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Abstract

We develop a model in which financial intermediaries hold near-cash assets to protect

themselves from shocks. Depending on parameter values, banks may choose to hold too

much or too little cash on aggregate compared to the socially optimal amount. The

model, therefore, provides a unified framework for thinking, on the one hand, about

policy measures that can reduce hoarding of cash by banks and, on the other hand,

about liquidity requirements of the type imposed by the new Basel III regulation. Key

to our results is a market in which banks can obtain cash by selling or repo-ing their

marketable securities. The quantity of cash obtained on this market is determined

endogenously by the market value of the marketable securities and is subject to cash-

in-the-market pricing. When uncertainty about the value of marketable securities is

low, banks hold too little cash and liquidity regulation can achieve a better allocation.

When uncertainly about the value of marketable securities is sufficiently high, banks

hoard cash leading to a market freeze.
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1. Introduction

This paper studies whether the amount of liquidity (near-cash assets) chosen by financial

intermediaries to protect themselves from shocks is optimal from the perspective of social

welfare. Liquidity has been an important policy issue since the 2007-2009 financial crisis.

The new Basel III regulation introduced liquidity requirements, in the form of the liquidity

coverage ratio (LCR) and the net stable funding ratio (NSFR). This type of regulation

stems from the concern that financial intermediaries may not hold enough liquid assets. On

the other hand, concerns have been expressed that some financial intermediaries may be

hoarding liquid assets such as cash, leading to market freezes, particularly in Europe during

the Subprime and Euro crisis (ECB, 2014).1 In light of these concerns, it seems important

to understand under which circumstances the private decisions of decentralized financial

intermediaries may lead to too much or too little liquidity in the financial system. Our

model provides a unified framework to think about these issues and the policy interventions

that could lead to better outcomes.

We develop a simple model of banks that are subject to a liquidity shock, in the spirit

of Diamond and Dybvig (1983) and Holmstrom and Tirole (1998). Our banks are endowed

with a non-tradable project, which we can think of as a commercial loan, that may require

additional cash to successfully come to maturity. Banks also need to decide how much

near-cash assets and marketable securities they want to hold. We think of near-cash assets

as level 1 high quality liquid assets, such as central bank reserves and sovereign bonds.

Examples of marketable securities in our model would be corporate bonds or equities. Mar-

ketable securities have a higher expected return than cash but their return is uncertain. In

addition, these securities cannot be used directly to meet the liquidity shock, but they can

be exchanged against cash in a market. The market may be interpreted either as a secured

money market in which banks lend temporarily their securities against cash (e.g. in a repo

transaction) or as a market in which the securities are sold.2 Banks holding securities that

turn out to have a low return may not be able to raise sufficient cash when they are hit by

a liquidity shock.

We assume that the non-marketable project cannot be pledged or sold to other banks.

1For example, the Wall Street Journal reported “Europe’s biggest banks are continuing to stash more

money at central banks, a move that reflects their lingering fears about the financial system despite signs of

improvement.” (WSJ “Large European Banks Stash Cash” Nov. 13 2012). For academic work on the topic

see Acharya and Merrouche (2012) for the UK, Heider et al. (2015) for Euro zone, de Haan and van den End

(2013) for the Netherlands. See also Ashcraft et al. (2011) for empirical evidence of precautionary holding

of reserves by U.S. banks in 2007-2008.
2As is usual in the literature (for example Allen et al. (2009)), there is no substantial difference between

a secured lending market and a market for outright purchases in our model. Indeed, since the return on

marketable securities is publicly known when the market opens in our model, there is no difference between

selling marketable securities and using them as collateral in secured loans.
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That project may not be good collateral because its value could depend on the specific

skills of the banker so that its value is very low when the bank fails, which is precisely when

the collateral is needed (Diamond and Rajan, 2001).3 In contrast, marketable securities

are good collateral because their value does not depend on the survival of the bank that

pledged them.

In choosing the optimal amount of cash, a planner weighs the benefit of an additional

unit of cash, which can be used to continue non-marketable projects, against the cost,

which is the foregone return on tradable assets. At the optimum, the planner chooses to

hold exactly enough cash, on aggregate, to continue all non-marketable projects, because

we assume that the return on those projects is sufficiently high.

We show that banks may choose to hold too much or too little cash on aggregate, in

equilibrium, depending on parameter values, compared to the socially optimal amount.

When uncertainly about the value of the marketable asset is low, banks hold too little cash

because they do not internalize the effect their cash-holding decision on the equilibrium

price of securities. Low cash holding implies that the value of securities is low because

of cash-in-the-market pricing. This, in turns, reduces the extent to which banks hit by a

liquidity shock can continue their non-marketable project.

If the uncertainty about the value of the marketable securities is sufficiently high, banks

choose to hoard cash; that is, banks hold enough cash to continue their long-term project

without needing to access the market. This leads to a market “freeze”. Nevertheless, we

show that this allocation is constrained optimal.

Our work relates to the body of research analyzing liquidity choices by financial insti-

tutions, and the link with asset prices. Following Allen and Gale (2004, 2005), a number of

papers have analyzed how cash-in-the-market-pricing affects banks’ liquidity decisions and

the possibility of central bank or public intervention. In particular, our paper is related to

Allen et al. (2009), Freixas et al. (2011) and Gale and Yorulmazer (2013). An important

difference between these papers and ours is that there can be either too much or too little

cash in equilibrium in our model. Acharya et al. (2010) shows how the expectation of fire

sales can lead to liquidity choices that are excessive from a social viewpoint. The strategic

motive for cash hoarding is also analyzed in Acharya et al. (2012) and Gale and Yorulmazer

(2013). Other papers show that liquidity hoarding may be a response to an exogenous

increase in counterparty risk (Heider et al., 2015). The interplay between endogenous liq-

uidity choices and private information is analyzed in Bolton et al. (2011) and Malherbe

(2014). Bolton et al. (2011) focus on a tradeoff between outside and inside liquidity and

show that the timing of trade can lead to an equilibrium with too little outside liquidity

3While we do not explicitly model these frictions, a number of informational friction could help explain

why the non-marketable project cannot be sold or its return pledged. See for example Gale and Yorulmazer

(2013).

2



and too little cash-in-the-market-pricing. Malherbe (2014) shows how in the absence of

cash-in-the-market-pricing initial liquidity choices impose a negative externality on future

liquidity by exacerbating adverse selection problems. We consider a setup where informa-

tion on traded assets is symmetric, and relate socially excessive liquidity to the dispersion

of traded assets.

The remainder of the paper proceeds as follows: In section 2 we describe the model.

Section 3 characterizes the allocations chosen by the planner, under different constraints.

We describe banks’ behavior in section 4. The definition and characterization of equilibria

is done in section 5. Section 6 considers some policy implications of the model. Section 7

concludes.

2. Environment

The economy is populated by a continuum of identical agents called banks. There are

3 dates indexed by t ∈ {0, 1, 2}. At t = 0, each bank is endowed with a non-marketable

investment project, which we can think of as an industrial loan or a commercial real-estate

deal, for example, as well as one unit of cash.4 Banks can keep the cash or invest in

marketable “securities,” such as bonds, equities, or asset-backed securities.5 At t = 1, a

financial market opens in which each bank can rebalance its portfolio of cash and securities.

At t = 2, the investment project and the securities mature, and consumption takes place.

2.1. Cash and securities

Cash has a net return of 0 and can be costlessly stored from one period to the next.

Tradable securities generate a stochastic return at date 2. The actual return depends on the

type θ of the security, which is publicly revealed at date 1. That type is H with probability

of µ and L otherwise. Tradable securities generate a return Rθ at date 2 with RH > RL.

The expected gross return, denoted R̄, is assumed to be greater than 1.

R̄ ≡ E (Rθ) = µRH + (1− µ)RL > 1 (A1)

Let s ∈ [0, 1] denote the share of the cash in the bank’s portfolio at t = 0.

4We think of “cash” as including near-cash assets, such as level 1 HQLA.
5Empirically we think of this asset as any type of security with an International Security Identification

Number (ISIN) or, in the U.S. context, a CUSIP, allowing its trade on an organized market. We do not

modeled the process leading to the creation of this type of security.
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2.2. Project

Each bank holds a project that yields y at t = 2. At t = 1, with probability λ, the

project is hit by a liquidity shock that requires the injection of an extra amount of cash.6

To simplify notation, we normalize that amount to 1. In Appendix A, we show that our

results generalize to the case where the amount of cash to be injected is less than 1. If

no cash is injected, the project is liquidated at t = 1 and yields nothing. The project is

divisible: If a bank does not have enough cash at t = 1 to continue the project in its entirety,

it can inject i < 1 of cash and the project returns i · y at date t = 2.

We assume that :

y > R̄ (A2)

This condition implies that, from the perspective of date 0, the return y on the extra amount

of cash that needs to be injected to continue the project in case of a liquidity shock is greater

than R̄, the expected return on securities.

