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What Firm Characteristics Drive US Stock Returns?

Abstract

We employ a forecast combination approach to analyze the ability of 94 firm character-
istics from Green, Hand, and Zhang (2017) to predict US stock returns. Using machine
learning tools to pool forecasts, we find that most of the firm characteristics matter over
time—and approximately 30 matter on average at each point in time—for forecasting
value-weighted cross-sectional returns before and after 2003, a year when Green, Hand,
and Zhang (2017) detect a major structural break. By processing the information in a
plethora of predictors in a manner that alleviates overfitting, our combination approach
provides economically significant out-of-sample forecasts of cross-sectional returns con-
sistently over time.

JEL classifications: G11, G14

Key words: Firm characteristics, Cross-sectional expected stock returns, Forecast com-
bination, Machine learning, Fama-MacBeth regression, Forecast encompassing



1. Introduction

Green, Hand, and Zhang (2017, GHZ) construct a comprehensive set of 94 firm charac-

teristics and analyze their ability to explain cross-sectional US stock returns, addressing a

challenge posed by Cochrane (2011). They detect a sharp deterioration in the ability of firm

characteristics to predict cross-sectional value-weighted returns after 2003. They further con-

clude that twelve firm characteristics affect cross-sectional value-weighted expected returns

before 2003, while only two characteristics influence expected returns after 2003. GHZ’s

thought-provoking findings point to a substantially diminished role for firm characteristics

in determining cross-sectional expected returns since 2003 and suggest that relatively few

characteristics matter for expected returns.

A singular strength of GHZ is the analysis of a large number of firm characteristics

from the literature. In the present paper, we reexamine the ability of the 94 firm charac-

teristics compiled by GHZ to predict cross-sectional returns. Our analysis focuses on the

construction of out-of-sample cross-sectional return forecasts, and we use a forecast com-

bination approach to incorporate the information from a plethora of predictor variables in

a manner that guards against overfitting.1 GHZ employ conventional ordinary or weighted

least squares (OLS or WLS, respectively) to estimate cross-sectional multiple regressions

that simultaneously include all 94 firm characteristics as predictor variables. Conventional

estimation is asymptotically optimal in environments with a stable data-generating process

(DGP). However, because conventional OLS or WLS maximizes the fit of the model over a

finite estimation (or training) sample, it potentially leads to unreliable out-of-sample per-

formance, especially in the presence of a large noise component and structural instability in

the DGP. These are relevant concerns for cross-sectional stock returns, as returns inherently

1Our notion of overfitting accords with the definition from the Oxford English Dictionary:
“The production of an analysis which corresponds too closely or exactly to a particular set
of data, and may therefore fail to fit additional data or predict future observations reliably”
(https://en.oxforddictionaries.com/definition/overfitting). See Timmermann (2006) for an ex-
tensive survey of forecast combination.
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contain a large unpredictable component, and GHZ’s important analysis points to structural

instability in the relationship between firm characteristics and cross-sectional returns.

Specifically, instead of generating stock return forecasts by fitting a cross-sectional mul-

tiple regression that includes all 94 characteristics as predictor variables, our forecast combi-

nation approach produces return forecasts by first fitting a series of cross-sectional univariate

regressions, each of which includes an individual firm characteristic as a predictor variable.

We then pool the cross-sectional return forecasts corresponding to the individual charac-

teristics by taking the arithmetic mean, thereby providing us with combination forecasts of

cross-sectional returns. In a time-series multiple regression context, Rapach, Strauss, and

Zhou (2010) show that the mean combination forecast alleviates multicollinearity and acts

as a shrinkage device. In this way, forecast combination stabilizes out-of-sample forecasts

and mitigates overfitting.2

The mean combination forecast is a simple average of individual forecasts based on all of

the firm characteristics. As recently proposed by Diebold and Shin (forthcoming), we also

employ machine learning tools in an effort to refine the combination forecast. Specifically,

we use the Tibshirani (1996) least absolute shrinkage and selection operator (LASSO) or Zou

and Hastie (2005) elastic net to select the individual forecasts to include in the combination

forecast. Machine learning tools are becoming increasingly popular in finance; for example,

Feng, Giglio, and Xiu (2017), Freyberger, Neuhierl, and Weber (2018), Gu, Kelly, and

Xiu (2018), Chinco, Clark-Joseph, and Ye (forthcoming), and Kozak, Nagel, and Santosh

(forthcoming) utilize machine learning to analyze cross-sectional returns. In contrast to

these studies, we employ machine learning in the construction of combination forecasts of

cross-sectional returns. As a byproduct of the construction of the combination forecasts, the

individual forecasts selected by the LASSO or elastic net provide insight into the relevance

of individual firm characteristics over time.

2Rapach, Strauss, and Zhou (2010) find that forecast combination substantially improves time-series
forecasts of the US aggregate market excess return. Applying forecast combination to the cross section for
the first time, the present paper shows that it also significantly improves cross-sectional return forecasts.
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To assess the cross-sectional return forecasts, we follow Lewellen (2015) and analyze

the slope coefficients in Fama and MacBeth (1973, FM) regressions of realized on forecasted

cross-sectional returns. We extend analytical results in Lewellen (2015) from equal to general

weighting of cross-sectional return observations. The analytical results facilitate interpre-

tation of the FM slope coefficient estimates. We also develop a new procedure based on

forecast encompassing (Chong and Hendry 1986; Fair and Shiller 1990; Harvey, Leybourne,

and Newbold 1998) for comparing the information content of two competing cross-sectional

return forecasts in an FM framework.

As a benchmark, we first compute monthly cross-sectional return forecasts based on

conventional estimation of cross-sectional multiple regressions. For the 1990 to 2017 fore-

cast evaluation period and WLS estimation of the cross-sectional regressions, the FM slope

coefficient estimate is well below unity, implying that the conventional return forecasts sub-

stantially overstate the cross-sectional dispersion in expected returns (Lewellen 2015), a

direct indication of overfitting. The relatively small value for the FM slope estimate also

implies that the conventional forecasts are less accurate on average in terms of cross-sectional

value-weighted mean squared forecast error (MSFE) than a “naive” forecast that ignores the

information in firm characteristics. The FM slope estimate becomes statistically indistin-

guishable from zero after 2003, so that overfitting is magnified and essentially renders the

conventional forecasts unrelated to realized returns after 2003.

In contrast to the conventional forecasts, the FM slope coefficient estimates for the various

combination forecasts are all above (but not statistically different from) unity, demonstrating

that the combination forecasts effectively guard against overfitting and provide a more accu-

rate measure of the cross-sectional dispersion in expected returns. The FM slope estimates

are quite stable before and after 2003, so that—unlike the conventional forecasts—the combi-

nation forecasts remain informative for tracking cross-sectional value-weighted returns after

2003. The combination forecasts also deliver a lower cross-sectional value-weighted MSFE

on average than the naive forecast that ignores the information in firm characteristics.
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Before 2003, forecast encompassing tests indicate that the conventional and combina-

tion forecasts contain unique information relative to each other for predicting cross-sectional

value-weighted returns. After 2003, however, the conventional forecasts no longer provide

useful information for predicting cross-sectional returns beyond the information already con-

tained in the combination forecasts. Indeed, for the post-2003 period, an optimal composite

forecast comprised of the conventional and combination forecasts attaches a coefficient very

near zero (unity) to the conventional (combination) forecast, indicating that the conventional

forecast provides little information gain after 2003. Because the conventional and combina-

tion approaches share the same information set—namely, data for 94 firm characteristics—

the differences in outcomes relate to how the information in firm characteristics is processed.

Forecast combination helps to improves out-of-sample performance by processing large in-

formation sets in a manner that guards against overfitting.

The LASSO and elastic net both suggest that a large number of firm characteristics

matter for forecasting cross-sectional value-weighted returns. For the 1990 to 2017 period,

both methods identify approximately 30 characteristics on average as relevant cross-sectional

return predictors. The number of characteristics selected each month by the LASSO or

elastic net is quite stable over time, and more than ten characteristics are selected each

month. Along this line, approximately 30 characteristics are selected on average before and

after 2003.

Although approximately 30 characteristics are selected on average by the LASSO and

elastic net, this figure tends to understate the number of relevant firm characteristics, as

there is significant “churn” in the individual characteristics selected over time. The selection

frequencies for the vast majority of individual characteristics exceed 30%, with the largest

frequencies just below 50%. Overall, our results indicate that most of the 94 characteristics

matter over time, and around 30 characteristics matter on average at each point in time. This

is consistent with the view that the importance of individual economic risks changes over

time and that a considerable number of individual risks—rather than only a few—matter at
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a point in time. To the extent that the characteristics reflect behavioral biases or related

factors that generate mispricing, our findings similarly imply that the relevance of individual

behavioral factors varies significantly over time and that a sizable number of such factors

are pertinent at each point in time.

As in Lewellen (2015) and Green, Hand, and Zhang (2017), we also assess the economic

value of cross-sectional return forecasts by forming monthly spread portfolios that go long

(short) the top (bottom) decile of firms with the highest (lowest) forecasted returns. Spread

portfolios based on the combination forecasts deliver sizable average monthly returns, as

well as substantial risk-adjusted average returns in the context of the Carhart (1997) four-

factor, Fama and French (2015) five-factor, and Hou, Xue, and Zhang (2015) q-factor models.

Confirming results in GHZ, a value-weighted spread portfolio based on the conventional

multiple regression approach exhibits a significant decline in performance after 2003; in

contrast, spread portfolios formed from the combination forecasts generate sizable gains

both before and after 2003.

The rest of the paper is organized as follows. Section 2 describes the forecast combination

approach, as well as the econometric procedures we use to analyze cross-sectional return

forecasts. Section 3 reports results for the 1990 to 2017 out-of-sample period and pre- and

post-2003 subperiods. Section 4 concludes.

2. Data and Methodology

2.1. Data

We use the same 94 firm characteristics as GHZ, updated through December of 2017.3 The

data begin in January of 1980, as most characteristics only become widely available starting

in 1980. We retain common stocks on the NYSE, AMEX, and NASDAQ that have a market

value on CRSP at the end of the previous month and nonmissing value for common equity in

3We thank Jeremiah Green for providing SAS code to extract the data from CRSP, Compustat, and
I/B/E/S on his webpage (https://sites.google.com/site/jeremiahrgreenacctg/home).
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the firm’s annual financial statement. As in GHZ, we relate a firm’s month-t return to firm

characteristics available at the end of month t−1. We assume that annual firm characteristics

are available in month t− 1 if the firm’s fiscal year ended at least six months before month

t − 1. Similarly, we assume that quarterly accounting data are available in month t − 1 if

the fiscal quarter ended at least four months before month t− 1. I/B/E/S and CRSP data

are aligned in calendar time using the I/B/E/S statistical period date and CRSP monthly

end date.

Following GHZ, we winsorize the characteristics at the 1st and 99th percentiles of their

monthly observations, and we use the cross-sectional mean and standard deviation to stan-

dardize the observations for each characteristic for each month (so that they have zero mean

and unit standard deviation). To avoid excluding a stock from a cross-sectional multiple

regression when it is missing an observation for only one or a few characteristics, we again

follow GHZ and replace the missing values with the characteristic’s cross-sectional standard-

ized mean value of zero.4

For convenience, Table 1 provides acronyms and definitions for the 94 firm characteristics,

as given in Table 1 of GHZ. The Appendix in GHZ provides detailed information for the

characteristics.

2.2. Forecast Combination

We generate a combination forecast of the month-(t+1) return for stock i based on informa-

tion available in month t as follows. For month t, we first estimate a series of cross-sectional

univariate regressions, each of which relates returns to an individual characteristic:

ri,t = aj,t + bj,tzi,j,t−1 + εi,t for i = 1, . . . , It; j = 1, . . . , Jt−1, (2.1)

4Note that our mean combination forecast does not have any problem with missing values and hence does
not require us to fill in missing values. Nevertheless, the mean combination approach yields virtually the
same results whether we ignore missing values or use missing-value-filled data à la GHZ.
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where ri,t is the month-t return for stock i, zi,j,t−1 is the jth firm characteristic for stock i

in month t − 1, It is the number of stocks available in month t, and Jt−1 is the number of

characteristics available at the end of month t−1. Due to missing values for some character-

istics (especially in earlier periods), Jt can be smaller than 94. We estimate Equation (2.1)

via OLS or WLS. For the latter, the observation weight for stock i in month t corresponds

to the market value of stock i at the end of month t− 1, which we denote by wi,t.
5

In the next step, we use the fitted cross-sectional regression in Equation (2.1) to construct

month-(t+ 1) return forecasts for each stock based on each characteristic:

r̂
(j)
i,t+1|t = âj,t + b̂j,tzi,j,t for i = 1, . . . , It+1; j = 1, . . . , Jt, (2.2)

where âj,t and b̂j,t are the OLS or WLS estimates of aj,t and bj,t, respectively, in Equa-

tion (2.1). The final step pools the return forecasts based on the individual characteristics

to form a combination forecast of ri,t+1. We compute a simple combination forecast of ri,t+1

by taking the arithmetic mean of the individual forecasts:6

r̂Mean
i,t+1|t =

1

Jt

Jt∑
j=1

r̂
(j)
i,t+1|t for i = 1, . . . , It+1. (2.3)

In addition to the mean combination forecast, we compute a trimmed mean combination

forecast, which omits the 5% smallest and 5% largest values of r̂
(j)
i,t+1|t for j = 1, . . . , Jt before

taking the average in Equation (2.3).

GHZ compute cross-sectional return forecasts for month t+ 1 using a conventional two-

step procedure.7 The first step entails OLS or WLS estimation of the following cross-sectional

5We scale the weights such that
∑It

i=1 wi,t = It.
6It is typically the case that Jt−1 = Jt. When a characteristic is unavailable in month t− 1 but becomes

available in month t (Jt−1 < Jt), we obviously cannot estimate Equation (2.1) for the missing characteristic

to obtain âj,t and b̂j,t in Equation (2.2); in this case, we simply do not include the forecasts based on the
missing characteristic when computing the month-(t+ 1) combination forecast in Equation (2.3). Similarly,
when a characteristic is available in month t − 1 but not month t (Jt−1 > Jt), we obviously do not have
the necessary characteristic observations for Equation (2.2), and we again exclude them when computing
Equation (2.3).

7Also see Haugen and Baker (1996), Hanna and Ready (2005), and Lewellen (2015).
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multiple regression for month t:

ri,t = aMR
t +

Jt−1∑
j=1

bMR
j,t zi,j,t−1 + εi,t for i = 1, . . . , It. (2.4)

Denoting the OLS or WLS estimates of aMR
t and bMR

j,t for j = 1, . . . , Jt−1 in Equation (2.4) by

âMR
t and b̂MR

j,t , respectively, the second step computes month-(t+ 1) return forecasts for each

stock based on rolling 120-month averages of the estimated coefficients in Equation (2.4):

r̂MR
i,t+1|t = āMR

t +
Jt∑
j=1

b̄MR
j,t zi,j,t for i = 1, . . . , It+1, (2.5)

where

āMR
t =

1

120

119∑
s=0

âMR
t−s, (2.6)

b̄MR
j,t =

1

120

119∑
s=0

b̂MR
j,t−s for j = 1, . . . , Jt. (2.7)

Observe that both the forecast combination and conventional approaches only utilize data

available at the time of forecast formation. The approaches thus generate out-of-sample

cross-sectional return forecasts, mimicking the situation of an investor in real time.

