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“We are now living in a much different world, where many are questioning

whether the pendulum has swung too far and we have too many venues, creat-

ing unnecessary complexity and costs for investors.” Mary Jo White, Economic

Club of New York, June 2014.

“The cost of market data and exchange access has been a cause of debate and

concern for the industry for many years, and those concerns have grown as these

costs have risen dramatically in the last several years [...] Exchanges also have been

able to charge more for the data center connections [...] since they control access

at the locations where the data is produced.” Brad Katsuyama, U.S. House of

Representatives Committee on Financial Services, June 2017.

1 Introduction

Over the past two decades, governments and regulators moved to foster competition among

trading venues, leading to an increase in market fragmentation. However, there is now a concern

that the entry of new platforms may have been excessive, and that exchanges exercise too much

market power in the provision of technological services. In this paper we show that the move

from monopoly to competition has increased liquidity and the welfare of market participants

but that the market does not deliver a (constrained) efficient outcome. We characterize how

structural and conduct regulation of exchanges has the potential to improve welfare.

The profit orientation of exchanges, when they converted into publicly listed companies,

led to regulatory intervention both in the US (Reg NMS in 2005) and the EU (Mifid in 2007),

to stem their market power in setting fees. Regulation, together with the removal of barriers

to international capital flows and technological developments, led in turn to an increase in

fragmentation and competition among trading platforms. Incumbent exchanges such as the

NYSE reacted to increased competition by upgrading technology (e.g, creating, NYSE Arca),

or merging with other exchanges (e.g., the NYSE merged with Archipelago in 2005 and with

Euronext in 2007).1

As a result, the trading landscape has changed dramatically. On the one hand, large-

cap stocks nowadays commonly trade in multiple venues, a fact that has led to an inexorable

decline in incumbents’ market shares, giving rise to a “cross-sectional” dimension of market

fragmentation (see Figure 1). The automation of the trading process has also spurred fragmen-

tation along a “time-series” dimension, in that some liquidity providers’ market participation

is limited (Duffie (2010), SEC (2010)), endogenous (Anand and Venkataraman (2015)), or im-

paired because of the existence of limits to the access of reliable and timely market information

(Ding et al. (2014)).2 On the other hand, trading fees have declined to competitive levels (see,

e.g., Foucault et al. (2013), Menkveld (2016), and Budish et al. (2017)), and exchanges have

1See Foucault et al. (2013), Chapter 1.
2Limited market participation of liquidity providers also arises because of shortages of arbitrage capital

(Duffie (2010)) and/or traders’ inattention or monitoring costs (Abel et al. (2013)).
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data, and co-location space.34. CHANGING BUSINESS MODELS OF STOCK EXCHANGES AND STOCK MARKET FRAGMENTATION

OECD BUSINESS AND FINANCE OUTLOOK 2016 © OECD 2016128

Q3 2010 was duplicate trades already reported elsewhere. A major source of double 
counting in trading data is that “give up/give in” trades, which transfer ownership of stocks 
from one broker to another to execute an order on behalf of the broker, are reported by both 
of the two brokers involved.

In an attempt to provide a more comparable picture between trading in US and 
European equity markets, we have collected firm-level data on the trading volume of 
individual stocks that are included in three major European stock indices (i.e. FTSE 100 in 
the United Kingdom, CAC 40 in France and DAX 30 in Germany) for the period from 
1 December 2015 to 31 March 2016. Based on this data, we have calculated how the trading 
is distributed among all the individual trading venues, including exchanges, MTFs and 
other OTC trading. 

Given the difficulties with analysing the trading data in Europe, potentially double-
counted trades have been excluded, based on the explanations provided for each trading 
category in the dataset, including give up/give in trades. Each trading category has also 
been categorised as on/off exchange and lit/dark volume using the same explanations. The 
aggregated results are summarised in Figure 4.7. 

Using this method, the figure shows that the share of on-exchange volume is similar 
across the three markets, between 48%-52% of all trading volume, but considerably lower 
than in Figure 4.6. This also includes on exchange off-order book trading and hidden orders 
on exchanges, which are both classified as dark volume. With respect to off-exchange 
venues, the market share of MTFs is around 12% in the United Kingdom, 10% in France 
and 8% in Germany, while the lion’s share of the off-exchange volume was executed on 
non-MTF OTC centres. 

Figure 4.6.  Market shares among trading venues in Europe, 2015

Source: BATS Global Markets.
1 2 http://dx.doi.org/10.1787/888933362490
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Equity market structure in the United States

Stock trading in the United States is fragmented into a number of different venues that 
fall into three main categories: 1) 12 national securities exchanges; 2) 44 ATSs,3 including 
off-exchange visible trading venues (ECNs) and dark pools; and 3) various OTC systems, 
including internal trading systems of firms. It is worth noting that trading in off-exchange 
venues is not a new phenomenon. Already in 1990, 17% of the volume traded in shares that 
were listed on the New York Stock Exchange (NYSE) took place in venues other than NYSE 
itself.4 This share remained stable until 2005 when it started to successively increase. 
Figure 4.3, shows that in 2015 only 33% of the trade in NYSE-listed shares actually took 
place on the three NYSE Group exchanges. The remaining two thirds of all trades were 
carried out in other venues. Similarly, the three NASDAQ exchanges’ share of the total 
trading in NASDAQ Stock Market listed firms was just 31% in 2015.

Out of the 18 national securities exchanges registered with the US SEC at the end of 
2015, 12 exchanges traded equity securities in the United States. However, 10 of these 
12 exchanges belong to one of three exchange groups (Intercontinental Exchange/New York 
Stock Exchange [ICE/NYSE], NASDAQ and Bats Global Markets [BATS]).5 Figure 4.3 shows 
how the trading volume in companies that are listed on NYSE and NASDAQ is distributed 
among these three exchange groups and the only independent securities exchange, the 
Chicago Stock Exchange (CHX). CHX share of trading volume was less than 1% in both NYSE 
and NASDAQ-listed shares.

Figure 4.3 also shows the off-exchange trading in shares listed on NYSE and NASDAQ. 
In 2015, 31% of all trading in NYSE-listed and 35% of all trading in NASDAQ-listed shares 
took place in off-exchange venues. 

In January 2014, the US SEC approved a rule that requires all broker-dealers that operate an 
ATS to report the aggregate weekly trading information for each security to the Financial Industry 
Regulatory Authority (FINRA). FINRA has made this information available since July 2014.

Figure 4.3.  Market shares in the trading of NYSE and NASDAQ-listed shares 
among trading venues in the United States, 2015

Note: Off-exchange volume includes ATS, internal trading systems of firms and other OTC trading that are reported to the FINRA. This is 
primarily done through the two Trade Reporting Facilities (TRFs) operated by the two exchanges or through the Alternative Display 
Facility (ADF) directly operated by FINRA.
Source: BATS Global Markets.

1 2 http://dx.doi.org/10.1787/888933362472
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Figure 1: Market shares among trading venues in Europe (Panel (a)), and the US (Panel (b)).
Source: OECD Business and Finance Outlook 2016.

Such a paradigm shift has raised a number of concerns. Indeed, market participants allege

that exchanges exercise market power in the provision of technological services.4 Additionally,

regulators and policy makers such as the SEC and the antitrust authorities have also expressed

concern about the existence of potential monopoly restrictions or excess entry.5

The questions we want to address in this paper are the following: what is the character of

platform competition in the supply of technological services? What is the impact of platform

competition on the overall quality of the market and on the end users of trading services? If

the market outcome is suboptimal, which regulatory tools are more effective? Entry controls

(merger policy), or fee regulation?

3Increasing competition in trading services has squeezed the profit margins exchanges drew from traditional
activities, leading them to gear their business model towards the provision of technological services (Cantillon
and Yin (2011)). There is abundant evidence testifying to such a paradigmatic shift. For example, according
to the Financial Times, “After a company-wide review Ms Friedman [Nasdaq CEO] has determined the future
lies in technology, data and analytics, which collectively accounted for about 35 per cent of net sales in the
first half of this year.” (see, “Nasdaq’s future lies in tech, data and analytics, says Nasdaq CEO” Financial
Times, October 2017). Additionally, according to Tabb Group, in the US, exchange data, access, and technology
revenues have increased by approximately 62% from 2010 to 2015 (Tabb Group, 2016).

4“ ‘Information wants to be free,’ the technology activist Stewart Brand once said. ‘Information also wants
to be expensive.’ That is proving true on Wall Street, where stock exchanges–in particular the New York Stock
Exchange and Nasdaq–both publicly traded and for-profit, stand accused by rivals and some users of unfairly
increasing the price of market data.” (Business Insider, November 2016). In December 2016 Chicago-based
Wolverine Trading LLC stated to the SEC that its total costs related to NYSE equities market data had more
than tripled from 2008 to 2016 (“This is a monopoly.”)

5Responding to a NYSE request to change the fees it charges for premium connectivity services, the SEC
in November 2016 stated: “The Commission is concerned that the Exchange has not supported its argument
that there are viable alternatives for Users inside the data center in lieu of obtaining such information from
the Exchange. The Commission seeks comment on whether Users do have viable alternatives to paying the
Exchange a connectivity fee for the NYSE Premium Data Products.” The SEC statement echoes industry
concerns “ ‘We are pleased that the Commission will be subjecting this incremental fee application to review,’
Doug Cifu, the CEO of electronic trading firm Virtu [...] ‘As we have repeatedly said we think exchange market
data and connectivity fees have ‘jumped the shark’ as an excessive cost burden on the industry.’ ” (Business
Insider, November 2016.) See also Okuliar (2014) on whether US competition authorities should intervene more
in financial exchange consolidation.
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We assess the consequences for market quality and the welfare of market participants of

different exchanges’ entry regimes and pricing policies in a context of limited market participa-

tion. To this end we propose a stylized framework that captures the above dimensions of market

fragmentation and competition among trading venues, integrating a simple two-period, market

microstructure model à la Grossman and Miller (1988), with one of platform competition with

entry, featuring a finite number of exchanges competing to attract dealers’ orders.

The microstructure model defines the liquidity determination stage of the game. There,

two classes of risk averse dealers provide liquidity to two cohorts of rational liquidity traders,

who sequentially enter the market. Depending on the structure of the market, at each round

traders can submit their orders only to an “established” venue, or also to one of the competing

venues. Dealers in the first class are endowed with a technology enabling them to act at both

rounds, absorbing the orders of both liquidity traders’ cohorts, and are therefore called ‘full’

(FD); those in the second class can only act in the first round, and are called ‘standard’ (SD).

The possibility to trade in the two rounds captures in a simple way both the limited market

participation of standard dealers, and FDs’ ability to take advantage of short term return

predictability. We assume that there is a best price rule ensuring that the second period price

is identical across all the competing trading platforms. This is the case in the US where the

combination of the Unlisted Trading Privilege (which allows a security listed on any exchange to

be traded by other exchanges), and Regulation National Market System (RegNMS) protection

against “trade-throughs,” implies that, despite fragmentation, there virtually exists a unique

price for each security.6 We also assume that trading fees are set at the competitive level by

the exchanges.7

The platform competition model features a finite number of exchanges which, upon incur-

ring a fixed entry cost, offer “technological services” to the full dealers which allow them to

trade in the second round. A standard dealer becomes full by paying a fee that reflects the

incremental payoff he earns by operating in the second round.8 This defines an inverse demand

for technological capacity; upon entry, each exchange incurs a constant marginal cost to pro-

duce a unit of technological service capacity, receiving the corresponding fee from the attracted

full dealers. This defines a Cournot game with free entry which represents the technological

capacity determination stage of the game.

We now describe in more detail the main features of the model and findings. Due to their

6Price protection rules were introduced to compensate for the potential adverse effects of price fragmentation
when the entry of new platforms was encouraged to limit market power of incumbents. In particular, RegNMS
requires market centers to route orders at the top of the book to the trading platform that posts the best
price, and exchanges to provide accessible electronic data about their price quotations. The aim is to enforce
price priority in all markets. However, for large orders execution pricing may not be the same in all exchanges
except if traders have in place cross-exchange order-routing technology. In Europe there is no order protection
rule similar to RegNMS. Foucault and Menkveld (2008) show empirically the existence of trade-thoroughs in
Amsterdam and London markets. Hendershott and Jones (2005) find that in the US price protection rules
improve market quality.

7We abstract therefore from competition for order flow issues (see Foucault et al. (2013) for an excellent
survey of the topic).

8Actually, FDs may have to invest on their own also on items such as speed technology. In our model we
will abstract from such investments.
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ability to trade in both rounds, full dealers exhibit a higher risk bearing capacity compared

to standard dealers. As a consequence, an increase in their mass improves market liquidity.