2.3. Timing

• t = 0: Each bank chooses s, the share of cash it wants to hold, with 1−s representing

the share of securities the bank holds.

• t = 1: Each bank learns the value of the securities it holds and whether it suffer

liquidity shock. The market for securities opens. Bank with a liquidity shock decide

whether to inject additional cash to continue their project.

• t = 2: The return on long term project and the securities are realized. Banks profit

are realized.

Figure 1 summarizes the sequence of the events.

3. Market for liquidity

At date 1, a market opens in which banks can trade securities for cash. (equivalently,

borrow cash pledging securities) Banks that receive a liquidity shock and need to acquire

additional cash to continue their project will seek to sell some or all of their securities

holding in this market. Banks that did not receive a liquidity shock, as well as banks that

are unwilling to continue their project, may want to purchase securities with their cash.

6We assume a law of large number holds so that the share of projects affected by the liquidity shock is

also λ.
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t = 0 t = 1 t = 2

• Banks invest in assets

− s in cash

− 1− s in securities

• Liquidity shock realized

− λ need to inject 1

• Type of security {H,L}, its value revealed

µ RH

1− µ RL(< RH)

• Market for cash/securites trades

− prices: pRH , pRL

• Refinanced projects continued

• Projects mature (y)

• Payoff from assets realized

Figure 1: Timing

3.1. No arbitrage between two segments of market

There exists two types of securities H, L. Because there is no informational asymmetry

about the type of securities between buyers and sellers, the return from purchasing either

security be same in equilibrium. Let 1
p denote the market return on securities. This notation

is convenient because the price of security θ can be written as pRθ. The no-arbitrage

condition can thus be expressed as

RH
pRH

=
RL
pRL

=
1

p
. (1)

3.2. Demand of cash

Banks that receive a liquidity shock demand cash and supply securities to the market, in

order to continue their nonmarketable project, provided they have an incentive to continue

their project. They will do as far as the return of injecting 1 unit of cash in the project

or internal return on cash is higher than and its opportunity cost, which is the return on

purchasing securities or market return on cash 1
p . The bank will demand cash if

y ≥ 1

p
. (2)

As far as inequality (2) holds, the amount of cash needed by each bank affected by a

liquidity shock is 1 − s. However, the amount of cash effectively demanded by each bank

depends on the amount of cash backed by the market value of the securities, pRθ. On the

one hand, if this is higher than 1, the effective demand is not constrained by the market

value of the security and as a consequence banks demand 1− s. On the other hand, if the

price of the securities is lower than 1, the effective demand is constrained by the market

value of securities. As a consequence their effective demand only becomes (1− s) pRθ. If

inequality (2) does not hold, banks will not demand any cash.
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The individual demand function for cash by a bank holding θ-type security and hit by

a liquidity shock, denoted d (p, s, θ), is given by:

d (p, s, θ) =


(1− s) min {1, pRθ} 1

p < y,

[0, (1− s) min {1, pRθ}] if 1
p = y,

0 1
p > y.

The aggregate demand function on cash, D, is given by the sum of the individual demands:

D =


D (s, p) 1

p < y,

[0, D (s, p)] if 1
p = y,

0 1
p > y.

(3)

where

D (s, p) = λ (1− s) [µmin {1, pRH}+ (1− µ) min {1, pRL}] ,

which is equivalent to

D (s, p) =


λ (1− s) if 1

p ≤ RL,

λ (1− s) [µ+ (1− µ) pRL] if RL < 1
p ≤ RH ,

λ (1− s) pR̄ if 1
p > RH .

If 1
p ≤ RL, then banks affected by a liquidity shock can get the cash they need to continue

their project regardless of the return on the securities they hold since the market value of

the securities they hold is higher than the amount of cash they need. So a fraction λ of

banks demand an amount (1 − s) of cash. If RL < 1
p ≤ RH , then banks affected by a

liquidity shock can get as much cash as they would like if they hold securities with return

RH , but are constrained if they hold securities with return RL. Finally, if 1
p > RH , all

banks affected by a liquidity shock are constrained and they can demand only the amount

of cash backed by the market value of securities they hold. Figure 2 illustrates the aggregate

demand function on cash as well as the amount of cash needed in the economy. Upon the

value of y and of RH , demand curve can be one of the two above cases.

3.3. Supply of cash

Next, we can derive the supply of cash. Banks may be willing to supply cash to the

market, and purchase securities, for two reasons. First, banks that are not subject to the

liquidity shock, (1− λ) will be willing to supply cash buying securities if their return is

higher than or at least equal to return on cash, 1
p ≥ 1. Second, banks hit by the liquidity

shock, λ supply cash and purchase securities if the market return on cash is higher than their

internal return on cash i.e. return of injecting cash in the project, 1
p ≥ y. The aggregate
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D

1
p

y

RH

RL

λ(1− s)

λ(1− s)(µ+ (1− µ)pRL)

Cash needs

(a) RL < y ≤ RH

D

1
p

y

RH

RL

λ(1 − s)

λ(1 − s)pR̄

λ(1 − s)(µ+ (1 − µ)pRL)

Cash needs

(b) RL < RH < y

Figure 2: Demand of cash

supply function of cash, illustrated in Figure 3, is given by:

S =



0 if 1
p < 1,

[0, (1− λ)s] if 1
p = 1,

(1− λ)s if 1 < 1
p < y,

[(1− λ)s, s] if 1
p = y,

s if 1
p > y.

(4)

4. Equilibrium

In this section, we derive the equilibrium allocation. At date t = 0, banks decide how

much cash and securities to hold, taking into account the expected market price of securities

in terms of cash at t = 1. Working backward, we first derive the market price of securities

at t = 1, for a given choice of s, and then we consider the optimal choice of s at t = 0.

4.1. Equilibrium price of security at t = 1

This sub-section characterizes the market equilibrium price of securities, given a cash

level s, chosen at t = 0. The price of θ-type securities is denoted by p∗Rθ. First, we prove

the following lemma:

Lemma 1. Given the cash holding level s chosen at t = 0, the equilibrium market return

on cash 1
p∗ always satisfies (i) 1 ≤ 1

p∗ ≤ y; and (ii) RL ≤ 1
p∗ ≤ RH .
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S

1
p

y

1

(1− λ)s s

Figure 3: Supply of cash

Lemma 1 (i) is straightforward from the supply and the demand curve. If the market

return on cash 1
p is lower than 1, the supply of cash in the market would be 0. On the

other hand, if market return on cash is higher than y, there would be no demand for cash

in the market. The intuition of lemma 1 (ii) is as following (The formal proof is provided

in the appendix.). Note that if 1
p < RL, then a bank would be able to continue its non-

marketable project even when it holds securities with a low return. Since securities have a

higher return than cash, banks would holds only securities, leading to the supply of cash

in aggregate being 0 in the market. If 1
p > RH , then market return on cash is higher than

that of securities even than securities with higher return RH . Banks would hold only cash,

leading to the demand of cash backed by securities being 0. In equilibrium, the market

return on cash 1
p satisfies RL ≤ 1

p∗ ≤ RH .

Provided lemma 1 holds, the supply of cash in the market is given by only banks that

are not affected by the liquidity shock,

S = (1− λ)s. (5)

When market return on cash, 1
p satisfies lemma 1, the demand for cash can be written

as:

D (p, s) =

{
λ (1− s) if 1

p = RL,

λ (1− s) [µ+ (1− µ) pRL] if RL < 1
p ≤ RH .

(6)

Given the expression for supply (5) and demand (6), we can prove proposition 1, which

characterizes the equilibrium prices of securities, taking as given the cash level s.
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Proposition 1. Under pRL ≤ 1 ≤ pRH , given the level of cash holding s, the equilibrium

p∗ (s) is determined as follows:

1. If S ≥ D (p = 1), then p∗ (s) = 1. The price of security is its fundamental value.

2. If S < D (p = 1), then p∗ (s) is determined by S = D yielding

p∗ (s) =
1

RL

[
(1− λ) s

λ (1− s) − µ
]

1

1− µ.

The price of security is below its fundamental value.

3. If s = λ and RL ≥ 1, p∗ can be any value in
[

1
RL
, 1
]
, i.e. any value between p∗ (s)

determined by S = D and 1.

D (p = 1) is the demand of cash backed by the fundamental value of security. If supply

of cash is higher than D (p = 1), the price of security is its fundamental value. Inversely, if

supply of cash is lower than D (p = 1), the price of security is determined by the amount of

cash in the market and is lower than its fundamental value (“cash-in-the-market” pricing).

4.2. Individual Portfolio Choice at t = 0

Each bank decides how much cash to hold at t = 0 to maximize its expected profit.

Given θ, the marginal return on cash depends on whether it can obtain necessary amount

of cash or not when it is hit by liquidity shock. In other words, the marginal return on cash

depends on whether or not s+(1− s) pRθ ≥ 1, equivalently, pRθ ≥ 1. Since pRL ≤ 1 ≤ pRH
in equilibrium, it depends on which type of security the bank holds. When the bank holds

H-type, it is not liquidity constrained, so the marginal return on cash is simply

1

p
−RH ;

the gross return on one additional unit of cash minus the opportunity cost of that additional

unit.

