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ABSTRACT

Stock market variance-return or price relations are sometimes negative and sometimes positive.

We explain these puzzling findings using a model with two variances, “bad” and “good”. In the

model, conditional equity premium depends positively on bad variance and negatively on good

variance. Market prices, which correlate negatively with discount rates, decrease with bad variance

and increase with good variance. Because market variance is the sum of bad and good variances,

its relation to conditional equity premium or market prices can be negative or positive, depending

on relative importance of two variances. Our empirical results support model's main implications.
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I. Introduction

In this paper, we address two puzzling asset pricing phenomena. When perceived stock market

variance increases, leading asset pricing models (e.g., Campbell and Cochrane (1999) and Bansal

and Yaron (2004)) predict that (1) scaled stock market prices, e.g., the price-dividend or earnings

ratio, fall because (2) the required equity premium rises. Neither implication is supported by data,

however. Numerous empirical studies have investigated the stock market variance-return relation in

the past four decades and found mixed evidence, ranging from positive to insignificant or negative.

Whitelaw (1994), Ghysels, Guerin, and Marcellino (2014), and others show that the relation is

sometimes positive and sometimes negative. Surprisingly, few extant studies have investigated the

stock market variance-price relation.1 Schwert (1989) is an important exception. He notes that

relations between stock volatility with either dividend or earnings yield are sometimes positive and

sometimes negative (pp. 1134) over the 1859 to 1987 period. As Figure 1 shows, this intriguing

finding is robust in the recent sample. The relation between the stock market variance and the

price-earnings ratio is positive during the dotcom bubble period and is negative during the subprime

mortgage crisis. To the best of our knowledge, no existing asset pricing theories have tried to explain

the two puzzles simultaneously.

Our explanation is that stock market variance have two components that affect the conditional

equity premium and prices in opposite ways. To formally illustrate this conjecture, we develop

a stylized model that features two different risks: Disembodied technological (DT) shocks and

investment-specific technological (IST) shocks. DT shocks are the main driver of economic fluctua-

tions in classical real business cycle models, e.g.,Cooley (1995). Relatively recent studies emphasize

that IST shocks also play a crucial role in explaining business cycles and economic growth. Specif-

ically, Justiniano, Primiceri, and Tambalotti (2010, 2011) and others show that a positive IST

shock increases output but reduces current consumption because households respond to the im-

proved investment opportunities by investing more in physical capital so that they will have even

more consumption in future. In contrast, a positive DT shock increases both output and current

consumption.

We incorporate these stylized facts in a variant of the Bansal and Yaron (2004) long-run risk

model. The risk price is positive for DT shocks because they correlate positively with consumption

growth. The risk price is negative for IST shocks under certain parameterizations because of

their negative correlation with changes in current consumption. Because both DT and IST shocks

correlate positively with output or dividends, stock market returns load positively on DT-related

consumption risk and negatively on IST-related consumption risk. As a result, the conditional

equity premium depends positively on the variance of DT shocks and negatively on the variance of

1Shiller (1981) finds that future dividends account for little variation in stock market prices. The excess volatility
puzzle leads to two competing asset pricing paradigms. Risk-based asset pricing theories argue that the time-
varying conditional equity premium is the main driver of stock market prices, while time-varying investor sentiment
is advocated in behavioral asset pricing theories. It is difficult to obtain direct empirical evidence on behavioral
models because sentiment is hard to quantify. Surprisingly, we also know very little about whether the dividend yield
actually correlates with the risks advocated by risk-based asset pricing models. Shiller's puzzle remains unanswered.

2



IST shocks. DT variance is “bad” because an increase in DT variance raises the conditional equity

premium and hence lowers stock market prices. IST variance is “good” because an increase in IST

variance raises stock market prices by lowering the conditional equity premium.

Stock market variance, which is the sum of both good and bad variances, correlates positively

with the stock market price when it comprises predominantly good variance, as during the dotcom

bubble period. On the other hand, stock market variance correlates negatively with the price when

it comprises predominantly bad variance, as during the subprime mortgage crisis period. As Figure

2 shows, our model implies that the conditional stock market variance is a V-shaped function

of the price-dividend ratio, and thus explains the stock market variance-price puzzle. Similarly,

there is a negative (positive) stock market variance-return relation when market variance comprises

predominantly good (bad) variance. To illustrate this point visually, Figure 3 shows that consistent

with the present-value relation, the conditional equity premium decreases monotonically with the

price-dividend ratio in our model. Figures 2 and 3 together imply that the relation between the

conditional equity premium and market variance can be positive, negative, or insignificant in finite

samples. Our model thus explains the stock market variance-return puzzle.

Good variance is a novel addition to risk-based asset pricing theories, and our model predicts

that we can measure it empirically in two indirect ways. First, stocks with more loadings on

good variance have higher prices, and the value-weighted average stock variance correlates closely

with good variance. Second, in our model the conditional variance of long-term Treasury bonds

is proportional to good variance because IST (DT) shocks have persistent (temporary) effects on

consumption growth. Interestingly, we find that in the US data both measures correlate closely

with the variance of IST shock proxies proposed in existing empirical studies, e.g., Papanikolaou

(2011) and Kogan and Papanikolaou (2013, 2014). These results provide empirical support to

our interpretation that good variance is related to IST shocks. Moreover, all three good variance

measures lend strong empirical support to our model's main implications.

First, while the relation between stock market variance and price is unstable in the univariate

regression, it becomes negative when in conjunction with good variance that correlates positively

with the market price. The two variances account for about 60% variation of some scaled market

price measures. Second, while the stock market variance-return relation is unstable in the univariate

regression, it becomes positive when in conjunction with good variance that correlates negatively

with the conditional equity premium. Third, stock market variance and good variance jointly

forecast stock market returns in sample and out of sample even when we control for commonly

used market return predictors. Fourth, both market variance and good variance affect the risk-

free rate through the precautionary saving effect. Consistent with model calibration, the risk-free

rate correlates negatively with market variance and positively with good variance in multivariate

regressions. This implication provides a potential explanation for high (low) risk-free rates during

the dotcom bubble (subprime mortgage crisis) period. Last but not the least, expected excess

returns on individual stocks are linear functions of market variance and good variance, and loadings

on these variances explain the cross-section of expected excess stock returns.
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Using a general equilibrium model, Papanikolaou (2011) shows IST shocks have a negative

risk price because a positive IST shock reduces current consumption. Kogan and Papanikolaou

(2013, 2014) use these implications to explain the cross-section of expected stock returns. By

contrast, Garlappi and Song (2017) argue that under some alternative assumptions a positive IST

shock increases current consumption and thus has a positive risk price. The empirical evidence

is also mixed. Papanikolaou (2011) and Kogan and Papanikolaou (2013, 2014), and Dissanayake,

Watanabe, and Watanabe (2017) find IST shocks have a negative risk price in the post-1960 sample,

while Garlappi and Song (2016) document a positive risk price using the long sample starting from

1930. We contribute to this growing literature by allowing for heteroscedastic DT and IST shocks

and focus on their effects on the conditional equity premium.

Cochrane (2011) highlights that discount-rate variation is the central organizing question of

current asset-pricing research. We shed new light on this literature in three important ways. First,

while stock market variance is the sole determinant of the conditional equity premium in leading

asset pricing models, we advocate for a two-factor model of the conditional equity premium. Second,

Goyal and Welch (2008) have cast doubts on market return predictability because commonly used

predictors have weak out of sample forecasting power. By contrast, our theoretically motivated

direct risk measures, stock market variance and good variance, jointly forecast market returns in

sample and out of sample. Last, using variances of cross-sectional risk factors to forecast market

returns and using loadings on these variances to explain the cross-section of stock returns, we

establish an explicit link between time-series and cross-sectional stock return predictability.

Guo (2004) argues that stock market variance is a U-shaped function of the stock market price

using a limited stock market participation model. In Guo's model, shareholder's liquidity condition

is the main driver of financial market dynamics because of occasionally binding constraints on risk

sharing between shareholders and non-shareholders. While positive (negative) shocks to sharehold-

ers' liquidity conditions increase (decrease) stock market prices, both types of shocks increase stock

market variance. For example, the subprime mortgage crisis arguably originated from negative liq-

uidity shocks that raise stock market variance and depress stock market prices (e.g., Brunnermeier

and Pedersen (2009) and He and Krishnamurthy (2013)). Similarly, the dotcom bubble may be

the ramification of positive liquidity shocks. Justiniano et al. (2011) find that financial market fric-

tions are an important source of IST shocks through their effects on the cost of capital. Therefore,

good and bad variances may be associated with positive and negative liquidity shocks, respectively.

This interpretation is also consistent with Ludvigson, Ma, and Ng (2017)'s empirical findings that

financial market uncertainty has a causal effect on real economy. Nevertheless, Guo (2004) does

not provide a formal decomposition of stock market variance into good and bad variances and the

associated asset pricing implications.2

Segal, Shaliastovich, and Yaron (2015) also consider a variant of the long-run risk model in which

good (bad) variance correlates positively (negatively) with the stock market price.3 Their economic

2Kogan, Papanikolaou, and Stoffman (2018) propose a general equilibrium model that features both IST shocks
and limited stock market participation.

3Their model setup is similar to that adopted in Bekaert and Engstrom (2017), who focus mainly on the relation
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interpretation of good and bad variances is distinct from ours, however. Segal et al. (2015) argue

that good (bad) variance is associated with positive (negative) economic growth shocks. Their

economic mechanism is also different. The conditional equity premium depends positively on both

good and bad variances in the Segal et al. (2015) model. As a result, there is a positive stock

market variance-return relation and the direct impact of both good and bad variances on the stock

market price is negative. The relation between good variance and the stock market price is positive

because Segal et al. (2015) impose a positive relation between good variance and expected long-run

economic growth. That is, Segal et al. (2015) use the interplay between cash flows and variances to

explain the unstable stock market variance-price relation, while we emphasize the interplay between

the conditional equity premium or discount rates and variances.

The rest of the paper is organized as follows. We develop the theoretical model in Section II.

We present simulation results to illustrate the model's main implications in Section III. We discuss

the data in Section IV. We provide empirical evidence of the model's main implications in Section

V. We offer some concluding remarks in Section VI.

II. The Model

A. Preference and Aggregate Consumption Dynamics

The representative agent has the Epstein and Zin (1989) recursive utility function:

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
Et[U1−γ

t ]
) 1
θ

] θ
1−γ

,

where 0 < δ < 1 is the time discount factor, γ > 0 is the relative risk aversion, ψ is the elasticity

of intertemporal substitution or EIS, and θ = 1−γ
1− 1

ψ

.

Aggregate consumption dynamics are as follows

∆ct+1 = µc + xt + σg,tηt+1 − ψxσx,tet+1,

xt+1 = ρxt + ϕeσx,tet+1,

σ2
g,t+1 = σ2

g + vg(σ
2
g,t − σ2

g) + σ1z1,t+1,

σ2
x,t+1 = σ2

x + vx(σ2
x,t − σ2

x) + σ2z1,t+1 + σ3z2,t+1.

(1)

∆ct+1 is the log consumption growth rate with the unconditional mean µc. xt is the expected

log consumption growth rate or a measure of long-run consumption growth that has zero mean

and follows a persistent AR(1) process. Empirical studies, e.g., Greenwood, Hercowitz, and Krusell

(1997) and Fisher (2006), argue that IST shocks are an important determinant of long-run economic

growth. We interpret et+1, the innovation in xt+1, as the IST shock and conduct empirical tests of

between options prices and skewness of consumption growth. Zhou and Zhu (2015) consider a variant of the long-
run risk model with a short-run variance and a long-run variance. Their motivation and empirical implications are
different from those of our model, however.
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the model implications using proxies of IST shocks. A positive IST shock increases expected con-

sumption growth or ϕe > 0. In our model, a positive IST shock also reduces the contemporaneous

consumption, i.e., ψx > 0. This is because a positive IST shock improves investment opportu-

nities and prompts householders to save and invest more in physical capital by reducing current

consumption in exchange for even more future consumption.

The positive relation between IST shocks and long-run consumption growth and the negative

relation between IST shocks and contemporaneous consumption growth are consistent with the

theoretical implications and empirical findings in Justiniano et al. (2010, 2011) and Papanikolaou

(2011). Khan and Tsoukalas (2011), Furlanetto and Seneca (2014), and Garlappi and Song (2017),

however, argue that under some alternative assumptions a positive IST shock increases both the

current and future consumption. In that case, ψx is negative. We shed new light on this debate by

investigating empirical whether IST shocks are positively or negatively price in the stock market.

Following Papanikolaou (2011) and Kogan and Papanikolaou (2013, 2014), we interpret ηt+1 as

a DT shock that affects only the contemporaneous consumption. Of course, it may capture other

shocks that have only short-term effects on consumption. σg,t and σx,t are the conditional variances

of DT shocks and IST shocks, respectively. Both σg,t and σx,t follow persistent AR(1) processes with

the unconditional means σ2
g and σ2

x and with homoscedastic shocks z1,t+1 and z2,t+1, respectively.

The term σ2z1,t+1 captures the potential correlation between σg,t and σx,t. The shocks, ηt+1, et+1,

z1,t+1, and z2,t+1 have i.i.d. standard normal distributions.

B. Pricing kernel

Using a log-linear approximation of Campbell and Shiller (1988), we can write the log return

on the claim to aggregate consumption as

ra,t+1 = ln
Pt+1 + Ct+1

Pt
= ln

Pt+1 + Ct+1

Ct+1
− ln

Pt
Ct

+ ln
Ct+1

Ct
= k0 + k1zt+1 − zt + ∆ct+1, (2)

where zt = ln Pt
Ct

, z̄ = E[zt], k1 =
ez̄

ez̄ + 1
< 1, and k0 = ln(ez̄ + 1)− z̄ez̄

ez̄ + 1
. From Epstein and Zin

(1989), the log pricing kernel is

mt+1 = lnMt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1. (3)

The Euler equation for return on any asset, Ri,t+1, is Et[Mt+1Ri,t+1] = 1. Log-linearizing the Euler

equation, we have

Et
[

exp
(
θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1 + ri,t+1

)]
= 1. (4)
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The Euler equation holds for ra,t+1:

Et
[

exp
(
θ ln δ − θ

ψ
∆ct+1 + θra,t+1

)]
= 1. (5)

We conjecture that the log price-consumption ratio is a linear function of state variables:

zt = A0 +A1σ
2
g,t +A2σ

2
x,t +A3xt. (6)

where A0, A1, A2, A3 are coefficients to be determined. Appendix A.A shows that these coefficients

are functions of model's parameters:

A0 =
1

1− k1

[
ln δ + k0 + (1− 1

ψ
)µc +

1

2
θk2

1(A1σ1 +A2σ2)2 +
1

2
θk2

1A
2
2σ

2
3

+k1A1σ
2
g(1− vg) + k1A2σ

2
x(1− vx)

]
,

A1 =
(1− γ)2

2θ(1− k1vg)
,

A2 =
[θk1A3ϕe + (γ − 1)ψx]2

2θ(1− k1vx)
,

A3 =
1− 1

ψ

1− k1ρ
.

Combining equations (2), (3), and (6), we rewrite the log pricing kernel as

mt+1 = c2 + [A3(θ − 1)(ρk1 − 1)− γ]xt + (θ − 1)(k1vg − 1)A1σ
2
g,t

+(θ − 1)(k1vx − 1)A2σ
2
x,t + k1(θ − 1)(A1σ1 +A2σ2)z1,t+1

+k1(θ − 1)A2σ3z2,t+1 + [(θ − 1)k1A3ϕe + γψx]σx,tet+1 − γσg,tηt+1, (7)

where c1 = k0 +(k1−1)A0 +k1A1σ
2
g(1−vg)+k1A2σ

2
x(1−vx)+µc, and c2 = θ ln δ− θ

ψµc+(θ−1)c1.

The shock to the log pricing kernel is

mt+1 − Et[mt+1] = k1(θ − 1)(A1σ1 +A2σ2)z1,t+1 + k1(θ − 1)A2σ3z2,t+1

+[γψx + k1ϕe

1
ψ − γ

1− k1ρ
]σx,tet+1 − γσg,tηt+1. (8)

The risk price of IST shocks, −γψx − k1ϕe
1
ψ
−γ

1−k1ρ , has two components. The first component −γψx
reflects the concern about current consumption. It is negative because a positive IST shock lowers

the current consumption. The second component −k1ϕe
1
ψ
−γ

1−k1ρ captures the concern about future

consumption because a positive IST shock increases expected future consumption. Its sign depends

on the relative risk aversion γ and the elasticity of intertemporal substitution ψ. It is positive if

γ > 1
ψ or households prefer early resolution of uncertainty and is negative if γ < 1

ψ or households

prefer late resolution of uncertainty. We follow Bansal and Yaron (2004) and assume γ > 1
ψ ; the
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price of IST shocks is negative in our calibration because the first component dominates the second

component in magnitude. The price of DT shocks, γ, is unambiguously positive.

C. Stock Market Returns

The dividend growth rate of the stock market portfolio is

∆dt+1 = µd + φxt + πησg,tηt+1 + πeσx,tet+1. (9)

The log dividend growth rate, ∆dt+1, depends positively on xt. It also depends positively on DT

and IST shocks because they both improve productivity and thus increase output and dividends.

For example, Kogan and Papanikolaou (2014) argue that a positive DT shock and a positive IST

shock increase the profitability of consumption-goods producers and investment goods producers,

respectively. Below, we outline the main results for stock market returns, and provide detailed

derivations in Appendix A.C.

Log-linearizing the stock market return, we have

rm,t+1 = ln
Pm,t+1 +Dt+1

Pm,t
= ln

Pm,t+1 +Dt+1

Dt+1
− ln

Pm,t
Dt

+ ln
Dt+1

Dt

= k0,m + k1,mzm,t+1 − zm,t + ∆dt+1, (10)

where zm,t = ln
Pm,t
Dt

, z̄m = E[zm,t] and

k1,m =
ez̄m

ez̄m + 1
< 1, k0,m = ln(ez̄m + 1)− z̄me

z̄m

ez̄m + 1
.

The log stock market price-dividend ratio is a linear function of state variables:

zm,t = A0,m +A1,mσ
2
g,t +A2,mσ

2
x,t +A3,mxt, (11)

where A0,m, A1,m, A2,m, A3,m are coefficients to be determined:

A0,m =
1

1− k1,m

[
c2 + k0,m + k1,mA1,mσ

2
g(1− vg) + k1,mA2,mσ

2
x(1− vx) + µd +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,m(A1,mσ1 +A2,mσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,mA2,m]2σ2

3

]
,

A1,m =
(γ − 1

ψ )(1− γ) + (πη − γ)2

2(1− k1,mvg)
,

A2,m =
1

1− k1,mvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,mA3,mϕe + πe)

2
]
,

A3,m =
φ− 1

ψ

1− k1,mρ
.
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Combining equations (10) and (11), we rewrite the log market return as

rm,t+1 = c3 + (k1,mvg − 1)A1,mσ
2
g,t + (k1,mvx − 1)A2,mσ

2
x,t + (k1,mA3,mρ−A3,m + φ)xt

+(k1,mA1,mσ1 + k1,mA2,mσ2)z1,t+1 + k1,mA2,mσ3z2,t+1

+(k1,mA3,mϕe + πe)σx,tet+1 + πησg,tηt+1, (12)

where c3 = k0,m + (k1,m − 1)A0,m + k1,mA1,mσ
2
g(1− vg) + k1,mA2,mσ

2
x(1− vx) + µd.

