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Abstract

We analyze how an agent with costly attention optimally attends and responds to shocks

in basic consumption decisions, explaining several types of mental accounting, and making

additional predictions. When allocating consumption among goods with different degrees of

substitutability, the agent may create budgets for the more substitutable products. But if the

goods are complements, the agent — consistent with naive diversification — may choose a fixed,

unconsidered mix of products. When managing her consumption from and transfers between an

investment account and a checking account, the latter of which she has an incentive to balance,

the agent’s marginal propensity to consume (MPC) out of shocks to the checking account is

greater than her MPC out of shocks to the investment account. Furthermore, because paying

attention to her budgeting is costly, the agent prefers to reduce spending risk, and she is more

averse to risk in the checking account than in the investment account. As a result, she may

optimally switch to a cheaper substitute product when a random price increase occurs.
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1 Introduction

Mental accounting — “the set of cognitive operations used by individuals and households to orga-

nize, evaluate, and keep track of financial activities” (Thaler, 1999) — is one of the oldest and most

commonly invoked ideas in behavioral economics. The central component of mental accounting is

the use of virtual (e.g., food vs. education) or real (e.g., checking vs. investment) accounts to guide

consumption and savings choices without reoptimizing after every change in circumstances. A large

empirical and experimental literature has identified types of reactions to shocks that violate the

fungibility of money inherent in standard life-cycle models, but that can be interpreted in terms of

mental accounting. Yet there is no theory that explains how a person can create separate mental

accounts from fungible finances, and how this process interacts with her reactions to shocks.

In this paper, we develop a theory of mental accounting based on the idea that individuals find

it too costly to think through all information relevant for consumption decisions, and therefore they

pick and choose what information to pay attention to. When deciding how to allocate consumption

between substitute products, the agent may find it optimal to think only about which of the more

substitutable goods to consume, and not to think about tradeoffs between dissimilar goods. As a

result, she may behave as if she had a fixed budget for the more substitutable goods. But if the

goods are complements, the agent may find it optimal not to think about their relative consumption

at all, only about how much to consume in total. Consistent with naive diversification, therefore,

she may choose a fixed, unconsidered mix of products. When managing her consumption from and

transfers between an investment account and a checking account, the latter of which she has an

incentive to balance, the agent finds it more useful to pay attention to the checking account. As a

result, her consumption is more responsive to the checking-account balance than to the investment-

account balance. And because taking on expenditure risk entails having to pay extra attention to

the checking-account balance, the agent could be more averse to risk in expenditures than in

investments, and she may respond to random price increases by switching to cheaper substitutes.

After illustrating the logic of our budgeting and naive-diversification results in a simple example

in Section 2, we turn to our general framework. Recognizing that the main questions of mental

accounting — how a person allocates spending across multiple products or from multiple sources

of income — are inherently multidimensional in nature, in Section 3 we develop a general theo-

retical methodology for solving rational-inattention problems with multidimensional decisions and
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information. These methods are also of independent interest as they are likely to apply to many

economic situations. To facilitate full analytical solutions, we make a few functional-form assump-

tions. We posit that the decisionmaker’s utility is quadratic in her action y ∈ RN and a shock

x ∈ RJ , where the xj are independent normal variables with the same variance. The decisionmaker

can acquire any signals of her choice about x, with the cost of information being equal to the

reduction in the entropy of her beliefs. Based on the water-filling algorithm used in information

theory (Telatar, 1999; Cover and Thomas, 2006), we show that the optimal information-acquisition

strategy is to obtain independent normal signals of N or fewer orthogonal linear combinations of

the xj , with more precise signals about linear combinations that are “more important” in a specific

way we identify (Proposition 1). Optimal actions, in turn, vary only along the same number of “im-

portant” directions, and while inattention to shocks implies that overall the agent underresponds to

shocks, she overresponds to shocks in more important directions relative to those in less important

directions (Proposition 2).

With our general results in hand, we analyze the implications of costly attention for consumption

decisions. In Section 4, we consider how a person allocates expenditure to consumption goods when

she faces uncertainty about her preferences or environment (e.g., consumption opportunities, prices)

that she can partially resolve by devoting costly attention to it. The agent has utility function

−
󰁓

m y2m −
󰁓

m ∕=nΘmnymyn +
󰁓

m xmym, where the ym are her consumption levels for N goods,

the known Θmn are substitutability parameters, and the unknown xm capture the uncertainty in her

preferences or environment. To study how the substitutability of products affects decisionmaking, as

well as for tractability, we assume that the goods can be grouped into different nested consumption

categories, with two goods being more substitutable if they are in a smaller common category. For

instance, food and theater could both be in the category “entertainment,” which itself could be

part of the category “discretionary spending.” Then, the decisionmaker often behaves as if she had

mental accounts: her total consumption in a category is fixed (Proposition 3). This means that

(i) like with separable utility — which however we do not assume — consumption in a category is

independent of shocks to other categories; and (ii) unlike with any natural utility function, total

consumption is unresponsive, but individual consumption levels are smoothly responsive, to shocks

within the category. Intuitively, the agent’s most important consideration is which of multiple

highly substitutable products is worth buying. If she has sufficiently costly attention, therefore,
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she thinks only about this consideration. As a result, she does not think about how much to

consume, and hence her budget is fixed. Even when she does not have hard budgets, she pays

more attention to the above consideration than to everything else, so she trades off within smaller

categories relative to larger categories to a greater extent than a person with costless attention

(Proposition 4).

The above results are consistent with evidence that many — especially lower-income — indi-

viduals and households separate expenditures into budgetary categories (Rainwater et al., 1959;

Kahneman and Tversky, 1984; Lave, 1995; Ameriks et al., 2003; Antonides et al., 2011). Beyond

explaining such findings, our model provides a novel prediction as to how products are grouped into

mental accounts: according to their substitutability. Furthermore, we derive comparative statics on

the extent of budgeting. If the agent faces a greater abundance of choice from closely substitutable

products, she uses more of her attention to decide which of these products is most worth buying,

so she is more likely to engage in budgeting. And if her tastes or the economic environment are

more volatile (the variance of xm is greater), then she must pay more attention, so she is less likely

to engage in budgeting.

We also consider what happens when products are complements, and (similarly to the case of

substitutes) they are the more so when they are in a smaller common category. In contrast to the

above, the agent may now not think about tradeoffs within a category of products at all. Intuitively,

because the optimal consumption levels for complementary products tend to move together, the

agent does not think about their optimal relative consumption, only about how much she should

consume in total. As a result, she chooses a fixed, unconsidered mix of products (Proposition 5). We

argue that this prediction is consistent with the phenomenon of naive diversification in financial

(Benartzi and Thaler, 2001, 2007) and consumption (Simonson, 1990) decisions. Hence, mental

budgeting and naive diversification can be viewed as solutions to the same type of decisionmaking

problem that apply in different circumstances.

In Section 5, we apply our framework to analyzing how a person treats income and expenditure

shocks. We assume that the agent has two accounts, a checking account and an investment account,

with the account balances subject to shocks due to the accrual of income and expenditure. The

agent decides how much attention to allocate to the balances in her accounts, and given how much

she knows, she chooses her consumption level and a costless transfer to or from her checking account.
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Because overdrawing one’s checking account carries a financial penalty while leaving money in the

account leads to foregone investment income, we posit that the agent has an incentive to balance

the checking account. We show that the agent has a higher MPC out of shocks to the checking

account than out of shocks to the investment account (Proposition 6). Intuitively, the agent’s

incentive to balance the checking account leads her to pay more attention to it. Hence, she is

more likely to notice shocks to the checking account, so her MPC out of these shocks is greater. A

difference in MPC’s also arises if the agent first makes the transfer decision, and then allows herself

to consume everything in the checking account (Proposition 7). These predictions explain evidence

that individuals have lower MPC’s from income accruing to investment accounts than from cash

receipts (Shefrin and Thaler, 1988; Hatsopoulos et al., 1989; Baker et al., 2007).

Finally, we observe that the agent’s attention costs generate a novel type of risk aversion.

Because risky spending makes it necessary to pay more attention to the checking account or risk

failing to balance the account — both of which are costly — the agent dislikes spending risk. But

because she needs to pay less attention to her investment account, she is more willing to take risks

in her investments, so that — consistent with evidence on the context-dependence of risk attitudes

— her risk aversion is smaller for investments than for expenditure (Proposition 8). One way to

reduce spending risk is to have nominal budgets, or — consistent with evidence by Hastings and

Shapiro (2013) on gasoline purchases — to switch to cheaper substitutes when prices rise.

In Section 6, we briefly discuss theoretical research related to our paper. While some work

(such as Shefrin and Thaler, 1988; Prelec and Loewenstein, 1998) explores other aspects of mental

accounting, there is no previous micro-founded theory of the main phenomena — how the agent

creates budgets from fungible finances, and how this affects her reactions to shocks — that we

consider in this paper.

We conclude in Section 7 by discussing some issues missing from our paper. Most importantly,

compelling evidence indicates that when individuals receive a subsidy that can only be spent on a

subset of products, consumption of those products increases by more than if they receive cash, even

among those who would have spent more than the subsidy on the allowed items anyway (Abeler

and Marklein, 2016; Hastings and Shapiro, 2017). This phenomenon is usually interpreted in terms

of mental accounting, but being about individuals’ reactions to ex-ante transfers, it cannot be

modeled using our methodology based on ex-post shocks. Nevertheless, we argue that there is a
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natural attention-based account for the phenomenon. We also add, however, that mental accounting

is not solely about costly attention, and to the extent it is, individuals do not necessarily allocate

attention in a fully rational way. But our mechanisms might be relevant (potentially more relevant)

even if we allow for non-rational attention.

2 Budgeting and Naive Diversification: Example

In this section, we illustrate the logic of our budgeting result, and its relationship with naive

diversification, using a simple example. We substantially generalize this example, and derive other

predictions, in Section 4. Consider two goods, 1 and 2, for which the agent’s tastes, x1 and x2, are

uncertain. The agent chooses the consumption levels y1 and y2 to maximize the expectation of

U(y1, y2, x1, x2) = x1y1 + x2y2 −
y21
2

− y22
2

− θy1y2, (1)

where θ ∈ (−1, 1) captures the substitutability between the two goods. If θ > 0, the goods are

substitutes, and if θ < 0, they are complements. The a-priori unknown x1 and x2 are independent

and drawn from N(0, 1); note that the disutility of spending money on the products can be sub-

sumed into x1 and x2.
1 Before choosing y1 and y2, the agent can observe exactly one of x1, x2,

x1 + x2, and x1 − x2: she can think about her taste for one of the goods, her total appetite for the

two goods, or her relative taste for the two goods. We ask: what does the agent optimally choose

to think about, and how does this affect her consumption patterns?

