on the order of $500M/year dropping to nearly zero in 2014 and 2015.
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Losses then rise again in 2016. These estimates are likely lower bounds since total wind

capacity in 2011 was roughly 10,000 MWs and 11,000 MWs or more starting in 2013. As

a result, the TCLs mitigated by CREZ would have been higher had the additional wind

capacity been present in 2011. We don’t make a claim about CREZ’s impact beyond

the $500M/year level post 2013 because that would require us to determine how CREZ

interacted with windfarm development decisions. Thus, we conclude that annual TCLs

mitigated by CREZ were at least roughly $500M/year.

In addition to market impacts, there are also non-market impacts of CREZ. With

trading possible, wind generation offsets fossil fuel generation in non-west ERCOT. We

use hourly marginal emissions estimates for CO2 using the technique developed in Zivin,

Kotchen, and Mansur (2014) and updated in Holladay and LaRiviere (2017). To map the

implied transmission shortfalls to tons of CO2, we use hourly marginal emissions estimates

from Holladay and LaRiviere (2017) across all hours and all zones. Using $37/ton, a

standard carbon price measure, the CO2 costs mitigated by CREZ are on the order of

31, 000, 000 ∗ $37 = $1.15B per year in 2011 if the entire transmission capacity gap were

curtailed or lost on lines, roughly double the market impacts. That is not what actually

occurs, though, and curtailment rates are difficult to know given the lack of data. The

U.S. Department of Energy’s market report30 shows suggestive evidence that curtailment

decreased rapidly as CREZ was constructed from a height of 17% in 2009 to roughly .3% in

2014. We assume 10% curtailment attribute to congestion to give CO2 benefits of roughly

$115M/year. This is in addition to the roughly $200M in non-market benefits from CREZ

estimated by Fell, Kaffine, and Novan (2017) due to reshuffling of dispatch and changes

in local pollutants.

Summing across market and non-market impacts, the benefits from CREZ conditional

on installed wind capacity are on the order of $800M/year. Critically, roughly 38% of

the benefit are due to non-market externalities. The Appendix shows that allowing non-

linearity in the net demand and supply curve impact the market and non-market TCL

calculations. We find almost identical losses so we conclude the linear approximation

captures the important quantitative and qualitative findings.

30See https://www.energy.gov/eere/wind/downloads/2016-wind-technologies-market-report.
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The cost of CREZ ERCOT ratepayers face is roughly between $7B according to the

U.S. Energy Information Administration.31 According to our estimates, then, the payback

period is roughly 8.75 years when accounting for non-market externalities. That payback

period- in addition to the stream of future gains- is more than adequate. Excluding the

non-market benefits, the payback period is 14 years. Given relatively low bonds rates over

this period, this is not completely unreasonable even completely ignoring CO2 mitigation

for public projects. Certainly, though, a payback period on the order of nine years makes

this transmission expansion a good investment from a social welfare perspective.

6.3 Incidence of CREZ

While the price gap and transmission gap might have decreased between the West and

other zones due to CREZ, in order to calculate the incidence of CREZ we must determine

price increases in the west attributable to CREZ and price decreases in other parts of

ERCOT attributable to CREZ. The beneficiaries of CREZ are wholesale ratepayers in

load centers (e.g., the demand side of the market) and bidders into the electricity market

in the West during windy hours (e.g., windfarms). This analysis focuses on wholesale

electricity market price impacts in the North, South, and Houston ERCOT zones and

discusses the incidence of those impacts.

We denote price gap before CREZ project as η0 and that after the project as η1.

Disaggregated further, denote the price difference for people in the population center and

the West before and after the CREZ project as ηB0 , ηA0 , ηB1 and ηA1 respectively (using

B superscripts for load centers and A for the exporting zone west Texas in line with the

theoretical model). From the theoretical model, we can calculate them as:

4ηB0 = γ4K =
γη0

(β + γ)
(14)

31See https://www.eia.gov/todayinenergy/detail.php?id=16831 although other outlets report as
high as $8B.
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4ηA0 = β4K =
βη0

(β + γ)
(15)

4ηB1 = γ4K =
γη1

(β + γ)
(16)

4ηA1 = β4K =
βη1

(β + γ)
(17)

Noting that a negative number indicates spending decreases, the spending change for

market participants in load centers (again denoted with the B superscript in line with

the theoretical model) and market participants in the West (again denoted with the A

superscript in line with the theoretical model) is:

4SpendB = (4ηB1 −4ηB0 )× LB =
γ(η1 − η0)

(β + γ)
× LB =

γ4η
(β + γ)

× LB (18)

4SpendA = (4ηA1 −4ηA0 )× LA =
β(η1 − η0)

(β + γ)
× LA =

β4η
(β + γ)

× LA (19)

where LB and LA are average load in population center and the West respectively. 4η

is the impact of CREZ on price gap estimated by Equation (8). The the total spending

change for all people is given by:

