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Abstract

I use a detailed and comprehensive project-level dataset to investigate how managers assess project

risks. Exploiting a revealed preference strategy, I extract �rms' project-speci�c implied discount rate and

examine if their behavior is consistent with core corporate �nance predictions. Using variation in the level

of their potential projects' idiosyncratic risk, I document that, on average, �rms in�ate their discount

rate in projects facing a high level of idiosyncratic risk. In a second step, I document a channel - �rm

hierarchical structure - that a�ects how managers price idiosyncratic risk.
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Classical corporate �nance theory dictates that the discount rate should only account for the systematic

risk component of a �rm's investment opportunities, dismissing the idiosyncratic risk. Many warn about

the temptation of incorporating a fudge factor in the calculation of the discount rate to account for idiosyn-

cratic risk (e.g. ?), because of the potentially signi�cant allocation distortion. However, this contrasts with

what often happens in practice. Indeed, survey results of the Association for Financial Professionals (AFP)

showed that nearly half of their respondents confessed to manually adjusting their discount rate to account

for a project's speci�c risk1. When asked, managers of all �rm sizes reported using discount rates that are

systematically and substantially greater than their cost of capital (???). These revelations are worrisome

considering that even small deviations from the true discount rate can have sizable e�ects on managers'

decisions to pursue a given project2. Yet, the empirical literature investigating managers' behavior on the

topic remains scarce. In this light, providing empirical evidence on how managers assess idiosyncratic risk

when computing the discount rate and the factors a�ecting the computation is a �rst-order problem.

In this paper, I use a detailed and comprehensive project-level dataset to investigate how managers assess

project risk. Exploiting a revealed preference strategy, I extract �rms' project-speci�c implied discount rate.

To obtain an estimate of �rms' discount rate, I proceed in two steps. First, I use the internal rate of return

(IRR) rule to estimate the discount rate estimate of each project. Second, I restrict the analysis to a sub-

sample of the observations that capture the features of the �rm discount rate. To the best of my knowledge,

this study is the �rst to provide direct empirical evidence on how managers compute their projects' discount

rate and the potential forces a�ecting the calculation.

In the �rst part, I examine whether managers' behavior is consistent with core corporate �nance predic-

tions regarding the role of idiosyncratic risk in computing the discount rate. Using variation in the level of

idiosyncratic risk in their potential projects, I document that, on average, �rms in�ate their discount rate in

projects facing a high level of idiosyncratic risk, contrary to the prediction of traditional corporate �nance

theory.

1(?)
2For example, fudging an annual perpetuity true discount rate from 10% to an arti�cially in�ated rate of 11% would decrease

the project's cash �ow present value by 10%, potentially altering the manager's investment decision.
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In the second part of this paper, I identify a channel that a�ects how managers price idiosyncratic risk,

speci�cally �rms' hierarchical structure, and document that delegating investment decisions has an econom-

ically signi�cant impact on the price of idiosyncratic risk. Given the growing literature indicating that

within-�rm delegation processes have a sizable e�ect on resource allocation (e.g. ???), �rms' hierarchy con-

stitutes a plausible channel.

Measuring �rms' project-speci�c discount rate is empirically challenging; �rms do not report this in-

formation. Alternatively, extracting this information from �rms' investment decisions comes with multiple

complications. First, it is not usually possible to observe speci�c �rms' individual investment opportunities

and investment decisions. Second, it is generally di�cult to compare the opportunity set across and within

�rms, limiting researchers' ability to properly control for all the potential unobservable factors that could

impact the discount rate calculation. Finally, obtaining precise estimates of the managers expected cash �ow

is rarely possible. Capitalizing on the rich level of details in my dataset and the vast literature on project-level

forecasting techniques in the industry analyzed in this paper, I obtain plausible expected cash �ow for each

investment opportunities.

This study uses the universe of onshore oil and gas wells drilled in the United States from 1983 to 2005,

roughly $306 billion in capital projects. The speci�c nature of this environment enables me to make impor-

tant progress on issues that previously limited researchers. Speci�cally, the institutional setting enables me

to observe the projects' cash �ows and capital expenditures, and to fully characterize each �rm's investment

portfolio annually. In addition, the projects are homogeneous and tend to be generic, thus providing a large

set of uniform observations facilitating the comparison across projects. Since each project in a given period

has the exact same exposure to systematic risk from an ex-ante project-level perspective, all di�erences in

discount rate ought to come from other potential distortions, such as the idiosyncratic risk. E�ectively, the

projects systematic exposure is mainly driven by the resource price variation. Second, the production func-

tion of the projects is transparent, which facilitates the computation of the projects' expected quantities.
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This paper relates to several streams of research in corporate �nance.

First, it contributes to the empirical literature on capital budgeting. ?, ?, and ? provide survey evidence

on �rms' capital budgeting practices, indicating that more than 90% of managers use either the capital asset

pricing model (CAPM) or the internal rate of return (IRR) when deciding which projects to pursue. Ad-

ditionally, it provides a partial answer to the puzzling large gap between �rms' observed weighted cost of

capital (WACC) and the managers' e�ective discount rate raised in ?. I show that the presence of project-

level idiosyncratic risk has an economically signi�cant e�ect on the size of the project's discount rate.

Second, this paper contributes to the micro-level empirical literature investigating the nature and role of

�rms' internal allocation mechanisms. Closely related to this paper, ? shows that �rms improperly adjust

their discount rate to account for the systematic risk exposure of their di�erent investment opportunities,

leading to sizable distortion in the optimal allocation process. In contrast, I study the internal allocation

mechanism within a �rm division, rather than across divisions. Finally, while their paper focuses on the role

of systematic risk exposure on �rms' internal resource allocation, I focus on the role of idiosyncratic risk.

Third, according to the Modigliani-Miller paradigm, managers should not be concerned about projects'

idiosyncratic risk, since individual investors can easily diversify away their exposure to this source of risk.

This contrasts with a vast literature that evaluates how �rms' boundaries mediate capital market imperfec-

tion (?, ? among others). Theories focusing on the role of �rms' internal capital market on optimal resource

allocation have produced con�icting results. Some studies suggest that there are positive e�ects because

managers have more information than the market (?). However, some authors (??) suggest that managerial

socialist concern could have a negative e�ect on the optimal allocation of capital.

Equally, a large literature has produced results suggesting that �rms' internal structure - �rm hierarchy

- plays a critical role in the optimal allocation of resources. On one hand, theoretical work by ? suggests
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that delegating investment decision making to the agents with the highest amount of information regarding

a speci�c decision improves resource allocation. This increases the likelihood that people most familiar with

investment-speci�c details will make the decision with limited interference. Recent empirical results indicate

that the intensity of the delegation between senior managers and junior managers increases with the amount

of speci�c information required to make the investment decision (?). On the other hand, strong decoupling

between the capital allocation and the investment decision might lead to a misalignment of incentives be-

tween the di�erent levels of management (?). This could have a deleterious e�ect on the e�cient allocation

of resources. In this paper I investigate these two competing views, looking speci�cally at the consequences

of capital allocation by senior managers across multiple oil and gas �elds [see �gure 1]. When senior man-

agers allocate the budget across multiple oil and gas �elds, �eld managers' idiosyncratic risk exposure to a

speci�c project realization is greater than that of senior managers. As a �eld manager's budget increases,

his exposure to a single well realization decreases. Consequently, a �eld manager's price of idiosyncratic risk

should depend in part on his ability to diversify that risk away.

