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Abstract

This paper studies the pricing of shocks to uncertainty and realized volatility using options

contracts directly related to the state of the macroeconomy and of financial markets. Contracts

that provide protection against shocks to macroeconomic uncertainty have historically earned

statistically and economically significantly positive excess returns. If uncertainty shocks were

viewed as bad by investors – in the sense of being associated with high marginal utility – portfo-

lios that hedge them should instead earn negative premia. Portfolios exposed to the realization

(as opposed to the expectation) of large shocks to fundamentals, on the other hand, have histor-

ically earned large and negative risk premia. These results imply that it is large realizations of

shocks to fundamentals, not forward-looking uncertainty shocks, that drive investors’ marginal

utility; in turn, these implications can be used to guide and discipline the role of volatility in

macroeconomic models.

1 Introduction

It is well established that a wide range of measures of economic volatility and uncertainty vary over

time and with the business cycle. Uncertainty about numerous aspects of the economy, including

productivity, the level of the stock market, inflation, interest rates, and energy prices, varies sub-

stantially, and often as the direct result of policy choices. It is therefore important to understand

how uncertainty affects the economy, both to reveal the basic drivers of economic fluctuations, and

also to guide policymakers.

There are numerous theories that explore the relationship between uncertainty and real activity.

Some models focus on contractionary effects, such as models with wait-and-see effects in investment

(e.g. Caballero (1999), Bloom (2009)), while others argue that uncertainty can be high in periods

of high growth (like the late 1990’s) due to learning effects (Pastor and Veronesi (2009)). Fur-

thermore, even theoretical work that focuses on contractionary effects of uncertainty tends to find

responses of the economy to uncertainty shocks whose sign is parameter-dependent. Gilchrist and
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Williams (2005) and Bloom et al. (2017) extensively discuss the potentially expansionary effects of

uncertainty shocks.

The empirical literature studying uncertainty has focused almost entirely on analyzing raw

correlations or using vector autoregressions with varying identifying assumptions. Empirical work

thus far has not resolved the question of whether uncertainty is contractionary, with some arguing

that uncertainty shocks are briefly contractionary followed by a large rebound (Bloom (2009)),

others arguing that they are persistently contractionary (e.g. Alexopoulos and Cohen (2009);

Leduc and Liu (2016), Caldara et al. (2016)), and a third set finding that they have little effect at

all (Bachmann and Bayer (2013); Berger, Dew-Becker, and Giglio (2018)). A fourth set of papers

argues the causation may run the opposite direction, with economic activity driving uncertainty

(e.g. Ludvigson, Ma, and Ng (2015) and Creal and Wu (2017)).1

This paper develops a novel empirical approach to evaluate the effects of uncertainty shocks.

Instead of studying a VAR with all of the associated identification challenges, we argue that financial

markets provide a direct window on how investors perceive uncertainty shocks. The basic idea is to

construct portfolios that directly hedge uncertainty shocks and then measure their average returns.

If investors are willing to accept negative average returns on those hedging portfolios (i.e., negative

risk premia), that implies that they view uncertainty as being bad in the sense that it is high

in high marginal utility – usually bad – states. On the other hand, if the hedging portfolios have

positive average returns, then investors view uncertainty as typically being high in good states. The

magnitude of the average return moreover measures the correlation between uncertainty and state

prices. So rather than running sophisticated regressions of output on uncertainty, we let investors

speak to the question.

While there is a large literature that estimates the risk premia for uncertainty about the

S&P 500,2 recent evidence shows that aggregate uncertainty has multiple dimensions (Ludvig-

son, Ma, and Ng (2015); Baker, Bloom, and Davis (2015)). S&P 500 uncertainty is related to

conditions in the financial sector, but it is possible that the driving force in the economy is ac-

tually uncertainty about other features of the macroeconomy, such as interest rates, inflation, or

the availability of inputs to production, like crude oil. This paper contributes to the literature

by estimating risk premia associated with uncertainty in 19 different markets covering a range of

different features of the economy, including financial conditions, inflation, and real assets. Using

the range of contracts – which are exchange-traded and available to retail investors – we construct

portfolios that allow investors to directly hedge different types of uncertainty shocks, including

shocks to prominent recent uncertainty indexes from Jurado, Ludvigson, and Ng (JLN; 2015) and

the economic policy uncertainty (EPU) index of Baker, Bloom, and Davis (2015).

The first step in the analysis is to document the strong relationship between the implied volatility

in the 19 options markets and the JLN and EPU indexes. Implied volatility for the financial

1For related theories, see Decker, D’erasmo and Boedo (2016), Berger and Vavra (2013), Ilut, Kehrig and Schneider
(2015), Kozlowski, Veldkamp, and Venkateswaran (2016), and Cesa-Bianchi, Pesaran, and Rebucci (2018).

2See Egloff, Leippold, and Wu (2010), Dew-Becker et al. (2017), Van Binsbergen and Koijen (2017), Andries et
al. (2015), and Ait-Sahalia, Karaman, and Mancini (2015).
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underlyings – the S&P 500 and Treasury bonds in particular – is primarily associated with the JLN

financial uncertainty and EPU indexes, while implied volatility for the nonfinancial underlyings is

much more strongly associated with JLN uncertainty about the real economy and goods prices.

The relationships are strong in the sense that the implied volatilities explain 60–80 percent of

the variation in the JLN and EPU indexes. Together, these results confirm that hedging shocks

to implied volatility in these markets represents a good way to hedge various types of aggregate

uncertainty shocks, both macroeconomic and financial, and they show why it is important to study

more than just S&P 500 options.

We next examine the pricing of shocks. The discussion so far has focused on economic uncer-

tainty – some measure of the dispersion of agents’ conditional distribution for future outcomes. But

much of the literature also studies volatility – the magnitude of realized shocks to fundamentals.

Whereas uncertainty in theoretical models is a forward-looking conditional variance, volatility is a

backward-looking sample variance. That is, for some shock ε, with vart (εt+1) = σ2
t , uncertainty

is σ2
t , while volatility is ε2t . The distinction is crucial from the theoretical point of view: models

in which forward-looking uncertainty matters for the economy have predictions about σ2
t but not

about ε2t .

Our analysis of returns on options yields hedging portfolios for both. The basic technique

takes advantage of the fact that as the maturity of an option varies, its exposure to volatility and

uncertainty changes. Longer maturity options are relatively more exposed to uncertainty about the

future than to current volatility, while short-maturity option returns are the opposite. That fact

allows one to construct two portfolios from short- and long-maturity options, one of which yields

pure exposure to changes in implied volatility or σ2, while the other yields exposure to squared

returns in the underlying futures, or ε2.

The empirical analysis yields two key findings. First, across 19 individual option markets and

also when hedging the JLN and EPU indexes, portfolios that directly hedge uncertainty shocks have

historically earned returns that are in almost all cases statistically and economically significantly

positive. The average returns are nearly as positive as those on the aggregate US stock market.

That result implies that investors view periods of high uncertainty as being good on average, rather

than bad, in the same way and to the same degree that stock returns are high in good times. The

second result runs in the opposite direction: portfolios that hedge realized volatility – large realized

futures returns, or ε2 – earn statistically and economically significantly negative returns. That

implies that investors on average view periods in which shocks to fundamentals themselves are

large as being bad.

The returns on the uncertainty hedging portfolios are difficult to reconcile with the view that

innovations in economic uncertainty are contractionary. If increases in uncertainty were viewed as

bad in the sense of raising marginal utility, then we would find a negative premium on implied

volatility – investors would be willing to accept negative average returns on assets that are hedges

against high marginal utility states. Instead, the results imply that investors have historically

viewed periods of high uncertainty and implied volatility as being good, in the sense that they are
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associated with low marginal utility, consistent with models such as that of Pastor and Veronesi

(2009).