The first step of the conventional approach entails OLS or WLS estimation of a high-

dimensional regression model. This approach provides a natural baseline. Especially when a

regression includes a large number of predictor variables, however, conventional estimation

runs the risk of overfitting the model to the estimation sample. Intuitively, by maximizing

the fit of a model over the estimation sample, OLS or WLS estimation potentially reads too

much into the estimation sample, which can detract from the fitted model’s out-of-sample

predictive ability. Overfitting risks are magnified when the DGP is characterized by a large

noise component and structural instability.
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How does forecast combination guard against overfitting? As discussed in Rapach,

Strauss, and Zhou (2010), the mean combination forecast can be interpreted as a shrinkage

forecast. Relative to a forecast based on OLS or WLS estimation of the high-dimensional

regression in Equation (2.4), the mean combination forecast makes two adjustments: (i) it re-

places the multiple regression slope coefficient estimates with their univariate counterparts;

(ii) it shrinks the return forecasts to the cross-sectional mean. Using the Frisch-Waugh-

Lovell (FWL) theorem, these adjustments become evident by substituting Equation (2.2)

into Equation (2.3):

r̂Mean
i,t+1|t = r̄t +

1

Jt

Jt∑
j=1

b̂j,t(zi,j,t − z̄j,t) for i = 1, . . . , It+1, (2.8)

where

r̄t =
1

It

It∑
i=1

wi,tri,t, (2.9)

z̄j,t =
1

It

It∑
i=1

wi,tzi,j,t−1, (2.10)

and wi,t = 1 for i = 1, . . . , It for OLS estimation of Equation (2.1). By replacing the multiple

regression slope coefficient estimates with their univariate counterparts, the combination

approach eliminates the role of multicollinearity in generating imprecise coefficient estimates.

Although the univariate estimates are potentially biased, the gain in estimation precision

can be worthwhile in light of the bias-efficiency tradeoff. Shrinking the return forecasts to

the cross-sectional mean further guards against overfitting. Intuitively, shrinking the slope

coefficients towards zero in Equation (2.8) helps to prevent a researcher from reading too

much into the estimation sample when generating the out-of-sample forecast.8

Incorporating insights from Diebold and Shin (forthcoming), we also construct combi-

nation forecasts that use the LASSO and elastic net in an effort to refine the forecasts.

8As we discuss in Section 2.3, we are concerned with forecasting cross-sectional returns relative to the
cross-sectional mean return and not with forecasting the cross-sectional mean return itself.
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The LASSO and elastic net are powerful machine learning tools for variable selection in

high-dimensional settings (e.g., Zhang and Huang 2008; Bickel, Ritov, and Tsybakov 2009;

Meinshausen and Yu 2009). We harness these tools to select the most relevant individual

forecasts to include in the pooled forecast. As an added benefit, by tracking the individual

forecasts selected by the LASSO and elastic net each month, we can analyze the relevance

of individual firm characteristics for predicting cross-sectional returns over time.

We compute a combination forecast based on the LASSO as follows. Along the lines

of Granger and Ramanathan (1984), consider the following multiple regression that relates

realized cross-sectional returns to the return forecasts based on the individual characteristics

in Equation (2.2):

ri,t = aGR
t +

Jt−1∑
j=1

bGR
j,t r̂

(j)
i,t|t−1 + εi,t for i = 1, . . . , It. (2.11)

We estimate Equation (2.11) via the weighted LASSO:

arg min
ãGR
t ∈R, b̃GR

t ∈R
Jt−1
≥0

(
1

2It

It∑
i=1

wi,tε̃
2
i,t + λt

∥∥∥b̃GR
t

∥∥∥
1

)
, (2.12)

where

b̃GR
t =

[
b̃GR

1,t . . . b̃GR
Jt−1,t

]′
, (2.13)

ε̃i,t = ri,t −

(
ãGR
t +

Jt−1∑
j=1

b̃GR
j,t r̂

(j)
i,t|t−1

)
, (2.14)

∥∥∥b̃GR
t

∥∥∥
1

=

Jt−1∑
j=1

∣∣∣b̃GR
j,t

∣∣∣, (2.15)

and λt ≥ 0 is a regularization parameter.9 Setting wi,t = 1 for i = 1, . . . , It yields the

ordinary LASSO. When λt = 0, Equation (2.12) reduces to the familiar WLS objective

9Note that Equation (2.12) imposes the restriction that b̃GR
j,t ≥ 0 for j = 1, . . . , Jt−1, so that we preclude

the forecasted returns from being negatively related to the realized returns in the fitted model.
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function (OLS objective function when wi,t = 1 for i = 1, . . . , It). The presence of λt

in Equation (2.12) shrinks the slope estimates. The LASSO’s `1 penalty term allows for

shrinkage to zero (for a sufficiently large λt), so that it performs variable selection.10 The

LASSO combination forecast is simply the average of the individual forecasts selected by the

LASSO in Equation (2.12). Because we use Equation (2.12), which is based on information

available in month t, to select the individual forecasts to include in the LASSO combination

forecast for month t + 1, the LASSO combination forecast does not entail look-ahead bias.

The LASSO combination forecast retains the shrinkage properties of the mean combination

forecast; at the same time, it fine-tunes the combination forecast by focusing on the individual

forecasts that are the most relevant for explaining cross-sectional returns in the prior month.

When a group of variables is strongly correlated, the LASSO has a tendency to select one

of the variables from the group and not the others. To help ensure that we do not neglect

relevant characteristics, we also estimate Equation (2.11) via the weighted elastic net:

arg min
ãGR
t ∈R, b̃GR

t ∈R
Jt−1
≥0

{
1

2It

It∑
i=1

wi,tε̃
2
i,t + λt

[
0.5(1− γ)

∥∥∥b̃GR
t

∥∥∥2

2
+ γ
∥∥∥b̃GR

t

∥∥∥
1

]}
, (2.16)

where

∥∥∥b̃GR
t

∥∥∥
2

=

[
Jt−1∑
j=1

(
b̃GR
j,t

)2
]0.5

(2.17)

and 0 ≤ γ ≤ 1 is a blending parameter between ridge regression (γ = 0) and the LASSO

(γ = 1). When γ = 0.5, the elastic net tends to select strongly correlated predictors as a

group. Using γ = 0.5, we compute an elastic net combination forecast in the same manner

10Based on simulation evidence in Flynn, Hurvich, and Simonoff (2013) and Taddy (2017), we use the
Hurvich and Tsai (1989) corrected version of the Akaike information criterion (Akaike 1973, AIC) to choose
λt in Equation (2.12).
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as the LASSO combination forecast, except that we use the elastic net in Equation (2.16) in

lieu of the LASSO to select the individual forecasts to include in the pooled forecast.11

With respect to the treatment of small-cap stocks, we proceed analogously to GHZ and

consider three different cases. The first is “Value Weighted,” where we estimate Equa-

tions (2.1) and (2.4) via WLS and use the weighted LASSO or elastic net with observations

weighted by previous month-end market values. The second case is “Equal Weighted excl. Mi-

crocap,” where we estimate Equations (2.1) and (2.4) via OLS and use the ordinary LASSO

or elastic net after excluding stocks with market values below the NYSE 20th percentile. The

final case is “Equal Weighted,” which relies on OLS estimation of Equations (2.1) and (2.4)

and uses the ordinary LASSO or elastic net based on data for all available stocks.

2.3. Predictive Slope

Following Lewellen (2015), we analyze the cross-sectional return forecasts by estimating FM

regressions that relate realized to forecasted returns.12 Specifically, for each month t, we

estimate the following cross-sectional univariate regression:

ri,t = aFM
t + bFM

t r̂i,t|t−1 + εi,t for i = 1, . . . , It; t = 1, . . . , T, (2.18)

where r̂i,t|t−1 generically denotes a forecast of ri,t and T is the total number of months for

which we compute cross-sectional return forecasts. We then compute the time-series average

of the monthly slope coefficient estimates in Equation (2.18):

b̂FM =
1

T

T∑
t=1

b̂FM
t , (2.19)

11We again use the corrected AIC to choose λt in Equation (2.16). The results in Section 3 are similar for
combination forecasts based on adaptive versions of the LASSO and elastic net (Zou 2006; Zou and Zhang
2009).

12GHZ do not directly analyze their conventional out-of-sample cross-sectional return forecasts using the
FM regression approaches in this and the next subsections.
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where b̂FM
t is the OLS or WLS estimate of bFM

t in Equation (2.18). To account for potential

autocorrelation in the b̂FM
t estimates, the t-statistic for b̂FM is based on a Newey and West

(1987) standard error computed using a lag of twelve months.13 For the Value Weighted case,

we estimate Equation (2.18) via WLS with previous month-end market values serving as the

observation weights; for the Equal Weighted excl. Microcap and Equal Weighted cases, we

estimate Equation (2.18) via OLS using the relevant population of stocks. We use a one-

sided, upper-tailed test to assess the significance of b̂FM, as we treat cross-sectional return

forecasts as economically reasonable when they are positively related to realized returns.

The size of b̂FM reveals how well the cross-sectional return forecasts capture the cross-

sectional dispersion in expected returns (Lewellen 2015) and provides a direct measure of

overfitting. Similarly to a Mincer and Zarnowitz (1969) regression, b̂FM = 1 indicates that

the cross-sectional return forecasts are unbiased: a unit increase in the forecasted return

corresponds to a unit increase in the realized return on average.14 If b̂FM < 1, then the cross-

sectional forecasts overstate the cross-sectional dispersion in expected returns: a unit increase

in the forecasted return corresponds to a less-than-unit increase in the realized return on

average, which immediately indicates overfitting in the construction of the forecasts. When

b̂FM > 1, the cross-sectional return forecasts are generally conservative, in the sense that

a unit increase in the forecasted return is associated with a greater-than-unit increase in

the realized return on average. Because of the inherently large unpredictable component in

monthly stock returns, a forecast characterized by b̂FM > 1 is likely to perform more reliably

than a forecast characterized by b̂FM < 1.

Lewellen (2015, footnote 3) points out that the slope coefficient in Equation (2.18) is

related to the difference in cross-sectional MSFEs between a naive forecast that ignores any

information in firm characteristics and a competing forecast. We extend his result from

13The results are robust to the number of lags used to compute the Newey and West (1987) standard
error.

14Due to the presence of the intercept term in Equation (2.18), the FWL theorem implies that the bias
is measured in terms of deviations from the cross-sectional mean return, so that we are not concerned with
forecasting the cross-sectional mean return itself.
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equal to general weighting of cross-sectional return observations. Denote the competing

return forecast by r̂i,t|t−1, with its forecast error given by

êi,t|t−1 = ri,t − r̂i,t|t−1 for i = 1, . . . , It. (2.20)

Because we are concerned with forecasting cross-sectional returns relative to the cross-

sectional mean return (and not with forecasting the cross-sectional mean return per se),

we demean the forecast error in Equation (2.20):

ûi,t|t−1 =
(
ri,t − r̂i,t|t−1

)︸ ︷︷ ︸
êi,t|t−1

−
(
r̄t − ¯̂rt|t−1

)︸ ︷︷ ︸
¯̂et|t−1

= (ri,t − r̄t)−
(
r̂i,t|t−1 − ¯̂rt|t−1

)
(2.21)

for i = 1, . . . , It, where a bar again indicates a variable’s cross-sectional value-weighted

average (i.e., x̄t = (1/It)
∑It

i=1 wi,txi,t).

The naive forecast, which ignores any information in the characteristics, is simply the

cross-sectional value-weighted average return for the previous month:

r̂Naive
i,t|t−1 = r̄t−1 for i = 1, . . . , It. (2.22)

Its demeaned forecast error is given by

ûNaive
i,t|t−1 = (ri,t − r̄t−1)︸ ︷︷ ︸

êNaive
i,t|t−1

− (r̄t − r̄t−1)︸ ︷︷ ︸
¯̂eNaive
t|t−1

= ri,t − r̄t for i = 1, . . . , It. (2.23)

As shown in Appendix A, the month-t difference in cross-sectional value-weighted MSFEs

between the naive and competing forecasts can be expressed as

1

It

It∑
i=1

wi,t

[(
ûNaive
i,t|t−1

)2 − û2
i,t|t−1

]
=
(

2δ̂t − 1
)
σ̂2
r̂,t, (2.24)
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where

δ̂t =

∑It
i=1 wi,t(ri,t − r̄t)

(
r̂i,t|t−1 − ¯̂rt|t−1

)∑It
i=1wi,t

(
r̂i,t|t−1 − ¯̂rt|t−1

)2 (2.25)

and

σ̂2
r̂,t =

1

It

It∑
i=1

wi,t
(
r̂i,t|t−1 − ¯̂rt|t−1

)2
(2.26)

is the cross-sectional value-weighted variance of r̂i,t|t−1 for i = 1, . . . , It. By the FWL theorem,

δ̂t in Equation (2.25) is identical to the WLS estimate of bFM
t in Equation (2.18); for equal

observation weights (wi,t = 1 for i = 1, . . . , It), δ̂t is identical to the OLS estimate of bFM
t in

Equation (2.18). When b̂FM
t > 0.5, Equation (2.24) implies that the competing forecast is

more accurate than the naive forecast in terms of the month-t cross-sectional value-weighted

MSFE. Accordingly, b̂FM > 0.5 in Equation (2.19) means that the cross-sectional value-

weighted MSFE for the competing forecast is lower on average than that for the naive

forecast over the evaluation period.

To understand the importance of the goodness-of-fit measure in Equation (2.18), as

shown in Appendix A, we can express the month-t cross-sectional value-weighted MSFE for

a generic forecast r̂i,t|t−1 as

1

It

It∑
i=1

wi,tû
2
i,t|t−1︸ ︷︷ ︸

MSFEt

= bias2
t σ̂

2
r̂,t +

(
1−R2

t

)
σ̂2
r,t, (2.27)

where biast = b̂FM
t − 1 is the forecast bias, R2

t is the R2 statistic for Equation (2.18), and

σ̂2
r,t =

1

It

It∑
i=1

wi,t(ri,t − r̄t)2 (2.28)

is the cross-sectional value-weighted variance of ri,t for i = 1, . . . , It. Equation (2.27) shows

that a decrease (increase) in |biast| (R2
t ) leads to a decrease in MSFEt. As discussed above,

overfitting is associated with b̂FM
t < 1, so that it creates a bias (biast < 0) that increases

MSFEt in Equation (2.27); at the same time, overfitting adversely affects the ability of the
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forecasts to track realized returns in Equation (2.18), corresponding to a small R2
t that

further inflates MSFEt in Equation (2.27). Although a conservative forecast also produces

a bias (b̂FM
t > 1 and biast > 0), by guarding against overfitting, it is better able to track

realized returns; the corresponding increase in R2
t works to offset the effects of the bias by

decreasing MSFEt in Equation (2.27).

