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Abstract

This paper considers optimal fiscal policy in a deterministic Lucas and Stokey

(1983) economy in the absence of government commitment. In every period, the

government chooses a labor income tax and issues any unconstrained maturity struc-

ture of debt as a function of its outstanding debt portfolio. We find that the solution

under commitment cannot always be sustained through the appropriate choice of

debt maturities, a result which contrasts with previous conclusions in the literature.

This is because a government today cannot commit future governments to a partic-

ular side of the Laffer curve, even if it can commit them to future revenues. We find

that the unique stable debt maturity structure under no commitment is flat, with

the government owing the same amount of resources to the private sector at all fu-

ture dates. We present examples in which the maturity structure converges to such

a flat distribution over time. In cases where the commitment and no-commitment

solutions do not coincide, debt converges to the natural debt limit.
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1 Introduction

How should income taxes and government debt maturity be structured over time? In this

paper, we study this question in a deterministic Lucas and Stokey (1983) economy in which

a government without commitment dynamically chooses labor income taxes and issues any

unconstrained maturity structure of debt as a function of its outstanding debt portfolio.

We establish two main results. First, in contrast to many conclusions in the literature

dating back to the work of Lucas and Stokey (1983), the solution under commitment

cannot always be sustained through the appropriate choice of debt maturities.1 Second, the

unique stable debt maturity structure under no commitment is flat, with the government

owing the same amount of resources to the private sector at all future dates. We present

examples in which the maturity structure—which may or may not sustain the commitment

solution—converges to a flat distribution over time.

We establish these results in the deterministic version of the model of Lucas and Stokey

(1983). This is an economy with exogenous public spending and no capital in which the

government chooses linear taxes on labor and issues public debt to finance government

spending. In this environment, if the government could commit to policy at the beginning

of time, then the choice of government debt maturity would be indeterminate. This is

because many arbitrary debt maturity structures can satisfy the present value constraints

of the government at a given point in time.

We do not assume that the government commits ex-ante to policy, and we instead

consider the sequentially optimal policy. More specifically, we characterize the Markov

Perfect Competitive Equilibrium (MPCE) in which, at every date, a government—which

needs to honor the inherited debt repayments—chooses current taxes and an issued port-

folio of maturities. In doing so, the government considers how current taxes and its

financing strategy affect the price of bonds through expectations of future policy. We

focus on characterizing the entire set of MPCE’s, including those with potentially discon-

tinuous policy functions both on and off the equilibrium path.2 In addition, we allow for

any unconstrained structure of maturity issuance. This means that the payoff relevant

state—the government’s portfolio of inherited maturities—is an infinite-dimensional and

potentially complicated object.

Our first main result is that the solution under commitment cannot always be sustained

1Followup work which builds on these results includes, but is not limited to, Calvo and Obstfeld (1990),
Alvarez et al. (2004), Persson et al. (2006), Diaz-Gimenez, Giovannetti, Marimon, and Teles (2008), and
Debortoli et al. (2017), among others.

2In this regard, our approach is similar in spirit to that of Cao and Werning (2017) in their analysis
of Markov equilibria in the hyperbolic consumption model.
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through the appropriate choice of debt maturities. The reason is that a government today

cannot commit future governments to a particular side of the Laffer curve, even if it can

commit them to future revenues by an appropriate choice of debt. We establish this

result in a simple example in which a government considers how to roll over its short-

term debt. We show that if the level of the short-term debt is sufficiently large, the

government today would like to commit all future governments to high tax rates on the

downward sloping portion of the Laffer curve. Doing so reduces consumption tomorrow

and reduces short-term interest rates today, allowing the government today to roll over

its inherited debt at a lower cost. However, if given the option to reevaluate this policy,

the government tomorrow strictly prefers to repay the inherited debt with a lower tax

rate on the upward sloping portion of the Laffer curve since this increases consumption

and welfare ex post. As such, the optimal policy under commitment cannot be sustained

under lack of commitment.

This result contrasts with the arguments in the work of Lucas and Stokey (1983). They

argue that the optimal policy under commitment can be made time-consistent with the

appropriate choice of maturity. To construct this argument, they envision a government

today selecting two objects to ensure that the optimal policy under commitment today

satisfies the first order conditions of the government tomorrow. These two objects are

a maturity structure of debt and a Lagrange multiplier on the future government’s im-

plementability constraint, which is the present value constraint of the government which

incorporates this future maturity structure. Our simple example shows that this construc-

tion works if the implied future Lagrange multiplier on the implementability constraint

is positive, which occurs whenever the initial short-term debt is low and future tax rates

under commitment are on the upward sloping portion of the Laffer curve. However,

when initial short-term debt is high, the implied future Lagrange multiplier on the im-

plementability constraint is negative, as future tax rates under commitment are on the

downward sloping portion of the Laffer curve. Since this Lagrange multiplier would never

be negative ex post—because repaying public debt is costly—the construction in Lucas

and Stokey (1983) fails, and the equilibrium under commitment does not coincide with

that under lack of commitment. We note that our counterexample does not rely on the

presence of non-concavities in the government’s program and multiplicity of solutions at

any date; we consider an example with isoelastic preferences in which the program is

concave and the constraint set is convex at all dates.3

Motivated by this finding, we proceed to provide a general characterization of MPCE’s.

3We conjecture that taking this multiplicity into account could make it even more challenging for
today’s government to induce commitment by future governments.
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Our approach encompasses potential cases where the commitment and no-commitment

solutions do not coincide and where policy functions are discontinuous, both on and off the

equilibrium path. We characterize a stable maturity distribution, which is a time-invariant

distribution of maturities which emerges when the inherited portfolio of maturities equals

the issued portfolio. Given the Markov structure, such a stable distribution is associated

with tax rates and interest rates that are both constant over time.

Our second main result is that the unique stable debt maturity structure in an MPCE

is flat, with the government owing the same amount of resources to the private sector

at all future dates. The fact that a flat maturity structure is stable follows from the

arguments of Lucas and Stokey (1983): under a flat maturity structure, the government

sequentially chooses a stable tax rate, and this tax rate coincides with the optimum under

full commitment. In establishing this result, our contribution is to show that no other

maturity structure admits a stable tax rate. The argument rests on showing that if

the debt maturity were not flat, the government would pursue an unstable fiscal policy

which decreases (increases) the market value of outstanding (newly-issued) government

liabilities. A flat maturity structure is thus the unique stable maturity structure to emerge

in any MPCE.

To provide some intuition for this result, suppose that the government enters the period

with more long-term liabilities relative to short-term liabilities. Rather than maintain a

stable tax rate, the government should pursue a policy which increases short-term interest

rates. This relaxes the government budget constraint by reducing the market value of its

outstanding long-term liabilities, making the government strictly better off. The opposite

is true if the government enters the period with more short-term liabilities relative to

long-term liabilities. In this case, rather than maintain a stable tax rate, the government

should pursue a policy which reduces short-term interest rates. This policy relaxes the

government budget constraint by increasing the market value of newly issued liabilities,

making the government strictly better off.

In addition to these two main results, we examine the transition path of debt matu-

rity away from a stable debt maturity, and we construct examples in which the optimal

government debt maturity under no commitment converges to a flat distribution. In

these examples, the initial debt maturity structure is declining in the horizon and ma-

turities beyond a certain horizon are equal. In the cases where the commitment and

no-commitment solutions coincide, this result follows from the arguments in Lucas and

Stokey (1983): Optimal tax rates mirror initial maturities, and are therefore stable beyond

a particular horizon. This eventual stability is guaranteed with a gradual convergence to

a flat maturity under no commitment.
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In the cases where the commitment and no-commitment solutions do not coincide, the

argument is more subtle and follows from backward induction. Consider, for example, a

government which inherits a nearly flat maturity structure where all debt payments due

from tomorrow onward are the same, but debt due today is different. Such a government

clearly desires a stable tax rate from tomorrow onward given these incoming maturities.

However, if this desired tax rate exceeds the revenue-maximizing tax rate defining the

peak of the Laffer curve, the government today realizes that it cannot commit future

governments to its desired policy. Facing this binding upper bound on future tax rates,

we show that the government chooses all future tax rates to equal the revenue-maximizing

tax rate, and the government issues a flat maturity structure associated with the natural

debt limit to achieve this outcome.

Related Literature

The main contribution of this paper is to characterize the set of MPCE’s in the deter-

ministic case of the Lucas and Stokey (1983) model. We depart from Lucas and Stokey

(1983) by considering the entire set of MPCE’s, not only the ones which coincide with the

optimal ex-ante policy under full commitment. This allows us to establish that a flat ma-

turity structure is the unique stable structure in the entire space of MPCE’s, and to also

provide examples under which convergence to a stable structure characterizes the MPCE.

Our work also contributes to a literature on the optimal government debt maturity in the

absence of government commitment. We depart from this literature in two ways. First,

we consider the optimal maturity without imposing arbitrary constraints on maturities

available to the government.4 Second, our model is most applicable to economies in which

the risk of default and surprise in inflation are not salient, but the government is still not

committed to a path of taxes and debt maturity issuance.5 In this regard, our paper

complements the quantitative analysis of Debortoli et al. (2017). In contrast to this work,

we consider a deterministic economy and ignore the presence of shocks.6 This allows us

to achieve theoretical characterization in an infinite horizon economy without confining

the set of maturities available to the government. Our theoretical result that the optimal

4Krusell et al. (2006) and Debortoli and Nunes (2013) consider a similar environment to ours in the
absence of commitment, but with only one-period bonds, for example.

5Other work considers optimal government debt maturity in the presence of default risk, for example,
Aguiar et al. (2017), Arellano and Ramanarayanan (2012), Dovis (2017), and Fernandez and Martin
(2015), among others. Bocola and Dovis (2016) additionally consider the presence of liquidity risk. Bigio
et al. (2017) consider debt maturity in the presence of transactions costs. Arellano et al. (2013) consider
lack of commitment when surprise inflation is possible. See also additional work cited in Footnote 1.

6Angeletos (2002), Bhandari et al. (2017), Buera and Nicolini (2004), Faraglia et al. (2010), Guibaud
et al. (2013), and Lustig et al. (2008) also consider optimal government debt maturity in the presence of
shocks, but they assume full commitment.
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stable maturity structure is exactly flat is consistent with their quantitative result that

the optimal maturity structure is nearly flat in the presence of shocks.

Our paper proceeds as follows. In Section 2, we describe the model. In Section 3, we

define the equilibrium. In Section 4, we provide an example explaining why the solution

under commitment cannot always be sustained through the appropriate choice of debt

maturities. In Section 5, we provide the main result of the paper that the unique stable

maturity distribution is flat. In Section 6, we provide examples in which the MPCE

converges to a flat maturity distribution over time. Section 7 concludes. The Appendix

provides all of the proofs and additional results not included in the text.