What is associated with bad outcomes, from the perspective of investors, is instead realized

volatility. That finding contributes to the growing literature studying skewness risk in the economy

(e.g. Barro (2006), Bloom, Guvenen, and Salgado (2016), and Seo and Wachter (2018a,b)). If

shocks to the economy are skewed to the left, then large shocks tend to be negative. That is,

E
[
ε3
]
< 0 implies cov

(
ε, ε2

)
< 0. An explanation for the pricing of realized volatility, developed

formally in Berger, Dew-Becker, and Giglio (2018), is simply that hedging realized volatility helps

hedge downward jumps and disasters.

The paper is related to two main strands of literature. The first studies the relationship between

uncertainty and the macroeconomy. There are numerous channels that have been proposed through

which uncertainty about various aspects of the aggregate economy may have real effects.3 Impor-

tantly, these models do not generate a uniform prediction that uncertainty shocks are necessarily

contractionary. While there are contractionary forces, such as wait-and see effects and Keynesian

demand channels, there are also forces through which uncertainty can be expansionary, including

precautionary saving and the Oi–Hartmann–Abel effect that is extensively discussed by Gilchrist

and Williams (2005) and Bloom et al. (2017). Our results are therefore more consistent with

the expansionary forces. There is also a related empirical literature that tries to measure whether

uncertainty does in fact have contractionary effects.4 This paper builds on that work by providing

measures of risk premia that indicate how investors perceive the effects of aggregate uncertainty

shocks. Furthermore, while the past literature has often used S&P 500 implied volatility to measure

uncertainty (e.g. Bloom (2009) and Basu and Bundick (2017)), this paper covers a much broader

range of assets.

The second literature we build on estimates the pricing of volatility risk in financial markets.

Again, that literature primarily studies the S&P 500. There are various papers that have studied

specific markets, such as individual equities (e.g. Bakshi, Kapadia, and Madan (2003)) or Treasury

bonds (Mueller, Vedolin, and Yen (2017)). Prokopczuk et al. (2017) examine the variance risk

premium across many of the same markets that we study (see also Trolle and Schwartz (2010)).

Our contribution involves using multiple maturities in each market to isolate the premium on

implied volatility as opposed to just the realized variance risk premium – the distinction between

the two is crucial because it is only implied volatility, not realized volatility, that captures the

forward-looking concept of uncertainty on which the theoretical models are based.

The remainder of the paper is organized as follows. Section 2 describes the data and its basic

characteristics. Section 3 discusses the construction of portfolios that hedge realized volatility and

uncertainty. Section 4 reports the cost of hedging volatility and uncertainty in our data. Section 5

3These include a Keynesian demand channel (Basu and Bundick (2017)), real options effects on investment (Bloom
(2009), Bloom et al. (2017)), effects on labor search (Leduc and Liu (2015)), or through financial frictions and credit
spreads (Gourio (2013)).

4Recent examples include Berger, Dew-Becker, and Giglio (2017), Jurado, Ludvigson, and Ng (2015), Ludvigson,
Ma, and Ng (2015), Baker, Bloom, and Davis (2015), and Alexopoulos and Cohen (2009), among many others.
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presents robustness results. To provide more confidence in some of the results, section 6 examines

the crude oil market in detail. Finally, section 7 concludes.

2 Measures of uncertainty and realized volatility

This section describes our main data sources and then examines various measures of uncertainty

and realized volatility.

2.1 Data

2.1.1 Options and futures

We obtain data on prices of financial and commodity futures and options from the end-of-day

database from the CME Group, which reports closing settlement prices, volume, and open interest

for the period 1983–2015. The CME data is important for covering a broad array of features of

the economy, including stock prices, interest rates, exchange rates, and prices of metals, petroleum

products, and agricultural products.

Each market includes both futures and options, with the options written on the futures. The

futures may be cash- or physically settled, while the options settle into futures. As an example,

a crude oil call option gives its holder the right to buy a crude oil future at the strike price. The

underlying crude oil future is itself physically settled – if held to maturity, the buyer must take

delivery of oil.5

To be included in the analysis, contracts are required to have least 15 years of data and ma-

turities for options extending to at least six months, which leaves 14 commodity and 5 financial

underlyings. The final contracts included in the data set have 18 to 31 years of data.

A number of standard filters are applied to the data to reduce noise and eliminate outliers.

Those filters are described in appendix A.1.

We calculate implied volatility for all of the options using the Black–Scholes (1973) model

(technically, the Black (1976) model for the case of futures).6 Unless otherwise specified, implied

volatility is calculated at the three-month maturity.

A key distinction in the analysis is between uncertainty and realized volatility. Realized volatil-

ity measures how much some factor actually varies over some period, while uncertainty represents

variation in the conditional distribution of the factor. Option implied volatility theoretically mea-

sures investors’ conditional standard deviation for futures returns going forward, so we measure

realized volatility analogously as the sample standard deviation of futures returns. Specifically, in

5The underlying futures general expire in the same month as the option. Crude oil options, for example, currently
expire three business days before the underlying future.

6The majority of the options that we study have American exercise, while the Black model technically refers to
European options. We examine IVs calculated assuming both exercise styles (we calculate American IVs using a
binomial tree) and obtain nearly identical results. Since there are no dividends on futures contracts, early exercise is
only rarely optimal for the options studied here.
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the various futures markets, realized volatility is defined in month t as

RVi,t =

⎛
⎝ 365

#days ∈ t

∑
days∈t

f2
i

⎞
⎠

1/2

, (1)

where fi here is a daily return on the near-month futures return in market i. Realized volatility in

month t is the annualized sample standard deviation during that month.

2.1.2 Alternative uncertainty measures

The implied volatilities of the CME options give direct measures of investor uncertainty, similar to

the VIX. We also examine two other measures of uncertainty.

The first uncertainty index is developed in a pair of papers by Jurado, Ludvigson, and Ng (JLN;

2015) and Ludvigson, Ma, and Ng (2017). The construction involves two basic steps. First, realized

squared forecast errors are constructed for 280 macroeconomic and financial time series. Denoting

the error for series i as εi,t, the basic assumption is that there is a variance process, σ2
i,t, such that

E
[
ε2i,t

]
= σ2

i,t. So ε2i,t constitutes a noisy signal about σ2
i,t. JLN then estimate σ2

i,t from the history

of ε2i,t using a two-sided smoother and create an uncertainty index as the first principal component

of the estimated σ2
i,t. We divide the 280 series among those that pertain financial markets, real

activity, and goods prices, with the latter two also being combined into an overall macroeconomy

group, and take the first principal component from each group to get different subindexes.

The goal of the JLN framework is to estimate uncertainty on each date, σ2
t . The method can

also be extended to create a realized volatility index by taking the first principal component from

the cross-section of the ε2i,t. We therefore construct both uncertainty and realized volatility under

the JLN framework.

The second uncertainty index is the Economic Policy Uncertainty (EPU) index of Baker, Bloom,

and Davis (2015). The EPU index is constructed based on media discussion of uncertainty, the

number of federal tax provisions changing in the near future, and forecaster disagreement. Unlike

the JLN framework, there is no distinction in this case between volatility and uncertainty, so we

treat the EPU index as measuring only uncertainty.

2.2 The time series of uncertainty

Figure 1 plots option implied volatility for three major futures: the S&P 500, crude oil, and US

Treasury bonds. The implied volatilities clearly share common variation; for example, all rise

around 1991, 2001, and 2008. On the other hand, they also have substantial independent variation.

The period around the 1991 Gulf War was a period of extremely high implied volatility for crude oil,

but much lower uncertainty for stocks and bonds. Conversely, the Financial Crisis was associated

with larger relative increases in stock and bond than crude oil implied volatility. So while they

move together, their overall correlations (also reported in the figure) are only in the range 0.5–0.6.
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Table 1 reports pairwise correlations of implied volatility across the 19 underlyings, and also

gives the first introduction to the full list of 19 markets. The various markets are sorted in this

table into related categories, with the result that the largest correlations are generally along the

main diagonal. Shading denotes the degree of correlation, with darker cells representing greater

correlation. The largest correlations in implied volatility are among similar underlyings – crude

and heating oil, the agricultural products, gold and silver, and the British Pound and Swiss Franc.

Correlations outside those groups are notably smaller, in many cases close to zero.