2.4. Forecast Encompassing

We can also interpret Equation (2.18) from the perspective of forecast encompassing. Con-

sider a composite forecast comprised of the naive and competing forecasts:

r̂∗i,t|t−1 = (1− θt)r̄t−1 + θtr̂i,t|t−1 = r̄t−1 + θt
(
r̂i,t|t−1 − r̄t−1

)
for i = 1, . . . , It. (2.29)

The demeaned forecast error for the composite forecast is given by

û∗i,t|t−1 =
(
ri,t − r̂∗i,t|t−1

)︸ ︷︷ ︸
ê∗
i,t|t−1

−
(
r̄t − ¯̂r∗t|t−1

)︸ ︷︷ ︸
¯̂e∗
t|t−1

= (ri,t − r̄t)−
(
r̂∗i,t|t−1 − ¯̂r∗t|t−1

)
(2.30)

for i = 1, . . . , It, while its cross-sectional value-weighted MSFE is given by

1

It

It∑
i=1

wi,t
(
û∗i,t|t−1

)2
. (2.31)

Again generalizing Lewellen (2015, footnote 3), Appendix A shows that the value of θt that

minimizes Equation (2.31) is given by δ̂t in Equation (2.25). By the FWL theorem, the

WLS estimate of bFM
t in Equation (2.18) thus coincides with the value of θt that minimizes

the month-t cross-sectional value-weighted MSFE for the composite forecast; for equal ob-

servation weights (wi,t = 1 for i = 1, . . . , It), the OLS estimate of bFM
t in Equation (2.18)

represents the value of θt that minimizes Equation (2.31). Furthermore, the b̂FM estimate in

Equation (2.19) can be viewed as the average optimal value for θt over the forecast evaluation

period.
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When θt ≤ 0 in Equation (2.29), the naive forecast is said to encompass the competing

forecast: the competing forecast does not contain information useful for predicting returns

beyond the information already contained in the naive forecast; when θt > 0, the naive fore-

cast does not encompass the competing forecast: the competing forecast does provide useful

information beyond that already found in the naive forecast. Testing the null hypothesis

that bFM ≤ 0 against the alternative that bFM > 0 in Equation (2.19) thus represents a

test of whether the naive forecast encompasses the competing forecast on average over the

forecast evaluation period.

Next, consider two competing forecasts, r̂A
i,t|t−1 and r̂B

i,t|t−1, each of which potentially in-

corporates information from the firm characteristics. The demeaned errors for the competing

forecasts are given by

ûA
i,t|t−1 =

(
ri,t − r̂A

i,t|t−1

)︸ ︷︷ ︸
êA
i,t|t−1

−
(
r̄t − ¯̂rA

t|t−1

)︸ ︷︷ ︸
¯̂eA
t|t−1

= (ri,t − r̄t)−
(
r̂A
i,t|t−1 − ¯̂rA

t|t−1

)
, (2.32)

ûB
i,t|t−1 =

(
ri,t − r̂B

i,t|t−1

)︸ ︷︷ ︸
êB
i,t|t−1

−
(
r̄t − ¯̂rB

t|t−1

)︸ ︷︷ ︸
¯̂eB
t|t−1

= (ri,t − r̄t)−
(
r̂B
i,t|t−1 − ¯̂rB

t|t−1

)
(2.33)

for i = 1, . . . , It. Analogously to Equation (2.29), we define a composite forecast comprised

of the two competing forecasts:

r̂†i,t|t−1 = (1− ηt)r̂A
i,t|t−1 + ηtr̂

B
i,t|t−1 = r̂A

i,t|t−1 + ηt
(
r̂B
i,t|t−1 − r̂A

i,t|t−1

)
for i = 1, . . . , It. (2.34)

Its corresponding cross-sectional value-weighted MSFE is given by

1

It

It∑
i=1

wi,t

(
û†i,t|t−1

)2

, (2.35)
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where

û†i,t|t−1 =
(
ri,t − r̂†i,t|t−1

)
︸ ︷︷ ︸

ê†
i,t|t−1

−
(
r̄t − ¯̂r†t|t−1

)
︸ ︷︷ ︸

¯̂e†
t|t−1

= (ri,t − r̄t)−
(
r̂†i,t|t−1 − ¯̂r†t|t−1

)
(2.36)

for i = 1, . . . , It. Appendix A establishes that the value of ηt that minimizes the cross-

sectional value-weighted MSFE in Equation (2.35) is identical to the WLS estimate of b†t in

the following cross-sectional univariate regression:

êA
i,t|t−1 = a†t + b†t

(
êA
i,t|t−1 − êB

i,t|t−1

)
+ εi,t for i = 1, . . . , It; t = 1, . . . , T. (2.37)

For equal observation weights (wi,t = 1 for i = 1, . . . , It), the optimal value of ηt matches

the OLS estimate of b†t in Equation (2.37). As in an FM regression, we take the time-series

average of the monthly slope coefficient estimates in Equation (2.37):

b̂† =
1

T

T∑
t=1

b̂†t , (2.38)

where b̂†t is the OLS or WLS estimate of b†t in Equation (2.37).

Equation (2.38) allows us to conveniently compare the information content of two com-

peting cross-sectional return forecasts. When b† ≤ 0, A encompasses B on average over the

forecast evaluation period, as B does not contribute useful information to the composite fore-

cast beyond that already found in A. Alternatively, when b† > 0, A does not encompass B, so

that B does provide useful information beyond that contained in A. Conversely, if 1−b† ≤ 0,

then B encompasses A on average; if 1− b† > 0, then B does not encompass A. If A does not

encompass B and B encompasses A, then B “dominates” A from the standpoint of forecast

encompassing.15 In Section 3.2, we use Equation (2.38) to compare the information content

of the GHZ and combination cross-sectional return forecasts.

15Similarly, if A encompasses B and B does not encompass A, then A dominates B.
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2.5. Spread Portfolios

Following Lewellen (2015) and Green, Hand, and Zhang (2017), we also use cross-sectional

return forecasts to construct spread portfolios. To construct a spread portfolio based on a

particular forecasting strategy, at the beginning of each month, we first sort stocks into deciles

according to the their forecasted returns for the month. We then form a zero-investment

spread portfolio that goes long (short) the highest (lowest) decile portfolio. For the Value

Weighted case, deciles are defined using return forecasts for NYSE stocks, and the decile

portfolios are value weighted. For the Equal Weighted excl. Microcap case, deciles are

formed using return forecasts for stocks with market values above the NYSE 20% percentile,

and the decile portfolios are equal weighted. Finally, for the Equal Weighted case, deciles are

defined using return forecasts for NYSE stocks, and the decile portfolios are equal weighted.

3. Empirical Results

3.1. Predictive Slope

As a starting point, Table 2 reports FM regression results for the cross-sectional return

forecasts in Equation (2.2) based on the individual characteristics for the 1990:01 to 2017:12

out-of-sample period.16 Beginning with the Value Weighted case in the second through fourth

columns, of the 94 characteristics, only eight and five are significant at the 10% and 5% levels,

respectively. Furthermore, a substantial number (42) of the FM slope coefficient estimates

in the second column have the “wrong” (i.e., negative) sign. For both the Equal Weighted

excl. Microcap and Equal Weighted cases in the fifth through seventh and eighth through

tenth columns, respectively, 17 and eight of the characteristics are significant at the 10%

and 5% levels, respectively. However, there is little overlap in the significant characteristics

across the two cases, and many of the FM slope coefficients are again negative in the fifth and

eighth columns. Overall, Table 2 indicates that firm characteristics taken individually have

16The 1990:01 starting date for the out-of-sample period accommodates the 120-month moving averages
used to construct the conventional forecast in Equation (2.5).
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limited out-of-sample predictive ability with respect to cross-sectional returns, especially for

the Value Weighed case.

Table 3 reports FM regression results for the conventional and combination forecasts.

Panel A presents results for the 1990:01 to 2017:12 period. Starting with the Value Weighted

case in the second through fourth columns, the FM slope coefficient estimate for the conven-

tional forecast is 0.31, which is significant at the 1% level. Although it is greater than zero in

terms of statistical significance, the FM slope estimate is well below unity in magnitude—in

fact, it is significantly below unity based on its (unreported) standard error. As discussed in

Section 2.3, the relatively small magnitude of the FM slope estimate means that the conven-

tional forecast substantially overstates the cross-sectional dispersion in expected returns, a

direct indication of overfitting. In addition, because the FM slope estimate is below 0.5, the

conventional forecast fails to outperform the naive forecast in terms of average cross-sectional

value-weighted MSFE for the 1990:01 to 2017:12 period.

The FM slope coefficients for all of the combination forecasts are also significant at the

1% level in Panel A of Table 3. Unlike the conventional forecast, however, the coefficient

estimates are all above unity, but not significantly so based on their (unreported) stan-

dard errors. The combination forecasts thus better measure the cross-sectional dispersion

in expected returns, highlighting the efficacy of forecast combination for guarding against

overfitting. Because the FM slope coefficient estimates for the combination forecasts are all

above 0.5, the combination forecasts deliver a lower cross-sectional value-weighted MSFE

on average than the naive forecast for the 1990:01 to 2017:12 period. The R2 statistics for

the combination forecasts are more than twice as large as that for the conventional forecast,

providing additional support for the effectiveness of forecast combination.

As shown in Panels B and C of Table 3, the conventional forecast exhibits a notable

decline in predictive ability in the context of the FM regressions for the cross-sectional return

forecasts. In particular, the FM slope coefficient estimate for the conventional forecast falls

from 0.63 (significant at the 1% level) for the 1990:01 to 2002:12 period in Panel B to
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only 0.05 (insignificant at conventional levels) for the 2004:01 to 2017:12 period in Panel

C. Overfitting thus becomes more acute after 2003, essentially rendering the conventional

return forecast unrelated to the realized return after 2003.17

In contrast to the conventional forecast, the predictive ability of the combination fore-

casts does not disappear after 2003 for the Value Weighted case. The estimated FM slope

coefficient for the mean (trimmed mean) combination forecast goes from 1.47 (1.97) before

2003 to 1.94 (2.92) after 2003, where the former (latter) is significant at the 10% (1%) level.

The FM slope coefficient estimates for the LASSO and elastic net combination forecasts

are quite stable before and after 2003: the FM slope estimates for the LASSO (elastic net)

combination forecast are 1.73 and 1.55 (1.76 and 1.58) for the pre- and post-2003 periods,

respectively, both of which are significant at the 1% level.18 The FM slope estimates for the

combination forecasts are all well above 0.5 during both subperiods, so that the combination

forecasts produce a lower cross-sectional value-weighted MSFE on average than the naive

forecast both before and after 2003.19

We further investigate the predictive ability of the conventional and elastic net combi-

nation forecasts over time in Figure 1.20 The figure depicts ten-year rolling averages of the

b̂FM
t estimates in Equation (2.18) for the Value Weighted case. The figure includes two-sided

90% confidence intervals, as well as lower bounds for one-sided, upper-tailed 90% confidence

intervals. For the conventional forecast in Panel A, apart from ten-year periods ending be-

tween approximately 2002 to 2004, the FM slope estimate is always significantly less than

unity according to the two-sided confidence intervals. Moreover, the slope estimate exhibits

a consistent and marked decline for ten-year periods ending in 2004 through 2010, where

17Because the slope coefficient estimate for the conventional forecast is below 0.5 for the post-2003 pe-
riod, the forecast becomes less accurate in terms of average cross-sectional value-weighted MSFE than the
naive forecast after 2003. Furthermore, we cannot cannot reject the null hypothesis that the naive forecast
encompasses the conventional forecast for the post-2003 period, so that the conventional forecast does not
offer significant information gains vis-à-vis the naive forecast after 2003.

18Based on their (unreported) standard errors, the FM slope estimates for the LASSO and elastic net
combination forecasts are insignificantly different from unity for the pre- and post-2003 periods.

19In addition, the naive forecast does not encompass any of the combination forecasts before or after 2003.
20To conserve space, we focus on the elastic net combination forecast in Figure 1; the results are qualita-

tively similar for the other combination forecasts.
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it drops from around 0.6 to close to zero; thereafter, the slope estimate remains near zero,

and it is almost always insignificantly different from zero based on the lower bounds for

the one-sided, upper-tailed confidence intervals. Furthermore, the slope estimate falls below

0.5 for ten-year periods ending in 2007 through 2017, so that the conventional forecast fails

to outperform the naive forecast in terms of cross-sectional value-weighted MSFE for these

ten-year periods.

The FM slope coefficient estimate for the elastic net combination forecast is substantially

more stable in Panel B—typically lying between one and two—and it is rarely significantly

different from unity according to the two-sided confidence intervals. Based on the lower

bounds for the one-sided, upper-tailed confidence intervals, the slope estimate is significant

for nearly every ten-year period. In addition, because the slope estimate is always greater

than 0.5, the elastic net combination forecast delivers a lower cross-sectional value-weighted

MSFE than the naive forecast for every ten-year period in Panel B of Figure 1.

The results for the Equal Weighted excl. Microcap case in the fifth through seventh

columns of Table 3 are similar to those for the Value Weighted case. The FM slope coefficient

estimate for the conventional forecast is 0.35 for the 1990:01 to 2017:12 period in Panel A.

Although the FM slope estimate is significant at the 1% level, its relatively small value again

indicates that the conventional forecast overstates the cross-sectional dispersion in expected

returns. Because the FM slope estimate is less than 0.5, the conventional forecast is also less

accurate than the naive forecast in terms of average cross-sectional MSFE for the 1990:01 to

2017:12 period. Turning to the results for the combination forecasts in Panel A, the FM slope

coefficient estimates are all significant at the 1% level and greater than unity.21 Unlike the

conventional forecast, the combination forecasts thus deliver a lower cross-sectional MSFE

on average than the naive forecast. The R2 statistics for the combination forecasts in Panel

A are approximately three to four times larger than that for the conventional forecast.

21The FM slope estimates for the LASSO and elastic net combination forecasts are insignificantly different
from unity based on their (unreported) standard errors.
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For the Equal Weighted excl. Microcap case, the conventional forecast again experiences

a breakdown in predictive ability as we move from Panel B to Panel C in Table 3. The

FM slope coefficient estimate for the conventional forecast drops from 0.72 (significant at

the 1% level) for the pre-2003 period to 0.04 (insignificant at conventional levels) for the

post-2003 period. Based on the FM slope estimates, the conventional forecast outperforms

the naive forecast on average in terms of cross-sectional MSFE for the pre-2003 period, but

fails to do so for the post-2003 period. In contrast to the conventional forecast, the FM

slope estimates for the combination forecasts are all significant and above unity for both the

pre- and post-2003 periods. Because the FM slope estimates are greater than 0.5 for both

subperiods, the combination forecasts are more accurate than the naive forecast in terms of

average cross-sectional MSFE before and after 2003.