The conditional variance of the log market return in equation (12) is

σ2
m,t = c4 + (k1,mA3,mϕe + πe)

2σ2
x,t + π2

ησ
2
g,t, (13)

where c4 = k2
1,m(A1,mσ1 + A2,mσ2)2 + k2

1,mA
2
2,mσ

2
3. Equation (13) shows that market variance is a

linear function of DT variance and IST variance. Because market variance and IST variance are

more reliably available in data than DT variance, we use equation (13) to substitute DT variance

out by market variance in our model's main implications.

Combining equations (11) and (13) we have

zm,t = A0,m −
A1,m

π2
η

c4 + aσ2
m,t + bσ2

x,t +A3,mxt, (14)

where a =
A1,m

π2
η

and b = A2,m − A1,m

π2
η

(k1,mA3,mϕe + πe)
2. In equation (14), the log stock market

price-dividend ratio is a linear function of stock market variance, IST variance, and the expected

consumption growth rate. The coefficient on market variance,
A1,m

π2
η

, has the same sign as the

coefficient on DT variance in equation (11). Intuitively, because market variance is a linear function

of DT and IST variances, it is a proxy for DT variance when we control for its correlation with IST

variance.

Using the Euler equation Et[Mt+1Rm,t+1] = 1, we derive the conditional equity premium

Et[rm,t+1 − rft ] = −c5 −
1

2
σ2
m,t + γπησ

2
g,t

−[(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe)σ
2
x,t. (15)

In equation (15), −1
2σ

2
m,t is the Jensen's inequality adjustment term. The coefficient γπη is positive

or the conditional equity premium depends positively on σ2
g,t. As we mentioned above, −[(θ −

1)k1A3ϕe + γψx] is the risk price of IST shocks in equation (8). (k1,mA3,mϕe + πe) is positive if

A3,m > 0 or φ > 1
ψ . If the risk price of IST shocks is negative and φ > 1

ψ , the conditional equity

premium depends negatively on σ2
x,t. That is, under certain parameterizations, variances of DT

shocks and IST shocks have opposite effects on the conditional equity premium. Specifically, an

increase in σ2
g,t (σ2

x,t) increases (decreases) the conditional equity premium.

The present-value relation implies a mechanical link between the stock price and the discount

rate. In particular, the coefficient on bad variance, A1,m, in equation (11) is negative and decrease
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with γπη, the coefficient on σ2
g,t in equation (15), when γ is relatively large.4 Intuitively, an increase

in σ2
g,t raises the conditional equity premium and thus lowers the stock market price. In a similar

vein, the coefficient A2,m in equation (11) is positive if the coefficient on σ2
x,t in equation (15),

−[(θ− 1)k1A3ϕe + γψx](k1,mA3,mϕe +πe), is negative and large in magnitude. That is, an increase

in σ2
x,t lowers the conditional equity premium and thus raises the stock market price. To highlight

their different effects on stock market prices, we dubs σ2
g,t bad variance and σ2

x,t good variance.

Combining equation (13) and equation (15), we can rewrite the conditional equity premium as

a linear function of market variance and good variance

Et[rm,t+1 − rft ] = c6 + ασ2
m,t + βσ2

x,t, (16)

where

c5 = k1k1,m(θ − 1)(A1σ1 +A2σ2)(A1,mσ1 +A2,mσ2) + (θ − 1)k1k1,mA2,mA2σ
2

3,

c6 = −c5 −
γ

πη
c4,

α = −1

2
+

γ

πη
,

β = −[(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe)−
γ

πη
(k1,mA3,mϕe + πe)

2.

The coefficient on market variance is identical to the coefficient on bad variance in equation (15)

except for the Jensen's inequality adjustment term −1
2σ

2
m,t. β is negative if the coefficient on good

variance in equation (15) is negative.

D. The Risk-Free Rate

Using the Euler equation Et[Mt+1R
f
t ] = 1, we have the risk-free rate

rft = −Et[mt+1]− 1

2
Vart[mt+1]

= c7 +
1

ψ
xt + cσ2

g,t + dσ2
x,t

= c7 −
cc4

π2
η

+
1

ψ
xt +

c

π2
η

σ2
m,t + [d− c

π2
η

(k1,mA3,mϕe + πe)
2]σ2

x,t, (17)

where

c7 = −c2 −
1

2
k2

1(θ − 1)2[(A1σ1 +A2σ2)2 +A2
2σ

2
3],

c = −1

2
[γ +

γ

ψ
− 1

ψ
],

d = −[(θ − 1)(k1vx − 1)A2 +
1

2
((θ − 1)k1A3ϕe + γψx)2].

4For example, for ψ = 1.5 as in the calibration, A1,m is negative and decrease with γπη when πη ≤ 4 and γ ≥ 3.
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Note in the last line of equation (17), we use equation (13) to substitute out σ2
g,t by σ2

m,t. The

risk-free rate depends on good and bad variances because of the precautionary saving effect. In our

model, good variance and bad variance have different effects on the risk-free rate.

E. Individual Stock or Portfolio Returns

In this subsection, we present the main results for individual stock or portfolio returns and

provide detailed deviations in Appendix A.D. In our model, a stock differs from the market portfolio

in two ways. First, it has different loadings on systemic risks. Second, it has idiosyncratic risk.

Specifically, the dividend growth rate of stock p is

∆dp,t+1 = µd + φpxt + πη,pσg,tηt+1 + πe,pσx,tet+1 + πpzp,t+1, (18)

where zp,t+1 is an i.i.d. homoscedastic idiosyncratic shock.

Using the log-linear approximation for the portfolio return, we have

rp,t+1 = ln
Pp,t+1 +Dp,t+1

Pp,t
= k0,p + k1,pzt+1 − zp,t + ∆dp,t+1, (19)

where zp,t = ln
Pp,t
Dp,t

, z̄p = E[zp,t] and

k1,p =
ez̄p

ez̄p + 1
< 1, k0,p = ln(ez̄p + 1)− z̄pe

z̄p

ez̄p + 1
.

The log price-dividend ratio is

zp,t = A0,p +A1,pσ
2
g,t +A2,pσ

2
x,t +A3,pxt, (20)

where A0,p, A1,p, A2,p, A3,p are constants to be determined:

A0,p =
1

1− k1,p

[
c2 + k0,p + k1,mA1,pσ

2
g(1− vg) + k1,pA2,pσ

2
x(1− vx) + µd +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,p(A1,pσ1 +A2,pσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,pA2,p]

2σ2
3 +

1

2
π2
]
,

A1,p =
(γ − 1

ψ )(1− γ) + (πη,p − γ)2

2(1− k1,pvg)
,

A2,p =
1

1− k1,pvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe + πe,p)

2
]
,

A3,p =
φp − 1

ψ

1− k1,pρ
.

11



The conditional variance of the stock return is

σ2
p,t = c4,p + (k1,pA3,pϕe + πe,p)

2σ2
x,t + π2

η,pσ
2
g,t, (21)

where c4,p = k2
1,p(A1,pσ1 +A2,pσ2)2 + k2

1,pA
2
2,pσ

2
3 + π2

p.

The stock risk premium is

Et[rp,t+1 − rft ] = −1

2
σ2
p,t − Covt[mt+1, rp,t+1]

= −c5,p −
1

2
c4,p −

1

2
σ2
p,t + γπη,pσ

2
g,t

−[(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)σ
2
x,t, (22)

where c5,p = k1k1,p(θ−1)(A1σ1+A2σ2)(A1,pσ1+A2,pσ2)+(θ−1)k1k1,pA2,pA2σ
2

3. In equation (22), the

stock risk premium increases with πη,p, the loading of stock p on DT shocks. If [(θ−1)k1A3ϕe+γψx]

is positive, the risk premium decreases with πe,p, the stock loading on IST shocks. In a similar

vein, in equation (20), the coefficient A1,p decreases with πη,p when πη,p < γ, indicating that

stocks with high loadings on DT shocks have low prices. The coefficient A2,p increases with πe,p

if [(θ − 1)k1A3ϕe + γψx] is positive and φp >
1
ψ , indicating that stocks with high loadings on IST

shocks have high prices.

Combining equations (21) and (22), we can rewrite the stock risk premium as a linear function

of good and bad variances:

Et[rp,t+1 − rft ] = −c5,p −
1

2
c4,p −

1

2
(k1,pA3,pϕe + πe,p)

2σ2
x,t + [γπη,p −

1

2
π2
η,p]σ

2
g,t

−[(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)σ
2
x,t. (23)

Combining equations (13) and (23), we can rewrite the risk premium as a linear function of

market variance and good variance:

Et[rp,t+1 − rft ] = c6,p + αpσ
2
m,t + βpσ

2
x,t, (24)

where

c6,p = −c5,p −
1

2
c4,p −

γπη,p − 1
2π

2
η,p

π2
η

c4,

αp =
γπη,p − 1

2π
2
η,p

π2
η

,

βp = −[(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)−
γπη,p − 1

2π
2
η,p

π2
η

(k1,mA3,mϕe + πe)
2

−1

2
(k1,pA3,pϕe + πe,p)

2.

The coefficient on market variance in equation (24) has the same sign as the coefficient on bad

12



variance in equation (23).

F. Long-Term Real Treasury Bonds and Good Variance

In our model, the long-term real Treasury bond is affected by IST shocks but not DT shocks.

As a result, its conditional variance is a linear function of good variance. We illustrate this point

using a perpetual bond that pays $1 every period. Using the approximation method in Campbell

and Shiller (1988), we have the log bond return

rb,t+1 = ln
Pb,t+1 + 1

Pb,t
= k0,b + k1,bzb,t+1 − zb,t, (25)

where Pb,t is the bond price, zb,t = lnPb,t, z̄b = E[zb,t], k1,b =
ez̄b

ez̄b + 1
< 1, and k0,b = ln(ez̄b + 1)−

z̄be
z̄b

ez̄b + 1
. The log bond price is a linear function of state variables:

zb,t = A0,b +A1,bσ
2
g,t +A2,bσ

2
x,t +A3,bxt, (26)

where A0,b, A1,b, A2,b, A3,b are constants to be determined:

A0,b =
1

1− k1,p

[
c2 + k0,p + k1,mA1,pσ

2
g(1− vg) + k1,pA2,pσ

2
x(1− vx) +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,p(A1,pσ1 +A2,pσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,pA2,p]

2σ2
3

]
,

A1,b =
(θ − 1)(k1vg − 1)A1 + 1

2γ
2

1− k1,pvg
=

(γ − 1
ψ )(1− γ) + γ2

2(1− k1,pvg)
,

A2,b =
1

1− k1,pvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe)

2
]

=
1

1− k1,pvx

[1− θ
2θ

(θk1A3ϕe + (γ − 1)ψx)2 +
1

2
((θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe)

2
]
,

A3,b =
A3(θ − 1)(ρk1 − 1)− γ

1− k1,pρ
=

− 1
ψ

1− k1,pρ
.

Combining equations (25) and (26), we have

rb,t+1 = c3,b + (k1,bvg − 1)A1,bσ
2
g,t + (k1,bvx − 1)A2,bσ

2
x,t + (k1,bA3,bρ−A3,b)xt

+(k1,bA1,bσ1 + k1,bA2,bσ2)z1,t+1 + k1,bA2,bσ3z2,t+1 + k1,bA3,bϕeσx,tet+1,

where c3,b = k0,b+(k1,b−1)A0,b+k1,bA1,bσ
2
g(1−vg)+k1,bA2,bσ

2
x(1−vx). Therefore, the conditional
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bond variance is a linear function of good variance:

V art[rb,t+1] = c4,b + (k1,bA3,bϕe)
2σ2
x,t, (27)

where c4,b = k2
1,b(A1,bσ1 +A2,bσ2)2 + k2

1,bA
2
2,bσ

2
3.

G. Model 's Main Implications

Stock market variance has two time-varying components, good (IST) variance and bad (DT)

variance; and the two variances have opposite effects on the conditional equity premium and the

stock market price under certain parameterizations. This feature has several novel implications for

understanding dynamics of the stock market price and variance.

First, the stock market variance-price relation is unstable because in equation (11) the stock

market price-dividend ratio depends negatively on bad variance, i.e., A1,m < 0, and positively

on good variance, i.e., A2,m > 0. The relation is negative when stock market variance comprises

predominantly of bad variance, and is positive when good variance is the dominant component.

The stock-market variance-price relation is sometimes positive, sometimes negative, and sometimes

insignificant. However, equation (14) shows that the partial relation between the stock market

price-dividend ratio and variance is negative, i.e., a =
A1,m

π2
η
< 0, when we control for the effect of

good variance on the stock market price. In addition, the partial relation between the stock market

price-dividend ratio and good variance is positive when we control for market variance.

Second,the stock market variance-return relation is unstable because in equation (15) the con-

ditional equity premium correlates positively with bad variance, i.e., γπη > 0, and negatively with

good variance, i.e., −[(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe) < 0. The relation is positive when

stock market variance comprises predominantly of bad variance, and is negative when good variance

is the dominant component. The stock-market variance-return relation is sometimes positive, some-

times negative, and sometimes insignificant. However, equation (16) shows that the partial relation

between the conditional equity premium and market variance is positive, i.e., α = −1
2 + γ

πη
> 0,

when we control for the effect of good variance on the conditional equity premium. In addition, the

partial relation between the conditional equity premium and good variance is negative. Moreover,

equation (16) shows that stock market variance and good variance jointly forecast excess stock

market returns because they capture dynamics of the conditional equity premium.

Third, equation (17) shows that both σ2
m,t and σ2

x,t are important determinants of the risk-free

rate.

Fourth, the model suggests that we can measure good variance in two ways. First, equation

(27) shows that conditional variance of long-term real Treasury bonds is a linear function of good

variance. Second, for a stock with high πe,p, the loading on IST shocks, it has high price (equation

(20)) and its variance has a close correlation with σ2
x,t (equation (21)). Therefore, a price- or

value-weighted average stock variance is a proxy for σ2
x,t.
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Last, taking the unconditional expectation of equation (23), we have

E[rp,t+1 − rft ] = c6,p + αpE[σ2
m,t] + βpE[σ2

x,t]. (28)

Equation (28) shows that loadings αp and βp help explain the cross-section of stock returns. In the

next section, we illustrate these implications using simulated data.

III. Model Simulation

A. Calibration

Table I reports the parameter values that we choose for the model at the monthly frequency.

For comparison, most parameter values are identical to those adopted in Bansal, Kiku, and Yaron

(2012) (BKY thereafter) when applicable with following noticeable exceptions. First, ψx is a new

parameter in our model. It equals 0.0389 or a one standard deviation increase in IST shocks

reduces the contemporaneous consumption by E[ψxσx,t] = 0.0389 ∗ 0.006 ∗
√

12 = 0.08% per year.

The effect is similar to the point estimate of about 0.10% in a year reported in Figure 3 of Justiniano

et al. (2010).5 This parameter value is sufficient to generate a negative risk price for IST shocks,

−γψx − k1ϕe
1
ψ
−γ

1−k1ρ , which decreases with ψx.

Second, πe, another new parameter capturing the effect of IST shocks on the dividend growth

rate, equals 3. One standard deviation increase in IST shocks increases the contemporaneous

dividend by E[πeσx,t] = 3∗0.006∗
√

12 = 6.24% per year. When we take into account that dividend

is levered, this parameter value is consistent with the point estimate of about 2.2% increase in

output in a year following one standard deviation increase in IST shocks reported in Figure 3 of

Justiniano et al. (2010).

Third, IST shocks have opposite effects on consumption and dividend and thus dampen the

positive correlation between these two variables caused by DT shocks. As a result, we do not need

an idiosyncratic shock in aggregate dividend assumed by BKY to match the correlation between

consumption and dividend in data.

Fourth, the unconditional volatility is 0.006 for IST shocks, σx, and is 0.0015 for DT shocks,

σg. This calibration is consistent with the empirical finding by Justiniano et al. (2011) that IST

shocks are more volatile than DT shocks.

Fifth, the volatility of volatility (σ1 and σ3) is 0.000006, compared with 0.0000028 in BKY.

Because good variance and bad variance have opposite effects on the equity premium, using BKY's

volatility of volatility calibration generates a somewhat lower equity premium, although it does not

affect our main results qualitatively.

Sixth, because IST shocks affect the dividend growth process directly, we adopt a smaller value

for πη (2.2 in our model versus 2.6 in BKY) and a smaller value for φ (2.2 in our model versus 2.5

5Justiniano et al. (2010) report the effect using quarterly data and we convert it into annual data by multiplying
it by 2.
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in BKY) so that the volatility of the dividend growth rate in simulated data does not exceed that

in actual data.

Last, BKY consider only one variance process, and we assume that good variance and bad

variance follow different stochastic processes. For simplicity, we assume that the two variances are

uncorrelated by setting the parameter σ2 to zero.

B. Aggregate Quantities and Asset Prices

In Table II, we report the summary statistics of the consumption growth rate, the dividend

growth rate, stock market returns, the stock market price-dividend ratio, and the risk-free rate in

annual frequency. The column under the title “Data” reproduces the BKY estimation from the

actual data spanning the 1930 to 2008 period with 79 annual observations. For each simulation,

we generate 1,948 monthly observations, discard the first 1,000 observations, and convert the re-

maining 948 observations into 79 annual observations. We conduct 10,000 simulations and report

the distribution of the summary statistics in columns under the title “Model”. The column “Pop”

reports the summary statistics from the simulation of 100,000 annual observations.

Beeler and Campbell (2012) emphasize that consumption follows a mean-reverting process in

the data. The third- to fifth-order autocorrelations of consumption growth are negative. While the

first-order autocorrelation coefficient is 0.45, it may be partly accounted for by the time-aggregation

bias pointed out by Working (1960) that the annual autocorrelation with i.i.d. growth rates would

be 0.25. Overall, as we reproduce in Table II, Beeler and Campbell (2012) report that the variance

ratio of 6-year consumption growth to 1-year consumption growth is 0.84. Because a positive

IST shock decreases concurrent consumption growth and increases future consumption growth,

our model does imply negative autocorrelations in consumption growth. Taken into account of

the positive time-aggregation bias in the first-order autocorrelation, we show in Table II that key

statistics of consumption data are within the 95% interval of simulated data.

The model also does a good job in matching main properties of dividends, stock market returns

and prices, and the risk-free rate. Their summary statistics from the data are within the 95 percent

interval of simulated data except that as in BKY, the standard deviations of the risk-free rate and

the log price-dividend ratio are somewhat smaller in simulated data than in the actual data.