4Spend = 4SpendB +4SpendA (20)
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Table 6 Incidence Analysis of CREZ Project

Real Time Day Ahead
South North Houston South North Houston

Net Supply Slope ($/MWh per GWh) 3.637 4.8173 3.5317 1.9856 2.4383 1.6002
Net Demand Slope ($/MWh per GWh) -0.0067 -0.8065 -0.1845 -0.756 -0.543 -1.1681

Load West (GWh) 2.6228 2.6228 2.6228 2.6228 2.6228 2.6228
Price Change West ($/MWh) 5.8537 5.316 5.2378 3.3676 4.3783 2.4982
Spending Change West ($/h) 15353 13943 13738 8833 11483 6552

Average Spending Change West ($/h) 14345 8956

Load Pop Center (GWh) 9.534 12.9072 11.0282 9.534 12.9072 11.0282
Price Change Pop Center ($/MWh) -0.0108 -0.89 -0.2736 -1.2822 -0.975 -1.8237
Spending Change Pop Center ($/h) -103 -11487 -3017 -12224 -12585 -20112

Total Spending Change Pop Center ($/h) -14607 -44921

Net Spending Change ($/h) -262 -35965

Table 6 report the results for all the three pairs of regions using a back of the enve-

lope calculation which only looks at market averages. Using this simple calculation, the

annual saving outside of the west in the day ahead market ranges from $12,224/hour to

$20,112/hour. Since prices in West ERCOT increase, there is a price increase in West

ERCOT on average. We can take this number and then aggregate up to the annual level.

West is calculated repeatedly so we use an average for the West when we calculate the

total spending saving in the whole ERCOT. The total spending change per hour across

ERCOT is -$315M in terms of lower wholesale rates. This is an intuitive finding: the

increased transmission of wind generation to greater ERCOT means more zero marginal

cost electricity supplied to the market.

The $315M calculation masks the fact that ratepayers will be passed through the cost

of CREZ construction. ERCOT market participants had to pay for CREZ through market

participation fees. This ultimately impacts rate payers. Thus the TCL sums calculated in

the paper, rather than incidence of changes in wholesale market prices, are the appropriate

metrics for calculating the benefits from lower TLCs attributable to CREZ.

However, while ratepayers and windfarms gained from hourly wholesale electricity

prices, generators not in the west are harmed by lower prices. Benefits to ratepayers and

windfarms in the west are costs to generators not in the west (in addition to ratepayers
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in the west). Thus CREZ led to a very large negative impact on non-west generators. To

this end, 4,000 MWs of coal capacity was recently approved from retirement.32 However,

this is a joint function of lower natural gas prices and increased wind capacity (Fell and

Kaffine (2018)). We don’t make the claim that CREZ caused these closures but to a first

order approximation CREZ does not appear to be a good thing for non-west ERCOT

generators.

As with any paper, there are some drawbacks to our approach. First, while we allow

for non-linearities in the net supply and net demand curve and found mild non-linearities

in the net supply curve, further identification of precisely how the non-linearity arises

could be important for understanding trading in the wholesale electricity market broadly.

Second, we have no theory explaining differing results between the real time and day ahead

markets. Third, we don’t perform a cost benefit analysis of how the additional costs of

transmission lines relate to the economic gains from additional trade enabled by them.

Fourth, transmission line loss is one factor that will result in price discrepancy that we

have not accounted for explicitly. More transmission lines imply more line loss, but we

observe little wind generation induced price gaps post CREZ so for our sample period and

our study, line loss is a second order impact. Fifth, we haven’t accounted explicitly for

plant start up costs which are important for coal fired generation (Reguant (2014)). We

view the interaction of wind generation and the value of quick dispatchable electricity to

be its own important economic question. Sixth, our results highlight how implementing

yet to be identified better mechanisms to resolve federal versus regional discrepancies in

energy, environmental and transmission policy making could lead to higher welfare.

7 Discussion and Conclusion

This paper extends the electricity transmission framework from Joskow and Tirole (2005)

to characterize how policy encouraging intermittent renewable investment can interact

with extant transmission grid constraints to create transmission constraint loss. Con-

sistent with the model, we find evidence in ERCOT that increased wind generation of

windfarms decreases wholesale electricity prices at market settlement points near wind-

32See goo.gl/X6vLCB/.
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farms. Consistent with transmission constraints which prevent trade of low cost electricity

regions to high cost regions, increased wind generation also creates a wedge between whole-

sale electricity prices near windfarms relative to nearby nodes, such as population centers.

A large expansion in transmission capacity decreased the price wedge caused by wind gen-

eration between generation and load centers. The benefit cost analysis for the project ride

very much on the value of mitigated carbon for our analysis. Based purely on market gains

through more trade the payback period is roughly 14 years while including non-market

CO2 reductions the payback period falls to less than 9 years.