If the bank holds L-type, then we have two cases upon the price of L-type security pRL.

When pRL = 1, the bank is not liquidity constrained, so the marginal return on cash is

similar to above and can be written as

1

p
−RL.

When pRL < 1, the bank is liquidity constrained. In this case, the marginal return is given

by [
λy + (1− λ)

1

p

]
− [λpRLy + (1− λ)RL] .
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The first term in brackets corresponds to the bank’s marginal return on cash: if the bank is

affected by a liquidity shock, which happens with probability λ, then the marginal return

on cash is equal to the marginal return on the project, y, while if the bank is not affected

by the liquidity shock, then the cash can be used to purchase securities, with a marginal

return of 1
p . An additional unit of cash also carries an opportunity cost, corresponding to

the return of the securities that could have been purchased instead. This is captured by

the second term in brackets: if the bank is affected by a liquidity shock, it would sell the

additional securities at price pRL to acquire cash, while if the bank is not affected by the

liquidity shock the additional securities would return RL.

Using these expressions, we can derive the expected marginal (net) return on cash con-

ditional on the price of securities p, which is given by

∂π

∂s
=

{
1
p − R̄ if pRL = 1(

1
p − R̄

)
+ (1− µ)λ

(
y − 1

p

)
(1− pRL) if pRL < 1

(7)

When pRL < 1, the expected marginal return on cash is the sum of two components.

The first term,
(

1
p − R̄

)
, represents the pecuniary or “fundamental” net return on cash,

which can be negative. The second term represents the additional value of cash that comes

from its use in continuing the long-term project when a liquidity shock hits. The relative

size of these two terms will determine whether there is cash hoarding or cash-in-the-market

pricing in equilibrium.

The equilibrium cash holding level s∗ given p must maximize the expected return on

cash. From this together with the proposition 1, we can characterize market equilibria,

represented by the pair of the price p∗ and the level s∗ of individual cash holding.

Proposition 2. For each RL ≤ RH , there exist a unique equilibrium:

1. When RL = RH = R̄, there exist an equilibrium with s∗ = λ and p∗ = 1
R̄

. (optimal)

2. When R̂ < RL < R̄, there exist an equilibrium with s∗ < λ and p∗ < 1. (cash-in-the-

market pricing) s∗ and p∗ are determined by

s∗ =
λ (µ+ (1− µ) pRL)

λ (µ+ (1− µ) pRL) + (1− λ)
(8)

1

p∗
= R̄− (1− µ)λ

(
y − 1

p∗

)
(1− p∗RL) (9)

3. When RL < R̂, there exist an equilibrium with s∗ = 1 and p∗ = 1. (cash hoarding,

with the price being the fundamental value)
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RL

p∗

1
R̄

1

0 R̄R̂

(a) Equilibrium p∗

RL

s∗

0 R̄R̂

λ

1

s∗

(b) Equilibrium cash holding level s∗

Figure 4: Equilibrium price and cash holding level
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The threshold level R̂ of RL is given by

R̂ ≡ 1− R̄− 1

(1− µ)λ (y − 1)
. (10)

The proof is provided in the appendix.

Figure 4 illustrates the equilibrium price and cash level upon the value of security with

low quality RL. It is noteworthy that λ is the optimal level of cash in the economy. Banks

need cash only for the purpose of continuing project hit by liquidity shock in our model.

Proportion λ of banks is affected by liquidity shock, in which case 1 unit of cash should

be injected in order to continue the project in full scale. Thus total cash needed in the

economy is λ. This is the case independent of the value of the security with low quality,

RL, whereas market equilibrium level of cash depends upon RL.

There exist a trade off when the bank holds securities in its portfolio. Compared to

cash, marketable securities exhibit an advantage in the sense that they generate an expected

return higher than cash (R̄ > 1) and can be used to obtain cash if needed by selling them in

the market (or equivalently by pledging them as collateral and borrowing cash). However,

increasing the amount of securities in one’s portfolio increases as well the risk the project

hit by liquidity shock cannot be continued in full scale when the security is of low quality.

In that case, its foregone return y is higher than expected return on securities R̄. This risk

becomes higher as RL is low. As a consequence, market equilibrium is characterized upon

the fundamental value of the security with low quality.

When RL is low such that RL < R̂, market allocation results in an equilibrium with

cash hoarding.7 When it exists, this equilibrium corresponds to a situation where the

return on cash that comes from its use to continue the non-marketable project exceeds, in

equilibrium, the return from holding securities. In such a situation, the interbank market

functions very poorly as a way to redistribute cash between banks. As a consequence, the

interbank market freezes; all banks hold as much cash as they need and no trade takes place.

Since there is cash hoarding in this equilibrium, the price of securities always corresponds

to their fundamental value.

When RL is high such that R̂ < RL < RH , the equilibrium level of cash holding by banks

is lower than the optimal amount, s∗ < λ. When RL is high, banks are less concerned by

liquidity shock considering that they can come up with cash needs by selling their securities.

Banks thus are holding cash less than socially optimal. In this equilibrium banks do not

internalize the effect their cash-holding decision has on the equilibrium price of securities.

Because banks are holding so little cash, equilibrium p∗ is always lower than 1. In other

words, there is cash-in-the-market pricing. This, in turns, reduces the extent to which banks

hit by a liquidity shock can continue their project.

7Such an equilibrium may not exist, depending on the value of other parameters and if R̂ is lower than 0.
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5. Comparative statics

5.1. Dispersion of return on securities and cash holding

Our analysis demonstrated that the quality of marketable securities has an impact on

the banks’ behavior on cash holding. We investigate more on their relationship taking

dispersion of return on securities as a measure of the quality of securities. The risk a bank

cannot hedge liquidity shock becomes higher as dispersion of return on marketable securities

becomes higher because it becomes higher the probability that the value of the security is

not enough to obtain the amount of cash needed.

We use the coefficient of variation, cv, as our measure of dispersion, which is defined as

standard deviation of returns on securities divided by their expected return. Precisely,

cv =

√
µ
(
pRH − pR̄

)2
+ (1− µ)

(
pRL − pR̄

)2
pR̄

Given R̄ ≡ µRH + (1− µ)RL, cv can be rewritten as

cv =

√
1− µ
µ

(
1− RL

R̄

)
(11)

In order to analyze the sole effect driven by changes in dispersion on the amount of cash

held by banks, we take expected return on securities R̄ as given and focus only dispersion

between return on the securities with high quality (RH) and that with low quality (RL).

Using proposition 2, we obtain the following proposition for R̄ ∈ (1, y), which is relevant

range of R̄:

Proposition 3. Given a constant R̄ ∈ (1, y),

1. if dispersion of return on securities cv is lower than ĉv, then there exhibit a negative

relationship between dispersion of return and equilibrium level of cash holding;

2. if dispersion of return on securities cv is higher than ĉv, banks hold exclusively cash

without securities independent of dispersion.

The threshold level of dispersion, ĉv is given by

ĉv =
R̄− 1

R̄

√
1− µ
µ

[
1 +

1

(1− µ)λ (y − 1)

]
(12)

The proof is relegated to the appendix. Figure 5 (a) illustrates the relationship between

dispersion and the cash holding level described in proposition 3. Interestingly, we have

non trivial non monotonous impact of the level of dispersion. When dispersion is low, as

dispersion grows banks hold less cash. However, when dispersion becomes higher exceeding

a certain threshold, ĉv, banks hold only cash to hedge their liquidity risk.
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Figure 5: Effect of changes in dispersion of return on securites
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Until now, we have assumed that bank needs the amount of liquidity 1 to continue its

project when it is affected by liquidity shock. We can extend our analysis to the case more

general, with the amount of cash needed in the case of liquidity shock, i.e., x ≤ 1. Analysis

analogous with the case with x = 1 gives the following proposition8

Proposition 4. Given a constant R̄ ∈
(

1,
y

x

)
,

1. if dispersion of return on securities cvx is low, i.e., lower than c̃vx, then the equilibrium

level of cash held by banks is not affected by dispersion and always remains unchanged

at λx (optimal);

2. if dispersion of return on securities cvx intermediate, i.e., lies in between c̃vx and ĉvx,

then there exhibit a negative relationship between dispersion of return and equilibrium

level of cash holding;

3. if dispersion of return on securities cv is high, i.e., higher than ĉvx, there exhibit

positive relationship between dispersion of return and level of cash holding.

The threshold level of dispersion, c̃vx and ĉvx is given by

c̃vx =

√
1− µ
µ

1− 1

R̄

(
x− λx
1− λx

)R̄− (1− µ)λ
(

1− x−λx
1−λx

)
y
x

1− (1− µ)λ
(

1− x−λx
1−λx

)

 (13)

ĉvx =
R̄− 1

R̄

√
1− µ
µ

[
1 +

1

(1− µ)λ
( y
x − 1

)] (14)

The proof is analogous to that of proposition 3 and is based on the appendix A.