The last three columns of Table 3 reports results for the Equal Weighted case, which

places much greater weight on small-cap stocks. The FM slope coefficient estimate for the

conventional forecast in Panel A is 0.67, which is significant at the 1% level. As the FM

slope estimate is above 0.5, the conventional forecast produces a lower cross-sectional MSFE

on average than the naive forecast for the 1990:01 to 2017:12 period.22 All of the FM slope

estimates for the combination forecasts are above unity and significant at the 1% level in

Panel A, continuing the pattern for the Value Weighted and Equal Weighted excl. Microcap

cases. Again continuing the pattern, the R2 statistics for the combination forecasts are larger

than that for the conventional forecast by factors of approximately two to three.

Unlike the Value Weighted and Equal Weighted excl. Microcap cases, the FM slope

estimates for the conventional forecast are significant for the Equal Weighted case for both

the pre- and post-2003 periods in Panels B and C, respectively, of Table 3. However the FM

slope estimate falls from 0.90 before 2003 to 0.48 after 2003, so that the conventional forecast

does not provide a lower cross-sectional MSFE on average than the naive forecast after 2003.

The FM slope estimates for the combination forecasts are all significant at the 1% level for

22Based on its (unreported) standard error, the FM slope estimate is significantly below unity, so that the
conventional forecast continues to manifest overfitting.
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both subperiods, and they are always above unity. The R2 statistics for the combination

forecasts are approximately two to three times larger than that for the conventional forecast

before and after 2003.

3.2. Forecast Encompassing

In this subsection, we use forecast encompassing tests to compare the information content

of the conventional and combination forecasts. In terms of the notation in Section 2.4, A

(B) represents the conventional (combination) forecast. Table 4 reports estimates of b† and

1− b† in Equation (2.38), which correspond to the coefficients attached to the combination

and conventional forecasts, respectively, in an optimal composite forecast comprised of the

two competing forecasts. Under the null hypothesis that b† ≤ 0 (1 − b† ≤ 0), the conven-

tional forecast encompasses the combination forecast (combination forecast encompasses the

conventional forecast).

Value Weighted results are reported in the second through fifth columns of Table 4. For

the 1990:01 to 2017:12 period in Panel A, the b̂† estimates are all significant at the 1% level,

so that the conventional forecast does not encompass any of the combination forecasts. At

the same time, the 1− b̂† estimates are also all significant at the 1% level, meaning that the

combination forecasts do not encompass the conventional forecast. The conventional and

combination forecasts thus contain unique information vis-à-vis one another for predicting

cross-sectional value-weighted returns. The estimated coefficients for the combination and

conventional forecasts in the optimal composite forecast are equal to or near 0.70 and 0.30,

respectively.

The results for the Value Weighted case in Panels B and C of Table 4 reveal conspicuous

differences in the relative information content of the conventional and combination forecasts

before and after 2003. For the pre-2003 period in Panel B, the results are similar to those in

Panel A: the conventional forecast does not encompass the combination forecasts, and the

combination forecasts do not encompass the conventional forecast. The situation changes
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markedly for the post-2003 period in Panel C, where the combination forecasts now dominate

the conventional forecast with respect to information content. Specifically, the conventional

forecast no longer encompasses the combination forecasts, while the combination forecasts

encompass the conventional forecast. Indeed, the estimated coefficients attached to the com-

bination and conventional forecasts in the optimal composite forecast are very close to unity

and zero, respectively, so that the conventional forecast delivers essentially no information

gain after 2003.

Figure 2 provides additional perspective on the time variation in the encompassing test

results, focusing on the comparison of the conventional forecast with the elastic net com-

bination forecast. Panels A and B report ten-year rolling averages of the 1 − b̂† and b̂†

estimates, respectively, in Equation (2.37), along with two-sided 90% confidence intervals

and lower bounds for one-sided, upper-tailed 90% confidence intervals.23 Similarly to Panel

A of Figure 1, the coefficient estimate for the conventional forecast evinces a steady and

marked decline for ten-year periods ending in 2004 through 2010 in Panel A of Figure 2,

and the coefficient estimate is close to zero for ten-year periods ending in 2010 through

2017. According to the lower bounds for the one-sided, upper-tailed confidence intervals,

the coefficient estimate is significant for ten-year periods ending in 2000 through 2009, but

it becomes insignificant for nearly every ten-year period ending in 2010 through 2017. With

the exceptions of a few ten-year periods ending between 2002 through 2004, the coefficient

estimate for the elastic net combination forecast is always significant in Panel B, and it

becomes very close to unity for ten-year periods ending in 2011 through 2017.

Turning to the Equal Weighted excl. Microcap case in the sixth through ninth columns

of Table 4, the results are similar to those for the Value Weighted case. For the 1990:01 to

2017:12 and 1990:01 to 2002:12 periods in Panels A and B, respectively, the conventional

and combination forecasts do not encompass each other, so that both forecasts contribute

significantly to the optimal composite forecast. For the 2004:01 to 2017:12 period in Panel

23By construction, the graphs in Panels A and B of Figure 2 are mirror images of each other.
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C, the conventional forecast does not encompass the combination forecasts, while the combi-

nation forecasts encompass the conventional forecast. The combination forecasts thus again

dominate the combination forecast in terms of information content for the post-2003 period.

Similarly to the results for the Equal Weighted case in Table 3, the conventional forecast

displays more consistent predictive ability in the last four columns of Table 4. The conven-

tional and combination forecasts do not encompass each other for the 1990:01 to 2017:12

period in Panel A, and the same finding holds before and after 2003 in Panels B and C,

respectively.

In sum, the results in Tables 3 and 4 indicate the following. In contrast to the combi-

nation forecasts, conventional forecasts of cross-sectional returns are prone to overfitting, as

evinced by the below-unity slope coefficient estimates for the latter in Table 3. The shrinkage

entailed by the combination approach enables the combination forecasts to better track re-

alized returns, as demonstrated by the higher R2 statistics for the combination vis-á-vis the

conventional forecasts in Table 3. For all three cases in Table 3, combination return forecasts

are significantly related to actual returns before and after 2003. For the Value Weighted and

Equal Weighted excl. Microcap cases, conventional return forecasts are significantly related

to actual returns before—but not after—2003, while conventional returns forecasts are sig-

nificantly related to actual returns before and after 2003 for the Equal Weighted case. The

forecast encompassing results in Table 4 indicate that conventional and combination fore-

casts contain useful information vis-á-vis each other for forecasting cross-sectional returns for

all three cases before 2003. After 2003, the conventional and combination forecasts continue

to contain useful information relative to each other for the Equal Weighted case, while the

combination forecasts dominate the conventional forecasts in terms of information content

for the Value Weighted and Equal Weighted excl. Microcap cases. The patterns in the pre-

and post-2003 results are similar across Tables 3 and 4.
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3.3. The Number and Nature of Relevant Characteristics

By examining the individual forecasts selected by the LASSO or elastic net in Equation (2.11),

we can get a sense of how the number and nature of relevant firm characteristics evolve over

time. Figure 3 presents the number of characteristics selected each month by the LASSO

(Panel A) or elastic net (Panel B) in Equation (2.11) for the Value Weighted case.24 For the

1990:01 to 2017:12 period, the LASSO and elastic net select 30.71 and 31.06 characteristics,

respectively, on average. As expected, the elastic net selects a higher number of character-

istics on average, but the difference is small, so that the results for the LASSO and elastic

net are quite similar. The number of characteristics selected by each procedure in Figure 3

is fairly stable over time, typically lying between 20 and 40. Along this line, more than

ten characteristics are selected each month by both procedures, and the average number

of selected characteristics is close to 30 for both the pre- and post-2003 periods. Overall,

Figure 3 indicates that a relatively large number of firm characteristics are consistently rele-

vant for forecasting cross-sectional value-weighted returns. Because Equation (2.11) relates

realized returns to out-of-sample return forecasts, Figure 3 provides out-of-sample evidence

that approximately 30 characteristics matter on average for cross-sectional value-weighted

expected returns.25

To glean insight into the nature of the relevant firm characteristics, Table 5 reports

selection frequencies by the elastic net for the individual characteristics.26 An interesting

feature of Table 5 is the churn implied by the selection frequencies. For the 1990:01 to

2017:12 period, the vast majority of selection frequencies are above 30%—only two are

below 20%—and all are less than 50%. The selection frequencies are also quite stable before

and after 2003. The results in Table 5 point to important time variation in the DGP for

24Results for the Equal Weighted excl. Microcap and Equal Weighted cases are similar.
25GHZ analyze the number of relevant firm characteristics via in-sample tests based on Fama-MacBeth

two-step estimation of cross-sectional multiple regressions for 1980:01 to 2014:12, as well as pre- and post-
2003 subperiods. If GHZ estimated cross-sectional regressions each month via OLS or WLS, then it would
not be surprising if they found a larger number of statistically significant characteristics, whose identities
could vary considerably over time.

26To conserve space, we do not report results for the LASSO, which are similar.
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cross-sectional value-weighted returns, which helps to explain the usefulness of the forecast

combination approach.

Taken together, Figure 3 and Table 5 paint a nuanced picture of the number of relevant

firm characteristics for cross-sectional expected returns: Table 5 suggests that nearly all

of the firm characteristics matter over time, in the sense that they affect cross-sectional

expected returns at least 20% of the time, while Figure 3 indicates that approximately 30

of the firm characteristics matter on average for cross-sectional expected returns at each

point in time. From an economic standpoint, to the extent that the characteristics relate

to risk factors, Table 5 supports the notion that the importance of individual risk factors

varies considerably over time, and Figure 3 indicates that a sizable number of risk factors

are relevant at each point in time. Similarly, to the degree that the firm characteristics

instead reflect behavioral biases or related factors, our findings imply that the salience of

individual behavioral factors changes over time, while a substantial number of such factors

affect cross-sectional expected returns at each point in time.27

In terms of the most important characteristics in Table 5, there are nine characteristics

with selection frequencies of 40% or more for both the pre- and post-2003 periods. The nine

characteristics (with their definitions and acronyms from Table 1), their selection frequencies

for the 1990:01 to 2017:12 period, and the studies proposing them are as follows:

• One-month momentum, mom1m: 49% (Jegadeesh and Titman 1993)

• Tax income to book income, tb: 45% (Lev and Nissim 2004)

• Sin stocks, sin:28 44% (Hong and Kacperczyk 2009)

• Number of earnings increases, nincr:29 43% (Barth, Elliott, and Finn 1999)

27The selection frequencies in Table 5 help to explain the limited ability of individual characteristics to
predict cross-sectional value-weighted returns in Table 2: each of the individual characteristics is only relevant
for predicting cross-sectional returns approximately 20% to 50% of the time.

28This characteristic indicates whether a firm’s primary industry classification is in the smoke or tobacco,
beer or alcohol, or gaming industries.

29This is measured as the number of consecutive quarters (up to eight) with an increase in earnings over
the same quarter in the prior year.
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• Sales to receivables, salerec: 43% (Ou and Penman 1989)

• Change in number of analysts, chnanalyst: 43% (Scherbina 2008)

• Corporate investment, cinvest: 42% (Titman, Wei, and Xie 2004)

• Industry-adjusted change in profit margin, chpmia: 42% (Soliman 2008)

• New equity issue, IPO: 41% (Loughran and Ritter 1995)

GHZ use the classifications in McLean and Pontiff (2016)—event, market, valuation, and

fundamental—to organize the relevant characteristics they identify. When we similarly apply

the McLean and Pontiff (2016) classifications to the nine characteristics above, five of the

characteristics are in the fundamental category (tb, nincr, salerec, cinvest, chpmia), two

can be placed in the event category (chnanalyst, IPO), and one is in the market category

(mom1m). The other characteristic (sin) falls outside of the four categories in McLean and

Pontiff (2016).

Considering a set of 36 firm characteristics, Freyberger, Neuhierl, and Weber (2018) use

nonparametric methods and the group LASSO (Huang, Horowitz, and Wei 2010) to estimate

a generalized version of Equation (2.4) that allows for nonlinearities in the conditional mean.

Although the differences in approaches make it difficult to directly compare the results

in Freyberger, Neuhierl, and Weber (2018) and the present paper, an interesting parallel

exists. Specifically, Freyberger, Neuhierl, and Weber (2018) find substantial time variation

in the predictive ability of individual firm characteristics for cross-sectional returns, which

is consistent with the churn in the relevant characteristics implied by Table 5.

GHZ find evidence of a structural break in 2003, and the results for the conventional

forecasts in Tables 3 and 4 are consistent with their finding. As potential explanations for

the break, GHZ point to important changes in the US equity market from July 2002 to June

2003, such as the passage of the Sarbanes-Oxley Act, acceleration of 10-Q and 10-K filing

requirements by the SEC, and introduction of autoquoting by the NYSE. In conjunction
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with increasingly cheap computing power at that time, such changes likely lowered the

costs of exploiting characteristics-based mispricing, thereby diminishing the ability of at

least some characteristics to predict cross-sectional returns. In addition to a sharp break in

2003, the results in Figure 3 and Table 5 suggest that the DGP relating firm characteristics

to cross-sectional returns changes over time in significant ways on a more regular basis.30

A constantly evolving DGP occasionally punctuated by sharp breaks presents keen out-

of-sample challenges and renders conventional forecasts highly susceptible to overfitting.

Nevertheless, by guarding against overfitting, our forecast combination approach produces

informative cross-sectional return forecasts on a consistent basis over time.

3.4. Spread Portfolios

Next, we evaluate the cross-sectional return forecasts by constructing spread portfolios, as

described in Section 2.5. Performance metrics for spread portfolios formed from the cross-

sectional forecasts indirectly assess the forecasts by measuring their value as inputs in asset

allocation decisions. Table 6 reports means and volatilities for spread portfolio returns based

on the conventional and combination forecasts. We again report results for the 1990:01

to 2017:12 period (Panel A), as well as pre- and post-2003 subperiods (Panels B and C,

respectively). In addition, Panel D reports the pre-versus-post-2003 change in average return.

Note that the rankings of forecasts can differ for conventional statistical criteria and portfolio

performance metrics (e.g., Leitch and Tanner 1991; Cenesizoglu and Timmermann 2012).

This means that forecasts characterized by overfitting—as indicated by below-unity slope

coefficient estimates in Table 3—can still have value as inputs for constructing the spread

portfolios.