2 Model

We consider an economy identical to a deterministic version of Lucas and Stokey (1983)

in which the government has no commitment to fiscal policy. There are discrete time

periods t = {0, 1, ...,∞}. The resource constraint of the economy is

ct + g = nt, (1)

where ct is consumption, nt is labor, and g > 0 is government spending, which is exogenous

and constant over time.

There is a continuum of mass 1 of identical households that derive the following utility:

∞∑
t=0

βtu (ct, nt) , β ∈ (0, 1) . (2)

u (·) is strictly increasing in consumption, strictly decreasing in labor, globally concave,

and continuously differentiable. We also assume that ucc(c, c+g)+ucn(c, c+g) < 0 so that

the marginal utility of consumption is decreasing in consumption in general equilibrium.

As a benchmark, we define the first best consumption and labor
{
cfb, nfb

}
as the values

of consumption and labor which maximize u (ct, nt) subject to the resource constraint (1).

Household wages equal the marginal product of labor (which is 1 unit of consumption),

and are taxed at a linear tax rate τt. bt,k R 0 represents government debt purchased by

a representative household at t, which is a promise to repay 1 unit of consumption at

t+ k > t. qt,k is the bond price at t. At every t, the household’s allocation and portfolio
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{
ct, nt, {bt,k}∞k=1

}
must satisfy the household’s dynamic budget constraint

ct +
∞∑
k=1

qt,k (bt,k − bt−1,k+1) = (1− τt)nt + bt−1,1. (3)

Bt,k R 0 represents debt issued by the government at t with a promise to repay 1 unit of

consumption at t+ k > t. At every t, government policies
{
τt, gt, {Bt,k}∞k=1

}
must satisfy

the government’s dynamic budget constraint

gt +Bt−1,1 = τtnt +
∞∑
k=1

qt,k (Bt,k −Bt−1,k+1) .7 (4)

The economy is closed which means that the bonds issued by the government equal

the bonds purchased by households:

bt,k = Bt,k ∀t, k. (5)

Initial debt {B−1,k}∞k=1 = {b−1,k}∞k=1 is exogenous. We assume that there exist debt

limits to prevent Ponzi schemes:

bt,k ∈
[
b, b
]
∀t, k. (6)

We will consider economies where these limits are not binding along the equilibrium path.

The government is benevolent and shares the same preferences as the households in (2).

We assume that the government cannot commit to policy and therefore chooses taxes and

debt sequentially.

3 Markov Perfect Competitive Equilibrium

In this section, we formally define our equilibrium and then apply the primal approach to

abstract away from bond prices and tax rates and characterize the equilibrium in terms

of allocations. We conclude by providing a recursive representation of the equilibrium.

7We follow the same exposition as in Angeletos (2002) in which the government rebalances its debt
in every period by buying back all outstanding debt and then issuing fresh debt at all maturities. This
is without loss of generality. For example, if the government at t − k issues debt due at date t of size
Bt−k,k which it then holds to maturity without issuing additional debt, then all future governments at
date t− k + l for l = 1, ..., k − 1 will choose Bt−k+l,k−l = Bt−k,k, implying that Bt−1,1 = Bt−k,k.
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3.1 Equilibrium Definition

We consider a Markov Perfect Competitive Equilibrium (MPCE) in which the government

optimally chooses its preferred policy—which consists of taxes and an issued portfolio of

debt—at every date as a function of current payoff-relevant variables, which consists of

the inherited portfolio of debt. The government takes into account that its choice affects

future debt and thus affects the policies of future governments. Households rationally

anticipate these future policies, and their expectations are in turn reflected in current

bond prices. Thus, in choosing policy today, a government anticipates that it may affect

current bond prices by impacting expectations about future policy.

Formally, let Bt ≡ {Bt,k}∞k=1 and qt ≡ {qt,k}∞k=1. In every period t, the government

chooses a policy {τt,Bt} given Bt−1. Households then choose an allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
. An MPCE consists of: a government strategy ρ (Bt−1) which is a

function of Bt−1; a household allocation and portfolio strategy ω (Bt−1, ρt,qt) which is a

function of Bt−1, the government policy ρt = ρ (Bt−1), and bond prices qt; and a set of

bond pricing functions
{
ϕk (Bt−1, ρt)

}∞
k=1

with qt,k = ϕk (Bt−1, ρt) ∀k ≥ 1 which depend

on Bt−1 and the government policy ρt = ρ (Bt−1). In an MPCE, these objects must satisfy

the following conditions ∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the

government budget constraint (4);

2. The household allocation and portfolio strategy ω (·) maximizes (2) given ρ (·), ϕk (·)
∀k ≥ 1, and the household budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

3.2 Primal Approach

Any MPCE must be a competitive equilibrium. We follow Lucas and Stokey (1983) by

taking the primal approach to the characterization of competitive equilibria since this

allows us to abstract away from bond prices and taxes. Let

{ct, nt}∞t=0 (7)

represent a sequence. We can establish necessary and sufficient conditions for (7) to

constitute a competitive equilibrium. The household’s optimization problem implies the
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following intratemporal and intertemporal conditions, respectively:

1− τt = −un (ct, nt)

uc (ct, nt)
and qt,k =

βkuc (ct+k, nt+k)

uc (ct, nt)
. (8)

Substitution of these conditions into the household’s dynamic budget constraint implies

the following condition:

uc (ct, nt) ct + un (ct, nt)nt +
∞∑
k=1

βkuc (ct+k, nt+k) bt,k =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (9)

Forward substitution into the above equation and taking into account the absence of Ponzi

schemes implies the following implementability condition:

∞∑
k=0

βk (uc (ct+k, nt+k) ct+k + un (ct+k, nt+k)nt+k) =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (10)

By this reasoning, if a sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (1) and (10). We prove in the Appendix that the converse is also

true, which leads to the below proposition that is useful for the rest of our analysis.

Lemma 1 (competitive equilibrium) A sequence (7) is a competitive equilibrium if

and only if it satisfies (1) ∀t and (10) at t = 0 given {b−1,k}∞k=1 .

Note that this result rests on the fact that the satisfaction of (10) at t = 0 guarantees

the satisfaction of (10) for all future dates, since bonds can be freely chosen so as to satisfy

(10) at all future dates for a given sequence (7).

3.3 Recursive Representation

We can use the primal approach to represent an MPCE recursively. Recall that ρ (Bt−1)

is a policy which depends on Bt−1, and that ω ((Bt−1) , ρt,qt) is a household allocation

and portfolio strategy which depends on Bt−1, government policy ρt = ρ (Bt−1), and bond

prices qt, where these bond prices depend on Bt−1 and government policy. As such, an

MPCE in equilibrium is characterized by a consumption and labor sequence (7) and a debt

sequence
{
{bt,k}∞k=1

}∞
t=0

, where each element at date t depends on history only through

Bt−1, the payoff relevant variables. Given this observation, in an MPCE, one can define

a function hk (·)
hk (Bt) = βkuc (ct+k, nt+k) |Bt (11)
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for k ≥ 1, which equals the discounted marginal utility of consumption at t+ k given Bt

at t. This function is useful since, in choosing Bt at date t, the government must take

into account how it affects future expectations of policy, which in turn affect current bond

prices through expected future marginal utility of consumption.

Note that choosing {τt,Bt} at date t from the perspective of the government is

equivalent to choosing {ct, nt,Bt} where one can write, with some abuse of notation,

Bt = {bt,k}∞k=1, and this follows from the primal approach delineated in Section 3.2. Re-

moving the time subscript and defining B ≡ Bt−1 = {bk}∞k=1 as the inherited portfolio of

bonds, we can write the government’s problem recursively as

V (B) = max
c,n,B′

u (c, n) + βV (B′) (12)

s.t.

c+ g = n, and (13)

uc (c, n) c+ un (c, n)n− uc (c, n) b1 +
∞∑
k=1

hk (B′) (b′k − bk+1) = 0, (14)

where (14) is a recursive representation of (9). Let f (B) correspond to the solution to

(12) − (14) given V (·) and hk (·) ∀k ≥ 1. It therefore follows that the function f (·)
necessarily implies functions hk (·) ∀k ≥ 1 which satisfy (11). An MPCE is therefore

composed of functions V (·), f (·), and hk (·) ∀k ≥ 1 which are consistent with one another

and satisfy (11)− (14).

4 Commitment vs. Lack of Commitment

In this section, we provide an example to highlight why the solution under commitment

cannot always be sustained through the appropriate choice of debt maturities. Our exam-

ple implies that there does not always exist an MPCE which coincides with the solution

under commitment.

4.1 Policy Under Commitment

Consider an economy in which preferences over consumption c and labor n satisfy

u (c, n) = log c− ηn
γ

γ
(15)

for η > 0 and γ ≥ 1, which corresponds to a utility function analyzed in Werning (2007).
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To facilitate the discussion, define claffer as

claffer = arg max
c
c (1− η (c+ g)γ) . (16)

The right hand side of (16) corresponds to the primary surplus of the government. There-

fore, claffer is the level of consumption associated with the maximal tax revenue and the

peak of the Laffer curve, which we label as τ laffer. We assume that g <
(

1
η

)1/γ
to guar-

antee that claffer > 0. The function on the right hand side of (16) is strictly concave in c

and admits a value of 0 if c = 0 (100 percent labor income tax) and a value of −g if c = cfb

(0 percent labor income tax). More broadly, if c > claffer, then the tax rate is below the

revenue-maximizing tax rate and the economy is on the upward sloping portion (left hand

side) of the Laffer curve. If c < claffer, then the tax rate is above the revenue-maximizing

tax rate and the economy is on the downward sloping portion (right hand side) of the

Laffer curve.

Suppose that b−1,1 > 0 and b−1,k = 0 ∀k ≥ 2. Using Lemma 1, we can consider the

date 0 government’s optimal policy under commitment, where we have substituted in for

labor using the resource constraint:

max
{ct}∞t=0

∞∑
t=0

βt
(

log ct − η
(ct + g)γ

γ

)
(17)

s.t.

1− b−1,1
c0
− η (c0 + g)γ +

∞∑
t=1

βt (1− η (ct + g)γ) = 0. (18)

Equation (18) represents the date 0 implementability condition, which is the present value

constraint of the government. Since b−1,1 > 0, the left hand side of (18)—which can be

equivalently written in relaxed form as a weak inequality constraint—is concave, implying

that the constraint set is convex. This leads to the below lemma which characterizes the

unique optimum under commitment.