The eigenvalues of the correlation matrix quantify the degree of common variation. The largest

eigenvalue explains 43 percent of the total variation. The remaining eigenvalues are much smaller,

though – even the second largest is only 0.15. Eight eigenvalues are required to explain 90 percent of

the total variation in the IVs, which is perhaps a reasonable estimate of the number of independent

components in the data.

To understand the behavior of the implied volatilities in more detail, table 2 reports results from

regressions of the 19 implied volatilities on various combinations of the EPU and JLN indexes. The

left and middle panels of the table report results from the two regressions

IVi,t

SD (IVi,t)
= a1,i + b1,iJLNUFinancial

t + b2,iJLNUMacro
t + ε1,i,t, (2)

IVi,t

SD (IVi,t)
= a2,i + b3,iJLNUFinancial

t + b4,iJLNUReal
t + b5,iJLNUPrice

t + ε2,i,t, (3)

where IVi,t denotes at-the-money implied volatility for underlying i averaged over month t, SD (IVi,t)

is the sample standard deviation of IVi,t, and the various JLNU ...
t are the JLN uncertainty series.

The uncertainty series all have unit standard deviations by construction, and the implied volatil-

ities are also normalized for the regressions. The regressions help understand how the individual

implied volatility series relate to other measures of uncertainty. The table reports the five financial

underlyings in our data at the top of each panel, and the nonfinancial underlyings at the bottom.

For the S&P 500 and US Treasury bonds, implied volatilities are strongly related to financial

uncertainty, which is natural since measures of aggregate stock prices and interest rates are included

in JLN’s set of financial indicators. Among the nonfinancial underlyings, the loadings almost

entirely favor macro uncertainty – in 12 of 14 cases, the coefficient on macro uncertainty is larger

than that on financial uncertainty. The coefficients are generally economically large: the average

coefficient on macro uncertainty among the nonfinancial underlyings is 0.32. The coefficients are

larger for industrial products like energies and metals – all above 0.4 except natural gas; they are

somewhat smaller for the agricultural products, averaging 0.23.

To further decompose those results, the middle panel in table 2 reports results from the re-

gression (3) that replaces the macro uncertainty time series with its real and price subcomponents.

The nonfinancial underlyings are nearly evenly split, with six having larger loadings on the price

component and eight having larger loadings on the real component. The energies, perhaps natu-

rally, are more associated with price uncertainty, with coefficients near 0.5. Metals and agricultural
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products, on the other hand, are more associated with macro uncertainty, with coefficients near

0.4. Looking down the columns, the R2s range from 0.09 to 0.74. The bottom row of each panel

reports results from a regression of the average of the 19 IVs on the JLN indexes. In that case, the

coefficients on financial and macro uncertainty are similar, with values around 0.4, and the macro

loading is split equally between real and price uncertainty. The R2 in both cases is approximately

0.55.

The right panel in table 2 report results of regressions of the IVs on the EPU index. In almost

every case, the coefficients and R2s are smaller than for the JLN regressions. The R2 for the average

across the IVs is only 0.14. That suggests that the EPU index, in measuring policy uncertainty,

captures somewhat different features of the economy from what is in the JLN indexes and our

IVs. The S&P 500, Treasury bonds, currencies, and gold and silver uncertainty have the strongest

relationships with EPU, suggesting that EPU more closely related to financial than nonfinancial

uncertainty in our data.

Overall, table 2 shows that there is a statistically and economically strong relationship between

implied volatility measured in futures markets and the JLN uncertainty measure constructed from

aggregate time series. Past work has focused on S&P 500 implied and realized volatility, which

the evidence here shows primarily measures financial uncertainty. The wide range of markets used

here is therefore valuable for giving direct measures of investor uncertainty about broader features

of the macroeconomy than simply the financial sector.

2.3 Projecting the uncertainty indexes onto the 19 IVs

Figure 2 examines how well the 19 IVs can fit the JLN and EPU indexes. These regressions are

then used to construct hedging portfolios for the indexes.

Figure 2 plots the time series of the JLN and EPU indexes in the bottom row against the fitted

values from their projection onto the 19 implied volatilities and a constant. The R2s are reported

in the left-hand panels. The highest R2, at 80 percent, is for financial uncertainty. The top-right

panel plots the pairwise correlations of the implied volatilities in the individual markets with the

fitted uncertainty. For financials, the correlation with S&P 500 implied volatility (which is nearly

identical to the VIX) is 95 percent. The next highest correlation is only 69 percent, for Treasury

bonds. So figure 2 reinforces the result from table 2 that fitted financial uncertainty is very nearly

equivalent to S&P 500 implied volatility.

The second best fit for the JLN uncertainty projections is for price uncertainty in the third row,

where the implied volatilities generate an R2 of 73 percent. In this case, the highest correlations

are for heating oil, crude oil, natural gas, gold, and copper. These results show the value of the

alternative markets in helping provide a better fit to inflation uncertainty than the S&P 500.

Last, the second row plots fitted uncertainty for real variables. The same implied volatilities

– gold, copper, crude oil, and heating oil – appear with the highest pairwise correlations as for

price uncertainty. The R2 is lower in this case, at 59 percent. The commodity options therefore
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appear to be slightly better at hedging financial and inflation uncertainty than in uncertainty about

variables like GDP or industrial production. But the R2 for real uncertainty is still substantial,

and the implied volatilities seem to capture well the lower-frequency variation, missing some of the

more high-frequency variation; overall, these investments still provide a hedge against a substantial

fraction of real (GDP, IP, etc.) risk.

The bottom panels plot results for the EPU index. The overall R2 is similar to what is obtained

for JLN real uncertainty. Consistent with the results in table 2, the highest pairwise correlations

are with financial IVs, Treasuries, gold, the S&P 500, and currencies. So the fit of the IVs to the

EPU index comes mostly from the financial rather than the nonfinancial options, but note that

Treasury and gold uncertainty have gotten relatively little attention in past work.

Ideally, we would like the R2s in this exercise to be as high as possible, because the hedging

portfolios will use option returns. When we examine the cost to hedge the JLN indexes, we

ultimately can only measure the cost to hedge the part spanned by the implied volatilities. Our

results will be potentially biased if the unexplained residual is priced differentially – or differentially

correlated with marginal utility – from the part that is spanned by the options. For financial and

price uncertainty, in particular, that fact seems unlikely given how high the R2 is. For EPU and

macro uncertainty, it is more of a risk, but inspection of the figures shows that the residuals appear

primarily at high frequency. The options span the lower frequency variation in the series well, so

when we obtain returns on hedging portfolios, it is that lower frequency component that will be

hedged best.

A potential concern about the results is that these regressions might be overfit due to the fact

that we have 19 explanatory variables. We experimented with various methods of reducing the

degrees of freedom, including lasso and variable selection based on information criteria. The results

were highly similar in all cases. One might also worry that it would be difficult for investors to know

the correct hedging weights contemporaneously. There are two factors that make that concern

unlikely to affect the results. First, one could choose the hedging portfolios based on economic

considerations and end up with a similar outcome to what we have in the figure. In particular,

the natural way to hedge financial uncertainty would be to use S&P 500 options, while the natural

way to hedge price uncertainty would be to focus on the underlyings related to particularly volatile

components of price indexes, like energy, metals, and food prices. Second, in the hedging results

that we report below, the average returns are highly consistent across the various underlyings,

especially within financials and nonfinancials, so changing the relative weights on the different

underlyings has only small quantitative effects on the cost of hedging.

2.4 Realized volatility

Table 3 reports the correlation of implied and realized volatility for the 19 underlyings, along

with their standard deviations. Realized volatility tends to be substantially more volatile than

implied volatility, which is natural if implied volatility represents (approximately) an expectation
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of future realized volatility. Implied and realized volatility are also strongly correlated with each

other, which is again natural given that implied volatility represents expected future volatility. The

key difference between the two is that realized volatility isolates realizations of extreme events –

price jumps – whereas implied volatility measures expectations of the probability or size of future

extreme events.