The principle policy implication of these findings are for complementary policies which

encourage new renewable capacity. One feature of wind subsidies in the US is that relative

to other policies, Production Tax Credits can exacerbate transmission constraints. PTCs

encourage locating windfarms in areas with high capacity factors instead of locations

with a high wholesale price of electricity. While it is beyond the scope of this paper to

investigate, an investment tax credit (ITC) might preserve marginal incentives compared

to a PTC since the PTC encourages investment in higher volume locations, regardless of

price, on the margin.33

The major contribution of this analysis is for transmission capacity expansion. While

there was no federal subsidy for transmission construction as part of the PTC, we show that

ERCOT made investments to facilitate the increased level of electricity trade and increase

overall welfare. As a result, ERCOT’s current wholesale electricity market outcomes are a

function of both its electricity generation portfolio (including wind capacity receiving PTC

payments) and transmission investments from CREZ. Compared to a counterfactual world

in which case there was no PTC and no CREZ, is ERCOT better off? The PTC is funded

at the national level but ERCOT farms receive annual subsidies of roughly $600M/year

or 12% of the PTC.34 This $600M/year is a transfer from federal taxpayers to windfarm

developers. If those developers live in ERCOT then citizens living in ERCOT are no bet-

33In the Appendix, we sketch a theoretical model which shows the comparative decrease in incentives
to invest near high wholesale price areas due to the PTC and the ITC. Combined with the findings here,
there is some evidence that policy makers should evaluate the merits of policies which don’t have this
incentive or the merits of complementary policies encouraging either transmission grid construction or
storage technology. We don’t claim that PTCs are always the least desirable second best policies for
renewables but rather highlight a cost of this policy which hasn’t yet received adequate attention in either
the economics literature nor from policy makers.

34See goo.gl/T3y8mu.
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ter or worse off when considering the PTC except insofar as they benefit from receiving

a disproportionate amount of the PTC. According to the Census, Texas’ population is

roughly 28M people or 8.7% of the population.35 However, windfarm developers and their

financing partners receive a very large benefit: the CREZ combined with the PTC served

to both subsidize windfarm development and then increases the revenue received by the

windfarms. Reduced wholesale electricity prices in ERCOT induced by CREZ are both

transfers from electricity producers in ERCOT to citizens. However, the cost of CREZ

expansion is passed through to ratepayers in ERCOT leading to increased costs overall.

Thus, the true welfare gains of CREZ conditional on the PTC depend on the impacts of

local air pollutants and non-local air pollutants. Finally, since there are also non-market

benefits to global citizens (reduced CO2), those global benefits must be internalized by

regional decision makers for efficient global policies. These complexities highlight the chal-

lenge efficient policy given the current mechanism for investing in transmission capacity

in the U.S.

Lastly, increased renewable penetration combined with low natural gas prices in the

electricity sector is driving down prices in wholesale electricity markets and decreasing fos-

sil fuel and nuclear generators viability to service debt. The question of revenue adequacy,

capacity markets and “missing money” in which market signals (e.g., price caps, unpriced

option value of generation capcity, etc.) don’t provide sufficient incentives for the grid is

back at the forefront of electricity policy circles (Joskow and Tirole (2007), Joskow (2008),

Joskow (2013), and Cramton, Ockenfels, and Stoft (2013)). We hope this paper highlights

how developing a functional market solution to ensure low cost and reliable electricity

should account for efficient investment in the transmission system.

35See https://www.census.gov/quickfacts/TX.
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8 Appendix

8.1 Wind Capacity Figures

Figure 15 36 shows the increasing trend of total wind capacity in the United States. We

can see that wind capacity has increased dramatically since 2007. Figure 16 shows wind

capacity distribution across the United States by state by the second quarter of 2015.

Among all the states, Texas has the largest wind capacity, much more than California

that follows.

Figure 15: Wind Capacity by Year

36Source: https://cleantechnica.com/2015/08/06/us-installs-record-wind-capacity-q215-texas-reigns-
supreme. Same for Figure 16.
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Figure 16: Wind Capacity by State by Q2 2015
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8.2 Results For Real Time Markets and Other Zones

Figure 17: Effects of Wind Generation on Real Time Prices in ERCOT
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Table A0 Impacts of CREZ and Wind Generation on Real Time Price Gap

(1) (2) (3) (4) (5) (6)
VARIABLES South RT South RT North RT North RT Houston RT Houston RT

Net Supply (West) 3.458*** 4.116*** 3.526*** 4.017*** 3.588*** 4.072***
(0.237) (0.393) (0.193) (0.341) (0.218) (0.389)

Net Demand (South) 1.658 0.309
(1.327) (0.618)

Net Supply (West)*Percent -3.298*** -3.937*** -3.456*** -3.964*** -3.183*** -3.707***
(0.261) (0.426) (0.206) (0.361) (0.284) (0.451)