Lemma 2 The unique solution to (17)− (18) satisfies the following conditions:

1. ct = c1 ∀t ≥ 1,

2. c0 and c1 < c0 are the unique solutions to the following system of equations for some
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µ0 > 0

1

c0
− η (c0 + g)γ−1 + µ0

(
b−1,1
c20
− ηγ (c0 + g)γ−1

)
= 0, (19)

1

c1
− η (c1 + g)γ−1 + µ0

(
−ηγ (c1 + g)γ−1

)
= 0, and (20)

1− b−1,1
c0
− η (c0 + g)γ +

β

1− β
(1− η (c1 + g)γ) = 0. (21)

3. There exists b∗−1,1 > 0 such that the solution admits c1 > claffer if b−1,1 < b∗−1,1 and

c1 < claffer if b−1,1 > b∗−1,1.

The first part of the lemma states that consumption—and therefore the tax rate—from

date 1 onward is constant. Since initial debt due from date 1 onward is constant (and equal

to zero), tax smoothing and interest rate smoothing from date 1 onward is optimal. The

second part of the lemma characterizes the solution in terms of first order conditions for a

positive Lagrange multiplier µ0 on the implementability constraint (18). These conditions

are necessary and sufficient for optimality given the concavity of the problem. Implicit

differentiation of (19) and (20) taking into account second order conditions implies that

initial consumption c0 exceeds long-run consumption c1, which means that the initial tax

rate is below the future tax rate. Backloading tax rates is optimal since the reduction in

future consumption relative to present consumption allows the government to roll over its

initial short-term debt at a lower interest rate.

The last part of the lemma states that if initial short-term debt b−1,1 is sufficiently

high, then future consumption c1 is below claffer, implying that the future tax rate τ1 is

above the revenue-maximizing tax rate at the peak of the Laffer curve τ laffer. This result

stems from the fact that the government under commitment accommodates increases in

initial short-term debt b−1,1 with a reduction in future consumption c1 and an increase

in the future tax rate τ1. Mathematically, higher b−1,1 tightens the implementability

constraint (18) which increases the Lagrange multiplier µ0 on this constraint. From (20),

a higher value of µ0 leads to a lower value of c1, and beyond a certain level b∗−1,1, c1 declines

below claffer and τ1 rises above τ laffer. Conceptually, for c1 > claffer and τ1 < τ laffer,

the reduction in future consumption c1 accommodates an increase in initial short-term

debt b−1,1 by increasing future revenues and decreasing short-term interest rates. Once

c1 declines beyond claffer and τ1 rises above τ laffer, the increase in initial short-term

debt b−1,1 is accommodated with lower short-term interest rates only. If c1 < claffer and

τ1 > τ laffer, the government at date 0 could instead choose a value of c1 > claffer and

τ1 < τ laffer yielding the same future revenue to repay its issued debt. However, doing so
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is suboptimal and would lead to higher short-term interest rates, significantly reducing

the resources raised at date 0 by issuing this debt.

4.2 Time-Consistency of Policy

We now show that the policy under commitment may not be time-consistent. To make this

point as clearly as possible, we follow Lucas and Stokey (1983) and consider what happens

if at date 1, policy is reevaluated and chosen by a government with full commitment from

date 1 onward. Given an inherited portfolio of maturities {b0,k}∞k=1, the government at

date 1 solves the following problem:

max
{ct,nt}∞t=0

∞∑
t=1

βt−1
(

log ct − η
(ct + g)γ

γ

)
(22)

s.t.
∞∑
t=1

βt−1
(

1− η (ct + g)γ − b0,t
ct

)
= 0. (23)

Letting µ1 represent the Lagrange multiplier on (23), first order conditions with respect

to ct are:
1

ct
− η (ct + g)γ−1 + µ1

(
b0,t
c2t
− ηγ (ct + g)γ−1

)
= 0 ∀t ≥ 1. (24)

We will say that optimal policy at date 0 is time-consistent if there exists {b0,k}∞k=1 such

that the government at date 1 solving (22) − (23) chooses ct = c1 for c1 which satisfies

(19)− (21). In other words, the optimal date 1 policy coincides with the optimal date 0

policy.

Proposition 1 (time-consistency of optimal policy) If b−1,1 < b∗−1,1, then the op-

timal date 0 policy is time-consistent with b0,k = b0,1 ∀k ≥ 1. If b−1,1 > b∗−1,1, then the

optimal date 0 policy is not time-consistent.

If b−1,1 < b∗−1,1, then the optimal date 0 policy can be sustained under lack of com-

mitment with the government at date 0 issuing a flat maturity structure with b0,k = b0,1

∀k ≥ 1. Under such a flat structure, the government at date 1 optimally chooses to

smooth tax rates into the future. Moreover, given that date 1 tax rates under commit-

ment are on the upward sloping portion of the Laffer curve, the choice of such tax rates

is time-consistent. The date 0 and date 1 government agree about the optimal tax rate

to repay this debt.
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If instead b−1,1 > b∗−1,1, then the optimal date 0 policy cannot be sustained under lack

of commitment. If the government at date 0 tried to induce the date 1 government into

a smooth policy from date 1 onward by issuing a flat maturity structure with b0,k = b0,1

∀k ≥ 1, the date 1 government would never choose a value c1 < claffer and τ1 > τ laffer and

would instead repay the inherited debt with a value c1 > claffer and τ1 < τ laffer. Choosing

a lower tax rate on the upward sloping portion of the Laffer curve increases consumption

and increases welfare ex-post. Thus, while the date 0 government can commit the date

1 government to a smooth path of revenue and interest rates, it cannot commit the date

1 government to a particular tax rate. As such, the optimal date 0 policy is not time-

consistent.

This result contrasts with the arguments in the work of Lucas and Stokey (1983).

They argue that the optimal policy under commitment at date 0 can be made time-

consistent at date 1 with the appropriate choice of maturities {b0,k}∞k=1 which satisfy the

date 1 implementability condition (23) and the date 1 first order condition (24) for some

Lagrange multiplier µ1. In our example, this argument would imply that the issuance of

a flat debt maturity at date 0 with b0,k = b0,1 ∀k ≥ 1 would induce commitment at date

1.

To see why this argument cannot always work, consider the equations characterizing

b0,1 and µ1 under this construction. Combining (20) and (24), it is clear that b0,1 and µ1

jointly satisfy

b0,1 =

(
1− µ0

µ1

)
ηγc21 (c1 + g)γ−1 , (25)

and (23) which reduces to

b0,1 = c1 (1− η (c1 + g)γ) (26)

for µ0 and c1 which satisfy (19)− (21). Our simple example shows that this construction

works if the implied future Lagrange multiplier µ1 satisfying (25)− (26) is positive, which

occurs whenever b−1,1 < b∗−1,1. However, when b−1,1 > b∗−1,1 the construction implies that

(25)− (26) are satisfied by a negative multiplier µ1. However, the solution to (22)− (23)

under a positive debt portfolio {b0,k}∞k=1 would never admit a negative multiplier—since

the shadow cost of inherited debt is positive—which is why the construction fails.

There are three important points to note regarding this counterexample. First, our

counterexample does not rely on the presence of non-concavities in the government’s

program and multiplicity of solutions at any date. Our isoelastic preferences imply that

the government’s welfare is concave and constraint set convex, which guarantees that the

solution to the government’s problem at dates 0 and 1 is unique. We conjecture that
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taking this multiplicity into account (for example by considering examples with negative

debt positions which make the implementability condition no longer a convex constraint)

could make it even more challenging for today’s government to induce commitment by

future governments.

Second, our counterexample suggests that similar challenges to inducing commitment

with maturities could emerge in other settings with different initial maturities and dif-

ferent preferences. Any government expected to run a primary surplus weakly below its

short-term debt—as in date 1 in our setting—cannot commit to choosing a tax rate on

a downward sloping portion of the Laffer curve. In those instances, a feasible and ben-

eficial deviation to another tax rate associated with higher consumption always exists.

Such a deviation reduces short-term interest rates which relaxes the government’s budget

constraint since the short-term debt weakly exceeds the primary surplus.

Finally, for illustration we made our arguments by examining whether a government

with full commitment from date 1 onward would choose the same policy as the government

with full commitment from date 0 onward. However, our arguments apply to an MPCE

more generally in which a government reoptimizes at all future dates in an infinite horizon.

As we show in the next section, the only way to ensure a stable tax rate from date 1 onward

in a continuation MPCE is for the government at date 0 to issue a flat maturity structure

with b0,k = b0,1 ∀k ≥ 1, and the continuation equilibrium necessarily coincides with that

under commitment starting from date 1. Our counterexample shows that once this flat

maturity structure is issued, a future government would never choose a tax rate on the

downward sloping portion of the Laffer curve.

In sum, it is generally not the case that the continuation equilibrium in an MPCE

starting from some initial debt maturity {b−1,k}∞k=1 will necessarily coincide with the

solution under commitment. For this reason, a complete analysis of MPCE’s must consider

the possibility that the commitment and no-commitment solutions do not coincide both

on and off the equilibrium path.

5 Stable Government Debt Maturity

Motivated by our findings in the previous section, we proceed by providing a general

characterization of MPCE’s. In our approach, we do not impose conditions on the con-

tinuation strategies of future governments and allow for potentially discontinuous policy

functions.

We focus on characterizing an economy in which the debt maturity structure is stable
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with bt+1,k = bt,k, ∀t, k, so that government debt maturity is time-invariant. Given the

Markovian structure of the solution to the MPCE defined by (12)−(14), such a stable ma-

turity distribution is associated with tax rates and interest rates which are constant over

time. We show that the unique stable maturity distribution is flat, with the government

owing the same amount of resources to the private sector at all future dates.

5.1 Preliminaries

Before proceeding with our analysis, we establish a preliminary assumption which we

utilize in deriving our results. Using our recursive notation introduced in Section 3, let

us define W ({bk}∞k=1) as the welfare of the government under full commitment given an

initial starting debt position {bk}∞k=1:

W ({bk}∞k=1) = max
{ck,nk}∞k=0

∞∑
k=0

βku (ck, nk) (27)

s.t.

ck + g = nk, and (28)
∞∑
k=0

βk (uc (ck, nk) ck + un (ck, nk)nk) =
∞∑
k=0

βkuc (ck, nk) bk+1. (29)

Given Lemma 1, the program in (27)−(29) corresponds to that of a government under

full commitment with b−1,k = bk. We now make an assumption regarding the solution to

this program under a flat maturity structure, meaning a maturity structure in which bk

is the same for all k.

Assumption 1. Consider the solution to (27)− (29) with bk = b ∀k ≥ 1. ∀b ∈
[
b, b
]
,

if the solution exists, then the solution is unique and admits {ck, nk} = {c∗ (b) , n∗ (b)}
∀k ≥ 1, where

uc (c∗ (b) , n∗ (b)) c∗ (b) + un (c∗ (b) , n∗ (b))n∗ (b) = uc (c∗ (b) , n∗ (b)) b, (30)

and c∗ (b) + g = n∗ (b) . (31)

This assumption states that if a government under full commitment is faced with a flat

maturity structure, then there is a unique optimum in which the government chooses a

constant allocation of consumption and labor in the future.8 This assumption is intuitive.