C. Stock Market Variance-Price Relation

This subsection illustrates the model's implication for the relation between stock market vari-

ance and the log stock market price-dividend ratio. For comparison with empirical findings that are

based on the quarterly sample spanning the 1963Q1 to 2016Q4 period, we use 216 quarterly obser-

vations in each simulated sample. Specifically, we generate a monthly sample of 1,648 observations,

discard the first 1,000 observations, and convert the remaining into 216 quarterly observations. We

generate 10,000 simulated samples and report their distributions in Table III. The column “Pop”

reports the results obtained from 100,000 simulated quarterly observations.
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In Panel A of Table III, we report the ordinary least squares (OLS) estimation results of re-

gressing the log stock market price-dividend ratio on a constant and concurrent conditional stock

market variance. Leading asset pricing models stipulate a negative variance-price relation, and we

sort the coefficient on stock market variance and its t-value from high to low. The R2 is sorted

from low to high. The simulation results illustrate that the univariate stock market variance-price

relation is unstable in our model. The coefficient is positive in over 30% of simulated samples, while

the median coefficient is negative. In addition, the median t-value and the median R2 are -0.587

and 12.87%, respectively, indicating that on average the variance-price relation is weak.

In our model, the stock market variance-price relation is sometimes negative because the stock

market price-dividend ratio depends negatively on bad variance. The relation is sometimes posi-

tive because as we show in Panel B of Table III, the stock market price-dividend ratio correlates

positively with good variance. That is, because stock market variance is the sum of bad and good

variances, the relation between stock market variance and price depends on the relative importance

of good and bad variances. When stock market variance comprises predominantly of bad variance,

the stock market price is relatively low and decreases with stock market variance. When good

variance is the dominant component, the stock market price is relatively high and increases with

stock market variance. We illustrate these points formally in Figure 2, in which conditional market

variance is a V-shaped function of the stock market price-dividend ratio.

In Equation (14), the stock market price-dividend ratio is a linear function of stock market

variance, good variance, and expected dividend growth. In particular, the coefficient on stock

market variance is negative when we control for good variance that has a positive effect on the

stock market price. To illustrate this point, in Panel C of Table III, we report the OLS estimation

results of regressing the stock market price-dividend ratio on stock market variance and good

variance. The coefficient on stock market variance is always negative and the coefficient on good

variance is always positive. In addition, the R2 is close to 100%, indicating that expected dividend

growth has negligible explanatory power for stock market prices in our calibration. This result

also suggests time-varying conditional equity premium, which is a linear function of stock market

variance good variance, accounts for most stock market price variation in the model. Specifically,

Figure 3 shows that conditional equity premium decreases monotonically with the stock market

price-dividend ratio. Therefore, as we discuss in the next subsection, the unstable stock market

variance-price relation reflects the unstable stock market variance-return relation.

D. Stock Market Variance-Return Relation

Our model implies an unstable relation between conditional stock market variance and condi-

tional equity premium. Conditional equity premium depends positively (negatively) on bad (good)

variance. When stock market variance comprises primarily bad (good) variance, stock market prices

are low (high) and the variance-return relation is positive (negative). We can illustrate these results

using two figures. Figure 3 shows that conditional equity premium decreases monotonically with the

stock market price-dividend ratio, while stock market variance is a V-shaped function of the price-
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dividend ratio in Figure 2. Therefore, our model suggests that the stock market variance-return

relation is positive (negative) when stock market prices are low (high).

In the empirical analysis, we often use realized equity premium as a proxy for conditional

equity premium. Following this specification, we use the expected market variance σ2
m,t based

on information at time t to forecast the time t + 1 excess market return rm,t+1 using simulated

data, and report the OLS regression results in Panel A of Table IV. The coefficient on conditional

market variance, VMKT, is negative in over 30% of simulated samples but has a positive median,

indicating an unstable stock market variance-return relation. In panel B, we report the OLS

regression results of forecasting one-quarter-ahead excess stock market returns using conditional

good variance, VG. The coefficient on VG is positive in about 30% of simulated samples, while its

median is negative. In Panel C, we include both stock market variance and good variance as the

predictive variables. The coefficient on market variance (good variance) is positive (negative) in

most simulated samples. In addition, the coefficients, t-values, and R2 are substantially larger in

magnitude than their univariate regression counterparts reported in panels A and B. The difference

reflects an omitted variables problem. In simulated data, the median correlation coefficient between

market variance and good variance is 87%, although they have opposite effects on future market

returns. As a result, in the univariate regressions, the estimated coefficient on the market variance

(good variance) is biased downward (upward) toward zero.

There is a strong correlation between the stock market price-dividend ratio and conditional

equity premium in our calibration. The results in Table III essentially illustrate the stock market

variance-return relation using ex-ante equity premium measure. Noticeably, ex-ante equity pre-

mium measure allows us to estimate the stock market variance-return relation more precisely than

does ex-post equity premium measure used in Table IV. That is, using scaled stock market prices

provides a more powerful test of the stock market risk-return tradeoff than using realized excess

market returns. The reason is that, as Elton (1999) points out, realized excess stock market return

is a poor proxy for the conditional equity premium because the latter accounts for a small fraction

of variation in the former.

E. Uncertainties and the Risk-Free Rate

In Table V, we illustrate the relation between the risk-free rate and variances stipulated in

equation (17). Panel A reveals a negative relation between the risk-free rate and stock market

variance. Panel B shows that the simple relation between the risk-free rate and good variance is

unstable. When we use both variances as the explanatory variables, stock market variance and

good variance are significantly negative and positive, respectively. Moreover, the median R2 is

96%, indicating that uncertainties account for most variation in the risk-free rate in our model.

F. Value-Weighted Average Stock Variance

To illustrate the implications for the cross-section of stock returns, we construct 125 portfolios

that have different loadings on systematic risks in equation (18). Specifically, φp takes one of five
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possible values [1.4, 1.8, 2.2, 2.6, 3.0], πη,p takes one of five possible values [1.4, 1.8, 2.2, 2.6, 3.0],

and πe,p takes one of five possible values [1,9, 2.3, 2.7, 3.1, 3.5]. We assume πp, the volatility of the

idiosyncratic risk is 0.005 for all portfolios. The average values of φp, πη,p, and πe,p equal those of

the market portfolio.

Stocks with larger loadings on πe,p have higher price-dividend ratio because of their larger

loadings on good variance in equation (20). Therefore, a value-weighted average stock variance or

VWASV have a stronger correlation with good variance than with bad variance. For illustration,

we use squared price-dividend ratio as the weight in simulated data. Of 10,000 simulated samples,

the median coefficient of correlation between VWASV and good variance is 95%, compared with

only 38% for the correlation between VWASV and bad variance.6 More importantly, Panel D

of Tables III, IV, and V show that the explanatory power of VWASV for the log price-dividend

ratio, the equity premium, and the risk-free rate is almost identical to those of good variance.

This implication is important because it provides a robustness check on empirical proxies of good

variance.

G. The Cross-Section of Stock Returns

Equation (24) shows that loadings on market variance and good variance help explain the

cross-section of stock returns. To illustrate this implication, we run the Fama and MacBeth (1973)

regression using the 125 portfolios discussed in the preceding subsection. In the first stage, for each

portfolio, we run a time-series forecasting regression of its excess returns on conditional market

variance and good variance as in equation (24). In the second stage, we run the cross-sectional

regression of portfolio returns on their loadings on market variance α̂p and good variance β̂p. The

estimated prices of loadings α̂p and β̂p are positive because they equal unconditional means of

market variance and good variance, respectively. We illustrate these points in Table VI. In panel

A, the risk prices of loadings on stock market variance, VMKT, and good variance, VG, are both

positive in most simulated samples. The median R2 is 78%, suggesting that market variance and

good variance account for a significant portion of variation in the cross-section of stock returns in

our model. Note that the intercept term in the second stage regression is also positive in most

simulated sample because it reflects the risk premium associated with homoscedastic shocks to

good and bad variances. Panel B shows that results are almost identical when we use VWASV as

a proxy for good variance.

IV. Data

We briefly discuss the main variables used in the empirical analysis and provide details of

data construction in Appendix B. We use quarterly data spanning the 1963Q1 to 2016Q4 period

unless otherwise indicated. Daily and monthly stock return data are from the Center of Research

in Security Prices (CRSP), annual accounting data are from Compustat, and analysts earnings

6Equal-weighted average stock variance has a weak correlation (around 50%) with both good and bad variances.
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forecast data are from I/B/E/S. We obtain the Fama-French 5 factor portfolio returns from Ken

French at Dartmouth College, the aggregate earnings-price ratio data from Robert Shiller at Yale

University, and industry classification data from Dimitris Papanikolaou at Northwestern University.

We follow Boudoukh, Michaely, Richardson, and Roberts (2007) to construct the dividend-price

ratio and the net payout-price ratio. We employ two methods to calculate corporate dividend pay-

ments: (1) the CRSP stock market indices with and without the dividend distribution and (2) the

CRSP dividend payments (CRSP item DIVAMT). We define corporate net payout as the difference

between dividend payments and equity issuance that we compute using the monthly change in the

number of shares outstanding. We use several dividend reinvestment assumptions, including no

reinvestment, the risk-free rate, and the market rate at the end of each month. We get similar

results from all these alternative methods. For brevity, we use the dividend payments inferred from

CRSP dividend payments data and assume zero-reinvestment to construct the dividend-price ratio

and the net payout-price ratio.

We construct three sets of proxies for good variance that are related to IST shocks. First,

Papanikolaou (2011) shows that the spread in equity returns between investment-goods producers

and consumption-goods producers (IMC) correlates strongly with standard IST shock measures

such as the relative price of new equipment. The advantage of IMC is that it is available at a

higher, i.e., daily frequency, and we can construct its conditional variance more precisely using

realized variance. In addition, Kogan and Papanikolaou (2013, 2014) argue that stocks with higher

investment-capital ratios, Tobin's Q, price-earnings ratios, book-to-market ratios, market betas,

idiosyncratic volatilities, and IMC betas are more sensitive to IST shocks. The high-minus-low

spreads in equity returns on portfolios sorted by these characteristics are also proxies for IST

shocks. Kogan and Papanikolaou (2013) document a strong comovement among the IST proxies.

As a robustness check, We construct the average and the first principle component of the eight IST

proxies as two additional IST measures. We use the realized variances of the ten IST measures as

proxies for good variance. Second, our model suggests that VWASV is a proxy for good variance.

Last, in our model, variance of real Treasury bonds is a linear function of good variance. We obtain

options-implied nominal Treasury bond volatility, TYVIX, from Chicago Board Options Exchange

(CBOE). Because inflation is stable over the 2003Q1 to 2016Q4 period over which TYVIX is

available to us, we use TYVIX as an additional measure of good variance.

To construct the daily IMC spread, we use industry classification data to sort stocks into two

portfolios, investment-goods producers and consumption-goods producers. We calculate the daily

value-weighted portfolio returns, and IMC is the difference in returns between the two portfolios.

To construct daily high-minus-low portfolio spreads, we first sort stocks into two portfolios using

the median NYSE market cap as the breaking point. Within each size portfolio, we sort stocks

equally into three portfolios by one of the aforementioned seven characteristics. If the characteristic

uses accounting data that have release delays, we form the portfolios at the end of June of year

t+1 and hold the portfolios for a year. Otherwise, we form the portfolios at the end of December of
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year t and hold the portfolios for a year. We construct daily portfolio returns using value weight.7

We then construct a high-minus-low hedging portfolio for each characteristic. For example, we

construct the return differences between high and low Tobin's Q portfolios for both small and big

stocks and use their simple average as a proxy for IST shocks.

We construct quarter t realized variance of each daily IST measure as a proxy for good variance:

RVt =

Nt∑
i=1

r2
i,t + 2

Nt∑
i=1

ri,tri+1,t, (29)

where ri,t is the ith day excess return and Nt is the number of daily returns in quarter t. The

second term in equation (29) is the correction of serial correlation in returns. For the first principle

component of the eight IST proxies, we do not include the second term because it generates negative

realized variance in some quarters. Kogan and Papanikolaou (2013) document a strong comovement

among the IST proxies. We document a strong comovement among their variances (untabulated).

Because of their strong comovement, we also use the average and the first principle component of

the ten standardized IST-based good variance measures as additional good variance measures.

To construct VWASV, we first construct quarterly realized variance of individual stocks using

equation (29) and then aggregate them using the value weight. Because options-implied vari-

ance is a better measure of conditional variance than is realized variance, we use value-weighted

options-implied variance instead of VWASV after 1996. Consistent with the model implication, we

document a strong relation between VWASV and IST-based good variance measures. The coef-

ficient of correlation of VWASV with the 12 IST-based good variance measures ranges from 59%

to 79% over the 1963Q1 to 2016Q4 period, with an average of 69%. Our model also suggests that

bond variance is a proxy for good variance. Consistent with this conjecture, we find a strong re-

lation between TYVIX and the 12 IST-based good variance measures, with an average correlation

coefficient of 65% over the 2003Q1 to 2016Q4 period. Similarly, TYVIX is closely correlated to

VWASV, with a correlation coefficient of 78%. For brevity, these results are not tabulated.

We use equation (29) to construct realized stock market variance as a proxy for conditional

stock market variance. We use options-implied market variance VOX or VIX obtained from CBOE

after 1986.

Following Pastor, Sinha, and Swaminathan (2008), we use the implied cost of capital (ICC)

as a proxy for conditional equity premium to test the stock market variance-return relation. To

ensure that our results are not sensitive to any particular ICC measure, we use common stocks

traded on NYSE, AMEX, and Nasdaq to construct five commonly used ICC measures proposed by

Pastor et al. (2008), Gebhardt, Lee, and Swaminathan (2001), Easton (2004), Ohlson and Juettner-

Nauroth (2005), and Gordon and Gordon (1997). We obtain the Li, Ng, and Swaminathan (2013)

ICC measure from David Ng at Cornell University. I/B/E/S publishes monthly consensus forecasts

on the third Thursday of each month. We impose a minimum reporting lag of three months to

make sure that earnings forecasts are made based on publicly available accounting information.

7We obtain similar results using monthly rebalanced portfolios or independently sorted portfolios.
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Table VII provides summary statistics of main variables used in the empirical analysis. Panel

A reports log price ratios. PD is the price-dividend ratio. PPO is the price-payout ratio. PE is

the price-earnings ratio. Panel B reports the implied cost of capital measures. PSS, GLS, Easton,

OJ, GG are ICC measures proposed by Pastor et al. (2008), Gebhardt et al. (2001), Easton (2004),

Ohlson and Juettner-Nauroth (2005), and Gordon and Gordon (1997), respectively. AICC is the

average of these five ICC measures. LNS is the ICC measure used in Li et al. (2013). Panel C

reports empirical measures of good variance and stock market variance. We have eight proxies

for IST shocks. VIMC is quarterly realized variance of IMC. VIK, VTobinQ, VPE, VIMCIV,

VβIMC, VIMC, VβMKT, and VHML are quarterly realized variances of hedging portfolios formed

by characteristics IK, Tobin's Q, PE ratio, IMC idiosyncratic volatilities, IMC beta, Market Beta,

and book-to-market equity ratio, respectively. We also calculate first principle component and the

average of the eight IST measures, and VFPC and VAVE are their realized variances, respectively.

FPCV and AVGV are the first principle component and the average of these IST-based good

variance measures. VWASV is the value-weighted average stock variance. EWASV is the equity-

weighted average stock variance. TYVIX is the options-implied bond variance. VMKT is stock

market variance. Panel D reports asset returns. IK, TobinQ, PE, IMCIV, βIMC, βMKT, and HML

are quarterly returns on hedging portfolios formed by characteristics IK, Tobin's Q, PE ratio, IMC

idiosyncratic volatilities, IMC beta, Market Beta, and book-to-market equity ratio, respectively.

AVE is the average of returns on the seven hedging portfolio returns. CMA, RMW, and SMB are

the conservative-minus-aggressive, robust-minus-weak, and small-minus-big factors, respectively.

ERET is the excess stock market return, and RF is the real risk-free rate.

V. Empirical Results

In this section, we investigate the model's main implications using actual data.

A. Forecasting Excess Stock Market Returns

Panel A of Table VIII reports the univariate regression results of forecasting one-quarter-ahead

excess stock market returns with stock market variance and various measures of good variance. Over

the 1963Q1 to 2016Q4 period, stock market variance, VMKT, correlates positively and significantly

with future excess stock market returns at the 5% level. By contrast, the correlation is negative for

the IST-based good variance measures except for VβMKT, although it is statistically insignificant

in most cases. The correlation is negative albeit statistically insignificant for the value-weighted

average stock variance (VWASV) and bond variance (TYVIX).

In panel B of Table VIII, we include both stock market variance and a good variance measure as

forecasting variables. Consistent with our model's prediction, we find that the two variances have

much stronger forecasting power for excess stock market returns in bivariate regressions than in

univariate regressions. The coefficient on VMKT is always significantly positive, and the coefficient

on good variance is always significantly negative. More importantly, the coefficients and t-values are
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substantially larger in magnitude than their univariate counterparts reported in panel A for both

stock market variance and good variance. In addition, the R2 is much higher in bivariate regressions

than in corresponding univariate regressions. The difference reflects the omitted variables problem.

The coefficient of correlation between VMKT and good variance measures is positive, ranging

between 30% to 70%, while VMKT and good variance have opposite effects on conditional equity

premium. If we omit good variance (VMKT) in the forecast regression, the coefficient on VMKT

(good variance) is downward (upward) biased toward zero.8

For comparison, we include the equal-weighted average stock variance, EWASV, as a predic-

tor in Table VIII. Its predictive power for excess stock market returns is much weaker than that

of VWASV. Specifically, the effect of EWASV on conditional equity premium is statistically in-

significant at the 10% level in both univariate and bivariate regressions. By contrast, VWASV is

statistically significant at the 1% level in the bivariate regression. These results are consistent with

the model's prediction that VWASV is a good proxy for good variance.

As a robustness check, we also investigate the out-of-sample predictive power of stock market

variance and good variance in panel C of Table VIII. For TYVIX, we use the 2003Q1 to 2009Q4

period for the initial in-sample estimation and make the out-of-sample forecast for the 2010Q1

to 2016Q4 period using an expanding sample. For the other good variance measures, we use the

1963Q1 to 1989Q4 period for initial in-sample estimation and make the out-of-sample forecast

for the 1990Q1 to 2016Q4 period using an expanding sample. We use two standard measures to

gauge the out-of-sample performance. MSER is the mean squared forecasting errors ratio of the

forecasting model to a benchmark model in which conditional equity premium equals average equity

premium in historical data. ENC NEW is the encompassing test proposed by Clark and McCracken

(2001). 8 out of 12 IST-based good variance measures have smaller mean squared forecasting errors

than does the benchmark model. The encompassing test shows that the out-of-sample predictive

power is statistically significant at the 5% level for all IST-based good variance measures. Results

are similar for VWASV and TYVIX.