The second through fourth columns of Table 6 report results for the Value Weighted

case. The portfolios based on the combination forecasts generate substantial average returns

for the 1990:01 to 2017:12 period, ranging from 0.95% to 1.16%. The portfolio based on

30This is reminiscent of the literature on aggregate stock market predictability, where individual economic
variables evince episodic predictive ability (e.g., Rapach, Strauss, and Zhou 2010; Henkel, Martin, and Nadari
2011; Rapach and Zhou 2013).
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the conventional forecast also yields a sizable average return of 0.98%, which shows that

the forecast is useful as an input for constructing the spread portfolio, despite its below-

unity slope coefficient estimate in Panel A of Table 3. However, the average return for

the portfolio based on the conventional forecast falls from near 2% for the pre-2003 period

to close to zero for the post-2003 period in Table 6, and the decline in average return is

statistically significant (at the 1% level). It thus appears that the high degree of overfitting

indicated by the near-zero slope coefficient estimate in the second column of Panel C of

Table 3 substantively reduces the value of the conventional forecast as an input for asset

allocation decisions after 2003. Although the portfolios based on the combination forecasts

also experience decreases in average return after 2003, the declines are considerably smaller—

around 50 basis points—and statistically insignificant. The results for the Value Weighted

case in Table 6 follow the same pattern as those in Tables 3 and 4.

Figure 4 plots log cumulative returns for the spread portfolios based on the conventional

and elastic net combination forecasts for the Value Weighted case. Panel A shows that the

spread portfolio based on the conventional forecast generally produces strong gains from the

mid 1990s through the early 2000s and subsequently experiences a drop-off in performance

that lasts through the end of the sample. The spread portfolio based on the elastic net

combination forecast in Panel B delivers gains on a more consistent basis. Interestingly,

the spread portfolio based on the elastic net combination forecast performs well during

business-cycle recessions, especially the recent Great Recession. In line with the discussion

in Section 3.3, the sizable gains realized by the spread portfolio during cyclical downturns

suggest that the economic risks and/or behavioral influences captured by the characteristics

become more important during times of macroeconomic stress.

The results for the Equal Weighted excl. Microcap case in the fifth through seventh

columns of Table 6 tell a similar story. For the 1990:01 to 2017:12 period, the spread portfolios

based on the combination forecasts provide average returns ranging from 1.36% to 1.60%,

while the spread portfolio based on the conventional forecast produces an average return of
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1.24%. The average return for the spread portfolio based on the conventional forecast again

falls markedly from 2.59% before 2003 to 0.11% after 2003, and the decline is statistically

significant (at the 1% level). Similarly to the Value Weighted case, the substantive overfitting

indicated by the near-zero slope coefficient estimate in the fifth column of Panel C of Table 3

apparently reduces the value of the conventional forecast as an input for constructing the

spread portfolio after 2003. The spread portfolios based on the combination forecasts display

more limited declines in average return, and the decline is only significant for the LASSO

combination forecast (at the 10% level).

The last three columns of Table 6 report results for the Equal Weighted case. The average

return for the spread portfolio based on the conventional forecast is 2.95% for the full period.

Looking across the subperiods, the average return experiences a decline (significant at the

1% level) from 4.45% before 2003 to 1.68% after 2003. The spread portfolios based on the

combination forecasts generate average returns ranging from 1.71% to 1.93%. Apart from the

trimmed mean (at the 10% level), the spread portfolios based on the combination forecasts

do not exhibit significant decreases in average return before and after 2003. Observe that, in

contrast to the Value Weighted and Equal Weighted excl. Microcap cases, the average return

for the conventional forecast in Panel C of Table 6 is significant (at the 1% level) and greater

than the average returns for the combination forecasts. The overfitting in the conventional

forecast detected in the eighth column of Panel C of Table 3 thus does not prevent the

forecast from proving useful as an input for asset allocation decisions after 2003.31

In Tables 7 and 8, we measure risk-adjusted average returns for the spread portfolios

using three leading asset pricing models from the literature: the Carhart (1997) four-factor,

Fama and French (2015) five-factor, and Hou, Xue, and Zhang (2015) q-factor models.32

31The results for the spread portfolios based on the conventional forecasts in Panels B through D of Table 6
are similar to those in Table 8 of GHZ, where the full and post-2003 periods end in 2014:12. Sharpe ratios
based on the summary statistics in Table 6 follow the same pattern as the average returns. For example, the
spread portfolio based on the conventional forecast produces an annualized Sharpe ratio of 0.69 for the Value
Weighted case for the 1990:01 to 2017:12 period, but the annualized Sharpe ratio is only 0.004 for the 2004:01
to 2017:12 period; the annualized Sharpe ratios for the spread portfolio based on the elastic net combination
forecast are 0.56 and 0.50 for the 1990:01 to 2017:12 and 2004:01 to 2017:12 periods, respectively.

32GHZ do not measure risk-adjusted returns for their spread portfolios.
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Table 7 reports estimates of the alphas and factor exposures for the Value Weighted case

for the 1990:01 to 2017:12 period.33 For the spread portfolio based on the conventional

forecast, adjusting for risk using the Carhart (1997) four-factor model in Panel A lowers the

average return from 0.98% in Table 6 to 0.62% in Table 7. The spread portfolio’s significant

exposure to the momentum factor primarily accounts for the decline in average return after

adjusting for risk. The risk-adjusted average returns for the spread portfolios based on the

combination forecasts are all higher than the corresponding unadjusted average returns in

Table 6, due in large measure to the portfolios’ substantial negative exposures to the market

factor in Table 7.

Panel B of Table 7 reports risk-adjusted average returns estimated in the context of

the Fama and French (2015) five-factor model. The risk adjustment has little effect on

the average return for the spread portfolio based on the conventional forecast, with the

portfolio’s sizable negative exposure to the value factor offsetting its positive exposures to

the other factors. Similarly to the results in Panel A, the risk-adjusted average returns for

the spread portfolios based on the combination forecasts are all larger than their unadjusted

counterparts in Table 6. The higher risk-adjusted average returns in Table 7 primarily reflect

substantial negative exposures to the market and value factors.

As in Panel A, the average return for the spread portfolio based on the conventional

forecast falls by approximately a third when we adjust for risk using the Hou, Xue, and

Zhang (2015) q-factor model in Panel C. The decline in average return is primarily due to

the spread portfolio’s substantial exposures to the size and return on equity factors. The risk

adjustment increases the average returns for the spread portfolios based on the combination

forecasts in the context of the q-factor model, reflecting the portfolios’ significant negative

exposures to the market factor and insignificant exposures to the remaining factors.34

33To conserve space, we only report results for the Value Weighted case. The results for the Equal Weighted
excl. Microcap and Equal Weighted cases are qualitatively similar.

34The significant alphas corresponding to the conventional forecasts in Table 7 indicate that the overfitting
signaled by the below-unity slope coefficient estimate in the second column of Panel A of Table 3 does not
prevent the conventional forecast from providing useful information as an input for constructing the spread
portfolio on average over the 1990:01 to 2017:12 period.
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Finally, Table 8 reports estimates of the post-2003 change in alpha. The change in alpha

corresponds to the coefficient for a dummy variable that takes a value of zero (one) for 1990:01

to 2003:12 (2004:01 to 2017:12) in the estimated multifactor model. The results in Table 8

repeat the pattern evident throughout the present paper. For the spread portfolios based on

the conventional forecasts, the risk-adjusted average return always decreases significantly (at

the 1% level) after 2003. For the Value Weighted and Equal Weighted excl. Microcap cases,

the risk-adjusted average return essentially becomes zero after 2003, regardless of the model

used to make the risk adjustment. In contrast, the risk-adjusted average returns for the

spread portfolios based on the combination forecasts do not experience significant declines

after 2003, with the exceptions of the mean and trimmed mean combination forecasts for

the Equal Weighted case in the context of the Carhart (1997) four-factor model (at the 10%

level). Table 8 also continues to show that overfitting in the conventional forecasts does not

necessarily preclude the forecasts from serving as useful inputs for constructing the spread

portfolios, especially before 2003.

The results in Tables 7 and 8 indicate that leading multifactor models from the literature

fail to account for the average returns generated by the spread portfolios based on the

combination forecasts. In light of the results in Section 3.3, this finding is not surprising.

In Section 3.3, we show that nearly all of the firm characteristics matter for cross-sectional

expected returns. It will thus be difficult for an asset pricing model based on a relatively

small set of factors to account for the myriad of risk and/or behavioral factors that apparently

determine cross-sectional expected returns.

4. Conclusion

In this paper, we apply robust forecast combination methods to the cross section of stock

returns. We find that the information in 94 firm characteristics from GHZ is useful for

forecasting cross-sectional returns on a consistent basis over time. The key to our finding

is how we process the information in the 94 firm characteristics. Although cross-sectional
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return forecasts constructed using a conventional multiple regression approach incorporate

information from the entire set of 94 firm characteristics, they do so in a manner that is

susceptible to overfitting. Indeed, the conventional forecasts overstate the cross-sectional

dispersion in expected returns—a direct indication of overfitting—and suffer a substantive

decline in predictive ability after 2003. While our forecast combination approach also utilizes

information from the entire set of 94 firm characteristics, it does so in a manner that guards

against overfitting. When we process the information in the 94 firm characteristics via

our approach, the combination forecasts indicate that the characteristics are collectively

valuable for forecasting cross-sectional returns consistently over time. Combination forecasts

that utilize machine learning tools suggest that most of the firm characteristics matter over

time—and approximately 30 matter on average at each point in time—for cross-sectional

value-weighted expected returns.

Because a relatively large number of firm characteristics appear relevant for forecast-

ing cross-sectional returns, it is unlikely that a factor model of low dimensionality—say,

five or less—will be able to account for the cross section of expected returns. Indeed, al-

though the Fama and French (1993) three-factor, Carhart (1997) four-factor, Fama and

French (2015) five-factor, Hou, Xue, and Zhang (2015) q-factor, and Stambaugh and Yuan

(2017) mispricing-factor models explain various portfolio returns substantially better than

the CAPM, they provide little improvement at the individual stock level (e.g., He, Huang,

and Zhou 2018). Our results suggest that asset pricing models with significantly more factors

are needed to adequately explain the cross section of individual firm returns. An important

area for future research is to identify additional factors for explaining cross-sectional returns

beyond the well-established factors from the literature. Furthermore, in light of Freyberger,

Neuhierl, and Weber (2018), the development of nonlinear factor models may be needed.

As we also find that the relevance of individual characteristics varies over time, a keen chal-

lenge is to incorporate additional factors into asset pricing models in a manner that avoids

overfitting the data and facilitates economic interpretation.
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Appendix A. Proofs

A.1. Derivation of δ̂t

To derive Equation (2.24) in the main text, we use Equations (2.21) and (2.23) to write

the difference in cross-sectional value-weighted MSFEs between the naive and competing

forecasts as
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A.2. Derivation of Equation (2.27)

According to the FWL theorem, we can write the fitted residual for Equation (2.18) as

ε̂i,t = (ri,t − r̄t)− b̂FM
t

(
r̂i,t|t−1 − ¯̂rt|t−1

)
,

so that the month-t value-weighted residual sum of squares is given by
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Defining the month-t value-weighted total sum of squares as
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we can express the R2 statistic for Equation (2.18) as
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We can write the squared forecast bias as
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so that
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Finally, we can express the month-t cross-sectional value-weighted MSFE as
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which corresponds to Equation (2.27) in main text.

A.3. Derivation of the Optimal Value of θt

We can rewrite Equation (2.30) as
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so that we can express the cross-sectional value-weighted MSFE for the composite forecast

in Equation (2.31) as
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Taking the derivative with respect to θt,
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Setting the derivative equal to zero and solving for θt yields

θ∗t =

∑It
i=1wi,t(ri,t − r̄t)

(
r̂i,t|t−1 − ¯̂rt|t−1

)∑It
i=1wi,t

(
r̂i,t|t−1 − ¯̂rt|t−1

)2 ,

so that the value of θt that minimizes Equation (2.31) is the same as δ̂t in Equation (2.25),

as stated in the main text.

A.4. Equivalence Between the Optimal Value of ηt and b̂†t

We begin by rewriting Equation (2.36) as
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t|t−1

)
+ ηt

[(
r̂B
i,t|t−1 − ¯̂rB

t|t−1

)
−
(
r̂A
i,t|t−1 − ¯̂rA

t|t−1

)]}
=
(
ri,t − r̂A

i,t|t−1

)
−
(
r̄t − ¯̂rA

t|t−1

)
− ηt

[(
r̂B
i,t|t−1 − ¯̂rB

t|t−1

)
−
(
r̂A
i,t|t−1 − ¯̂rA

t|t−1

)]
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+ ηt[(ri,t − r̄t)− (ri,t − r̄t)]

=
(
ri,t − r̂A

i,t|t−1

)
−
(
r̄t − ¯̂rA

t|t−1

)︸ ︷︷ ︸
ûA
i,t|t−1

+ηt{
(
ri,t − r̂B

i,t|t−1

)
−
(
r̄t − ¯̂rB

t|t−1

)︸ ︷︷ ︸
ûB
i,t|t−1

−
[(
ri,t − r̂A

i,t|t−1

)
−
(
r̄t − ¯̂rA

t|t−1

)]︸ ︷︷ ︸
ûA
i,t|t−1

}

= ûA
i,t|t−1 − ηt

(
ûA
i,t|t−1 − ûB

i,t|t−1

)
.

We can then write the cross-sectional value-weighted MSFE in Equation (2.35) as

1

It

It∑
i=1

wi,t

(
û†i,t|t−1

)2

=
1

It

It∑
i=1

wi,t
[
ûA
i,t|t−1 − ηt

(
ûA
i,t|t−1 − ûB

i,t|t−1

)]2
=

1

It

It∑
i=1

wi,t
(
ûA
i,t|t−1

)2 − 2ηt
1

It

It∑
i=1

wi,tû
A
i,t|t−1

(
ûA
i,t|t−1 − ûB

i,t|t−1

)
+ η2

t

1

It

It∑
i=1

wi,t
(
ûA
i,t|t−1 − ûB

i,t|t−1

)2
.

Taking the derivative with respect to ηt,

d

d ηt

[
1

It

It∑
i=1

wi,t(û
†
i,t|t−1)2

]
= 2ηt

1

It

It∑
i=1

wi,t
(
ûA
i,t|t−1 − ûB

i,t|t−1

)2

− 2
1

It

It∑
i=1

wi,tû
A
i,t|t−1

(
ûA
i,t|t−1 − ûB

i,t|t−1

)
.

Setting the derivative to zero and solving for ηt gives

η∗t =

∑It
i=1wi,tû

A
i,t|t−1

(
ûA
i,t|t−1 − ûB

i,t|t−1

)
∑It

k=1wi,t

(
ûA
i,t|t−1 − ûB

i,t|t−1

)2 .