Finally, while most of the literature on �rm risk-taking behavior is centered on how managers shift the

riskiness of the investment portfolio, this paper focuses on the e�ect of �rms' hierarchical structure on man-

agers' price of idiosyncratic risk.

1 Oil & Gas Industry: Institutional Background

The commercial life cycle of oil and gas formation is in two stages: (1) the exploration stage, and (2) the

development stage. According to the U.S. Energy Information Agency, the exploration stage �rst documents

the geological potential of the �eld and its economic viability. Once �rms have su�cient information to con-

�rm the economic potential of the �eld, it is classi�ed as a proven reserve3 and the development stage begins.

In the development stage, �rms still face a high level of idiosyncratic risk such as knowing (1) the exact

3 De�nition for proven reserves: The amount of oil and gas is estimated with reasonable certainty to be econom-
ically producible, source: https://www.americanbar.org/content/dam/aba/publications/litigation_committees/energy/

glossary-oil-gas-terms.authcheckdam.pdf
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delineation of the oil �eld, (2) the structure of the rock formation, (3) the expectation over the production

potential of each drilling location, and, (4) the technical expertise required to optimally extract the resource.

For example, in �gure 2, we see the development of the Panhandle oil �eld in Texas over the years 1960 to

2010. Figure 2.1 represents the initial estimation of the �eld boundary, while �gure 2.2 represents the realized

boundary of the �eld. There are notable di�erences between the expected and the realized boundary of the

�eld. Additionally, looking at �gures 2.3 to 2.5, it is possible to observe that �rms have di�culty �nding the

best drilling area. The blue circle shows the region of the �eld where initial wells were drilled but no further

development was done because wells performance was poor. Alternatively, the red circle identi�es a region

with high drilling success. These contrasting examples provide a clear illustration of how idiosyncratic risk

remains at the micro-level, although the �eld potential has been con�rmed at the macro-level.

In this paper, I focus on the development stage. During this stage, �rms have su�cient information

to have reasonable expectation over the production of the �eld in general but still face a high amount of

idiosyncratic risk about the potential of a speci�c location within the �eld. However, this idiosyncratic risk

steadily declines as �rms exploit the �eld; they learn about the local speci�c potential and ultimately obtain

more granular and precise information. A salient example of how learning translates into lower idiosyncratic

risk relates to the probability of drilling a dry hole, a well incapable of economically producing oil or gas4.

There is a 27.6% probability of drilling a dry hole in the �rst half of a �eld development, compared to a 12.1%

in the latter half [see table 1]5. This indicates that wells drilled in the earlier portion of the development

stage are 228% more likely to result in a dry hole, a substantial di�erence. The risk of dry hole depicted in

this section nicely echoes the main example of idiosyncratic risk presented in (?, Chap.9, p.235), where the

authors refer to the probability of drilling a dry hole as being a diversi�able risk that should not be included

in the discount rate calculation.

4De�nition from the American Bar Association
5 These statistics are consistent with the unconditional probability of drilling a dry hole reported by the EIA agency.
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2 Data

I use a dataset provided by DrillingInfo6 covering the universe of onshore oil and gas wells drilled in the

United States for the period ranging from 1983 to 2005 [see �gure 3]. This dataset includes the monthly

production of each project and a set of project characteristics such as the rock formation and the depth of

the well. To obtain drilling cost estimates, I augment the dataset with a hand-collected set of project capital

expenditures, which include the overall drilling cost and the estimated operational costs. Also, I augment

this dataset with a hand-collected sample from the EIA of long-term oil and gas price forecasts, the NYMEX

oil and gas futures contracts, and the regional spot prices. The EIA is a federal reporting agency producing

an annual economic analysis for the oil and gas industry7.

For a well to be included in the analysis, I require that the �rm-year portfolio contains at least 10 wells

drilled. Equivalently, for a �eld to be included in the analysis, there must be at least 10 wells drilled. Fi-

nally, I drop the wells with missing �elds used in the analysis. Ultimately, the dataset contains 187,107,732

month-well observations used to estimate the well production function for a total of 344,729 distinct oil or

gas wells.

Firms in the sample are relatively large, with on average 230 wells drilled over the entire period and 44

wells drilled per year. Considering that drilling a well costs on average $608,908, these �rms' average drilling

budget roughly translates to $26,5 million per year, and total $139,7 million in value [see table 2]. Also, �rms

in the sample operate in multiple rock formations, where the average �rms are active in roughly 24 �elds over

the sample period. Additionally, �elds in the sample are large, with the average �eld totaling 466 wells over

its lifetime, which corresponds to an average total investment of $283,6 million. Finally, over the average

�eld commercial life 45 �rms will drill wells to extract the resource. Put together, these numbers indicate

6DrillingInfo is a trusted data provider from multiple federal agencies reporting on environment and energy matters. Studies
conducted by the U.S. Environmental Protection Agency (EPA) and the U.S. Energy Information Administration (EIA) Inven-
tory of U.S. Greenhouse gas emissions and Sinks, 1990-2016 by the EPA and Petroleum Supply Monthly (PSM) by the EIA,
for example.

7The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of
Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking,
e�cient markets, and public understanding of energy and its interaction with the economy and the environment. EIA is the
nation's premier source of energy information and, by law, its data, analyses, and forecasts are independent of approval by any
other o�cer or employee of the U.S. government. Source: https://www.eia.gov/about/mission_overview.php

7

https://www.eia.gov/about/mission_overview.php


that �rms in my sample are large and well diversi�ed at the �rm level, and that multiple �rms operate in

the �elds investigated in this study.

3 Methodology: Revealed Preference

Inferring agent unobservable characteristics through revealed preference is a well-established strategy in eco-

nomics but it comes with a set of caveats. The main issue relates to the distinction between the agent's

normative preference (the agent's actual interests) and the observed revealed preference (the agent's interests

that rationalize the observed actions). Multiple factors can a�ect the disparity between the two preferences,

notably (1) the nature of the decision process (active versus passive decision-making), (2) the complexity of

the decision rule, and, (3) the agent's experience (?). In this study, �rms actively make the decision to invest

in projects that maximize the net present value (NPV), a simple decision rule. Firms in the sample drill on

average 16 wells per year, indicating a substantial level of experience, and they can access information on the

outcomes of their competitors' wells from publicly available sources (?).