Figure 5 (b) describe the proposition 4. We can observe more clear non monotonous

relationship between banks’ cash holding level and dispersion of return on securities. We

can easily verify that c̃vx in (13) and ĉvx in (14) become 0 and ĉv in (12) respectively when

x = 1. Proposition 3 is thus a particular case of proposition 4. Our proposition about

relationship between dispersion of returns on securities and cash holding behavior by banks

are therefore robust.

The threshold ĉv (or ĉvx in general case with x ≤ 1) represents the value of dispersion

above which banks changes their behavior. In other words, above this threshold of dis-

persion, they shift their behavior from holding too little cash to holding too much cash,

compared to socially optimal level, on the one hand, and the relationship between disper-

sion of returns and banks’ cash holding is changed from negative to positive. This threshold

value depends upon several variables according to equation (12) and (14). Proposition 5

follows:

8Full analysis on the case with x ≤ 1 is presented in the appendix A.
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Proposition 5. ĉv (or ĉvx in general case with x ≤ 1) increases

1. as R̄ increases; and

2. as λ decreases.

In a word, the threshold of dispersion level above which the relationship between dis-

persion and cash holding becomes higher as expected return on securities increases, as the

probability of liquidity shock decreases.

5.2. Expected return on securities and equilibrium level of cash

Now, we analyze the impact that changes in expected return on securities (R̄) have

on cash holding behavior of bank. Similar to the previous analysis, In order to control the

impact driven by changes in dispersion of return on securities and to focus on pure impact of

change in R̄, we conduct a comparative statics taking dispersion (cv) as given. Proposition

6 follows.

Proposition 6. For a relevant range of R̄ ∈ (1, y),

1. if there is no dispersion of return on securities, changes in expected return has no

impact on the equilibrium level of cash holding. it is always s∗ = λ independent of

expected return on securities.

2. If dispersion of return on securities is positive, there is a (weakly) negative relation-

ship between expected return on securities and the equilibrium level of cash holding.

Precisely

(a) if expected return R̄ is high, i.e., R̄ > ˆ̄R then, bank increases equilibrium level of

cash holding as expected return on securities decreases.

(b) if expected return R̄ is low, i.e., R̄ ≤ ˆ̄R banks increases their cash holding level

substantially to s∗ = 1 at R̄ = ˆ̄R then equilibrium level of cash holding remains

unchanged irrespective of expected return.

(c) The threshold level of expected return at which cash holding level jumps substan-

tially becomes lower as dispersion of returns on securities becomes lower.

The threshold level of expected return, ˆ̄R is given by

ˆ̄R =
1 + (1− µ)λ (y − 1)

1 + (1− µ)λ (y − 1)
(

1− cv
√

µ
1−µ

) (15)

Proof is relegated to the appendix.
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Figure 6: The effect of changes in expected return on securites

Figure 6 illustrates proposition 6. It is noteworthy that unlikely to the relationship

between cash holding level of banks and dispersion of return on securities, there exist a

monotonous relationship between cash holding level and expected return on securities. The

behind idea is straightforward. Negative relationship between expected return and cash

holding level is driven by the relative return of securities compared to cash on the one hand

and by the precautionary motive on the other hand. As expected return on securities de-

creases, banks decreases the amount of securities in their portfolio, which in turn increases

the amount of cash. Moreover, Decrease in expected return on securities reduces the (ex-

pected) amount of cash that can be obtained by using the security as a collateral when they

affected by liquidity shock. This thus increases the risk of liquidation of investment project.

Facing increase in risk of liquidation, banks accumulate more cash to hedge.

5.3. Probability of liquidity shock and equilibrium level of cash

Now, we analyze how the change in probability of liquidity shock affects the individual

bank’s decision on liquidity holding. Similar to the previous analyses, we investigate on the

effect of change in probability λ of liquidity shock on the equilibrium level of cash holding

(s∗) taking expected return on securities and their dispersion as given. Proposition 7 follows.

Proposition 7. 1. Increase in probability of liquidity shock results in an increase in

equilibrium cash holding level of banks.

2. Concrete path of cash level held by banks upon the probability of liquidity shock depends

on the dispersion of return on securities:
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Figure 7: The effect of increase in probability of liquidity shock

(a) When the dispersion of return is 0, the equilibrium level of cash holding is always

λ;

(b) When the dispersion is low such that 0 < cv ≤
√

1−µ
µ

(
1− 1

R̄

)
, the equilibrium

level of cash holding increases as λ increases but always lower than λ;

(c) When the dispersion is high such that cv >
√

1−µ
µ

(
1− 1

R̄

)
,

i. if λ is lower than λ̂, the equilibrium level of cash holding increases as λ

increases but always lower than λ;

ii. if λ is higher than λ̂, the equilibrium levle of cash holding is 1.

The threshold level of λ̂ is defined as

λ̂ ≡ R̄− 1

(1− µ) (y − 1)
(

1− R̄
(

1− cv
√

µ
1−µ

)) (16)

Proof is analogous to that of proposition 3 and 6.

Figure 7 illustrates the above proposition. Banks rise their level of cash holding as the

probability of liquidity shock increases.

6. Policy interventions for cash-in-the-market pricing situations

We analyze whether an intervention can improve welfare compared to market outcome.

In this section, we focus on the situation with cash-in-the-market pricing.
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6.1. The planner’s problem: Optimal allocation between cash and securities

For this purpose, we need benchmarks to compare and we determine the date-0 optimal

allocation from the point of view of a social planner. Since all agents are risk neutral, we

define welfare as total expected output. The social planner aims to maximize social welfare

by choosing the cash level s that individual banks hold at t = 0 and by redistributing cash

among banks at t = 1, so that the banks subject to a liquidity shock have the cash they

need to continue their project.

The total output of economy is given by

W (s) = max {1, 1− λ+ λs+ C} y + [(1− λ) s− C] + (1− s) R̄, (17)

subject to the feasibility constraint

C ≤ (1− λ)s, (18)

where C is defined as the aggregate amount of cash transferred to the bank with a liquidity

shock and (1 − λ)s stands for the total amount of cash available for transfer. The first

term in (17) is the return from projects that mature. A proportion 1 − λ of banks are

not hit by the liquidity shock and their project will mature yielding y. In addition, a

proportion λ of banks are affected by the liquidity shock. Each of these banks holds an

amount s of cash and obtains additional cash from the social planner. In aggregate, a

proportion 1 − λ + λs + C ≤ 1 of project, each yielding y, will be continued. The second

term represents leftover cash, which cannot be negative, and the third term captures the

return of tradable securities in the economy.

The amount of cash 1− s is needed to a bank with liquidity shock in order to continue

its project in full scale. The total amount of cash needed for the banks hit by liquidity

shock is therefore (1− s)λ. Since the expected return of the project, y, is greater than the

expected return on securities, R̄, which is itself greater than the return on cash, 1, the one

extra unit of cash scarifying 1 unit of securities increases social welfare only when it can be

injected into the project hit by liquidity shock. Therefore, socially optimal level of cash is

the exact amount such that the total amount of cash available for transfer is same as that

needed for banks hit by liquidity shock, In other words, s such that

(1− λ)s = (1− s)λ

which yields sFB = λ. To put it differently, this is the amount of cash that needed to

continue all the projects hit by liquidity shock.

Next we consider the problem of the social planner who maximizes welfare in the econ-

omy under the constraint that a bank cannot receive more cash than the value of the

securities it holds. For example, banks may be able to hide the cash they hold and the
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planner can only transfer cash if banks are compensated for the cash they give up. Study-

ing the allocation of the constrained planner is useful to distinguish the inefficiency related

to the redistribution of cash in the interbank market from the inefficiency related to the

choice of cash held by banks at date 0. This benchmark is also useful when we consider the

optimal allocation with the social planner who is not allowed to make loss.

The constrained-optimal, or second-best, level of cash is denoted sSB. A share µ of

cash-poor banks hold H-security, which have a value greater than 1 by assumption, so they

can receive the amount 1 − s of cash against (some of) their securities. However, a share

1− µ of bank with liquidity shock hold L-security, which can have value lower than 1. Let

cθ denote the transfer to banks holding θ-security, θ ∈ {L,H}. The constraint that the

social planner faces for banks holding L-security is therefore

cL ≤ (1− s)RL.

Note that the planner would never transfer more than 1− s, so the above constraint binds

only if RL < 1. As a result, the constrained optimal level of cash remains unchanged

when RL ≥ 1. However, when RL < 1, the aggregate transfer constraint is added for

consideration, which is

C ≤ λ (1− s) (µ+ (1− µ)RL) (19)

With the feasibility condition, the amount of aggregate transfer of cash should satisfy

C ≤ min {(1− λ) s, λ (1− s) (µ+ (1− µ)RL)} . (20)

To find the marginal contribution of cash to output, ∂W
∂s when RL < 1, we can plug (20)

into (17) and differentiate with respect to s, which yields

∂W

∂s
=

{
y − R̄ if s < ŝ,

λ (1− µ) (1−RL) y − λµ (RH − 1)− (1− λ)
(
R̄− 1

)
if s > ŝ.