Inspection of η∗t reveals that it is equivalent to the WLS slope coefficient estimate in a

regression of the demeaned forecast error for A on the difference between the demeaned
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forecast errors for A and B. By the FWL theorem, η∗t is thus identical to the WLS estimate

of b†t in Equation (2.37).
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Table 1
Firm Characteristic Acronyms and Definitions

(1) (2) (3) (4)

Acronym Definition Acronym Definition

absacc Absolute accruals mom1m 1-month momentum
acc Working capital accruals mom36m 36-month momentum
aeavol Abnormal earnings announcement volume ms Financial statement score
age # years since first Compustat coverage mve Size
agr Asset growth mve_ia Industry-adjusted size
baspread Bid-ask spread nanalyst Number of analysts covering stock
beta Beta nincr Number of earnings increases
bm Book to market operprof Operating profitability
bm_ia Industry-adjusted book to market orgcap Organizational capital
cash Cash holdings pchcapx_ia Industry-adjusted ∆% in capital exps.
cashdebt Cash flow to debt pchcurrat ∆% in current ratio
cashpr Cash productivity pchdepr ∆% in depreciation
cfp Cash-flow-to-price ratio pchgm_pchsale ∆% in gross margin − ∆% in sales
cfp_ia Industry-adjusted cash-flow-to-price ratio pchsale_pchinvt ∆% in sales − ∆% in inventory
chatoia Industry-adjusted ∆ in asset turnover pchsale_pchrect ∆% in sales − ∆% in A/R
chcsho ∆ in shares outstanding pchsale_pchxsga ∆% change in sales − ∆% in SG&A
chempia Industry-adjusted change in employees pchsaleinv ∆% sales-to-inventory
chfeps ∆ in forecasted EPS pctacc Percent accruals
chinv ∆ in inventory pricedelay Price delay
chmom ∆ in 6-month momentum ps Financial statements score
chnanalyst ∆ in number of analysts rd R&D increase
chpmia Industry-adjusted ∆ in profit margin rd_mve R&D to market capitalization
chtx ∆ in tax expense rd_sale R&D to sales
cinvest Corporate investment realestate Real estate holdings
convind Convertible debt indicator retvol Return volatility
currat Current ratio roaq Return on assets
depr Depreciation / PP&E roavol Earnings volatility
disp Dispersion in forecasted EPS roeq Return on equity
divi Dividend initiation roic Return on invested capital
divo Dividend omission rsup Revenue surprise
dy Dividend to price salecash Sales to cash
ear Earnings announcement return saleinv Sales to inventory
egr Growth in common shareholder equity salerec Sales to receivables
ep Earnings to price secured Secured debt
fgr5yr Forecasted growth in 5-year EPS securedind Secured debt indicator
gma Gross profitability sfe Scaled earnings forecast
grCAPX Growth in capital expenditures sgr Sales growth
grltnoa Growth in long-term net operating assets sin Sin stocks
herf Industry sales concentration sp Sales to price
hire Employee growth rate std_dolvol Volatility of liquidity ($ trading volume)
idiovol Idiosyncratic return volatility std_turn Volatility of liquidity (share turnover)
ill Illiquidity stdcf Cash flow volatility
indmom Industry momentum sue Unexpected quarterly earnings
invest Capital expenditures tang Debt capacity / firm tangibility
IPO New equity issue tb Tax income to book income
lev Leverage turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

The table provide acronyms and definitions for 94 firm characteristics from Green, Hand, and Zhang (2017, Table
1).



Table 2
Fama-MacBeth Regression Results for Cross-Sectional Return Forecasts Based on Individual
Firm Characteristics, 1990:01 to 2017:12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

Characteristic Coefficient t-statistic R2 Coefficient t-statistic R2 Coefficient t-statistic R2

absacc 0.48 0.79 1.07% 1.25 0.79 0.63% 2.13 1.32∗ 0.47%

acc −1.35 −1.09 0.83% −0.58 −1.09 0.42% 2.40 1.41∗ 0.25%

aeavol 1.62 1.78∗∗ 0.59% 1.84 1.78∗∗ 0.22% −0.95 −1.18 0.07%

age −0.14 −0.64 1.77% 0.49 0.64 1.01% 1.05 2.13∗∗ 0.39%

agr 16.96 0.60 1.00% −0.68 −0.60 0.65% 4.32 0.97 0.26%

baspread −4.93 −1.60 4.90% −2.68 −0.60 4.28% −0.37 −1.00 2.22%

beta −1.22 −0.76 6.18% −1.10 −0.76 4.36% 0.11 0.23 1.94%

bm 4.53 1.78∗∗ 1.73% 0.73 0.78 0.89% 0.35 0.79 0.41%

bm_ia 0.90 0.22 0.95% −7.67 −1.22 0.43% −0.01 −0.02 0.15%

cash 5.09 1.12 2.48% 1.71 1.12 2.03% 0.38 0.61 0.86%

cashdebt 1.48 0.40 0.79% −0.21 −0.40 0.62% 1.17 1.70∗∗ 0.48%

cashpr −0.20 −0.16 0.58% 1.14 1.16 0.28% 0.93 1.41∗ 0.14%

cfp −2.18 −1.05 1.00% −0.05 −0.05 0.77% −13.10 −0.95 0.56%

cfp_ia −4.72 −1.37 0.90% −0.89 −1.37 0.50% −0.24 −0.50 0.21%

chatoia 0.41 0.38 0.45% −2.20 −1.38 0.16% 0.68 1.33∗ 0.06%

chcsho 0.75 0.58 0.76% −2.89 −1.58 0.37% −0.19 −0.18 0.20%

chempia −0.14 −0.49 0.58% −2.01 −0.49 0.25% −1.28 −1.10 0.10%

chfeps −1.22 −1.62 0.73% 0.25 0.62 0.31% 0.36 0.82 0.10%

chinv −8.93 −1.06 0.57% −3.98 −1.06 0.32% −1.62 −0.93 0.10%

chmom −9.92 −1.97 2.16% −1.43 −0.97 1.15% −0.88 −0.72 0.44%

chnanalyst 0.33 0.55 0.56% −0.84 −0.55 0.20% −0.78 −0.49 0.06%

chpmia 0.50 0.40 0.83% 1.29 1.40∗ 0.34% −1.29 −0.89 0.12%

chtx 0.03 0.13 0.86% 0.44 1.13 0.37% −1.37 −0.80 0.09%

cinvest −5.01 −0.50 0.14% 1.69 0.50 0.22% 0.25 0.34 0.08%

convind −4.30 −1.36 0.53% −1.65 −2.36 0.28% −0.29 −0.32 0.11%

currat −0.63 −0.83 0.41% 3.12 1.83∗∗ 0.36% 0.48 0.48 0.11%

The table reports Fama-MacBeth regression results for out-of-sample cross-sectional return forecasts based on 94
individual firm characteristics (defined in Table 1). For each characteristic, we first estimate a cross-sectional
univariate regression that relates returns in month t to the characteristic values in month t − 1; we then use
the fitted cross-sectional regression and corresponding characteristic values in month t to generate cross-sectional
return forecasts for month t+ 1. Using the forecasts for each month, we estimate a Fama-MacBeth cross-sectional
univariate regression that relates the realized returns to the forecasted returns. The table reports the time-series
averages of the slope coefficients and R2 statistics for the Fama-MacBeth cross-sectional univariate regressions. The
t-statistics are based on Newey and West (1987) standard errors (computed using twelve lags); ∗, ∗∗, ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively, for a one-sided, upper-tailed test. “Value-Weighted”
indicates that the cross-sectional regressions are estimated via weighted least squares with observations weighted
by market value at the end of the preceding month; “Equal Weighted” (“Equal Weighted excl. Microcaps”) indicates
that the cross-sectional regressions are estimated via ordinary least squares (excluding stocks with market value
below the NYSE 20% percentile).



Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

Characteristic Coefficient t-statistic R2 Coefficient t-statistic R2 Coefficient t-statistic R2

depr −0.28 −0.42 1.07% −0.21 −0.42 0.63% −3.06 −0.55 0.38%

disp −1.02 −1.21 0.80% −38.81 −1.21 0.47% −0.95 −1.10 0.15%

divi −0.13 −0.19 0.29% 1.60 1.34∗ 0.09% 0.43 0.44 0.05%

divo −3.72 −1.04 0.19% 0.56 0.10 0.12% 0.27 0.20 0.05%

dy −44.62 −0.96 2.26% −7.18 −1.02 1.10% 10.12 1.00 0.29%

ear 2.02 1.40∗ 0.55% −0.35 −0.49 0.24% −7.79 −0.98 0.11%

egr −2.95 −1.05 0.72% −0.11 −0.20 0.42% 11.56 1.01 0.15%

ep −0.47 −0.46 0.89% −0.08 −0.17 0.97% 1.11 1.48∗ 0.91%

fgr5yr 0.59 1.05 3.41% 1.05 0.94 2.10% 0.24 0.57 0.58%

gma −0.32 −0.50 1.76% 2.87 1.19 0.76% −0.28 −0.60 0.26%

grCAPX 31.91 1.01 0.49% 1.07 1.68∗∗ 0.34% −1.28 −1.19 0.11%

grltnoa 0.23 0.24 0.45% 0.30 1.20 0.25% 4.15 1.66∗∗ 0.12%

herf 0.99 0.52 0.54% 1.15 1.11 0.29% −1.42 −1.50 0.11%

hire 0.92 1.68∗∗ 0.96% −1.45 −0.85 0.58% −2.12 −1.68 0.20%

idiovol 0.24 0.72 4.06% −0.45 −1.07 3.67% −1.23 −1.95 2.01%

ill −1.17 −0.63 0.02% −0.08 −0.05 0.16% −0.21 −0.18 0.41%

indmom 0.72 0.60 2.25% 0.10 0.36 1.73% 1.72 2.01∗∗ 0.85%

invest −0.77 −1.33 0.76% 0.22 0.27 0.52% −2.46 −0.94 0.20%

IPO 3.89 1.12 0.32% 1.04 0.72 0.39% −0.04 −0.05 0.14%

lev 0.79 0.88 2.30% 4.31 0.97 1.17% 2.20 0.96 0.59%

mom12m 0.84 0.74 3.33% −2.66 −1.03 1.97% 1.18 1.04 0.90%

mom1m −0.40 −0.51 2.17% 0.35 0.47 1.43% 1.40 2.03∗∗ 0.87%

mom36m −0.67 −1.92 2.16% −3.94 −1.01 0.85% −0.37 −0.90 0.38%

ms 0.17 0.53 1.35% 1.91 1.65∗∗ 0.37% −1.74 −0.59 0.32%

mve 0.57 1.15 1.91% 0.89 0.54 0.95% 3.60 1.18 0.88%

mve_ia −25.92 −1.01 1.87% 0.26 0.39 0.47% 4.83 0.71 0.17%

nanalyst −0.05 −0.09 1.48% −0.59 −0.39 0.60% −1.92 −1.27 0.39%

nincr −4.30 −1.16 0.54% 2.72 1.08 0.25% −1.60 −0.83 0.09%

operprof −0.71 −0.55 0.57% 0.07 0.07 0.24% 0.06 0.06 0.10%

orgcap −0.32 −0.45 0.97% 0.85 0.48 0.48% 0.72 0.61 0.32%

pchcapx_ia 1.62 0.68 0.86% 2.72 1.53∗ 0.44% 0.88 1.19 0.18%

pchcurrat −0.12 −0.20 0.25% 9.62 1.25 0.15% 0.50 1.28∗ 0.07%

pchdepr −10.97 −1.27 0.44% 3.78 0.95 0.21% 0.74 1.72∗∗ 0.13%

pchgm_pchsale 2.31 1.17 0.22% 0.55 0.57 0.19% 2.26 2.02∗∗ 0.12%



Table 2 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

Characteristic Coefficient t-statistic R2 Coefficient t-statistic R2 Coefficient t-statistic R2

pchsale_pchinvt 1.37 1.16 0.39% 0.40 1.41∗ 0.11% 2.00 1.36∗ 0.06%

pchsale_pchrect 1.10 1.05 0.31% −0.18 −0.26 0.14% 1.21 2.33∗∗ 0.05%

pchsale_pchxsga 1.94 1.21 0.51% 1.56 1.48∗ 0.26% 0.07 0.08 0.09%

pchsaleinv 1.40 1.13 0.33% 2.34 2.03∗∗ 0.12% 0.20 0.62 0.05%

pctacc 0.98 0.50 0.39% 0.08 0.17 0.13% −0.60 −0.59 0.07%

pricedelay 0.33 1.00 0.51% −0.22 −0.29 0.18% 0.11 0.09 0.09%

ps 1.80 1.32∗ 0.77% 1.95 1.89∗∗ 0.42% 3.40 1.07 0.37%

rd 0.46 0.27 0.39% 0.02 0.09 0.33% −0.54 −0.52 0.31%

rd_mve 0.19 0.39 0.94% 6.20 1.20 0.46% −1.05 −1.35 0.43%

rd_sale 0.27 0.61 0.34% 0.24 0.30 0.46% 49.02 1.03 0.23%

realestate 0.05 0.10 0.50% −0.39 −0.71 0.26% 4.34 1.19 0.14%

retvol 0.75 0.71 4.18% 1.69 1.59∗ 3.23% −0.89 −0.83 1.77%

roaq 1.82 1.99∗∗ 1.30% 3.49 0.86 1.01% 2.05 0.93 1.01%

roavol 2.80 0.94 1.23% 2.46 2.12∗∗ 1.19% 0.66 0.63 0.77%

roeq 0.86 1.44∗ 0.64% −0.25 −0.13 0.49% 0.48 0.66 0.56%

roic −0.26 −0.47 0.64% 0.36 0.61 0.80% −0.62 −0.85 0.68%

rsup 1.60 1.17 0.52% 605.30 1.02 0.37% −0.04 −0.06 0.21%

salecash −2.06 −1.73 0.46% 1.19 1.36∗ 0.20% 4.15 1.01 0.07%

saleinv −1.75 −1.48 0.31% 1.47 2.08∗∗ 0.13% −0.03 −0.04 0.05%

salerec 1.06 1.05 0.76% 1.19 0.58 0.37% 1.07 1.60∗ 0.10%

secured −1.53 −0.61 0.56% 0.93 1.38∗ 0.34% 0.82 1.32∗ 0.16%

securedind 1.01 0.97 0.52% −2.65 −1.28 0.37% −0.17 −0.11 0.20%

sfe 1.15 1.03 0.43% −0.63 −0.64 0.56% −0.99 −0.41 0.41%

sgr 2.43 2.00∗∗ 1.07% −0.62 −0.29 0.66% −0.21 −0.31 0.20%

sin 0.51 1.12 0.57% −14.16 −1.04 0.13% 1.00 0.41 0.04%

sp 0.65 0.40 0.93% 0.47 0.41 0.60% 0.33 0.48 0.30%

std_dolvol −2.47 −1.87 0.90% −1.24 −1.29 0.34% 0.37 0.22 0.46%

std_turn 1.22 0.42 2.10% 0.85 1.08 1.49% −29.46 −1.01 0.72%

stdcf −0.25 −0.20 0.20% 1.36 1.40∗ 0.32% −0.22 −0.09 0.21%

sue −0.76 −1.37 0.28% 2.56 0.82 0.27% −0.01 −0.01 0.18%

tang 0.91 0.97 1.24% −0.97 −0.82 0.99% −0.12 −0.19 0.39%

tb 0.30 0.78 0.53% 1.12 0.64 0.15% −6.29 −1.40 0.10%

turn −0.62 −0.49 3.92% 0.24 0.57 2.73% 0.56 1.10 1.19%

zerotrade −0.73 −1.45 0.05% −0.01 −0.03 0.12% 0.24 0.11 0.39%



Table 3
Fama-MacBeth Regression Results for Combination Cross-Sectional Return Forecasts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