To obtain an estimate of �rms' discount rate, I proceed in two steps. First, I use the internal rate of

return (IRR) rule to translate the discount rate estimate of each project into a regression framework. Second,

I restrict the analysis to a subsample of the observations that capture the features of the �rm discount rate.

3.1 Estimating Projects' Internal Rate of Return

First, I compute the implied IRR (µi) of each project for �rm "i" on year "n" such that:

E[

T∑
t=1

1

(1 + µ)t
Q̃i,t]Pi − Ci = 0 (1)

Where µi corresponds to the projects' monthly expected rate of return (i.e. the project IRR), Q̃i,t corre-

sponds to the monthly production for well "i" at age "t" months adjusted for the probability of a well having
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no production (i.e. Qi,t * (1-P(No production))). Pi corresponds to the price the manager will receive net of

the operational cost (20%) and royalty rate ( 18.5%)8, and Ci corresponds to the initial drilling cost incurred

when the well is drilled. Finally, the average well in my sample will produce for 224 months (i.e. T=224).

Calculating projects' IRR can, in some situations, have complications. First, if the projects' cash �ows

change sign multiple times during the projects' life cycle, it is possible that I obtain multiple estimates of

the IRR. Fortunately, wells' cash �ow patterns are such that there is one negative cash �ow at the beginning

of the projects' life, followed by a stream of costs that are proportional to the project revenue �ow. Thus,

this issue should not a�ect my IRR calculation. Second, an important critic of the IRR calculation pertains

to the project scale. Precisely, it is argued that managers should not solely base their investment decision of

the expected IRR, but also on the project size. However, projects in the sample are highly homogeneous and

generic, such that drilling costs are similar across projects for a given time period. Figure 4 illustrates that

total drilling costs are almost exclusively driven by the wells' depth. For this reason, it is unlikely that such

an issue a�ects the validity of the IRR estimation.

3.2 Estimating Firm-Year discount rate

The strategy used in the �rst step produces the implied IRR for all the wells drilled for a given �rm-year.

However, the expected projects' returns often exceed the minimum rate of return set by the �rm: the discount

rate. For example, oil �rms might discover regions with exceptional potential, such that the yield of each

project drilled there will far exceed the minimum investment requirement [see �gure 5.1]. Managers should

invest in all the projects for which the expected return is above their discount rate and avoid investing in

projects with poor expected returns. In this study, I only observe the entire set of completed projects for each

�rm in a given year. In other words, I observe a truncated version of the distribution of projects' returns [see

�gure 5.2]. In this situation, estimating the �rm-year discount rate is equivalent to estimating the truncation

threshold of that distribution, the dotted line of �gure 5.2, to �nd the lowest expected rate of return the

managers require for a project.

8Pi = Oil Price * (1- Royalty - Operational Cost)
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However, I do not observe the managers' expectation perfectly, their expectation estimates likely include

measurement error. This measurement error a�ects the truncated distribution of returns I e�ectively observe

as schematized in �gure 6. To obtain a reasonable estimate of the �rm-year discount rate, I need to de�ne

an interval of the distribution to approximate the �rm-year e�ective discount rate, such as the dotted lines

in �gure 6. This approach enables me to approximate the �rm marginal discount rate: the expected rate of

return on the least productive project the �rm decided to complete. Put di�erently, I �nd a proxy for the

lowest project's IRR that the �rm was willing to take in that given year such that r ∈ [pkth , pk+nth ], where

r is the estimate �rm-year discount rate, and pkth corresponds to a percentile of the IRR (µ) distribution.

4 Firms' Expectation

To recover an estimate of the project expected discount rate, I need to have the �rms' expectation over the

project production level (i.e. the number of barrels of oil extracted each month) and the prices at which they

will be able to sell their product, the oil or gas prices.

In general, computing the expected quantities independently from expected prices leads to potential bi-

ases. In most economics situations the expected production �ow of the project is correlated with prices 9.

However, in this speci�c situation, once the decision to drill has been made, the wells' level production �ow

does not depend on the state of the market. Rather, expected wells' production �ow equation depends on

time-invariant local geophysical parameters (i.e. the rock type, viscosity of the resource, etc.). For this reason,

the wells' production �ow should not be correlated with the variables moving oil prices, making the variation

of a given well's production �ow independent from the �uctuation in oil prices. Thus, I can independently

estimate the expected prices and the quantities.

9E[Pt ·Qi,t] = Cov(Pt, Qi,t) + E[Pt] · E[Qi,t]
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4.1 Expected Quantities

4.1.1 Type of Wells and Production Evaluation

We can broadly break down the types of wells drilled in the United States into two categories: (1) vertical

and, (2) horizontal wells [see �gure 7]. Vertical wells represent a much simpler type of project, they require

a more limited set of inputs and have a simpler production function. For this reason, it is easier to generate

reasonable expected production level and drilling cost, in comparison to the horizontal wells. Thus, I restrict

my sample to all the vertical wells drilled in America, excluding the horizontal wells.

Vertical wells drilled during the sample period share a set of characteristics making them perfect candi-

dates for the type of analysis conducted in this study.

First, the production function (i.e. the monthly production of the wells) can be approximated using

a petroleum-engineering model such as the Arp model (??). The Arp model is the classical production-

forecasting equation, and nowadays it is taught in most energy engineering courses (e.g. Engineering in Oil,

Gas and Coal course (Penn ENGR 503)). Using the Arp model, one can compute the well-predicted monthly

quantities such that:

qt,i = Ai(1 + bθt)
−1
b

Where qt,i is the well's monthly production level (e.g. the monthly production of oil or gas for well "i" at age

"t" month), Ai is the baseline production level, and b and β are two decline rate elasticity parameters, and t is

the number of months since the well has been drilled. The production baseline, Ai, represents the well initial

quantities of oil or gas initially produced by the well. It is conditioned on a �rm-year �j�, and a region-year �k�

�xed e�ect such that Ai = Aj + Ak
10. I determine the region using a regional cluster strategy based on the

wells' latitude and longitude. This is an intuitive choice since wells that are geographically close mostly share

10To estimate the production function, I linearize the equation. See Appendix I for more detail on the linearization strategy.
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the same geophysical attributes (e.g. quantity of oil available, type of rock, etc.). Identifying oil & gas-rich

producing regions via cluster analysis, a machine learning technique, has recently gained traction among

academic and practitioners in the oil & gas industry (See ?? among others). E�ectively, oil experts are look-

ing for a geographic cluster of rocks with similar characteristics to identify the potential of the rock formation.

Second, I distinctly estimate the decline rate for both oil and gas wells, using a sample of 187,107,732

month-well observations11. Figure 8 provides a graphical illustration for the median well production function

over time and contrasts it with the estimated production output. Clearly, the estimates convincingly repro-

duce the production patterns for the median well.