This has two countervailing effects on the welfare of market participants. On the one hand, it

lowers the cost of trading and leads traders to hedge more aggressively, increasing their welfare.

On the other hand, it hurts standard dealers who face a heightened competitive pressure, and

experience a welfare reduction. As liquidity demand augments for both dealers’ classes, however,

SDs effectively receive a smaller share of a larger pie. This mitigates the negative impact of

increased competition on dealers, implying that on balance the increased liquidity benefits in

the aggregate first period market participants other than FDs. In turn, this contributes to

make gross welfare (i.e., the weighted sum of all market participants’ welfare) increasing in the

proportion of full dealers, implying that liquidity becomes a measurable welfare indicator.

An important feature of the platform competition stage of the model is that dealers’ demand

for technological services is log-convex for a wide range of deep parameters. Intuitively, when

the proportion of full dealers in the market is small, the margin from acquiring the technology

to participate in the second round of trade is way larger than in the polar case when the

market is almost exclusively populated by full dealers. Thus, an increase in the proportion of

full dealers yields a price reduction which becomes increasingly smaller. We show that this

has important implications for the nature of exchange competition. In particular, when two

platforms are in the market and their marginal costs are small, strategic complementarities

in the supply of technological services arise. Hence, a shock that lowers technology costs can

prompt a strong response in technological capacity. Furthermore, log-convexity of the demand

function can lead a monopoly platform to step up its technological capacity in the face of an

entrant. This magnifies the positive impact of an increase in the number of competing platforms

on the aggregate technological service capacity. Given that at equilibrium the latter matches

the proportion of full dealers, this in turn amplifies the positive liquidity and welfare impact of

heightened platform competition.

An insight of our analysis is that technological services can be viewed as an essential inter-

mediate input in the “production” of market liquidity. This warrants a welfare analysis of the

impact of platform competition, which is the subject of the last part of the paper. There, we

use our setup to compare the market solution arising with no platform competition (monopoly),

and with entry (Cournot free entry), with three different planner solutions which vary depend-

ing on the restrictions faced by the planner. An unrestricted planner attains the First Best by

choosing the number of competing exchanges as well as the industry technological service fee; a

planner who can only regulate the technological service fee but not entry, achieves the Behav-

ioral Second Best; finally, if the planner is unable to affect the way in which exchanges compete

but can set the number of exchanges who can enter the market, she achieves the Structural

Second Best solution (restricted or unrestricted, depending on whether the planner regulates

entry making sure that platforms break even or not).

Insulated from competition, a monopolistic exchange seeks to restrict the supply of tech-
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nological services to increase the fees it extracts from FDs.9 Thus, the market at a free entry

Cournot equilibrium delivers a superior outcome in terms of liquidity and (generally) welfare.

However, compared to the case in which the regulator can control entry, the market solution

can feature excessive or insufficient entry. Indeed, in the absence of regulation, an exchange

makes its entry decision without internalizing the profit reduction it imposes on its competi-

tors. This “profitability depression” effect is conducive to excessive entry.10 As new platform

entry spurs liquidity, however, it also has a positive “liquidity creation” effect which can offset

the profitability depression effect, and lead to insufficient entry. Entry regulation is however

typically inferior compared to the alternative of regulating the technological service fee charged

by a monopolistic exchange. This is because in this case the planner generally minimizes the

setup cost borne by the industry and forces the monopolistic exchange to charge the lowest

possible technological service fee that is compatible with a break-even condition.

Overall, our analysis suggests that fee regulation achieves the highest provision of techno-

logical services. However, this form of intervention is subject to rent-seeking efforts by market

participants, which suggests that entry regulation appears as a realistic alternative instru-

ment.11 Indeed, spurring entry achieves two objectives. First, it works as a corrective against

exchanges’ market power in the provision of technological services; additionally, by creating

competitive pressure, it achieves the objective of keeping exchanges’ trading fees in check.

In the last part of the paper, we use our model to investigate the effects of platforms’ tech-

nological capacity decisions on liquidity provision. As usual in models with risk averse dealers,

a reduction in risk tolerance reduces liquidity. However, insofar as it penalizes comparatively

more SDs than FDs, the same can also boost the demand for technological services, potentially

leading to an increase in its supply, which, in some of our simulations is strong enough to

improve liquidity.

Our paper is related to the literature on the welfare effects of platform competition, and

investment in technological capacity. Pagnotta and Philippon (2018), consider a framework

where trading needs arise from shocks to traders’ marginal utilities from asset holding, yielding

a preference for different trading speeds. In their model, venues vertically differentiate by speed,

with faster venues attracting more speed sensitive investors and charging higher fees. This

relaxes price competition, and the market outcome is inefficient. The entry welfare tension

in their case is between business stealing and quality (speed) diversity, like in the models

of Gabszewicz and Thisse (1979) and Shaked and Sutton (1982). In this paper, as argued

above, the welfare tension arises instead from the profitability depression and liquidity creation

9In a similar vein, Cespa and Foucault (2014) find that a monopolistic exchange finds it profitable to restrict
the access to price data, to increase the fee it extracts from market participants.

10This effect is similar to the “business stealing” effect highlighted by the Industrial Organization literature
(see, e.g., Mankiw and Whinston (1986)). Note, however, that business stealing refers to the depressing impact
that a firm entry has on its competitors’ output. In our context, this effect is not warranted: due to strategic
complementarity, heightened competitive pressure can lead an exchange to respond by installing more capacity.

11The evidence presented in footnote 5 suggests that regulators’ ability to weigh on the technological fee-
setting process is far from perfect.
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effects associated with entry.12 Biais et al. (2015) study the welfare implications of investment

in the acquisition of High Frequency Trading (HFT) technology. In their model HFTs have a

superior ability to match orders, and possess superior information compared to human (slow)

traders. They find excessive incentives to invest in HFT technology, which, in view of the

negative externality generated by HFT, can be welfare reducing. Budish et al. (2015) argue

that HFT thrives in the continuous limit order book, which is however a flawed market structure

since it generates a socially wasteful arms’ race to respond faster to (symmetrically observed)

public signals. The authors advocate a switch to Frequent Batch Auctions (FBA) instead of

a continuous market. Budish et al. (2017), introduce exchange competition in Budish et al.

(2015) and analyze whether exchanges have enough incentives to implement the technology

required to run FBA. Also building on Budish et al. (2015), Baldauf and Mollner (2017) show

that heightened exchange competition has two countervailing effects on market liquidity, since

it lowers trading fees, but magnifies the opportunities for cross-market arbitrage, increasing

adverse selection.

Our paper is also related to the literature on the Industrial Organization of securities’

trading. This literature has identified a number of important trade-offs due to competition

among trading venues. On the positive side, platform competition exerts a beneficial impact

on market quality because it forces a reduction in trading fees (Foucault and Menkveld (2008)

and Chao et al. (2017)), and can lead to improvements in margin requirements (Santos and

Scheinkman (2001)); furthermore, it improves trading technology and increases product differ-

entiation, as testified by the creation of “dark pools.” On the negative side, higher competition

can lower the “thick” market externalities arising from trading concentration (Chowdhry and

Nanda (1991) and Pagano (1989)), and increase adverse selection risk for market participants

(Dennert (1993)). We add to this literature, by pointing out that market incentives may be

insufficient to warrant a welfare maximizing solution. Indeed, heightened competition can lead

to the entry of a suboptimal number of trading venues, because of the conflicting impact of

entry on profitability and liquidity.

The rest of the paper is organized as follows. In the next section, we outline the model. We

then turn our attention to study the liquidity determination stage of the game. In section 4, we

analyze the payoffs of market participants, and the demand and supply of technological services.

We then concentrate on the impact of platform competition with free entry, and contrast the

welfare and liquidity effects of different regulatory regimes. A final section contains concluding

remarks.

2 The model

A single risky asset with liquidation value v ∼ N(0, τ−1v ), and a risk-less asset with unit return

are exchanged during two trading rounds.

12Pagnotta and Philippon (2018) also study the market integration impact of RegNMS.
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Three classes of traders are in the market. First, a continuum of competitive, risk-averse,

“Full Dealers” (denoted by FD) in the interval (0, µ), who are active at both rounds. Second,

competitive, risk-averse “Standard Dealers” (denoted by SD) in the interval [µ, 1], who instead

are active only in the first round. Finally, a unit mass of traders who enter at date 1, taking

a position that they hold until liquidation. At date 2, a new cohort of traders (of unit mass)

enters the market, and takes a position. The asset is liquidated at date 3. We now illustrate

the preferences and orders of the different players.

2.1 Trading venues

The organization of the trading activity depends on the competitive regime among venues.

With a monopolistic exchange, both trading rounds take place on the same venue. When

platforms are allowed to compete for the provision of technological services, we assume that a

best price rule ensures that the price at which orders are executed is the same across all venues:

trading can seamlessly occur on each venue at a unique price at both trading rounds. We thus

assume away “cross-sectional” frictions, implying that we have a virtual single platform where

all exchanges provide identical access to trading, and stock prices are determined by aggregate

market clearing.13

We model trading venues as platforms that prior to the first trading round (date 0), supply

technology which offers market participants the possibility to trade in the second period. For

example, it is nowadays common for exchanges to invest in the supply of co-location facilities

which they rent out to traders to store their servers and networking equipment close to the

matching engine; additionally, platforms invest in technologies that facilitate the distribution

of market data feeds. In the past, when trading was centralized in national venues, exchanges

invested in real estate and the facilities that allowed dealers and floor traders to participate in

the trading process.

At date t = −1 trading venues decide whether to enter and if so they incur a fixed cost.

Suppose that there are N entrants, that each venue i = 1, 2, . . . , N produces a technological

service capacity µi, and that
N∑
i=1

µi = µ, (1)

so that the proportion of FDs coincides with the total technological service capacity offered by

the platforms. Consistently with the evidence discussed in the introduction (see also Menkveld

(2016)), we assume that trading fees are set to the competitive level.

2.2 Liquidity providers

A FD has CARA preferences, with risk-tolerance γ, and submits price-contingent orders xFDt ,

to maximize the expected utility of his final wealth: W FD = (v−p2)xFD2 + (p2−p1)xFD1 , where

13Holden and Jacobsen (2014) find that in the US, only 3.3% of all trades take place outside the NBBO.
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pt denotes the equilibrium price at date t ∈ {1, 2}.14 A SD also has CARA preferences with

risk-tolerance γ, but is in the market only in the first period. He thus submits a price-contingent

order xSD1 to maximize the expected utility of his wealth W SD = (v − p1)xSD1 . The inability

of a SD to trade in the second period is a way to capture limited market participation in our

model. In today’s markets, this friction could be due to technological reasons, as in the case

of standard dealers with impaired access to a technology that allows trading at high frequency.

In the past, two-tiered liquidity provision occurred because only a limited number of market

participants could be physically present in the exchange to observe the trading process and

react to demand shocks.15

2.3 Liquidity demanders

Liquidity traders have CARA preferences, with risk-tolerance γL.

In the first period a unit mass of traders enters the market. A trader receives a random

endowment of the risky asset u1 and submits an order xL1 in the asset that he holds until

liquidation.16 A first period trader posts a market order xL1 to maximize the expected utility

of his profit πL1 = u1v + (v − p1)xL1 :

E[− exp{−πL1 /γL}|u1]. (2)

In period 2, a new unit mass of traders enters the market. A second period trader observes p1,

receives a random endowment of the risky asset u2, and posts a market order xL2 to maximize

the expected utility of his profit πL2 = u2v + (v − p2)xL2 :

E[− exp{−πL2 /γL}|p1, u2]. (3)

We assume that ut ∼ N(0, τ−1u ), Cov[ut, v] = Cov[u1, u2] = 0. To ensure that the payoff

functions of the liquidity demanders are well defined (see Section 4.1), we impose

(γL)2τuτv > 1, (4)

an assumption that is common in the literature (see, e.g., Vayanos and Wang (2012)).

14We assume, without loss of generality with CARA preferences, that the non-random endowment of FDs
and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.

15Alternatively, we can think of SD as dealers who only trade during the day, and FD as dealers who, thanks
to electronic trading, can supply liquidity around the clock.

16Recent research documents the existence of a sizeable proportion of market participants who do not rebal-
ance their positions at every trading round (see Heston et al. (2010), for evidence consistent with this type of
behavior at an intra-day horizon).
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2.4 Market clearing and prices

Market clearing in periods 1 and 2 is given respectively by xL1 + µxFD1 + (1− µ)xSD1 = 0 and

xL2 + µ(xFD2 − xFD1 ) = 0. We restrict attention to linear equilibria where

p1 = −Λ1u1 (5a)

p2 = −Λ2u2 + Λ21u1, (5b)

where the price impacts of endowment shocks Λ1, Λ2, and Λ21 are determined in equilibrium.