To facilitate an answer, we put the problem in a different form. Let xm = x1−x2, xp = x1+x2,

ym = y1 − y2, and yp = y1 + y2. Up to a function of x1 and x2 — which the agent cannot influence

— the objective (1) can then be written as

U(xm, xp, ym, yp) = −

󰀓
xm − (1− θ)ym

󰀔2

2(1− θ)
−

󰀓
xp − (1 + θ)yp

󰀔2

2(1 + θ)
.

1 To see this, suppose that both products cost p, and the agent’s utility function is x′
1y1+x′

2y2− y2
1
2
− y2

2
2
−θy1y2−

p(x1 + x2), where x′
1 and x′

2 are shocks to the (gross) marginal utilities of the two products. Setting xi = x′
i − p, we

get the same utility function as above.
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To maximize the expectation of U conditional on her information, the agent therefore chooses

ym =
E[xm|info]

1− θ
and yp =

E[xp|info]
1 + θ

.

The objective thus becomes

E[U ] = −var(xm|info)
2(1− θ)

− var(xp|info)
2(1 + θ)

. (2)

The agent’s optimal information-acquisition choice is now obvious. If the products are substi-

tutes (i.e., θ > 0, and therefore 1/(1−θ) > 1/(1+θ)), then reducing the variance of xm is the most

valuable, so xm is what the agent chooses to observe. Since xm and xp are independent, observing

xm provides no information about xp, so yp = E[xp]/(1 + θ) = 0. This means that y1 + y2 is con-

stant, i.e., the agent has a fixed budget. Conversely, if the products are complements (i.e., θ < 0,

and therefore 1/(1− θ) < 1/(1 + θ)), then reducing the variance of xp is the most valuable, so the

agent chooses to observe xp. As a result, she learns nothing about xm, so ym = E[xm]/(1− θ) = 0.

This means that y1 = y2, i.e., the agent naively diversifies, always choosing the goods in equal

proportion.

It is worth considering briefly how correlation between x1 and x2 affects these results. We do so

for the case of substitutes (θ > 0). If x1 and x2 are positively correlated, then var[xp] > var[xm],

which by Equation (2) weakens the preference for observing xm. If the correlation is sufficiently

strong, then the agent prefers to observe xp over xm. Intuitively, if the tastes for two products

are highly positively correlated, then the consumer is unlikely to learn much from thinking about

which one she likes, so she does not think about this. Conversely, a negative correlation between

x1 and x2 strengthens the preference for observing xm.

Unfortunately, it is difficult to know what correlation between x1 and x2 is most realistic.

When x1 and x2 represent taste shocks for similar products, it is plausible that they are positively

correlated: one may like an Italian dinner because one feels like going out, in which case one would

also like a movie. But a negative correlation is equally plausible: when one is in the mindset of a

movie, one is less likely to be in the mindset of a play. And when x1 and x2 represent prices or

consumption opportunities rather than tastes, it is unclear whether there should be any systematic

correlation between them.
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We should, however, emphasize an important implicit assumption of our framework: that the

agent knows, or no longer wishes to think much about, the value of saving money. Since the value

of saving affects the disutility of spending on both products equally, uncertainty about the value

of saving is equivalent to a positive correlation between x1 and x2. If the value of money is highly

uncertain, therefore, the agent (preferring to learn about xp) first wants to think about the value

of money. In this sense, thinking about the importance of saving is a precursor to budgeting.

3 Theoretical Tools

In this section, we develop theoretical tools for analyzing rational-inattention models in which — as

with mental accounting — the agent’s information and action are multi-dimensional.2 Since these

tools are potentially applicable to many economic settings, we present them in a general form. We

lay out our results on mental accounting in a self-contained way, so readers not interested in the

general tools can skip to Section 4.

3.1 Multi-Dimensional Rational Inattention

We model an agent who processes information about a random state of the world x ∈ RJ , and

then chooses her action y ∈ RN to maximize the expectation of the utility function U(y,x) less the

cost of information processing. For analytical convenience, we rewrite the agent’s strategy in an

equivalent way: instead of thinking of her as choosing an information-acquisition strategy and an

action strategy, we think of her as choosing a joint distribution f(y,x) between her action y and

the state x.3 Given these considerations, the decisionmaker’s problem is

max
f∈D(RN×J )

󰁝
U(y,x)f(y,x) dx dy− cost(f), (3)

subject to

󰁝
f(y,x) dy = g(x) for all x, (4)

2For some previous applications of rational inattention, see Veldkamp (2006); Mackowiak and Wiederholt (2009);
Woodford (2009); Luo and Young (2014); Matějka and McKay (2015); Caplin and Dean (2015); Matějka (2016).

3Following Kamenica and Gentzkow (2011) and Matějka and McKay (2015), any information-acquisition plus
action strategy generates such a distribution f . Conversely, for any distribution f consistent with Bayesian rationality,
there is a unique information-cost-minimizing strategy that implements f . This strategy assigns exactly one signal
to each action. Intuitively, as long as the cost of information is a convex function of posteriors (as ours is), it is never
optimal for different signal realizations to generate the same action.
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where cost(f) is the cost of information, D(RN×J) is the space of probability distributions over

RN×J , and g is the probability density function of the agent’s prior. The constraint (4) captures

Bayesian rationality, requiring consistency between prior and posterior belief.

To provide a full analytical solution, we restrict the general problem above to multivariate

quadratic problems with Gaussian noise and an entropy-based cost of information. We assume

that U(y,x) = −y′Cy + x′By, where B ∈ RN×J , C ∈ RN×N and C is symmetric and positive

definite. The matrix C summarizes complementarities within the vector of actions, while B sum-

marizes interactions between states and actions.4 Furthermore, we let the prior uncertainty about

x be multivariate Gaussian with the variance-covariance matrix ψ. For simplicity and tractability,

as well as to focus on the choice of attention driven by preferences only, we let ψ = σ2
0I. Ex-

tending our results to independent states with different variances or even to correlated states is

straightforward (one can just rescale the variables for them to have the same variance, or apply a

transformation of coordinates to the independent components), but the resulting expressions would

be more complicated.

Finally, we posit a functional form for cost(f) that is commonly used in the literature on

rational inattention. We let cost(f) = λI(y;x), where λ ∈ R+ and I(y;x) is the Shannon mutual

information between y and x.5 Mutual information is the expected reduction of entropy H about

x upon taking y; or, equivalently, the expected reduction in the entropy of the agent’s beliefs upon

receiving information. As in the previous literature, there are two main reasons for using this

specification. First, it has the basic intuitive property that basing actions on more precise beliefs

is more costly. Second, it is highly tractable. In our setting, in particular, it is known that the

agent chooses to collect Gaussian signals about x (Sims, 2003). The resulting posterior beliefs are

also Gaussian, with the variance-covariance matrix Σ subject to the agent’s choice. This allows us

to simplify the cost function to cost(f) = (λ/2) · (log |ψ|− log |Σ|).6

Of course, evidence on the precise form of attention costs is (to our knowledge) non-existent,

so we cannot be sure that our cost function is empirically accurate. Nevertheless, because our

4 This form is a local approximation to any smooth and concave utility function, and it describes the first-order
interactions between various elements of both the action and state vectors y and x. The utility function could also
include linear terms of y and x, but the linear term of y has the same effect as a shift of the coordinates of x, and
terms with x only amount to an additive constant.

5 Formally, I(y;x) = H[x] − Ey

󰁫
H[x|y]

󰁬
, where H[x] = −

󰁕
x
f(x) log

󰀓
f(x)

󰀔
dx and H[x|y] =

−
󰁕
x
f(x|y) log

󰀓
f(x|y)

󰀔
dx.

6The entropy of a multivariate normal N(µ,Φ) of dimension J is J
2
(log(2π) + 1) + 1

2
log |Φ|.
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main qualitative results are driven by patterns in the benefits of information rather than the costs

of information, we do not view this issue as particularly problematic. Indeed, our cost function

can be viewed as ideal for studying what information agents choose to get based on endogenous

considerations about the benefits of information, and not based on exogenous assumptions about

the costs of information. This is because all information has the same cost: what matters is the

amount of uncertainty reduction, not what the uncertainty is about.

3.2 Optimal Lower-Dimensional Signals

We now explore the link between posterior beliefs Σ and expected utility. In the proof of Proposition

1 in Appendix A we describe the following steps in detail. We first show that the original problem

(3)-(4) can be rewritten as:

max
Σ≼ψ

−E
󰁫
(x̃− x)′Ω(x̃− x)

󰁬
+

λ

2
log |Σ|, (5)

where Ω = BC−1B′/4 and x̃ is the random mean of posterior beliefs about x, which depends on the

realization of noise in signals. The first term in (5) is the expected loss from misperceptions (x̃−x)

— the distribution of which is given by Σ. The matrix Ω translates misperceptions into utility

losses. The second term in (5) is the cost of information, which includes here only the entropy of

the posterior, since the entropy of the prior amounts to an additive constant. Finally, the condition

Σ ≼ ψ means that (ψ−Σ) is required to be positive semi-definite: the prior cannot be more precise

than the posterior.

Decomposition into 1D Problems. Let v1, . . . , vJ be an orthonormal basis of eigenvectors

of the loss matrix Ω (which is symmetric), with the eigenvalue corresponding to vi denoted by Λi.

The utility term in (5) can be conveniently expressed using the transformation of coordinates to

this basis. Letting (x̃− x) =
󰁓

i η̃iv
i, we have

(x̃− x)′Ω(x̃− x) =
󰀓󰁛

i

η̃iv
i
󰀔′
Ω
󰀓󰁛

i

η̃iv
i
󰀔
=

󰁛

i

Λiη̃
2
i .

The eigenvalue Λi is thus a scaling parameter for how uncertainty about the linear combination

(vi · x) translates into losses. Now the expectation of η̃2i is by definition the posterior variance of

vi · (x̃−x). Since the xi are i.i.d. with prior variance σ2
0, the random variables (vi ·x) are also i.i.d.
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with prior variance σ2
0. Let us denote the posterior variance of (vi · x) by σ2

i ≤ σ2
0. In the proof we

show that Σ must be diagonal in the basis of the eigenvectors, and thus log |Σ| =
󰁓

i log σ
2
i . The

agent’s problem therefore reduces to

max
σ2
i ≤σ2

0

󰀓
−
󰁛

i

Λiσ
2
i +

λ log σ2
i

2

󰀔
.

This can now be solved separately for each i, reducing the initial multi-dimensional problem to a

system of one-dimensional problems. As a result, the optimal information-acquisition strategy has

a strikingly simple form:

Proposition 1 (Information Acquisition). The optimal information-acquisition strategy is to ac-

quire independent signals of vi · x such that the posterior variance of vi · x is min{σ2
0,λ/(2Λi)}.