Finally, I use the estimated well production function parameters to obtain an estimate of the managers'

wells' production. A striking feature of oil and gas production function pertains to the depletion rate. Since

the speed at which the oil or gas is produced depends heavily on geophysical parameters, such as pressure

in the natural reservoir (i.e. the depletion rate is not constant over time for a given well) [see �gure 8].

E�ectively, the pressure is greater in the early moment of the well, making the depletion rate steadily decline

over time.

4.1.2 Expected Price

I measure the expected oil and gas prices using the EIA oil and gas price forecast12. The EIA price forecast

is closely followed by governmental organization, �nancial institutions, and energy companies. Considering

that the discounted projects' half-life13 in my sample is 2.6 years, I focus on the 36-month forecast horizon.

11The oil well and gas well regressions contain respectively 94,664,756 and 92,442,976 well-month observations [see table 3]
12Alternatively, I considered running the experiment with two other price speci�cations. In the �rst alternative speci�cation,

I used the 36-month NYMEX future contract prices. In the second speci�cation, I used the spot prices at the regional level
to account for price heterogeneity across states. E�ectively, oil and gas prices can slightly vary across regions, depending on
the quality of the extracted resource, and the distance it takes to be transported to a re�nery site. For example, regions
with a resource that is less expensive to re�ne (e.g. less sulfur content) will receive a better price. Source: https://www.

eia.gov/todayinenergy/detail.php?id=33012. These two additional speci�cations did not change the results qualitatively and
quantitatively.

13The discounted project half-life corresponds to the amount of time required for managers to obtain half of the discounted
project's expected cash �ow
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5 Measurement error

Empirical implementation of any discounted cash �ow valuation model involves simplifying assumptions. The

most important of these pertains to wells' production and oil and gas price forecast. Precisely, the estimated

discount rate can be characterized such that r̃ = r + ν, where r̃ is the estimated �rm-year discount rate, r

is the true discount rate, and ν(ε) corresponds to the discount rate measurement error, which is a function

of the measurement error in the expected quantities, ε. To clearly illustrate the measurement error problem,

it is useful to simplify the IRR equation (1)14, and add some measurement error in the expected baseline

quantities (i.e. B̃Qi = BQi + εi) such that:

µi =
Pi · B̃Qi
Ci

− η (2)

µi =
Pi ·BQ
Ci

+
εi
Ci︸︷︷︸

Estimation Bias

−η (3)

In this case, ε can be interpreted as the deviation between the manager's true expected quantities and my

estimate. If �rms systematically had di�erent expectations than the one modeled in this study, the quan-

tities estimates could be biased. However, the nature of this bias will likely be small given that the use

of geophysical models such as the one I use is widely established in the oil and gas industry. Equally, if

the measurement error of the expected quantities were to be correlated with the variable of interest (i.e.

E[ε|IdiosyncraticRisk] 6= 0), the estimate would be biased. To alleviate this issue, I am working on intro-

ducing an instrumental variable.

However, an additional source of biases arises from my strategy to extract the discount rate. Realistically,

managers' expectation over the wells' quantity is likely to be more volatile in the early stage of the �eld's

life cycle than in the more mature stage. Indeed, as more information becomes available the variance of

their beliefs should decline. Therefore, the conditional variance of the measurement error15 of the wells in

the high idiosyncratic exposure section of the sample should be greater than for the wells in the low idiosyn-

14I assume that the well is in�nite-lived and that the depletion rate is constant over time. These additional assumptions
enable me to derive a closed-form solution. The full derivation of equation (2) can be found in appendix II.

15V ar[ε|IdiosyncraticRisk = 1] ≥ V ar[ε|IdiosyncraticRisk = 0]
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cratic exposure section. This directly impacts the measurement error of the discount rate ν(ε). However,

it is possible to characterize the direction of the bias and show that it goes in the opposite direction of the

result [see Figure 9]. As the variance of the expected quantities measurement error increases, the left tail

of expected returns distribution I estimate extends further to the left. Thus, for a �xed con�dence interval

assumed to capture the �rm-year discount rate, I obtain downward-biased estimates. This implies that the

estimate of the idiosyncratic risk coe�cient will likely provide a lower bound estimate of the relationship

between discount rate and idiosyncratic risk.

6 Results

6.1 Do managers price idiosyncratic risk

The main regression of this section investigates the role of idiosyncratic risk on managers' discount rate

calculation. The unit of observation is at the �rm-idiosyncratic exposure-year level16. The basic regression

goal is to evaluate if idiosyncratic risk exposure impacts the project discount rate calculation. Table 4 shows

that idiosyncratic risk appears to be priced by managers, where column 1 presents the baseline threshold

interval for the discount rate approximation, while columns 2-5 replicate the results under di�erent threshold

de�nitions as a robustness exercise.

6.1.1 NPV decision rule and model mispeci�cation

One hypothesis imposed by the revealed preference strategy is that �rms base their investment decision on the

NPV rule. Although managers overwhelmingly report using the NPV decision rule when making investment

decisions (???), empirical evidence suggests that �rms also consider the option value of their investment

when deciding to invest (e.g. (?). In a world where managers use a model incorporating the project's op-

tion value to determine their investment decision, the optimal investment trigger then includes the project's

16ri,j,t, where i corresponds to the �rm index, j corresponds to whether the observation is from the high or low idiosyncratic
area and t corresponds to the year the well was drilled.
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idiosyncratic risk17. However, there are two key reasons why this distortion does not alter the core results

discussed in the next section.

First, the main goal of this study is to investigate how �rms' hierarchy structure mediates the e�ect of

project-level idiosyncratic risk on the discount rate calculation. In other words, I decompose the �rms' dis-

count rate sensitivity to the project-level idiosyncratic risk to �nd how much can be attributed to the �rms'

hierarchical structure. It is unlikely that the �rms' decision to use the NPV versus the real option decision

rule is related to the �rms' hierarchical structure.

Second, I am working on two robustness test speci�cations to directly rule out the real option problem. In

the �rst speci�cation, I make use of the fact that the real option value of a project depends among other things

on the time-to-expiration. For example, the shorter the amount of time �rms have to decide when drilling

their well, the smaller is the real option value. Thus, as a robustness exercise, I derive the results working

exclusively with wells close to the lease expiration, which is when the �rms have limited timing �exibility. In

the second robustness speci�cation, I plan to directly estimate the discount rate using a real option framework.

6.2 What a�ects managers' price of idiosyncratic risk?

In this section, I �rst provide an overview of the existing theoretical and empirical evidence relating managers'

career concerns to risk-averse behavior. Then, I introduce the role of �rm hierarchical structure and its e�ect

on managers' price of idiosyncratic risk. Finally, I test how �eld managers' ability to diversify project-level

idiosyncratic risk (i.e. the number of wells they can drill) impacts the price of idiosyncratic risk.