According to (5a) and (B.1b), at equilibrium, observing p1 and the sequence {p1, p2} is infor-

mationally equivalent to observing u1 and the sequence {u1, u2}.
The model thus nests a standard stock market trading model in one of platform competition.

Figure 2 displays the timeline of the model.

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FDs submit
limit order
µxFD1 .

− SDs submit
limit order
(1− µ)xSD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FDs submit
limit order
µxFD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure 2: The timeline.

3 Stock market equilibrium

In this section we assume that a positive mass µ ∈ (0, 1] of FDs is in the market, and present a

simple two-period model of liquidity provision à la Grossman and Miller (1988) where dealers

only accommodate endowment shocks, but where all traders are expected utility maximizers.

Proposition 1. For µ ∈ (0, 1], there exists a unique equilibrium in linear strategies in the stock

market, where xSD1 = −γτvp1, xFD1 = γτuΛ
−2
2 (Λ21 + Λ1)u1 − γτvp1, xFD2 = −γτvp2, xL1 = a1u1,
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xL2 = a2u2 + bu1,

p1 = −Λ1u1 (6a)

p2 = −Λ2u2 + Λ21u1, (6b)

Λ1 =

(
1−

(
1 + a1 + µγτu

Λ21 + Λ1

Λ2
2

))
1

γτv
> 0 (7a)

Λ2 = − a2
µγτv

> 0 (7b)

Λ21 = −(1− ((1− µ)γ + γL)τvΛ1)Λ2 < 0, (7c)

where

Λ21 + Λ1 > 0. (8)

The coefficient Λt in (6a) and (6b) denotes the period t endowment shock’s negative price

impact, and is our (inverse) measure of liquidity:

Λt = −∂pt
∂ut

. (9)

As we show in the appendix (see (A.3), and (A.14)), a trader’s order is given by

XL
1 (u1) = γL

E[v − p1|u1]
Var[v − p1|u1]︸ ︷︷ ︸
Speculation

− u1︸ ︷︷ ︸
Hedging

XL
2 (u1, u2) = γL

E[v − p2|u1, u2]
Var[v − p2|u1, u2]︸ ︷︷ ︸

Speculation

− u2︸ ︷︷ ︸
Hedging

.

According to the above expressions, a trader speculates and hedges his position to avert the

risk of a decline in the endowment value occurring when the return from speculation is low.

Substituting the equilibrium prices (6a) and (6b) in the above expressions implies that the

trading aggressiveness is given by |at|:

at = γLτvΛt − 1 ∈ (−1, 0). (10)

Additionally, second period traders put a positive weight b on the first period endowment shock:

b = −γLτvΛ21 ∈ (0, 1). (11)

SD and FD provide liquidity, taking the other side of traders’ orders. In the first period,

standard dealers earn the spread from loading at p1, and unwinding at the liquidation price.

11



FDs, instead, also speculate on short-term returns. Indeed,

xFD1 = γ
E[p2 − p1|u1]

Var[p2|u1]
− γτvp1.

To interpret the above expression, suppose u1 > 0. Then, liquidity traders sell the asset,

depressing its price (see (6a)) and, as E[p2 − p1|u1] = (Λ21 + Λ1)u1 > 0, FDs anticipate a

positive short-term return from buying it. When FD unwind their position, the effect of the

first period price pressure has not completely disappeared (see (7c)). This induces second period

traders to partly absorb FD position, explaining the positive sign of the coefficient b in (11).

Thus, in expectation, FD unload inventory risk from their first period trade to second period

liquidity traders.

FDs supply liquidity both by posting a limit order, and a contrarian market order at the

equilibrium price, to exploit the predictability of short term returns.17 In view of this, Λ1

in (7a) reflects the risk compensation dealers require to hold the portion of u1 that first period

traders hedge and FDs do not absorb via speculation:

Λ1 =

(
1−

(
1 + a1︸ ︷︷ ︸

L1 holding of u1

+ µγτu
Λ21 + Λ1

Λ2
2︸ ︷︷ ︸

FD aggregate speculative position

))
1

γτv
.

In the second period, liquidity traders hedge a portion a2 of their order, which is absorbed by

a mass µ of FDs, thereby explaining the expression for Λ2 in (7b).

Therefore, at both trading rounds, an increase in µ, or in dealers’ risk tolerance, increases

the risk bearing capacity of the market, leading to a higher liquidity:

Corollary 1. An increase in the proportion of FDs, or in dealers’ risk tolerance increases the

liquidity of both trading rounds: ∂Λt/∂µ < 0, and ∂Λt/∂γ < 0 for t ∈ {1, 2}.

According to (6b) and (7c), due to FD short term speculation, the first period endowment

shock has a persistent impact on equilibrium prices: p2 reflects the impact of the imbalance

FD absorb in the first period, and unwind to second period traders. Indeed, substituting (7c)

in (6b), and rearranging yields:

p2 = −Λ2u2 + Λ2((1− µ)xSD1 + xL1︸ ︷︷ ︸
=−µxFD

1

). (12)

Corollary 2. First period traders hedge the endowment shock more aggressively than second

period traders: |a1| > |a2|. Furthermore, |at| and b are increasing in µ.

Comparing dealers’ strategies shows that SD in the first period trade with the same intensity

as FD in the second period. In view of the fact that in the first period the latter provide

17This is consistent with the evidence on HFT liquidity supply (Brogaard et al. (2014), and Biais et al.
(2015)), and on their ability to predict returns at a short term horizon based on market data (Harris and Saad
(2014), and Menkveld (2016)).
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additional liquidity by posting contrarian market orders, this implies that

Λ1 < Λ2, (13)

explaining why traders display a more aggressive hedging behavior in the first period. The

second part of the above result reflects the fact that an increase in µ improves liquidity at

both dates, but also increases the portion of the first period endowment shock absorbed by FD

(see (12)). This, in turn, leads second period liquidity traders to step up their response to u1.

In view of (7a) and (8), it is easy to see that the price reversion due to FD short term

speculation implies

Cov[p2 − p1, p1] = −Λ1(Λ21 + Λ1)τ
−1
u < 0,

so that returns mean revert across trading rounds. A larger FD participation, mitigates price

impacts, and attenuates return reversal:

Corollary 3. An increase in the proportion of FD reduces the mean reversion in the asset

returns: ∂|Cov[p2 − p1, p1]|/∂µ < 0.

Summarizing, an increase in µ has two effects: it heightens the risk bearing capacity of the

market, and it strengthens the propagation of the first period endowment shock to the second

trading round. The first effect makes the market deeper, leading traders to step up their hedging

aggressiveness, and lowering the mean reversion in returns. The second effect reinforces second

period traders’ speculative responsiveness. When all dealers are FDs, liquidity is maximal, and

the mean reversion in returns is minimal.

Remark 1. The variance of the first period price is given by Var[p1] = Λ2
1τ
−1
u . Therefore, a

less liquid market increases price volatility.

Remark 2. In Appendix B we consider a variation of the liquidity provision model in which

we assume that SD enter the market at the second round of the game.

4 Traders’ welfare, capacity demand, and exchange equi-

librium

In this section we study traders’ payoffs, derive demand and supply for technological services,

and obtain the platform competition equilibrium.

4.1 Traders’ payoffs and the liquidity externality

We measure a trader’s payoff with the certainty equivalent of his expected utility:

CEFD ≡ −γ ln(−EUFD), CESD ≡ −γ ln(−EUSD), CEL
t ≡ −γL ln(−EUL

t ), t ∈ {1, 2},
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where EU j, j ∈ {SD,FD} and EUL
t , t ∈ {1, 2} denote respectively the unconditional expected

utility of a standard dealer, a full dealer, and a first and second period trader. The following

results present explicit expressions for the certainty equivalents.

Proposition 2. The payoffs of a SD and a FD are given by

CESD =
γ

2
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

)
(14a)

CEFD =
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+
Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)
+ ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

))
. (14b)

Furthermore:

1. For all µ ∈ (0, 1], CEFD > CESD.

2. CESD and CEFD are decreasing in µ.

3. limµ→1CE
FD > limµ→0CE

SD.

According to (14a) and (14b), dealers’ payoffs reflect the accuracy with which these agents

anticipate their strategies’ unit profits. A SD only trades in the first period, and the accuracy

of his unit profit forecast is given by Var[E[v − p1|p1]]/Var[v − p1|p1] (the ratio of the variance

explained by p1 to the variance unexplained by p1).

A FD instead trades at both rounds, supplying liquidity to first period traders, as a SD, but

also absorbing second period traders’ orders, and taking advantage of short-term return pre-

dictability. Therefore, his payoff reflects the same components of that of a SD, and also features

the accuracy of the unit profit forecast from short term speculation (Var[E[p2−p1|p1]]/Var[p2−
p1|p1]), and second period liquidity supply (Var[E[v− p2|p1, p2]]/Var[v− p2|p1, p2]). In sum, as

FD can trade twice, benefiting from more opportunities to speculate and share risk, they enjoy

a higher expected utility.

Substituting (10) and (11) in (14a) and (14b), and rearranging yields:

CESD =
γ

2
ln

(
1 +

(1 + a1)
2

(γL)2τuτv

)
(15a)

CEFD =
γ

2

(
ln

(
1 +

(1 + a1)
2

(γL)2τuτv
+

(
1 + a1

1 + µγτuτv(µγ + γL)

)2
)

+ ln

(
1 +

(1 + a2)
2

(γL)2τuτv

))
. (15b)

An increase in µ has two offsetting effects on the above expressions for dealers’ welfare. On

the one hand, as it boosts market liquidity, it leads traders to hedge more, increasing dealers’

payoffs (Corollaries 1 and 2). On the other hand, as it induces more competition to supply

liquidity it lowers them. The latter effect is stronger than the former. Importantly, even in the

extreme case in which µ = 1, a FD receives a higher payoff than a SD in the polar case µ ≈ 0.
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Proposition 3. The payoffs of first and second period traders are given by

CEL
1 =

γL

2
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+ 2
Cov[p1, u1]

γL

)
(16a)

CEL
2 =

γL

2
ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

+

2
Cov[p2, u2|p1]

γL
+

Var[E[v − p2|p1]]
Var[v]

−
(

Cov[p2, u1]

γL

)2)
. (16b)

Furthermore:

1. CEL
1 and CEL

2 are increasing in µ.

2. For all µ ∈ (0, 1], CEL
1 > CEL

2 .

Similarly to SDs, liquidity traders only trade once (either at the first, or at the second

round). This explains why their payoffs reflect the precision with which they can anticipate

the unit profit from their strategy (see (16a) and (16b)). Differently from SDs, these traders

are however exposed to a random endowment shock. As a less liquid market increases hedging

costs, it negatively affects their payoff (Cov[p1, u1] = −Λ1τ
−1
u , and Cov[p2, u2|p1] = −Λ2τ

−1
u ).

Finally, (16b) shows that a second period trader benefits when the return he can anticipate

based on u1 is very volatile compared to v (Var[E[v − p2|p1]]/Var[v]), since this indicates that

he can speculate on the propagated endowment shock at favorable prices. However, a strong

speculative activity reinforces the relationship between p2 and u1, (Cov[p2, u1]
2), leading a

trader to hedge little of his endowment shock u2, and keep a large exposure to the asset risk,

thereby reducing his payoff.

Substituting (10) and (11) in (16a) and (16b), and rearranging yields:

CEL
1 =

γL

2
ln

(
1 +

a21 − 1

(γL)2τuτv

)
(17)

CEL
2 =

γL

2
ln

(
1 +

a22 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2uτ
2
v

)
. (18)

An increase in the proportion of FDs µ makes the market more liquid and leads traders to hedge

and speculate more aggressively (Corollary 2), benefiting first period traders (Proposition 3).

At the same time, it heightens the competitive pressure faced by SDs, lowering their payoffs

(Proposition 2). As liquidity demand augments for both dealers’ classes, however, SDs effec-

tively receive a smaller share of a larger pie. This mitigates the negative impact of increased

competition, implying that on balance the positive effect of the increased liquidity prevails:

Corollary 4. The positive effect of an increase in the proportion of FDs on first period traders’
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payoffs is stronger than its negative effect on SDs’ welfare:

∂CEL
1

∂µ
≥ −∂CE

SD

∂µ
, (19)

for all µ ∈ (0, 1].

Aggregating across market participants’ welfare yields the following Gross Welfare function:

GW (µ) = µCEFD + (1− µ)CESD + CEL
1 + CEL

2 (20)

= µ(CEFD − CESD)︸ ︷︷ ︸
Surplus earned by FDs

+ CESD + CEL
1 + CEL

2︸ ︷︷ ︸
Welfare of other market participants

Corollary 5.