Intuitively, the agent processes more information about vectors in the space of x that are more

costly to misestimate. Specifically, if σ2
0 ≤ λ/(2Λi), then the agent acquires no information about

vi · x; and if σ2
0 > λ/(2Λi), then she observes a signal about vi · x with precision chosen to bring

the posterior variance of vi · x down to λ/(2Λi). Hence, when the cost of information λ is high

(λ/(2Λi) > σ2
0 for all i), then the agent does not process any information. If the cost is somewhat

lower, then the agent processes information about vi · x with the highest Λi, but she processes no

other information. At even lower costs, the agent processes information about more vi · x, etc.

Responsiveness of Actions. Next, we discuss implications for actions. We first recall

Bayesian updating in one dimension with independent Gaussian signals s of the form s = x + 󰂃,

where x ∼ N(0,σ2
0) and 󰂃 ∼ N(0,σ2

󰂃 ). If ξ = 1− (σ2/σ2
0), where σ2 is posterior variance, then the

posterior mean equals:

x̃ = ξs = ξx+ ξ(1− ξ)󰂃1, (6)

where 󰂃1 ∼ N(0, 1) is unit noise. The variable ξ is the weight on the signal in Bayesian updating,

and is increasing with the signal’s precision.7 It equals the resulting responsiveness of posterior

mean x̃ to a state x and also represents the level of attention.

Now, coming back to the multidimensional problem, given that the vectors vi constitute an

orthonormal basis of RJ , we can decompose any shock to x into independent shocks along the

7Posterior variance is σ2 = (σ2
0σ

2
󰂃 )/(σ

2
0 +σ2

󰂃 ), and noise in signals and posterior can be rewritten as σ2 = (1− ξ)σ2
0

and σ2
󰂃 = (1−ξ)

ξ
σ2
0 .
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{vi}Ji=1. We show in the proof of Proposition 2 that actions move linearly with posterior means,

and then we apply the orthogonal decomposition and the insight leading to (6). We get:

y = Hx̃ = H
󰁛

i

(vi · x̃)vi =
󰁛

i

󰀓
ξiv

i · x+ ξi(1− ξi)󰂃
1
󰀔
hi, (7)

where H = C−1B′/2 and hi = Hvi.

Expected actions conditional on realized x equal:

E[y|x] =
󰁛

i

ξi(v
i · x̃)hi. (8)

We define ελi as the average change in the action y when x changes in direction vi by 1. We can

think of it as the average responsiveness of the agent’s behavior to shocks along vi. Using this

notation, the responsiveness under perfect information — when the agent has no attention costs

— is ε0i .

Proposition 2 (Optimal Actions).

1. The space of actions is spanned by {Hvi|λ/(2Λi) < σ2
0}.

2. The agent underresponds to shocks relative to the perfect-information case:

ελi = ξi(Λi)ε
0
i , where ξi(Λi) = 1−

min
󰀓
σ2
0,λ/(2Λi)

󰀔

σ2
0

. (9)

3. In the range Λi > Λj > λ/(2σ2
0), the relative responsiveness ελi /ε

λ
j is strictly increasing in λ.

Part 1 says that the agent’s action moves only along directions that are sufficiently important to

pay attention to — that is, along the directions in which losses are highest. Part 2 states that the

agent underresponds to shocks. This is a simple implication of costly attention: because the agent

pays only partial attention to information, on average she does not notice the extent of shocks,

so she does not respond as much as an agent with zero attention costs. More interestingly, Part

3 says that with costly attention, optimal behavior calls for concentrating reactions to shocks in

directions that are the most important. As a result, the responsiveness to shocks along vi relative

to vj is higher than under perfect information if and only if Λi > Λj .

11



4 Consumption Patterns

We now begin to apply the tools we have developed in Section 3 to basic consumption problems.

In this section, we analyze how a person attends and responds to taste, price or consumption-

opportunity shocks when choosing her consumption basket from many products with different

degrees of substitutability or complementarity.

The agent faces a menu of N imperfect substitutes or complements, and chooses how much of

each to consume. Her utility function over consumption is

−
󰁛

m

y2m −
󰁛

m ∕=n

Θmnymyn

󰁿 󰁾󰁽 󰂀
baseline utility

+
󰁛

m

xmym

󰁿 󰁾󰁽 󰂀
shocks

, (10)

where ym is the level of consumption of good m, xm is a shock to the marginal utility of consuming

good m, and Θ ∈ RN ×RN with Θmm = 1 is a symmetric matrix that captures the substitutability

patterns between the goods. We can interpret the uncertainty in xm as capturing uncertainty

about the agent’s taste: she does not know what combination of restaurant dinners, laptops,

housing amenities, kids’ education, etc. maximizes her well-being. Alternatively, shocks to the

marginal utility of consumption could come from shocks to prices or consumption opportunities.

As in Section 3, we assume that the xm are independent normal random variables with the same

variance, and in order to know more about them, the agent can flexibly think about them.8 Her

cost of attention is also the same as in Section 3. In our setting, this implies that the agent’s

posterior is jointly normal, and she maximizes the sum of her expected utility given her posterior

beliefs plus λ log |Σ|/2, where λ ≥ 0 is a scalar and Σ is the variance-covariance matrix of her

posterior.

4.1 Substitutes: Mental Budgeting

In order to study how the agent’s consumption behavior and budgeting depend on the substitutabil-

ity properties of the goods, we posit a simple structure for Θ. First, we assume that the goods

8 When uncertainty regarding the xm corresponds to price or consumption-opportunity shocks, the question arises
how the agent can think flexibly about them. For instance, she may be able to find out a product’s price, but she
cannot look up a noisy version of the price. Even so, there is clearly flexibility in what she thinks about. She may,
for instance, find out which of two products is cheaper without thinking about her marginal utility from the two
products much.
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are substitutes (Θmn > 0), and they can be grouped into L ≥ 1 levels of categories. The level L

captures the largest category (e.g., discretionary spending), which includes all N goods. The level

L−1 is the set of second-largest categories (e.g., entertainment), and so on, with the smallest (l = 1)

categories being individual consumption goods. We denote by Rk,l ⊂ {1, . . . , N} a consumption

category at level l. We assume that all categories at level l are of the same size (|Rk,l| = |Rk′,l| for

all k, k′, l), and that each category at level l < L is a subset of a higher category (for each l < L, k,

there is a k′ such that Rk,l ⊂ Rk′,l+1). For instance, dinners and movies could be subsets of the

larger entertainment category. The substitutability of two goods is determined by the smallest cat-

egory to which they both belong. Precisely, let γl be constants satisfying 0 ≤ γL < · · · < γ2 < 1.

For two goods m and n, let l be the smallest l′ such that there is a k with m,n ∈ Rk,l′ . Then,

Θmn = γl. This formulation captures the idea that a good is a better substitute for other goods

in its category than for goods in a different category. For instance, a French dinner is a closer

substitute to a Chinese dinner than to a movie.

Our main result in this subsection is:

Proposition 3 (Hard Budgeting of Substitute Products). There are λ1, . . . ,λL satisfying λL <

· · · < λ1 such that

λ ≥ λl ⇔
󰁛

m∈Rk,l

ym = constant for all k. (11)

Proposition 3 says that if her attention cost is sufficiently high, then the agent behaves as if she had

a fixed mental budget for each l-category of products: her total consumption in each l-category is

constant and hence independent of her shocks. In particular, for high attention costs (λ ≥ λ1) the

agent does not process any information, so ym is determined by her prior and hence constant for

each m. More interestingly, for somewhat lower attention costs (λ ∈ [λ2,λ1)) the agent processes

information about shocks to her relative tastes within the 2-categories, and substitutes consumption

within these categories to keep total consumption in each 2-category fixed. For even lower attention

costs (λ ∈ [λ3,λ2)), she keeps consumption within each 3-category constant, and substitutes within

these categories. And so on. Hence, the higher is the cost of attention, the narrower are the agent’s

budgets.

To appreciate ways in which the agent’s behavior differs from that of a classical decisionmaker,

suppose that λl < λ < λl−1. Then, the agent budgets categories at level l, but not at lower levels,

13



giving rise to two related phenomena. First, the agent’s consumption decisions across l-categories

are independent of each other. In a classical consumption problem, this is optimal only if the

utility function is separable across l-categories. We do not impose such separability; indeed, with

full information a change in any xm in general affects the consumption of all products. Second,

the agent’s total consumption in an l-category is independent of her shocks, but her consumption

within the category responds smoothly to within-category shocks. This is in general not the case

in a classical model even if the utility function is separable across categories.

The intuition is based on where the agent optimally directs her costly attention. That (say)

goods 1 and 2 are close substitutes means that the agent suffers a greater utility loss from choosing

the relative amounts of goods 1 and 2 in a suboptimal way than from choosing the relative amounts

of (say) goods 1 and 3 in a suboptimal way, or from choosing the total consumption of goods 1

and 2 in a suboptimal way. With her attention being constrained, she thinks only about the

most important thing, the relative consumption of goods 1 and 2. As a result, she fixes the total

consumption of goods 1 and 2 at the ex-ante optimal level.

Budgeting leads to specific types of mistakes. Suppose, for instance, that the decisionmaker

has a fixed budget for entertainment consumption. Then, even if unusually fun entertainment op-

portunities present themselves in a particular month (i.e., the xm in the entertainment category all

increase), she does not increase her consumption of entertainment. If she had unlimited attention,

in contrast, she would respond to such positive shocks by increasing entertainment consumption.

Proposition 3 is roughly consistent with evidence that many individuals allocate consumption to

categories governed by budgets. A stark manifestation of this phenomenon is that many households

used to place budgets allocated for different purposes into different envelopes or tin cans (Rainwater

et al., 1959; Lave, 1995). More recently, Ameriks et al. (2003) and Antonides et al. (2011) document

that the mental budgeting (if not physical separation) of expenses is still common. Indeed, most

of the many online financial management tools seem to presume that users of these tools want to

set budgets for separate categories.9 Proposition 3 not only explains these findings in a natural

way, it makes a specific prediction on how a person groups goods into budgets: according to their

substitutability.10

9 As another manifestation, Kahneman and Tversky (1984) find in hypothetical choices that subjects are less
willing to buy a ticket to a play after they have lost their original ticket than after they have lost an equivalent
amount of money — presumably because their entertainment budget is more depleted in the former case.