Managers are concerned about the ultimate consequences of their decisions on their career outlook, specif-

ically their reputation (?). Indeed, managers care both about today's investment outcomes and the impact

of their decisions on their future career prospects, their human capital (?). However, �rms' owners solely

care about the �nancial performance of the �rm. The manager's dual objectives create tension and could

17see appendix III
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ultimately lead to incentive misalignment with the �rm's owners. (?) provides empirical evidence that repu-

tation concern negatively impacts managers' preference for risky investment opportunities. This relationship

is not limited to the owner-manager relationship, but also applies to the relationship between senior managers

and their subordinates (?).

Indeed, a growing body of research suggests that �rms are not the monolithic blocks often portrayed

in the �nance literature. Instead, they are composed of a complex hierarchical structure, in which senior

managers oversee the strategic imperative and delegate operational tasks to junior sta�s. In the oil and gas

industry, such junior employees hold a crucial decision-making role (?). Indeed, knowledge of local geological

characteristics and precise technical know-how is crucial to making optimal investment decisions over a large

number of small investment decisions18. Consequently, most �rms design regional business units, each in

charge of spending an allocated budget. In support of such a strategy, theoretical work by ? suggests that

delegating investment decision making to the agents with the highest amount of information regarding a

speci�c decision improves resource allocation. Empirically, the delegation of authority has been linked to

team specialization (e.g. ???), where workers in jobs that require technical skills usually bene�t from a

greater level of authority. This approach increases the likelihood that people most familiar with the local

rock formation speci�city will make investment decisions with limited interference19. For example, Exxon

Mobil Corporation publicly revealed its North American upstream business structure [see �gure 10], which is

explicitly organized into regional units. Similarly, oil and gas �rms' shareholder communication documents

provide salient examples of how the geological formations impact �rms' hierarchical structure20.

The decoupling between capital allocation and the investment decisions might lead to misalignment of

incentives between senior managers and �eld managers (?). For example, when senior managers allocate

the budget across multiple �eld managers, the idiosyncratic risk exposure of a given �eld manager will be

18The average �rm in this study invested in 44 projects per year and drilled a total of 230 projects between 1983 and 2005.
19"Chevron's North America upstream business is headquartered in Houston, Texas, and is organized into regional busi-

ness units that explore for, develop, and operate oil and gas assets." Source: https://www.chevron.com/operations/

exploration-production/exploration-production-in-north-america
20Generally, basins are constituted of multiple �elds [see �gure 11], which provide a logical structure for �rms to organize the

information provided to shareholders. Source: https://s2.q4cdn.com/462548525/files/doc_financials/quarterly/2018/q2/
Q2-2018-DVN-Operations-Report-FINAL.pdf.
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greater than that of the senior manager. Therefore, the loss of diversi�cation arising from the hierarchization

potentially increases �eld managers' concerns about idiosyncratic risk, pricing it more aggressively than the

better-diversi�ed senior manager. We see a similar story in the asset pricing literature, in which the loss of

diversi�cation due to the delegation process distorts the lower-level managers' risk-return preference from

the senior managers (?).

Additionally, �eld managers' private bene�ts (e.g. career concerns or desire to increase their share of the

budget next period) might induce them to account for idiosyncratic risk (?). Survey evidence reported in

? indicates that for 65% of American CFOs, previous performance of business units is a key determinant

for next period capital allocation. This dynamic is captured in table 5, where the number of projects a

given �eld manager will drill at period "t' depends on his portfolio's relative success at period "t-1'. More

importantly, this relation is decreasing in the �eld maturity. For example, bad performance in the early stage

of the �eld development will more drastically reduce the number of projects the �eld manager can develop

than a similar performance in a more mature �eld. The theoretical �nding presented in ? translates nicely

into this result. Senior managers' tolerance level for failed drilling attempts increases as more information

about the �eld quality accumulates (i.e. lowering the level of idiosyncratic risk). Thus, the probability of

canceling the �eld development becomes less sensitive to poor performance as more information is available

to the senior manager.

Consequently, this suggests that �rms in which �eld managers are on average less diversi�ed (i.e. lower

number of projects per �elds) are more exposed to the idiosyncratic realization of a single well because �eld

managers have an incentive to take it into account. We should expect that after controlling for the total

number of wells drilled by a �rm in a given year, �eld managers with many wells to drill should price idiosyn-

cratic risk less than a similar �eld manager with a smaller number of wells. E�ectively, as �eld managers

become more diversi�ed, they price idiosyncratic risk less aggressively, as illustrated in table 621.

21The results presented in table 6 are obtained using the baseline con�dence interval around the discount rate threshold (i.e.
5th to 15th percentile). As a robustness exercise, I run the same regression around other thresholds (Tables 7, 8, 9) to verify
how the results are sensitive to the threshold de�nition. The results appear to be strongly robust to these speci�cations.
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The results provided in this section highlight how the �rm hierarchical structure can mediate managers'

price of project-level idiosyncratic risk. Through changes in their allocation of the �rm budget, bigger

(smaller) share of the budget increase (decrease) the number of wells managers can drill, which in turn de-

creases (increases) their exposure to project-level idiosyncratic risk.

6.3 Endogeneity

Firms unobserved characteristics could be correlated with the �eld managers diversi�cation level. To alleviate

endogeneity concerns, I introduce an instrumented variable. Conceptually, the instrumental variable is the

�rms newly discovered diversi�cation potential. precisely, every year, I construct a variable that is equal to

the average size of the newly discovered �eld in the �rms region of operation. To obtain the instrumental

variable, I �rst measure a given �eld size as the surface area covered by the �eld as of 201822. Second, I

compute the average size of the newly operational �eld in a given year in the region of operation of each �rms.

For example, if a �rm operates in Texas and Oklahoma 1983, the instrument variable would correspond to

the average size of the �elds discovered in 1984 for those two states.

This variable should not be correlated with the �rm uncontrolled characteristics. The fact that �eld

get discovered is not by itself random. Indeed, �rms actively explore and develop their surrounding region.

However, conditional on a �eld being discovered, its e�ective size is random. Indeed, in each states, some

�eld turn out to be large, whereas some others end up being small. Thus, it should satisfy the exclusion

restriction.

Alternatively, this variable is strongly correlated with the variable of interest, which is the �eld managers

diversi�cation level (i.e. the average number of wells �eld managers

22Since I study the period 1983-2005, measuring the �eld size as of 2018 provides me with enough time lag to have a proper
measure of the e�ective �eld size
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7 Discussion

Why would senior managers expose �eld managers to a high level of idiosyncratic, given that they will price

it as shown in this study? If the senior manager behaves in an optimal fashion, she should internalize the

�eld managers' high exposure to idiosyncratic risk and consider it when deciding the number of �elds to

develop and the budget allocation for each �eld. To explain these seemingly contradictory states, I propose

that there is a trade-o� taking place, which I describe below.