1. The welfare of market participants other than FDs is increasing in µ.

2. Gross welfare is higher at µ = 1 than at µ ≈ 0.

The first part of the above result is a direct consequence of Corollary 4: as µ increases,

SDs’ losses due to heightened competition are more than compensated by traders’ gains due

to higher liquidity. The second part, follows from Proposition 2 (part 3), and Proposition 3.

Note that it rules out the possibility that the payoff decline experienced by FDs as µ increases,

leads gross welfare to be higher at µ ≈ 0. Therefore, a solution that favors liquidity provision

by FDs is also in the interest of all market participants. Finally, we have:

Numerical Result 1. Numerical simulations show that GW (µ) is monotone in µ. Therefore,

µ = 1 is the unique maximum of the gross welfare function GW (µ).

In view of Corollaries 1 and 3, gross welfare is maximal when liquidity (mean reversion

in returns) is at its highest (lowest) level.18 Furthermore, because of monotonicity, the above

market quality indicators, become “measurable” welfare indexes.

4.2 The demand for technological services

We define the value of becoming a FD as the extra payoff that such a dealer earns compared

to a SD. According to (14a) and (14b), this is given by:

φ(µ) ≡ CEFD − CESD (21)

=
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+
Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)
− ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

)
︸ ︷︷ ︸

Competition

+ ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

)
︸ ︷︷ ︸

Liquidity supply

)
.

18Numerical simulations where conducted using the following grid: γ, µ ∈ {0.01, 0.02, . . . , 1}, τu, τv ∈
{1, 2, . . . , 10}, and γL ∈ {1/√τuτv + 0.001, 1/

√
τuτv + 0.101, . . . , 1}, in order to satisfy (4).
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FDs rely on two sources of value creation: first, they compete business away from SDs,

extracting a larger rent from their trades with first period traders (since they can supply

liquidity and speculate on short-term returns); second, they supply liquidity to second period

traders.

The function φ(µ) can be interpreted as the (inverse) demand for technological services:19

Corollary 6. The inverse demand for technological services φ(µ) is decreasing in µ.

A marginal increase in µ heightens the competition FDs face among themselves, and vis-à-

vis SDs. The former effect lowers the payoff of a FD. In the appendix, we show that the same

holds also for the latter effect. Thus, an increase in the mass of FDs erodes the rents from

competition, implying that φ(µ) is decreasing in µ.

Numerical Result 2. When µ, τu, and τv are sufficiently large and γ is large above γL, φ(µ)

is log-convex in µ:
∂2 lnφ(µ)

∂µ2
≥ 0. (22)

In Figure 3 (panel (a)) we plot ln(φ(µ)) for a set of parameters yielding log-convexity. When

this occurs, the price reduction corresponding to an increase in µ becomes increasingly smaller

as µ increases.20

Corollary 7. An increase in γ has two contrasting effects on the inverse demand for techno-

logical services φ(µ) = γ ln(EUFD/EUSD)1/2:

∂φ(µ)

∂γ
=

1

2
ln

(
EUFD

EUSD

)
︸ ︷︷ ︸

>0

+
γ

2

(
(∂EUFD/∂γ)EUSD − (∂EUSD/∂γ)EUFD

EUFDEUSD

)
︸ ︷︷ ︸

<0

(23)

As argued in Corollary 2, as FDs trade twice, they enjoy a larger payoff compared to SDs.

An increase in γ leads dealers to trade more aggressively, and for a given expected utility

difference, has a positive effect on φ. However, a higher risk-tolerance reduces the value of the

additional risk-sharing opportunity offered by the second trading round, which has a negative

effect on φ.

4.3 The supply of technological services and exchange equilibrium

Depending on the industrial organization of exchanges, the supply of technological services is

either controlled by a single platform, acting as an “incumbent monopolist,” or by N ≥ 2

venues who compete à la Cournot in technological capacities.

19As φ(µ) reflects the extra margin that FD obtain vis-à-vis D, it formalizes in a simple manner the way
in which Lewis (2014) describes Larry Tabb’s estimation of traders’ demand for the high speed, fiber optic
connection that Spread laid down between New York and Chicago in 2009.

20We checked log-convexity of the function φ(µ), assuming τu, τv ∈ {1, 6, 11}, γ, γL ∈ {0.01, 0.02, . . . , 1}, and
for µ ∈ {0.2, 0.4, . . . , 1}. The second derivative of ln(φ(µ)) turns negative for µ, τu, or τv low, and for γL > γ
(e.g., this happens when τu = 1, τv = 6, µ = 0.2, and γL = 0.41, γ = 0.01).
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In the former case, the monopolist profit is given by

π(µ) = (φ(µ)− c)µ, (24)

where c denotes the marginal cost of producing a capacity µ. Denoting by µM the optimal

capacity decision of the monopolist exchange:

µM ∈ arg max
µ∈(0,1]

(φ(µ)− c)µ. (25)

In the latter case, denoting by µi and µ−i =
∑N

j 6=i µj, respectively the capacity installed by

exchange i and its rivals, and by f and c the fixed and marginal cost incurred by an exchange

to enter and produce capacity µi, an exchange i’s profit function is given by

π(µi, µ−i) = (φ(µ)− c)µi − f. (26)

We define a symmetric Cournot equilibrium as follows:

Definition 1. A symmetric Cournot equilibrium in technological service capacities is a set of

capacities µCi ∈ (0, 1], i = 1, 2, . . . , N , such that (i) each µCi maximizes (26), for given capacity

choice of other exchanges µC−i:

µCi ∈ arg max
µi

π(µi, µ
C
−i), (27)

(ii) µC1 = µC2 = · · · = µCN , and (iii)
∑N

i=1 µ
C
i = µC(N).

We have the following result:

Proposition 4. There exists at least one symmetric Cournot equilibrium in technological ser-

vice capacities and no asymmetric ones.

Proof. See Amir (2018), Proposition 7, and Vives (1999), Section 4.1. 2

Numerical simulations show that the equilibrium is unique and stable.21

4.3.1 Strategic complementarity in capacity decisions

With Cournot competition, log-convexity of the inverse demand function implies that the (log

of the) revenue of an exchange displays increasing differences in the pair (µi, µ−i). Indeed,

ln(φ(µi, µ−i)µi) = ln(φ(µi, µ−i)) + lnµi,

21In our setup, a sufficient condition for stability (Section 4.3 in Vives (1999)) is that the elasticity of the
slope of the FDs inverse demand function is bounded by the number of platforms (plus one):

E|µ=µC(N) ≡ − µ
φ′′(µ)

φ′(µ)

∣∣∣∣
µ=µC(N)

< 1 +N.
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and ln(φ(µi, µ−i)) has increasing differences in (µi, µ−i) since this is equivalent to φ being log-

convex.

Thus, with a zero marginal cost, a larger capacity installed by rivals has a negative impact

on an exchange profit which decreases in the exchange capacity choice. This leads a platform

to respond to an increase in its rivals’ capacity choice by increasing the capacity it installs (in

this situation a Cournot oligopoly is a game of strategic complements, see e.g., Amir (2018),

Proposition 3). This is because when FDs demand is log-convex, the intensive margin effect of

a capacity increase is more than offset by the corresponding extensive margin effect. Hence, a

platform’s decision to step up capacity in the face of rivals’ capacity increase, induces a mild

price decline that is more than compensated by the exchange increase in market share, allowing

the platform to boost its revenue (and cut its losses). By continuity, when the marginal cost is

sufficiently small, log-convexity of φ(µ) can make an exchange best response

BR(µ−i) = arg max
µi

{π(µi, µ−i)|µi ∈ (0, 1]}, (28)

increasing in its rivals’ choices (see Figure 3, panel (b)).22

Numerical Result 3. When N = 2, strategic complementarities in capacity decisions can

arise for some range of exchanges’ best response (see (28)).

For example, assuming a low value for the marginal cost (c = 0.0002), the model easily

displays strategic complementarities (see Figure 3, panel (b)).
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µ
2

BR(µ1)

BR(µ2)

c = 0.0002, γ = 0.5, γL = 0.25, τu = 100, τv = 3

(a) (b)

Figure 3: Log-convexity of the demand function (Panel (a)), and strategic complementarities
in platforms’ capacity decisions (Panel (b)).

22Parameter values are consistent with Leland (1992).
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For N > 2 (when c > 0, albeit small) we find instead that an exchange’s best response is

downward sloping. At a symmetric Cournot equilibrium, we have:

∂BRi(µ−i)

∂µ−i

∣∣∣∣
µ=µC(N)

= − φ′′(µ)(µ/N) + φ′(µ)

φ′′(µ)(µ/N) + 2φ′(µ)

∣∣∣∣
µ=µC(N)

. (29)

As N increases, the platform’s marginal gain in market share from a capacity increase shrinks

(the weight of the positive effect due to demand convexity in (29) declines), yielding a negatively

sloped best response.

4.3.2 Comparative statics with respect to N

At a stable Cournot equilibrium, standard comparative statics results apply (see, e.g., Section

4.3 in Vives (1999)). In particular, an increase in the number of exchanges leads to an increase

in the aggregate technological service capacity, and a decrease in each exchange profit:

∂µC(N)

∂N
≥ 0 (30a)

∂πi(µ)

∂N

∣∣∣∣
µ=µC(N)

≤ 0. (30b)

If the number of competing platforms is exogenously determined, condition (30a) implies

that spurring competition in the intermediation industry has positive effects in terms of liquidity

and gross welfare (Proposition 1 and Numerical Result 1):

Corollary 8. At a stable Cournot equilibrium, an exogenous increase in the number of compet-

ing exchanges has a positive impact on liquidity and gross welfare: ∂Λt/∂N < 0, ∂GW/∂N > 0.

Degryse et al. (2015) study 52 Dutch stocks in 2006-2009 (listed on Euronext Amsterdam

and trading on Chi-X, Deutsche Börse, Turquoise, BATS, Nasadaq OMX and SIX Swiss Ex-

change) and find a positive relationship between market fragmentation (in terms of a lower

Herfindhal index, higher dispersion of trading volume across exchanges) and the consolidated

liquidity of the stock. Foucault and Menkveld (2008) also find that consolidated liquidity in-

creased when in 2004 the LSE launched EuroSETS, a new limit order market to allow Dutch

brokers to trade stocks listed on Euronext (Amsterdam).

Upward sloping best responses can lead a platform to respond to a heightened competitive

pressure, with an increase in installed capacity, strengthening the aggregate effect in (30a),

and the resulting impact this has on liquidity and gross welfare.23 To illustrate this effect,

in Figure 4 we use the same parameters of Figure 3 (panel (b)), and study the impact of an

increase in competition. Panel (a) in the figure shows that platforms step up their individual

capacity, with a positive effect on liquidity (panels (b) and (c)), and welfare (panel (d)).

23The necessary and sufficient condition for an increase in N to lead to an increase in individual capacity is
that N < E|µ=µC < 1 +N (see Section 4.3 in Vives (1999)).
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Figure 4: Effect of entry on each platform capacity decisions (panel (a)), liquidity (panels (b)
and (c)), and gross welfare (panel (d)) (parameter values as in Figure 3).

5 Endogenous platform entry and welfare

In this section we endogenize platform entry, and study its welfare implications.24 Assuming

that platforms’ technological capacities are identical (µ = Nµi), a social planner who takes into

24For example, according to the UK Competition Commission (2011), a platform entry fixed cost covers initial
outlays to acquire the matching engine, the necessary IT architecture to operate the exchange, the contractual
arrangements with connectivity partners that provide data centers to host and operate the exchange technology,
and the skilled personnel needed to operate the business. The Commission estimated that in 2011 this roughly
corresponded to £10-£20 million.
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account the costs incurred by the exchanges faces the following objective function:

P(µ,N) ≡ GW (µ)− cµ− fN (31)

= π(µi)N + ψ(µ).

Expression (31) is the sum of two components. The first component reflects the profit generated

by competing platforms, who siphon out FDs surplus, and incur the costs associated with

running the exchanges:

π(µi)N = ((φ(µ)− c)µi − f)N = φ(µ)µ︸ ︷︷ ︸
(CEFD−CESD)µ

−cµ− fN,

implying that FDs surplus only contributes indirectly to the planner’s function, via platforms’

total profit. The second component in (31) reflects the welfare of other market participants:

ψ(µ) = CESD + CEL
1 + CEL

2 ,

and highlights the welfare effect of technological capacity choices via the liquidity externality.25

We consider five possible outcomes:

1. Cournot with free entry (CFE). In this case, we look for a symmetric Cournot equilibrium

in µ, as in Definition 1, and impose the free entry constraint:

(φ(µC(N))− c)µ
C(N)

N
≥ f > (φ(µC(N + 1))− c)µ

C(N + 1)

N + 1
, (32)

which pins down N . We denote by µCFE, and NCFE the pair that solves the Cournot case.