As expected, VWASV has market return predictive power similar to that of IST-based good

variance measures. For example, it drives out IST-based good variance measures except for VHML

in the multivariate regressions of forecasting excess stock market returns. In addition, the predictive

power of TYVIX is similar to that of VWASV: TYVIX becomes statistically insignificant when we

control for VWASV in the forecasting regression. These results are not reported here but are

available upon request. Because IST-based good variance measures have similar predictive for

excess stock market returns, for brevity, in the remainder of the paper we use their first principle

component, FPCV, and their average, AVGV as IST-based proxies for good variance. Because

TYVIX is available only for a short sample period, we use VWASV as the alternative good variance

measure in the remainder of the paper.

8The multicollinearity problem cannot explain our findings because it inflates standard errors and does not in-
creases R2. As a further robustness check, we orthogonalize market variance by good variance and vice versa, and find
that the orthogonalized market variance or good variance has significant predictive power for excess market returns
(Untabulated).
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To summarize, consistent with the model implication, we find that conditional equity premium

depends positively on stock market variance and negatively on good variance. The two variances

jointly have significant forecasting power for excess stock market returns.

B. ICC as a Measure of the Conditional Equity premium

In the proceeding subsection, we investigate stock market variance-return relation using realized

excess stock market return as a proxy for conditional equity premium. As a robustness check, we

follow Pastor et al. (2008) and use ICC as a proxy for conditional equity premium. Panel A of

Table IX investigates the relation between ICC and market variance. Consistent with Pastor et al.

(2008)'s finding, the relation is positive and statistically significant at the 10% level using their

ICC measure, PSS, over the extended sample period. We find similar results using the Li et al.

(2013) ICC measure, LNS, which is very similar to PSS. For the other ICC measures, the relation

is positive albeit insignificant.

In Panel B of Table IX, we add FPCV, a measure of good variance, as an additional explanatory

variable. All ICC measures correlate positively and significantly with market variance at least at

the 5% level. Their correlation with FPCV is significantly negative at least at the 5% level. The

adjusted R2 is also substantially higher than its counterpart reported in Panel A. The results are

qualitatively similar when we use AVGV and VWASV as proxies for good variance in Panels C and

D, respectively. Therefore, the relatively weak relation between ICC and stock market variance

documented in panel A reflects the omitted variables problem: Both stock market variance and

good variance are significant determinants of the implied cost of capital.

If ICC is a measure of conditional equity premium, it may forecast excess stock market returns.

Consistent with this conjecture, Li et al. (2013) show that their ICC measure does have significant

predictive power for excess stock market returns. We replicate their main finding in panel A of

Table X that LNS correlates positively and significantly with the one-quarter-ahead excess stock

market return at the 5% level. The other ICC measures also correlate positively with future

excess stock market returns; however, the relation is statistically insignificant at the 5% level.

To investigate whether the forecasting power of ICC for excess stock market returns reflects its

correlation with stock market variance and good variance, we decompose ICC into two components

by regressing it on stock market variance and good variance, as in Table IX. We use FPCV as the

good variance measure in Panel A of Table X. The fitted component of ICC measures correlates

positively and significantly with future stock market returns, while the residual component has

negligible predictive power. Results are similar when we use AVGV and VWASV as good variance

measures in Panels B and C, respectively.

To summarize, consistent with the model's implication, stock market variance and good variance

are important determinants of the conditional equity premium.
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C. Stock Market Variance and Prices

We investigate the relation between the scaled stock market price and variances in Table XI.

Equation (20) shows that the log price-dividend ratio depends on the expected long-run growth

rate, xt, in addition to market variance and good variance. Similarly, Campbell and Shiller (1988)

show that the log price-dividend ratio approximately equals
∞∑
i=0

ki1,m[∆dt+1+i + rm,t+1+i]. The

expected cash flows are unobservable. Following Sadka (2007) and Guo and Jiang (2011), we use

realized real earnings growth in the following 20 quarters as a proxy for the expected cash flow

growth: FEG=
20∑
i=0

ki1,m[∆et+1+i], where k1,m = 0.9963 for quarterly data. Panel A shows that the

results are mixed for the relation between stock market variance and scaled stock market prices. It is

positive for the price-dividend ratio and the price-payout ratio and is negative for the price-earnings

ratio. Nevertheless, the relation is statistically insignificant in all cases.

In panel B of Table XI, we add FPCV, a measure of good variance, as an additional explanatory

variable. The scaled stock market prices correlate negatively with stock market variance, and the

correlation is statistically significant at the 1% level for the price-payout ratio, at the 5% level for

the price-earnings ratio, and at the 10% level for the price-dividend ratio. In addition, the three

scaled stock market prices correlate positively and significantly with FPCV at the 1% level. By

contrast, the coefficient on FEG is statistically insignificant at the 10% level in all cases. This result,

which confirms Shiller's finding of a disconnect between stock market prices and fundamentals, is

an important feature of our model. Overall, the adjusted R2 ranges from 19% for the price-earnings

ratio to 51% for the price-payout ratio, indicating that stock market variance and good variance

account for a significant portion of variation in the stock market price. We find similar results using

AVGV and VWASV as proxies for good variance in Panels C and D, respectively.

In our model, the price-dividend ratio correlates with stock market variance and good variance

because these variances are the determinants of conditional equity premium. To investigate this

implication, we decompose the scaled stock market price into two components by regressing it on

stock market variance and good variance. In Panel A of Table X, we use FPCV as the proxy

for good variance. For all three stock market price measures, the fitted component correlates

negatively and significantly with one-quarter-ahead excess stock market returns at the 1% level,

while the predictive power is negligible for the residual component. Panels B and C show that

results are similar when we use AVGV and VWASV, respectively, as proxies for good variance.

D. Market Variance and the Risk-Free Rate

We investigate the relation between the risk-free rate and variances in Table XII. Panel A

reports the univariate regression results. While the risk-free rate correlates negatively with market

variance, its correlations with three good variance measures are positive. Nevertheless, the relation

is statistically insignificant in all cases. Panel B reports the estimation results of the bivariate

regression. The negative relation between stock market variance and the risk-free rate becomes

statistically significant at the 1% level when in conjunction with VWASV and at the 10% level
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when in conjunction with FPCV and AVGV. Similarly, the relation between the risk-free rate and

good variance is significantly positive at the 1% level for VWASV and at the 10% for FPCV and

AVGV. These findings are consistent with the simulation results reported in Table V.

E. Forecasting Anomalies

In our model, loadings on stock market variance and good variance help explain the cross-

section of stock returns. Stocks that are more sensitive to IST shocks have more negative loadings

on good variance and thus lower expected returns. Stocks that are more sensitive to DT shocks

have more positive loadings on bad variance and thus higher expected returns. To investigate

this implication, we form portfolios on the investment capital ratio, Tobin's Q, the price-earnings

ratio, idiosyncratic volatility, IMC beta, and market beta. We construct hedging portfolios that

are long (short) in stocks are least (most) sensitive to IST shocks. For example, we buy low

investment capital ratio stocks and short high investment capital ratio stocks for the hedging

portfolio formed on the investment capital ratio. We expect that these long-short portfolios have a

positive loadings on good variance. We also consider the four hedging risk factors in the Fama and

French (2015) five-factor model, HML, CMA, RMW, and SMB. HML longs (shorts) stocks with

high (low) book-to-market equity ratios; CMA longs (shorts) stocks with low (high) total asset

growth; RMW longs (shorts) stocks with high (low) profitability; and SMB longs (shorts) stocks

with small (big) market capitalization. Because stocks with lower book-to-market equities ratios

and higher investment are more sensitive IST shocks and have more negative loadings on good

variance, HML and CMA should have positive loadings on good variance. Extant studies, e.g.,

Kogan and Papanikolaou (2013, 2014) and Fama and French (2015), have shown that these long-

short portfolios have significantly positive alpha except that the alpha has diminished for SMB in the

past three decades. Kogan and Papanikolaou (2013, 2014) argue that the strong comovement among

portfolios formed on the investment capital ratio, Tobin's Q, the price-earnings ratio, idiosyncratic

volatility, IMC beta, market beta, and the book-to-market equity ratio reflects their loadings on

IST shocks. To investigate this conjecture, we calculate the average of returns on the long-short

portfolios formed on these characteristics, AVE, as a measure of the comovement.

In Table XIII, we report the OLS regression results of forecasting long-short portfolio returns

using stock market variance and good variance. We use FPCV as a proxy for good variance in

panel A. As expected, the coefficient on good variance is positive in all cases and is statistically

significant at least at the 10% in most cases. The coefficient on stock market variance is negative

in all cases except for SMB, and is statistically significant at least at the 10% level except for CMA

and SMB. Again, we find similar results using AVGV and VWASV as proxies for good variance

in panels B and C, respectively. To summarize, stocks with different sensitivity to IST shocks

have different loadings on stock market variance and good variance. In the next subsection, we

investigate whether loadings on stock market variance and good variance help explain the cross-

section of expected stock returns.
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F. Explaining the Cross-Section of Expected Stock Returns

We use the Fama and MacBeth (1973) cross-sectional regression to test whether loadings on

stock market variance and loadings on good variance account for the cross-section of expected

stock returns. Specifically, we first regress excess returns on each test portfolio on lagged stock

market variance and lagged good variance, and use the estimated loadings in the second-stage

cross-sectional regressions. Because both stock market variance and good variance are persistent

and have measurement errors, we include two lags of market variance and two lags of good variance

in the first-stage regression, and the loadings are the sum of the coefficients on two lags of stock

market variance or two lags of good variance.9

We use four sets of test portfolios. We first sort stocks equally into five portfolios by market

capitalization, and then within size portfolio, we sort stocks equally into five portfolios by each of the

seven characteristics: the investment capital ratio, Tobin's Q, the price-earnings ratio, idiosyncratic

volatility, IMC beta, the book-to-market equity ratio, and market beta. We use equal or value

weights to construct 175 portfolios. We obtain from Kenneth French at Dartmouth College the 32

triple-sorted portfolios formed on market capitalization, operation profit, and total asset growth.

Last, we obtain from Kenneth French at Dartmouth College the 32 triple-sorted portfolios formed

on market capitalization, book-to-market equity ratios, and total asset growth.

In panel A of Table XIV, we report the Fama and MacBeth (1973) regression results for the

175 value-weighted double-sorted portfolios. The risk price of loadings on good variance is positive

and significant at the 1% level for all three good variance measures. In addition, the risk price

of loadings on stock market variance is significantly positive at the 1% level. The cross-sectional

R-squared ranges from 68% to 73%, which are comparable to the median R-squared in simulated

data reported in TableVI. Figure 6 shows that the expected portfolio returns line up with the

average portfolio returns along the 45-degree line. Panel B shows that results are similar for the

175 equal-weighted doubt-sorted portfolios. In Panel C, we report the results for the 32 triple-

sorted portfolios formed on market capitalization, operation profit, and total asset growth. The

risk price is significantly positive at the 1% level for loadings on good variance and at the 10% level

for loadings on stock market variance. Panel D reports that results are qualitatively similar for

the 32 triple-sorted portfolios formed on market capitalization, book-to-market equity ratios, and

total asset growth. Therefore, consistent with the model's implication, loadings on stock market

variance and loadings on good variance explain the cross-section of expected stock returns.

VI. Conclusion

The price-dividend ratio is a function of expected future discount rates and expected future

dividend growth rates. Time-varying equity premium has become the central organizing question

in rational-expectations asset pricing paradigm since Shiller (1981)'s finding that the dividend com-

ponent accounts for little variation in stock market prices. The price-dividend ratio plays a pivotal

9Results are qualitatively similar when we include one lag of stock market variance and one lag of good variance.
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role in modern asset pricing models of time-varying equity premium because of the mechanical

link between the two variables. No extant empirical studies, however, have attempted to address

directly the most fundamental question in asset pricing that Shiller raised over three decades ago:

What are economic origins of stock market price fluctuations? In this paper, we try to fill the

gap by investigating empirically the relation between the stock market price and systematic risks

stipulated in asset pricing models.

Leading asset pricing models suggest that stock market variance is the main driver of variation

in the stock market price. By contrast with this view, we overwhelmingly reject the null hypothesis

of a negative relation between the stock market price-dividend ratio and variance. The relation is

sometimes positive and sometimes negative. Our findings echo extensive empirical evidence of an

unstable stock market variance-return relation.

We provide a theoretical explanation for the findings. Stock market variance has two compo-

nents, good variance and bad variance. The equity premium depends positively on bad variance

but negatively on good variance. Because stock market variance is the sum of the two variances, its

relation with conditional equity premium can be positive, negative, or insignificant, depending on

the relative importance of its two components. The unstable stock market variance-return relation

implies an unstable relation between stock market variance-price relation, as we document in data.

Nevertheless, our model suggests that stock market variance and good variance jointly can explain

variation in stock market prices or the conditional equity premium, and our empirical evidence

strongly supports this conjecture.
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Figure 1. Stock Market Variance (Dashed Line) and the Price-Earnings Ratio (Solid Line)

Figure 2. Relation between Conditional Stock Market Variance (in Percentage, Vertical Axis)
and Price-Dividend Ratio (Horizontal Axis) in Simulated Data
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Figure 3. Relation between Conditional Equity Premium (in Percentage, Vertical Axis) and
Price-Dividend Ratio (Horizontal Axis) in Simulated Data

Figure 4. Relation between Equity Premium-Variance Ratio (Vertical Axis) and Price-Dividend
Ratio (Horizontal Axis) in Simulated Data
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Figure 5. Relation between Sharpe Ratio (Vertical Axis) and Price-Dividend Ratio (Horizontal
Axis) in Simulated Data

Figure 6. Scatter Plot of Expected Portfolio Returns (in Percentage, Vertical Axis) v.s. Average
Portfolio Returns (in Percentage, Horizontal Axis)
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Table I Configuration of Model Parameters

Preferences
δ γ ψ

0.9989 10 1.5

Consumption
µc ρ ϕe ψx σg σx vg vx σ1 σ2 σ3

0.0015 0.975 0.001 0.0389 0.0015 0.006 0.999 0.999 0.000006 0 0.000006

Dividends
µd φ πe πη πp

0.0015 2.2 3 2.2 0.005

Note: The table reports the parameter values used in the model.
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Table II Consumption, Dividend, and Asset Returns

Data Model

Moment Estimate Median 2.5% 5% 95% 97.5% Pop

E[∆c] 1.93 1.80 0.99 1.15 2.43 2.59 1.80
σ(∆c) 2.16 3.21 1.84 1.99 5.20 5.60 3.56

AC1(∆c) 0.45 -0.01 -0.26 -0.22 0.19 0.23 0.00
AC2(∆c) 0.16 -0.01 -0.26 -0.22 0.20 0.24 0.00
AC3(∆c) -0.10 -0.01 -0.26 -0.22 0.19 0.23 0.00
AC4(∆c) -0.24 -0.01 -0.26 -0.22 0.19 0.23 0.00
AC5(∆c) -0.02 -0.01 -0.25 -0.22 0.19 0.23 0.00
V R6(∆c) 0.84 0.89 0.45 0.51 1.48 1.62 1.00

E[∆d] 1.15 1.79 -1.32 -0.74 4.40 4.96 1.80
σ(∆d) 11.05 12.92 8.25 8.80 18.69 19.88 13.84

AC1(∆d) 0.21 -0.01 -0.25 -0.20 0.18 0.22 0.00
V R6(∆d) 0.59 0.91 0.48 0.53 1.46 1.59 1.02

Corr(∆c,∆d) 0.55 0.54 0.17 0.23 0.80 0.83 0.54

E[R] 7.66 7.11 3.77 4.32 10.55 11.37 7.29
σ(R) 20.28 16.16 11.35 11.99 22.36 23.79 17.13

AC1(R) 0.02 -0.02 -0.24 -0.21 0.17 0.21 0.00

E[p− d] 3.36 3.31 2.76 2.86 3.56 3.61 3.27
σ(p− d) 0.45 0.17 0.09 0.10 0.31 0.34 0.29

AC1(p− d) 0.87 0.89 0.71 0.75 0.96 0.96 0.97

E[Rf ] 0.57 1.32 -0.28 0.03 1.83 1.87 1.14
σ(Rf ) 2.86 0.46 0.22 0.25 0.83 0.91 0.79

AC1(Rf ) 0.65 0.94 0.78 0.82 0.98 0.98 0.98

Note: The table reports key statistics of the consumption growth rate, ∆c; the dividend growth rate, ∆d;
the stock market return, R; the log price-dividend ratio, p − d; and the risk-free rate, Rf . E is the mean;
σ is the standard deviation; ACi is the ith-order autocorrelation coefficient; V R6 is the variance ratio of
six-year growth rate to six times one-year growth rate; and Corr is the correlation coefficient. The column
under the name “Data” reproduces annual estimates from the 1930 to 2008 period reported in Bansal et al.
(2012) and Beeler and Campbell (2012). The column under the name “Model” reports the distribution of
annual estimates from 10,000 simulated samples of 79 years each. “Pop” reports annual estimates from a long
simulated sample of 100,000 years.
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Table III Relation between Price-Dividend Ratio and Variances in Simulated Data

Median 10% 30% 70% 90% Pop Scaler

Panel A: Stock Market Variance

VMKT
-7.205 57.329 21.486 -36.702 -86.125 -0.333 1

(-0.587) (5.293) (1.749) (-2.942) (-7.227) (-39.200) 1
R2 12.870 0.477 4.503 26.556 50.586 8.031 0.01

Panel B: Good Variance

VG
4.509 -2.136 2.091 6.896 10.876 3.067 100

(3.779) (-1.456) (1.560) (6.377) (10.789) (41.977) 1
R2 21.708 0.974 8.037 39.867 63.553 7.811 0.01

Panel C: Stock Market Variance and Good Variance

VMKT
-2.268 -2.253 -2.263 -2.273 -2.283 -2.086 100

(-4.879) (-2.529) (-3.675) (-6.508) (-10.063) (770.050) 100

VG
2.569 2.553 2.563 2.575 2.585 19.483 1000

(5.228) (2.772) (4.012) (6.860) (9.972) (151.655) 100
R2 99.981 99.937 99.969 99.989 99.995 99.991 0.01

Panel D: Stock Market Variance and Value-Weighted Average Stock Variance

VMKT
-7.691 -5.554 -6.713 -8.875 -10.784 -4.471 100

(-34.303) (-18.645) (-27.306) (-43.263) (-60.458) (-394.924) 1

VWASV
8.759 6.185 7.570 10.212 12.521 4.105 100

(34.031) (18.545) (26.902) (42.974) (60.211) (322.695) 1
R2 97.172 91.185 95.649 98.167 99.033 95.703 0.01

Note: The table reports the OLS estimation results of regressing the stock market price-dividend ratio on
contemporaneous variances for simulated data. We generate a monthly sample of 1,648 observations, discard
the first 1,000 observations, and convert the remaining into 216 quarterly observations. We generate 10,000
simulated samples and report their distributions. The column “Pop” reports the results obtained from 100,000
simulated quarterly observations. VMKT is stock market variance, VG is good variance, and VWASV is value-
weighted average stock variance. t-values are reported in parentheses. The coefficient and the t-value of stock
market variance are sorted from the highest to the lowest. All other statistics are sorted from the lowest to the
highest. The column “Scaler” indicates the actual values of the statistics reported in a row are the reported
values time the scaler in that row. For example, the scaler for R2 is 0.01, indicating that it is reported in
percentage.
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Table IV Relation between Excess Stock market Returns and Variances in Simulated Data