8Assumption 1 requires that the solution exists. If the upper bound on individual maturities b exceeds
the highest primary surplus which can be raised at the peak of the Laffer curve, then there is no solution
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Under a flat maturity structure, every time period in the program in (27)−(29) is identical

in the objective function and in the constraint set, which suggests that the optimal solution

is a time-invariant allocation. A sufficient condition for Assumption 1 is that the function

uc (c, c+ g) (c− b) + un (c, c+ g) (c+ g) is concave in c for all b, which is the case, for

example, if the utility function satisfies (15) as in our example in Section 4 and if b = 0

so that debt is non-negative.

5.2 Stability of Flat Maturity

We begin by establishing that there exists an MPCE with a flat debt maturity which is

stable.

Lemma 3 Suppose that B satisfies bk = b ∀k for some b ∈
[
b, b
]
. Then,

1. In all solutions to (12)− (14), c = c∗ (b) and n = n∗ (b), and

2. There exists a solution to (12)− (14) which admits b′k = b ∀k.

The first part of the lemma states that in any MPCE, if the government inherits a flat

maturity with bk = b ∀k, then the unique optimal response of the government is to choose

consumption and labor which coincide with the commitment optimum. The second part

of the lemma implies that one optimal—but not necessarily uniquely optimal—strategy

for the government is to choose b′k = b ∀k ≥ 1 so that the issued debt maturity structure

is unchanged and continues to be flat. As such, there exists a stable MPCE with a flat

government debt maturity. Importantly, this lemma implies that in any MPCE for which

B is a flat government debt maturity, it is necessary that

V (B) = W (B) (32)

so that there is no welfare loss for the present government due to lack of commitment by

future governments.

The logic behind the proof of this argument follows from the arguments of Lucas

and Stokey (1983) after applying Assumption 1: under a flat maturity structure, the

government sequentially chooses a stable tax rate, and this tax rate coincides with the

optimum under full commitment. Note, however, that in contrast to the arguments of

Lucas and Stokey (1983), this lemma applies to any MPCE which is constructed. This

lemma does not rely on making assumptions regarding the structure of future government

under a flat maturity for some high values of debt which satisfies the constraints of the problem.
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strategies, which may not coincide with the commitment solution off the equilibrium path.

Moreover, we emphasize that this lemma establishes the existence, but not the uniqueness

of this stable MPCE.

5.3 Uniqueness of Stable Flat Maturity

We now turn to the possibility that another stable MPCE which does not admit a flat

maturity structure exists. Note that under such a maturity structure {bk}∞k=1, consump-

tion is constant over time, which implies that the current price of a bond maturing in k

periods is βk.

Lemma 4 Suppose that given B, there exists a solution to (12)− (14) with a stable debt

maturity structure b′k = bk ∀k and b′l 6= b′m for some l,m. Then there exists another

solution to (12)− (14) with b′k = b̂ ∀k where

b̂ =
∞∑
k=1

βk−1 (1− β) bk. (33)

This lemma states that under any MPCE with a stable distribution of debt which

is not flat, the government can choose the same current tax rate and deviate to a flat

issuance of debt maturity and achieve the same welfare. More precisely, the government

can issue a flat maturity with the same market value, as determined by (33). Moreover,

Lemma 3 characterizes future welfare and future allocations following the issuance of a

flat maturity today, which means that bond prices are not affected by the deviation.

This lemma implies that if there is a stable distribution of debt which is not flat, then

the corresponding welfare is equal to that achieved under a flat maturity distribution with

the same market value. Moreover, from (32), welfare under this MPCE equals that under

commitment associated with a flat maturity distribution with the same market value:

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c(̂b), n(̂b))

1− β
. (34)

With these results in mind, we now develop an induction argument to show that

the unique stable distribution of debt is flat. The argument rests on showing that if a

distribution of debt is not flat, the government can deviate from a stable fiscal policy in

order to frontload or backload consumption so as to change the value of its inherited or

newly-issued debt portfolio.
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Lemma 5 Suppose that given B, there exists a solution to (12)− (14) with a stable debt

maturity structure b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. Then, B must satisfy

b1 = b̂ for b̂ defined in (33).

This lemma states that in any stable distribution of debt maturity in which the tax

rate is not zero (so that consumption and labor do not equal the first best), short-term

debt b1 equals the annuitized value of total debt b̂. This means that the primary surplus

equals the short-term debt b1 and net debt issuance is zero. If the primary surplus is in

excess of, or below, this short-term debt then the government can pursue a deviation from

its smooth consumption strategy to boost welfare.

For example, if the primary surplus is in excess of what the government immediately

owes, then in equilibrium, the government buys back some of its long-term debt. In

this circumstance, the government can deviate to tilt the path of consumption so as to

increase short-term interest rates and reduce the value of the long-term debt which it

buys back. If instead the primary surplus is below what the government owes, then in

equilibrium the government issues fresh debt in order to repay current short-term debt.

In this circumstance, the government can deviate to tilt the path of consumption so as

to decrease short-term interest rates and increase the value of newly issued debt. Thus,

if the primary surplus equals the amount of short-term debt that is due, the government

will not engage in such deviations.

Note that in constructing these deviations, we utilize the result in Lemma 3 which

allows us to characterize the continuation equilibrium if the government issues a flat

government debt maturity today as part of its deviation. As such, we can explicitly show

that these deviations increase welfare by relaxing the government’s budget constraint. The

reason why our argument does not hold under a stable distribution of debt maturities with

zero taxes is that in this case, it is not possible to relax the government budget constraint

further.

We now expand this lemma to consider longer maturities.

Lemma 6 Suppose that given B, there exists a solution to (12)− (14) with a stable debt

maturity structure b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. If bl = b̂ ∀l ≤ m, then

B must satisfy bm+1 = b̂ for b̂ defined in (33).

This lemma considers the stable distribution of government debt maturity when all

maturities below m have the property that the amount owed equals the primary surplus

of the government. The lemma states that if this is true, then the bond of maturity m+1

must also equal the primary surplus of the government.
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The argument, which relies on a proof by contradiction, starts from the fact that

under a stable maturity, government welfare satisfies (34). Now if the amount owed at

date m + 1 does not also equal the primary surplus, then a feasible deviation exists for

the government which can increase welfare above (34), leading to a contradiction. More

specifically, if bl = b̂ ∀l ≤ m but bm+1 6= b̂, a feasible strategy for the government today

is to continue to choose the same consumption and labor allocation today {c(̂b), n(̂b)}
but to deviate by not retrading the inherited maturity structure (i.e., letting the bonds

mature to next period). Such a deviation is feasible whatever the expectations of future

policy and their impact on current bond prices since the government is not rebalancing

its portfolio.

Without specifying the exact form of the continuation equilibrium, we can show that

this deviation must necessarily increase welfare. The argument rests on putting a lower

bound on the welfare of future governments based on the feasible policies at their disposal.

More specifically, note that after this initial deviation, future governments also have the

opportunity to pursue the same strategy of choosing consumption and labor equal to

{c(̂b), n(̂b)} and not rebalancing the portfolio of maturities. This is true up until some

future date m periods in the future. Therefore, the welfare of the government today from

pursuing the deviation must weakly exceed

m−1∑
l=0

βlu(c(̂b), n(̂b)) + βmV (B̂ (m)) (35)

where B̂ (m) satisfies b̂ (m)k = bk+m ∀k ≥ 1.

At that point m periods in the future, if the government pursued a stable policy from

thereafter, the market value of debt would equal b̂/ (1− β) and welfare V (B̂ (m)) would

be given by (34). Were the government to choose {c(̂b), n(̂b)} at that date so as to satisfy

(34), the fact that bm+1 6= b̂ means that the primary surplus would either be above or

below the short-term debt. However, by the arguments of Lemma 5, the government

could choose at this point a non-stable policy which either decreases the market value of

inherited debt or increases the market value of newly-issued debt. Such a policy would

provide a continuation value V (B̂ (m)) which strictly exceeds (34). Based on this logic,

the initial deviation which provides the government at least (35) makes the government

strictly better off since (35) strictly exceeds (34). This completes the argument, since it

contradicts the fact that government welfare equals (34) under the MPCE.

Proposition 2 (flat maturity) Suppose that conditional on B, there exists a solution

to (12) − (14) with a stable debt maturity structure b′k = bk ∀k and for which {c, n} 6=
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{
cfb, nfb

}
. Then it is necessary that bk = b̂ ∀k so that the government debt maturity is

flat.

This proposition represents the main result of the paper. It states that if the dis-

tribution of government debt is stable and if the equilibrium does not entail first best

consumption and labor, then government debt must be flat. The reasoning for the propo-

sition follows from induction arguments which appeal to Lemmas 5 and 6. Intuitively, if

government debt is not flat, then there are opportunities for the government take advan-

tage of this fact to decrease market value of its inherited portfolio or increase the market

value of its newly-issued portfolio. Note that this result holds in any MPCE and does not

appeal to any assumptions regarding the behavior of future governments.

Our result relies on the stable distribution of debt not being associated with first best

consumption and labor. Under such a stable distribution, taxes are zero, the market value

of debt is sufficiently negative to finance the stream of government spending forever, and

the marginal benefit of resources for the government is zero. For this reason, the stable

distribution of government debt maturity is undetermined in this circumstance. While

such stable distribution potentially exists, we can rule such a stable distribution out if

there are exogenous bounds on government debt which prevent such asset accumulation

for the government.

Corollary 1 Suppose that b > −g. Then if conditional on B, there exists a solution to

(12)− (14) with a stable debt maturity structure b′k = bk ∀k, it is necessary that bk = b̂ ∀k
so that the government debt maturity is flat.

Finally, returning to Lemma 3, note that Proposition 2 also implies that starting

from a flat government debt maturity, the unique continuation equilibrium involves a flat

government debt maturity. Therefore, in any MPCE, a flat government debt maturity is

an absorbing state.

Corollary 2 Suppose that B satisfies bk = b ∀k for some b and that {c, n} 6=
{
cfb, nfb

}
.

Then, in all solutions to (12)− (14) b′k = b ∀k.

Starting from a flat government debt maturity, the current government would like to

guarantee a constant level of consumption and labor going forward. Choosing a tilted

maturity structure cannot guarantee such a continuation equilibrium going forward, since

future governments will deviate from a smooth policy in order to relax the government

budget constraint. For this reason, it chooses a flat maturity structure, and a flat maturity

structure is an absorbing state.
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6 Transition Path

We have established that the unique stable distribution of government debt maturity in

any MPCE must be flat. In this section, we explore the transition path of debt matu-

rity starting from a position which is not flat. A natural question concerns whether an

MPCE can converge to a stable distribution over time. A complete analysis of MPCE’s

in an infinite horizon economy with an infinite choice of debt maturities is infeasible in

the cases where the commitment and no-commitment solutions do not coincide; this is

because techniques of Lucas and Stokey (1983) do not apply. Given this limitation, we

analyze transitions using two examples: A three-period quasilinear economy which we

theoretically characterize using backward induction and a T -period economy with more

general preferences which we solve numerically. In both exercises, the initial debt ma-

turity structure is declining in the horizon and maturities beyond a certain horizon are

equal.