10 An alternative explanation for why similar products are covered by the same budget is that they are less costly
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A budget in Proposition 3 fixes total consumption, not total nominal spending. The two

are equivalent if differences between products arise only due to taste or consumption-opportunity

shocks. While they are not equivalent under price uncertainty, for two reasons outside the current

model the agent may prefer a nominal budget even in the face of price uncertainty. First, setting a

nominal budget rather than a consumption budget reduces spending risk, and we show in Section

5.2 that the agent benefits from this. Second, if uncertainty regarding the overall level of prices in

a category is relatively small — a reasonable assumption in low-inflation countries — a nominal

budget approximates a consumption budget, and might be much easier to implement in practice

(Shafir et al., 1997).11

As the flip side of the possibility of budgeting, Proposition 3 also says that if the agent’s

attention cost (λ) is sufficiently low, then she does not have fixed budgets for l-categories. Our next

proposition implies that even then, the agent can be viewed as having “soft” budgets. To state the

result, let Y k,l =
󰁓

m∈Rk,l ym be total consumption in a category Rk,l, and let Xk,l =
󰁓

m∈Rk,l xm

be the total shock to the marginal utility of consuming in Rk,l. The responsiveness of category

consumption to category marginal utility is then 󰂃lB = ∂E[Y k,l|Xk,l = x]/∂x. In this notation,

Proposition 3 implies that if λ ≥ λl, then 󰂃lB = 0. Equivalently, if λ ≥ λl, then consumption of a

good in an l-category is perfectly negatively correlated with total consumption of the other goods

in the same l-category. Beyond these extreme results:

Proposition 4 (Soft Budgeting of Substitute Products). In the range λ < λl:

1. 󰂃lB is strictly decreasing in λ.

2. 󰂃l−1
B /󰂃lB is strictly increasing in λ.

3. For any k and different m,n ∈ Rk,l, the correlation between ym and yn is strictly decreasing

in λ.

The first part formalizes a kind of soft budgeting: as the agent’s attention cost increases, her

spending on a category becomes more and more rigid, even if not completely fixed. The intuition

is simple: reacting to shocks presumes paying attention to shocks, so the costlier is attention, the

to compare: it is easier to decide whether one feels like Chinese or Italian than to decide whether one should eat out
or buy a TV. To the extent that this is the case, it strengthens our result that similar products are grouped together,
but by itself it does not explain mental budgeting.

11 As a case in point, suppose that the units of consumption are not symmetric across consumption goods —
e.g., one unit of y1 is one theater play, but one unit of y2 is three and a half movies. Then, a consumption budget
specifies that a weighted sum of different consumption events is constant, while a nominal budget simply specifies
total spending.
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Figure 1: Joint distributions of consumption of goods 1 and 2 for σ2
0 = 1 and γ2 = 1/2, γ3 = 1/4

under different costs of attention. Iso-density curves are shown.

smaller is the optimal response to shocks. The second part says that as the agent’s attention cost

increases, she reacts relatively more to shocks within smaller categories. Once again, this is a

reflection of her directing her scarce attention to tradeoffs that matter more. And as the third part

says, this results in more negative correlation between the consumption levels of two products in

the same l-category.

Figure 1 illustrates Propositions 3 and 4 in a specific example. We consider four goods grouped

into categories {1, 2} and {3, 4}, and draw the joint distribution of y1 and y2 for different levels of

λ. For costless attention (λ = 0), the agent might choose a range of consumption pairs in response

to shocks. At the other extreme, if the decisionmaker’s attention cost is very high (λ = 1), then

consumption amounts are fixed. For lower, but relatively high attention costs (λ = 0.75, 0.5),

the agent sets a budget for the two products, so her consumption is always on the same budget

line. These situations correspond to Proposition 3. For even lower positive attention costs (λ =

0.48, 0.45), the agent starts substituting goods 1 and 2 with goods 3 and 4, but not as much as

with costless attention, so the distribution of y1 and y2 is closer to a budget line than with costless

attention. These situations correspond to Proposition 4.
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Our theory has a number of economically relevant comparative-statics implications regarding

how changes in preferences or the economic environment affect budgeting. We begin with changes

in the substitutability of the products:

Corollary 1. An increase in γl leads to an increase in λl−1 and a decrease in λl+s for all s ∈

{0, .., L− l}.

If products within an l-category become better substitutes, then the agent responds more to shocks

within the l-category, becoming more willing to substitute between (l − 1)-categories. Hence, she

is less likely to have a hard budget for (l − 1)-categories (i.e., λl−1 increases). At the same time,

because increasing consumption of one product quickly decreases the marginal utility of other

products in the same l-category, increasing consumption in the entire category is subject to quickly

decreasing marginal utility. This implies that it is less valuable to adjust the budget for an l-

category to circumstances, so that the agent is more likely to have hard budgets for l-categories

(i.e., λl decreases). The same is true for higher categories.

While it is difficult to test directly, Corollary 1 may help explain why lower-income households

are more likely to create category-specific budgets (Rainwater et al., 1959; Antonides et al., 2011).

The simple fact that a low-income household consumes closer to the bare minimum in some essential

categories implies greater substitutability of products within such categories; e.g., if the household

does not consume a food item, it can fall short of getting enough nutritious food, so its marginal

utility of other food items rises sharply. A high-income household, in contrast, is never on the

verge of getting too little food, so the substitutability between its relevant food choices is lower.

Corollary 1 then implies that the low-income household is more likely to have a budget for food.12

Second, we consider how ex-ante known changes affect consumption. For instance, the agent’s

average taste may evolve over time, or the mean price of some products may change. Let xm denote

the prior mean of xm, and let x = (x1, . . . , xN ).

Corollary 2. The agent responds to ex-ante changes as with perfect information:

dE[y]

dx
=

Θ−1

2
.

12 An alternative potential explanation for why lower-income consumers are more likely to budget is that they
have higher attention costs (higher λ). This possibility is, however, difficult to evaluate based on existing evidence
or arguments.
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While the agent’s consumption budget does not respond to ex-post changes in circumstances,

Corollary 2 implies that in general it does respond to ex-ante known changes. Suppose, for instance,

that λ ≥ λl, so that it is optimal for the agent to set budgets for each l-category. If the agent’s

expected taste for all goods in category Rk,l increases by the same amount while her mean tastes for

other goods remain unchanged, then she sets a higher — but still fixed — budget for the category.

Third, we formalize a sense in which the decision environment can become more complicated

for the agent due to an increasing abundance of choice. Suppose we copy each product multiple

times, with the copies being closer substitutes to each other than any previous products were: they

have substitutability parameter γ2
′
satisfying γ2 < γ2

′
< 1. The idea behind this formulation is

that innovation leads to new, substitute products being developed, increasing the options available

to the decisionmaker. Using primes for other variables in the new decision problem as well, this

means that there are now L+ 1 layers of consumption categories, with γl
′
= γl−1 for all l > 2. We

have:

Corollary 3. For all l > 2, λ′
l < λl−1.

That is, living in a world with more options leads the agent to budget more. With products

having close substitutes available, the agent has less of a need to trade off a product with distant

substitutes, leading her to budget more.

Finally, we consider comparative statics with respect to volatility in the environment:

Corollary 4. An increase in σ2
0 increases 󰂃lB and λl for all l.

If the agent faces more uncertainty in what she should consume — for instance due to an increase in

price volatility — then paying attention has greater return, so she pays more attention to everything.

As a result, she tends to respond to shocks more, and she tends to use fixed budgets less.

4.2 Complements: Naive Diversification

We now study complementary products. Our analysis leads to a completely different prediction

than in the substitutes case, thereby connecting the logic of mental accounting to the logic of naive

diversification.

Formally, we modify our model by assuming that γ2 < · · · < γL < 0, keeping all other as-

sumptions unchanged. This means that products are arranged in a nested fashion into categories,
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with products belonging to smaller categories being stronger complements in consumption. For

instance, different features of a car (e.g., driving experience, seats, sound system) might be highly

complementary to each other, but not to items in one’s clothing. To simplify our statement as well

as to capture situations in which the products are ex ante equally desirable, we also assume that

the xm have the same mean.

In this situation, the agent simplifies her decision problem in the following way:

Proposition 5 (Naive Diversification). There are λ2, . . . ,λL satisfying λ2 > · · · > λL such that

λ ≥ λl ⇔ for any k and any m,n ∈ Rk,l, ym = yn. (12)

Proposition 5 says that if the agent’s attention cost is sufficiently high, then she chooses a fixed

mix of products in category l that is not responsive to circumstances. This contrasts with the

case of substitute products, where it was not the mix, but the budget that was fixed. Intuitively,

because the optimal consumption levels for complementary products tend to move together, the

agent does not think about their optimal relative consumption at all, only how much she should

consume overall. Continuing with the example of cars, the agent does not think separately about

the quality of the engine, seats, sound system, etc. she wants — she only thinks about whether she

wants an economy or luxury car.

An important application of the above result is naive diversification in financial decisions,

whereby a person chooses a simple mix of investments that is unlikely to be fully optimal. For

instance, Benartzi and Thaler (2001) document that many employees in employer-based retirement

savings plans divide their investments equally across available funds, and accordingly, employees

invest more in stocks if there are more stock funds available. To see how our model can account

for this phenomenon in a simple example, suppose that an investor with mean-variance preferences

decides the amounts y1 and y2 to invest into two assets. There are two equally likely states, with

asset 1’s net return being x1 + 1 in state 1 and x1 − 1 in state 2, and asset 2’s net return being

x2 − 1 in state 1 and x2 + 1 in state 2. It is easy to check that the mean of the investor’s wealth

is y1x1 + y2x2, and the variance is (y1 − y2)
2, so that this problem maps precisely to our formal

framework. Hence, Proposition 5 predicts that an investor with sufficiently costly attention splits

her investment equally between the two assets. More generally, because diversification is desirable,

different investments are often complements, so Proposition 5 predicts that investors may diversify
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naively.13

Investigating a similar phenomenon in a completely different domain, Simonson (1990) finds that

when choosing items to consume at different future dates, individuals tend to seek variety more

than their future preferences seem to justify.14 Because subjects are choosing only what to consume

and not how much to consume, this setting does not exactly fit our framework. Nevertheless, a

logic akin to that with complementary products can capture the flavor of why subjects naively

diversify: because thinking about their future preferences is unlikely to uncover information that

dominates their taste for variety, subjects do not think about this, and therefore choose a mix of

products.15 Consistent with our perspective, Simonson argues that naive diversification is due to

the combination of taste uncertainty and the desire to simplify the decision.

Our model predicts a type of naive diversification also for substitute products when the agent’s

attention cost is so high that she does not obtain any information. In this case, her consumption

of all products is fixed at the ex-ante optimal level and is therefore completely unresponsive to

circumstances. Furthermore, if the products are ex-ante identical, then their consumption levels are

equal. But the more interesting type of naive diversification above, whereby the agent does pay some

attention to her decision problem and still naively diversifies, is only possible for complementary

products.