Median 10% 30% 70% 90% Pop

Panel A: Stock Market Variance

VMKT
0.577 -4.461 -1.322 2.551 5.845 0.859

(0.167) (-1.192) (-0.389) (0.730) (1.555) (7.989)

R2 0.227 0.008 0.076 0.539 1.399 0.077

Panel B: Good Variance

VG
-12.771 38.981 7.462 -33.867 -71.727 -3.855

(-0.345) (1.018) (0.209) (-0.895) (-1.698) (-3.785)

R2 0.248 0.009 0.079 0.578 1.420 0.018

Panel C: Stock Market Variance and Good Variance

VMKT
9.329 -1.970 4.673 14.828 24.606 4.133

(1.112) (-0.238) (0.575) (1.645) (2.440) (21.327)

VG
-104.825 17.694 -52.230 -163.844 -269.035 -36.383

(-1.126) (0.198) (-0.592) (-1.684) (-2.480) (-19.788)

R2 1.133 0.205 0.608 1.849 3.207 0.504

Panel D: Stock Market Variance and Value-Weighted Average Stock Variance

VMKT
31.642 -4.837 15.650 51.183 90.259 8.922

(1.122) (-0.184) (0.590) (1.662) (2.482) (20.176)

VWASV
-35.496 6.099 -17.440 -58.211 -102.337 -7.977

(-1.096) (0.196) (-0.573) (-1.637) (-2.457) (-18.791)

R2 1.135 0.187 0.607 1.859 3.349 0.559

Note: The table reports the OLS estimation results of regressing one-quarter-ahead excess stock market returns
on stock variances for simulated data. We generate a monthly sample of 1,648 observations, discard the first
1,000 observations, and convert the remaining into 216 quarterly observations. We generate 10,000 simulated
samples and report their distributions. The column “Pop” reports the results obtained from 100,000 simulated
quarterly observations. VMKT is stock market variance, VG is good variance, and VWASV is value-weighted
average stock variance. t-values are reported in parentheses. R2 is reported in percentage.
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Table V Relation between the Risk-Free Rate and Variances in Simulated Data

Median 10% 30% 70% 90% Pop

Panel A: Stock Market Variance

VMKT
-0.330 0.057 -0.156 -0.508 -0.803 -0.552

(-4.391) (0.750) (-2.140) (-7.300) (-12.597) (-95.703)

R2 25.154 1.052 9.793 44.832 68.888 34.156

Panel B: Good Variance

VG
0.022 4.727 1.758 -1.807 -4.892 -0.461

(0.026) (5.157) (1.967) (-2.013) (-5.454) (-7.964)

R2 9.972 0.398 3.377 21.227 43.645 0.303

Panel C: Stock Market Variance and Good Variance

VMKT
-1.552 -1.411 -1.502 -1.590 -1.630 -1.640

(-45.723) (-25.944) (-36.013) (-58.059) (-82.125) (-2421.912)

VG
14.457 13.059 13.946 14.847 15.297 12.442

(40.015) (23.298) (31.841) (50.455) (69.519) (1897.623)

R2 94.372 86.416 91.804 96.249 97.877 99.015

Panel D: Stock Market Variance and Value-Weighted Average Stock Variance

VMKT
-4.845 -3.568 -4.264 -5.551 -6.653 -3.179

(-31.929) (-17.946) (-25.763) (-39.390) (-53.290) (-425.995)

VG
5.189 3.657 4.477 6.061 7.408 2.634

(29.978) (16.815) (24.004) (36.890) (49.436) (314.120)

R2 96.088 87.734 96.369 94.041 97.303 96.364

Note: The table reports the OLS estimation results of regressing the risk-free rate on contemporaneous
stock variances for simulated data. We generate a monthly sample of 1,648 observations, discard the first
1,000 observations, and convert the remaining into 216 quarterly observations. We generate 10,000 simulated
samples and report their distributions. The column “Pop” reports the results obtained from 100,000 simulated
quarterly observations. VMKT is stock market variance, VG is good variance, and VWASV is value-weighted
average stock variance. t-values are reported in parentheses. R2 is reported in percentage.
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Table VI Relation between Cross-Section of Expected Returns and Variances in Simulated Data

Median 10% 30% 70% 90% Pop Scaler

Panel A: Stock Market Variance and Good Variance

Const
0.332 -0.047 0.174 0.552 0.983 -0.111 0.01

(1.922) (-0.255) (1.006) (2.868) (4.234) (-1.100) 1

VMKT
1.199 -0.709 0.568 1.867 3.127 6.438 0.001

(2.148) (-1.072) (1.054) (2.952) (3.898) (30.043) 1

VG
0.057 -0.141 -0.013 0.125 0.244 0.387 0.001

(1.084) (-2.159) (-0.239) (2.193) (3.366) (15.071) 1

R2 77.532 37.098 65.333 84.886 90.801 99.674 0.01

Panel B: Stock Market Variance and Value-Weighted Average Stock Variance

Const
0.333 -0.046 0.177 0.552 0.989 -0.189 0.01

(1.946) (-0.241) (1.021) (2.909) (4.262) (-1.909) 1

VMKT
4.812 -2.744 2.332 7.517 12.563 26.422 0.001

(2.169) (-1.077) (1.093) (2.961) (3.900) (31.536) 1

VWASV
1.042 -1.100 0.337 1.781 3.125 5.731 0.001

(1.777) (-1.530) (0.580) (2.716) (3.725) (24.130) 1

R2 77.484 36.683 65.312 84.915 90.864 99.666 0.01

Note: The table reports the Fama and MacBeth (1973) regression results for simulated data. We construct
125 portfolios that have different loadings on systematic risks in equation (18). Specifically, φp takes one of
five possible values [1.4, 1.8, 2.2, 2.6, 3.0], πη,p takes one of five possible values [1.4, 1.8, 2.2, 2.6, 3.0], and πe,p
takes one of five possible values [1,9, 2.3, 2.7, 3.1, 3.5]. We assume πp, the volatility of the idiosyncratic risk is
0.005 for all portfolios. We run the Fama and MacBeth (1973) regression using the 125 portfolios. In the first
stage, for each portfolio, we run a time-series forecasting regression of its returns on conditional stock market
variance and good variance. In the second stage, we run the cross-sectional regression of portfolio returns
on their loadings on stock market variance and good variance. The table reports the estimated risk prices
of loadings on variances. t-values are reported in parentheses. VMKT is stock market variance, VG is good
variance, and VWASV is value-weighted average stock variance. The column “Scaler” indicates the actual
values of the statistics reported in a row are the reported values time the scaler in that row. For example,
the scaler for R2 is 0.01, indicating that it is reported in percentage. We generate a monthly sample of 1,648
observations, discard the first 1,000 observations, and convert the remaining into 216 quarterly observations.
We generate 10,000 simulated samples and report their distributions. The column “Pop” reports the results
obtained from 100,000 simulated quarterly observations.
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Table VII Summary Statistics of Selected Variables

Variable Mean Std Err Kurt Skew AR(1) Sampling Period

Panel A: Stock Market Price

PD 3.704 0.030 -0.577 -0.345 0.979 1963Q1-2016Q4

PPO 2.203 0.016 18.615 -3.742 0.940 1963Q1-2016Q4

PE 1.697 0.029 -0.502 0.385 0.982 1963Q1-2016Q4

Panel B: Implied Costs of Capital

PSS 1.602 0.053 -0.873 0.527 0.909 1981Q1-2016Q4

GLS 1.128 0.052 -0.965 0.342 0.923 1982Q1-2016Q4

Easton 1.830 0.046 -0.896 -0.015 0.895 1981Q1-2016Q4

OJ 1.881 0.040 -0.809 -0.168 0.891 1981Q1-2016Q4

GG 0.711 0.056 -0.799 0.412 0.904 1981Q1-2016Q4

AICC 1.444 0.048 -0.906 0.265 0.910 1982Q1-2016Q4

LNS 1.806 0.059 -0.751 -0.019 0.866 1981Q1-2011Q4

Panel C: Stock Return Variances

VIK 0.080 0.005 13.517 3.327 0.592 1963Q1-2016Q4

VTobinQ 0.136 0.009 8.730 2.711 0.630 1963Q1-2016Q4

VPE 0.095 0.005 3.634 1.895 0.545 1963Q1-2016Q4

VβMKT 0.144 0.010 15.822 3.532 0.632 1963Q1-2016Q4

VβIMC 0.192 0.017 17.898 3.952 0.559 1963Q1-2016Q4

VIMCIV 0.188 0.018 37.512 5.329 0.556 1963Q1-2016Q4

VIMC 0.128 0.015 50.097 6.107 0.693 1963Q1-2016Q4

VHML 0.109 0.010 43.494 5.847 0.633 1963Q1-2016Q4

VFPC 0.003 0.026 20.698 4.155 0.688 1963Q1-2016Q4

VAVE 0.042 0.004 30.959 5.009 0.559 1963Q1-2016Q4

FPCV 0.000 0.068 16.067 3.629 0.649 1963Q1-2016Q4

AVGV 0.000 0.058 15.388 3.556 0.652 1963Q1-2016Q4

VWASV 0.029 0.022 7.588 2.582 0.647 1963Q1-2016Q4

EWASV 0.082 0.051 12.780 2.959 0.745 1963Q1-2016Q4

TYVIX 0.001 0.008 8.090 2.511 0.696 2003Q1-2016Q4

VMKT 0.653 0.042 6.960 2.466 0.503 1963Q1-2016Q4
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Variable Mean Std Err Kurt Skew AR(1) Sampling Period

Panel D: Asset Returns

IK 0.714 0.299 2.110 0.356 0.057 1963Q1-2016Q4

TobinQ 0.888 0.413 1.869 -0.208 0.124 1963Q1-2016Q4

PE 0.879 0.306 1.327 -0.235 0.134 1963Q1-2016Q4

IMCIV 0.249 0.554 1.901 0.552 0.048 1963Q1-2016Q4

βMKT 0.177 0.475 2.391 0.338 -0.006 1963Q1-2016Q4

βIMC 0.177 0.475 2.391 0.338 -0.006 1963Q1-2016Q4

HML 1.108 0.390 1.703 0.439 0.121 1963Q1-2016Q4

AVE 0.587 0.341 3.125 -0.050 0.085 1963Q1-2016Q4

CMA 0.922 0.274 1.911 0.907 0.048 1963Q1-2016Q4

RMW 0.735 0.283 7.035 0.915 0.143 1963Q1-2016Q4

SMB 0.788 0.379 -0.080 0.142 -0.001 1963Q1-2016Q4

ERET 1.638 0.576 0.815 -0.505 0.062 1963Q1-2016Q4

RF 0.334 0.037 -0.364 0.268 0.865 1963Q1-2016Q4

Note: The table reports the quarterly summary statistics for the stock market price (panel A), the implied

cost of capital (panel B), variances (panel C), and asset returns (panel D). In panel A, DP, POP, and EP

are log dividend-price ratio, log net payout-price ratio, and log earning-price ratio, respectively. In panel B,

PSS, GLS, Easton, OJ, GG, and LNS are the implied cost of capital measures constructed following Pastor

et al. (2008), Gebhardt et al. (2001), Easton (2004), Ohlson and Juettner-Nauroth (2005), and Gordon

and Gordon (1997), respectively. AICC is the average of these five ICC measures. LNS is the ICC measure

used in Li et al. (2013). In panel C, VIK, VTobinQ, VPE, VIMCIV, VβIMC, VIMC, VβMKT, and VHML

are realized variances of daily returns on portfolios formed on IK, Tobin's Q, PE ratio, idiosyncratic

volatility, IMC beta, IMC spread, Market Beta, and book-to-market equity ratio, respectively. VFPC

and VAVE are realized variances of the first principle component and average of these eight daily portfolio

returns, respectively. FPCV and AVGV are the first principle component and average, respectively, of VIK,

VTobinQ, VPE, VIMCIV, VβIMC, VIMC, VβMKT, VHML, VFPC, and VAVE. VWASV and EWASV are

value-weighted and equal-weighted average stock variances, respectively. VMKT is stock market variance.

In panel D, IK, TobinQ, PE, IMCIV, βIMC, βMKT, and HML are returns on portfolios formed by IK, Tobin's

Q, PE ratio, idiosyncratic volatility, IMC beta, Market Beta, and book-to-market ratio, respectively. AVE

is the average of these seven portfolio returns. CMA, RMW, and SMB are the Fama and French (2015)

conservative-minus-aggressive, robust-minus-weak, and small-minus-big factors, respectively. ERET is the

excess stock market return. RF is the risk-free rate. Mean and standard errors in panel B, C and D are

reported in percentage. VPC1 is scaled by 10−4, and PC1V and AVGV are scaled by 10−2.
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Table VIII Forecasting One-Quarter-Ahead Excess Stock Market Returns Using Stock Variances

Panel A Panel B Panel C

Variable All R2 Good Market R2 MSER ENC NEW 5%

Variance Variance Variance Statistics BSCV

VMKT 2.799** 3.707

(2.054)

VIK -11.408* 0.641 -26.902*** 4.338*** 8.192 0.957 11.699 2.381

(-1.831) -(5.060) (2.851)

VTobinQ -3.993 -0.069 -11.062** 3.776*** 5.833 0.997 10.846 2.370

(-1.013) (-2.043) (2.997)

VPE -11.042 0.477 -29.331*** 4.526*** 8.368 0.927 15.510 2.331

(-1.112) (-2.927) (3.543)

VIV -1.535 -0.235 -4.807*** 3.612*** 5.208 1.171 2.667 2.525

(-0.933) (-3.467) (2.614)

VβIMC -4.414* 1.280 -9.446*** 4.557*** 9.650 0.931 12.380 2.379

(-1.662) (-2.725) (4.904)

VIMC -3.020 0.136 -5.761** 3.381** 5.286 1.048 6.239 2.503

(-1.583) (-2.551) (2.523)

VβMKT 0.773 -0.451 -8.748** 4.025*** 4.877 1.006 5.426 2.379

(0.220) (-2.419) (2.960)

VHML -8.357** 1.852 -19.934*** 5.442*** 12.781 0.823 31.010 2.484

(-2.291) (-6.038) (6.088)

VFPC -1.634 0.076 -4.756*** 4.165*** 6.895 0.963 8.892 2.414

(-1.233) (-4.707) (3.078)

VAVE -4.564 -0.377 -20.845*** 3.586** 4.857 1.033 4.255 2.436

(-0.523) (-2.661) (2.301)

FPCV -0.740 0.300 -2.247*** 4.699*** 8.448 0.917 12.985 2.380

(-1.454) (-4.389) (4.295)

AVGV -0.898 0.347 -2.715*** 4.765*** 8.679 0.913 13.586 2.370

(-1.481) (-4.339) (4.453)

VWASV -0.065 -0.440 -2.096*** 8.979*** 13.473 0.825 21.880 2.330

(-0.168) (-4.063) (6.849)

EWASV 0.078 -0.241 -0.211 3.897** 4.279 1.013 5.104 2.406

(0.644) (-1.515) (2.474)

TYVIX -24.718 5.722 -53.546*** 4.658*** 17.143 0.771 8.849 2.629

(-1.495) (-2.798) (5.699)
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Note: The table reports the OLS estimation results of forecasting one-quarter-ahead excess stock market

returns using stock variances. VIK, VTobinQ, VPE, VIMCIV, VβIMC, VIMC, VβMKT, and VHML are

realized variances of daily returns on portfolios formed on IK, Tobin's Q, PE ratio, idiosyncratic volatility,

IMC beta, IMC spread, Market Beta, and book-to-market equity ratio, respectively. VFPC and VAVE

are realized variances of the first principle component and average of these eight daily portfolio returns,

respectively. FPCV and AVGV are the first principle component and average, respectively, of VIK, VTo-

binQ, VPE, VIMCIV, VβIMC, VIMC, VβMKT, VHML, VFPC, and VAVE. VWASV and EWASV are

value-weighted and equal-weighted average stock variances, respectively. VMKT is stock market variance.

TYVIX is the options-implied Treasury bond variance. TYVIX is available over the 2003Q1 to 2016Q4

period and the other variance measures are available over the 1963Q1 to 2016Q4 period. Panel A reports

the univariate regression results. Panel B reports the bivariate regression results with stock market vari-

ance and a good variance measure as the forecasting variables. Panel C reports the out-of-sample forecast

results. For TYVIX, we use the 2003Q1 to 2009Q4 period for the initial in-sample estimation and make

the out-of-sample forecast recursively for the 2010Q1 to 2016Q4 period using an expanding sample. For

the other good variance measures, we use the 1963Q1 to 1989Q4 period for initial in-sample estimation and

make the out-of-sample forecast recursively for the 1990Q1 to 2016Q4 period using an expanding sample.