Note that, given Proposition 4 and (30b), a unique Cournot equilibrium with free entry

obtains in our setup if (30b) holds and for a given N the equilibrium is unique.

2. Structural Second Best (STR). In this case we posit that the planner can determine the

number of exchanges that operate in the market. As exchanges compete à la Cournot in

technological capacities, we thus look for a solution to the following problem:

max
N≥1
P(µC(N), N) s .t. µC(N) is a Cournot equilibrium with πCi (N) ≥ 0, (33)

and denote by µSTR, and NSTR the pair that solves (33).

3. Unrestricted Structural Second Best (USTR). In this case we relax the non-negativity con-

straint in (33), thereby assuming that the planner can make side-payments to exchanges if

25Even incumbent exchanges may have to incur an entry cost to supply liquidity in the second round. For
example, faced with increasing competition from alternative trading venues, in 2009 LSE decided to absorb
Turquoise, a platform set up about a year before by nine of the world’s largest banks. (See “LSE buys Turquoise
share trading platform,” Financial Times, December 2009).
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they do not break-even. Thus, we look for a solution to the following problem:

max
N≥1
P(µC(N), N) s .t. µC(N) is a Cournot equilibrium, (34)

and denote by µUSTR, and NUSTR the pair that solves (34).

4. Behavioral Second Best (BEH). In this case, we let the planner set the fee that exchanges

charge to FDs, assuming free entry of platforms. Because of Corollary 6, φ(µ) is invertible in

µ, implying that setting the fee is equivalent to choosing the aggregate technological capacity

µ. Thus, we look for a solution to the following problem:

max
µ∈(0,1]

P(µ,N) s.t. (φ(µ)− c) µ
N
≥ f ≥ (φ(µ)− c) µ

N + 1
, (35)

and denote by µBEH and NBEH the pair that solves (35).26

5. First Best (FB). In this case, we assume that the planner can regulate the market choosing

the fee and the number of competing platforms:

max
µ∈(0,1],N≥1

P(µ,N). (36)

We denote by µFB and NFB the pair that solves (36).

We contrast the above four cases with the “Unregulated Monopoly” outcome (M) defined in

Section 4.3.

We make the maintained assumption that both the monopoly profit and P(µ, 1) are single-

peaked in µ. Our first set of results compares the FB and BEH solutions with the monopoly

one.

Proposition 5. 1. NFB = 1; µFB ≥ µM and Λt(µ
M) ≥ Λt(µ

FB).

2. NBEH = 1 and µFB ≥ µBEH if at µFB the monopoly profit is negative; µBEH ≥ µM and

Λt(µ
M) ≥ Λt(µ

BEH).

To see the first part of 2 above, suppose that at µFB, the monopoly profit is negative. As

for a given (aggregate) µ, the profit of an exchange is decreasing in N , the maximum profit for

a given µ is when N = 1. We have then that NBEH = 1. Furthermore, given that P is single

peaked in µ, it is optimal for µBEH to be set as large as possible so that monopoly profits are

zero. The solution is then µM < µBEH ≤ µFB.27

Regulating the fee can however be complicated, as our discussion in the introduction sug-

gests. With this in mind, we now focus on the case in which the planner cannot set the

26We assume for simplicity that if the second inequality holds with equality, then only N firms enter.
27We have numerically verified the above sufficient condition for NBEH = 1, and found in our simulations

that it is always satisfied. In the reverse order of actions model, in some cases πM (µBEH) > 0, but the planner
still sets NBEH = 1. See Table 2 for details.
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technological service fee, but can decide on the number of competing exchanges. In the absence

of regulation, a Cournot equilibrium with free entry arises (see (32)). We thus compare this

outcome to the Structural Second Best, in both the unrestricted and restricted cases. Evalu-

ating the first order condition of the planner at N = NCFE (ignoring the integer constraint)

yields:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸
= 0

∣∣∣∣∣∣
N=NCFE

(37)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
Profitability depression < 0

∣∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µ)
∂µC(N)

∂N︸ ︷︷ ︸
Liquidity creation > 0

∣∣∣∣∣∣∣∣
N=NCFE

.

According to (37), if the Cournot equilibrium is stable, platform entry has two countervailing

welfare effects.28 The first one is a “profitability depression” effect, and captures the profit

decline associated with the demand reduction faced by each platform as a result of entry. This

effect is conducive to excessive entry, as each competing exchange does not internalize the

negative impact of its entry decision on competitors’ profits. The second one is a “liquidity

creation” effect and is instead peculiar to a financial market setup in which end users benefit

from the possibility to hedge endowment shocks. This effect reflects the welfare creation of an

increase in N via the liquidity externality (recall that at a stable equilibrium an increase in

N increases µC(N), which has a positive effect on liquidity), and is conducive to insufficient

entry since each exchange does not internalize the positive impact of its entry decision on other

market participants’ payoffs.

These effects differ from the standard ones arising in a Cournot equilibrium with free entry

(Mankiw and Whinston (1986)). Liquidity creation relates to the increase in consumer surplus

that comes about with an increase in the number of firms because of the quasicompetitiveness

property of regular equilibria (that is, total output increasing with the number of firms, see

section 4.3 in Vives (1999)). In the Cournot case it so happens that with business stealing (i.e.,

with individual output decreasing in the number of firms), the profitability depressing effect of

entry always dominates, inducing excessive entry (except for the integer problem, insufficient

entry can occur by at most one firm). A similar result obtains in our setup, when we compare

NCFE with NSTR; however, when NCFE is stacked against NUSTR, this conclusion does not

necessarily hold.

More in detail, NCFE is the the largest N so that platforms break even at a Cournot

28This is because at a stable equilibrium (30a) and (30b) hold.
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equilibrium. At the STR solution, platforms break even too, but the planner internalizes the

profitability depression effect of entry. Thus, we have that

NCFE ≥ NSTR.

Conversely, removing the break even constraint, the planner achieves the Unrestricted STR,

and depending on which of the effects outlined above prevails, both excessive or insufficient

entry can occur:

Proposition 6. When the planner regulates entry, for stable Cournot equilibria:

1. NCFE ≥ NSTR, µCFE ≥ µSTR, and Λt(µ
CFE) ≤ Λt(µ

STR).

2. When the profitability depression effect is stronger than the liquidity creation effect, NCFE ≥
NUSTR, µCFE ≥ µUSTR, and Λt(µ

CFE) ≤ Λt(µ
USTR). Otherwise, the opposite inequalities

hold.

3. The technological capacity at CFE is higher than at STR, which is in turn higher than

at M: µCFE ≥ µSTR ≥ µM . The technological capacity at USTR is higher than at M:

µUSTR ≥ µM . Therefore,

Λt(µ
M) ≥ Λt(µ

STR) ≥ Λt(µ
CFE), and Λt(µ

M) ≥ Λt(µ
USTR). (38)

4. Welfare ranking: PUSTR ≥ PSTR ≥ PCFE.

Item 3 in the proposition shows that the technological capacity offered at the CFE is higher

than at the STR, a natural consequence of excessive entry with respect the STR benchmark.

The comparison with the USTR is however inconclusive. Indeed, as explained above, in this

case entry can be insufficient, implying that the planner may push entry beyond the break-even

level, subsidising the loss-making platforms. Thus, while liquidity maximization is generally at

odds with welfare maximization in the STR case, the two may be aligned in the USTR case.29

To verify the possibility of excessive or insufficient entry compared to the USTR, we run two

sets of numerical simulations. In the first set, as in Figure 3 we assume standard risk aversion

(γ = 0.5, γL = 0.25), a 10% annual volatility for the endowment shock, and consider a “high”

and a “low” payoff volatility scenario (respectively, τv = 3, which which corresponds to a 60%

annual volatility for the liquidation value, and τv = 25 which corresponds to a 20% annual

volatility). Platform costs are set to f ∈ {1× 10−6, 2× 10−6, . . . , 31× 10−6}, and c = 0.002.30

In the second set, we assume lower values for risk aversion (γ = 25, γL = 12) which are

consistent with the literature on price pressure, and recent results on the structural estimation

29Note that at the USTR the non-negativity constraint of the exchanges profit is relaxed. Thus, it must hold
that PUSTR ≥ PSTR.

30Analyzing the US market, Jones (2018) argues that barriers to entry to the intermediation industry are very
low, a consideration that is corroborated by the current state of the market, where 13 cash equity exchanges
compete with over 30 ATS. This suggests that entry cost must be low.
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of risk aversion based on insurance market data,31 and set τv = τu = 0.1 (corresponding

to a 316% annual volatility for both the endowment shock and the liquidation value), f ∈
{1 × 10−2, 2 × 10−2, . . . , 31 × 10−2}, and c = 2. For both sets of simulations, we solve for the

technological capacity and the number of platforms, in both the “Original” and “Reverse” order

of actions cases, (respectively, OO and RO), and perform robustness analysis (see Table 1).

Numerical Result 4. 1. With standard risk aversion values:

(a) With high payoff volatility, entry is excessive: NCFE > NUSTR, and µCFE > µUSTR.

(b) With low payoff volatility, when the marginal cost of technological capacity is low, and

for sufficiently large values of the entry cost, entry is insufficient: NCFE < NUSTR

and µCFE < µUSTR.

2. With low risk aversion values, for sufficiently large values of the entry cost, entry is

insufficient.

Furthermore, at all solutions N and µ are decreasing in f .32

Figure 5 illustrates the output of two simulations in which insufficient entry occurs (when

c = 0.005, a case we do not display, insufficient entry disappears). Insufficient entry implies that

platforms enjoy stronger market power compared to a social planner objective. This situation

appears to be in line with the complaints raised by many market participants, as we argue in

the introduction, but also with the view of some regulators.33

The next result provides a welfare comparison of the different outcomes finessing the entry

constraint for the BEH solution to be fulfilled with exactly zero profits (this is essentially

equivalent to the monopoly profit being non-positive at µFB, πM(µFB) ≤ 0–see Lemma 2, in

the Appendix).

Proposition 7. Comparing all solutions when πM(µFB) ≤ 0:

1. µFB ≥ µBEH ≥ µCFE ≥ µSTR ≥ µM . Therefore,

Λt(µ
FB) ≤ Λt(µ

BEH) ≤ Λt(µ
CFE) ≤ Λt(µ

STR) ≤ Λt(µ
M).

2. The number of exchanges entering the market with Cournot free entry or with entry

regulation is no lower than with fee regulation (NBEH = 1).

3. Welfare comparison:

PFB ≥ PBEH ≥ PM , (39a)

31See respectively Hendershott and Menkveld (2014), and Cohen and Einav (2007).
32Assuming γ = 0.25 < γL = 0.5 yields qualitatively similar results in the high volatility case, whereas in the

low volatility case insufficient entry disappears.
33“[. . . ] For example, one exchange, EDGX, has raised the price on its standard 10GB connection five times

since 2010–in total, leaving the price of the connection seven times higher than it was in that year.” Unfair
Exchange: The State of America’s Stock Markets, speech of Commissioner Robert J. Jackson Jr., George Mason
University, September 2018.

26

https://www.sec.gov/news/speech/jackson-unfair-exchange-state-americas-stock-markets
https://www.sec.gov/news/speech/jackson-unfair-exchange-state-americas-stock-markets


and

PFB ≥ max{PUSTR,PBEH} ≥ min{PUSTR,PBEH} ≥ PSTR ≥ PCFE. (39b)

Note that under the assumption of the proposition, NBEH = 1 from which it follows that

PBEH ≥ PM ,

and we have also that PBEH ≥ PSTR since both at the BEH and the STR exchanges break

even, and µBEH ≥ µCFE ≥ µSTR.

The results under the assumption of Proposition 7 imply that, if unregulated, the monopoly

outcome yields lower liquidity compared to any other alternative. Furthermore, in our simula-

tions, the planner’s objective function evaluated at µM is always the lowest compared to the

other five alternatives. Thus, both from a liquidity, and welfare point of view the monopoly

solution is the worst possible.

5.1 A permanent shock to dealers’ risk tolerance

We conclude this section using our model to study the effect of a permanent shock to liquidity

providers’ risk tolerance. As is usual in a setup where dealers are risk averse, a lower γ reduces

market liquidity (Corollary 1). However, liquidity also depends positively on the proportion

of FDs (Corollary 1), which is pinned down by the equilibrium arising at the technological

capacity determination stage of the game. This implies that if a lower γ leads to a positive

shift in the demand for technological services (Corollary 7) it can also have an indirect, positive

effect on liquidity, via its effect on platforms’ capacity decisions.