Table 4 reports the correlation matrix for realized volatility across the 19 markets. As in the

IV correlation matrix, the correlations are relatively strong near the main diagonal, but they are

all smaller in the RV case. The largest eigenvalue is only 0.32, compared to 0.43 for IV, implying

there is less common and more idiosyncratic variation in realized than implied volatility.

Table A.1 in the appendix reports results from regressions analogous to (2)–(3), but replacing

IV with RV and the JLNU series with JLNRV , which is the JLN-type realized volatility index

described above. The results are similar in the sense that S&P 500 and Treasury bond RV load

more on the financial JLNRV index, whereas the nonfinancials load more on the macro indexes.

The R2s in this case are smaller than for IV, which is consistent with the result from the correlation

matrices that there is more common variation in IV than RV.

Figure 3 replicates figure 2, but using realized instead of implied volatility. That is, it examines

the ability of the RV series for the 19 futures markets to fit the three JLN RV indexes. As before,

the R2s are lower in this case. Interestingly, S&P 500 realized volatility appears to fit better to

the JLN RV indexes than in the IV case. Nevertheless, it remains the case that for fitting real and

price RV, the nonfinancial markets, including in particular the energies and copper, are especially

useful.

3 Using option portfolios to hedge uncertainty

Implied volatility and the uncertainty indexes are not directly tradable – only the options themselves

are. This section shows how to construct option portfolios that hedge shocks to implied and realized

volatility in each of the 19 markets and also the JLN and EPU indexes.

3.1 Straddle portfolios

We study two-week returns on straddles with maturities between one and six months.7 A straddle

is a portfolio holding a put and a call with the same maturity and strike, with the strike set to the

7Past work on option returns and volatility risk premia has examined returns at frequencies of a day (e.g. Andries
et al. (2017)), a week (Coval and Shumway (2001)), a month (Constantinides, Jackwerth, and Savov (2013); Dew-
Becker et al. (2017)), and holding the options to maturity (Bakshi and Kapadia (2003)). The precision of estimates of
the riskiness of the straddles is, all else equal, expected to be higher with shorter windows. On the other hand, shorter
windows cause any measurement error in option prices to have larger effects. We choose two-week windows because
they are within the typical range used and they are short enough to allow us to still calculate returns on relatively
short-maturity options. Some of the existing literature, beginning with Bakshi and Kapadia (2003), examines delta-
hedged returns. Bakshi and Kapadia (2003) study returns to maturity, but only on options with maturities shorter
than 60 days. Even with delta hedging, the higher-order risk exposures of the straddles change substantially as the
spot changes. Higher-frequency returns avoid that problem. Section 5 describes alternative specifications that we
have examined to check the robustness of the main results.
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current futures price. The final payoff of a straddle depends on the absolute value of the return on

the underlying, meaning that they have symmetrical exposures to positive and negative returns.

Straddles give investors exposure both to realized and implied volatility. They are exposed

to realized volatility because the final payoff of the portfolio is a function of the absolute value

of the underlying futures return. But when a straddle is sold before maturity, the sale price will

also depend on expected future volatility, meaning that straddles can give exposure to uncertainty

shocks.

The exposures of straddles can be approximated theoretically using the Black–Scholes model, as

in Coval and Shumway (2001), Bakshi and Kapadia (2003), and Cremers, Halling, and Weinbaum

(2015). Appendix A.2 shows that the partial derivatives of the straddle return with respect to the

underlying futures return, f , its square, and the change in volatility, can be approximated as

∂rn,t
∂ft

≈ 0, (4)

∂2rn,t

∂ (ft/σt−1)
2 ≈ n−1, (5)

∂rn,t
∂ (Δσt/σt−1)

≈ 1, (6)

where rn,t is the return on date t of a straddle with maturity n, ft is the return on the underlying

future, σt is the implied volatility of the underlying, and Δ is the first-difference operator.8

The first partial derivative says that the straddles all have close to zero local exposure to the

futures return, which is natural since their payoff is a symmetrical function of the underlying

return. The second line says that the exposure of straddles to squared returns on the underlying

– scaled by volatility – is approximately inversely proportional to time to maturity. Throughout

the paper, we interpret exposures to squared returns as representing exposure to realized volatility,

since realized volatility is calculated based on squared returns over some period. The third line

shows that straddles are also exposed to changes in expected future volatility, through Δσt
σt−1

, and

that exposure is approximately constant across maturities.

Overall, then, all straddles have approximately equal exposure to proportional shifts in implied

volatility, while the exposure to realized volatility decreases with maturity. Long-maturity straddle

returns, for which the term n−1 is sufficiently small, therefore reveal the premium associated with

uncertainty shocks.

3.2 Hedging RV and IV in each market

The implied sensitivities in (4)–(6) give a method for constructing portfolios that the Black–

Scholes model says should give exposures only to realized volatility – squared returns, measured by

8We ignore here the fact that options at different maturities have different underlying futures contracts. If that
elision is important, it can be expected to appear as a deviation of the estimated factor loadings from the predictions
of the approximations (4)–(6).
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(fn,t/σt−1)
2 – and only implied volatility, measured by Δσt/σt−1 (Cremers, Halling, and Weinbaum

(2015)). Specifically, we construct, for each market, two portfolios,

rvi,t =
5

24
(ri,1,t − ri,5,t) , (7)

ivi,t =
5

4
ri,5,t − 1

4
ri,1,t. (8)

Throughout the paper, capitalized RV and IV refer to the levels of realized and implied volatility,

while lower-case rv and iv refer to the associated portfolio returns.

Given equations (4)–(6), the rv and iv portfolios will both have zero local sensitivity to ft. The

rv portfolio will have a unit sensitivity to (ft/σt)
2 and zero sensitivity to Δσt/σt−1 in each market,

while the iv portfolio will have a unit sensitivity to Δσt/σt−1 and zero sensitivity to the squared

returns in each market. We use the one- and five-month straddles to construct the portfolios as

those are the shortest and longest maturities that we consistently observe in the data.

The purpose of constructing these portfolios is to give a simple and direct method of measuring

the premia associated with realized and implied volatility that does not require any complicated

estimation or data transformation. One might worry, though, that they do not obtain the desired

exposures in practice. Figure A.2 in the appendix shows that the loadings of the straddles fit the

Black–Scholes predictions well. Furthermore table A.2 in the appendix reports results of regressions,

for each underlying, of the returns of the two portfolios on the underlying futures return, the squared

futures return, and the change in implied volatility. The table shows that while the Black–Scholes

predictions do not hold perfectly, the rv portfolio is nevertheless much more strongly exposed

to realized than implied volatility, and the opposite holds for the iv portfolio. The coefficients on

(ft/σt−1)
2 average 0.76 for the rv portfolio and 0.10 for the iv portfolio. Conversely, the coefficients

on Δσt/σt−1 average 0.03 for the rv portfolio and 0.79 for the iv portfolio Furthermore, the R2s

are large, averaging 72 percent across the various portfolios, implying that their returns are well

described by the approximation (4). Appendix A.2 also examines the accuracy of the Black–Scholes

approximation for returns in a simulated setting. Finally, section 5 reports results on the cost of

hedging volatility and uncertainty that do not rely on the Black–Scholes assumptions at all, rather

using exposures to IV and RV in the data without imposing any model-based assumptions. The

results of that robustness exercise are highly similar to those in the baseline case based on Black–

Scholes.

It is important to note that we would not necessarily expect the returns of the rv and iv

portfolios to be uncorrelated. It is well known from the GARCH literature (e.g. Engle (1982)

and Bollerslev (1986)) that in many markets, innovations to realized volatility are correlated with

innovations to implied volatility. Table A.2 reports the correlations between the rv and iv returns

in the 19 markets (note that this differs from table 3 in looking at returns instead of the levels

of RV and IV ). GARCH effects appear most strongly for the financial underlyings and precious

metals. In those cases, the average correlation is 0.46. While that shows that GARCH effects are
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present, only a minority of the variation in the rv and iv returns is driven by a common component.

For the nonfinancial underlyings, the effects are much smaller, and the correlation between the rv

and iv returns is only 0.03. So for the nonfinancials, innovations to realized and implied volatility

returns are essentially independent on average.