5 Reactions to Income and Expenditure Uncertainty

In this section, we develop a model of how the agent handles multiple accounts. Our model can

be used to tie together evidence on three important issues: differential marginal propensities to

consume out of different accounts, context-dependent attitudes toward risk, and the non-fungible

treatment of price shocks.

13 In the illustrative example above, the complementarity of the two investments relies on the asset returns being
negatively correlated. Even for uncorrelated or somewhat positively correlated asset returns, investments are comple-
ments if the investor’s disutility from variance is strictly concave. Furthermore, with a precautionary savings motive,
risky and safe investments are often complements.

14 In one study, for instance, students chose snacks to be received at the end of three different classes. When
choosing the snacks one at a time at the beginning of these classes, 9% of subjects chose three different snacks. But
when simultaneously choosing three snacks ahead of time, 64% of subjects chose three different snacks.

15 To the extent that in the sequential-choice conditions students know more about their momentary tastes, they
are less likely to choose a mix of snacks.
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5.1 Marginal Propensities to Consume

We begin with how a person treats income and expenditure accruing to different accounts. Suppose

that the agent is consuming her wealth over T +1 periods, 1 through T +1, where T > 1. She has

two accounts, a standard checking account and an investment account. We think of the investment

account quite generally; it could, for instance, include human capital. The initial balances in

the checking and investment accounts, x1 and sx2, respectively, are uncertain with normal and

independent distributions. For our formulation to be consistent with the theoretical tools developed

in Section 3, we assume that x1 and x2 have the same variance; but we include the scaling factor

s > 0 to allow for the possibility that the variance of the investment-account balance is different

from that of the checking-account balance. In period 1, the decisionmaker processes information

about (x1, x2); for instance, she could think about expenses she will have to pay from the checking

account that month, look up how her investments are doing, or ponder what wages she might expect

to earn in the future. Then, she chooses a costless transfer from the investment to the checking

account, t, and a consumption level for that period, c1, that comes out of the checking account.

In periods 2 through T + 1, the agent consumes her leftover wealth, and we assume for simplicity

that she splits her wealth equally across these periods. Her utility from consumption cτ in period

τ is −c2τ . Crucially, we assume that the agent faces a quadratic penalty if she does not balance her

checking account in period 1. The penalty captures the idea that a consumer has an incentive to

balance her checking account: overdrawing the account typically has direct financial costs in the

form of penalties or punitive interest payments, while leaving money in the account has indirect

financial costs in the form of foregone investment income. We make the unrealistic assumption that

the penalty is symmetric only for tractability, so that the formulation fits into the quadratic setup

of Section 3.16 Combining the above components, the agent’s total utility is

−c21 − T · [(sx2 + x1 − c1)/T ]󰁿 󰁾󰁽 󰂀
=c2=···=cT+1

2 − b(x1 − c1 + t)2󰁿 󰁾󰁽 󰂀
penalty

. (13)

We find:

16 We have also considered a more realistic setting in which there is an interest-rate differential between the two
accounts, there is a penalty for overdrawing the checking account, but there is no direct penalty for leaving money in
the checking account. While we cannot solve such a model analytically, in numerical simulations our results continue
to hold.
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Proposition 6 (Differential MPC’s). The agent’s MPC out of shocks to the checking account is

greater than her MPC out of shocks to the investment account (∂E[c1]/∂x1 > ∂E[c1]/∂(sx2)).

To understand Proposition 6, suppose first that attention is costless and there is no penalty for

failing to balance the checking account (λ = b = 0). The agent then simply sets c1 = (x1 +

sx2)/(T + 1), equalizing consumption across periods. Confirming the standard logic, in this case

the MPC out of the two accounts is the same. Next, suppose that attention is costly (λ > 0). To

get as close as possible to her optimal consumption given the attention cost she pays, the agent

acquires a signal of x1 + sx2 — she thinks about her total wealth, not separately about her two

accounts. As a result, her MPC out of the two accounts is still the same. But when there is also

an incentive to balance the checking account (b > 0), there is an extra reason to pay attention to

this account. Once the agent does so, she is more likely to notice funds arriving in the checking

account, and she is therefore more likely to consume out of these funds.17

Proposition 6 is consistent with Hatsopoulos et al. (1989), who find that stockholders spend

some of the cash income they receive from takeovers, but they spend a negligible amount of the

capital gains in the stock market. Similarly, Baker et al. (2007) document that individuals’ marginal

propensity to consume from dividends is higher than from other sources of stock returns.18

In our model above, the agent attempts to minimize the losses from failing to balance the

checking account by paying more attention to the checking account. She may, however, adapt

other modes of behavior for the same purpose. As a plausible possibility, she might develop a habit

to consume exactly what is available in the checking account after the transfer and net of income

and expenditure shocks. Formally, this modifies our model only in that once the agent chooses

17 One might conjecture that a model without costly attention but with costs of transferring money between the
accounts has implications similar to ours. While we are not aware of such a model and therefore cannot fully evaluate
the differences, it is clear that the predictions are not the same. As a simple example, consider a modification of our
model in which the agent knows the balances in the two accounts, and take first the extreme case in which she cannot
transfer money between the accounts in period 1. Still, if x1 is sufficiently high to cover optimal consumption, the
MPC out of the two accounts is the same. To go further, a model with positive transfer costs can generate a negative
MPC out of the checking account. In particular, suppose that the transfer cost is a fixed cost (i.e., independent of
the amount transferred), and consider a checking-account balance that is high relative to optimal consumption. An
increase in this balance can induce the agent to transfer money into the investment account and at the same time
decrease current consumption.

18 See also Shefrin and Thaler (1988) and the citations therein for additional evidence. There are some related
findings, however, that the model does not account for. Without additional, arguably ad hoc assumptions, for
instance, our model cannot explain contradictory evidence from public economics on whether one-time tax payments
generate higher or lower additional consumption than many smaller payments. On the one hand, Feldman (2010)
documents that people with the same total tax obligation spend more if they have lower tax withholding than if
they receive a larger refund. On the other hand, Sahm et al. (2012) document that the impact of a fiscal stimulus is
greater if received in the form of a single check than if received in the form of lower withholding.
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t, consumption in period 1 is set to c1 = x1 + t. For an agent with unlimited attention — who

therefore knows x1 — such a change leaves the choice problem and hence consumption behavior

unchanged. For an agent with costly attention, however, the logic of the problem is quite different.

Nevertheless, we show that our result regarding the differential MPC’s out of the two accounts

continues to hold:

Proposition 7 (Differential MPC’s 2). The agent acquires more information about the checking-

account than about the investment-account balance, and her MPC out of shocks to the check-

ing account is greater than her MPC out of shocks to the investment account (∂E[c1]/∂x1 >

∂E[c1]/∂(sx2)).

Note first that the agent always avoids the penalty for failing to balance the checking account,

suggesting that — because the motive to pay extra attention to the checking account arose from

the desire to balance the account — she does not pay more attention to the checking account. But

she now does so for a different reason. Since she will consume everything in the checking account

and her optimal consumption in period 1 is less than half of her wealth, her optimal transfer is more

sensitive to a $1 change in the checking-account balance than to a $1 change in the investment-

account balance. Hence, she pays more attention to the former. Furthermore, any part of a shock

to the checking account that she does not think about when making the transfer translates into

period-1 consumption one-to-one, generating a higher MPC out of the checking account.

Some evidence can be brought to bear to partially discriminate between our two specifications.

Empirical research we have cited documents not only differences in the marginal propensity to

consume, but also that the marginal propensity out of the checking account can be high (see also

Souleles et al., 2006; Kueng, forthcoming). This is consistent with our second model, but only

consistent with our first model for a short horizon (low T ). To see this, note that for large T

even an agent with full information spends little of any increase in wealth in period 1. In the first

model, costly attention only exacerbates this tendency, as the agent tends to notice only part of

any increase in wealth. In contrast, because in the second model the agent depletes her checking

account, her marginal propensity to consume can be high even for large T . Indeed, if her cost of

attention λ is so high that she does not obtain information, then her MPC out of the checking

account is 1.
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5.2 Handling Risk

Our framework has potentially important implications for how a person treats risk. We isolate these

implications using a simple variant of our two-account model. Suppose that the agent does not

make a consumption decision in period 1, only a transfer decision. Furthermore, her consumption

utility in period 2 is linear. We consider a non-degenerate shock ∆x that has mean zero and is

independent of x1 and x2. An agent with unlimited attention would obviously be neutral to the

risk, no matter which account it applies to. In contrast:

Proposition 8. For any ∆x, the agent’s expected utility is (i) strictly higher with balances x1, x2

than with x1 +∆x, x2; and (ii) equal with balances x1, x2 and with x1, x2 +∆x.

The proposition says that costly attention leads to differential risk aversion across accounts:

the agent is more averse to risk in her checking account than to risk in her investment account.

The intuition is simple: a shock to the checking account makes it more difficult to successfully

balance the account, so that the agent must either pay more attention, or pay more in penalties.

To avoid these costly consequences, she would rather avoid the shock to her checking account in

the first place. This result identifies a novel source of aversion to risk: the agent dislikes risk not

because it exposes her to a decrease in consumption that is painful due to a high marginal utility

of consumption or sensation of loss, but because it forces her to pay more attention to her finances.

Because a similar consideration does not arise for the investment account, the agent is less averse

(in our case, neutral) to risk accruing to that account.