Method Coefficient t-statistic R2 Coefficient t-statistic R2 Coefficient t-statistic R2

Panel A: Full out-of-sample period (1990:01–2017:12)

Conventional 0.31 3.10∗∗∗ 1.67% 0.35 3.65∗∗∗ 1.02% 0.67 11.99∗∗∗ 0.77%

Mean 1.56 2.43∗∗∗ 5.37% 2.89 4.08∗∗∗ 4.40% 4.04 5.61∗∗∗ 2.35%

Trimmed mean 2.23 2.44∗∗∗ 5.35% 4.26 4.00∗∗∗ 4.35% 5.88 5.61∗∗∗ 2.28%

LASSO 1.64 3.96∗∗∗ 4.14% 1.61 4.21∗∗∗ 3.11% 2.61 7.47∗∗∗ 1.83%

ENet 1.66 3.95∗∗∗ 4.14% 1.68 4.38∗∗∗ 3.11% 2.61 7.66∗∗∗ 1.84%

Panel B: Pre-2003 out-of-sample period (1990:01–2002:12)

Conventional 0.63 4.14∗∗∗ 2.11% 0.72 7.41∗∗∗ 1.45% 0.90 25.42∗∗∗ 1.05%

Mean 1.47 1.47∗ 6.13% 3.15 2.51∗∗∗ 5.85% 5.99 5.92∗∗∗ 2.98%

Trimmed mean 1.97 1.36∗ 6.24% 4.33 2.28∗∗ 5.83% 8.65 5.76∗∗∗ 2.89%

LASSO 1.73 2.72∗∗∗ 4.51% 2.33 4.52∗∗∗ 3.82% 3.39 6.45∗∗∗ 2.25%

ENet 1.76 2.69∗∗∗ 4.54% 2.43 4.76∗∗∗ 3.81% 3.34 6.59∗∗∗ 2.26%

Panel C: Post-2003 out-of-sample period (2004:01–2017:12)

Conventional 0.05 0.58 1.24% 0.04 0.35 0.64% 0.48 6.73∗∗∗ 0.52%

Mean 1.94 2.40∗∗∗ 4.74% 2.80 3.53∗∗∗ 3.14% 1.91 2.82∗∗∗ 1.77%

Trimmed mean 2.92 2.62∗∗∗ 4.60% 4.24 3.54∗∗∗ 3.08% 2.86 2.97∗∗∗ 1.71%

LASSO 1.55 2.70∗∗∗ 3.89% 1.04 1.98∗∗ 2.49% 1.79 4.69∗∗∗ 1.43%

ENet 1.58 2.74∗∗∗ 3.89% 1.08 2.06∗∗ 2.49% 1.82 4.76∗∗∗ 1.43%

The table reports Fama-MacBeth regression results for out-of-sample cross-sectional return forecasts based on com-
bination approaches. For each of 94 individual firm characteristics (defined in Table 1), we first estimate a cross-
sectional univariate regression that relates returns in month t to the characteristic values in month t−1; we then use
the fitted cross-sectional regression and corresponding characteristic values in month t to generate cross-sectional
return forecasts for month t + 1. The “Mean” (“Trimmed mean”) combination forecast is the arithmetic mean of
the return forecasts based on the individual characteristics (after excluding the 5% smallest and 5% largest of the
individual return forecasts); the “LASSO” (“ENet”) combination forecast is the average of the return forecasts based
on the individual characteristics selected by the LASSO (elastic net). “Conventional” refers to a forecast based on a
conventional multiple regression approach (e.g., Green, Hand, and Zhang 2017). Using the forecasts for each month,
we estimate a Fama-MacBeth cross-sectional univariate regression that relates the realized returns to the forecasted
returns. The table reports the time-series averages of the slope coefficients and R2 statistics for the Fama-MacBeth
cross-sectional univariate regressions. The t-statistics are based on Newey and West (1987) standard errors (com-
puted using twelve lags); ∗, ∗∗, ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for a one-sided,
upper-tailed test. “Value-Weighted” indicates that the cross-sectional regressions are estimated via weighted least
squares with observations weighted by market value at the end of the preceding month; “Equal Weighted” (“Equal
Weighted excl. Microcap”) indicates that the cross-sectional regressions are estimated via ordinary least squares
(excluding stocks with market value below the NYSE 20% percentile).



Table 4
Encompassing Test Results for Combination Cross-Sectional Return Forecasts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

b̂† 1− b̂† b̂† 1− b̂† b̂† 1− b̂†

Method Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Full out-of-sample period (1990:01–2017:12)

Mean 0.70 6.62∗∗∗ 0.30 2.89∗∗∗ 0.71 7.82∗∗∗ 0.29 3.25∗∗∗ 0.39 6.86∗∗∗ 0.61 10.79∗∗∗

Trimmed mean 0.70 6.62∗∗∗ 0.30 2.82∗∗∗ 0.70 7.47∗∗∗ 0.30 3.24∗∗∗ 0.37 6.70∗∗∗ 0.63 11.32∗∗∗

LASSO 0.68 6.57∗∗∗ 0.32 3.14∗∗∗ 0.68 7.38∗∗∗ 0.32 3.45∗∗∗ 0.40 6.26∗∗∗ 0.60 9.43∗∗∗

ENet 0.68 6.62∗∗∗ 0.32 3.12∗∗∗ 0.68 7.23∗∗∗ 0.32 3.45∗∗∗ 0.40 6.25∗∗∗ 0.60 9.46∗∗∗

Panel B: Pre-2003 out-of-sample period (1990:01–2002:12)

Mean 0.36 2.35∗∗∗ 0.64 4.22∗∗∗ 0.40 3.83∗∗∗ 0.60 5.72∗∗∗ 0.19 3.11∗∗∗ 0.81 13.08∗∗∗

Trimmed mean 0.36 2.34∗∗∗ 0.64 4.12∗∗∗ 0.36 3.63∗∗∗ 0.64 6.47∗∗∗ 0.17 3.25∗∗∗ 0.83 16.29∗∗∗

LASSO 0.35 2.28∗∗ 0.65 4.22∗∗∗ 0.39 2.98∗∗∗ 0.61 4.57∗∗∗ 0.20 2.26∗∗ 0.80 9.28∗∗∗

ENet 0.35 2.32∗∗ 0.65 4.23∗∗∗ 0.38 2.85∗∗∗ 0.62 4.56∗∗∗ 0.20 2.28∗∗ 0.80 9.21∗∗∗

Panel C: Post-2003 out-of-sample period (2004:01–2017:12)

Mean 0.98 10.62∗∗∗ 0.02 0.18 0.96 9.06∗∗∗ 0.04 0.38 0.55 8.12∗∗∗ 0.45 6.57∗∗∗

Trimmed mean 0.99 10.73∗∗∗ 0.01 0.13 0.98 9.07∗∗∗ 0.02 0.18 0.55 7.98∗∗∗ 0.45 6.66∗∗∗

LASSO 0.95 10.86∗∗∗ 0.05 0.54 0.92 9.79∗∗∗ 0.08 0.89 0.57 8.35∗∗∗ 0.43 6.43∗∗∗

ENet 0.95 10.82∗∗∗ 0.05 0.51 0.92 9.83∗∗∗ 0.08 0.87 0.56 8.22∗∗∗ 0.44 6.42∗∗∗

The table reports encompassing test results for out-of-sample cross-sectional return forecasts based on combination approaches. For
each of 94 individual firm characteristics (defined in Table 1), we first estimate a cross-sectional univariate regression that relates
returns in month t to the characteristic values in month t − 1; we then use the fitted cross-sectional regression and corresponding
characteristic values in month t to generate cross-sectional return forecasts for month t + 1. The “Mean” (“Trimmed mean”)
combination forecast is the arithmetic mean of the return forecasts based on the individual characteristics (after excluding the 5%
smallest and 5% largest of the individual return forecasts); the “LASSO” (“ENet”) combination forecast is the average of the return
forecasts based on the individual characteristics selected by the LASSO (elastic net). The b̂† and 1 − b̂† estimates correspond to
the average coefficients attached to the combination forecast and a conventional multiple regression forecast (e.g., Green, Hand, and
Zhang 2017), respectively, in an optimal composite forecast. The t-statistics are based on Newey and West (1987) standard errors
(computed using twelve lags); ∗, ∗∗, ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for a one-sided, upper-tailed
test. “Value-Weighted” indicates that the cross-sectional regressions are estimated via weighted least squares with observations
weighted by market value at the end of the preceding month; “Equal Weighted” (“Equal Weighted excl. Microcap”) indicates that
the cross-sectional regressions are estimated via ordinary least squares (excluding stocks with market value below the NYSE 20%
percentile).



Table 5
Weighted Elastic Net Selection Frequencies, 1990:01 to 2017:12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Pre Post Pre Post Pre Post
Characteristic Full 2003 2003 Characteristic Full 2003 2003 Characteristic Full 2003 2003

mom1m 49% 45% 52% lev 37% 37% 36% stdcf 31% 29% 33%

tb 45% 46% 43% pchdepr 36% 34% 39% bm_ia 30% 30% 30%

sin 44% 42% 45% chmom 36% 36% 36% ep 30% 32% 29%

nincr 43% 42% 45% sue 36% 37% 35% ill 29% 33% 26%

salerec 43% 43% 43% saleinv 35% 38% 33% pchsale_pchinvt 29% 29% 30%

chnanalyst 43% 45% 40% aeavol 35% 32% 38% roeq 29% 26% 33%

cinvest 42% 42% 42% beta 35% 36% 33% mve_ia 29% 29% 29%

chpmia 42% 40% 43% nanalyst 35% 33% 37% roaq 29% 30% 27%

IPO 41% 42% 40% rd_mve 35% 37% 33% cash 28% 22% 34%

herf 40% 42% 39% chatoia 35% 33% 36% grCAPX 28% 29% 26%

pchcurrat 40% 42% 39% mom36m 35% 28% 41% dy 27% 30% 24%

secured 40% 43% 38% ps 35% 35% 34% acc 27% 29% 25%

convind 40% 38% 42% rd_sale 35% 39% 30% fgr5yr 27% 26% 28%

mom12m 40% 44% 36% chinv 34% 28% 40% turn 27% 26% 27%

ear 40% 42% 38% salecash 34% 39% 29% cashdebt 26% 26% 27%

pchcapx_ia 40% 42% 38% chtx 33% 32% 35% age 26% 27% 26%

pchsale_pchxsga 40% 37% 43% sp 33% 36% 31% egr 26% 20% 32%

securedind 40% 43% 37% std_dolvol 33% 32% 35% roavol 26% 29% 23%

orgcap 40% 38% 41% realestate 33% 27% 38% ms 26% 27% 24%

pchsale_pchrect 40% 39% 40% cashpr 32% 34% 31% absacc 25% 26% 24%

divi 38% 35% 41% cfp 32% 30% 35% mve 24% 25% 24%

chfeps 38% 39% 37% pchsaleinv 32% 34% 31% invest 24% 23% 24%

divo 38% 38% 38% pctacc 32% 32% 33% retvol 24% 24% 23%

indmom 38% 41% 35% currat 32% 29% 35% hire 23% 19% 27%

pchgm_pchsale 38% 38% 38% operprof 32% 33% 31% roic 22% 19% 25%

rsup 38% 36% 39% bm 32% 29% 34% gma 21% 21% 22%

sfe 38% 42% 33% chempia 32% 25% 38% agr 21% 16% 25%

chcsho 37% 38% 36% grltnoa 32% 32% 31% baspread 20% 21% 20%

pricedelay 37% 39% 35% depr 31% 26% 37% sgr 20% 20% 20%

rd 37% 39% 35% zerotrade 31% 40% 22% idiovol 18% 18% 19%

tang 37% 35% 39% disp 31% 35% 27% std_turn 14% 14% 14%

cfp_ia 37% 33% 40%

The table reports weighted elastic net selection frequencies for firm characteristics in cross-sectional regressions.
For each of 94 individual firm characteristics (defined in Table 1), we first estimate a cross-sectional univariate
regression via weighted least squares that relates returns in month t to the characteristic values in month t− 1;
we then use the fitted cross-sectional regression and corresponding characteristic values in month t to generate
cross-sectional return forecasts for month t+ 1. Using the forecasts for each month, we estimate a cross-sectional
multiple regression via the weighted elastic net that relates the realized returns to the entire set of return
forecasts based on the individual firm characteristics. Observations are weighted by market value at the end of
the preceding month.