3.3 Hedging the JLN and EPU indexes

Finally, using the results in figure 2 showing that the 19 IVs span most of the variation in the JLN

and EPU uncertainty indexes, we construct portfolios that optimally hedge those indexes. For each

index, we obtain the weights for the hedging portfolio from the regression coefficients in sections

2.3 and 2.4. For each uncertainty index j, we estimate the regression

JLNU j
t = a+

∑
i

bji IVi,t + εj,t (9)

and then construct a hedging portfolio as

ivhedge,jt ≡
∑
i

bji ivi,t (10)

the coefficients bji therefore tell us the weight of the iv portfolio of market i in the hedging portfolio

for index j. We create such portfolios for each of the JLN uncertainty indexes and the EPU index.

We also construct similarly a hedge portfolio for the JLN realized volatility series (JLNRV ) from

the regression

JLNRV j
t = a+

∑
i

bRV,j
i RVi,t + εRV,j,t (11)

rvhedge,jt ≡
∑
i

bji rvi,t (12)

4 The cost of hedging

This section reports our main results on the price of hedging shocks to volatility and uncertainty.

Given a hedging portfolio, the cost of hedging is the negative of the average excess return (risk

premium) on the portfolio. For example, holding an iv portfolio represents holding insurance

against increases in implied volatility, so if the iv portfolio earns, say, a -10 percent excess return

on average, the cost of that insurance is 10 percent on average. A mean excess return cannot be

interpreted without reference to the associated volatility – levering a portfolio up or down will shift

the mean excess return but also the volatility – so we report all risk premia in terms of Sharpe

ratios: the mean excess return divided by the standard deviation. The Sharpe ratio reveals the

compensation for bearing a risk (or the cost of hedging it) per unit of risk, and is therefore more

easily comparable across markets. For reference, the historical Sharpe ratio of US equities in our
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sample is 0.52.

The cost of hedging a risk has a simple but important economic interpretation: it measures

the extent to which the risk is “bad” with respect to state prices or marginal utility. To formalize

that intuition, consider a factor X and an asset with returns RX that hedges it, in the sense that

RX varies one-for-one (and is perfectly correlated) with X. Then if M represents the stochastic

discount factor (i.e. the Arrow–Debreu state prices divided by state probabilities), then

E [RX −Rf ] = −cov (M,X)Rf , (13)

where Rf is the gross risk-free rate. The equation says that the negative of the risk premium

on a portfolio that hedges the risk X captures the covariance of that risk with state prices.9

More generally, when the correlation between RX and X is less than 1, E [RX −Rf ] measures

the covariance of state prices with the part of the factor X that is spanned by RX . So if the

premium E [RX −Rf ] is negative, times when RX , and hence X, is high are bad times, in which

state prices are high (in consumption-based models, these are the times when consumption is low

and the marginal utility of consumption is high).

4.1 Hedging uncertainty shocks

The solid series in figure 4 plots sample Sharpe ratios and confidence bands for the various rv and

iv portfolios, which hedge realized and implied volatility in the individual markets. The top panel

plots results for iv and the bottom panel rv. The boxes are point estimates while the bars represent

95-percent confidence bands based on a block bootstrap.

Across the top panel, the iv portfolios clearly tend to earn zero or even positive returns on

average. For financials, the average Sharpe ratios tend to be near zero, while for the nonfinancials,

all 14 sample Sharpe ratios are actually positive. To formally estimate the average Sharpe ratios,

we use a random effects model, which yields an estimate of the population mean Sharpe ratio while

simultaneously accounting for the fact that each of the sample Sharpe ratios is estimated with error,

and that the errors are potentially correlated across contracts. The procedure is described in detail

in appendix A.3. The estimated mean Sharpe ratios for just the financial and nonfinancial groups

are reported in their respective sections, and the estimated population mean across both groups is

in the right-hand section (“overall mean”).

For both nonfinancials and all markets overall, the estimated population mean Sharpe ratio

is statistically and economically significantly positive, while for financials it is close to zero. The

group-level means have the advantage of being much more precisely estimated than the Sharpe

ratios for the markets individually. They show that on average, instead of there being a cost, in the

form of a negative return, to hedging uncertainty shocks, uncertainty-hedging portfolios actually

earn positive returns. In particular, for nonfinancials, the average Sharpe ratio is 0.48, and the

9The last term on the right, Rf , is close to 1, and is the same for all assets and all risk factors, so it plays no
significant role in interpreting this equation.
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lower end of the 95-percent confidence interval is 0.25. For the overall mean, the corresponding

numbers are 0.39 and 0.17. These are not just statistically but economically significant – the return

to portfolios hedging uncertainty shocks has earned average returns nearly as high as the overall

stock market. But whereas the stock market is risky, in the sense that it rises in good times and

falls in bad, the iv portfolios are actually hedges, by construction giving positive returns when

uncertainty rises. Even for financials, the point estimate for the average Sharpe ratio is positive,

though the confidence band runs below zero.

The right-hand section of figure 4 reports the Sharpe ratios for the portfolios hedging the

EPU and JLN indexes. Since those hedging portfolios are constructed combining the individual iv

portfolios (weighting them across the 19 markets to obtain the best hedge for the JLN and EPU

indexes), it is not surprising that they are all near zero or positive. The hedging portfolios for

JLN financial uncertainty and the EPU index both place relatively more weight on the financials,

which have Sharpe ratios close to zero or even slightly negative, so they have overall lower Sharpe

ratios. The portfolios hedging macro and price uncertainty, though, since they have larger weights

on markets like crude oil, heating oil, and copper, have statistically and economically significantly

positive Sharpe ratios, with point estimates both near 0.50, similar to the overall mean for the iv

portfolios.

As discussed above, even if an investor did not know precisely what weight to put on the

various financial or nonfinancial underlyings, it is clear from the figure that almost any set of

weights would yield similar results, in the sense that the Sharpe ratios within the nonfinancial and

financial categories are all similar, and 18 of the 19 are positive. That fact makes uncertainty about

the coefficients in the hedging portfolios unlikely to have important quantitative effects.

The top panel of figure 4 contains all of our key results on the cost of hedging different types

of uncertainty shocks. It shows that in our sample spanning almost 30 years, the cost of hedging

shocks to uncertainty, whether it is uncertainty in a specific commodity or financial market or a

more general macro uncertainty index, has been zero or even negative (the risk premium has been

zero or positive).

If uncertainty was perceived to be bad by investors, hedging uncertainty shocks would be costly,

and the point estimates in the top panel of figure 4 would be negative – the graph would be the

opposite of what we actually see. But at most, some of the iv portfolios and hedging portfolios

for JLN and EPU have very slightly negative Sharpe ratios. In the majority of the cases – and in

particular for uncertainty about the nonfinancial macroeconomy – the Sharpe ratios are statisti-

cally and economically significantly positive. In other words, investors have been able to purchase

portfolios that directly hedge them against uncertainty shocks and simultaneously earn returns as

large as those on the overall stock market.
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4.2 Hedging realized volatility shocks

The bottom panel of figure 4 reports analogous results for the cost of hedging realized volatility

shocks. The numbers are drastically different. Whereas the iv portfolios have historically earned

positive returns, the rv portfolios have almost all historically earned negative returns. For the

S&P 500, this result is well known and is often referred to as the variance risk premium. The

S&P 500 rv portfolio has the most negative Sharpe ratio, at -0.99 – the return to selling insurance

against shocks to realized volatility is twice as large as the average return on the stock market over

the same period. Treasuries also have a significantly negative return, but the other financials in

our sample – all currencies – have Sharpe ratios slightly above zero. For the nonfinancials, 12 of 14

estimated Sharpe ratios are negative. So whereas the cost of hedging uncertainty shocks with the

iv portfolios is consistently negative in the top panel, the cost of hedging realized volatility shocks

using the rv portfolios is positive in the bottom panel.