We can think of the senior manager optimization decision as a two-steps problem. First, she must choose

"N" �elds with uncertain underlying quality, and then she must decide how much of her budget to allocate to

each of the assigned �eld managers [see �gure 1]. Second, each �eld manager decides which wells they want

to develop considering the budget they have been provided with. All things equal, a larger budget implies a

greater diversi�cation e�ect at the �eld manager level. Thus, from the senior manager perspective, there are

two sources of diversi�cation with di�erent implications. First, because there is risk regarding the underlying

quality of each �eld, it might be interesting to diversify part of her budget across multiple �elds to reduce

her exposure to �eld-speci�c idiosyncratic risk. However, as she increases the number of �elds to develop,

the number of wells her �eld managers will be able to drill declines, for a �xed senior managers' budget,

decreasing the �eld managers' diversi�cation. Thus, this strategy illustrates a trade-o� between reducing her

exposure to �eld idiosyncratic risk while simultaneously increasing the �eld managers' exposure to projects'

idiosyncratic risk.

8 Conclusion

In this paper, I provide a novel and original approach to extract a �rm's project-level discount rate. Using a

dataset covering the universe of oil and gas wells drilled in the United States between 1983 and 2005, I �rst

�nd that managers price idiosyncratic risk contrary to traditional corporate �nance theory. The empirical

results presented in the paper suggest that �rms' hierarchical structure plays an economically and statistically
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important role in mediating the phenomenon. E�ectively, because senior managers split their budget across

multiple �eld managers, this makes the �eld managers less diversi�ed than the senior manager at the project

level. This loss of project-level diversi�cation translates into a more aggressive pricing of idiosyncratic risk

by the �eld managers. Although the results of this paper suggest that well-diversi�ed �rms appear to price

project-level idiosyncratic risk because of the hierarchical structure, it does not discuss if the phenomenon

deviates from optimal behavior. Future research should investigate if the loss of diversi�cation at the �eld

level (i.e. division level in a traditional �rm) is value maximizing for the �rm because it increases the num-

ber of divisions it can run at the same time. The overall consequence of such a trade-o� has not yet been

investigated in the literature.
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9 Appendix

9.1 Appendix I: ARP model adjustment for empirical evaluation

To estimate this nonlinear model, I linearize the equation such that:

qt,i = Ai(1 + bθt)
−1
b

ln(qt,i) = ln(Ai)−
1

b
ln(1 + bθt)

ln(qt,i) = ln(Ai) +Ramp1 +Ramp2 +

K∑
k=0

βkt
k

Where the last step is obtained from doing a taylor expansion of the term ln(1 + bθt). For a �xed �t� su�-

ciently small, the expansion terms converge to 0, since the product of b and θ is close to zero. In other words,

I can approximate the hyperbolic decline curve using an order �K� polynomial. Finally, I include two dummy

variables, Ramp1 and Ramp2, respectively equal to 1 for the �rst and second month of the wells production,

to account for the wells production ramp-up patterns [See wells �rst two months of production of �gure 8].

9.2 Appendix II: Simpli�ed model

Under the assumption that the model is in�nite lived, and that the depletion rate is constant over time, it is

possible to rewrite the model in continuous time such that:

0 =E0[

∫ ∞
t=0

Pt · B̃Qie−(η+µi)t]− Ci

0 =
Pi · B̃Qi
η + µi

− Ci

µi =
Pi · B̃Qi
Ci

− η

µi =
Pi ·BQi
Ci

+
ε

Ci
− η

Where B̃Qi is the baseline production level of well "i" with measurement error such that B̃Qi = B̃Qi+ ε,
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η is the constant depletion rate, Pi is the three-year forecast of oil or gas price, Ci is the drilling cost, t is

the number of months since the well has been drilled, and µi is the project IRR. It is important to note that

for this derivation I no longer work with the monthly production of well "i" (Q̃i,t). Instead, the production

function is written as a function of the baseline production level. This is possible to rewrite the problem in

this fashion because the depletion rate does not depend on the time since the well was drilled.

9.3 Appendix III: IRR versus Real Option

The goal of this section is to illustrate the e�ect of a manager using a real option decision rule would have

on the discount rate estimation.

For example, assume that managers exercise project based on an NPV rule (i.e. invest when V ≥ I),

and my strategy to extract the discount rate relies on an internal rate of return (IRR) rule. For simplicity,

assume that wells produce for one period such that, the manager invest at t=0 and get the cash �ow (i.e.

the oil, V) at t=1. Such a rule implies that managers will invest whenever V
1+r ≥ I. If we estimate the IRR

here, we get: rNPV = V
I − 1.

Now, assume that instead of using an NPV rule, managers use a real option decision rule (i.e. invest

when V ∗ ≥ I and V ∗ ≥ V ). If we estimate the IRR here, we get: rRO = V ∗

I − 1. Comparing both estimated

discount rate yield: rRO ≥ rNPV . Importantly, rRO depends on V ∗, which in turn depends on the level

of idiosyncratic risk of each project. This happens because real option optimal threshold incorporates the

investment cash �ow uncertainty. In other words, for projects with greater idiosyncratic uncertainty, rRO

will be mechanically greater if �rms use a real option decision rule.

Interestingly, as the time-to-expiration of the real option converges to zero (i.e. the �rms no longer have

timing �exibility) and rRO = rNPV .
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Figure 1: The senior manager allocation problem.

Senior Manager Budget Allocation Problem

This figure provides a graphical illustration of the senior manager budget allocation problem. In the first step, the senior manager
must choose the number of field she wants to develop. Then, in the second step the senior manager must decide how much budget
she wants to allocation to each of the field she decided to develop (i.e. this is equivalent to deciding the number of wells she want to
have drilled in each field).

Senior Manager

Field 1 Field N…                       …Step 1:

Well 1 Well K Well 1 Well JStep 2: …     …     



Figure 2.3 - Field development in 1960 Figure 2.4 - Field development in 1985 Figure 2.5 - Field development in 2010

Figure 2: Panhandle Field (Texas) Development Progress Over Time
This panel of figure plots the evolution of the Panhandle field development over time. Figure 2.1 provide the initial expectation of the field boundary. Figure2.2 provide an updated view of the
field development and figure 2.3 to 2.5 illustrate the evolution of a portion of the field.

Figure 2.1 - 1961 map of approximate boundary of Panhandle oil and gas field producing region. Source: Anderson and Hinson, 1961; Boone 
1958; and G.B. Shelton, U.S. Bureau of Mines, written communication, 1958 .

Figure 2.2 - 2010 map of cummulative oil and gas wells drilled in the Panhandle field.