(21)

where

ŝ ≡ λ (µ+ (1− µ)RL)

λ (µ+ (1− µ)RL) + 1− λ < λ ≡ sFB. (22)

ŝ represents the maximum level of cash such that there is no cash left over after transfers

if RL < 1. It is noteworthy that ŝ is lower than first-best level of cash due to the transfer

constraint (19). For RL < 1, additional cash always increases output when s < ŝ. Indeed,

when s < ŝ an additional unit of cash can be used to continue a larger share of the project

without resulting in any leftover cash after transfers. However, when s > ŝ given RL < 1,

the sign of the marginal output of cash depends on the value of RL as is given by the second

line of (21). Its first term stands for additional output thanks to the continuation of more

proportion of project for a bank hit by liquidity shock and with security L. This term is

positive when RL < 1 and increases as RL falls. The second and third term represent forgone
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output related to holding more cash without being injected to the project, respectively for

the banks affected by liquidity shock and with security H, and for those without liquidity

shock. We can derive the value of RL such that the first term equalize the the sum of

second and third term, which is same as R̂. If RL > R̂, then ∂W/∂s < 0, so the planner

wants to minimize the amount of cash held, conditional on continuing as much of the non-

marketable projects as possible. In contrast, if RL < R̂, then ∂W/∂s > 0, so the planner

wants to maximize the amount of cash.

These results are summarized in the following proposition 8:

Proposition 8. 1. When RL ≥ 1, the additional constraint faced by the planner does

not bind so that sSB = sFB = λ.

2. When R̂ < RL < 1, the constrained optimal level of cash sSB is ŝ (< sFB).

3. When RL = R̂, the constrained optimal level of cash sSB can be any value between

[ŝ, 1].

4. When RL < R̂, the constrained optimal level of cash sSB is 1 (¿ sFB).

The constrained optimal level of cash depends on RL, the low return for the securities.

When RL is higher than 1, the planner can achieve the first-best because the constraint

does not bind. When RL is smaller than 1, the planner can no longer transfer the optimal

amount of cash. The planner chooses to reduce s for two reasons: First, a reduction of s

is necessary to make sure that there is no unused cash after transfers. Second, reducing

s allows banks to hold more securities, which can be used to acquire more cash when the

return on the securities is low. For these reasons, sSB decreases as RL decreases until

RL becomes smaller than R̂ at which point it jumps to 1. The intuition for this result

is that when RL is so low, the loss associated with liquidating project for the banks with

L-type securities outweighs the gain from reducing cash remaining untransferred. Hence,

the planner prefers that banks hold sufficient cash to continue the project without needing

a transfer that is constrained by the value of the securities.

6.2. Comparison between market outcome and optimal allocation

Figure 8 illustrates Optimal (sFB) and constrained optimal(sSB) level of cash holding

compared to market equilibrium level of cash (s∗). An equilibrium with cash hoarding can

only exist when RL is lower than R̂.9 When it exists, this equilibrium corresponds to a

situation where the return on cash that comes from its use to continue the non-marketable

project exceeds, in equilibrium, the return from holding securities. In such a situation, the

interbank market functions very poorly as a way to redistribute cash between banks. As a

9Such an equilibrium may not exist, depending on the value of other parameters and if R̂ is lower than 0.
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Figure 8: Optimal level of cash holding

consequence, the interbank market freezes; all banks hold as much cash as they need and

no trade takes place.

Since there is cash hoarding in this equilibrium, the price of securities always corresponds

to their fundamental value. The level of cash is constrained optimal.

When R̂ < RL < R̄, the equilibrium level of cash holding by banks is lower than the

optimal amount, s∗ < λ, and even lower than the constrained optimal amount, s∗ < sSB. In

this case, p∗ and s∗ are determined by (8) and (9). Because banks are holding so little cash,

equilibrium p∗ is always lower than 1. In other words, there is cash-in-the market pricing. As

already discussed, in this equilibrium banks do not internalize the effect their cash-holding

decision has on the equilibrium price of securities. Banks hold too little cash, which implies

that the value of securities is low because of cash-in-the-market pricing. This, in turns,

reduces the extent to which banks hit by a liquidity shock can continue their project.

The threshold R̂ represents the value of RL below which individual banks shift their

behavior from holding too little cash to holding too much cash, compared to the socially

optimal level. Equation (10), shows that this threshold increases as the proportion of low

quality securities, 1− µ, and the proportion of projects hit by liquidity shock, λ, increases.

If both of these values are high, then the value of RL below which banks hold too much

cash becomes relatively high. Indeed, if µ tends to zero and λ tends to 1, then R̂ tends to

1.

In words, if the share of securities with a low return and the share of non-marketable

projects that are hit by a liquidity shock are high the interbank market may not be very

effective at redistributing cash among banks. The market is likely to freeze as banks attempt
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to self-insure.

6.3. Liquidity regulation

When the economy faces cash-in-the-market pricing, a liquidity requirement, such as the

LCR, can improve welfare. For the sake of illustration, consider the case with R̂ < RL < RH ,

where the market equilibrium exhibits cash-in-the-market pricing (s∗ < λ). In equilibrium,

welfare is given by:

W (s) = (1− λ+ λs+ Cm) y + [(1− λ) s− Cm] + (1− s) R̄,

where Cm is the aggregate amount of cash that banks faced with a liquidity shock can

obtain in the market. It is easy to verify that Cm = (1− λ) s. Plugging this expression into

W (s) yields total welfare at the market equilibrium cash level s∗

W (s∗) = (1− λ+ s∗) y + (1− s∗) R̄

The marginal contribution of cash to welfare, ∂W
∂s , is y − R̄, which is always positive.

Therefore, requiring banks to hold more cash than s∗ improves welfare.

Not surprisingly, the solution for the welfare maximizing level of cash that banks should

be required to hold is same as the level of cash chosen by the constrained social planner.

This is summarized in the next proposition.

Proposition 9. 1. When the economy displays cash-in-the-market pricing, liquidity re-

quirements, such as the LCR can improve welfare.

2. In such a situation, liquidity requirement can restore first-best when 1 ≤ RL < RH

and can restore contained optimal level of welfare (second-best) when R̂ < RL < 1.

By forcing banks to hold more liquidity, a requirement like the LCR increases the value of

securities and permits more long-term projects to be continued, resulting in higher welfare.

An interesting implication of this result is that the appropriate level of the LCR should

depend in part on the dispersion of the return of marketable securities. More precisely, the

constrained optimal level of cash becomes lower as the dispersion of the return on securities

is greater. Since the dispersion of returns is likely to be greater during periods of crisis,

our model suggests that the liquidity requirement should be lower in times of stress than in

good time.

6.4. Announcement of asset purchase by the central bank

Another policy intervention that can improve welfare when the economy faces cash-in-

the-market pricing is for the central bank to announce at t = 0 that it will purchase the

securities at their fundamental value at t = 1, which implies that p = 1.
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To analyze the effect of asset purchase by the central bank, we slightly modify our basic

model. We suppose that at t = 0 the central bank levies a tax τ < 1 on banks in the

form of cash. Hence, the amount of cash held by banks is s ∈ [0, 1− τ ] and the amount of

securities is 1− s− τ . At t = 1, banks can obtain the cash by trading their securities either

with other cash-rich banks at market price or with the central bank at the price p = 1. The

central bank can purchase securities until it runs out of cash. The central bank chooses τ

to maximize social welfare. The following proposition describes an equilibrium:

Proposition 10. 1. When the economy displays cash-in-the-market pricing, the central

bank can improve welfare by levying a tax τ > 0 at t = 0 and using the proceeds to

purchase securities at their fundamental value (p = 1) at t = 1.

(a) When 1 ≤ RL < R̄, such intervention with τ = λ can restore the first-best

allocation.

(b) When R̂ < RL < 1, such intervention with τ = sSB can restore the constrained

optimal allocation.

2. In both cases, banks choose to hold no cash s∗ = 0 in equilibrium. The market for

securities is inactive and all trading occurs with the central bank.

Proof. Here, we will demonstrate that when R̂ < RL < 1, intervention with τ = sSB can

restore the constrained optimal allocation. The other case can be proved in a similar way.

When R̂ < RL < 1, we know that the constrained optimal allocation is attained when the

total cash in the economy is sSB and if all of the cash redistributed to banks that need it.

Thus, it is sufficient to demonstrate that banks have no incentive to deviate from s∗ = 0 and

that the cash held by the central bank will be transferred to the banks with liquidity shock.

First, note that this policy is feasible, since τ = sSB and the central bank sets pCB = 1.

If the market equilibrium price is p∗ < 1, then all banks that need cash sell their securities

to the central bank. Since sSB is the maximum amount of cash that is demanded when

the securities are traded at their fundamental value, all demand for cash can be satisfied

by the central bank and there is no trade in the market. Therefore, p∗ < 1 cannot be an

equilibrium.