As with the iv portfolios, we use a random effects model to calculate the population mean

Sharpe ratios and report them in the three sections of the figure. In this case, all three estimates

– financials, nonfinancials, and all assets – are negative. The values are again statistically and

economically significant. The point estimate for the overall mean Sharpe ratio is -0.33 and the

upper end of the 95-percent confidence interval is -0.08. Those values are almost the same as what

we obtain for the iv portfolios, but with the opposite sign.

Finally, the right-hand section of the bottom panel of figure 4 reports the returns from the JLN

rv hedging portfolios – those that hedge the realized volatility of the JLN macro series. Again,

consistent with the fact that the rv portfolios themselves consistently earn negative returns, hedging

the JLN indexes for realized volatility – as opposed to uncertainty – historically has a positive cost.

For all three subindexes, the hedging portfolios earn extremely negative returns, with the Sharpe

ratios for financial, real, and price volatility at -1.02, -0.84, and -0.82.

So in stark contrast to the results for hedging uncertainty, the bottom panel of figure 4 shows

that there has historically been an extremely large cost to hedge realized volatility. That is,

contracts that, rather than loading on changes in implied volatility, load on actual realized squared

returns – which the analysis above shows directly hedge extreme events in the macroeconomy –

earn negative Sharpe ratios with magnitudes up to twice as large as the return on the overall stock

market.

One potential concern with the results for the pricing of uncertainty shocks is that they might

be driven by outliers. The returns on the iv portfolios are positively skewed, so it is possible that

the sample we have just contains more positive jumps than the population. There are a number of

factors that make that story unlikely. First, since we have 19 different markets, which we showed

above are far from perfectly correlated with each other, there would have to be outliers in every

market. Second, the rv portfolios examines in this section in fact have even higher skewness than

the iv portfolios – the median skewness for the rv portfolios is 2.23, compared to 2.09 for the iv

portfolios. So if outliers were systematically creating an upward bias, we would expect to also
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find positive returns for the rv portfolios. Third, since we use bootstrap standard errors, we are

not relying on normality in constructing confidence bands. Fourth, and finally, section 6 looks at

returns on the rv and iv portfolios for crude oil in rolling five-year windows and finds that the

results are stable over time, which is inconsistent with the idea that they are driven by a small

number of positive outliers.

In summary, across both individual markets and also the hedging portfolios for the JLN and

EPU indexes, exposure to realized volatility has consistently earned a negative premium, while

exposure to implied volatility has earned a zero or positive premium. Investors have therefore

historically paid money – by accepting negative returns – to hedge surprise realizations of large

shocks, while hedging surprises in uncertainty has had a zero or even negative cost. Those results

hold across a wide range of markets that provide hedges against uncertainty in both real activity

and aggregate prices.

The results here are inconsistent with the view that uncertainty shocks are major drivers of

economic declines. If they were – that is, if they were associated with periods of high marginal

utility – the equilibrium return on assets hedging those shocks would be negative. If anything is

associated with high marginal utility here, it not periods when investors are particularly uncertain

about the future, but periods of high realized volatility, when large movements occur in stock,

bond, and commodity markets.

4.3 Hedging average rv and iv

An alternative way to hedge aggregate uncertainty is simply to buy all the iv or rv portfolios

simultaneously. Since tables 1 and 4 show that realized and implied volatility are imperfectly

correlated across markets, even larger returns can be earned by holding portfolios that diversify

across the various underlyings. Table 5 reports results of various implementations of such a strategy.

The first row reports results for portfolios that put equal weight on every available underlying in

each period, the second row uses only nonfinancial underlyings, and the third row only financial

underlyings. The columns report Sharpe ratios for various combinations of the rv and iv portfolios.

The first two columns report Sharpe ratios for strategies that hold only the rv or only the iv

portfolios, the third column uses a strategy that is short rv and long iv portfolios in equal weights,

while the final column is short rv and long iv, but with weights inversely proportional to their

variances (i.e. a simple risk parity strategy).

The Sharpe ratios reported in table 5 are generally larger than those in figure 4. The portfolios

that are short rv and long iv are able to attain Sharpe ratios well above 1. The largest Sharpe

ratios come in the portfolios that combine rv and iv, which follows from the fact that they are

positively correlated, so going short rv and long iv leads to internal hedging. All of that said,

these Sharpe ratios remain generally plausible. Values near 1 are observed in other contexts (e.g.

Broadie, Chernov, and Johannes (2009) for put option returns, Asness and Moskowitz (2013) for

global value and momentum strategies, and Dew-Becker et al. (2017) for variance swaps).
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The portfolios that take advantage of all underlyings simultaneously seem to perform best,

presumably because they are the most diversified. While holding exposure to implied volatility

among the financials earns a relatively small premium, it is still generally worthwhile to include

financials for the sake of hedging.

Finally, it is important to note that the combined portfolios have returns that are much less

skewed than those on the market-specific rv and iv portfolios. The bottom panel of table 5 reports

the skewness of the various strategies from above, and, for the portfolios that include both rv and

iv, they range between -0.77 and 3.27. So while there may be some skewness, it does not run

consistently in either direction – it is negative with equal weighting of the rv and iv portfolios, and

positive for the variance weighting. That suggests that the premia from these factors can be earned

without necessarily holding a portfolio that is substantially negatively skewed (as with writing puts

or straddles). In fact, the risk-parity strategy that holds both financials and nonfinancials has

earned a historical Sharpe ratio of 1.26 with positive skewness of 0.94.

Overall, these results show that the economic magnitudes related to hedging realized volatility

and uncertainty across the 19 markets are very large, and can be obtained with portfolios that

do not expose investors to particular additional risks like skewness. The results confirm that the

cost of hedging realized volatility (large movements in the underlyings) in the last 30 years has

been extremely high, whereas hedging uncertainty has actually yielded a large and positive risk

premium.

5 Robustness

This section examines some potential concerns about the robustness of the results.

5.1 One-week holding period returns

Our main analysis is based two-week holding period returns for straddles, which strike a balance

between having more precise estimates of risk premia and reducing the impact of measurement error

in prices. We have repeated all of our analysis using one-week holding period returns, and find

very similar results. Appendix figure A.3 is the analog of figure 4, but constructed using one-week

returns. The results are qualitatively and quantitatively very similar, confirming the robustness of

our analysis to the period considered.

5.2 Linear factor models

The evidence presented on the pricing of implied and realized volatility risk relies on the Black–

Scholes model to give an approximation for the risk exposures of the portfolios. Appendix A.2

provides evidence that those predictions are an accurate description of the data, but our findings

are not actually dependent on Black–Scholes holding with perfect accuracy. To estimate the price

of risk for realized and implied volatility purely empirically, with no appeal to exposures from a
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theoretical model, we now estimate standard factor specifications which estimate risk exposures

freely from the data.

Typical factor models use a small number of aggregate factors. Here, though, we are interested

in the price of risk for shocks to all 19 types of uncertainty. We therefore estimate market-specific

factor models. This is similar to the common practice of pricing equities with equity-specific factors,

bonds with bond factors, currencies with currency factors, etc.10

5.2.1 Specification

For each market we estimate a time-series model of the form

ri,n,t = ai,n + βf
i,n

fi,t
IVi,t−1

+ βf2

i,n

1

2

(
fi,t

IVi,t−1

)2

+ βΔIV
i,n

ΔIVi,t

IVi,t−1
+ εi,n,t, (14)

where fi,t is the futures return for underlying i and ΔIVi,t is the change in the five-month at-the-

money implied volatility for underlying i. The underlying futures return controls for any exposure

of the straddles to the underlying, though the Black–Scholes model predicts that effect to be small.

Much more important is the fact that straddles have a nonlinear exposure to the futures return.