Net Demand (South)*Percent -1.765 -0.231
(1.410) (0.740)

Net Demand (North) 0.115 0.529
(0.161) (0.422)

Net Demand (North)*Percent -0.0994 -0.442
(0.174) (0.463)

Net Demand (Houston) -0.271 -0.536
(0.433) (0.724)

Net Demand (Houston)*Percent 0.742 0.731
(0.529) (1.091)

Observations 52,575 52,575 52,575 52,575 52,575 52,575
R-squared 0.098 0.260 0.173 0.352 0.068 0.198
Year-Month-Hour FE YES YES YES YES YES YES
Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Figure 18: Implied transmissions shortfall by year: West-South DA.
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Figure 19: Implied transmissions shortfall by year: West-Houston DA.
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Figure 20: Implied transmissions shortfall by year: West-North RT.
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Figure 21: Implied transmissions shortfall by year: West-South RT.
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Figure 22: Implied transmissions shortfall by year: West-Houston RT.
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Figure 23: Yearly sum transmission constraint losses for all regions RT.
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8.3 Robustness Checks

Table A1 Impacts of CREZ on Price Gap: Cluster By Week

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South DA North RT North DA Houston RT Houston DA

Percent Completion -5.864*** -4.650*** -6.206*** -5.353*** -5.511*** -4.322***

(0.812) (0.618) (0.678) (0.513) (0.854) (0.610)

Net Supply (West) 0.817*** 0.535*** 0.779*** 0.491*** 0.960*** 0.575***

(0.0769) (0.0470) (0.0721) (0.0461) (0.0963) (0.0487)

Net Demand (South) 0.105 -0.00994

(0.0866) (0.0485)

Net Demand (North) 0.0180 -0.0329

(0.0379) (0.0300)

Net Demand (Houston) 0.247** 0.136**

(0.0981) (0.0605)

Constant 3.492*** 3.975*** 4.251*** 4.578*** 1.774 2.492***

(0.917) (0.590) (0.798) (0.529) (1.249) (0.688)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.022 0.107 0.056 0.193 0.013 0.111

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A2 Impacts of CREZ and Wind Generation on Real Time Price Gap: Cluster By Week

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South RT North RT North RT Houston RT Houston RT

Net Supply (West) 3.458*** 4.116*** 3.526*** 4.017*** 3.588*** 4.072***

(0.320) (0.506) (0.296) (0.453) (0.311) (0.503)

Net Demand (South) 1.658 0.309

(1.226) (0.681)

Net Supply (West)*Percent -3.298*** -3.937*** -3.456*** -3.964*** -3.183*** -3.707***

(0.344) (0.541) (0.314) (0.480) (0.363) (0.563)

Net Demand (South)*Percent -1.765 -0.231

(1.303) (0.804)

Net Demand (North) 0.115 0.529

(0.160) (0.477)

Net Demand (North)*Percent -0.0994 -0.442

(0.175) (0.525)

Net Demand (Houston) -0.271 -0.536

(0.425) (0.665)

Net Demand (Houston)*Percent 0.742 0.731

(0.530) (1.046)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.098 0.260 0.173 0.352 0.068 0.198

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A3 Impacts of CREZ and Wind Generation on Day Ahead Price Gap: Cluster By Week

(1) (2) (3) (4) (5) (6)

VARIABLES South DA South DA North DA North DA Houston DA Houston DA

Net Supply (West) 2.066*** 1.662*** 2.154*** 1.665*** 2.200*** 1.725***

(0.160) (0.136) (0.168) (0.132) (0.170) (0.134)

Net Demand (South) -0.0923 0.000750

(0.220) (0.201)

Net Supply (West)*Percent -1.980*** -1.625*** -2.158*** -1.662*** -2.044*** -1.662***

(0.170) (0.145) (0.178) (0.140) (0.181) (0.147)

Net Demand (South)*Percent 0.0582 0.0958

(0.250) (0.227)

Net Demand (North) -0.0984 0.00351

(0.0887) (0.115)

Net Demand (North)*Percent 0.110 0.0584

(0.0962) (0.127)

Net Demand (Houston) -0.396 -0.260

(0.244) (0.173)

Net Demand (Houston)*Percent 0.669** 0.609***

(0.282) (0.228)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.415 0.652 0.526 0.784 0.470 0.710

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A4 Impacts of CREZ on Price Gap: Trim Data

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South DA North RT North DA Houston RT Houston DA

Percent Completion -8.333*** -6.739*** -8.095*** -7.151*** -8.203*** -6.317***

(1.221) (0.497) (0.684) (0.427) (1.229) (0.503)

Net Supply (West) 1.777*** 1.235*** 1.782*** 1.167*** 1.825*** 1.258***

(0.114) (0.0605) (0.0935) (0.0564) (0.131) (0.0587)