Proposition 8 may help explain various documented forms of aversion to risk in one’s spending

combined with less risk aversion in other decisions. In particular, rental cars, wired and mobile

phones, and other services with positive marginal cost are often offered to individuals at a flat

rate, presumably because consumers prefer it.19 Similarly, individuals pay a high premium for low

deductibles in housing (Sydnor, 2010) and health (Bhargava et al., 2017) insurance. Yet individuals

are willing to bear more risk in other decisions. For instance, while for deductibles Sydnor (2010)

estimates a coefficient of relative risk aversion in the triple digits, based on hypothetical choices

between large gambles on lifetime wealth, Barsky et al. (1997) measure an average coefficient of

relative risk aversion of around 5.
19 See Herweg and Mierendorff (2013) for a detailed discussion. For evidence on such “flat-rate bias,” see for

instance Train (1991, p. 211) (as well as Train et al., 1987, 1989) in the context of telephone calling plans, and
Lambrecht and Skiera (2006) for a general review.
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Our result that the agent is averse to spending risk also implies a motive to set money budgets

— simply because they can help reduce spending risk. As an explicit example, consider a variant

of our model in which the agent makes two sequential decisions in period 1. The first decision

is motivated by the setting of Hasting and Shapiro’s (2013) study of gasoline purchases. The

decisionmaker needs to purchase one unit of gasoline, but she can choose between high-grade and

low-grade gasoline. High-grade gasoline always carries a price premium of ∆p, and the agent

perceives that it has a value premium of ∆v. The price of low-grade gasoline can be either pL or

pH = pL +∆p. The second decision is the transfer decision as above. Our key assumption is that

when the agent chooses the transfer, she does not remember how much she spent on gasoline: it

is just lumped in with the other shocks to x1. To remember her spending — or, equivalently, her

checking-account balance — more precisely, she has to pay the attention cost as above. We assume

that the agent carries out the gasoline-purchase strategy she chooses at the beginning.20

Proposition 8 implies that if ∆v ≈ ∆p (i.e., the two grades are quite good substitutes), then the

agent’s optimal strategy involves switching to low-grade gasoline when gasoline prices rise. This

strategy, which is in line with the empirical findings of Hastings and Shapiro (2013), eliminates

spending risk in gasoline and therefore lowers the risk in the checking-account balance.21 More

generally, our framework suggests that to reduce spending risk without having to keep track of or

think about too much information at each decision point, the agent wants to create budgets whose

implementation relies on a limited amount of non-salient information.22

20 This assumption implicitly imposes two conditions. First, the agent must be able to remember her strategy —
even though she cannot remember her gasoline spending when she makes her transfer decision. It is presumably easier
to remember the general strategy of what to do for low and high gasoline prices than to keep track of idiosyncratic
spending, especially if there are many other purchases to keep track of. Second, the agent does not reconsider her
spending strategy. This seems reasonable for an agent with costly attention, as rethinking optimal behavior might
be costly. But we discuss the possibility that she reevaluates her strategy in Footnote 22 below.

21 At the same time, Hirshman et al. (2018) document that for many products, the opposite of Hastings and
Shapiro’s finding holds: as prices rise, individuals report more willingness to upgrade to a premium version of the
product. This is consistent with diminishing sensitivity or relative thinking in prices. Our model cannot account for
the conflicting findings in a precise manner, and more research on when budgeting versus relative thinking dominates
seems necessary. But it is worth noting that unlike gas, the products Hirshman et al. consider (e.g., pens or milk)
are likely to be in the same budget category with many other products, so one would not expect budgeting at the
individual-product level.

22 If the agent does reevaluate her strategy, then an interesting time-inconsistency issue arises: is it credible to
stick with her purchase strategy of switching down if and only if the prices are high? Suppose ∆v > ∆p, so the agent
is tempted to keep buying the expensive gasoline when the price is high. If she does, she knows she might not pay
attention later, increasing the probability that she overdraws the account. Given such a concern, for ∆v sufficiently
close to ∆p it is credible to stick with her plan. In contrast, the strategy is not credible if ∆v < ∆p: then, she wants
to buy cheap even if prices are low, and this does not increase the risk of overdrawing the account. So the strategy
is credible only if the agent prefers high-grade gasoline.

25



The primary alternative explanation for many of the above basic patterns is loss aversion. As

explained for instance by Kőszegi and Rabin (2007), loss aversion implies aversion to small-scale

risk, and because for larger risk a person’s consumption utility comes to dominate loss aversion,

aversion to larger-scale risk is lower. We view our model as complementing, not replacing loss

aversion as an explanation for risk attitudes. In addition to strengthening the patterns implied by

loss aversion, our framework makes two distinct predictions. First, our model says that a person is

more averse to expenditure risk than investment risk; i.e., not only the scale, but also the location

of a risk affects attitudes toward it. We are not aware of a precise test of this prediction, but

find it plausible given existing evidence. For instance, Sydnor (2010) documents that homeowners

exhibit extremely large risk aversion when choosing between annual deductibles of $1,000 and $500

for their home insurance. Yet the same individuals might exhibit significantly lower risk aversion

when investing in individual stocks, which carries similar-scale risk. Second, while in models of loss

aversion budgets are often exogenously given, our framework explains how the agent can separate

fungible funds into different budgets, and makes predictions on the budgets she forms. Of course,

these differences are in addition to our predictions regarding the agent’s MPC’s, which to our

knowledge existing models of loss aversion also do not make.

6 Related Literature

In this section, we discuss theoretical work most closely related to our paper. While we point out

other differences below, previous work provides no theory of the main phenomena — how the agent

creates separate accounts out of fungible finances, and how this affects her responses to shocks —

that we consider in this paper.

The main existing explanation for mental accounts is self-control problems — attempting to use

budgets or accounts to mitigate overconsumption in the future. Our theory provides a different,

complementary, reason for mental accounts, with a number of distinct features. Most importantly,

in theories on mental accounting and self-control, money is exogenously assumed to be non-fungible

in the sense that spending from different accounts is subject to different constraints or preferences.

In our model, mental accounts emerge despite money being fully fungible. Due to the different

foundation, research on mental accounting and self-control also does not generate many of our other

predictions, such as the connection we find between mental budgeting and naive diversification.
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In a classic paper, Shefrin and Thaler (1988) develop a life-cycle consumption-savings model in

which the individual’s “planner” self would like to control the “doer” self’s tendency to consume

too much. Shefrin and Thaler assume that the individual can separate money into different mental

accounts, current spendable income, current assets, and future income. They exogenously assume

that the MPC out of these accounts is different.

In the context of goal setting under self-control problems, Koch and Nafziger (2016) assume

that an individual can decide between broad and narrow goals, and that falling short of one’s

chosen goals creates sensations of loss. The motive to avoid such losses creates an incentive that

mitigates self-control problems. A broad goal diversifies the risk of failure due to shocks, but it

also lowers incentives because underperformance in one task can be offset by good performance in

another task. As a result, narrow bracketing can be optimal. Similarly to our Corollary 4 (but for

a completely different reason), the agent is more likely to set narrow goals when uncertainty is low.

Hsiaw (2018) qualifies this insight for multi-stage projects when uncertainty is resolved over time,

showing that an increase in late uncertainty makes incremental goals more appealing.

Galperti (forthcoming) compares good-specific and total-expenditure budgets for a person who

is subject to self-control problems as well as both intratemporal and intertemporal taste shocks.

Good-specific budgets can be useful for an agent with a mild self-control problem, as they help

curb overconsumption of all goods. But for an agent with severe self-control problems, effective

good-specific budgets would distort intratemporal consumption too much, so a total-expenditure

budget is superior.

Prelec and Loewenstein (1998) propose a model of mental accounting in which paying for goods

and experiences is painful but buffered by thoughts of future consumption, and the pleasure of

consumption is lowered by thoughts of future payments. This model predicts a strong aversion to

paying for consumption with debt, and has a number of other implications for how an individual

might want to time payments relative to consumption. These results capture a completely different

aspect of mental accounting than do we.

Gorman (1959) identifies circumstances under which it is optimal for a standard utility max-

imizer to make consumption decisions using a two-step procedure similar to that in Section 4,

whereby she first allocates fixed budgets to different consumption categories, and then optimizes

within each category given the allocated budget. Unlike in our model, the budgeting in the first
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stage requires the agent to know with certainty all the relevant price indices for the categories, and

there is no taste uncertainty. Even so, the conditions under which two-stage budgeting is optimal

are extremely strict.23

Our result that the agent may completely ignore some aspects of her decision environment is

similar in spirit to the sparsity-based model of bounded rationality by Gabaix (2011), where the

agent also ignores variables that are not important. In Gabaix’s setting, the variables that the agent

may choose to look at are exogenously given, whereas in ours the agent can choose any combination

of variables. We also apply the model to different questions than does Gabaix.

As we have mentioned in Section 5.2, models of loss aversion make some of the same predictions

regarding risk attitudes as our model, although there are important differences as well. Loss aversion

also has implications for consumption-savings behavior (e.g., Pagel, 2017) that are orthogonal to

our results.

7 Conclusion

While our models explain a number of findings, there are phenomena that are usually interpreted

in terms of mental accounting that we have not covered. The most important of these is the

effect of special-purpose transfers — transfers that can only be used on a subset of products — on

consumption. A basic implication of the rational consumer model with full information is that if

such a transfer is inframarginal — i.e., if the consumer would have spent more than the transfer

on the products in question — then it is equivalent to cash. Yet experimental work by Abeler and

Marklein (2016) and empirical work by Hastings and Shapiro (2017) document that inframarginal

transfers have large effects on the consumption of targeted products. Even when a transfer is not

inframarginal, it can have a surprisingly large effect: for instance, incentives for health-improving

behaviors that are minute relative to the health benefits can significantly influence behavior (Volpp

et al., 2008; Dupas, 2014). It being about reactions to ex-ante known transfers rather than ex-post

shocks, this phenomenon does not fit in the methodology of the current paper. There is, however,

a plausible attention-based account for the phenomenon. Namely, there are many things that a

person could consider doing, but that she considers not worthwhile to think about due to costly

23 Interestingly, Gorman, as well as Strotz (1957) preceding him, take it as self-evident that individuals engage in
the above type of mental accounting.
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attention, and that she therefore does not do. Receiving a transfer or subsidy can induce the person

to think about the potential benefits, increasing the effect of the transfer. In ongoing work, we

formalize this mechanism, and also consider what it implies for the optimal design of transfers.

Of course, we do not believe that mental accounting is solely about costly attention. As Shefrin

and Thaler (1988) and others have argued, a likely motive for creating mental accounts is self-control

problems. It would be interesting to combine the attention-based account of mental accounting

with the self-control-based account to identify possible interactions. For example, a person may use

the costly nature of her attention to improve her self-control by creating plans that she is unwilling

to reconsider later.

Finally, even to the extent that costly attention is a central component of mental accounting,

it is not necessarily of the type we have modeled, where any piece of information has the same

cost, and attention allocation is fully rational. Without assuming unrealistically large attention

costs, for instance, our model is unlikely to explain why most individuals spend less than an hour

on thinking about their retirement-account contribution rates (Benartzi and Thaler, 2007). Nev-

ertheless, the mechanisms we have identified can be just as important with non-rational attention.

Recognizing that the checking account is more important to know about, for instance, a consumer

may (irrationally) decide not to look at the investment account at all, increasing the difference in

MPC’s we have found in Section 5.
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A LQ multivariate setup

Proof of Proposition 1. The utility quadratic utility function can be rewritten as

U(y,x) = −
󰀓
y− C−1B′

2
x
󰀔′
C
󰀓
y− C−1B′

2
x
󰀔
+

x′BC−1B′x

4
. (14)

If the posterior mean is x̃, then the agent chooses an action (maximizing expected utility):

y =
C−1B′

2
x̃. (15)
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This is because certainty equivalence applies in a quadratic setup. Plugging (15) into (14), the

realized utility Ũ for a state x, but a posterior mean x̃ is:

Ũ(x̃,x) = −(x̃− x)′Ω(x̃− x) + x′Ωx, (16)

where Ω = BC−1B′/4. The first term is the loss from imperfect posterior beliefs, (x̃ − x) is

the misperception. Given the variance-covariance matrix Σ for the distribution of (x̃ − x), the

expectation of the first term equals the trace of ΩΣ. Since the second term in (16) depends on the

realized state x only, i.e., it is independent of the agent’s strategy, then the original (3)-(4) takes

the form:

max
ψ≽Σ

−Tr(ΩΣ) +
λ

2
log |Σ|. (17)

The second term in (17) is the cost of information, it is a log of the determinant of Σ.24 The

larger the posterior uncertainty is, the lower the cost. The cost term here includes entropy of the

posterior only, since entropy of a fixed prior amounts to an additive constant only. The condition

ψ ≽ Σ requires that (ψ − Σ) is positive semi-definite, which means that acquisition of Gaussian

signals cannot make beliefs less precise, i.e., signals must have non-negative precision.