To fix ideas, consider the unregulated monopoly case. At the optimum, the monopolist

supplies

µM =
φ− c
−φ′ .

Differentiating the above expression with respect to γ (and denoting φ′ by ∂φ/∂µ) yields

∂µM

∂γ
=

1

(∂φ/∂µ)2

(
− ∂φ

∂γ

∂φ

∂µ
+ (φ− c) ∂

2φ

∂µ∂γ

){
> 0 amplification

< 0 attenuation

If a permanent shock to γ shifts φ upwards (∂φ/∂γ > 0) and makes it flatter (∂2φ/∂γ∂µ < 0) it

leads the monopolist to increase its supply of technological services, inducing an amplification of

the initial shock. Thus, a sufficient condition for attenuation is ∂φ/∂γ < 0 and ∂2φ/∂γ∂µ > 0.

We run simulations to gauge the effect of platform capacity decisions on liquidity, in the

presence of a permanent reduction in dealers’ risk aversion. For γ decreasing from γorig to

γ̂ < γorig, we define the percentage of the direct positive effect on Λt mitigated by the indirect-
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platform competition effect as follows:

%mit ≡ 1− Total Effect

Direct Effect
= 1− Λt(γ̂, µ(γ̂))− Λt(γ

orig, µ(γorig))

Λt(γ̂, µ(γorig))− Λt(γorig, µ(γorig))
,

where the Direct Effect at the denominator in the above expression captures the change in

liquidity that obtains when only γ changes, and µ is kept at the value it had prior to the

the shock to risk-tolerance. Accordingly, if %mit < 0 (> 0), the direct effect is enhanced

(mitigated) by the indirect effect, and if %mit > 1, the indirect effect overturns the direct

effect. Figure 6 displays the result of a simulation in which the mitigation effect can be strong

enough to overturn the direct negative liquidity impact of a reduction of dealers’ risk tolerance

for Λ2.

Numerical Result 5. For second period liquidity, with standard risk aversion, a 10% decrease

in γ leads to

1. Mitigation in the case of the unregulated monopolist.

2. Both mitigation and amplification are possible at the CFE when payoff volatility is low.

A shock to γ does not lead to a parallel shift in φ (see Figure 6, Panel (a)). Thus, its

ultimate effect on second period liquidity (amplification vs. attenuation) depends on the value

of µM or µCFE pre-shock. For example, for a range of values close to the origin, to which µM

belongs, a 10% shock shifts φ up, and flattens the inverse demand curve. These two effects are

responsible for the observed attenuation at the monopoly solution which occurs at all f , since

µM is independent of f (see Figure 6, Panel (b)).

For larger values of µ, to which µCFE belongs, the effect of the shock on liquidity is more

complicated because the pre-shock value of µ depends on (i) f and (ii) N . For the values of µCFE

that correspond to f ∈ {1× 10−7, 2× 10−7}, the shock shifts φ mildly down (∂φ/∂γ > 0) and

makes it steeper (∂2φ/∂γ∂µ < 0). Each platform faces a smaller mark-up and a steeper demand

curve, and cuts down on µi. This induces a profit increase that prompts entry. The paradoxical

result is that we observe entry with a reduction in aggregate µ, and thus amplification (see

Figure 6, Panels (c) and (d)). As f increases, both attenuation and amplification can obtain,

because the pre-shock value of µ shrinks, but stays in the region where the shock to γ has a

complex effect on φ. When parameter values are such that the industry supply increases and

entry occurs (as in the cases f ∈ {2 × 10−6, 2.1 × 10−6, 2.2 × 10−6}, in Figure 6, Panel (c))

attenuation is so strong that a reduction in γ leads to an increase in second period liquidity

(see Figure 6, Panel (d)).
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Initial parametrization
Alternative parameter values
c γ γL

c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 25 0.001 {0.45, 0.35, 0.3, 0.25} 0.15
c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 3 0.003 {0.45, 0.35, 0.3, 0.25} 0.15
c = 2, γ = 25, γL = 12, τu = 0.1, τv = 0.1 2.5 {22.5, 17.5, 15, 12.5} 18

Table 1: Parametrizations used in the simulations.

6 Concluding remarks

We nest a two-period market microstructure model into one of exchange platform competition

where trading venues compete à la Cournot in technological services allowing (full) dealers

the ability to supply liquidity at both trading rounds to liquidity traders. We show that full

dealers have a higher risk bearing capacity compared to those who can only trade in the first

round. This implies that as their mass increases, market liquidity and traders’ welfare improve.

At equilibrium, the mass of full dealers matches the industry technological service capacity.

Since at a stable Cournot equilibrium a heightened competition increases industry capacity,

this implies that traders’ welfare increases in the number of trading venues. We use the model

to analyze the welfare effects of different entry regimes. A monopolistic exchange exploits its

market power, and under supplies technological services, thereby negatively affecting liquidity

and welfare. Allowing competition among trading platforms is beneficial for market quality

and (generally) for welfare. However, the market outcome can overprovide or underprovide

technological capacity with the corresponding effects on liquidity. If the regulator cannot make

transfers to platforms, then entry is never insufficient and the market never underprovides

capacity when the benchmark is regulated entry. If, on the other hand, side payments are

possible, depending on parameter values entry can also be insufficient. Fee regulation is often

superior to entry regulation. Typically, the regulator sets a fee low enough so that only one

platform can survive and provide a larger capacity than the market outcome. Both fee and

entry regulation are subject to high informational requirements and to lobbying efforts. The

choice between them has to weigh the respective costs and benefits.

Our results suggest that exchanges’ technological capacity decisions can be an important

driver of market liquidity, adding to the usual, demand-based factors highlighted by the market

microstructure literature (e.g., arbitrage capital, risk bearing capacity of the market). An

example is the fact that when a decrease in dealers’ risk tolerance increases the demand for

technological services, it can prompt a capacity increase which leads in turn to an increase in

the mass of FD, attenuating or offsetting the negative direct impact on liquidity. This can

provide an explanation for the contrasting liquidity findings of post-crisis regulations aimed at

reducing investment banks’ trading activities.34 From this point of view, any argument about

34Reviewing the literature on the market liquidity impact of post crisis regulations such as the Volcker Rule,
an SEC report finds that while dealers in the corporate bond markets have, in aggregate, reduced their capital
commitment since the 2007 peak, liquidity measures such as trading activity and average transaction costs have
remained flat (see Access to Capital and Market Liquidity , SEC report to the US Congress, August 2017).
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market liquidity should also be anchored to the framework in which exchanges interact, and

the type of regulatory intervention of the policy maker. Furthermore, we show the limits of the

view that aligns liquidity to welfare. Indeed, when excessive entry obtains, even though the

market is more liquid, a social planner that internalizes the welfare of exchanges as well as that

of market participants, chooses to restrict competition, in this way reducing market liquidity.

Our modelling has integrated industrial organization and market microstructure methods

taking technological services as homogeneous. An extension of our approach is to consider

that exchanges offer differentiated capacities and introduce asymmetries among exchanges.

Differentiation could be both in terms of quality (e.g., speed of connection) and horizontal

attributes (e.g., lit vs. dark venues).35

35This would also allow to more directly contrast our results with the differentiated approach of Pagnotta
and Philippon (2018).
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A Appendix

The following is a standard results (see, e.g., Vives (2008), Technical Appendix, pp. 382–383)

that allows us to compute the unconditional expected utility of market participants.

Lemma 1. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z + z′Az, where

c ∈ R, b ∈ Rn, and A is a n×n matrix. If the matrix Σ−1 +2ρA is positive definite, and ρ > 0,

then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

Proof of Proposition 1

We start by assuming that at a linear equilibrium prices are given by

p2 = −Λ2u2 + Λ21u1 (A.1a)

p1 = −Λ1u1, (A.1b)

with Λ1, Λ21, and Λ2 to be determined in equilibrium. In the second period a new mass of

liquidity traders with risk-tolerance coefficient γL > 0 enter the market. Because of CARA and

normality, the objective function of a second period liquidity trader is given by

E[− exp{−πL2 /γL}|ΩL
2 ] = − exp

{
− 1

γL

(
E[πL2 |ΩL

2 ]− 1

2γL
Var[πL2 |ΩL

2 ]

)}
, (A.2)

where ΩL
2 = {u1, u2}, and πL2 ≡ (v− p2)xL2 + u2v. Maximizing (A.2) with respect to xL2 , yields:

XL
2 (u1, u2) = γL

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]
− Cov[v − p2, v|ΩL

2 ]

Var[v − p2|ΩL
2 ]

u2. (A.3)

Using (A.1a):

E[v − p2|ΩL
2 ] = Λ2u2 − Λ21u1 (A.4a)

Var[v − p2|ΩL
2 ] = Cov[v − p2, v|ΩL

2 ] =
1

τv
. (A.4b)

Substituting (A.4a) and (A.4b) in (A.3) yields

XL
2 (u1, u2) = a2u2 + bu1, (A.5)

where

a2 = γLτvΛ2 − 1 (A.6a)

b = −γLτvΛ21. (A.6b)
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Consider the sequence of market clearing equations

µxFD1 + (1− µ)xSD1 + xL1 = 0 (A.7a)

µ(xFD2 − xFD1 ) + xL2 = 0. (A.7b)

Condition (A.7b) highlights the fact that since first period liquidity traders and SD only par-

ticipate at the first trading round, their positions do not change across dates. Rearrange (A.7a)

as follows:

(1− µ)xSD1 + xL1 = −µxFD1 .

Substitute the latter in (A.7b):

µxFD2 + xL2 + (1− µ)xSD1 + xL1 = 0. (A.8)

To pin down p2, we need the second period strategy of FD and the first period strategies of SD

and liquidity traders. Starting from the former, because of CARA and normality, the expected

utility of a FD is given by:

E

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}
|p1, p2

]
= (A.9)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
E[v − p2|p1, p2]xFD2 − (xFD2 )2

2γ
Var[v − p2|p1, p2]

)})
,

For given xFD1 the above is a concave function of xFD2 . Maximizing with respect to xFD2 yields:

XFD
2 (p1, p2) = −γτvp2. (A.10)

Similarly, due to CARA and normality, in the first period a traditional market maker maximizes

E

[
− exp

{
− 1

γ
(v − p1)xSD1

}
|p1
]

= − exp

{
− 1

γ

(
E[v − p1|p1]xSD1 −

(xSD1 )2

2γ
Var[v − p1|p1]

)}
.

(A.11)

Hence, his strategy is given by

XSD
1 (p1) = −γτvp1. (A.12)

Finally, consider a first period liquidity trader. CARA and normality imply

E[− exp{−πL1 /γL}] = − exp

{
− 1

γ

(
E[πL1 |u1]−

1

2γL
Var[πL1 |u1]

)}
, (A.13)

where πL1 ≡ (v−p1)xL1 +u1v. Maximizing (A.13) with respect to xL1 , and solving for the optimal

strategy, yields

XL
1 (u1) = γL

E[v − p1|u1]
Var[v − p1|u1]

− Cov[v − p1, v|u1]
Var[v − p1|u1]

u1. (A.14)
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Using (A.1b):

E[v − p1|u1] = Λ1u1 (A.15a)

Cov[v − p1, v|u1] =
1

τv
. (A.15b)

Substituting the above in (A.14) yields

XL
1 (u1) = a1u1, (A.16)

where

a1 = γLτvΛ1 − 1. (A.17)

Substituting (A.5), (A.10), (A.12), and (A.16) in (A.8) and solving for p2 yields

p2 = − 1− γLτvΛ2

µγτv︸ ︷︷ ︸
Λ2

u2 +
((1− µ)γ + γL)τvΛ1 − 1− γLτvΛ21

µγτv︸ ︷︷ ︸
Λ21

u1. (A.18)

Identifying the price coefficients:

Λ2 =
1

(µγ + γL)τv
(A.19a)

Λ21 = Λ2

(
((1− µ)γ + γL)τvΛ1 − 1

)
. (A.19b)

Substituting the above expressions in (A.18), and using (A.12) yields:

p2 = −Λ2u2 + Λ2

(
(1− µ)xSD1 + xL1

)
.