6.1 Three-Period Example

Suppose that preferences satisfy (15) and are quasilinear with γ = 1. The horizon is finite

with t = 0, 1, 2. We impose bounds on government debt where bt−1,k ∈
[
−g, cfb

]
∀t, k for

cfb = 1/η given by the preference structure.9 In this setup, claffer defined in (16) satisfies

claffer =
1− ηg

2η
. (36)

We consider an economy in which b−1,1 ≥ b−1,2 = b−1,3 ≥ 0. Thus, the initial debt

maturity structure is declining in the horizon and maturities from date 1 onward are equal.

We observe that in this environment, the solution under commitment admits c1 = c2,

and this follows by analogous logic as in the example of Section 4. Furthermore, using

the same arguments as in that section, we can construct examples in which initial debt

{b−1,1, b−1,2, b−1,3} with elements within
[
−g, cfb

]
implies a solution under commitment

with c1 = c2 < claffer.10

We characterize the path of consumption and debt using backward induction. At date

2, the government inherits debt b1,1 and chooses a value of consumption which satisfies

9These debt limits are non-binding along the equilibrium path, but they allow us to characterize
continuation equilibria off the equilibrium path.

10For example, if b−1,1 = cfb > b−1,2 = b−1,3 = 0, we can show that c1 = c2 < claffer if the discount
factor β is sufficiently low.
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the implementability condition:

c2 (1− η (c2 + g)) = b1,1. (37)

Conditional on b1,1, the value of consumption c2 satisfying (37) is unique since c2 ≥ claffer,

where this follows by analogous logic as in Section 4. A government lacking commitment

at date 2 would never choose a tax rate on the downward sloping portion of the Laffer

curve; a tax rate on the upward sloping portion associated with c2 ∈
(
claffer, cfb

)
raises

the same revenue and makes the government strictly better off.

Taking this into account, the government at date 1 maximizes welfare by solving the

following problem, where we have substituted in for labor nt using the resource constraint

(1):

max
c1,c2,b1,1

∑
t=1,2

βt−1 (log ct − ηct) (38)

s.t.∑
t=1,2

βt−1
(

1− η (ct + g)− b0,t
ct

)
= 0, (39)

c2 (1− η (c2 + g)) = b1,1, (40)

b1,1 ∈
[
−g, cfb

]
, and (41)

c2 ≥ claffer. (42)

Note that analogous arguments to those of Section 4 imply that (39) can be written in

relaxed form as a weak inequality constraint. The next lemma characterizes the solution

to this problem by providing conditions on c1 and c2 which must hold given any inherited

debt {b0,1, b0,2} at date 1.

Lemma 7 For any {b0,1, b0,2}, the solution to (38) − (42) satisfies the following weak

inequality constraints:

c1 + βc2 ≥ claffer + βclaffer, and (43)

c2 ≥ claffer. (44)

This lemma provides necessary, but not sufficient, conditions to characterize the so-

lution to (38) − (42). These conditions put a lower bound on the discounted sum of

consumption from date 1 onward. (44) is clearly implied by (42) and stems from the lack

of commitment at date 2.
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Satisfaction of (43) stems from the lack of commitment at date 1. More specifically,

(43) implies that it is not possible for c1 < claffer and c2 < claffer; all future tax rates

cannot be on the downward sloping portion of the Laffer curve. This is true even in the

relaxed version of (38) − (42) which ignores (42). If it were the case that c1 < claffer

and c2 < claffer, then a deviation to c1 > claffer or c2 > claffer which raises the same

revenue continues to satisfy the (relaxed) implementability condition (39) and strictly

increases welfare.11 In addition, note that (43) does not impose a clear lower bound on c1;

a solution to (38)− (42) could in principle admit c1 < claffer, however this would require

c2 > claffer. Intuitively, a government at date 1 could choose a tax rate on the downward

sloping portion of the Laffer curve at date 1 in order to increase short-term interest rates

and buy back its outstanding long-term debt b0,2 at a lower price, which would allow for

a higher value of c2.

Now consider the problem of the government at date 0. Using Lemma 7, we can

consider the relaxed problem of the government at date 0:

max
c0,c1,c2

∑
t=0,1,2

βt (log ct − ηct) (45)

s.t.∑
t=0,1,2

βt
(

1− η (ct + g)− b−1,t+1

ct

)
= 0, (46)

c1 + βc2 ≥ claffer + βclaffer, and (47)

c2 ≥ claffer. (48)

This program corresponds to the date 0 program under commitment subject to ad-

ditional constraints (47) and (48). Recall that the program under commitment admits

a solution with c1 = c2. Note that this program which adds constraints (47) and (48)

ignores the bounds on the date 0 government’s debt issuance and only considers nec-

essary, as opposed to sufficient, conditions for the values of c1 and c2 to be chosen by

future governments. As such, welfare in the MPCE must be weakly below the solution to

(45) − (48). In the Appendix, we characterize the solution to (45) − (48), and we verify

that this solution corresponds to the unique MPCE in the three-period economy. This

leads to the following main result of this section.

11More specifically, if the primary surplus at date 1 is below b0,1, then a deviation to c1 > claffer

relaxes (39) by reducing the short-term interest rate. If the primary surplus at date 1 exceeds b0,1, then
a deviation to c2 > claffer relaxes (39) by increasing the short-term interest rate.
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Proposition 3 (transition to flat maturity) The unique MPCE admits a sequence

{c0, c1, c2} which satisfies (45)− (48) and admits b0,1 = b0,2. If the solution under commit-

ment admits c1 = c2 < claffer, then the MPCE and commitment solution do not coincide,

and the MPCE admits

b0,1 = b0,2 = claffer
(
1− η

(
claffer + g

))
. (49)

This proposition states that the unique MPCE is characterized by the constrained

date 0 problem (45) − (48) and admits a flat maturity structure b0,1 = b0,2, where these

values of debt correspond to the natural debt limit characterized by (49) if the solution

under commitment admits c1 = c2 < claffer.

In the case where the solution under commitment admits c1 = c2 > claffer —so that

(47) and (48) do not bind—this result is immediate and follows from the arguments in

Lucas and Stokey (1983). Optimal tax rates under commitment mirror initial maturities,

and are therefore stable beyond a particular horizon. This eventual stability is guaranteed

with a transition to a flat maturity under no commitment, since otherwise the date 1

government would not choose c1 = c2.

In the cases where the commitment and no-commitment solutions do not coincide, the

argument is more subtle. The date 0 government clearly desires a stable tax rate from date

1 onward given its initial maturities. However, if this desired tax rate exceeds the revenue-

maximizing tax rate defining the peak of the Laffer curve, the date 0 government realizes

that it cannot commit the date 1 and date 2 governments to its desired policy. Facing

this binding upper bound on future tax rates captured by (47) and (48), the government

chooses all future tax rates to equal the revenue-maximizing tax rate. To achieve this

future outcome, it issues a flat maturity structure associated with the natural debt limit.

6.2 Robustness

Extrapolating from Proposition 3 to other environments with more general preferences

with γ > 1 and with a longer T -period horizon is challenging for two reasons. First,

if γ > 1, the analog of Lemma 7 does not hold in a three-period environment, though

one can derive non-linear, non-convex constraints which characterize the solution to the

date 1 problem. The presence of these non-convex constraints makes it challenging to

theoretically characterize the solution to the date 0 problem using backward induction.

Second, even in the quasilinear setting with γ = 1, the analog of Lemma 7 cannot be es-

tablished theoretically period by period in a longer T -period economy. In the three-period
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environment, the date 2 government’s first order condition is sufficient to characterize the

government’s choice of consumption, even if the inherited debt b1,1 is negative, and this

facilitates backward induction. In a T -period economy, first order conditions are not suf-

ficient to characterize allocations in other periods t < T if the inherited debt is negative,

since in these cases the implementability constraint at date t does not represent a convex

constraint.

Given these challenges, we numerically simulate the transition path of a finite horizon

economy with five periods (t = 0, ..., 4), where we solve for the government’s strategy at

each date using backward induction. We choose the following parameters:

{
β = .980810, g = .25, η = 0.8, γ = 2

}
.

The value of β allows us to interpret each period as a 10 year interval and it implies a

stable annual real interest rate of about 2 percent. We choose g so that in this economy

government spending is 20 percent of GDP, in line with U.S. federal outlays since 1950.

Our value of γ implies a Frisch elasticity of 1.12

Figure 1: Debt Maturity Structure with Low Initial Indebtedness
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Notes: The figure displays the optimal maturity structure derived from the commit-

ment solution as in Lucas and Stokey (1983) (left panel) and under lack of commitment

(right panel). The solid line indicates the maximum attainable government primary

surplus.

We consider the path of government debt maturity under two scenarios, one with a

12The parameter η only scales the level of output and does not affect the results. The current
parametrization implies that the first-best level of consumption is normalized to one.
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low level of indebtedness and one with a high level of indebtedness. In both cases, 84

percent of the face value of debt is due at date 0, 12 percent is due at date 1, and 4

percent is due at date 3, which is roughly in line with the distribution of debt maturities

in the U.S. economy.

Figure 1 depicts the path of debt in the first scenario of low initial indebtedness and

shows that the debt converges to a flat maturity. Moreover, we can verify numerically

that the solution under lack of commitment coincides with that under commitment.

Figure 2 depicts the path of debt in the second scenario of high initial indebtedness,

where the market value of inherited debt from the perspective of date 0 is twice as much

as in the first scenario. This figure shows that the debt converges to a flat maturity, and

we can verify that this flat maturity coincides with the natural debt limit. In this case,

the solution under lack of commitment does not coincide with that under commitment.

These numerical results are consistent with the results in Proposition 3.

Figure 2: Debt Maturity Structure with High Initial Indebtedness
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Notes: The figure displays the optimal maturity structure derived from the commit-

ment solution as in Lucas and Stokey (1983) (left panel) and under lack of commitment

(right panel). The solid line indicates the maximum attainable government primary

surplus.

7 Concluding Remarks

We have analyzed optimal fiscal policy under lack of commitment and established that

such a policy may not coincide with that under commitment, even if the government can

issue a rich maturity structure of debt. Motivated by this finding—which contrasts with
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previous results in the literature—we have analyzed optimal fiscal policy under lack of

commitment in a framework which encompasses the cases in which the commitment and

no-commitment solutions do not coincide. We have shown that the unique stable maturity

structure of government debt is flat, with the government owing the same amount of

resources to the private sector at all future dates. In addition, we provide examples in

which the optimal maturity structure under lack of commitment converges to this flat

distribution. In the examples where the commitment and no-commitment solutions do

not coincide, debt converges to the natural debt limit.