(fi,t/IVi,t−1)
2 captures that nonlinearity. Consistent with the construction and interpretation of

the rv portfolio, βf2

i,n will be interpreted as the exposure of the straddles to realized volatility, since

realized volatility is calculated based on squared returns of the underlying.11 Finally, the third

factor is the change in the at-the-money implied volatility for the specific market at the five-month

maturity.12

We estimate a standard linear specification for the risk premia,

E [ri,n,t] = γf
i β

f
i,nStd

(
fi,t

IVi,t−1

)
+ γf2

i βf2

i,nStd

((
fi,t

IVi,t−1

)2
)

+ γΔIV
i βΔIV

i,n Std

(
ΔIVi,t

IVi,t−1

)
+ αi,n,(15)

E [fi,t/IVi,t−1] = γf
i Std(fi,t/IVi,t−1). (16)

where αi,n is a fitting error. The γ coefficients represent the risk premia that are earned by

investments that provide direct exposure to the factors. That is, the γ’s are estimates of what the

Sharpe ratios on the factors would be if it were possible to invest in them directly (neither f2
i,t nor

ΔIVi,t is an asset return that one can directly purchase in our data; fi,t itself is tradable, though,

which is why we impose the second equality). The difference between the method here and the rv

10The analysis is similar to those of Jones (2006) and Constantinides, Jackwerth, and Savov (2013).
11There are obviously numerous closely related specifications of that second term that could be substituted. We

obtain similar results when the second factor is the absolute value of the futures return instead of its square, for
example, or when it is measured as the sum of squared daily returns over the return period (recall that the straddle
returns cover two weeks, so the factor in that case is the two-week daily realized volatility). We focus on the squared
return because it can be interpreted as a second-order term in the pricing kernel and also because it allows a direct
link to the gamma of the straddles.

12Since the IVs may be measured with error, we construct this factor by regressing available implied volatilities
on maturity for each underlying and date and then taking the fitted value from that regression at the five-month
maturity.
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and iv portfolios discussed above is that the factor model does not require assumptions about the

risk exposures of the straddles – instead estimating them from 14 – whereas the rv and iv portfolios

rely on the Black–Scholes model. So the results using the factor models should be more robust,

but also have more estimation error.

5.2.2 Results

The dashed series in figure 4 plots the estimated risk premia across the various markets along with

95-percent confidence bands. The top panel plots γΔIV
i , while the bottom panel plots γf

2

i . Simple

inspection shows that the results are nearly identical to those for the iv and rv portfolios. The

γΔIV
i estimates are almost all positive, while the γf

2

i are almost all negative. As before, we produce

a random effects estimator of the mean of the risk premia in various groups. The random effects

estimates of the means in the various groups are also similar, both in magnitude and statistical

significance, to the main results in the solid series. The main difference between the two series is

that the confidence bands are wider for the factor model estimates, which is consistent with the

fact that the factor model estimates impose less structure and must estimate the factor loadings of

the individual straddles.

5.3 Liquidity

If the options used here are highly illiquid, the analysis will be substantially complicated for three

reasons. First, to the extent that illiquidity represents a real cost faced by investors – e.g. a

bid/ask spread – then returns calculated from settlement prices do not represent returns earned by

investors. Second, illiquidity itself could carry a risk premium that the options might be exposed

to. Third, bid/ask spreads represent an added layer of noise in prices. The identification of the

premia for realized volatility and uncertainty depends on differences in returns on options across

maturities, so what is most important for our purposes is how liquidity varies across maturities.

This section shows that the liquidity of the straddles studied here is generally highly similar to that

of the widely studied S&P 500 contracts traded on the CBOE, and the liquidity does not appear

to substantially deteriorate across maturities.

We measure liquidity using two methods. First, since our data set does not include posted

bid/ask spreads, we estimate the standard Roll (1984) effective spread using the daily returns,

which is a monotone transformation of negative autocorrelation in returns.13 The top panel of

appendix figure A.4 plots the effective bid/ask spreads for straddles at maturities of 1, 3, and 5

months for the 19 contracts that we study. The average posted bid/ask spreads for CBOE S&P 500

straddles, for which we have data since 1996, are also reported in the figure. At the one-month

maturity, the effective spreads are approximately 6 percent on average, which is similar to the

13The Roll model assumes that there is an unobservable mid-quote that follows a random walk in logs and that
observed prices have equal probability of being from a buy or sell order. Bid-ask bounce then induces negative
autocorrelation in returns, from which the spread can be inferred (when the autocorrelation is positive, we set the
spread to zero).
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6.6-percent average posted spreads for one-month CBOE S&P 500 straddles since 1996. More

importantly, the spreads actually decline at longer maturities indicating that there is less observed

negative autocovariance in returns for options at those maturities. For the three- and five-month

options, the spreads are smaller by about half, averaging 2 to 3 percent. This is again consistent

with posted spreads for CBOE S&P 500 contracts, which decline to 4.0 percent on average for

6-month options.

As a second measure of liquidity, we obtained posted bid/ask spreads for the options closest to

the money on Friday, 8/4/2017 for our 19 contracts plus the CBOE S&P 500 options at maturities

of 1, 4, and 7 months. Those spreads are plotted in the bottom panel of figure A.4. For the

majority of the options, the spreads are less than 3 percent, consistent with the 4.1-percent bid/ask

spread for one-month S&P 500 options at the CBOE. More importantly, though, across nearly all

the contracts, the posted spreads again decline with maturity, consistent with the effective spreads.

That said, for some of the contracts, there were no available bids or asks at the 4- and 7-month

maturities on 8/4/2017. Note also, again similar to the effective spreads, for 10 of the 19 contracts,

the one-month posted spreads are nearly indistinguishable from that for the S&P 500, which is

typically viewed as a highly liquid market and where incorporating bid-ask spreads generally has

minimal effects on return calculations (Bondarenko (2014)). For crude oil, which is studied in

detail in the next section, the spreads at all three maturities are essentially identical to those for

the S&P 500.

Figure A.4 yields two important results. First, it shows that the liquidity of the straddles is

reasonably high, in the sense that effective and posted spreads are both relatively narrow in absolute

terms for most of the contracts and that they compare favorably with spreads for the more widely

studied S&P 500 options traded at the CBOE. Second, liquidity does not appear to deteriorate as

the maturity of the options grows, and in fact in many cases there are improvements with increasing

maturities, again consistent with CBOE data.

Finally, figure A.5 reports the average daily volume of all of the option contracts across ma-

turities 1 to 6 months. For crude oil, which is the focus of the more in-depth study in the next

section, the figure reports average daily volume in dollars; for all other contracts, it reports the

average daily volume relative to crude oil. Empirically, crude oil options have volume numbers of

the same order of magnitude as the S&P 500, while there is more heterogeneity across the other

markets. Looking across maturities, the general pattern is that dollar volume declines by about a

factor of three in almost all the markets between the 1- and 6-month maturities – so the 6-month

maturity has less volume, but far from zero.

6 Case study: crude oil

It is worthwhile to briefly delve more deeply into one market to build confidence in the robustness

of the paper’s results. We choose the crude oil market for this exercise because it has one of the

longest time series available with the most maturities of any of the markets that we study, it is
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highly liquid (e.g. Gibson and Schwartz (1990) and Trolle and Schwartz (2010)), and it has a strong

link to the macroeconomy.

Figures 5 and 6 contain several plots that help illustrate the historical behavior of the crude

oil market. Panel A of figure 5 plots the history of total volume for one- and five-month options

(specifically, average daily dollar volume of all contracts with maturities between 15 and 45 or 135

and 165 days to maturity, respectively). The volume of contracts in both maturity bins has risen

over time, peaking in 2008, with a subsequent decline. On average, there is about 3 times more

volume in the one- than the five-month option, though the volume in the five-month option has

been trending upward, reaching as high as 75 percent of the volume for the one-month option.

Panel B of figure 5 plots 5-year rolling sample Sharpe ratios for the iv and rv portfolios. The

left-hand section plots results for crude oil, while, for reference, the right-hand panel plots results

for the S&P 500. For crude oil, the rv portfolio had negative average returns in almost all five-year

periods in our data, while the iv portfolio had positive returns in almost all five-year periods. The

rv returns trend down over time, implying that the variance risk premium may have been growing.

The iv returns are somewhat more consistent, though the returns were close to zero or even negative

for short periods at the beginning and end of the sample.