If the market equilibrium price is p∗ = 1, then banks with liquidity shock are indifferent

between selling their securities to the central bank and selling them in the market. However,

when R̂ < RL and p∗ = 1, the marginal return on cash expected at t = 0 is always negative.

As a consequence, banks will not hold any cash. Therefore, s∗ = 0 is an equilibrium given

τ = sSB and pCB = 1. In such an equilibrium, all the cash sSB is transferred to banks with

liquidity shock since it is equal to demand for cash by these banks. ut

The central bank’s intervention described in the proposition above resembles the Quan-

titative Easing (QE) polices that several central bank conducted during the recent crisis
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along some dimensions. These policies can increase the value of securities by “flooding the

market” with reserves. This increase brings the value of the securities back to their funda-

mental value. Flooding the market with reserves typically depress activity in the interbank

market and this happens in the model too. With the cash injections from the central bank,

there is no need for banks to trade with each other.

7. Policy intervention for cash hoarding situations.

When RL < R̂, there is cash hoarding. The decentralized individual choice of cash

holding is clearly higher than the optimal amount as defined by the first-best. However, our

result shows that the market equilibrium is constrained optimal. Indeed, in such situation

the value of cash to continue the long-term project is so high that it more than compensate

for the fact that cash has a lower expected “fundamental” return than securities. As a result,

the central bank cannot improve welfare except, unless it is willing to purchase securities

at a value that is greater than their fundamental value, which would lead to losses.

7.1. Mutual insurance

In this type of situation, an insurance scheme among banks could restore the first best.

If banks can commit to share the available cash, then they face the same problem as an

unconstrained planner. This type of insurance mechanisms can be costly to implement and

difficult to enforce, so that they might not be set up ex ante. This might be the case for

example, if the economy is rarely expected to be in a situation where banks would want to

hold so much cash.

That said, the type of clearing house arrangements that arose during banking panics,

described in Gorton (1985), have characteristics that are similar to an insurance mechanism

that would restore the first best in our model. In response to a panic, clearinghouse member

banks would join together to form a new entity overseen by the Clearinghouse Committee.

As Swanson (1908) put it, describing the crisis of 1860, there was “the virtual fusion of the

fifty banks of New York into one central bank” (p. 221).10

7.2. Central bank’s lending against non-marketable project

It is also possible for a central bank to achieve the unconstrained optimal allocation if

it can lend against the return of the non-marketable long-term project. While this result

requires assuming that the central bank can choose actions that are not permissible to

market participants, it is consistent with empirical evidence.

In practice, some central banks do lend against such assets. In Europe, assets which

do not have an International Securities Identification Number (ISIN) are typically very

10See Gorton (2010), Chapter 2.
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illiquid and cannot be traded in a market on short notice, if at all. Such assets would

correspond well to the non-marketable asset of our theory. Nevertheless, the ECB regularly

provides liquidity to banks against this type of collateral–which includes credit claims and

non-marketable retail mortgage-backed debt instruments (RMBDs)–as long as it complies

with some eligibility criteria.11 The use of non-marketable assets pledged at the Eurosystem

open market operations as percentage of the total collateral pledged increased steadily with

the Subprime and Euro crisis, jumping from about 10% in 2007 to more than 25% in 2012.12

We do not explicitly model the frictions that prevents market participants from pur-

chasing, or lending against, non-marketable assets. One reason might be that revealing the

information necessary to evaluate the quality of such assets could provide a competitive

advantage to the bank’s competitors. Providing this information to the central bank, in

contrast, is not an issue.

In order to analyze the effect of lending against project by central bank, we make similar

assumption as in the previous subsection. The central bank levies a tax with τ at t = 0

before banks allocate their resource between cash and securities. At t = 1, banks can

obtain the cash either by trading their securities on the market or by borrowing from the

central bank pledging their project (non-tradable security). We assume that 1) there is no

informational asymmetry between banks and the central bank and therefore the quality of

project is known to the central bank; and 2) that the central bank lends the amount of debt

that banks want under the constraint of its resource τ with net interest rate r and with

haircut 0. The central bank chooses the level of tax τ that maximizes the social welfare W .

The following proposition describes an equilibrium:

Proposition 11. Given that r = 0, we can have an equilibrium achieving the optimal

allocation in which the central bank levies tax with the amount τ∗ = λ and banks choose

their cash holding level s∗ = 0 and holds only securities 1−λ. The market will collapse and

the central bank substitutes market but optimal allocation is achieved.

Proof. First, we characterize the decentralized equilibrium given τ = λ. Then we demon-

strate that the social welfare given by τ∗ = λ and s∗ is first-best. Since the central bank

levies τ = λ, banks know that the central bank has enough resources to lend to all banks

with a liquidity shock. Hence, banks would only hold cash to purchase securities. This

implies that the (net) expected return on additional cash for banks is always 1
p − R̄. Since

banks do not want to sell securities below their fusubsectionndamental value, the only price

at which the market could clear is p = 1. However, at that price 1
p − R̄ < 0, and banks do

11These criteria include, notably, that the asset must be denominated in Euro, the debtor must be located

in the Euro area, and the debtor’s default probability, as defined by the Basel accord, must be lower than

0.4%. Details on non-marketable accepted in guarantee to ECB loans to credit institutions can be found in

Sauerzopf (2007) and in Tamura and Tabakis (2013).
12See ECB (2013), p. 81.
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not want to hold any cash. As a result, given τ = λ, market equilibrium is s∗ = 0. The

total output in the economy in this equilibrium is given by

W = y + (1− λ) R̄,

which is the first-best level of welfare. The central bank has no incentive to deviate from

τ = λ.

ut

8. Conclusion

Our paper proposes a simple theoretical framework to analyze the liquidity choice of

banks. Banks require liquidity to meet unexpected shocks and can obtain this liquidity from

other banks by selling marketable securities in a market. Interestingly, our theory suggests

that banks may hold either too much cash or too little cash, depending on parameter values.

The banks’ choice if cash holding deviates from the social optimum when the return

on marketable securities is sufficiently variable. In this case, a bank needing liquidity but

holding marketable securities with a low return will not be able to obtain as much cash

as it would like. When the expected return of securities is sufficiently high, then banks

will always hold too little cash, compared to the social optimum. The intuition for this

result is that banks do not internalize the effect of their cash holding on the market price of

securities. Because of cash-in-the-market pricing, the fact that banks hold too little cash,

lowers the price of securities. This, in turn, means that banks cannot continue the long-term

project to the extent they would like. A liquidity constraint, such as the LCR, that forces

banks to hold enough liquidity can restore the constrained optimum in such situations.

The return on marketable securities is sufficiently variable and the expected return is

not too high, then banks will choose to hold too much cash. In this situation, the value of

cash for the purpose of continuing the long-term project more than compensate for the fact

that cash has a lower “fundamental” return than securities. This can be thought of as a

state of crisis, where the market for securities shuts down and banks hoard cash. Central

bank intervention can restore the first best in this situation; in particular if the central bank

can lend against the value of the non-marketable project.

Appendix

A. Extension: The general case with liquidity shock x ≤ 1

Until now, we have assumed that bank needs the amount of liquidity 1 to continue its

project when it is affected by liquidity shock. In this appendix, we relax this assumption

by considering that the amount of liquidity needed to continue project is x ≤ 1. In this
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general case, the assumption (A2) is replaced by

y

x
> R̄ (A2’)

First, we determine the date-0 optimal allocation from the point of view of a social

planner. The total output of economy becomes

Wx (s) = min

{
1,

[
1− λ+ λ(

s+ c

x
)

]}
y + [(1− λ) s− λc] + (1− s) R̄ (23)

The consideration similar to the section 6.1 yields that the optimal level of cash for economy

is sFBx = λx when the social planner has no constraint in redistribution of cash. The

constrained-optimal, or second-best, level of cash is denoted by sSBx . This is given by the

following proposition 12:

Proposition 12. 1. When RL ≥ (1−λ)x
1−λx , the planner is not constrained to redistribution

of cash so that sSBx = sFBx = λx.

2. When R̂x < RL < (1−λ)x
1−λx , the constrained optimal level of cash sSBx is ŝx (< sFBx )

where

ŝx ≡
λ (µx+ (1− µ)RL)

λ (µ+ (1− µ)RL) + 1− λ, (24)

and

R̂x ≡ 1− R̄− 1

λ (1− µ)
( y
x − 1

) . (25)

3. When RL = R̂x, the constrained optimal level of cash sSBx can be any value between[
ŝx,

x−RL
1−RL

]
.

4. When RL < R̂x, the constrained optimal level of cash sSBx is x−RL
1−RL

( > sFBx ).

The proof is provided in the appendix F.

The constrained optimal level of cash depends on RL, the low return for the securities.