Consider now the first period. We start by characterizing the strategy of a FD. Substitut-

ing (A.10) in (A.9), rearranging, and applying Lemma 1 yields the following expression for the

first period objective function of a FD:

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× (A.20)

exp

{
−1

γ

(
γτv
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτvν)2

2γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1)}
,

where, due to (A.1a) and (A.1b)

ν ≡ E[p2|u1] = Λ21u1 (A.21a)

Var[p2|u1] =
Λ2

2

τu
. (A.21b)
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Maximizing (A.20) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) = γ

E[p2|u1]
Var[p2|u1]

− γ
(

1

Var[p2|u1]
+

1

Var[v]

)
p1 (A.22)

= γ
Λ21τu

Λ2
2

u1 − γ
τu + Λ2

2τv
Λ2

2

p1.

Substituting (A.12), (A.16), and (A.22) in (A.7a) and solving for the price yields p1 = −Λ1u1,

where

Λ1 =

((
1 +

µγLτu
Λ2 + µγτu

)
γ + γL

)−1
1

τv
. (A.23)

The remaining equilibrium coefficients are as follows:

a1 = γLΛ1τv − 1 (A.24)

a2 = − µγ

µγ + γL
(A.25)

b = −γLτvΛ21 (A.26)

Λ21 = −µγ(Λ2
2τv + τu)

µγτu + Λ2

Λ1 (A.27)

Var[p2|u1] =
Λ2

2

τu
, (A.28)

where Λ2 is given by (A.19a). 2

Proof of Corollary 2

The first part of the corollary follows from (13). Also, since Λt is decreasing in µ, because

of (10), |at| is increasing in µ. Finally, substituting (A.27) in (A.26) and rearranging yields

b =
µγγL(1 + (µγ + γL)2τuτv)

(µγ + γL)(γ + γL + (γ + 2γL)µγτuτv)
,

which is increasing in µ. 2

Proof of Corollary 3

Computing the covariance between first and second period returns and using (A.23), and (A.27)

yields

Cov[p2 − p1, p1] = −Λ1 (Λ1 + Λ21) τ
−1
u

= − γLΛ1Λ2

(γ + γL + (γ + 2γL)(µγ + γL)µγτuτv)τu
,

which, in view of the fact that Λ∗t is decreasing in µ, proves the result. 2
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Proof of Proposition 2

We start by obtaining an expression for the unconditional expected utility of Ds and FDs.

Because of CARA and normality, a dealer’s conditional expected utility evaluated at the optimal

strategy is given by

E[U((v − p1)xSD1 )|p1] = − exp

{
−(E[v|p1]− p1)2

2Var[v]

}
= − exp

{
−τvΛ

2
1

2
u21

}
. (A.29)

Thus, traditional dealers derive utility from the expected, long term capital gain obtained

supplying liquidity to first period hedgers.

EUSD ≡ E
[
U
(
(v − p1)xSD1

)]
= −

(
1 +

Var[p1]

Var[v]

)−1/2
= −

(
τu1

τu1 + τvΛ2
1

)1/2

, (A.30)

and

CESD =
γ

2
ln

(
1 +

Var[p1]

Var[v]

)
. (A.31)

Differentiating CESD with respect to µ yields:

∂CESD

∂µ
=
γτv
2

(
1 +

Var[p1]

Var[v]

)−1
∂Var[p1]

∂µ
(A.32)

=
γτv
2τu1

(
1 +

Var[p1]

Var[v]

)−1
2Λ1

∂Λ1

∂µ
< 0,

since Λ1 is decreasing in µ.

Turning to FDs. Replacing (A.22) in (A.20) and rearranging yields

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× exp

{
−g(u1)

γ

}
, (A.33)

where

g(u1) =
γ

2

(
(E[p2|p1]− p1)2

Var[p2|p1]
+

(E[v|p1]− p1)2
Var[v]

)
.

The argument at the exponential of (A.33) is a quadratic form of the first period endowment

shock. We can therefore apply Lemma 1 and obtain

EUFD ≡ E[U((p2 − p1)xFD1 + (v − p2)xFD2 )] =

= −
(

1 +
Var[p2|p1]

Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]
Var[p2|p1]

)−1/2
, (A.34)
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where, because of (A.21a),

Var [E[p2 − p1|p1]] = (Λ21 + Λ1)
2 τ−1u , (A.35)

so that:
Var[E[p2 − p1|u1]]

Var[p2|u1]
=

(
Λ21 + Λ1

Λ2

)2

.

Therefore, we obtain

CEFD =
γ

2

{
ln

(
1 +

(Λ2)
2τv

τu

)
+ ln

(
1 +

(Λ1)
2τv

τu
+

(
Λ21 + Λ1

Λ2

)2
)}

. (A.36)

Computing,
Λ21 + Λ1

Λ2

=
γL

γ + γL + (γ + 2γL)(µγ + γL)µγτuτv
. (A.37)

Thus, the arguments of the logarithms in (A.36) are decreasing in µ, which proves that CEFD

is decreasing in µ.

Finally, note that taking the limits for µ→ 0 and µ→ 1 in (A.31) and (A.36) yields

lim
µ→0

CESD =
γ

2
ln

(
1 +

1

(γ + γL)2τuτv

)
lim
µ→1

CEFD =
γ

2

{
ln

(
1 +

1

(γ + γL)2τuτv

)
+ ln

(
1 +

(Λ1)
2τv

τu
+

(
Λ21 + Λ1

Λ2

)2
)}

,

which proves the last part of the corollary. 2

Proof of Proposition 3

Consider now first period liquidity traders. Evaluating the objective function at optimum

and rearranging yields

− exp

{
− 1

γL

(
E[πL1 |u1]−

1

2γL
Var[πL1 |u1]

)}
= − exp

{
−u

2
1

γL

(
a21 − 1

2γLτv

)}
,

where u1 ∼ N(0, τ−1u1
). The argument at the exponential is a quadratic form of a normal random

variable. Therefore, applying again Lemma 1 yields

E

[
− exp

{
πL1
γL

}]
= −

(
(γL)2τuτv

(γL)2τuτv − 1 + a21

)1/2

, (A.38)

so that

CEL
1 =

γL

2
ln

(
1 +

a21 − 1

(γL)2τuτv

)
. (A.39)

Note that a higher a21 increases traders’ expected utility, and thus increases their payoff.
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Next, for second period liquidity traders, substituting the optimal strategy (A.3) in the

objective function (A.2) yields

E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]
= − exp

{
− 1

γL

(
(xL2 )2 − u22

2γLτv

)}
(A.40)

= − exp

{
− 1

γL

(
xL2 u2

)( 1

2γL2 τv

(
1 0

0 −1

))(
xL2

u2

)}
.

The argument of the exponential is a quadratic form of the normally distributed random vector(
xL2 u2

)
∼ N

((
0 0

)
,Σ
)
,

where

Σ ≡
(

Var[xL2 ] a2Var[u2]

a2Var[u2] Var[u2]

)
. (A.41)

Therefore, we can again apply Lemma 1 to (A.40), obtaining

E

[
E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]]
= −|I + (2/γL)ΣA|−1/2, (A.42)

where

A ≡ 1

2γLτv

(
1 0

0 −1

)
, (A.43)

Var[xL2 ] =
a22 + b2

τu
. (A.44)

Substituting (A.41), (A.43), and (A.44) in (A.42) and computing the certainty equivalent,

yields:

CEL
2 =

γL

2
ln

(
1 +

a22 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2uτ
2
v

)
. (A.45)

For µ = 0, b = 0 and, in view of Corollary 2, CEL
1 > CEL

2 . The same condition holds when

evaluating (A.39) and (A.45) at µ = 1. As CEL
t is increasing in µ, we have that for all µ ∈ (0, 1],

CEL
1 (µ) > CEL

2 (µ). 2

Proof of Corollary 4

We need to prove that:
∂CEL

1 (µ)

∂µ
≥ −∂CE

SD(µ)

∂µ
.

Computing:

∂CEL
1 (µ)

∂µ
=

γLa1a
′
1

(γL)2τuτv − 1 + a21
(A.46)
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and

∂CESD(µ)

∂µ
=

γ(1 + a1)a
′
1

(γL)2τuτv + (1 + a1)2
. (A.47)

First, note that the denominator in (A.47) is higher than the one in (A.46). Next, comparing

the numerators in the above expressions yields:

γLa1a
′
1 > −γ(1 + a1)a

′
1 ⇐⇒ (γLa1 + γ(1 + a1)︸ ︷︷ ︸

<0

) a′1︸︷︷︸
<0

> 0,

as can be checked by substituting (A.24) in the above. 2

Proof of Corollary 5

The first part of the result follows immediately from (20), and Corollary 4. Next, because

of Propositions 2 and 3, GW (1) > limµ→0GW (µ), which rules out the possibility that gross

welfare is maximized at µ ≈ 0. 2

Proof of Corollary 6

Note that because of (A.37), we can write

Λ21 + Λ1

Λ2

=
Λ1γ

Lτv
1 + µγ(µγ + γL)τuτv

.

Therefore, substituting the expressions for dealers’ payoffs in (21), we have:

φ(µ) = CEFD − CED (A.48)

=
γ

2

{
ln

(
1 +

Λ2
2τv
τu

)
+ ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)}
> 0.

where K = 1 + (γL/(1 + µγ(µγ + γL)τuτv))
2τuτv > 1, and decreasing in µ. The first term

inside curly braces in the above expression is decreasing in µ since Λ2 is decreasing in µ. The

difference between the second and third terms can be written as follows:

ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)
= ln

(
τu + Λ2

1τvK

τu + Λ2
1τv

)
.

Differentiating the above logarithm and rearranging yields:

τvΛ1

(τu + Λ2
1τvK)(τu + Λ2

1τv)

(
2(K − 1)τu

∂Λ1

∂µ
+ (τu + Λ2

1τu)Λ1
∂K

∂µ

)
< 0,

since K > 1, and both Λ1 and K are decreasing in µ. 2
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Proof of Corollary 7

As shown in the text following Corollary 7, the derivative of φ(µ; γ) with respect to γ can

be written as the sum of two components, the first one being positive. Consider now the effect

of the change in γ on the dealers’ expected utilities’ ratio. Computing this derivative yields:

∂(EUFD/EUSD)

∂γ
∝
(
− τuτv(γµ+ γL)3

(
γµτ 2uτ

2
v (γµ+ γL)

(
γ2
(
µ2 + 2

)
+ γγL(µ+ 6) + 4(γL)2

)
+ γ2µ2τ 3uτ

3
v (γ + 2γL)2(γµ+ γL)2 + τuτv

(
2γ2µ2 + 2γγLµ+ (γ + γL)2

)
+ 1
)2)−1×(

2
(
γ4µ5τ 6uτ

6
v (γ + 2γL)4(γµ+ γL)4 + µτuτv

(
γ2
(
4µ2 + 2

)
+ 4γγL(µ+ 1) + 3(γL)2

)
+ τ 2uτ

2
v

(
γ4
(
6µ5 + 8µ3 + µ

)
+ 4γ3γLµ(µ(µ+ 1)(3µ+ 2) + 1)

+ 2γ2(γL)2µ(µ(11µ+ 10) + 4) + γ(γL)3(µ(17µ+ 7) + 1) + (γL)4(3µ+ 1)
)
+

γµ2τ 5uτ
5
v (γ + 2γL)(γµ+ γL)3

(
2γ5µ2

(
µ2 + 2

)
+ 2γ4γLµ2

(
2µ2 + µ+ 10

)
+

γ3(γL)2µ2(4µ+ 35) + 5γ2(γL)3µ(4µ+ 1) + 2γ(γL)4(3µ+ 1) + 2(γL)5
)
+

τ 3uτ
3
v (γµ+ γL)

(
4γ5
(
µ6 + 3µ4 + µ2

)
+ 4γ4γLµ2(µ(µ(2µ+ 9) + 3) + 5)+

γ3(γL)2µ2(µ(35µ+ 36) + 43) + γ2(γL)3µ(µ(35µ+ 44) + 5)+

γ(γL)4(µ(21µ+ 8) + 1) + (γL)5(3µ+ 1)
)

+ µτ 4uτ
4
v (γµ+ γL)2

(
γ6µ2

(
µ4 + 8µ2 + 6

)
+

2γ5γLµ2(µ(µ(µ+ 14) + 4) + 18) + γ4(γL)2µ2(µ(27µ+ 28) + 86)+

γ3(γL)3µ(µ(29µ+ 95) + 9) + γ2(γL)4(µ(44µ+ 21) + 3)+

γ(γL)5(11µ+ 6) + 2(γL)6
)

+ µ
))

< 0, (A.49)

proving our claim. 2

Proof of Proposition 5

In the First Best case, for given µ, the objective function (31) is decreasing in N . Thus,

to economise on fixed costs, the planner allows a monopolistic exchange to provide trading

services. To see that µFB ≥ µM , evaluate the FOC of the FB planner at µM to obtain:

∂P(µ, 1)

∂µ

∣∣∣∣
µ=µM

=
∂π

∂µ︸︷︷︸
=0

+
∂ψ(µ)

∂µ︸ ︷︷ ︸
≥0

≥ 0 =⇒ µFB ≥ µM .