To explore what signals the agent collects, let us decompose the loss matrix Ω, which is sym-

metric and thus has an orthonormal basis of eigenvectors. Let Ω = UΛU ′, where U is a unitary

matrix (the columns of which are eigenvectors of Ω), and Λ is a diagonal matrix with its elements

Λii equal to the eigenvalues Λi of Ω.

−Tr(ΩΣ) +
λ

2
log |Σ| = −Tr(UΛU ′Σ) +

λ

2
log |Σ| =

= −Tr(ΛU ′ΣU) +
λ

2
log |U ′ΣU | =

= −Tr(ΛS) +
λ

2
log |S|, (18)

where S = U ′ΣU is the posterior variance-covariance matrix in the basis of eigenvectors of Ω. The

condition (ψ ≽ Σ) takes the form of (U ′ψU ≽ S); note that ψ = σ2
0I.

Now we show by contradiction that S is diagonal. Let the optimal S were not diagonal, and let

SD be the matrix constructed from its diagonal, i.e., SD
ii = Sii for all i and SD

ij = 0 for all i ∕= j.

24Entropy of a multivariate N(µ,Σ) of dimension n is n
2
(log(2π) + 1) + 1

2
log |Σ|.
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First, since σ2
0I − S is positive semi-definite, then σ2

0I − SD is also positive semi-definite. This

is because for a diagonal SD it suffices to check that SD
ii ≤ σ2

0, which is implied by the fact that

σ2
0I − S is also positive semi-definite. Second, Hadamard’s inequality implies:

λ

2
log |S| ≤ λ

2

󰁛

i

logSii =
λ

2
log |SD|, (19)

where the equality holds if and only if S is diagonal. Third, Tr(ΛS) = Tr(ΛSD), since Λ is

diagonal. Therefore, putting this together implies that S not cannot be the optimum, since SD

delivers a higher objective due to the lower information cost, (19), and is feasible.

Therefore, S is diagonal. Using (18), the original problem takes the form:

max
Sii≤σ2

0

󰀓
−

N󰁛

i=1

SiiΛi +
λ log(Sii)

2

󰀔
. (20)

The first order condition with respect to Sii implies:

−Λi +
λ

2Sii
= 0,

and the solution is

Sii = min
󰀓
σ2
0,

λ

2Λi

󰀔
.

.

Proof of Proposition 2. Part 1: Proposition 1 implies that the space of posterior means x̃ is

spanned by all eigenvectors vi for which λ/(2Λi) < σ2
0, the statement is then a trivial implication.

Part 2: Let ξi = 1− Sii

σ2
0
be the relative reduction of uncertainty about the component vi ·x. ξ is

also the linear weight on a signal (as opposed to on the prior) in Bayesian updating with Gaussian

signals. This means that in 1D Bayesian updating, if the random variable vi ·x moves by ∆x, then

the posterior mean about this variable moves in expectation by ξi∆x.

Since the agent chooses independent signals on vi · x, Bayesian updating does in fact take the

1D form. Responsiveness then is:

ελi =
|Hξiv

i|
|vi|

=
|ξiHvi|
|vi|

= ξiε
0
i .
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This equation together with Proposition 1 implies the expression (9).

Part 3: Differentiating ελi /ε
λ
j with respect to λ then implies the statement. .

B Consumption and spending budgets

Let Θ have the structure described in the main text, i.e., given by symmetrically nested categories,

and let Rk,l denote a category number k on level l, size of which is rl.

Lemma 1. Θ has a base of eigenvectors {vk,l,r′}l∈{2..L},k∈{1..N/rl},r′∈{1..(rl−1)}, and (1, .., 1). vk,l,r
′

is associated with a category k of a level l, and it has the following properties

vk,l,r
′

m = 0 ∀m /∈ Rk,l (21)
󰁛

m∈Rk,l

vk,l,r
′

m = 0 (22)

vk,l,r
′

m = vk,l,r
′

n ∀m,n; ∃k′ : m,n ∈ Rk′,l−1. (23)

Moreover, eigenvalues µl of vk,l,r
′
are given by:

µl =
󰁛

n∈Rl−1
m

󰀓
Θm,n − γl

󰀔
= µl−1 + (γl−1 − γl)rl−1,

and µ2 = γ1 − γ2.

Proof of Lemma 1. Let us fix m, and apply Θ to an eigenvector associated with Rk,l; we drop
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the index m of the vector. Let Rl−1
m be the category on level (l − 1) that the good m belongs to.
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n∈Rl−1
m

Θm,nv
k,l
n

󰀴

󰁄 =

= γl

󰀳

󰁃0−
󰁛

n∈Rl−1
m

vk,lm

󰀴

󰁄+

󰀳

󰁃
󰁛

n∈Rl−1
m

Θm,nv
k,l
m

󰀴

󰁄 =

= vk,lm

󰁛

n∈Rl−1
m

󰀓
Θm,n − γl

󰀔

The first equality is a simple decomposition into terms with elements within different categories. In

the second, we used (21). Third is based on a decomposition of elements of Rk,l into a sub-category

with m and the other elements. The fourth equality uses (22) for the first term, and (23) is applied

for the other two terms to substitute elements vk,lj indexed by j by a constant vk,li , since vk,lj is

constant in Rl−1
i .

Eigenvalue µl is therefore
󰁓

n∈Rl−1
m

(Θm,n − γl). For l = 2 the only sub-category including m is

m itself, µ2 = γ1 − γ2. And for l > 2:

µl = µl−1 + γl−1rl−2 − γlrl−1 − (rl−2 − rl−1)γ
l−1 =

= µl−1 + (γl−1 − γl)rl−1. (24)

Therefore, each is vk,l,r
′
is an eigenvector, and they form a basis. This is because they are all

mutually orthogonal. Vectors associated with distinct categories due to (21), and vectors asso-

ciated with a nested categories due to (23) and (22). And for vectors of the same category, the

dimensionality is due to (23) equal the number of sub-categories minus one lower dimensionality

due to (22), rl/rl−1 − 1. The total number of vectors associated with level l > 1 is N/rl−1 −N/rl,

and the total number of these orthogonal eigenvectors on all levels is N − 1, which together with

the eigenvector (1, .., 1) delivers N orthogonal eigenvectors, and thus a basis.
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Proof of Proposition 3. This proposition follows from the propositions 1 and 2, and Lemma 1.

First, since for (10), Ω = Θ−1/4, then Ω has the same eigenvectors as Θ, and the corresponding

eigenvalues Λi are proportional to the inverse of the eigenvalue of Θ that is associated with the

same vector. Specifically, for vi associated with a level l, the eigenvalue is:

Λi =
1

4
(µl)−1 (25)

The expression below is derived from (25) and (9) with σ2
0 = λ/2Λi at which ξi hits zero.

λl−1 = 2σ2
0/Λi =

σ2
0

2
󰁓

n∈Rl−1
m

(Θm,n − γl)
, (26)

where m is a good in Rk,l−1. We denote this threshold cost for attention to vectors associated with

level l by λl−1 rather than by λl, because for λ lower than this quantity the total consumption in

each category on levels (l − 1) and lower is constant.

The eigenvectors satisfy (22), which means that the agent pays attention to vectors that keep

”budgets” of the random elements of x across the corresponding category fixed, but not across

categories on lower levels. Moreover, since the action matrix H equals Θ−1/2, the eigenvectors of

Ω are its eigenvectors as well. Thus, the fixed budgets of x translate to the fixed budgets of actions

y across the same categories.

Notice that for nested substitutes, since γl > γl−1, eigenvalues µl of Θ are increasing in l, and

thus eigenvalues of Ω are decreasing in l.

Proof of Proposition 4. Equation (8) implies:

E[Y k,l|x] =
󰁛

j∈Rk,l

󰁛

i

ξi2Λi(v
i · x)vij , (27)

because H = 2Ω has the same eigenvectors as Ω, with eigenvalues equal to 2Λi. Now, we use

Lemma 1. First, (22) implies that contributions to the RHS of (27) of all vectors vi associated with

levels l and lower are zero, because
󰁓

j∈Rk,l vij = 0. Next, the contribution of vi on levels l+ 1 and

higher is according to (23) proportional to (vi · x)vij =
󰀓
const ·Xk,l +

󰁓
s/∈Rk,l visxs

󰀔
vij . Note also

that vij is constant for all j ∈ Rk,l for such i associated with levels l + 1 and higher.
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The derivative of E[Y k,l|x] with respect to Xk,l thus is:

󰂃lB =

L󰁛

m=l+1

ξmΛmωm, (28)

where ωm’s are constants that depend on the number of categories on the level m level. The first

part of the statement in Proposition 4 is now implied by (28) and by ∂ξl/∂λ = −1/Λl for λ < 1/Λl,

see the expression for ξ in (9). We abuse the notation here by denoting Λl eigenvalues Λk such

that vk is a vector on the level l (note that all such Λk associated with the level l are equal). Let

L̂ ≥ (l + 1) be the largest s such that λ < 1/Λs.

∂󰂃l−1
B /󰂃lB
∂λ

=
−󰂃lB

󰁓L̂
m=l ωm + 󰂃l−1

B

󰁓L̂
m=l+1 ωm

(󰂃lB)
2

=

=
ωl

󰀓
ξlΛl

󰁓L̂
m=l ωm −

󰁓L̂
m=l ξmΛmωm

󰀔

(󰂃lB)
2

> 0.

The second equality is obtained by using (28), and the last inequality is implied by the fact that

Λl is decreasing in l, see the proof of Proposition 3, and thus so is ξlΛl. This concludes the proof

of the second statement.

Finally, we proceed with the statement regarding correlations. The variance-covariance matrix

of posterior means (describing correlations of beliefs about xi and xj) is P = (ψ−Σ). This matrix

is diagonal in the basis of eigenvectors vk, i.e, P = UQU−1, where the columns of U are vi. The

diagonal elements of Qkk ≡ Qk equal σ2
0 − σ2

k, which is the reduction of uncertainty about vk · x.