When RL is higher than (1−λ)x
1−λx , the planner can achieve the first-best because the constraint

does not bind. When RL is smaller than (1−λ)x
1−λx , the planner can no longer transfer the

optimal amount of cash. The planner chooses to reduce s for two reasons: First, a reduction

of s is necessary to make sure that there is no unused cash after transfers. Second, reducing

s allows banks to hold more securities, which can be used to acquire more cash when the

return on the securities is low. For these reasons, sSB decreases as RL decreases until RL

becomes smaller than R̂ at which point it jumps to x−RL
1−RL

. The intuition for this result is

that RL becomes so low that the planner prefers that banks hold sufficient cash to continue

the project in full scale even when banks hold L-type security. In other words, sSB becomes

such that s+ (1− s)RL = x. We can easily verify that our main model is a particular case

with x = 1.
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Now, we turn to the decentralized decision on cash holding by individual banks. Consider

first aggregate demand and supply of cash in the market. The equilibrium prices and cash

holding level satisfy the following lemma 2:

Lemma 2. 1. Given the cash holding level s chosen at t = 0, the equilibrium market

return on cash 1
p∗ always satisfies 1 ≤ 1

p∗ ≤
y
x .

2. Given the market price of securities p, the equilibrium cash holding level s∗ always

satisfies s∗ + (1− s∗) pRH ≥ x.

The proof is similar to that of lemma 1.

Given that 1 ≤ 1
p ≤

y
x , banks hit by a liquidity shock always prefer to use their cash to

continue their project whereas banks that are not affected by liquidity shock always supply

their cash in the market. The aggregate supply of cash in the market is

S = (1− λ) s

The demand for cash depends on whether banks hit by liquidity shock is constrained by the

value of their securities or not. Under s∗ + (1− s∗) pRH ≥ x, banks with the H-security is

never constrained. The aggregate demand depends on the value of L-security. The demand

for cash can be written by:

D (s) =

{
λ (x− s) if x ≤ s+ (1− s) pRL

λ [µ (x− s) + (1− µ) (1− s) pRL] if x > s+ (1− s) pRL
(26)

Now we consider individual decision on cash holding level by banks. They decide their cash

holding level at t = 0 maximizing their expected profits. Their decision depends on the

expected marginal (net) return on cash conditional on the price of securities p, which is

given by

∂π

∂s
=

{
1
p − R̄ if s+ (1− s) pRL ≥ x(

1
p − R̄

)
+ (1− µ)λ

(
y
x − 1

p

)
(1− pRL) if s+ (1− s) pRL < x

The equilibrium cash holding level s∗ given p must maximize the expected return on cash,

therefore must satisfy the following conditions:

• If s+ (1− s) pRL 6= x,
∂π

∂s
= 0 (27)

• If s+ (1− s) pRL = x {
∂π
∂s (s < s∗) ≥ 0
∂π
∂s (s > s∗) ≤ 0

(28)
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The conditions in (28) are equivalent to the condition (27) when π is differentiable for all s.

In our case, π is piecewise linear in s but the slope changes at s such thats+(1− s) pRL = x

. Therefore, ∂π
∂s = 0 is not sufficient. From this together with the proposition 1, we can

characterize market equilibria, represented by the pair of the price p∗ and the level s∗ of

individual cash holding.

Proposition 13. 1. When R̃x < RL ≤ R̄, there exist an equilibrium with s∗ = λx

(optimal) where

R̃x =
(1− λ)x

(1− λx)− (1− µ)λ (1− x)

[
R̄− (1− µ)λ (1− x) y

(1− λx)x

]
(29)

Equilibrium price is given by

(a) p∗ = 1
R̄

when x−λx
1−λx R̄ ≤ RL ≤ R̄ ;

(b) p∗ = (1−λ)x
1−λx

1
RL

when R̃x < RL <
x−λx
1−λx R̄.

2. When R̂x < RL < R̃x, there exist an equilibrium with s∗(< sSBx ) < λx and p∗ < 1.

(cash-in-the market pricing) s∗ and p∗ are determined by The case with small liquidity

shock

s∗ =
λ (µx+ (1− µ) p∗RL)

λ (µ+ (1− µ) p∗RL) + (1− λ)
(30)

1

p∗
= R̄− (1− µ)λ

(
y

x
− 1

p∗

)
(1− p∗RL) (31)

3. When RL < R̂x, there exist an equilibrium with s∗ = x−RL
1−RL

and p∗ = 1. (cash hoarding,

with the price being the fundamental value)

The proof is provided in the appendix G.

Figure 9 illustrates the equilibrium price and cash level upon the value of security with

low quality RL.

B. Proof of lemma 1

In this appendix, we will demonstrate that equilibrium exists only when pRH ≥ 1 ≥ pRL.

We prove it by contradiction.

• If pRL > 1, then the bank is not cash-constrained independent of the type of securities,

so the marginal return on cash is simply

∂π

∂s
=

1

p
− R̄
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RL

p∗

1
R̄

1

0 R̄R̂x R̃x
(1−λ)x
1−λx R̄

(a) Equilibrium p∗

RL

s∗

0 R̄R̂x R̃x

λx

x

s∗

(b) Equilibrium cash holding level s∗

Figure 9: Equilibrium price and cash holding level in the case with x ≤ 1
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s maximizing individual profit requires ∂π
∂s = 0, therefore p = 1

R̄
, which implies pRL =

RL

R̄
≤ 1 since R̄ ≥ RL. This is contradictory with pRL > 1. Therefore, there does not

exist an equilibrium with pRL > 1.

• If pRH < 1, then the bank is cash-constrained when it is affected by liquidity shock

independent of the type of securities. The marginal return conditional on the type of

security θ is [
λy + (1− λ)

1

p

]
− [λpRθy + (1− λ)Rθ]

yielding the expected marginal return on cash as following:

∂π

∂s
=

(
1

p
− R̄

)
+ λ

(
y − 1

p

)(
1− pR̄

)
We know that pR̄ < 1 since pR̄ ≤ pRH < 1. From lemma 1, 1

p ≤ y in equilibrium.

As a consequence, ∂π
∂s > 0. This is contradictory with ∂π

∂s = 0 required by profit

maximizing s. Therefore, there does not exist an equilibrium with pRH < 1.

C. Proof of proposition 2

For the convenience, we consider the two following cases separately: i) equilibria with

S = D and ii) equilibria with S > D.

1. Equilibrium with S = D

D = S gives

s∗ =
λ (µ+ (1− µ) pRL)

λ (µ+ (1− µ) pRL) + (1− λ)
(32)

We consider two subcases:

Equilibrium p∗ and s∗ are determined by the individual profit maximization yielding
∂π
∂s = 0 and market equilibrium condition S = D.

i) When pRL = 1:

The equation (32) gives

s∗ = λ

and the marginal return on cash is given by

∂π

∂s
=

1

p
− R̄

s maximizing individual profit requires ∂π
∂s = 0, which yields

p =
1

R̄
.
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Combining is expression with pRL = 1 implies RL

R̄
= 1, which can only hold ifRH = RL = R̄.

We can conclude that there exist an equilibrium with s∗ = λ and p∗ = 1
R̄

when RL = RH .

ii) When pRH ≥ 1 > pRL:

s maximizing individual profit requires ∂π
∂s = 0, which yields

1

p∗
= R̄− (1− µ)λ

(
y − 1

p∗

)
(1− p∗RL) (33)

Since p∗ ≤ 1, we have

RL ≥ 1− µ (RH − 1)

(1− µ) (λy + 1− λ)
= R̂

Equilibrium s∗ and p∗ are determined by (32) and (33) under the condition that p∗

satisfies pRH ≥ 1 > pRL. p∗ determined by (33) satisfies pRH ≥ 1 > pRL whenever

R̂ ≤ RL < R̄. We can easily check that s∗ is lower than λ from (32) when R̂ ≤ RL < R̄.

From (32) and (22), we can check that s∗ is lower than ŝ under p∗ < 1, which implies that

s∗ < ŝ when RL > R̂.

2. Equilibria with S > D

In such equilibrium, if exist, p∗ = 1 from proposition 1. Since RH > 1 by definition, the

case that we consider pRH ≥ 1 ≥ pRL becomes RL ≤ 1 < RH . We consider two subcases:

i) When RL = 1:

In such case, the condition (32) gives s∗ = λ. However, the marginal return on cash is
∂π
∂s = 1− R̄ < 0, which implies that s = 0 is profitable deviation. Therefore, there does not

exist an equilibrium with RL = 1 and S > D.

ii) When RL < 1:

In this case, we have always s + (1− s)RL ≤ 1. We consider separately the case with

s+ (1− s)RL < 1 and that with s+ (1− s)RL = 1:

When s+ (1− s)RL < 1: This always holds under RL < 1 except at s = 1. On the one

hand, no profitable deviation condition gives

∂π

∂s
= 1− R̄+ (1− µ)λ (y − 1) (1−RL) = 0

yielding

RL = 1− µ (RH − 1)

(1− µ) (λy + 1− λ)
= R̂
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On the other hand, from S > D,

s∗ >
λ (µ+ (1− µ)RL)

λ (µ+ (1− µ)RL) + 1− λ = ŝ

We can conclude that when RL = R̂ given R̂ ≥ 0, a pair of p and s such that p = 1 and

s ∈ (ŝ, 1) can be an equilibrium. If R̂ < 0, there does not exist such an equilibrium.