Net Demand (South) 0.176 -0.111**

(0.126) (0.0484)

Net Demand (North) 0.0820* -0.0143

(0.0457) (0.0257)

Net Demand (Houston) 0.152** -0.0421

(0.0736) (0.0401)

Constant 2.609** 4.849*** 2.959*** 4.197*** 2.743** 4.311***

(1.195) (0.450) (0.871) (0.399) (1.131) (0.478)

Observations 28,460 28,460 28,460 28,460 28,460 28,460

R-squared 0.037 0.174 0.084 0.255 0.029 0.203

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A5 Impacts of CREZ and Wind Generation on Real Time Price Gap: Trim Data

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South RT North RT North RT Houston RT Houston RT

Net Supply (West) 3.828*** 4.228*** 3.915*** 4.369*** 3.970*** 4.430***

(0.277) (0.448) (0.220) (0.382) (0.247) (0.430)

Net Demand (South) 2.064 0.229

(1.371) (0.721)

Net Supply (West)*Percent -4.316*** -4.266*** -4.525*** -4.944*** -4.199*** -4.730***

(0.433) (0.653) (0.301) (0.490) (0.408) (0.582)

Net Demand (South)*Percent -3.084* 0.0651

(1.645) (1.202)

Net Demand (North) 0.243 0.760

(0.169) (0.479)

Net Demand (North)*Percent -0.498** -1.118*

(0.215) (0.646)

Net Demand (Houston) 0.193 -0.924

(0.448) (0.814)

Net Demand (Houston)*Percent -0.789 2.034

(0.677) (1.251)

Observations 28,460 28,460 28,460 28,460 28,460 28,460

R-squared 0.106 0.270 0.171 0.347 0.089 0.213

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A6 Impacts of CREZ and Wind Generation on Day Ahead Price Gap: Trim Data

(1) (2) (3) (4) (5) (6)

VARIABLES South DA South DA North DA North DA Houston DA Houston DA

Net Supply (West) 2.269*** 1.750*** 2.429*** 1.805*** 2.398*** 1.851***

(0.136) (0.116) (0.117) (0.104) (0.123) (0.109)

Net Demand (South) 0.172 0.105

(0.458) (0.224)

Net Supply (West)*Percent -2.534*** -1.869*** -2.919*** -2.051*** -2.576*** -2.021***

(0.184) (0.161) (0.158) (0.130) (0.179) (0.150)

Net Demand (South)*Percent -0.805 -0.193

(0.527) (0.303)

Net Demand (North) -0.00296 0.0264

(0.0840) (0.141)

Net Demand (North)*Percent -0.189* -0.00680

(0.109) (0.184)

Net Demand (Houston) -0.119 -0.138

(0.187) (0.199)

Net Demand (Houston)*Percent -0.249 0.297

(0.266) (0.301)

Observations 28,460 28,460 28,460 28,460 28,460 28,460

R-squared 0.417 0.653 0.513 0.778 0.469 0.723

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A7 Impacts of CREZ on Price Gap: Control For All Load

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South DA North RT North DA Houston RT Houston DA

Percent Completion -6.097*** -4.926*** -6.261*** -5.380*** -6.188*** -4.765***

(0.566) (0.321) (0.468) (0.295) (0.642) (0.314)

Net Supply (West) 0.772*** 0.499*** 0.774*** 0.488*** 0.883*** 0.522***

(0.0516) (0.0250) (0.0407) (0.0240) (0.0789) (0.0253)

Net Demand (South) 1.362** 0.620*** 0.426*** 0.433*** -0.139 0.169

(0.610) (0.195) (0.145) (0.0816) (0.338) (0.153)

Net Demand (North) -0.754*** -0.524*** -0.169** -0.202*** -0.680*** -0.544***

(0.117) (0.0543) (0.0766) (0.0434) (0.132) (0.0549)

Net Demand (Houston) -0.250 0.0705 -0.140 -0.175*** 1.203*** 0.645***

(0.509) (0.154) (0.0972) (0.0539) (0.312) (0.120)

Constant 4.232*** 4.197*** 4.195*** 4.588*** 1.909* 2.683***

(0.803) (0.373) (0.636) (0.326) (1.054) (0.389)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.025 0.120 0.057 0.196 0.015 0.133

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A8 Impacts of CREZ and Wind Generation on Real Time Price Gap: Control For All Load

(1) (2) (3) (4) (5) (6)

VARIABLES South RT South RT North RT North RT Houston RT Houston RT

Net Supply (West) 3.521*** 4.130*** 3.547*** 4.017*** 3.588*** 4.086***

(0.218) (0.394) (0.195) (0.342) (0.217) (0.391)

Net Demand (South) 4.572 1.233 -0.0258 -0.215 -0.235 0.705

(3.293) (1.324) (0.603) (0.940) (0.816) (1.501)