We use two standard measures to gauge the out-of-sample performance. MSER is the mean squared fore-

casting errors ratio of the forecasting model to a benchmark model in which conditional equity premium

equals average equity premium in historical data. ENC NEW is the encompassing test proposed by Clark

and McCracken (2001). t-values are reported in parentheses. ***, **, and * denote significance at the 1%,

5%, and 10% levels, respectively.
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Table IX Implied Cost of Capital and Stock Market Variance

PSS GLS Easton OJ GG AICC LNS

Panel A: Stock Market Variance

VMKT 0.161* 0.137 0.075 0.110 0.145 0.125 0.225**

(1.787) (1.593) (0.820) (1.393) (1.510) (1.428) (2.217)

R2 5.060 3.149 0.283 1.815 3.239 2.529 4.694

Panel B: Stock Market Variance and First Principle Component of Good Variance Measures

FPCV -0.127** -0.158*** -0.133** -0.123** -0.158** -0.140** -0.157**

(-2.408) (-2.626) (-2.228) (-2.366) (-2.591) (-2.476) (-2.094)

VMKT 0.274** 0.282*** 0.197* 0.222** 0.289** 0.254** 0.371***

(2.546) (2.605) (1.726) (2.216) (2.549) (2.330) (2.684)

R2 12.784 14.369 6.764 8.513 13.397 11.314 10.200

Panel C: Stock Market Variance and Average of Good Variance Measures

AVGV -0.148** -0.184** -0.154** -0.144** -0.184** -0.163** -0.184**

(-2.279) (-2.517) (-2.117) (-2.286) (-2.463) (-2.362) (-2.012)

VMKT 0.277** 0.282*** 0.196* 0.222** 0.289** 0.253** 0.371**

(2.519) (2.576) (1.701) (2.189) (2.524) (2.303) (2.648)

R2 12.453 14.041 6.472 8.311 13.055 10.999 9.980

Panel D: Stock Market Variance and Value-Weighted Average Stock Variance

VWASV -0.116*** -0.146*** -0.122*** -0.109*** -14.935*** -0.129*** -0.122*

(-3.415) (-4.332) (-3.058) (-3.129) (-4.566) (-3.707) (-1.923)

VMKT 0.522*** 0.596*** 0.455*** 0.451*** 0.612*** 0.529*** 0.599***

(3.885) (4.398) (3.090) (3.408) (4.472) (3.872) (2.812)

R2 19.683 25.114 12.911 13.989 24.022 19.490 12.446

Note: The table reports the OLS estimation results of regressing the implied cost of capital on contem-
poraneous stock market variance and good variance measures. We de-trend the implied cost of capital
by a linear time trend. PSS, GLS, Easton, OJ, GG, and LNS are the implied cost of capital measures
constructed following Pastor et al. (2008), Gebhardt et al. (2001), Easton (2004), Ohlson and Juettner-
Nauroth (2005), and Gordon and Gordon (1997), respectively. AICC is the average of these five ICC
measures. LNS is the ICC measure used in Li et al. (2013). LNS is available over the 1981Q1 to 2011Q4
period, GLS and AICC are available over the 1982Q1 to 2016Q4 period, and the other ICC measures are
available over the 1981Q1 to 2016Q4 period. VMKT is stock market variance. FPCV and AVGV are the
first principle component and average, respectively, of 10 good variance measures: VIK, VTobinQ, VPE,
VIMCIV, VβIMC, VIMC, VβMKT, VHML, VFPC, and VAVE. VWASV is the value-weighted average stock
variance. t-values are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10%
levels, respectively.
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Table X Forecasting One-Quarter-Ahead Excess Stock Market Returns Using Implied Cost of
Capital and Scaled Stock Market Prices

Original R2 Fitted R2 Residual R2

Value Value Value

Panel A: First Principle Component of Good Variance Measures

PSS 1.348 0.348 16.242*** 9.461 0.287* -0.690

(1.173) (4.504) (1.803)

GLS 1.563 0.593 14.954*** 10.179 1.069 -0.427

(1.416) (5.150) (0.584)

Easton 1.540 0.296 18.967*** 9.481 0.222 -0.693

(1.230) (4.976) (0.146)

OJ 2.531* 1.385 19.119*** 9.767 0.942 -0.474

(1.851) (5.095) (0.568)

GG 1.809* 1.378 14.793*** 9.762 1.266 -0.259

(1.703) (5.070) (0.710)

AICC 1.476 0.297 16.703*** 10.167 0.672 -0.607

(1.217) (5.126) (0.390)

LNS 2.332** 2.212 13.075*** 10.297 0.915 -0.408

(1.957) (4.407) (0.653)

PD -0.018 0.479 -0.085*** 3.984 0.001 -0.468

(-1.315) (-3.876) (0.049)

PPO -0.050*** 1.535 -0.118*** 3.658 -0.009 -0.425

(-2.740) (-3.820) (-0.196)

PE -0.016 0.144 -0.126*** 6.305 0.007 -0.370

(-1.057) (-4.297) (0.426)

Panel B: Average of Good Variance Measures

PSS 1.348 0.348 16.617*** 9.685 0.288 -0.689

(1.173) (4.618) (0.160)

GLS 1.563 0.593 15.322*** 10.483 1.056 -0.433

(1.416) (5.287) (0.578)

Easton 1.540 0.296 19.641*** 9.824 0.224 -0.693

(1.230) (5.081) (0.148)

OJ 2.531* 1.385 19.591*** 10.064 0.933 -0.478

(1.851) (5.230) (0.563)

GG 1.809* 1.378 15.177*** 10.054 1.256 -0.264

(1.703) (5.205) (0.704)

AICC 1.476 0.297 17.145*** 10.464 0.667 -0.608

(1.217) (5.262) (0.387)

LNS 2.332** 2.212 13.364*** 10.577 0.907 -0.413

(1.957) (4.551) (0.648)

PD -0.018 0.479 -0.088*** 4.191 0.001 -0.466

(-1.315) (-4.945) (0.073)

PPO -0.050*** 1.535 -0.122*** 3.848 -0.009 -0.432

(-2.740) (-3.876) (-0.178)

PE -0.016 0.144 -0.129*** 6.573 0.007 -0.360

(-1.057) (-4.367) (0.447)
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Original R2 Fitted R2 Residual R2

Value Value Value

Panel C: Value-Weighted Average Stock Variance

PSS 1.348 0.348 16.684*** 15.302 -1.212 -0.388

(1.173) (6.532) (-0.704)

GLS 1.563 0.593 13.819*** 14.972 -0.533 -0.664

(1.416) (5.760) (-0.309)

Easton 1.540 0.296 17.934*** 15.303 -0.938 -0.443

(1.230) (4.903) (-0.649)

OJ 2.531* 1.385 19.132*** 15.631 -0.226 -0.697

(1.851) (5.845) (-0.152)

GG 1.809* 1.378 14.074*** 15.632 -0.397 -0.670

(1.703) (5.768) (-0.229)

AICC 1.476 0.297 15.62*** 14.968 -0.686 -0.614

(1.217) (5.845) (-0.425)

LNS 2.332** 2.212 14.304*** 15.004 0.405 -0.741

(1.957) (6.358) (0.302)

PD -0.018 0.479 -0.137*** 8.562 0.007 -0.369

(-1.315) (-3.726) (0.478)

PPO -0.050*** 1.535 -0.158*** 8.341 0.036 -0.116

(-2.740) (-3.706) (0.651)

PE -0.016 0.144 -0.221*** 12.322 0.008 -0.322

(-1.057) (-4.485) (0.564)

Note: The table reports the OLS estimation results of forecasting excess stock market returns with implied
cost of capital measures and scaled stock market prices. We de-trend the implied cost of capital by a linear
time trend. PSS, GLS, Easton, OJ, GG, and LNS are the implied cost of capital measures constructed
following Pastor et al. (2008), Gebhardt et al. (2001), Easton (2004), Ohlson and Juettner-Nauroth (2005),
and Gordon and Gordon (1997), respectively. AICC is the average of these five ICC measures. LNS is
the ICC measure used in Li et al. (2013). LNS is available over the 1981Q1 to 2011Q4 period, GLS and
AICC are available over the 1982Q1 to 2016Q4 period, and the other ICC measures are available over
the 1981Q1 to 2016Q4 period. PD is the price-dividend ratio. PPO is the price-payout ratio. PE is the
price-earnings ratio. PD, PPO, and PE are available over the 1963Q1 to 2016Q4 period. In the column
under the name“Original Value,” we use the raw data of implied cost of capital measures and the scaled
stock market prices as the predictive variables. We also decompose implied cost of capital measures and the
scaled stock market prices by regressing them on a constant, stock market variance, and a good variance
measure. We use the fitted value as the forecasting variable in the column under the name “Fitted Value”
and use the residual value as the forecasting variable in the column under the name “Residual Value.”
t-values are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels,
respectively.
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Table XI Relation between Stock Variances and Scaled Stock Market Prices

PD PPO PE

Panel A: Stock Market Variance

VMKT 4.411 7.486 -4.015

(0.377) (1.181) (-0.380)

FEG 0.058 0.025 0.045

(0.292) (0.412) (0.245)

R2 -0.328 1.660 -0.569

Panel B: Stock Market Variance and The First Component of Good Variance Measures

FPCV 0.288*** 0.207*** 0.233***

(8.289) (5.493) (6.683)

VMKT -20.640* -10.582** -24.267***

(-1.840) (-2.043) (-2.190)

FEG 0.030 0.005 0.022

(0.192) (0.169) (0.148)

R2 27.998 51.030 19.211

Panel C: Stock Market Variance and the Average of Good Variance Measures

AVGV 0.342*** 0.247*** 0.276***

(8.366) (5.473) (6.726)

VMKT -20.671* -10.655*** -24.260***

(-1.837) (-2.040) (-2.185)

FEG 0.033 0.007 0.025

(0.210) (0.238) (0.163)

R2 27.905 51.148 19.080

Panel D: Stock Market Variance and Value-Weighted Average Stock Variance

VWASV 18.072*** 14.965*** 13.184***

(6.525) (5.046) (5.219)

VMKT -48.463*** -36.296*** -42.586***

(-4.523) (-4.759) (-3.857)

FEG 0.077 0.040 0.059

(0.468) (1.262) (0.369)

R2 24.571 59.108 13.461

Note: The table reports the OLS estimation results of regressing scaled stock market prices on contempo-
raneous stock market variance and good variance. PD is the price-dividend ratio. PPO is the price-payout
ratio. PE is the price-earnings ratio. VMKT is stock market variance. FPCV is the first principle com-
ponent of the 10 IST-based good variance measures. AVGV is the average of the 10 IST-based good
variance measures. VWASV is the value-weighted average stock variance. FEG is the earnings growth in
the following 10 years. Data span the 1963Q1 to 2016Q4 period. t-value is reported in parentheses. ***,
**, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table XII Relation between Stock Variances and the Risk-Free Rate

Panel A Panel B

Market R2 Good Market R2

Variance Variance Variance

VMKT -0.068 0.683

(-1.201)

FPCV 0.000 0.294 0.001* -0.133* 3.496

(0.806) (1.797) (-1.723)

AVGV 0.000 0.257 0.001* -0.134* 3.464

(0.789) (1.769) (-1.708)

VWASV 0.010 -0.259 0.071*** -0.288*** 7.625

(0.477) (3.087) (-2.923)

Note: The table reports the OLS estimation results of regressing the risk-free rate on contemporaneous
stock market variance and good variance. PD is the price-dividend ratio. PPO is the price-payout ratio.
PE is the price-earnings ratio. VMKT is stock market variance. FPCV is the first principle component
of the 10 IST-based good variance measures. AVGV is the average of the 10 IST-based good variance
measures. VWASV is the value-weighted average stock variance. Data span the 1963Q1 to 2016Q4 period.
t-values are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels,
respectively.
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Table XIII Forecasting One-Quarter-ahead Anomaly Returns

Good Market R2

Variance Variance

Panel A: The First Principle Component of Good Variance Measures

IK 0.442 -1.857** 4.193

(1.098) (-2.130)

Tobin Q 0.794* -1.975* 2.086

(1.727) (-1.833)

PE 0.604* -1.778*** 3.423

(1.757) (-2.976)

IMC IV 1.106* -4.808*** 9.099

(1.681) (-3.736)

βIMC 1.075 -3.643*** 6.461

(1.347) (-2.837)

βMKT 0.826* -4.490*** 11.402

(1.950) (-4.638)

HML 0.64 -2.271*** 3.539

(1.102) (-3.101)

AVE 0.786* -2.965*** 9.086

(1.845) (-3.874)

CMA 0.674** -0.715 1.202

(2.272) (-1.302)

RMW 0.894** -1.169** 2.896

(2.272) (-2.029)

SMB 0.185 0.974 0.737

(0.461) (1.465)
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Good Market R2

Variance Variance

Panel B: The Average of Good Variance Measures

IK 0.551 -1.882** 4.276

(1.164) (-2.149)

TobinQ 0.971* -2.007* 2.175

(1.768) (-1.857)

PE 0.734* -1.799*** 3.496

(1.783) (-2.996)

IMC IV 1.332* -4.837*** 9.15

(1.712) (-3.741)

βIMC 1.286 -3.665*** 6.501

(1.366) (-2.834)

βMKT 1.001** -4.516*** 11.453

(1.978) (-4.650)

HML 0.768 -2.286*** 2.568

(1.100) (-3.098)

AVE 0.952* -2.990*** 9.175

(1.884) (-3.875)

CMA 0.810** -0.731 1.271

(2.109) (-1.320)

RMW 1.060** -1.180** 2.914

(2.252) (-2.025)

SMB 0.2 0.986 0.723

(0.413) (1.474)

Panel C: Value-Weighted Average Stock Variance

IK 0.489* -2.926** 5.519

(1.672) (-2.402)

TobinQ 0.824* -3.734** 3.899

(1.911) (-2.291)

PE 0.865** -3.819*** 8.249

(2.560) (-3.696)

IMC IV 1.169** -7.321*** 11.178

(2.445) (-4.016)

βIMC 1.089** -5.946*** 8.701

(2.100) (-2.950)

βMKT 0.931** -6.537*** 13.334

(2.539) (-4.832)

HML 0.835* -4.189*** 6.201

(1.824) (-2.963)

AVE 0.890*** -4.922*** 12.578

(2.605) (-4.019)

CMA 0.672*** -2.124** 3.813

(2.764) (-2.292)

RMW 0.776** -2.701** 5.334

(2.133) (-2.303)

SMB 0.301 0.245 1.148

(1.152) (0.286)

Note: The table reports the OLS estimation results of forecasting one-quarter-ahead anomaly returns. IK, To-
binQ, PE, IMCIV, βIMC, βMKT, and HML are returns on long-short portfolios formed by investment-capital ratio,
Tobin's Q, price-earnings ratio, idiosyncratic volatility, IMC beta, Market Beta, and book-to-market equity ratio,
respectively. AVE is the average of these seven portfolio returns. CMA, RMW, and SMB are the Fama and French
(2015) conservative-minus-aggressive, robust-minus-weak, and small-minus-big factors, respectively. We use three
proxies for good variance. We use the first principle component and the average of the 10 IST-based good variance
measures in panels A and B, respectively. We use the value-weighted average sock variance in panel C. Data span
the 1963Q1 to 2016Q4 period. t-values are reported in parentheses. ***, **, and * denote significance at the 1%,
5%, and 10% levels, respectively.
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Table XIV Stock Variances and the Cross-Section of Expected Portfolio Returns

Constant Good Market R2

Variance Variance

Panel A: 175 Value-weighted double-sorted Portfolios

FPCV 0.027*** 0.993*** 0.002** 67.538
(4.972) (3.670) (2.021)

AVGV 0.027*** 0.842*** 0.002** 67.814
(4.995) (3.668) (2.022)

VWASV 0.030*** 0.020*** 0.003*** 72.697
(5.210) (3.435) (2.372)

Panel B: 175 Equal-weighted double-sorted Portfolios

FPCV 0.026*** 1.575*** 0.004*** 76.360
(4.466) (5.609) (3.568)

AVGV 0.026*** 1.328*** 0.004*** 76.754
(4.546) (5.604) (3.548)

VWASV 0.032*** 0.029*** 0.005*** 81.950
(5.310) (5.402) (3.759)

Panel C: 32 Portfolios Sorted by Size, Profitability, and Asset Growth

FPCV 0.011** 1.164*** 0.003* 57.279
(2.142) (4.221) (1.858)

AVGV 0.012** 0.996*** 0.003* 57.600
(2.206) (4.221) (1.877)

VWASV 0.018*** 0.022*** 0.003* 61.867
(3.390) (3.384) (1.946)

Panel D: 32 Portfolios sorted by Size, BM, and Asset Growth

FPCV 0.003 1.084*** 0.005** 51.925
(0.569) (3.616) (2.536)

AVGV 0.003 0.925*** 0.005** 51.967
(0.617) (3.618) (2.543)

VWASV 0.011* 0.023*** 0.005** 59.010
(1.797) (3.275) (2.475)

Note: The table reports the Fama and MacBeth (1973) cross-sectional regression results. We use four sets of
test portfolios. In panels A and B, we first sort stocks equally into five portfolios by market capitalization, and
then within each size portfolio we sort stocks equally into five portfolios by each of the seven characteristics: the
investment-capital ratio, Tobin's Q, the price-earnings ratio, idiosyncratic volatility, IMC beta, the book-to-market
equity ratio, and market beta. We use the value weighted 175 portfolios in panel A and the equal-weighted 175
portfolios in panel B. In panel C, we use the 32 triple-sorted portfolios formed on market capitalization, operation
profit, and total asset growth obtained from Kenneth French at Dartmouth College. In panel C, we use the 32 triple-
sorted portfolios formed on market capitalization, book-to-market equity ratios, and total asset growth obtained
from Kenneth French at Dartmouth College. In the Fama and MacBeth regression, we first regress returns on each
test portfolio on lagged stock market variance and lagged good variance, and use the estimated loadings in the
second-stage cross-sectional regressions. We include two lags of stock market variance and two lags of good variance
in the first-stage regression, and the loadings are the sum of the coefficients on two lags of stock market variance or
two lags of good variance. VMKT is stock market variance. We use three proxies of good variance. FPCV is the first
principle component of the 10 IST-based good variance measures. AVGV is the average of the 10 IST-based good
variance measures. VWASV is the value-weighted average stock variance. The data span the 1963Q1 to 2016Q4
period. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Appendix A. Model Appendix

Appendix A. Consumption Dynamics

Aggregate consumption dynamics are as follows

∆ct+1 = µc + xt + σg,tηt+1 − ψxσx,tet+1,

xt+1 = ρxt + ϕeσx,tet+1,

σ2
g,t+1 = σ2

g + vg(σ
2
g,t − σ2

g) + σ1z1,t+1,

σ2
x,t+1 = σ2

x + vx(σ2
x,t − σ2

x) + σ2z1,t+1 + σ3z2,t+1.

The shocks ηt+1, et+1, z1,t+1, z2,t+1, z3,t+1 are i.i.d. standard normal and uncorrelated.

Using the log-linear approximation of Campbell and Shiller (1988), we can write the log return

on the claim to aggregate consumption as

ra,t+1 = ln
Pt+1 + Ct+1

Pt
= ln

Pt+1 + Ct+1

Ct+1
− ln

Pt
Ct

+ ln
Ct+1

Ct
= k0 + k1zt+1 − zt + ∆ct+1, (A1)

where zt = ln Pt
Ct

, z̄ = E[zt], k1 =
ez̄

ez̄ + 1
< 1,k0 = ln(ez̄+1)− z̄ez̄

ez̄ + 1
. From Epstein and Zin (1989),

the log pricing kernel is

mt+1 = lnMt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1. (A2)

The Euler equation for return on any asset i is Et[Mt+1Ri,t+1] = 1, which can be rewritten as

Et
[

exp
(
θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1 + ri,t+1

)]
= 1. (A3)

Equation (A3) holds for the return on the claim to aggregate consumption ra,t+1 or

Et
[

exp
(
θ ln δ − θ

ψ
∆ct+1 + θra,t+1

)]
= 1. (A4)

The log price-consumption ratio is a linear function of state variables:

zt = A0 +A1σ
2
g,t +A2σ

2
x,t +A3xt, (A5)

where A0, A1, A2, A3 are constants to be determined below. Combining equation (A1) and equation

(A5), we have

ra,t+1 = c1 + (k1vg − 1)A1σ
2
g,t + (k1vx − 1)A2σ

2
x,t + (k1A1σ1 + k1A2σ2)z1,t+1

+k1A2σ3z2,t+1 + (k1A3ρ−A3 + 1)xt + (k1A3ϕe − ψx)σx,tet+1 + σg,tηt+1,
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where c1 = k0 + (k1 − 1)A0 + k1A1σ
2
g(1− vg) + k1A2σ

2
x(1− vx) + µc. Note that

θ ln δ − θ

ψ
∆ct+1 + θra,t+1

= θ ln δ + θc1 −
θ

ψ
µc + [A3θ(ρk1 − 1) + 1− γ]xt + θ(k1vg − 1)A1σ

2
g,t

+θ(k1vx − 1)A2σ
2
x,t + θk1(A1σ1 +A2σ2)z1,t+1 + θk1A2σ3z2,t+1

+[θk1A3ϕe + (γ − 1)ψx]σx,tet+1 + (1− γ)σg,tηt+1.