Table 6
Spread Portfolio Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

Method Mean t-statistic Volatility Mean t-statistic Volatility Mean t-statistic Volatility

Panel A: Full out-of-sample period (1990:01–2017:12)

Conventional 0.98% 3.63∗∗∗ 4.95% 1.24% 4.43∗∗∗ 5.13% 2.95% 13.07∗∗∗ 4.14%

Mean 0.99% 2.29∗∗ 7.88% 1.60% 2.86∗∗∗ 10.27% 1.78% 4.07∗∗∗ 8.03%

Trimmed mean 0.95% 2.29∗∗ 7.64% 1.54% 2.81∗∗∗ 10.08% 1.71% 3.95∗∗∗ 7.95%

LASSO 1.16% 2.95∗∗∗ 7.20% 1.38% 2.90∗∗∗ 8.73% 1.93% 4.95∗∗∗ 7.15%

ENet 1.16% 2.96∗∗∗ 7.20% 1.36% 2.86∗∗∗ 8.73% 1.92% 4.88∗∗∗ 7.21%

Panel B: Pre-2003 out-of-sample period (1990:01–2002:12)

Conventional 2.03% 4.39∗∗∗ 5.79% 2.59% 5.23∗∗∗ 6.19% 4.45% 12.68∗∗∗ 4.39%

Mean 1.21% 1.74∗ 8.61% 2.30% 2.22∗∗ 12.95% 2.41% 3.15∗∗∗ 9.55%

Trimmed mean 1.31% 1.93∗ 8.49% 2.26% 2.20∗∗ 12.80% 2.39% 3.10∗∗∗ 9.62%

LASSO 1.45% 2.24∗∗ 8.08% 2.24% 2.53∗∗ 11.06% 2.46% 3.63∗∗∗ 8.46%

ENet 1.46% 2.24∗∗ 8.11% 2.21% 2.49∗∗ 11.04% 2.48% 3.64∗∗∗ 8.53%

Panel C: Post-2003 out-of-sample period (2004:01–2017:12)

Conventional 0.004% 0.01 3.86% 0.11% 0.39 3.58% 1.68% 6.31∗∗∗ 3.46%

Mean 0.78% 1.41 7.20% 0.93% 1.68∗ 7.17% 0.99% 2.03∗∗ 6.33%

Trimmed mean 0.68% 1.21 6.80% 0.81% 1.53 6.88% 0.88% 1.88∗ 6.03%

LASSO 0.93% 1.87∗ 6.42% 0.60% 1.30 5.95% 1.28% 2.93∗∗∗ 5.66%

ENet 0.93% 1.88∗ 6.41% 0.60% 1.29 5.97% 1.24% 2.81∗∗∗ 5.73%

Panel D: Post 2003 minus pre 2003

Conventional −2.03% −3.68∗∗∗ −2.48% −4.38∗∗∗ −2.77% −6.28∗∗∗

Mean −0.42% −0.47 −1.37% −1.17 −1.42% −1.57

Trimmed mean −0.64% −0.74 −1.45% −1.25 −1.51% −1.68∗

LASSO −0.52% −0.64 −1.64% −1.65∗ −1.18% −1.46

ENet −0.53% −0.65 −1.61% −1.61 −1.24% −1.53

The table reports summary statistics for spread portfolios formed from out-of-sample cross-sectional return forecasts
based on combination approaches. For each of 94 individual firm characteristics (defined in Table 1), we first estimate a
cross-sectional univariate regression that relates returns in month t to the characteristic values in month t− 1; we then
use the fitted cross-sectional regression and corresponding characteristic values in month t to generate cross-sectional
return forecasts for month t + 1. The “Mean” (“Trimmed mean”) combination forecast is the arithmetic mean of
the return forecasts based on the individual characteristics (after excluding the 5% smallest and 5% largest of the
individual return forecasts); the “LASSO” (“ENet”) combination forecast is the average of the return forecasts based
on the individual characteristics selected by the LASSO (elastic net). “Conventional” refers to a forecast based on a
conventional multiple regression approach (e.g., Green, Hand, and Zhang 2017). Using the forecasts for each month, we
form a spread portfolio that goes long (short) the top (bottom) decile of stocks sorted according to the cross-sectional
return forecasts. For the t-statistics, ∗, ∗∗, ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. “Value-
Weighted” indicates that the cross-sectional regressions are estimated via weighted least squares with observations
weighted by market value at the end of the preceding month, and the long and short legs of the spread portfolio are
value weighted; “Equal Weighted” (“Equal Weighted excl. Microcap”) indicates that the cross-sectional regressions are
estimated via ordinary least squares (excluding stocks with market value below the NYSE 20% percentile), and the
long and short legs of the spread portfolio are equal weighted.



Table 7
Multifactor Model Estimation Results, 1990:01 to 2017:12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Conventional Mean Trimmed mean LASSO ENet

Factor Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Carhart (1997) four-factor model

α 0.62% 2.91∗∗∗ 1.31% 2.98∗∗∗ 1.24% 2.94∗∗∗ 1.20% 3.09∗∗∗ 1.20% 3.09∗∗∗

MKT 0.16 3.01∗∗∗ −0.36 −3.31∗∗∗ −0.35 −3.31∗∗∗ −0.25 −2.60∗∗∗ −0.25 −2.55∗∗

SMB 0.03 0.49 −0.06 −0.43 −0.13 −0.97 −0.09 −0.74 −0.09 −0.74

HML −0.31 −4.23∗∗∗ −0.21 −1.38 −0.22 −1.51 −0.16 −1.16 −0.16 −1.21

UMD 0.62 13.39∗∗∗ −0.06 −0.63 0.01 0.07 0.33 3.91∗∗∗ 0.33 3.91∗∗∗

Panel B: Fama and French (2015) five-factor model

α 0.93% 3.44∗∗∗ 1.15% 2.58∗∗∗ 1.13% 2.62∗∗∗ 1.33% 3.29∗∗∗ 1.33% 3.29∗∗∗

MKT 0.04 0.52 −0.26 −2.17∗∗ −0.26 −2.23∗∗ −0.27 −2.53∗∗ −0.27 −2.48∗∗

SMB 0.16 1.69∗ −0.13 −0.86 −0.22 −1.43 −0.11 −0.79 −0.11 −0.78

HML −0.73 −6.04∗∗∗ −0.44 −2.19∗∗ −0.50 −2.60∗∗∗ −0.53 −2.93∗∗∗ −0.54 −2.98∗∗∗

RMW 0.27 2.21∗∗ −0.08 −0.39 −0.09 −0.45 −0.02 −0.09 −0.01 −0.07

CMA 0.27 1.53 0.67 2.30∗∗ 0.76 2.73∗∗∗ 0.65 2.45∗∗ 0.65 2.47∗∗

Panel C: Hou, Xue, and Zhang (2015) q-factor model

α 0.62% 2.26∗∗∗ 1.36% 2.92∗∗∗ 1.30% 2.90∗∗∗ 1.36% 3.20∗∗∗ 1.36% 3.20∗∗∗

MKT 0.10 1.42 −0.35 −2.96∗∗∗ −0.34 −2.96∗∗∗ −0.33 −3.02∗∗∗ −0.32 −2.98∗∗∗

ME 0.33 3.92∗∗∗ −0.13 −0.91 −0.18 −1.28 −0.05 −0.39 −0.05 −0.38

I/A −0.41 −3.05∗∗∗ 0.17 0.71 0.18 0.82 0.07 0.33 0.06 0.29

ROE 0.70 6.53∗∗∗ −0.30 −1.67∗ −0.23 −1.34 −0.04 −0.25 −0.04 −0.22

The table reports multifactor model estimation results for spread portfolios formed from out-of-sample cross-sectional
return forecasts based on combination approaches. For each of 94 individual firm characteristics (defined in Table 1), we
first estimate a cross-sectional univariate regression that relates returns in month t to the characteristic values in month
t − 1; we then use the fitted cross-sectional regression and corresponding characteristic values in month t to generate
cross-sectional return forecasts for month t+ 1. The “Mean” (“Trimmed mean”) combination forecast is the arithmetic
mean of the return forecasts based on the individual characteristics (after excluding the 5% smallest and 5% largest of
the individual return forecasts); the “LASSO” (“ENet”) combination forecast is the average of the return forecasts based
on the individual characteristics selected by the LASSO (elastic net). “Conventional” refers to a forecast based on a
conventional multiple regression approach (e.g., Green, Hand, and Zhang 2017). Using the forecasts for each month, we
form a spread portfolio that goes long (short) the top (bottom) decile of stocks sorted according to the cross-sectional
return forecasts. For the t-statistics, ∗, ∗∗, ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The
cross-sectional regressions are estimated via weighted least squares with observations weighted by market value at the
end of the preceding month, and the long and short legs of the spread portfolio are value weighted. The factors are
defined as follows: MKT = CRSP value-weighted market excess return; SMB (HML) = Fama and French (1993) “small
minus big” size (“high minus low” value) factor; UMD = “up minus down” momentum factor; RMW (CMA) = Fama
and French (2015) “robust minus weak” profitability (“conservative minus aggressive” investment) factor; ME, I/A, and
ROE = Hou, Xue, and Zhang (2015) size, investment, and return on equity factors, respectively. The results in Panel
C are for 1990:01 to 2016:12.



Table 8
Risk-Adjusted Average Returns for Spread Portfolios, 1990:01 to 2017:12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Value Weighted Equal Weighted excl. Microcap Equal Weighted

α̂ ∆̂ α̂ ∆̂ α̂ ∆̂

Method Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Panel A: Carhart (1997) four-factor model

Conventional 1.41% 4.79∗∗∗ −1.55% −3.81∗∗∗ 1.55% 6.10∗∗∗ −1.55% −4.39∗∗∗ 4.05% 14.21∗∗∗ −2.31% −5.86∗∗∗

Mean 1.56% 2.52∗∗ −0.51% −0.59 2.67% 3.32∗∗∗ −1.39% −1.25 2.67% 4.26∗∗∗ −1.47% −1.69∗

Trimmed mean 1.56% 2.60∗∗∗ −0.61% −0.74 2.68% 3.39∗∗∗ −1.51% −1.38 2.62% 4.21∗∗∗ −1.53% −1.78∗

LASSO 1.30% 2.37∗∗ −0.21% −0.27 2.05% 3.08∗∗∗ −1.22% −1.32 2.35% 4.38∗∗∗ −0.91% −1.23

ENet 1.31% 2.39∗∗ −0.22% −0.29 2.01% 3.02∗∗∗ −1.18% −1.28 2.37% 4.39∗∗∗ −0.97% −1.30

Panel B: Fama and French (2015) five-factor model

Conventional 1.99% 5.42∗∗∗ −2.07% −4.14∗∗∗ 2.43% 6.29∗∗∗ −2.25% −4.27∗∗∗ 4.36% 14.28∗∗∗ −2.63% −6.34∗∗∗

Mean 1.27% 2.03∗∗ −0.23% −0.28 2.36% 2.95∗∗∗ −0.96% −0.88 2.33% 3.78∗∗∗ −1.13% −1.35

Trimmed mean 1.32% 2.19∗∗ −0.37% −0.45 2.40% 3.06∗∗∗ −1.08% −1.02 2.29% 3.76∗∗∗ −1.20% −1.45

LASSO 1.50% 2.65∗∗∗ −0.32% −0.42 2.09% 3.11∗∗∗ −1.19% −1.29 2.47% 4.51∗∗∗ −0.95% −1.28

ENet 1.50% 2.65∗∗∗ −0.33% −0.43 2.06% 3.06∗∗∗ −1.16% −1.26 2.50% 4.53∗∗∗ −1.01% −1.35

Panel C: Hou, Xue, and Zhang (2015) q-factor model

Conventional 1.57% 4.17∗∗∗ −1.86% −3.62∗∗∗ 1.84% 4.93∗∗∗ −1.99% −3.89∗∗∗ 4.18% 13.46∗∗∗ −2.45% −5.78∗∗∗

Mean 1.60% 2.46∗∗ −0.46% −0.53 2.81% 3.34∗∗∗ −1.42% −1.23 2.46% 3.77∗∗∗ −1.28% −1.44

Trimmed mean 1.59% 2.55∗∗ −0.57% −0.67 2.85% 3.46∗∗∗ −1.53% −1.36 2.40% 3.71∗∗∗ −1.33% −1.51

LASSO 1.61% 2.72∗∗∗ −0.49% −0.61 2.26% 3.19∗∗∗ −1.46% −1.50 2.37% 4.11∗∗∗ −0.99% −1.25

ENet 1.62% 2.73∗∗∗ −0.51% −0.63 2.23% 3.14∗∗∗ −1.43% −1.48 2.40% 4.12∗∗∗ −1.04% −1.31

The table reports estimates of alpha (α̂) and the change in alpha after 2003 (∆̂) in multifactor models for spread portfolios formed from out-of-sample
cross-sectional return forecasts based on combination approaches. For each of 94 individual firm characteristics (defined in Table 1), we first estimate
a cross-sectional univariate regression that relates returns in month t to the characteristic values in month t − 1; we then use the fitted cross-sectional
regression and corresponding characteristic values in month t to generate cross-sectional return forecasts for month t+ 1. The “Mean” (“Trimmed mean”)
combination forecast is the arithmetic mean of the return forecasts based on the individual characteristics (after excluding the 5% smallest and 5% largest
of the individual return forecasts); the “LASSO” (“ENet”) combination forecast is the average of the return forecasts based on the individual characteristics
selected by the LASSO (elastic net). “Conventional” refers to a forecast based on a conventional multiple regression approach (e.g., Green, Hand, and
Zhang 2017). Using the forecasts for each month, we form a spread portfolio that goes long (short) the top (bottom) decile of stocks sorted according
to the cross-sectional return forecasts. For the t-statistics, ∗, ∗∗, ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. “Value-Weighted”
indicates that the cross-sectional regressions are estimated via weighted least squares with observations weighted by market value at the end of the preceding
month, and the long and short legs of the spread portfolio are value weighted; “Equal Weighted” (“Equal Weighted excl. Microcap”) indicates that the
cross-sectional regressions are estimated via ordinary least squares (excluding stocks with market value below the NYSE 20% percentile), and the long and
short legs of the spread portfolio are equal weighted. The results in Panel C are for 1990:01 to 2016:12.
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Figure 1. Ten-year rolling averages of slope coefficients for Fama-MacBeth cross-sectional regressions.

The solid lines show ten-year moving averages of slope coefficient estimates for Fama-MacBeth cross-sectional univari-
ate regressions that relate month-t realized returns to return forecasts based on two approaches. Panel A (B) refers
to a forecast based on a conventional multiple regression (elastic net combination) approach. The cross-sectional
univariate regressions are estimated using weighted least squares, where the observations are weighted by market
value at the end of the preceding month. Bands delineate two-sided 90% confidence intervals based on Newey and
West (1987) standard errors (computed using twelve lags). The dashed lines delineate lower bounds for one-sided,
upper-tailed 90% confidence intervals.
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Figure 2. Ten-year rolling averages of optimal composite forecast coefficients.

The figure shows ten-year moving averages of estimated coefficients attached to a conventional multiple regression
forecast (Panel A) and elastic net combination forecast (Panel B) in an optimal composite forecast. The coefficients
are estimated using a weighted least squares approach, where the observations are weighted by market value at the
end of the preceding month. Bands delineate two-sided 90% confidence intervals based on Newey and West (1987)
standard errors (computed using twelve lags). The dashed lines delineate lower bounds for one-sided, upper-tailed
90% confidence intervals.



1990:01−2017:12 average = 30.71
1990:01−2002:12 average = 30.40
2004:01−2017:12 average = 30.98
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A. Weighted LASSO

1990:01−2017:12 average = 31.06
1990:01−2002:12 average = 30.83
2004:01−2017:12 average = 31.24
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B. Weighted elastic net

Figure 3. Number of characteristics selected by the LASSO and elastic net.

The figure shows the number of characteristics selected by the weighted LASSO (Panel A) and weighted elastic net
(Panel B) for a cross-sectional multiple regression that relates month-t realized returns to the entire set of return
forecasts based on 94 individual firm characteristics (defined in Table 1). Observations are weighted in the LASSO
and elastic net by market value at the end of the preceding month. Horizontal dashed lines delineate the average
number of characteristics selected for the 1990:01 to 2017:12 period.
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Figure 4. Log cumulative returns for spread portfolios.

The figure shows log cumulative returns for spread portfolios formed from cross-sectional return forecasts based on
a conventional multiple regression approach (Panel A) or elastic net combination approach (Panel B). The spread
portfolio goes long (short) firms in the top (bottom) decile of sorted cross-sectional return forecasts. The long and
short legs of the spread portfolio are value weighted. Vertical bars delineate business-cycle recessions as dated by the
National Bureau of Economic Research.
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