Progression of field development over time - Panhandle Oil Field (Texas)



Figure 3: Projects Geographic Distribution
This figure plots the full sample of projects included in the analysis. In total, 651,033 vertical wells were completed for the period ranging
from 1983-2005. The map provides information on the regional intensity, and the types of resources extracted at each geographical location.
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Figure 4: Well Cost as a function of drilling depth

This figure plots the estimated relationship between drilling cost and wells depth for the average well, filtering out year and firm fixed effects. The total drilling cost
is on the y-axis and the well's total depth is on the x-axis. Deeper wells are exponentially more expensive, as illustrated by the graph. The R-squared 0.8230,
indicating that most of the relation can be explained by the depth of the well.
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Figure 5.1:  Distribution of Projects Expected Returns

Figure 5.2: Truncated Distribution of Completed Projects
These figures schematize the true distribution of the projects' internal rate of return for a given firm year. In figure 4.1, the red dash line represents the minimum discount rate required for the firm
to complete a given project. Figure 4.2 plot the truncated distribution of projects expected returns.
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This figure schematizes the observed distribution of the completed projects' implied internal rate of return for a given firm-year. The red dash line represents the projects minimal rate required for
the firm to complete them that was set in figure 4. Now, because of measurement error, it is no longer possible to look at the minimum rate to infer the firm discount rate. The red dotted line
represents the interval used to estimate the firm discount rate.

Figure 6: Observed Truncated Distribution of Projects Expected Returns 
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Figure 7: Vertical wells versus Horizontal Wells.

Difference between Horizontal and vertical Wells

This figure provides a graphical illustration of the difference between horizontal and vertical well. Vertical
wells represent the older technology, predominantly used in the first part of the American oil and gas
development (i.e. 1900-2005). Vertical wells drilled in those years traditionally targeted oil or gas reservoirs
that could roughly be represented by the drawing. In contrast, horizontal wells are generally used in region
were vertical wells technology is not economically efficient.  

(1) Horizontal Well                  (2) Vertical Well 



These figure plots both the predicted monthly production and the realized monthly production for the median well in the sample. The monthly production is
measured in barrel of oil equivalent (BOE) is represented on the y-axis and the time since well completion (in months) is on the x-axis.

Figure 8. Realized Median Well Output versus Predicted median Well Output
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Figure 8.1 Median Oil Well's Monthly Production

Monthly Production (Predicted) Monthly Production (Median Realization)
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Figure 9: Observed Truncated Distribution of Projects Expected Returns 
This figure schematizes the observed distribution of the completed projects' implied internal rate of return for a given firm-year when the expected quantities measurement increases. For illustrative
purposes, I assume that the true discount rate defined in figure 4 could be approximate using the 10th percentile of the distribution. Thus, red dotted line illustrates how the downward bias would
affect the estimated discount rate for an increase in the measurement error.
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Figure 10: Corporate Structure of Exxon Mobil Corporation (2017). 

Exxon Mobil Corporation Coporate Structure (2017) - U.S. Upstream Business Unit 

This figure present a representative example of the corporate tree structure for a firm with upstream activities across multiple regions
of the Unites States. As for most firms with upstream activity, the business unit are organized into geographic region. Source: Lexis
Nexis Academic Edition.



Oil & Gas Basin and their Respective Fields

Figure 11: Oil & Gas fields and Basin. 
This figure provides a crude illustration of the number of oil and gas fields in a given geological basin. The red line represents the boundary limits of each geological basin, while
the green and red dots map the position of oil & gas fields. The figure solely includes the 100 biggest fields ranked by their 2009 proved reserves. Source:
https://www.eia.gov/oil_gas/rpd/topfields.pdf



Table 1: Dry Hole Probability during development stage of oil & gas field

Pr(Dry Hole) Pr(Dry Hole)
(1) (2)

(β1) Percentile Rank Order -1.1600*** -0.3176***

[-341.36] [-43.18]

Year Fixed Effect No Yes

Log Likelihood -2.85e+05 -2.71e+05

N 344,729 344,729

Sample Estimates Marginal Effect Z-Stat

First Quartile of Field Life Cycle 0.386*** [1191.77]
Second Quartile of Field Life Cycle 0.282*** [492.39]
Third Quartile of Field Life Cycle 0.193*** [277.13]
Fourth Quartile of Field Life Cycle 0.124*** [178.67]

EIA Estimates Pr(Dry Hole)

Development stage 15.55%
Source: https://www.eia.gov/dnav/ng/ng_enr_wellfoot_s1_a.htm

This first part of this table reports the marginal probability of drilling a dry hole, estimated using a Probit

regression, given the wells' percentile rank quartile. The period of the sample is from 1983 to 2005. The

unit of observation is at the well level. In the sample, a well is identified as being a dry hole if it is found to

be incapable of producing either oil or gas in sufficient quantity to be commercially profitable. The quartile

represents the percentile of the Rank Order of the wells. For example, the wells included in the first quartile

were among the first 25% of their respective rock formation to be drilled. The second part of this table

present the marginal effect for the probability of a dry hole, for wells drilled in each of the 4 potential

quartiles of a field development. Similar estimates, economically and statistically, are obtained when

running a logit regression model. T-statistics are reported in brackets below the coefficients. * indicates

significance at the 10% level, ** at the 5% level, and *** at the 1% level.



Table 2: Summary Statistics for the period 1983-2005

Mean Median Std. Dev.
Wells per Firm 229.5 65.0 909.3
Wells per Firm-Year 43.5 19.0 88.2
Fields per Firm 23.8 10.0 52.2
Wells per Field 465.7 213.0 1377.4
Firms per Field 45.1 27.0 70.3

Cost Data
Drilling Cost 608,908 340,000 1,058,239
Drilling Cost (per foot) 83.21 54.54 150.11
Royalty Rate 18.17 17.19 3.05
Operational Cost (as a percentage of cash flow) 20% 20% 0%

Well First Year Production
Oil (in Barrel) 9,805 258 87,675
Gas (in MBTU) 108,109 8,664 508,815
BOE (Barrel of Oil Equivalent) 27,823 3,722 139,522

Nominal Price
Oil WTI (Per barrel) 42.82 38.03 15.65
Gas (Per mcf) 2.70 2.09 1.53



Table 3: Wells' Production Flow Estimates

(1) Gas Well (1) Oil Well

(β1) Rank1 -0.0333509188349963*** -0.0323296057069219***
[-196.65] [-208.69]

(β2) Rank2 0.00050764761937399*** 0.00058594568480729***
[63.06] [79.65]

(β3) Rank3 -0.0000063800489147*** -0.0000082830415717***
[-36.86] [-52.44]

(β4) Rank4 0.00000005270655559*** 0.00000007234590972***
[27.43] [41.33]

(β5) Rank5 -0.0000000002575165*** -0.0000000003662680***
[-22.55] [-35.30]

(β6) Rank6 0.00000000000066687*** 0.00000000000098003***
[19.35] [31.40]

(β7) Rank7 -0.0000000000000007*** -0.0000000000000010***
[-16.98] [-28.55]

(β8) Ramp1 -0.4285706419697133*** -0.2748617110648319***
[-224.55] [-159.18]

(β9) Ramp2 0.0152751192772810*** -0.0185934528662633***
[8.38] [-11.26]

Firm-Year Fixed Effect Yes Yes
Year-Region Fixed Effect Yes Yes

R-Squared 0.6125 0.6681
N 92442976 94664756

This table reports coefficient estimates from an OLS regression. The production variable correspond to the
well's production "t" months after the well was completed. The precision of those coefficient is important to
properly match the realized production data. For this reason, I allow for 21 digits. Terms in bracket
correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and
*** at the 1% level.