Using equation (A4) and the fact that ln(E[X]) = E[ln(X)]− 1
2Var[ln(X)] for log normal distributed

variable X, we have

A3θ(ρk1 − 1) + 1− γ = 0,

θ(k1vg − 1)A1 +
1

2
(1− γ)2 = 0,

θ(k1vx − 1)A2 +
1

2
[θk1A3ϕe + (γ − 1)ψx]2 = 0,

θ ln δ + θc1 −
θ

ψ
µc +

1

2
θ2k2

1(A1σ1 +A2σ2)2 +
1

2
θ2k2

1A
2
2σ

2
3 = 0,

from which we get

A0 =
1

1− k1

[
ln δ + k0 + (1− 1

ψ
)µc +

1

2
θk2

1(A1σ1 +A2σ2)2 +
1

2
θk2

1A
2
2σ

2
3

+k1A1σ
2
g(1− vg) + k1A2σ

2
x(1− vx)

]
,

A1 =
(1− γ)2

2θ(1− k1vg)
,

A2 =
[θk1A3ϕe + (γ − 1)ψx]2

2θ(1− k1vx)
,

A3 =
1− 1

ψ

1− k1ρ
.

Appendix B. Pricing kernel

The log pricing kernel is

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1

= c2 + [A3(θ − 1)(ρk1 − 1)− γ]xt + (θ − 1)(k1vg − 1)A1σ
2
g,t

+(θ − 1)(k1vx − 1)A2σ
2
x,t + k1(θ − 1)(A1σ1 +A2σ2)z1,t+1

+(θ − 1)k1A2σ3z2,t+1 + [(θ − 1)k1A3ϕe + γψx]σx,tet+1

−γσg,tηt+1, (A6)
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where c2 = θ ln δ − θ
ψµc + (θ − 1)c1. The shock to the pricing kernel is

mt+1 − Et[mt+1] = k1(θ − 1)(A1σ1 +A2σ2)z1,t+1 + (θ − 1)k1A2σ3z2,t+1

+[(θ − 1)k1A3ϕe + γψx]σx,tet+1 − γσg,tηt+1.

Appendix C. Equity premium, Conditional Stock Market Variance, and Risk-Free Rate

Using the log linear approximation for the stock market return, we have

rm,t+1 = ln
Pm,t+1 +Dt+1

Pm,t
= ln

Pm,t+1 +Dt+1

Dt+1
− ln

Pm,t
Dt

+ ln
Dt+1

Dt

= k0,m + k1,mzm,t+1 − zm,t + ∆dt+1, (A7)

where zm,t = ln
Pm,t
Dt

, z̄m = E[zm,t], k1,m =
ez̄m

ez̄m + 1
< 1, and k0,m = ln(ez̄m + 1) − z̄me

z̄m

ez̄m + 1
. The

market portfolio's dividend growth process is

∆dt+1 = µd + φxt + πησg,tηt+1 + πeσx,tet+1.

Suppose that the log stock market price-dividend ratio is a linear function of state variables

zm,t = A0,m +A1,mσ
2
g,t +A2,mσ

2
x,t +A3,mxt, (A8)

where A0,m, A1,m, A2,m, A3,m are constants to be determined below. Combining Equation (A7)and

Equation (A8) we have

rm,t+1 = k0,m + k1,mzm,t+1 − zm,t + ∆dt+1

= c3 + (k1,mvg − 1)A1,mσ
2
g,t + (k1,mvx − 1)A2,mσ

2
x,t + (k1,mA3,mρ−A3,m + φ)xt

+(k1,mA1,mσ1 + k1,mA2,mσ2)z1,t+1 + k1,mA2,mσ3z2,t+1

+(k1,mA3,mϕe + πe)σx,tet+1 + πησg,tηt+1, (A9)

where c3 = k0,m + (k1,m − 1)A0,m + k1,mA1,mσ
2
g(1− vg) + k1,mA2,mσ

2
x(1− vx) + µd.

Combining Equation (A6) and Equation (A9) we have
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mt+1 + rm,t+1

= θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1 + rm,t+1

= c2 + c3 + [A3(θ − 1)(ρk1 − 1)− γ + k1,mA3,mρ−A3,m + φ]xt

+[(θ − 1)(k1vg − 1)A1 + (k1,mvg − 1)A1,m]σ2
g,t

+[(θ − 1)(k1vx − 1)A2 + (k1,mvx − 1)A2,m]σ2
x,t

+[k1(θ − 1)(A1σ1 +A2σ2) + k1,m(A1,mσ1 +A2,mσ2)]z1,t+1

+[(θ − 1)k1A2 + k1,mA2,m]σ3z2,t+1 + (πη − γ)σg,tηt+1

+[(θ − 1)k1A3ϕe + γψx + k1,mA3,mϕe + πe]σx,tet+1.

Using the Euler equation Et[Mt+1Rm,t+1] = 1 and the fact that ln(E[X]) = E[ln(X)]−1
2Var[ln(X)]

for log normal distributed variable X, we have

A3(θ − 1)(ρk1 − 1)− γ + k1,mA3,mρ−A3,m + φ = 0,

(θ − 1)(k1vg − 1)A1 + (k1,mvg − 1)A1,m +
1

2
(πη − γ)2 = 0,

(θ − 1)(k1vx − 1)A2 + (k1,mvx − 1)A2,m

+
1

2
((θ − 1)k1A3ϕe + γψx + k1,mA3,mϕe + πe)

2 = 0,

c2 + c3 +
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,m(A1,mσ1 +A2,mσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,mA2,m]2σ2

3 = 0,

from which we have

A0,m =
1

1− k1,m

[
c2 + k0,m + k1,mA1,mσ

2
g(1− vg) + k1,mA2,mσ

2
x(1− vx) + µd +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,m(A1,mσ1 +A2,mσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,mA2,m]2σ2

3

]
,

A1,m =
(γ − 1

ψ )(1− γ) + (πη − γ)2

2(1− k1,mvg)
,

A2,m =
1

1− k1,mvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,mA3,mϕe + πe)

2
]
,

A3,m =
φ− 1

ψ

1− k1,mρ
.

From Equation (A9), we can derive the conditional stock market variance

σ2
m,t = c4 + (k1,mA3,mϕe + πe)

2σ2
x,t + π2

ησ
2
g,t, (A10)
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where c4 = k2
1,m(A1,mσ1 + A2,mσ2)2 + k2

1,mA
2
2,mσ

2
3. Using Equation (A10), we can substitute σ2

g,t

out from Equation (A8) by σ2
m,t:

zm,t = A0,m +A1,mσ
2
g,t +A2,mσ

2
x,t +A3,mxt

= A0,m −
A1,m

π2
η

c4 + aσ2
m,t + bσ2

x,t +A3,mxt, (A11)

where a =
A1,m

π2
η

and b = A2,m − A1,m

π2
η

(k1,mA3,mϕe + πe)
2.

Using Equation (A6) and Equation (A9) we have

Covt[mt+1, rm,t+1] = c5 − γπησ2
g,t + [(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe)σ

2
x,t.

where c5 = k1k1,m(θ − 1)(A1σ1 + A2σ2)(A1,mσ1 + A2,mσ2) + (θ − 1)k1k1,mA2,mA2σ
2

3 By the Euler

equations Et[Mt+1Rm,t+1] = 1 and Et[Mt+1R
f
t ] = 1 we have

Et[rm,t+1 − rft ] = −1

2
σ2
m,t − Covt[mt+1, rt+1]

= −c5 −
1

2
σ2
m,t + γπησ

2
g,t

−[(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe)σ
2
x,t. (A12)

From (A10) and (A12) we have

Et[rm,t+1 − rft ] = c6 + ασ2
m,t + βσ2

x,t,

where

c6 = −c5 −
γ

πη
c4,

α = −1

2
+

γ

πη
,

β = −[(θ − 1)k1A3ϕe + γψx](k1,mA3,mϕe + πe)−
γ

πη
(k1,mA3,mϕe + πe)

2.

By the Euler equation Et[Mt+1R
f
t ] = 1 we have

rft = −Et[mt+1]− 1

2
Vart[mt+1]

= c7 − [A3(θ − 1)(ρk1 − 1)− γ]xt + cσ2
g,t + dσ2

x,t

= c7 −
cc4

π2
η

+
1

ψ
xt +

c

π2
η

σ2
m,t + [d− c

π2
η

(k1,mA3,mϕe + πe)
2]σ2

x,t,
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where

c7 = −c2 −
1

2
k2

1(θ − 1)2[(A1σ1 +A2σ2)2 +A2
2σ

2
3],

c = −[(θ − 1)(k1vg − 1)A1 +
1

2
γ2],

d = −[(θ − 1)(k1vx − 1)A2 +
1

2
((θ − 1)k1A3ϕe + γψx)2].

Appendix D. Stock Portfolio Returns

Using the log linear approximation for the return on portfolio p, we have

rp,t+1 = ln
Pp,t+1 +Dp,t+1

Pp,t
= k0,p + k1,pzt+1 − zp,t + ∆dp,t+1, (A13)

where zp,t = ln
Pp,t
Dp,t

, z̄p = E[zp,t], k1,p =
ez̄p

ez̄p + 1
< 1, and k0,p = ln(ez̄p + 1)− z̄pe

z̄p

ez̄p + 1
.

The portfolio's dividend growth process is

∆dp,t+1 = µd + φpxt + πη,pσg,tηt+1 + πe,pσx,tet+1 + πzp,t+1.

We suppose that the log price-dividend ratio has the following form

zp,t = A0,p +A1,pσ
2
g,t +A2,pσ

2
x,t +A3,pxt, (A14)

where A0,p, A1,p, A2,p, A3,p are constants to be determined below.

Combining Equation (A13) and Equation (A14), we have

rp,t+1 = c3,p + (k1,pvg − 1)A1,pσ
2
g,t + (k1,pvx − 1)A2,pσ

2
x,t

+(k1,pA3,pρ−A3,p + φp)xt + (k1,pA1,pσ1 + k1,pA2,pσ2)z1,t+1

+k1,pA2,pσ3z2,t+1 + πz3,t+1 + (k1,pA3,pϕe + πe,p)σx,tet+1

+πη,pσg,tηt+1, (A15)

where c3,p = k0,p + (k1,p − 1)A0,p + k1,pA1,pσ
2
g(1 − vg) + k1,pA2,pσ

2
x(1 − vx) + µd. The conditional

variance of the portfolio return is

σ2
p,t = c4,p + (k1,pA3,pϕe + πe,p)

2σ2
x,t + π2

η,pσ
2
g,t, (A16)

where c4,p = k2
1,p(A1,pσ1 +A2,pσ2)2 + k2

1,pA
2
2,pσ

2
3 + π2.

The conditional covariance of the portfolio return with the log pricing kernel is

Covt[mt+1, rp,t+1] = c5,p − γπησ2
g,t + [(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)σ

2
x,t.

where c5,p = k1k1,p(θ − 1)(A1σ1 +A2σ2)(A1,pσ1 +A2,pσ2) + (θ − 1)k1k1,pA2,pA2σ
2

3.
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By the Euler equations Et[Mt+1Rp,t+1] = 1 and Et[Mt+1R
f
t ] = 1 we have

Et[rp,t+1 − rft ] = −1

2
σ2
p,t − Covt[mt+1, rp,t+1]

= −c5,p −
1

2
c4,p −

1

2
(k1,pA3,pϕe + πe,p)

2σ2
x,t + [γπη,p −

1

2
π2
η,p]σ

2
g,t

−[(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)σ
2
x,t. (A17)

Substituting Equation (A16) into Equation (A17), we have

Et[rp,t+1 − rft ] = c6,p + αpσ
2
m,t + βpσ

2
x,t,

where

c6,p = −c5,p −
1

2
c4,p −

γπη,p − 1
2π

2
η,p

π2
η

c4,

αp =
γπη,p − 1

2π
2
η,p

π2
η

,

βp = −[(θ − 1)k1A3ϕe + γψx](k1,pA3,pϕe + πe,p)−
γπη,p − 1

2π
2
η,p

π2
η

(k1,mA3,mϕe + πe)
2

−1

2
(k1,pA3,pϕe + πe,p)

2.

Combining Equation (A6) and Equation (A15), we have

mt+1 + rp,t+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1 + rp,t+1

= c2 + c3,p + [A3(θ − 1)(ρk1 − 1)− γ + k1,pA3,pρ−A3,p + φp]xt

+[(θ − 1)(k1vg − 1)A1 + (k1,pvg − 1)A1,p]σ
2
g,t

+[(θ − 1)(k1vx − 1)A2 + (k1,pvx − 1)A2,p]σ
2
x,t

+[k1(θ − 1)(A1σ1 +A2σ2) + k1,p(A1,pσ1 +A2,pσ2)]z1,t+1

+[(θ − 1)k1A2 + k1,pA2,p]σ3z2,t+1

+[(θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe + πe,p]σx,tet+1

+(πη,p − γ)σg,tηt+1 + πzp,t+1.

Using the Euler equation Et[Mt+1Rp,t+1] = 1 and the fact that ln(E[X]) = E[ln(X)]−1
2Var[ln(X)]
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for log normal distributed variable X, we have

A3(θ − 1)(ρk1 − 1)− γ + k1,pA3,pρ−A3,p + φp = 0,

(θ − 1)(k1vg − 1)A1 + (k1,pvg − 1)A1,p +
1

2
(πη,p − γ)2 = 0,

(θ − 1)(k1vx − 1)A2 + (k1,pvx − 1)A2,p

+
1

2
((θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe + πe,p)

2 = 0,

c2 + c3,p +
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,p(A1,pσ1 +A2,pσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,pA2,p]

2σ2
3 +

1

2
π2 = 0,

from which we get

A0,p =
1

1− k1,p

[
c2 + k0,p + k1,pA1,pσ

2
g(1− vg) + k1,pA2,pσ

2
x(1− vx) + µd +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,p(A1,pσ1 +A2,pσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,pA2,p]

2σ2
3 +

1

2
π2
]

A1,p =
(γ − 1

ψ )(1− γ) + (πη,p − γ)2

2(1− k1,pvg)
,

A2,p =
1

1− k1,pvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,pA3,pϕe + πe,p)

2
]
,

A3,p =
φp − 1

ψ

1− k1,pρ
.

Appendix E. Long-Term Treasury Bonds

Using the log linear approximation, we have

rb,t+1 = ln
Pb,t+1 + 1

Pb,t
= ln(Pb,t+1 + 1)− lnPb,t

= k0,b + k1,bzb,t+1 − zb,t

where zb,t = lnPb,t, z̄b = E[zb,t], k1,b =
ez̄b

ez̄b + 1
< 1, and k0,b = ln(ez̄b + 1)− z̄pe

z̄b

ez̄b + 1
. Suppose that

the log bond price has the following form:

zb,t = A0,b +A1,bσ
2
g,t +A2,bσ

2
x,t +A3,bxt, (A18)

where A0,b, A1,b, A2,b, A3,b are constants to be determined.
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Using Equation A18, we rewrite the bond return as

rb,t+1 = k0,b + k1,bzb,t+1 − zb,t
= k0,b + k1,bA0,b + k1,bA1,bσ

2
g,t+1 + k1,bA2,bσ

2
x,t+1 + k1,bA3,bxt+1 − zb,t

= c3,b + k1,bA1,bvgσ
2
g,t + k1,bA1,bσ1z1,t+1 + k1,bA2,bvxσ

2
x,t + k1,bA2,bσ2z1,t+1

+k1,pA2,pσ3z2,t+1 + k1,pA3,pρxt + k1,pA3,pϕeσx,tet+1 −A1,bσ
2
g,t −A2,bσ

2
x,t −A3,bxt

= c3,b + (k1,bvg − 1)A1,bσ
2
g,t + (k1,bvx − 1)A2,bσ

2
x,t + (k1,bA3,bρ−A3,b)xt

+(k1,bA1,bσ1 + k1,bA2,bσ2)z1,t+1

+k1,bA2,bσ3z2,t+1 + k1,bA3,bϕeσx,tet+1,

where c3,b = k0,b + (k1,b − 1)A0,b + k1,bA1,bσ
2
g(1 − vg) + k1,bA2,bσ

2
x(1 − vx). The conditional bond

variance is

Vart[rb,t+1] = c4,b + (k1,pA3,bϕe)
2σ2
x,t, (A19)

where c4,b = k2
1,b(A1,bσ1 +A2,bσ2)2 + k2

1,bA
2
2,bσ

2
3.

The conditional covariance of the bond return with the pricing kernel is

Covt[mt+1, rb,t+1] = c5,b + [(θ − 1)k1A3ϕe + γψx]k1,bA3,bϕeσ
2
x,t,

where c5,b = k1k1,b(θ− 1)(A1σ1 +A2σ2)(A1,bσ1 +A2,bσ2) + (θ− 1)k1k1,bA2,bA2σ
2

3. Using the Euler

equations for bond and the risk free rate, we have

Et[rb,t+1 − rft ] = −1

2
V art[rb,t+1]− Covt[mt+1, rb,t+1]

= −1

2
c4,b −

1

2
(k1,bA3,bϕe)

2σ2
x,t

−c5,b − [(θ − 1)k1A3ϕe + γψx](k1,bA3,bϕe)σ
2
x,t

= −c5,b −
1

2
c4,b −

1

2
(k1,bA3,bϕe)

2σ2
x,t

−[(θ − 1)k1A3ϕe + γψx](k1,bA3,bϕe)σ
2
x,t

= c6,b + βbσ
2
x,t,

where

c6,b = −c5,b −
1

2
c4,b,

βb = −[(θ − 1)k1A3ϕe + γψx](k1,bA3,bϕe)−
1

2
(k1,bA3,bϕe)

2.
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Combining the pricing kernel and the bond return, we have

mt+1 + rb,t+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)ra,t+1 + rb,t+1

= c2 + c3,b + [A3(θ − 1)(ρk1 − 1)− γ + k1,bA3,bρ−A3,b

+[(θ − 1)(k1vg − 1)A1 + (k1,bvg − 1)A1,b]σ
2
g,t

+[(θ − 1)(k1vx − 1)A2 + (k1,bvx − 1)A2,b]σ
2
x,t

+[k1(θ − 1)(A1σ1 +A2σ2) + k1,b(A1,bσ1 +A2,bσ2)]z1,t+1

+[(θ − 1)k1A2 + k1,bA2,b]σ3z2,t+1

+[(θ − 1)k1A3ϕe + γψx + k1,bA3,bϕe]σx,tet+1 − γσg,tηt+1.

Using the Euler equation Et[Mt+1Rb,t+1] = 1 and the fact that ln(E[X]) = E[ln(X)]−1
2Var[ln(X)]

for log normal distributed variable X, we have

A3(θ − 1)(ρk1 − 1)− γ + k1,bA3,bρ−A3,b = 0,

(θ − 1)(k1vg − 1)A1 + (k1,bvg − 1)A1,b +
1

2
γ2 = 0,

(θ − 1)(k1vx − 1)A2 + (k1,bvx − 1)A2,b +
1

2
((θ − 1)k1A3ϕe + γψx + k1,bA3,bϕe)

2 = 0,

c2 + c3,b +
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,b(A1,bσ1 +A2,bσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,bA2,b]

2σ2
3 = 0.