Net Demand (North) -0.121 0.212 0.370 0.707 0.207 0.424

(0.408) (0.597) (0.289) (0.454) (0.383) (0.735)

Net Demand (Houston) -3.179 -1.426 -0.547 -0.181 -0.328 -1.424

(2.104) (1.065) (0.510) (0.853) (0.700) (1.099)

Net Supply (West)*Percent -3.402*** -3.968*** -3.476*** -3.965*** -3.234*** -3.728***

(0.240) (0.427) (0.208) (0.362) (0.281) (0.453)

Net Demand (South)*Percent -4.528 -0.704 -0.0386 0.408 -0.0409 -1.605

(3.565) (1.512) (0.659) (1.017) (0.967) (1.824)

Net Demand (North)*Percent -0.653 -0.822 -0.324 -0.709 -0.936* -0.432

(0.512) (0.724) (0.322) (0.504) (0.523) (0.909)

Net Demand (Houston)*Percent 4.209* 1.683 0.537 0.168 1.910** 2.266

(2.304) (1.223) (0.548) (0.932) (0.863) (1.414)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.101 0.261 0.173 0.352 0.069 0.198

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A9 Impacts of CREZ and Wind Generation on Day Ahead Price Gap: Control For All Load

(1) (2) (3) (4) (5) (6)

VARIABLES South DA South DA North DA North DA Houston DA Houston DA

Net Supply (West) 2.061*** 1.664*** 2.163*** 1.667*** 2.172*** 1.728***

(0.114) (0.104) (0.103) (0.0947) (0.104) (0.0988)

Net Demand (South) 0.414 0.216 -0.432 0.182 -0.692 0.327

(1.090) (0.350) (0.276) (0.271) (0.719) (0.298)

Net Demand (North) -0.236 0.0624 0.168 0.0492 -0.146 0.0475

(0.168) (0.177) (0.132) (0.154) (0.150) (0.174)

Net Demand (Houston) -0.228 -0.358 -0.101 -0.321 0.355 -0.541**

(0.702) (0.317) (0.215) (0.220) (0.489) (0.261)

Net Supply (West)*Percent -1.990*** -1.629*** -2.167*** -1.664*** -2.031*** -1.667***

(0.121) (0.111) (0.108) (0.1000) (0.111) (0.108)

Net Demand (South)*Percent -0.559 -0.236 0.402 -0.175 0.598 -0.637*

(1.181) (0.390) (0.298) (0.292) (0.787) (0.338)

Net Demand (North)*Percent 0.0758 -0.137 -0.133 -0.000763 -0.0460 -0.00623

(0.189) (0.202) (0.145) (0.169) (0.177) (0.208)

Net Demand (Houston)*Percent 0.626 0.614* 0.0753 0.346 0.231 1.074***

(0.768) (0.359) (0.233) (0.238) (0.544) (0.305)

Observations 52,575 52,575 52,575 52,575 52,575 52,575

R-squared 0.417 0.653 0.528 0.784 0.474 0.710

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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Table A10 Identification of Net Supply and Net Demand Curves West and North DA

(1) (2) (3) (4) (5) (6)
P(North) P(West) P(North) P(West) P(North) P(West)

P(Gap)> 1 P(Gap)> 1 P(Gap)> 2 P(Gap)> 2 P(Gap)> 5 P(Gap)> 5
VARIABLES Year <= 2013 Year <= 2013 Year <= 2013 Year <= 2013 Year <= 2013 Year <= 2013

Net Demand (North) 0.477** 0.870*** 0.379 0.917*** 0.604** 1.027***
(0.241) (0.321) (0.240) (0.342) (0.269) (0.323)

Net Supply (West) -0.899*** -2.505*** -0.916*** -2.730*** -0.816*** -2.406***
(0.154) (0.202) (0.147) (0.225) (0.213) (0.310)

Observations 8,699 8,699 6,478 6,478 4,262 4,262
R-squared 0.725 0.743 0.918 0.893 0.934 0.894
Year-Month-Hour FE YES YES YES YES YES YES
Sample Day FE YES YES YES YES YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.

Table A11 Net Supply and Net Demand Curves North: Top 10% load hours trimmed

(1) (2) (3) (4) (5) (6)

P(North) P(West) P(North) P(West) P(North) P(West)

VARIABLES P(Gap)> 1 P(Gap)> 1 P(Gap)> 2 P(Gap)> 2 P(Gap)> 5 P(Gap)> 5

Net Demand (North) 0.464** 0.727*** 0.385* 0.801*** 0.291* 0.609**

(0.192) (0.256) (0.204) (0.286) (0.168) (0.309)

Net Supply (West) -0.787*** -2.228*** -0.781*** -2.465*** -0.828*** -2.404***

(0.145) (0.189) (0.183) (0.245) (0.216) (0.324)