The right-hand side of panel B gives further context to those results by plotting the rv and iv

returns for the S&P 500 options. For the S&P, the rv portfolio has relatively more negative returns

than for crude, while the iv portfolio has average returns that are generally centered on zero, rather

than staying consistently positive as we observe for crude oil.

Panel C of figure 5 is similar to panel B, except instead of plotting returns on the rv and iv

portfolios, it plots their constituents, the returns on the one- and five-month straddles. For crude

oil, the five-month straddle has consistently positive returns, unlike the S&P 500, for which the five-

month straddle tends to have negative returns. In both cases the one-month straddle has negative

returns, though that effect is stronger for the S&P 500.

Overall, panels B and C have two uses. First, they show that the returns that we observe on

the iv and rv portfolios are not driven by a small number of outliers; rather, they are consistent

over time. Second, they provide further detail on the divergences between the behavior of straddle

returns for the S&P 500 compared to crude oil.

Next, to help understand how crude oil volatility relates to macroeconomic uncertainty, the top

panel of figure 6 plots one-month at-the-money implied volatility for crude oil along with the JLN

financial and price uncertainty series. The correlation of oil price uncertainty with the two series is

immediately apparent. The various spikes upward in crude oil volatility are all traceable to spikes

in either price or financial uncertainty. This figure thus underscores the utility to an investor of

buying five-month crude oil straddles: they provide good protection against increases in the JLN

uncertainty indexes and at the same time earn positive average returns.

Because the crude oil market is so large, it has relatively more traded maturities than the other

underlyings. At any given time, the CME currently has trading in the next 12 monthly expirations

and also December expirations for a number of years into the future. Panel B of figure of figure
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6 plots average returns for crude oil straddles with maturities between 1 and 11 months (not 12

because of how we interpolate to construct the monthly portfolios); panel C reports Sharpe ratios.

The figure shows that the behavior at longer maturities remains similar, and returns continue to

rise slightly beyond the five months examined in the main analysis, though they eventually flatten.

When we calculate the iv portfolio using the 11- instead of the five-month maturity, we also obtain

similar results.

Because crude oil prices are such a widely followed indicator, there are also exchange traded

funds (ETFs) that track oil prices, and those ETFs have options traded on them. Appendix A.6

examines the returns on those options and shows that the results are consistent with those we

obtain for the CME options, though with more noise because the ETF options were introduced in

the 2000’s.

7 Conclusion

This paper studies the pricing of uncertainty and realized volatility across a broad array of options

on financial and commodity futures. Uncertainty is proxied by implied volatility – which theoret-

ically measures investors’ conditional variances for future returns – and a number of uncertainty

indexes developed in the literature. Realized volatility, on the other hand, measures how large

realized shocks have been. In modeling terms, if ε ∼ N
(
0, σ2

)
, uncertainty is σ2, while volatility is

the realization of ε2.

A large literature in macroeconomics and finance has focused on the effects of uncertainty on

the economy. In this paper we explore empirically how investors perceive uncertainty shocks. If

uncertainty shocks have major contractionary effects so that they are associated with high marginal

utility for the average investor, then assets that hedge uncertainty should earn negative average

returns. Empirically, we find that such assets – constructed as portfolios of options – historically

have earned positive returns. The contribution of this paper is to construct hedging portfolios for a

range of types of macro uncertainty, including interest rates, energy prices, and uncertainty indexes.

We show that using a wide range of options is important for capturing uncertainty about the real

economy and inflation. The empirical results imply that uncertainty shocks, no matter what type

of uncertainty we look at, are not viewed as being negative by investors, or at least not sufficiently

negative that it is costly to hedge them.

What is highly costly to hedge is instead realized volatility. Portfolios that hedge extreme

returns in futures markets and large innovations in macroeconomic time series earn strongly negative

returns, with premia that are in many cases 1–2 times as large as the premium on the aggregate

stock market over the same period. So what is high in bad times is not uncertainty, but realized

volatility. Periods in which futures markets and the macroeconomy are highly volatile and display

large movements appear to be periods of high marginal utility, in the sense that their associated

state prices are high. This is consistent with the findings in Berger, Dew-Becker, and Giglio (2018),

who provide VAR evidence that shocks to volatility predict declines in real activity in the future,
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while shocks to uncertainty do not.

Berger, Dew-Becker, and Giglio (2018) show that the VAR evidence and pricing results for

realized volatility are consistent with the view that it is downward jumps in the economy that

investors are most averse to. They show that a simple model in which fundamental shocks are both

stochastically volatile and negatively skewed can quantitatively match the pricing of uncertainty

and realized volatility, along with the VAR evidence. Similarly, Seo and Wachter (2018a,b) show

that negative skewness can explain the pricing of credit default swaps and put options. This paper

thus also contributes to the growing literature studying the effects of skewness. In a world where

fundamental shocks are negatively skewed, the most extreme shocks – those that generate realized

volatility – tend to be negative, which can explain why realized volatility would be so costly to

hedge.
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Figure 2: Fit to uncertainty indexes

Note: The left-hand panels plot the fitted values from the regressions of the EPU and JLN indexes on three-month
implied volatility in the 19 markets. The right-hand panels plot pairwise correlations between the individual implied
volatility series and the fitted values from the regressions.
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Figure 3: Fit to realized volatility indexes

Note: See figure 2. This figure uses the JLN realized volatility series instead of uncertainty.
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Figure 4: RV and IV portfolio Sharpe ratios and factor risk premia

Note: Squares are point estimates and vertical lines represent 95-percent confidence intervals. The solid series
plots the Sharpe ratios for the rv and iv portfolios. The dotted series plots the estimated risk premia from the factor
model. The confidence bands for the rv and iv Sharpe ratios are calculated through a 50-day block bootstrap, while
those for the factor model use GMM standard errors with the Hansen–Hodrick (1980) method used to calculate
the long-run variance. The “Fin. mean”, “Non-fin. mean”, and “Overall mean” points represent random effects
estimates of group-level and overall means. The “JLN” and “EPU” points are for the portfolios that hedge those
indexes.
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Figure 5: Case study: crude oil (I)

Volume in Crude Options Relative volume

(a) Volume

(b) Five-year rolling Sharpe ratios, RV and IV

(c) Five-year rolling Sharpe ratios, 1mo and 5mo straddles

Note: The top row reports dollar volume for crude oil options. The middle row reports rolling sharpe ratios for
the rv and iv portfolios for crude oil on the left and the S&P 500 on the right. The bottom panel reports rolling
Sharpe ratios for the 1-month and 5-month straddles. 32



Figure 6: Case study: crude oil (II)

(a) Crude IV and Macro Uncertainty

(b) Straddle average returns

(c) Straddle Sharpe ratios

Note: The top panel reports the Jurado, Ludvigson, and Ng (2015) financial uncertainty series and the macroeco-
nomic price uncertainty series together with the implied volatility for crude oil. The middle and bottom panels plot
average returns and Sharpe ratios for straddles along with block-bootstrapped 95-percent confidence intervals.33



Table 1: Pairwise correlations of implied volatility across markets

Note: Pairwise correlations of three-month option-implied volatility across markets. The darkness of the shading
represents the degree of correlation.
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Table 3: Correlations between RV and IV in each market

Note: The table reports, for each underlying, the standard deviation of the monthly RV and 3-month IV series,
and their correlation.

Table 4: Pairwise correlations of realized volatility across markets

Note: Pairwise correlations of monthly realized volatility across markets. The darkness of the shading represents
the degree of correlation.

36



Table 5: Portfolios of rv and iv across markets

Note: Sharpe ratios and skewness of portfolios combining rv and iv portfolios across markets. For each panel,
the first row reports a portfolio constructed using straddles from all available markets on each date, the second
row using only nonfinancial underlyings, the third row only financial underlyings. Each column corresponds to
a different portfolio. The first column is an equal-weighted RV portfolio, the second is an equal-weighted IV
portfolio, the third is an equal-weighted long-short IV minus RV portfolio, and the last is the same long/short
portfolio but weighted by the inverse of the variance (risk-parity). *** indicates significance at the 1-percent level,
** the 5-percent level, and * the 10-percent level.
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