Table 4: Idiosyncratic Risk and Firms Projects' Discount Rate

5th to 15th 2.5th to 12.5th 2.5th to 7.5th 5th to 10th

(1) (2) (1) (2)

(β1) Idiosyncratic Risk 4.1291*** 3.7590** 3.6267** 3.7908**

[3.00] [2.42] [2.26] [2.11]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0111 0.0078 0.0097 0.0110
N 21429 20823 9076 9007

Discount Rate Threshold

This table reports coefficient estimates from an OLS regression for the discount rate computed using the multiple interval to capture the firms effect discount rate.
The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. Standard errors are
cluster and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and ***
at the 1% level.



Table 5: Capital Allocation Across Firms Investment Portfolio

(1) (2) (3)

(β1) Average Field Projects' Relative Performance 3.027*** 3.130** 3.282***

[3.37] [2.57] [2.74]

(β2) Percentile Rank in Formation 0.001 0.001 -0.010***

[0.64] [0.21] [-3.52]

(β3) Interaction -0.022** -0.025* -0.021*

[-1.98] [-1.92] [-1.67]

Firm Fixed Effect Yes Yes Yes
Field Fixed Effect No Yes Yes
Year Fixed Effect No No Yes

R-Squared 0.0165 0.0256 0.0325
N 53824 53824 53824

This table reports coefficient estimates from an OLS regression. The average Field Projects' Relative Performance variable correspond to a
ratio of the wells in a given field average productivity divided by the overall productivity of the firms. The variable Interaction, correspond
to the investment increase sensitivity to performance as the field becomes more mature. For example, a coefficient of -0.022 suggest that
investment increase is less sensitive to well performance as the fields become more mature. The errors are cluster at the firm level. *
indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Next Period Field Manager Budget Increase



Table 6: Firm Hierarchy and Price of Idiosyncratic Risk (5th to 15th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 4.1291*** 4.9201*** 6.5318*** 6.2096***

[3.00] [3.47] [4.26] [3.64]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.0894** -0.0927** -0.1042***

[-2.79] [-2.70] [-2.98]

(β4)  Idiosyncractic Risk * Number of Fields -0.0297 -0.0581**

[-1.23] [-2.19]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0008

[-0.76]

(β6) Idiosyncractic Risk * Firm Size 0.0007

[0.80]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0111 0.0121 0.0137 0.0146
N 21429 21429 21429 21429

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.



Table 7: Firm Hierarchy and Price of Idiosyncratic Risk (2.5th to 12.5th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 3.7590** 4.6108*** 5.2607*** 4.9888**

[2.42] [2.92] [2.91] [2.35]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.0929** -0.0801** -0.1017**

[-2.58] [-2.36] [-2.66]

(β4)  Idiosyncractic Risk * Number of Fields -0.0050 -0.0433***

[-0.32] [-3.99]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0016*

[-1.96]

(β6) Idiosyncractic Risk * Firm Size 0.0008

[1.06]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0078 0.0088 0.0094 0.0104
N 20823 20823 20823 20823

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.



Table 8: Firm Hierarchy and Price of Idiosyncratic Risk (2.5th to 7.5th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 3.6267** 4.7065*** 5.5503*** 5.6319**

[2.26] [2.88] [3.22] [2.20]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.1133** -0.0992*** -0.1232***

[-2.78] [-2.92] [-2.91]

(β4)  Idiosyncractic Risk * Number of Fields -0.0074** -0.0336***

[-2.69] [-5.30]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0015**

[-2.32]

(β6) Idiosyncractic Risk * Firm Size 0.0003

[0.50]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0097 0.0116 0.0126 0.0127
N 9076 9076 9076 9076

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.



Table 9: Firm Hierarchy and Price of Idiosyncratic Risk (5th to 10th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 3.7908** 4.7738** 6.9504*** 6.9617***

[2.11] [2.68] [5.54] [3.28]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.1079** -0.1160*** -0.1270**

[-2.50] [-2.85] [-2.75]

(β4)  Idiosyncractic Risk * Number of Fields -0.0377* -0.0541**

[-1.72] [-2.80]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0008

[-0.59]

(β6) Idiosyncractic Risk * Firm Size 0.0002

[0.31]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0110 0.0127 0.0154 0.0155
N 9007 9007 9007 9007

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.



Table 10: Firm Hierarchy and Price of Idiosyncratic Risk (7.5th to 12.5th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 3.7354** 4.5057** 4.8652* 4.5362*

[2.26] [2.65] [2.02] [1.84]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.0854** -0.0706* -0.0926**

[-2.31] [-1.77] [-2.27]

(β4)  Idiosyncractic Risk * Number of Fields 0.0021 -0.0453*

[0.07] [-1.85]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0018

[-1.55]

(β6) Idiosyncractic Risk * Firm Size 0.0010

[1.13]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0111 0.0124 0.0131 0.0152
N 9784 9784 9784 9784

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.



Table 11: Firm Hierarchy and Price of Idiosyncratic Risk (10th to 15th)

Discount Rate Discount Rate Discount Rate Discount Rate
(1) (1) (2) (3)

(β1) Idiosyncratic Risk 4.2652*** 4.9292*** 6.2705*** 5.7550***

[3.54] [3.84] [2.96] [3.07]

(β2) Idiosyncractic Risk * Field Managers Diversification -0.0754** -0.0778** -0.0879***

[-2.57] [-2.20] [-2.90]

(β4)  Idiosyncractic Risk * Number of Fields -0.0247 -0.0571

[-0.61] [-1.54]

(β5) Idiosyncractic Risk * Firm Yearly Budget -0.0007

[-0.41]

(β6) Idiosyncractic Risk * Firm Size 0.0008

[0.91]

Firm-Year Fixed Effect Yes Yes Yes Yes

Within R-Squared 0.0200 0.0212 0.0230 0.0257
N 9667 9667 9667 9667

This table reports coefficient estimates from an OLS regression for the discount rate computed using the interval between the 5th and 15th percentile of the return

distribution. The idiosyncratic variable is a dummy variable equal to 1 for the wells were drilled in the first half of a field development, and 0 otherwise. The

variable Field Managers Diversification counts the average number of projects each field managers can development in his own field in a given year. The variable

Firm size count the total number of projects a firm decided to perform in a given year. The variable Number of Fields count the number of field a firm is active in,

in a given year. The variable Firm Size counts the cumulative number of projects a firm drilled from the beginning of its operation up to a given year. For example,

if a firm drills one project per year, Firm Size would take the value 1, 2, 3 for the first, second and third year of operation, respectively. Standard errors are cluster

and the firm and year level. Terms in bracket correspond to the coefficient T-statistic, * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.