Our analysis thus provides a theoretical argument for the use of consols in debt man-

agement based on the sequential optimization of fiscal policy by the government. The use

of consols has been pursued historically, most notably by the British government during

the Industrial Revolution, when consols were the largest component of the British govern-

ment’s debt (see Mokyr, 2011). Moreover, the introduction of consols has been discussed

as a potential option in the management of U.S. government debt (e.g. Cochrane, 2015).

Our analysis leaves several interesting avenues for future research. We have considered

a situation in which a government’s objective in its debt issuance strategy is to minimize

its financing costs. In practice, government debt management offices also pursue other

objectives, such as supporting financial stability. For example, this can be achieved either

by providing liquidity to segments of the market which lack it or through the bond auction

process which itself may serve a purpose of aggregating financial market information.

How these factors matter for the optimal maturity management of government debt is an

interesting question for future research.
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Appendix

A.1 Proofs for Section 3

Proof of Lemma 1

The necessity of these conditions is proved in the text. To prove sufficiency, let the

government choose the associated level of debt
{
{bt,k}∞k=1

}∞
t=0

which satisfies (9) and a

tax sequence {τt}∞t=0 which satisfies (8). Let bond prices satisfy (8). (9) given (1) implies

that (3) and (4) are satisfied. Therefore household optimality holds and all dynamic

budget constraints are satisfied along with the market clearing, so the equilibrium is

competitive.�

B.2 Proofs for Section 4

B.1 Proof of Lemma 2

We prove this lemma in four steps.

Step 1. We first establish that the problem is concave and the solution unique.

Consider the relaxed problem in which (18) is replaced with

1− b−1,1
c0
− η (c0 + g)γ +

∞∑
t=1

βt (1− η (ct + g)γ) ≥ 0. (B.1)

We can establish that (B.1) holds as an equality in the relaxed problem, implying that the

relaxed and constrained problems are equivalent. If instead (B.1) held as an inequality in

the relaxed problem, the solution to the relaxed problem would admit ct = cfb ∀t. Given

(15), cfb satisfies ηcfb
(
cfb + g

)γ−1
= 1, and substitution of ct = cfb into (B.1) yields

1

cfb

(
−b−1,1 −

1

1− β
g

)
≥ 0

which is a contradiction since b−1,1 > 0. Therefore, (B.1) holds as an equality in the

solution to the relaxed problem and the solutions to the relaxed and constrained problems

coincide. Since the left hand side of (B.1) is strictly concave in ct given that b−1,1 > 0

and since the objective (17) is strictly concave, it follows that the solution is unique.

Step 2. We now establish the first two parts of the lemma. Letting µ0 > 0 correspond
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to the Lagrange multiplier on (B.1), the first order condition for c0 is (19). The first order

condition for ct for all t ≥ 1 is

1

ct
− η (ct + g)γ−1 + µ0

(
−ηγ (ct + g)γ−1

)
= 0. (B.2)

Since the left hand side of (B.2) is strictly decreasing in ct, it follows that the solution to

(B.2) is unique with ct = c1 ∀t ≥ 1, where (20) defines c1. It follows from the fact that

the program is strictly concave and constraint set convex that satisfaction of (19)− (21)

is necessary and sufficient for optimality for a given µ0 > 0. We are left to verify that

c0 > c1. Note that the left hand side of (19) is strictly increasing in b−1,1 and strictly

decreasing in c0 for a given µ0 > 0. Therefore, c0 is strictly increasing in b−1,1 for a given

µ0 > 0, where c0 = c1 if b−1,1 = 0. It follows then that since b−1,1 > 0, c0 > c1.

Step 3. We now establish the last part of the lemma. We first show that the solution to

the system in (19)−(21) admits c1 which is strictly decreasing in b−1,1. Let F 0 (c0, µ0, b−1,1)

correspond to the function on the left hand side of (19), let F 1 (c1, µ0) correspond to the

function on the left hand side of (20), and let I (c0, c1, b−1,1) correspond to the function

on the left hand side of (21). Since the solution to this system of equations is unique, we

can apply the Implicit Function Theorem. Implicit differentiation yields

dc1
db−1,1

=
−F 0

c0
Ib−1,1 + F 0

b0
Ic0

F 0
c0
Ic1 +

F 0
µ0
F 1
c1
Ic0

F 1
µ0

. (B.3)

From the second order condition for (19) and (20), F 0
c0
< 0 and F 1

c1
< 0. Moreover, by

inspection, Ic1 < 0 and F 1
µ0
< 0. Finally, note that F 0

µ0
Ic0 = [Ic0 ]

2 > 0. This establishes

that the denominator in (B.3) is positive. To determine the sign of the numerator, let

us expand the numerator by substituting in for the functions. By some algebra, the

numerator is equal to

1

c0

(
− 1

c20
− η (γ − 1) (c0 + g)γ−2

)
+µ0

[
−b−1,1

c40
− 1

c0
ηγ (γ − 1) (c0 + g)γ−2 − 1

c20
ηγ (c0 + g)γ−1

]
< 0.

This establishes that c1 is strictly decreasing in b−1,1.

Step 4. Given step 3, we complete the proof of the last part of the lemma by estab-

lishing that there exists b∗−1,1 > 0 for which the solution to (19)− (21) admits c1 = claffer.

We first establish that b∗−1,1 exceeds 0. Note that if b−1,1 = 0 then the solution admits

c1 > claffer. This is because (19) − (21) imply that the solution admits c0 = c1. Substi-
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tution into (21) yields
c1 (1− η (c1 + g)γ)

1− β
= 0. (B.4)

This equation admits two solutions: c1 = 0 and c1 = η−1/γ − g, and the optimal policy

satisfies c1 = η−1/γ − g, since welfare is arbitrarily low otherwise. Given the definition of

claffer in (16) and the strict concavity of the objective in (16), it follows that claffer must

be between 0 and η−1/γ − g, which means that c1 > claffer.

Now let us consider the system of equations (19)−(21) for b−1,1 = b∗−1,1 and c1 = claffer.

To see that this solution exists, note that 1
claffer

−η
(
claffer + g

)γ−1
> 0 since claffer < cfb.

Therefore, a value of µ0 > 0 which satisfies (20) exists. Multiply (19) by c0 and substitute

(21) into (19) to achieve

1−ηc0 (c0 + g)γ−1+µ0

(
1− η (c0 (1 + γ) + g) (c0 + g)γ−1 +

β

1− β
(
1− η

(
claffer + g

)γ))
= 0.

(B.5)

Note that given the value of µ0 > 0 satisfying (20) for c1 = claffer, a solution to (B.5)

which admits c0 > 0 exists. This is because the left hand side of (B.5) goes to

1 + µ0

(
1− ηgγ +

β

1− β
(
1− η

(
claffer + g

)γ))
> 0

as c0 goes to 0, where we have used the fact that g <
(

1
η

)1/γ
. As c0 goes to infinity, the

left hand side of (B.5) becomes arbitrarily negative. Therefore a solution to (B.5) for

c0 > 0 exists. Given that b−1,1 enters linearly in (21), it follows that a value of b−1,1 which

satisfies the system also exists. This establishes the last part of the lemma.�

B.2 Proof of Proposition 1

We consider each case separately.

Case 1. Suppose that b−1,1 < b∗−1,1. From Lemma 2, the date 0 solution admits

ct = c1 > claffer ∀t ≥ 1. To show that this solution is time-consistent, suppose that the

date 0 government chooses {b0,k}∞k=1 satisfying

b0,k = c1 (1− η (c1 + g)γ) > 0 ∀k ≥ 1 (B.6)

for c1 defined in (19)− (21). The fact that b0,k > 0 follows from the fact that the highest

value of c1 > claffer is below that associated with b−1,1 = 0 which satisfies (B.4). Now

consider the solution to (22)− (23). Analogous arguments as those in steps 1 and 2 of the
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proof of Lemma 2 imply that the unique solution satisfies (23) and (24) for some µ1 > 0.

Therefore, to check that the date 1 solution admits ct = c1 ∀t ≥ 1 for c1 which satisfies

(20), it is sufficient to check that there exists some µ1 > 0 satisfying (24). Using (B.6) to

substitute in for b0,k in (24), we find that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
> 0, (B.7)

where we have appealed to the fact that c1 < cfb (from (20)) to assign a positive sign

to the numerator in (B.7) and the fact that c1 > claffer to assign a negative sign to the

denominator in (B.7). This establishes that the date 0 solution is time-consistent.

Case 2. Suppose by contradiction that the optimal date 0 policy is time-consistent.

This would require (24) to hold for ct = c1 ∀t ≥ 1 for c1 < claffer which satisfies (20). For

a given µ1, satisfaction of (24) thus requires that b0,k = b0,1 ∀k ≥ 1. Equation (23) thus

implies that (B.6) for b0,k > 0 holds, and substitution of (B.6) into (24) implies that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
< 0, (B.8)

where we have appealed to the fact that c1 < cfb (from (20)) to assign a positive sign to

the numerator and the fact that c1 < claffer to assign a positive sign to the denominator.

However, conditional on {b0,k}∞k=1 for b0,k = b0,1 > 0 ∀k ≥ 1, the solution to (22) − (23)

must admit a positive multiplier µ1 > 0, and this follows by analogous arguments as those

in step 1 in the proof of Lemma 2, which contradicts (B.8). Therefore, the date 1 solution

does not coincide with the date 0 solution.�

C.3 Proofs for Section 5

Proof of Lemma 3

Note that if bk = b ∀k, then from Assumption 1, the solution under commitment admits

{ct, nt} = {c∗ (b) , n∗ (b)} ∀t, and this solution can be implemented with b′k = b given (30)−
(31). Since the MPCE satisfies the same constraints of the problem under commitment

plus additional constraints regarding sequential optimality, it follows that

W (B) =
u (c∗ (b) , n∗ (b))

1− β
≥ V (B) (C.9)

33



if bk = b ∀k. Now consider optimal policy under the MPCE in (12)− (14) given bk = b ∀k.

A government has the option of choosing c = c∗ (b) and n = n∗ (b) together with b′k = b

∀k. This satisfies the resource constraint (13) and the implementability constraint (14).

Therefore, it follows that

V (B) ≥ u (c∗ (b) , n∗ (b)) + βV (B) . (C.10)

Equations (C.9) and (C.10) imply that

V (B) = W (B) . (C.11)

By Assumption 1, W (B) is uniquely characterized by {ck, nk} = {c∗ (b) , n∗ (b)} ∀k.