The solutions to the equations above are

A0,b =
1

1− k1,b

[
c2 + k0,b + k1,bA1,bσ

2
g(1− vg) + k1,bA2,bσ

2
x(1− vx) +

+
1

2
[k1(θ − 1)(A1σ1 +A2σ2) + k1,b(A1,bσ1 +A2,bσ2)]2

+
1

2
[(θ − 1)k1A2 + k1,bA2,b]

2σ2
3

]
,

A1,b =
(θ − 1)(k1vg − 1)A1 + 1

2γ
2

1− k1,bvg
=

(γ − 1
ψ )(1− γ) + γ2

2(1− k1,bvg)
,

A2,b =
1

1− k1,bvx

[
(θ − 1)(k1vx − 1)A2 +

1

2
((θ − 1)k1A3ϕe + γψx + k1,bA3,bϕe)

2
]

=
1

1− k1,bvx

[1− θ
2θ

(θk1A3ϕe + (γ − 1)ψx)2 +
1

2
((θ − 1)k1A3ϕe + γψx + k1,bA3,bϕe)

2
]
,

A3,b =
A3(θ − 1)(ρk1 − 1)− γ

1− k1,bρ
=

− 1
ψ

1− k1,bρ
.
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Appendix B. Data Appendix

Appendix A. Daily and Monthly IST Factors

Accounting data are from Compustat Annual Fundamental files. Stock prices, stock returns,

and shares outstanding of common stocks traded on NYSE, AMEX, and Nasdaq are from CRSP.

Daily excess stock market returns and daily risk-free rates are from Ken French at Dartmouth

College. We exclude Utility firms (SIC 4900-4949), financial firms (SIC 6000-6799), and firms

that have negative or missing book values of equities. We follow Hou, Xue, and Zhang (2015) to

construct book values of equities using Compustat annual data files. It equals (a) stockholders'

book equities, plus (b) balance sheet deferred taxes and investment tax credit, and minus (c) book

values of preferred stocks. We use the Compustat item SEQ as a measure of stockholders' book

equities. If SEQ is not available, we use the sum of the book value of common equities CEQ and

the par value of preferred stocks PSTK. If the sum of CEQ and PSTK is not available, we use

the difference between the book value of total assets AT and the book value of total liabilities LT.

Balance sheet deferred taxes and investment tax credit are measured by TXDITC. The book value

of preferred stocks is redemption value PSTKRV, liquidation value PSTKL, or par value PSTK of

preferred stocks, depending on the availability.

Papanikolaou (2011) argues that HML is closely related to IST shocks, and we obtain daily

and monthly HML from Kenneth French at Dartmouth College. Following Papanikolaou (2011),

we construct the daily investment-minus-consumption factor, IMC, as the difference in daily re-

turns between the value-weighted portfolio of investment-goods producers and the value-weighted

portfolio of consumption-goods producers. We thank Dimitris Papanikolaou at Kellogg School of

Management of Northwestern University for providing the classification of investment-goods pro-

ducers and consumption-goods producers used in Papanikolaou (2011).

Following Kogan and Papanikolaou (2013), we construct six additional proxies of IST shocks

using portfolios formed by Tobin's Q, the investment-capital ratio (IK) the price-earnings ratio

(PE), loadings on excess stock market returns (βMKT), idiosyncratic volatility (IMCIV), and

loadings on IMC (βIMC). As in Kogan and Papanikolaou (2013), we exclude investment-goods

producers from our sample. For portfolios that require accounting data, i.e., Tobin's Q, IK, and

PE, we rank stocks using year t annual accounting data, and rebalance portfolios at the end of June,

year t + 1. For portfolios that require only stock return data,i.e., βMKT, IMCIV, and βIMC, we

rank stocks using data available at the end of year t, and rebalance portfolios at the end of year t.

We construct daily and monthly IST shock proxies using double sorts. We first sort stocks into two

groups using the median NYSE market capitalization as the breakpoint. Within each size portfolio,

we sort stocks into three portfolios by a firm characteristic, e.g., IK, using the NYSE 30th and 70th

IK percentiles as the breakpoints. We construct the daily or monthly value-weighted portfolio

returns and calculate the return difference between low and high IK, for example, portfolios. The

IK factor is the average of the long-short portfolio returns of small and big stocks. We construct

the other factors in the same way. Table B1 provides more details of IST factors.
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We also construct five-by-five portfolios using each of the aforementioned six firm characteristics.

We first sort all stocks into five size portfolios using the NYSE 20th, 40th, 60th, and 80th market

capitalization percentiles as the breakpoints. Within each size portfolio, we sort stocks into five

portfolios by a firm characteristic, e.g., IK, using the NYSE 20th, 40th, 60th, and 80th IK percentiles

as breakpoints. We calculate monthly both equal-weighted and value-weighted returns for each

portfolio. Monthly equal-weighed and value-weighted returns on the five-by-five portfolios formed

on BM are obtained from Kenneth French at Dartmouth College.

Appendix B. Implied Cost of Capital

We construct five ICC measures. Analyst consensus (mean) earnings forecast data are from the

I/B/E/S unadjusted summary file. Accounting data are from Compustat. The end-of-month stock

price and shares outstanding data are from CRSP. The 10-year treasury yield and GDP growth

rate are from the Federal Reserve Bank of St. Louis. We use WRDS's iclink to link I/B/E/S

data and CRSP data and then merge them with Compustat data using the CRSP/Compustat

Merged linking table. We impose following data requirements. First, firms must have common

stocks traded on NYSE, AMEX, or NASDAQ. Second, a stock must have a valid SIC code that

can be used to classify the stock into one of Fama-French 48 industries. The requirement allows

us to construct the median payout ratio for each industry-size group. We use the historical SIC

code from Compustat (Compustat item SICH ). If SICH is unavailable, we use the SIC code from

CRSP (CRSP item SICCD). Third, stocks must have non-missing CRSP price (CRSP item PRC)

and shares outstanding (CRSP item SHROUT) that are used to calculate market capitalization.

Fourth, we exclude observations with negative or missing I/B/E/S earnings forecast for the current

fiscal year FEt+1 (I/B/E/S FPI=1). Fifth, I/B/E/S publishes monthly consensus forecasts on

the third Thursday of each month. To ensure that earnings forecasts are made based on publicly

available accounting information, we impose a minimum reporting lag of three months. Last,

because of the low coverage in I/B/E/S data files in early years, our sample begins from January

1981.

Appendix B.1. Pastor, Sinha, and Swaminathan (2008) Measure

Pastor et al. (2008) define ICC as:

Pt =
15∑
k=1

FEt+k(1− bt+k)

(1 + re)k
+

FEt+16

re(1 + re)15
,

where re is the implied cost of capital, bt+k is the expected year t+ k plowback rate, FEt+k is the

analyst forecast of the t+ k year earnings per share, and Pt is the current month price per share.

We calculate the implied cost of capital from the finite-horizon free cash flow valuation model using

a three-stage procedure.
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Stage 1: Earnings growth rate

We define earnings growth rate as

gt+i = gt+i−1 × exp

[ log(
g

gLT
)

T − 1

]
for i = 4 to 16.

We use I/B/E/S (FPI=0) item LTG as a measure of analyst long-term growth rate forecasts,

gLT . If LTG is missing, we use (FEt+2/FEt+1) − 1 instead. If consensus forecasts for year t+1 or

t+2 are also missing, we use (FEt+1/FEt+0)−1 as an alternative measure. If the analyst long-term

growth rate forecast measure has a value below 2% (above 100%), we replace it with 2% (100%).

We then measure earnings growth rate between year t + 4 and year t + 16 by assuming that firm

earnings growth rates mean-revert to the steady-state growth rate by year t + 17. We assume

that the steady-state growth rate, g, equals the long-run nominal GDP growth rate, which is the

expanding rolling average of the sum of annual real GDP growth rate and implicit price deflator

growth rate. Our GDP data begins in 1930. The real GDP growth rate and implicit price deflator

data are from the Federal Reserve Bank of St. Louis.

Stage 2: Expected Earnings Per Share

We calculate the expected earnings per share using the formula:

FEt+i = FEt+i−1 × (1 + gt+k) for i = 4 to 16.

We obtain FEt+2 from I/B/E/S. If it is missing, we assume that it equals FEt+1 × (1 + gLT ).

After obtaining FEt+2, we remove firms with missing or negative FEt+1 and FEt+2. The forecast of

three-year-ahead earnings is FEt+3=FEt+2 × (1 + gLT ). We then use FEt+3 and the corresponding

growth rate obtained from stage 1 to measure FEt+i recursively.

Stage 3: Plowback rate

The plowback rate forecast for year t + 1 and t + 2 can be constructed using the most recent

accounting data. We construct the forecast in the years after t+ 2 recursively using the formula:

bt+k = bt+k−1 −
bt+2 − b

14
= bt+k−1 −

bt+2 − g
re

14
for k = 3 to 15.

Plowback rate (PBt) equals one minus net payout ratio NPt. We measure NPt in three ways.

First, we define NPt =
Dt + REPt −NEt

NIt
, where Dt is the common dividend (Compustat item

DVC ), REPt is the share repurchase (Compustat item PRSTKC ), NEt is the net equity issuance

(Compustat item SSTK ), and NIt is net income (Compustat item IB). Second, if IB is missing or

has a negative value, we use the one-year ahead consensus earnings forecast made at the end of

previous calendar year, FEt−1, to measure NIt or NPt =
Dt + REPt −NEt

FEt−1
. Last, if NPt is still
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unavailable or if the NPt from the first two steps has a value above 1 or below -0.5, we use the

median NPt of the corresponding industry-size portfolio instead. To compute the median NPt,

we first sort firms into Fama-French 48 industries. Within each industry, we use firm market

capitalization at the end of previous calendar year to sort firms equally into three portfolios. If

the resulting NPt from each industry-size portfolio has a value above 1 or below -0.5, we replace

it with 1 or -0.5, respectively. Hence, the minimum (maximum) plowback rate is 0 (1.5). If a firm

still does not have valid plowback rate after these procedures, we remove it from the sample.

We estimate the plowback rates for year t + 3 to year t + 16 recursively by assuming that

the plowback rate mean-reverts linearly to a steady-state value at year t+17. The steady-state

plowback rate is b = g/re, where the steady state growth rate g is obtained from stage 1 and re

is the implied cost of capital that we are interested in. Therefore, the expanded free cash flow

valuation model is

Pt =
FEt+1(1− PBt)

(1 + re)
1 +

FEt+2(1− PBt)

(1 + re)
2

+
15∑
k=3

FEt+k

(
1−

(
bt+k−1 −

PBt − g
re

14

))
(1 + re)k

+
FEt+16

re(1 + re)
15 ,

and we can solve for re numerically.

Appendix B.2. Gebhardt et al. (2001) Measure

Gebhardt et al. (2001) use the following equation to solve for ICC:

Pt = Bt +
11∑
k=1

(FROEt+k − re)Bt+k−1

(1 + re)
k

+
(FROEt+12 − re)Bt+11

re(1 + re)
11 .

Pt is the stock price from CRSP monthly files. We use shares outstanding data from I/B/E/S

to calculate the book equity value per share, Bt. If the shares outstanding value from I/B/E/S

is missing, we construct an interpolated value using CRSP data: d ∗ SHROUTm−1 + (1 − d) ∗
SHROUTm, where d is the ratio of the number of days between previous month-end and current

I/B/E/S statistical period to the total number of trading days in month m, and SHROUT is the

number of monthly-end shares outstanding from CRSP. re is the implied cost of capital. FROE is

the expected return on equity (ROE).

For years t + 1 to t + 2, FROEt+k =
FEt+k

Bt+k−1
. We obtain FEt+1 and FEt+2 from I/B/E/S. For

year t+3, we use the analyst long-term earnings growth rate forecast (LTG) from I/B/E/S (FPI=0)

to calculate FEt+3 = FEt+2× (1 + LTG). If LTG is missing, we replace it with (FEt+2/FEt+1)− 1.

If consensus forecasts in year t + 2 is also missing, we use (FEt+1/FEt+0) − 1. We require non-

negative and non-missing I/B/E/S consensus earnings forecasts. After year t + 3, we estimate

FROE by assuming that it linearly mean-reverts to the industry median ROE by year t + 11.
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ROEt = Et

Bt
, where Et is the actual EPS obtained from I/B/E/S unadjusted summary files. As

in Gebhardt et al. (2001), we exclude firms with negative EPS when estimating the industry

median ROE because profitable firms provide more accurate estimation over the industry's long-

term equilibrium rate of return on equity than do unprofitable firms. We require a minimum of five

years and a maximum of ten years rolling window to compute the industry median ROE, ROEint.

Hence, FROEt+3+j = FROEt+3 × (1 + gint)
j where gint = (

ROEint
FROEt+3

)
1
9 − 1.

The book equity value per share is obtained from clean surplus accounting Bt+j = Bt+j−1 +

FEt+j −Dt+j for j = 1 to 11. Bt is the book equity value per share measured as the ratio of most

recent book equity value to the number of shares outstanding. FEt+k is the year t forecast of EPS

in year t+k. Dt+k is the year t forecast of dividend per shares in year t+k; it is the product of the

most recent dividend payout ratio with FEt+k. We use Compustat data to construct the dividend

payout ratio as DVC
IB . For firms with negative or missing IB, we use DVC

(0.06∗AT) as an alternative

dividend payout ratio. Note that the historical average return on assets is 0.06 in the US data. We

require firms to have a valid payout ratio. For firms with a payout ratio below zero or above one,

we replace it with zero or one, respectively.

Following Gebhardt et al. (2001), we impose following data requirements. First, firms must

have non-missing book value of equity. The definition of book equity is the same as the one used

to construct IST factors in the preceding subsection. We remove firms with a negative book value

of equity. Second, firms must have non-missing net income (IB). For firms with negative IB, we

replace it with 0.06 × AT if possible. Third, firms must have non-missing dividends (DVC ) and

long-term debt (DLTT ). Last, we exclude firms with missing or negative earnings forecasts for the

following fiscal year (I/B/E/S FPI=2).

Appendix B.3. Easton (2004) Measure

Easton (2004) uses the following equation to estimate the implied cost of capital:

Pt =
FEt+2 + re ×Dt+1 − FEt+1

r2
e

Pt is the stock price. re is the implied cost of capital. FEt+1 and FEt+2 are consensus analyst

earnings forecasts for the current and next fiscal years. Dt+1 is the expected dividend per share,

and is calculated as the product of FEt+1 with the most recent payout ratio. The definition and

criteria of the payout ratio is the same as that used in Gebhardt et al. (2001). We require firms with

non-missing book value of equity, net income (IB), and dividends (DVC ). Firms with a negative

book value of equity are excluded. We also exclude firms with missing or negative earnings forecasts

for the next fiscal year (I/B/E/S FPI=2).

Appendix B.4. Ohlson and Juettner-Nauroth (2005) Measure

Ohlson and Juettner-Nauroth (2005) construct the implied cost of capital using the following
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equation:

re = A+

√
A2 +

FEt+1

Pt
× (g − (γ − 1)).

re is the implied cost of capital. A = 0.5
[
(γ−1) +

Dt+1

Pt

]
. Dt+1 is the expected dividend per share,

and is calculated as the product of FEt+1 with the most recent payout ratio. FEt+1 and FEt+2

are consensus analyst earnings forecasts for the current and next fiscal years. Pt is the stock price.

γ − 1 is set to 10-year Treasury yield minus 3%. g = 0.5
[(FEt+2 − FEt+1

FEt+1

)
+ LTGt

]
. As in Gode

and Mohanram (2003), we use the average of near-term and long-term growth rates to estimate g.

The definition and criteria of the payout ratio is the same as that used in Gebhardt et al. (2001).

We require firms with non-missing book value of equity, net income (IB), and dividends (DVC ).

Firms with negative book value of equity are excluded. We also exclude firms with missing or

negative earnings forecasts for the next fiscal year (I/B/E/S FPI=2).

Appendix B.5. Gordon and Gordon (1997) Measure

The Gordon and Gordon (1997) measure is a special case of the finite-horizon Gordon growth

model. They use the following equation to calculate the implied cost of capital:

Pt =
FEt+1

re
.

re is the implied cost of capital. FEt+1 is consensus analysts earnings forecasts for the current fiscal

year. Firms with missing or negative earnings forecasts for the next fiscal year (I/B/E/S FPI=2)

are excluded.

69



Table B1 IST Factors

Variable Definition

IK
IK is the investment-capital ratio. We measure investment as the difference between
capital expenditure and PPE sales or CAPX -SPPE. We measure capital using lagged
PPE, PPEGT. SPPE is set to zero when missing.

Tobin's Q

Tobin's Q is the market value of assets divided by their replacement costs. The market
value is the difference between (MKCAP12+DLTT+PSTKRV ) and (INVT+TXDITC ).
The replacement cost is the book value of PPE, PPEGT. We set TXDITC to zero when
missing. MKCAP12 is the market capitalization, the product of the share price PRC
with shares outstanding SHROUT, at the calendar year end.

PE

PE is the ratio of a firm's market value (MKCAP12+DLTT+PSTKRV -TXDB) to the
sum of operating income, IB, and interest expenses, XINT. MKCAP12 is the market
capitalization, the product of the share price PRC with shares outstanding SHROUT,
at the end of the calendar year.

IMC
IMC is the return difference between the value-weighted portfolio of investment-goods
producers and the value-weighted portfolio of consumption-goods producers. We use
June-end market capitalization for weights.

βMKT

We estimate market beta by regressing daily excess stock returns on a constant and
concurrent daily excess stock market returns using a one-year rolling window. We
include only stocks that have at least 200 valid daily returns in a calendar year.

βIMC

We estimate IMC beta by regressing daily excess stock returns on a constant and
concurrent daily IMC using a one-year rolling window. We include only stocks that have
at least 200 valid daily returns in a calendar year.

IMCIV

IMCIV is the square root of the sum of squared residuals from the regression of daily
excess stock returns on a constant, daily value-weighted IMC, and daily excess market
returns. We include only stocks that have at least 200 valid daily returns in a calendar
year.

Note: The table describes the variables that we use to construct the IST shock proxies. Unless otherwise
indicated, variables in italic and bold are from Compustat and CRSP, respectively.
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Table B2 Summary Statistics for monthly ICCs

ICC PSS GLS Easton OJ Gordon

Mean 0.107 0.091 0.116 0.118 0.071

Std Dev 0.021 0.021 0.029 0.029 0.020

Kurtosis 3.310 1.715 3.914 1.424 2.227

Skew 1.654 1.301 1.914 1.407 1.346

PSS 1

GLS 0.969 1

Easton 0.957 0.955 1

OJ/GM 0.894 0.921 0.963 1

Gordon 0.968 0.987 0.928 0.871 1

Note: The table reports the summary statistics of ICC measures.
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