We now show that µBEH ≥ µM . We will prove this considering three cases for µM .

1. µM = 0; that is the monopolist has a corner solution with zero profit. Then, clearly

µBEH ≥ µM .
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2. µM > 0 such that the monopoly profit is zero (µM = 0 will also be a solution in this case);

then for any µ ∈ (0, µM)∪ (µM , 1], the monopoly profit is negative (given that it is single-

peaked), and so will be for any number of firms with such aggregate µ, which cannot be

a BEH solution. Then, given that P(µ, 1) is increasing for µ ∈ [0, µFB] ⊇ [0, µM ], µBEH

will be equal to µM and not zero.

3. µM > 0 such that the monopoly profit is positive, that is (φ(µM) − c)µM > f ; suppose

by contradiction that µBEH < µM . The pair (µBEH , NBEH) satisfies the two BEH con-

straints: (φ(µBEH) − c)µBEH/NBEH ≥ f ≥ (φ(µBEH) − c)µBEH/(NBEH + 1). Then, if

the right constraint does not bind, by continuity, single-peakedness of monopoly profit

at µM and µBEH < µM there exists ε > 0 small enough such that µBEH + ε ≤ µM

and f > (φ(µBEH + ε) − c)(µBEH + ε)/(NBEH + 1). µBEH + ε ≤ µM guarantees that

(φ(µBEH + ε) − c)(µBEH + ε)/NBEH > f . Thus, the BEH constaints are satisfied at

(µBEH+ε,NBEH) and given that µBEH+ε ≤ µM ≤ µFB and single-peakedness of P(µ) at

µFB, P(µBEH +ε,NBEH) > P(µBEH , NBEH), a contradiction to (µBEH , NBEH) being the

BEH solution. If the right constraint binds, (φ(µBEH)−c)µBEH/NBEH > f = (φ(µBEH)−
c)µBEH/(NBEH + 1) and the planner’s function takes the value P(µBEH , NBEH) =

ψ(µBEH) + f . We can increase NBEH by one and µBEH to µBEH
′
> µBEH such that

(φ(µBEH
′
)− c)µBEH′

/(NBEH + 1) ≥ f ≥ (φ(µBEH
′
)− c)µBEH′

/(NBEH + 2) and the plan-

ner’s function will take the value P(µBEH
′
, NBEH + 1) ≥ ψ(µBEH

′
) + f > ψ(µBEH) + f =

P(µBEH , NBEH), given that ψ(µ)′ > 0 and µBEH
′
> µBEH , a contradiction.

2

Proof of Proposition 6

Let µC(N) denote the total co-location capacity at a symmetric Cournot equilibrium for a

given number of exchanges N . The objective function of a planner that controls entry can be

written as follows:

P(µC(N), N) = Nπi(µ
C(N)) + ψ(µC(N)), (A.50)

where ψ(µC(N)) denotes the welfare of other market participants at the Cournot solution:

ψ(µC(N)) = CESD(µC(N)) + CEL
1 (µC(N)) + CEL

2 (µC(N)).

Consider now the first order condition of the planner, and evaluate it at NCFE:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸
=0

∣∣∣∣
N=NCFE

(A.51)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
<0

∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µC(N))
∂µC(N)

∂N︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣
N=NCFE

.
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The first term on the right hand side of (A.51) is null at NCFE (modulo the integer constraint).

At a stable, symmetric Cournot equilibrium, an increase inN has a negative impact on the profit

of each exchange, and a positive impact on the aggregate technological capacity (see, e.g., Vives

(1999)). Therefore, the second and third terms are respectively negative and positive. Given

our definitions, NCFE is the largest N such that platforms break even. NSTR, instead, reflects

the planner’s choice of N in Cournot equilibria that keep exchanges from making negative

profits and maximizes welfare. Hence, it can only be that

NCFE ≥ NSTR and µCFE ≥ µSTR,

since a planner can decide to restrict entry. At a USTR, the planner can make side payments to

an unprofitable exchange. This has two implications: first, the planner can push entry beyond

the level at which platforms break even, so that

NUSTR ≥ NSTR and µUSTR ≥ µSTR.

Additionally, depending on which of the two terms in (A.51) prevails, we have

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

≷ 0 =⇒ NCFE ≶ NUSTR.

Finally, µC(N) ≥ µM , for N ≥ 1 because at a stable CFE the total capacity is an increasing

function of the number of platforms. A similar argument holds at both the STR and USTR,

since in this case the planner picks N subject to µ being a Cournot equilibrium

We have that PUSTR ≥ PSTR, because STR imposes an additional constraint on the plan-

ner’s objective function compared to STR. Finally, PSTR ≥ PCFE, because CFE does not

account for other traders’ welfare, and the planner may choose to favour these market partici-

pants when at the margin this creates a larger increase in GW (µ). 2

Lemma 2. πM(µFB) ≤ 0 =⇒ πBEH(µBEH) = 0 and the converse is also true generically.

Proof. First we prove the direction =⇒. Since πM(µFB) ≤ 0, then, given that the monopoly

profit is single-peaked, the BEH constraints can only be satisfied for µ ≤ µFB. Note that for a

given (aggregate) µ, the profit (given that it is non-negative) of an exchange is non-increasing

in N , so for a given µ, N = 1 maximizes profit. Then, given that P(µ) is single-peaked at µFB,

it is optimal for µBEH to be set as large as possible with NBEH = 1, so that πBEH(µBEH) = 0.

Next we prove the opposite direction (⇐=) generically by proving the contrapositive. Sup-

pose that at µFB the monopoly profit is positive, that is (φ(µFB)− c)µFB > f , then:

1. If (φ(µFB)−c)µFB/2 ≤ f , then µBEH = µFB, NBEH = NFB = 1 and thus πBEH(µBEH) >

0.

2. If (φ(µFB)− c)µFB/2 > f , then given that from Proposition 5 we know that µBEH ≥ µM ,

and monopoly profit is single peaked at µM (thus, we work in the decreasing part of
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monopoly profit), we only need to examine whether it is optimal to choose NBEH > 1

and/or µBEH > µFB in order to satisfy the right BEH constraint.

(a) Assume that for N > 2, we do not have that (φ(µFB) − c)µFB/N = f . We prove

that it cannot be NBEH > 1 with µBEH ≤ µFB. Suppose by contradiction that

the latter holds. Then with µBEH = µFB, the left BEH constraint cannot bind and

πBEH(µBEH) > 0. If µBEH < µFB, then the left BEH constraint must bind (and the

right not): (φ(µBEH)− c)µBEH/NBEH = f > (φ(µBEH)− c)µBEH/(NBEH + 1). (To

see this, observe that if the left did not bind, we could increase µBEH to bring it closer

to µFB with both constraints still satisfied.) But then consider a new candidate BEH

solution resulting from reducing NBEH by one and increasing µBEH to µBEH
′
>

µBEH . From the previous left BEH constraint we know that the new right BEH

constraint will not bind. Thus, it has to either be that µBEH
′

= µFB, in which case

(µBEH , NBEH) is rejected as a solution and we have a contradiction, or that the new

left BEH constraint will bind—to see the latter, it suffices to observe that if neither

constraint binds and µBEH
′ 6= µFB, there is ε > 0 small enough such that either

µBEH
′
+ ε or µBEH

′− ε increases the planner’s function. In the case that the new left

constraint binds, we have that (φ(µBEH
′
)−c)µBEH′

/(NBEH−1) = f > (φ(µBEH
′
)−

c)µBEH
′
/(NBEH), so µBEH

′
< µFB (consider a similar argument of reducing µBEH

′

by ε to exclude µBEH
′
> µFB). This case also induces P (µBEH

′
, NBEH − 1) >

P (µBEH , NBEH), as µBEH < µBEH
′
< µFB. We conclude that it cannot be that

NBEH > 1 with some µBEH < µFB.

(b) Now consider the case NBEH ≥ 1 with µBEH > µFB. Then the right BEH con-

straint must bind (and the left not): (φ(µBEH)− c)µBEH/NBEH > f = (φ(µBEH)−
c)µBEH/(NBEH + 1). To see this, observe that if the right did not bind, we could

reduce µBEH to bring it closer to µFB with both constraints still satisfied. Thus,

πBEH(µBEH) = (φ(µBEH)− c)µBEH/NBEH − f > 0.

Proof of Proposition 7

Saying that profits are zero at the BEH solution means that the left BEH constraint binds and

µFB ≥ µBEH . We now prove that µBEH ≥ µCFE. Suppose, by contradiction, that µCFE >

µBEH . Supposing that at the Behavioral Second Best exchanges break even, as ψ′(µ) > 0, this

implies that

(φ(µCFE)− c)µCFE < f. (A.52)

However, at a CFE with N > 1 exchanges, we have

(φ(µCFE)− c)µ
CFE

N
= f. (A.53)
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Putting together (A.52) and (A.53) yields

f = (φ(µCFE)− c)µ
CFE

N
< (φ(µCFE)− c)µCFE < f,

which is impossible. Thus, if the monopolist profit is single-peaked we must have µBEH ≥ µCFE.

From Proposition 6 we have µCFE ≥ µSTR. Together with what we have proved above, it

must be that µBEH ≥ µCFE ≥ µSTR. Now, with the zero profit constraint binding for the BEH

solution it must be that NBEH = 1 since profits given µ are decreasing in N . It follows that

P(µBEH) ≥ P(µM) since µFB ≥ µBEH ≥ µM and P is single-peaked at µFB.

2
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B A model with SD at the second round

In this appendix we consider a variation of the model presented in Section 3, in which we

assume that SD enter the market at the second round of the liquidity determination stage of

the game (the proofs of the results involve minor variations from the ones in Appendix A, and

are available upon request). This captures the intuition that through technological services

FD are quicker in accommodating liquidity traders’ demand shocks than SD. In this case, the

market clearing conditions in periods 1 and 2 are given respectively by xL1 + µxFD1 = 0 and

xL2 + µ(xFD2 − xFD1 ) + (1 − µ)xSD2 = 0 (see Figure 7 for the modified timeline). We restrict

attention to linear equilibria where

p1 = −Λ̃1u1 (B.1a)

p2 = −Λ̃2u2 + Λ̃21u1, (B.1b)

where we use ∼ to denote variables related to the model with SD entering at the second round.

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FDs submit
limit order
µxFD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FDs submit
limit order
µxFD2 .

− SDs submit
limit order
(1− µ)xSD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure 7: Timeline in the model where SD enter at the second round.

We obtain the following result:

Proposition 8. For µ ∈ (0, 1], there exists a unique equilibrium in linear strategies in the

stock market where SD enter at the second round. Compared to the baseline case, Λ̃1 > Λ1,

Λ1 < Λ̃2 < Λ2, and |Λ̃21| > |Λ21|.

Thus, SD entry at the second round reduces (increases) the competitive pressure faced

by FD at the first (second) round, explaining the decrease (increase) in first (second) period

liquidity. Comparing dealers’ payoffs across the two models, we find
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Proposition 9. C̃E
FD

> C̃E
SD

, and SD have a higher payoff when entering in the second

round, whereas the result for FD is ambiguous: C̃E
SD

> CESD, and C̃E
FD

≷ CEFD.

As in the baseline model, more access to the liquidity supply market has value for dealers.

In the baseline model, in the first round FD supply liquidity anticipating the possibility to re-

balance their position at the second round. This heightens the competitive pressure they exert

on SD compared to the model studied in this section, explaining why C̃E
SD

> CESD. Con-

versely, the payoff comparison for FD is less clear cut. Indeed, compared to the baseline model,

liquidity is lower (higher) at the first (second) round. We define the demand for technological

services as φ̃(µ) = C̃E
FD − C̃ESD

.

Proposition 10. In the model where SD enter at the second round, φ̃(µ) is decreasing in µ.

Furthermore, numerical simulations show that even in this case, the demand for technolog-

ical services can be log-convex, implying that strategic complementarities in platform capacity

decisions can arise.
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Figure 5: Panels (a) and (c) illustrate two cases in which insufficient entry occurs. In Panel
(b) and (d), entry is always excessive.
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Figure 6: Liquidity impact of a reduction in dealers’ risk tolerance. In panel (a) we plot the
effect of the shock on the demand for technological services; in panel (b) we plot the mitigation
effect in the M case. In panels (c) and (d) we plot the impact on entry and the mitigation effect
in the CFE case. Parameter values: c = 0.002, γorig = 0.5, γL = 0.25, τu = 100, τv = 25.
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