The reduction Qk = max(0,σ2
0 − λ/(2Λk)) is weakly increasing in Λk and weakly decreasing in λ,

see Proposition (1).

The resulting variance-covariance matrix of actions is A = HPH ′, where Pij =
󰁓

k Qkv
k
i v

k
j ,

and vk are eigenvectors of H, too, 2Λk is the eigenvalue. The matrix A thus is:

Aij =
󰁛

k

Qk(2Λk)
2vki v

k
j . (29)

And finally, for the correlation ρij = Aij/
󰁳

AiiAjj = Aij/Aii, where the last equality is implied by

the fact that the variances of uncertainty about i and j are the same. Equation (29) implies that
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actions yi and yj are more positively correlated if more uncertainty is reduced in a direction of vk,

for which the signs of entries vki and vkj are the same.

Next, we express derivative of the correlation:

∂ρij
∂λ

=

󰀓
−
󰁓

k 2Λkv
k
i v

k
j

󰀔󰀓󰁓
k Qk(2Λk)

2(vki )
2
󰀔
−

󰀓󰁓
k Qk(2Λk)

2vki v
k
j

󰀔󰀓
−
󰁓

k 2Λk(v
k
i )

2
󰀔

󰁓
k Qk(2Λk)2(v

k
i )

2
,

where the sums are over all k such that λ < 1/Λk. Due to Lemma 1, the eigenvectors can be

selected such that vki v
k
j = −1 for some vectors vk that are associated with the smallest level on

which goods i and j are in the same category, let the level be l∗ and the number of such vectors be

ψl∗ . Similarly, vki v
k
j = 1 for some vk that are associated with levels higher than l∗, and let ψs be

the number of such vectors on the level s. For all other vectors vk: vki v
k
j = 0.

Let L̂ ≥ (l + 1) be the largest s such that λ < 1/Λs. The numerator of the RHS of equation

above then equals eight times the following quantity:

󰀓
ψl∗Λl∗ −

L̂󰁛

s=l∗+1

ψsΛs

󰀔 󰀓 L̂󰁛

s=l∗

ψsQs(Λs)
2
󰀔
−

−
󰀓
−ψl∗Ql∗(Λl∗)

2 +

L̂󰁛

s=l∗+1

ψsQs(Λs)
2
󰀔󰀓

−
L̂󰁛

s=l∗

ψsΛs

󰀔
=

= ψl∗Λl∗

󰀓 L󰁛

s=l∗+1

ψsQs(Λs)
2
󰀔
− ψl∗Ql∗(Λl∗)

2
󰀓 L̂󰁛

s=l∗+1

ψsΛs

󰀔
=

= ψl∗Λl∗

L̂󰁛

s=l∗+1

󰀓
ψsQs(Λs)

2 − ψsQlΛsΛl

󰀔
< 0.

In the last step we used the fact that both QsΛs are decreasing in the level s, see the proof of

Proposition 3. This together with the positivity of the denominator of the RHS of (30) concludes

the proof.

Proof of Corollary 1. This is an immediate implication of (26). In the denominator of the RHS

of (26), γk enter in two ways. First, γl is subtracted, and also each parameter Θm,n equals γk for

some k ≤ (l− 1), since the sum is over n such that m and n are included in the same (l-1)-category

(or smaller ones).

Therefore, due to (26), if γl increases, then λl−1 must increase. On the other hand, if γl−s−1
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for s ≥ 0 increases, then λl−1 must decrease. The second part of the statement then follows from

the substitution: l′ = (l − s− 1).

Proof of Corollary 2. This is implied by the equation (15) for C = Θ and B = I, and certainty

equivalence.

Proof of Corollary 3. Using equation (26) we get

λl′ =
σ2
0

2
󰁓

n∈Rl′
m
(Θ′

m,n − γl)
, (30)

where Θ′ corresponds to the new menu of products. In comparison to the expression for λl−1 the

difference is that there are more terms summed up in the denominator. All of the terms in the

denominator for λl−1 are included in the denominator for λl′ but some are added, since there is

more copied products now. Finally, since all these terms are positive, then we get the desired

statement.

Proof of Corollary 4. The equation (9) implies that an increase in σ2
0 increases ξi for all i, which

due to equation (28) increases 󰂃lB (since Λmωm are positive and independent of it). The first

equality in (26) then implies the second part of the statement.

Proof of Proposition 5. Analogous to the proof of Proposition 3. Eigenvectors take the same

form, but ranking of magnitudes of eigenvalues, given by (26) is the opposite because for comple-

ments γ2 < · · · < γL < 0.

C Income

Proof of Proposition 6. Equation (8) implies for the two derivatives:

∂E[c1]/∂x1 = ξ1v
1
1

󰀓
Hv1

󰀔

1
+ ξ2v

2
1

󰀓
Hv2

󰀔

1
, (31)

∂E[c1]/∂(sx2) = ξ1
v12
s

󰀓
Hv1

󰀔

1
+ ξ2

v22
s

󰀓
Hv2

󰀔

1
. (32)

We also know that under perfect information the derivatives are equal to a positive constant ĉ,

since then both sources of income have the same effect. Let α1 = v11

󰀓
Hv1

󰀔

1
and α2 =

v12
s

󰀓
Hv1

󰀔

1
,
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and thus v21

󰀓
Hv2

󰀔

1
= ĉ − α1 and

v22
s

󰀓
Hv2

󰀔

1
= ĉ − α2. The desired inequality, ∂E[c1]/∂x1 >

∂E[c1]/∂(sx2), takes the form:

ξ1α1 + ξ2(ĉ− α1) > ξ1α2 + ξ2(ĉ− α2). (33)

Let a = 1/T . The agent’s utility function is −c21 − a(sx2 + x1 − c1)
2 − b(x1 − c1 + t)2. Ignoring

terms that only contain x1 and x2 and that the agent can therefore not influence, this utility

function expands to

− c21 − ac21 + 2asx2c1 + 2ax1c1 − bc21 − bt2 + 2bc1t+ 2bx1c1 − 2bx1t

= −(1 + a+ b)c21 − bt2 + 2bc1t+ (2a+ 2b)x1c1 − 2bx1t+ 2asx2c1

= −
󰁫
y1 t

󰁬
C

󰀵

󰀷 y1

t

󰀶

󰀸+
󰁫
x1 x2

󰁬
B

󰀵

󰀷 y1

t

󰀶

󰀸 ,

where

C =

󰀵

󰀷 1 + a+ b −b

−b b

󰀶

󰀸 , B =

󰀵

󰀷 2a+ 2b −2b

2as 0

󰀶

󰀸 .

Therefore, in the notation of Section 3,

Ω =

󰀵

󰀷 a2 + ab+ b a2s

a2s a2s2

󰀶

󰀸 .

Without loss of generality, let v1 be the principal eigenvector of Ω, and thus ξ1 > ξ2. Some

algebra implies:

v1 =
󰁱a2 + b+ ab− a2s2 +

󰁳
−4a2(1 + a)bs2 + (b+ ab+ a2(1 + s2))2

2a2s
, 1
󰁲
.

Next, we show that s · v11 > 1 for all s > 0 and thus v11 >
v12
s , since v12 = 1. After multiplying

both sides of the desired inequality s · v11 > 1 by 2a2, and subtracting 2a2, we get

−a2 + b+ ab− a2s2 +
󰁳

−4a2(1 + a)bs2 + (b+ ab+ a2(1 + s2))2 > 0. (34)
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This always holds because

−(−a2 + b+ ab− a2s2)2 +
󰀓
−4a2(1 + a)bs2 + (b+ ab+ a2(1 + s2))2

󰀔
= 4a2(a+ 1)b > 0.

The square root in (34), which is non-negative, is thus always larger than the absolute value of the

remaining terms. Note that this also implies that v11 > 0. Now, we can reverse the sequence of

steps of equivalence and infer that v11 >
v12
s for all s > 0.

Similarly, in the notation of Section 3,

󰀓
Hv1

󰀔

1
=

a2 + b+ ab+ a2s2 +
󰁳

−4a2(1 + a)bs2 + (b+ ab+ a2(1 + s2))2

2a(1 + a)s
> 0,

which implies α1 = v11

󰀓
Hv1

󰀔

1
> 0, and thus also α1 > α2, because α1 = α2

v11s

v12
.

Multiplying the inequality (α1 > α2) by (ξ1−ξ2), which we know is positive, we get an equivalent

inequality:

ξ1α1 − ξ2α1 > ξ1α2 − ξ2α2.

Next, we subtract ĉ from both sides to get:

ξ1α1 + (ĉ− ξ2α1) > ξ1α2 + (ĉ− ξ2α2).

which is (33).

Proof of Proposition 7. In this case, the utility function is

−c21 −
(sx2 + x1 − c1)

2

T
.

Plugging in c1 = x1 + t gives

−(x1 + t)2 − (sx2 − t)2

T
,

which implies that

B =

󰀵

󰀷 −2

2s/T

󰀶

󰀸 ; C = [(T + 1)/T ].

Given that Ω is a constant multiple of BB′ and B is a column matrix, Ω has a single eigenvector
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with positive eigenvalue, which is equal to B. Hence, the agent acquires information about only

one variable, (sx2/T − x1). Given that T > 1, this immediately implies that the agent acquires

more information about x1 than about sx2.

Denoting posterior mean by Epost, the optimal transfer is given by

t =
T

T + 1
· Epost[sx2/T − x1]

and

c1 = x1 +
T

T + 1
· Epost[sx2/T − x1] = x1 − Epost[x1] + Epost[x1] +

T

T + 1
· Epost[sx2/T − x1]

= x1 − Epost[x1] +
Epost[sx2 + x1]

T + 1
.

Clearly, ∂E[Epost[sx2 + x1]]/∂x1 = ∂E[Epost[sx2 + x1]]/∂(sx2), so the second term is on aver-

age equally responsive to shocks in the two balances. Furthermore, ∂E[x1 − Epost[x1]]/∂x1 > 0,

completing the proof.

Proof of Proposition 8. (i) For any distribution of posterior beliefs the agent chooses with initial

balance x1 +∆x, there is an information-acquisition strategy with initial balance x1 that has the

same cost and generates strictly more precise posterior beliefs (due to the entropy-reduction based

cost). Choosing this information-acquisition strategy leads to a strictly lower penalty, yielding

strictly higher expected utility. (ii) Since x2 is a constant in the agent’s utility function that she

cannot influence and it also does not interact with actions c or t in the utility, she does not acquire

information about x2, and her optimal strategy and expected penalty are independent of her beliefs

about the distribution of x2. Since she is also risk-neutral, she is indifferent to a mean-zero shock

to the investment account.
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