Observations 9,698 9,698 6,903 6,903 4,173 4,173

R-squared 0.838 0.838 0.847 0.841 0.962 0.934

Year-Month-Hour FE YES YES YES YES YES YES

Sample Day FE YES YES YES YES YES YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
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8.4 Production Tax Credits and Location Incentives

Consider how a production tax credit (PTC) can interact with congestion constraints

described in the theoretical model above and lead to decreased incentives to invest in high

value areas where electricity fetches a high price. The goal of this subsection is to show

how a PTC creates an incentive to invest in areas with high levels of wind generation,

regardless of wholesale electricity price, relative to other policies. We then describe how

high initial PTC levels could lead to investment in wind generation capacity even when

severe congestion constraints exist. This motivates the subsequent research design as it

highlights how wind construction decisions might be somewhat exogenous with respect to

the precise timing of CREZ completion.

As a first step, consider the equilibrium quantity of electricity trading if there were no

transmission constraints. This would mean prices in the exporting node A and importing

Node B equalize. This implicitly defines the unconstrained amount of traded electricity

Q as a function of wind generation and market characteristics:

aB + bBL
B
t − bBQ∗ = aA + bA(LAt −Wt) + bAQ

∗

Q∗(W ) =
aB − aA + bBL

B
t − bA(LAt −Wt)

bA + bB
(21)

This convenient expression lets us determine how the volume of traded electricity changes

with wind generation: ∂Q∗

∂W = bA
bA+bB

< 1. This is the familiar expression that the rate of

change in Q is a function of the relative slopes of the supply and demand curve when there

are no capacity constraints: Q∗ < K. Alternatively, if there are capacity constraints, the

total change in traded quantity is zero, by definition: ∂Q∗

∂W = 0 if Q∗ ≥ K.

Plugging in equilibrium Q∗ in the price equation for node A provides insights on how

additional wind generation would impact equilibrium price in node A (e.g., the wind

generation hub) with and without capacity constraints. Specifically, if Q∗ < K then

∂P ∗
A

∂W = bA( bA
bA+bB

−1) < 0. Note that −1 < ( bA
bA+bB

−1) < 0. Alternatively, if Q∗ ≥ K then

∂P ∗
A

∂W = −bA. As a result, we have the simple result that in equilibrium, abs(
∂P ∗

A
∂W )|Q∗ <

K| < abs(
∂P ∗

A
∂W )|Q∗ ≥ K, where abs() is the absolute value operator. In words, this means

that the price impact on increased wind generation in the exporting region is larger (e.g.,
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more negative) if there are capacity constraints. At a high level, the barrier to trade due

to transmission constraints harms wind generators in node A relative to when there is no

transmission constraint.

Now consider the firms investment decision with and without a PTC subsidy. In

this simple model, we ignore investment costs to focus solely on how different subsidy

schemes interact with transmission constraints. Note that W is the quantity of wind

generation sold, hence P ∗ W is revenue to a representative wind farm in node A. In

equilibrium, total revenue for wind farms is TR = P (Q(W )) ∗W in the absence of a PTC

and TR = (P (Q(W )) + s) ∗W with a production tax credit of s.

One way to see the interaction of the PTC with capacity constraints is to evaluate

the marginal impact of wind generation on total revenue to the total revenue of a wind

farm in the presence of capacity constraints both with and without the PTC. We can then

compare the PTC to other policy instruments. For example, consider a subsidy on the

wholesale price of electricity, τ > 0: TR = P (Q(W )) ∗ (1 + τ) ∗W . The marginal revenue

to a wind farm for a marginal increase in wind generation when Q∗t > K is:

w/ PTC
∂TR

∂W
=

∂P ∗(W )

∂W
W + P ∗(W ) + s

= −bAW + P ∗(W ) + s (22)

w/ price subsidy :
∂TR

∂W
=

∂P ∗(W )

∂W
(1 + τ)W + P ∗(W )(1 + τ)

= −bAW (1 + τ) + P ∗(W )(1 + τ) (23)

The first first term in both equations (22) and (23) is the indirect price impact of additional

wind generation and the second term is the quantity impact. Because τ > 0 the price

decrease of additional wind is internalized more with a price instrument (τ) relative to

a quantity instrument with the PTC (s) conditional on W : −bAW (1 + τ) < −bAW .

The quantity impact of the policy instrument (e.g., the second terms) are not directly

comparable. More importantly, there is no interaction of the PTC and market signals

to windfarms: ∂2TR
∂W∂s = 1. For a price based subsidy, there is an interaction: ∂2TR

∂W∂τ =

−bAW+P ∗(W ). Note that an investment tax credit would not impact marginal incentives

whatsoever since there is no impact price nor quantity interaction from a cost based
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policy.37

In sum, this framework shows that with transmission constraints, there is no feedback

link between the policy instrument and price. Intuitively, a PTC creates an incentive to

invest in areas with high levels of wind generation, regardless of price. A price subsidy or

investment tax credit leverages, or at least preserves, price signals to the investor. As a

result, we would expect the nature of a PTC to impact the location of wind farms on the

margin to areas with high levels of wind generation, even in the presence of transmission

constraints.