Therefore, it follows that any solution to (12) − (14) given bk = b ∀k admits c = c∗ (b)

and n = n∗ (b).�

Proof of Lemma 4

Conditional on B, if a solution admits b′k = bk, then this means that B is an absorbing

state with B = B′ and consumption and labor are constant and equal to some {c, n} from

that period onward. Therefore, hk (B′) = βkuc (c, n) ∀k ≥ 1 for hk (B′) defined in (11).

As such, (14) can be rewritten as

uc (c, n) c+ un (c, n)n− uc (c, n) b1 + uc (c, n)
∞∑
k=1

βk (b′k − bk+1) = 0 (C.12)

which combined with (33) and the fact that b′k = bk implies that

uc (c, n) c+ un (c, n)n = uc (c, n) b̂. (C.13)

Now consider the solution to the following problem given b̂:

max
c,n

u (c, n)

1− β
s.t. c+ g = n and (C.13) . (C.14)

It is necessary that V (B) be weakly below the value of (C.14). This is because the

solution to V (B) also admits a constant consumption and labor (as in the program in

(C.14)) and since the constraint set in (C.14) is slacker, since the program ignores the

role of government debt in changing future policies. Note furthermore that the value of
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(C.14) equals W ({bk}∞k=1) |bk=b̂ ∀k, where this follows from Assumption 1. Therefore,

V (B) ≤ W ({bk}∞k=1) |bk=b̂ ∀k. (C.15)

Now consider the welfare of the government in the MPCE if, instead of choosing b′k = bk

∀k, it instead chooses b′k = b̂ ∀k with c = c∗(̂b) and n = n∗(̂b). It follows from

Lemma 3 that under this perturbation, hk(B′) = βkuc(c
∗(̂b), n∗(̂b)) ∀k ≥ 1, which im-

plies that the resource constraint (13) and implementability constraint (14) are satisfied

under this deviation. Because the continuation value associated with this deviation is

W ({bk}∞k=1) |bk=b̂ ∀k, it follows that for this deviation to be weakly dominated:

W ({bk}∞k=1) |bk=b̂ ∀k ≤ V (B) . (C.16)

Given (C.15) and (C.16), it follows that W ({bk}∞k=1) |bk=b̂ ∀k = V (B). Therefore, given

B, there exists another solution to (12) − (14) with b′k = b̂ ∀k which achieves the same

welfare.�

Proof of Lemma 5

Before proving this lemma, define claffer analogously as in Section 4:

claffer = arg max
c

{
c+

un(c, c+ g)

uc(c, c+ g)
(c+ g)

}
, (C.17)

and let blaffer correspond to the value of the maximized objective in (C.17). It follows

that a solution to (27)− (29) exists if bk = b ∀k ≥ 1 if b ≤ blaffer.

Given this definition, we can proceed to prove this lemma by contradiction. By Lemma

4,

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c∗(̂b), n∗(̂b))

1− β
(C.18)

for b̂ defined in (33). Now suppose that b1 6= b̂. Given the definition of b̂, this means that

b̂ ∈ (b, b) and that b̂ ≤ blaffer. We consider two cases separately.

Case 1. Suppose that b̂ < blaffer, and suppose that the government locally deviates

to b′k = b̃ 6= b̂ ∀k so that from tomorrow onward, consumption is c∗(̃b) and labor is n∗(̃b),

where this follows from Lemma 3. This means that hk(B̃) = βkuc(c
∗(̃b), n∗(̃b)) under the

deviation. In order to satisfy the resource constraint and implementability condition, let
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the government deviate today to a consumption and labor allocation {c̃, ñ} which satisfies

c̃+ g = ñ (C.19)

and

uc(c̃, ñ)c̃+ un(c̃, ñ)ñ− (uc(c̃, ñ)− uc(c∗(̃b), n∗(̃b)))b1 = (C.20)

uc(c
∗(̃b), n∗(̃b))

(
b̂+

β

1− β
(̂b− b̃)

)

where we have appealed to the definition of b̂ in (33). For such a deviation to be weakly

dominated, it must be that

V (B) ≥ u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k. (C.21)

Clearly, the value of the right hand side of (C.21) equals V (B) if b̃ = b̂. Therefore, it must

be that b̃ = b̂ with {c̃, ñ} = {c∗(̂b), n∗(̂b)} maximizes the right hand side of (C.21) subject

to (C.19), and (C.20). More specifically, we can consider the solution to the following

program

max
c̃,ñ,̃b

u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k s.t. (C.19) and (C.20) . (C.22)

For the deviation to not strictly increase welfare, b̃ = b̂ must be a solution to (C.22). By

Assumption 1, W ({bk}∞k=1) |bk=b̃ ∀k = u(c∗, n∗)/ (1− β) where {c∗, n∗} = {c∗(̃b), n∗(̃b)} are

the unique levels of consumption and labor which maximize welfare given b̃ and are defined

in (30) and (31). Letting µ1 represent the Lagrange multiplier on the implementability

condition for the program defining W ({bk}∞k=1) |bk=b̃ ∀k in (27)− (29), it follows from first

order conditions that

uc(c
∗, n∗) + un(c∗, n∗)+ (C.23)

µ1

(
uc(c

∗, n∗) + un(c∗, n∗)

+ucc(c
∗, b∗)(c∗ − b̃) + ucn(c∗, n∗)(c∗ − b̃+ n∗) + unn(c∗, n∗)n∗

)
= 0.

Since {c∗, n∗} 6= {cfb, nfb} by the statement of the lemma, (C.23) implies that µ1 6= 0.

Using this observation, implicit differentiation of (30) and (31) taking (C.23) into account

implies

c∗′(̃b) = n∗′(̃b) = −µ1
uc(c

∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
. (C.24)
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Finally, by the Envelope condition,

dW ({bk}∞k=1) |bk=b̃ ∀k
db̃

= −µ1
uc (c∗, n∗)

1− β
. (C.25)

Now consider the solution to (C.22). Let µ0 correspond to the Lagrange multiplier on

(C.20). First order conditions with respect to c̃ and ñ imply

uc(c̃, ñ) + un(c̃, ñ)+ (C.26)

µ0

(
uc(c̃, ñ) + un(c̃, ñ)

+ucc(c̃, ñ)(c̃− b1) + ucn(c̃, ñ)(c̃− b1 + ñ) + unn(c̃, ñ)ñ

)
= 0.

Since {c̃, ñ} 6= {cfb, nfb} by the statement of the lemma, (C.26) implies that µ0 6= 0. Since

the solution admits b̃ = b̂ ∈
(
b, b
)
, then we can ignore the bounds on government debt,

and first order conditions with respect to b̃ taking into account (C.24) and (C.25) yields

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)

(
b̂− b1 +

β

1− β
(̂b− b̃)

)
+

β

1− β
(µ0 − µ1) = 0. (C.27)

Note that (C.23) and (C.26) imply that

β

1− β
(µ0 − µ1) =

β

1− β
µ0µ1

ucc(c
∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̃b− b1) (C.28)

Now consider if b̃ = b̂ so that {c̃, ñ} = {c∗, n∗}. In that case, use (C.28) to substitute

into (C.27) to achieve:

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) = 0. (C.29)

If it were the case that b̂ 6= b1, then (C.29) would require that ucc(c
∗, n∗)+ucn(c∗, n∗) = 0,

which contradicts the fact that ucc(c
∗, n∗) + ucn(c∗, n∗) < 0. Therefore, b̂ = b1.

Case 2. Suppose that b̂ = blaffer. In this case, consider an analogous perturbation as

in case 1 which reduces b̂ locally. For such a perturbation to be weakly dominated, the

analog of (C.29) requires

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) ≥ 0 (C.30)

It follows from (C.25) that µ1 > 0 since any reduction in inherited debt can facilitate
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higher consumption and higher welfare. Since ucc(c
∗, n∗) + ucn(c∗, n∗) < 0, satisfaction of

(C.30) requires

µ0(̂b− b1) ≤ 0. (C.31)

Given that {c̃, ñ} = {c∗, n∗} = {claffer, claffer + g}, it can be verified from (C.17) that if

b1 < (>) b̂ = blaffer, then (C.26) implies that µ0 > (<) 0. This follows from the fact that

claffer < cfb and the term in parentheses multiplying µ0 in equation (C.26) is equal to 0

if b1 = blaffer and is increasing in b1. Therefore, (C.31) cannot hold unless b̂ = b1.�

Proof of Lemma 6

Suppose that bl = b̂ ∀l ≤ m. Given B, let B̂(1) represent the portfolio which sets

b̂k = bk+1 so that no retrading takes place. Note that in such a portfolio, b̂1 = b2.

Define B̂(2) analogously as the portfolio involving no retrading at the next date, so that

b̂k = bk+2 under B̂(2), and define B̂(l) ∀l ≤ m analogously. In any MPCE for which

b1 = b̂, a possible deviation sets {c, n} = {c∗(̂b), n∗(̂b)} and b′k = bk+1 so that no retrading

takes place, where this deviation satisfies the resource constraint and implementability

condition given (30)− (31). For such a deviation to be weakly dominated, it is necessary

that:

V (B) ≥ u(c∗(̂b), n∗(̂b)) + βV (B̂(1)). (C.32)

Forward induction on this argument implies that

V (B) ≥
m−1∑
l=0

βlu(c∗(̂b), n∗(̂b)) + βmV (B̂(m)). (C.33)

Combining (C.18) with (C.33), we achieve

V (B) ≥ V (B̂(m)). (C.34)

Now consider optimal policy starting from B̂(m). Note that since bl = b̂ ∀l ≤ m, then

following the same arguments as in the proof of Lemma 4, a feasible strategy starting from

B̂(m) is to issue a flat debt maturity with all bonds equal to b̂. Such a strategy ensures

a constant consumption and labor allocation forever equal to {c∗(̂b), n∗(̂b)}. As such, it

follows that (C.34) holds with equality and that choosing a flat maturity structure going

forward is optimal.

Now we prove by contradiction that bm+1 = b̂. Suppose it were the case that bm+1 6= b̂.

This means that starting from B̂(m), the immediate debt which is owed by the government
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does not equal b̂. If this is the case, then the same arguments as those in the proof of

Lemma 5 imply that there exists a deviation from the government’s equilibrium strategy

at B̂(m) which can strictly increase the government’s welfare. However, if this is the case,

(C.34) which holds with equality is violated. Therefore, it must be that bm+1 = b̂.�

Proof of Proposition 2 and Corollaries 1 and 2

The proof of Proposition 2 follows directly by induction after appealing to Lemmas 5 and

6.

To prove the first corollary, note that for the statement of Proposition 2 to be false, it

is necessary that {c, n} = {cfb, nfb}. However, if this is the case, then (C.12) implies that

cfb +
un(cfb, nfb)

uc(cfb, nfb)
nfb = −g =

∞∑
k=1

βk−1 (1− β) bk ≥ b (C.35)

which contradicts bk > −g.