37In particular if TR = P (Q(W )) ∗W + t then ∂2TR
∂W∂t

= 0.
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8.5 Net Supply and Demand Non-linearities and TCLs

Introducing non-linearity into the net supply and net demand models requires care in

augmenting equations (12) and (13) used to estimate the net supply and net demand slope

parameters. Adding polynomials in net supply/demand is not feasible because we need

to perform functions on the slope coefficients to subsequently calculate the transmission

capacity gap. Polynomials don’t easily allow that because the slope is a function of the

net supply/demand levels which are themselves changing over time.

We perform the following procedure to allow for non-linearity: first we trim the sample

to include the sample we use to estimate equations (12) and (13) (e.g., only hours where

we observe a price gap of $2/MWh or more). Second, we create a dummy variable equal

to one when the price gap is above the median price gap in the sample. Third, we interact

that indicator variable with net supply and net demand, to test for a change in the net

supply and net demand elasticities for large or small level of net demand or net supply:

pAt = α+ β(Wt − LAt ) + βh1{Wt − LAt ≥ P50|η>$2} ∗ (Wt − LAt ) + γ2L
B
t + δhmy + λd + εt(24)

pBt = α+ β2(Wt − LAt ) + βh2 1{Wt − LAt ≥ P50|η>$2} ∗ (Wt − LAt ) + γLBt + δhmy + λd + εt(25)

The coefficients of interest in these regressions are βh and βh2 respectively. A estimated

coefficient which is significantly different from zero means elasticities change for net supply

gaps above the median conditional on price differences great than $2/MWh.
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Table A12 Identification of Slopes North DA: Nonlinear Checks

(1) (2)
P(North) P(West)

VARIABLES P(Gap)> 2 P(Gap)> 2

Net Demand (North) 0.630** 1.012***
(0.268) (0.333)

Net Supply (West) -0.767*** -2.121***
(0.192) (0.364)

1(Net Demand Above Median)*Net Demand -0.0356
(0.0317)

1(Net Supply Above Median)*Net Supply -0.304*
(0.180)

Observations 7,326 7,326
R-squared 0.861 0.856
Year-Month-Hour FE YES YES
Sample Day FE YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.

Table A13 Identification of Slopes South DA: Nonliear Checks

(1) (2)
P(South) P(West)

VARIABLES P(Gap)> 2 P(Gap)> 2

Net Demand (South) 0.619 1.071
(0.743) (0.653)

Net Supply (West) -0.940*** -1.643***
(0.228) (0.388)

1(Net Demand Above Median)*Net Demand 0.0547
(0.0878)

1(Net Supply Above Median)*Net Supply -0.352
(0.240)

Observations 10,895 10,895
R-squared 0.806 0.810
Year-Month-Hour FE YES YES
Sample Day FE YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.

80



Table A14 Identification of Slopes Houston DA: Nonliear Checks

(1) (2)
P(Houston) P(West)

VARIABLES P(Gap)> 2 P(Gap)> 2

Net Demand (Houston) 1.199*** 1.061***
(0.363) (0.349)

Net Supply (West) -0.592*** -1.459***
(0.166) (0.345)

1(Net Demand Above Median)*Net Demand -0.0132
(0.0497)

1(Net Supply Above Median)*Net Supply -0.143
(0.226)

Observations 12,689 12,689
R-squared 0.838 0.839
Year-Month-Hour FE YES YES
Sample Day FE YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered by sample day are reported in parentheses.
The Tables show the results of the regressions for day-ahead elasticities for the North,

South and Houston all relative to the West. The general result is that there doesn’t appear

to be any strong evidence of non-linearity in the net demand nor net supply curves with

non-linearity defined in this way. Only between the West and the North is there mild

evidence of a non-linearity increasing net supply elasticity for high levels of net supply:

-.304 versus -2.121 or a 14% increase significant at the 10% level.

Focusing on the West to North relationship we use the estimated non-linear net supply

and net demand slope coefficients to construct transmission shortfalls. By inspection, the

findings are very similar to the linear counterparts shown in them main text. Figure 24

shows the same flattening over time. Figures 25 shows TCLs for market impacts and Figure

26 shows TCLs for non-market impacts using the non-linear results for each region. We

again observe no qualitative nor quantitative difference between these findings and those

from the main text.
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Figure 24: Implied transmissions shortfall by year with Non-linear model: West-North

DA.
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Figure 25: Market TCL for ERCOT with non-linear DA model
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Figure 26: Non-market TCL for ERCOT with non-linear DA model
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