To prove the second corollary, note that from Lemma 3, it is necessary that the con-

tinuation equilibrium starting from a flat government debt maturity entail consumption

and labor equal to {c∗(b), n∗(b)} forever. The arguments in the proof of Lemmas 5 and 6

imply that if the government were to choose a non-flat maturity structure going forward,

future governments would not choose {c∗(b), n∗(b)} forever. Therefore, all solutions to

(12)− (14) admit b′k = b ∀k.�

D.4 Proofs of Section 6

D.1 Proof of Lemma 7

(44) is implied by (42). Let us consider a relaxed representation of (38) − (42) in which

we ignore (41) and we replace (39) with a weak inequality constraint:

∑
t=1,2

βt−1
(

1− η (ct + g)− b0,t
ct

)
≥ 0. (D.36)

We establish that the solution to the relaxed problem satisfies (43) and we verify that

(39) and (41) are satisfied under this solution.

Step 1. Analogous arguments as in step 1 of Lemma 2 imply that since b0,1 ≥ −g and

b0,2 ≥ −g, (D.36) holds as an equality in the relaxed problem. Note furthermore that if

b0,1 ≥ 0 and b0,2 ≥ 0, the constraint set is convex so that the solution is unique.
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Step 2. The choice of c1 is characterized by the following first order condition for

µ1 ≥ 0 which represents the Lagrange multiplier on (D.36):

1

c1
− η = µ1

(
η − b0,1

c21

)
. (D.37)

We can show that

η − b0,1
c21
≥ 0. (D.38)

Suppose that (D.38) does not hold. In that case, b0,1 > 0 > −g, which means that

(D.36) is a binding constraint with µ1 > 0, implying that the right hand side of (D.37)

is negative. For the left hand side of (D.37) to be negative, this requires that c1 > cfb.

Substituting this fact back into the right hand side of (D.37), this means that

b0,1 > ηc21 > cfb,

which is a contradiction since b0,1 ≤ cfb. Therefore, (D.38) is necessary.

Step 3. The choice of c2 is characterized by the following first order condition for

κ ≥ 0 which represents the Lagrange multiplier on (42):

1

c2
− η + κ = µ1

(
η − b0,2

c22

)
. (D.39)

Analogous arguments using this condition as in step 2 imply that

η − b0,2
c22
≥ 0. (D.40)

Combination of (D.38) and (D.40) taking into account the definition of claffer in (36) and

(D.36) which binds and implies (43).

Step 4. We are left to check that (41) is satisfied. There are two cases to consider.

Case 1. Suppose that (42) holds as an equality in the solution to the relaxed problem.

In that case, c2 = claffer and (40) implies that

b1,1 = claffer
(
1− η

(
claffer + g

))
∈
(
−g, cfb

)
so that (41) is satisfied.

Case 2. Suppose that (42) holds as a strict inequality in the solution to the relaxed

problem. In this case, the solution is characterized by (D.37) and (D.39) for κ = 0. Given

(D.38) and (D.40), it follows that (D.37) and (D.39) can only be satisfied for c1 ≤ cfb
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and c2 ≤ cfb. Since c2 > claffer, (40) implies that

b1,1 < claffer
(
1− η

(
claffer + g

))
< cfb.

To check that b1,1 ≥ −g, suppose it were the case that the solution to the relaxed problem

admitted b1,1 < −g. In this case, satisfaction of (40) would require that c2 > cfb which

contradicts the fact that c2 < cfb. Therefore, (41) is satisfied.�

D.2 Proof of Proposition 3

We proceed by characterizing the solution to the relaxed problem in (45)− (48). We then

complete the proof by showing that the solution to this problem is the unique MPCE

which admits b0,1 = b0,2.

Step 1. Let us consider the relaxed version of (45) − (48) which ignores (48) and

which replaces (46) with a relaxed constraint

∑
t=0,1,2

βt
(

1− η (ct + g)− b−1,t+1

ct

)
≥ 0. (D.41)

Analogous arguments as in step 1 of Lemma 2 imply that since b−1,t ≥ 0 ∀t, (D.41) is

a binding constraint in the relaxed problem and admits a positive Lagrange multiplier

µ0 > 0. Let us consider the solution to this relaxed problem and then verify that constraint

(48) is satisfied.

Step 2. Analogous arguments as in step 2 of Lemma 2 imply that since b−1,t ≥ 0, the

constraint set in the relaxed problem is convex, which means that first order conditions

with respect to ct are necessary and sufficient to characterize the unique optimum. Letting

βφ correspond to the Lagrange multiplier on constraint (47), first order conditions are:

1

c0
− η = µ0

(
η − b−1,1

c20

)
, and (D.42)

1

ct
− η + φ = µ0

(
η − b−1,t+1

c20

)
for t = 1, 2. (D.43)

(D.42) − (D.43) imply that since b−1,2 = b−1,3, the solution admits c1 = c2. This means

that (48) is satisfied, since if φ > 0, then c1 = c2 = claffer, otherwise c1 = c2 ≥ claffer.

Note furthermore that since µ0 > 0, ct < cfb with

η − b−1,t+1

c2t
≥ 0 (D.44)
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for t = 0, 1, 2 where this follows from the fact that b−1,t ≤ cfb using analogous arguments

as in step 2 in the proof of Lemma 7.

Step 3. By Lemma 7, an MPCE cannot achieve higher welfare than the solution to

(45)− (48). We now establish that the solution to (45)− (48) is supported by an MPCE

with b0,1 = b0,2 ∈
[
0, cfb

]
. Suppose that the date 0 government selects b0,1 = b0,2 which

satisfy

b0,1 = c1 (1− η (c1 + g)) (D.45)

where c1 corresponds to the values of consumption satisfying (D.43). Let us assume and

later verify that this choice of debt satisfies

b0,1 ∈
[
0, claffer

(
1− η

(
claffer + g

))]
(D.46)

so that it is feasible (since claffer
(
1− η

(
claffer + g

))
< cfb). Consider the continuation

equilibrium from date 1 onward characterized by the solution to (38)− (42) and analyzed

in the proof of Lemma 7. By step 1 in the proof of that lemma, if b0,1 = b0,2 ≥ 0, the

solution is unique and characterized by the date 1 implementability condition (39) and

the date 1 first order conditions (D.37) and (D.39) for some positive µ1. c1 = c2 satisfying

(D.43) clearly satisfy (39). To check that (D.37) and (D.39) are satisfied for positive µ1

under these values, set κ = 0 (so that c1 = c2 from (D.37) and (D.39)), and let us verify

that the implied µ1 is positive. Substituting (D.45) into (D.37), we achieve

µ1 = − 1− ηc1
1− η (c1 + g)− ηc1

> 0

where we have appealed to the fact that c1 ∈ [claffer, cfb). Therefore, the date 1 govern-

ment selects the same allocation as the date 0 government. We now verify that (D.46)

holds. There are two cases to consider.

Case 1. Suppose that the date 0 solution admits c1 = c2 = claffer. In that case

b0,1 = b0,2 = claffer
(
1− η

(
claffer + g

))
so that debt issuance is feasible.

Case 2. Suppose that the date 0 solution admits c1 = c2 > claffer . Since the right

hand side of (D.45) is strictly below claffer
(
1− η

(
claffer + g

))
< cfb, it follows that

b0,1 = b0,2 < cfb. To verify that b0,1 = b0,2 ≥ 0, note that (46) given c1 = c2 and

b−1,2 = b−1,3 can be rewritten as

1− η (c0 + g)− b−1,1
c0

+ β (1 + β)

(
1− η (c1 + g)− b−1,2

c1

)
= 0. (D.47)

From (D.44), the left hand side of (D.47) is decreasing in c0 and c1. Following similar
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arguments to step 2 in the proof of Lemma 2, equations (D.42) − (D.43) , imply that

c0 ≥ c1 = c2 since b−1,1 ≥ b−1,2 = b−1,3 ≥ 0. Substituting these inequalities into (D.47),

which is declining in c0 and c1, yields

1− η (c1 + g) ≥ 0. (D.48)

Therefore, b0,1 satisfying (D.45) is weakly positive. Therefore, the solution to (45)− (48)

represents an MPCE in which the date 0 government issues a flat maturity with b0,1 = b0,2.

Step 4. We complete the proof by showing that there does not exist an MPCE which

does not achieve the same welfare as (45) − (48) and that b0,1 = b0,2 is necessary in

the MPCE. If there existed an MPCE which did not provide welfare characterized by

(45) − (48), then the MPCE would provide strictly lower welfare than the solution to

(45)− (48), where this follows from Lemma 7. However, in this situation, the government

at date 0 could deviate to choose b0,1 = b0,2 which satisfy (D.45) for c1 = c2 which

correspond to the values of consumption satisfying (D.43). By step 3, this choice would

lead the date 0 government to achieve the same welfare as (45)− (48) and make it strictly

better off. Therefore, any MPCE coincides with the solution to (45)− (48). We complete

this step then by proving that b0,1 = b0,2 is necessary to induce the date 1 government

to pursue the same policy which satisfies (45) − (48). There are two cases to consider

analogous to the cases considered in step 3.

Case 1. Suppose that the date 0 solution admits c1 = c2 = claffer. Suppose by

contradiction that some value b0,1 6= b0,2 could induce the date 1 government solving

(38)− (42) to choose c1 = c2 = claffer, where satisfaction of (39) requires

b0,1 + βb0,2 = (1 + β) claffer
(
1− η

(
claffer + g

))
. (D.49)

For (D.37) and (D.39) to be satisfied, this would require κ > 0, since otherwise (D.37) and

(D.39) would imply c1 6= c2 since b0,1 6= b0,2 in the date 1 problem. Analogous arguments

as in step 2 and 3 of the proof of Lemma 7 imply that (D.38) and (D.40) must hold.

However, note that

η − b0,t
c2t

= 0 (D.50)

if ct = claffer and b0,t = claffer
(
1− η

(
claffer + g

))
, where we have appealed to the defi-

nition of claffer in (36). Since (D.49) implies that either b0,1 > claffer
(
1− η

(
claffer + g

))
or b0,2 > claffer

(
1− η

(
claffer + g

))
and since the left hand side of (D.50) is strictly de-

creasing in b0,t, it follows that (D.38) and (D.40) cannot simultaneously hold, which is a
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contradiction. Therefore, b0,1 = b0,2 uniquely guarantee that c1 = c2 in this case.

Case 2. Suppose that the date 0 solution admits c1 = c2 > claffer. Suppose by

contradiction that some value b0,1 6= b0,2 could induce the date 1 government solving

(38)− (42) to choose c1 = c2 > claffer. In this case, (D.37) and (D.39) would need to be

satisfied with κ = 0. However, this is not possible since b0,1 6= b0,2 implies c1 6= c2.�
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