When s+ (1− s)RL = 1: Given RL < 1, the only case satisfying the above is s∗ = 1 and

∂π

∂s
(s < 1) = 1− R̄+ (1− µ)λ (y − 1) (1−RL) ≥ 0

should hold in order for s = 1 to be an equilibrium.

We can conclude that if RL < R̂ given that R̂ > 0, p∗ = 1 and s∗ = 1 is an equilibrium.

If R̂ ≤ 0, there does not exist such an equilibrium.

D. Proof of proposition 3

From equation (11),

RL = R̄

(
1− cv

√
µ

1− µ

)
(34)

Characterizing equilibrium in a way similar to proposition 2 by substituting (34) for RL

in expected marginal return on cash (7) yields the following: i) when cv is higher than ĉv,

equilibrium cash level is always 1 ; and ii) when cv is lower ĉv, equilibrium cash level is

determined by

1

p∗
− R̄+ (1− µ)λ

(
y − 1

p∗

)
(1−K) = 0 (35)

s∗ =
λ [µ+ (1− µ)K]

λ [µ+ (1− µ)K] + (1− λ)
(36)

where K ≡ p∗R̄
(

1− cv
√

µ
1−µ

)
. Note that 0 ≤ K ≤ 1. (∵ K = p∗RL ≤ 1 in equilibrium by

lemma 1. cv ≤
√

1−µ
µ yields K ≥ 0.)

In what follows, we prove ∂s∗

∂cv
< 0. By chain rule, ∂s∗

∂cv
= ∂K

∂cv
∂s∗

∂K .

∂s∗

∂K
=

λ (1− λ) (1− µ)

[λ [µ+ (1− µ)K] + (1− λ)]2
> 0 (37)

Now, we check the sign of ∂K
∂cv

. Deriving K w.r.t. cv yields

∂K

∂cv
=

[(
1− cv

√
µ

1− µ

)
∂p∗

∂cv
− p∗

√
µ

1− µ

]
R̄ (38)
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By deriving equation (35) w.r.t. cv given R̄, λ, µ and y constant, we can obtain

∂p∗

∂cv
=

(1− µ)λ
(
y − 1

p∗

)
K

1
p∗2 + (1− µ)λ

(
y − 1

p∗

)
K

(39)

Plugging (39) into (38) yields

∂K

∂cv
= −

1
p∗

√
µ

1−µ

1
p∗2 + (1− µ)λ

(
y − 1

p∗

)
K

< 0 (40)

From (37) and (40), ∂s∗

∂cv
= ∂K

∂cv
∂s∗

∂K < 0.

E. Proof of proposition 6

Characterization of equilibrium similar to proposition 6 allow to obtain proposition 6.1

and 6.2 (b). 6.2 (c) is straightforward from (15). It remains us to demonstrate 6.2(a). By

chain rule, ∂s∗

∂R̄
= ∂K

∂R̄
∂s∗

∂K . Deriving K w.r.t. R̄ yields

∂K

∂R̄
=

(
1− cv

√
µ

1− µ

)(
∂p∗

∂R̄
R̄+ p∗

)

Since ∂s∗

∂K > 0 from (37) and cv
√

µ
1−µ ≤ 1 (∵ cv ≤

√
1−µ
µ ), the sign of ∂s∗

∂R̄
only depends

upon ∂p∗

∂R̄
R̄+ p∗. Deriving (35) w.r.t. R̄ yields

∂p∗

∂R̄
=

1 + p∗
(
y − 1

p∗

)(
1− cv

√
µ

1−µ

)
1
p∗2 {1− (1− µ)λ}+

(
1− cv

√
µ

1−µ

) [
1
p∗2 (1− µ)λ+

(
y − 1

p∗

)
R̄
]

Plugging this into ∂p∗

∂R̄
R̄+ p∗, we obtain

∂p∗

∂R̄
R̄+ p∗ =

(
1
p∗ − R̄

)
− 1

p∗ (1− µ)λ
√

µ
1−µ

1
p∗2 {1− (1− µ)λ}+

(
1− cv

√
µ

1−µ

) [
1
p∗2 (1− µ)λ+

(
y − 1

p∗

)
R̄
] (41)

From (35), 1
p∗ − R̄ is always negative in equilibrium, in turn, ∂p∗

∂R̄
R̄+ p∗ is always negative.

As a result, ∂s∗

∂R̄
< 0. Thus, if R̄ > ˆ̄R, the relationship between s∗ and R̄ is negative.

F. Proof of proposition 12

When RL ≥ x, social planner is never constrained by the value of securities when it

transfers cash. The problem is same as that of unconstrained social planner. sSBx = sFBx =
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λx. Now we turn to the case with RL < x. In such case, The aggregate amount of

redistributed cash is given by

Cx =

{
(1− λ) s if s+ (1− s)RL ≥ x,

λ [µ (x− s) + (1− µ) (1− s)RL] if s+ (1− s)RL < x.
(42)

When s+(1− s)RL ≥ x, the constrained social planner can attain first-best. Now, consider

the case with s + (1− s)RL < x. Let ŝx denote the level of s such that there is no cash

left over after transfers. It is the value of s that solves λ [µ (x− s) + (1− µ) (1− s)RL] =

(1− λ) s. It is easy to verify that ∂W
∂s > 0 if s < ŝx. Indeed, when s < ŝx an additional

unit of cash can be used to continue a larger share of the project without resulting in any

leftover cash after transfers. When s ≥ ŝx, we have

∂W

∂s
= (1− λ) + λµ+ λ (1− µ)

(y
x
−
(y
x
− 1
)
RL

)
− R̄

The sign of this expression depends on RL, but not on s. Let R̂x denote the value of RL

such that ∂W
∂s = 0. If RL > R̂x, then ∂W/∂s < 0 and if RL < R̂, then ∂W/∂s > 0. From

the above consideration, the constrained optimal level of cash when RL < 1 depends on the

two threshold levels of s: s such that s+ (1− s)RL = x, or s = x−RL
1−RL

on the one hand and

ŝx on the other hand. Two following cases should be considered separately:

1. When x−RL
1−RL

< ŝx, or RL >
(1−λ)x
1−λx :

Note that in such case, x−RL
1−RL

< λx < ŝx: i) When s < x−RL
1−RL

, ∂W
∂s > 0 since s < x−RL

1−RL

and s < ŝx; ii) When x−RL
1−RL

< s < λx, ∂W∂s > 0 ; iii) When s > λx > x−RL
1−RL

, ∂W∂s < 0. Welfare

maximizing cash holding level under the constraint is therefore sSBx = λx which equal to

the first-best level.

2. When x−RL
1−RL

> ŝx, or RL <
(1−λ)x
1−λx :

Note that in such case, ŝx < λx < x−RL
1−RL

: i) When s < ŝx, ∂W∂s > 0. ii) When s > ŝx, the

sign of ∂W
∂s depends on RL. If RL > R̂x, then ∂W

∂s < 0. Therefore, sSBx = ŝx. If RL < R̂,

then ∂W
∂s is positive as far as s > x−RL

1−RL
and becomes negative when s < x−RL

1−RL
. Therefore,

sSBx = x−RL
1−RL

.

We can conclude that i) when RL > (1−λ)x
1−λx , sSBx = sFBx = λx; ii) when R̂x < RL <

(1−λ)x
1−λx , sSB = ŝx < sFBx ; iii) when RL < R̂x, sSB = x−RL

1−RL
> sFBx .

G. Proof of proposition 13

For the convenience, we consider the two following cases separately: i) equilibria with

S = D and ii) equilibria with S > D.
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1. Equilibrium with S = D

Equilibrium p∗ is determined by equilibrium condition (27) and / or (28).

We consider two subcases:

i) When s+ (1− s) pRL ≥ x:

S = D gives

s∗ = λx

and the marginal return on cash is given by

∂π

∂s
=

1

p
− R̄

a) Equilibrium condition (27) yields

p∗ =
1

R̄
.

Combining this expression with s+ (1− s) pRL ≥ x implies

RL ≥
x− λx
1− λx R̄

We can conclude that there exist an equilibrium with s∗ = λx and p∗ = 1
R̄

when

RL ≥ x−λx
1−λx R̄.

b) Equilibrium condition (28) is relevant only when s + (1− s) pRL = x. Plugging

s∗ = λx into s+ (1− s) pRL = x yields

p∗ =
x− λx
1− λx

1

RL

Equilibrium condition (28) yields

∂π

∂s
(s < s∗) =

(
1

p
− R̄

)
+ (1− µ)λ

(
y

x
− 1

p

)
(1− pRL) ≥ 0

and
∂π

∂s
(s > s∗) =

1

p
− R̄ ≤ 0

Plugging p∗into the above two conditions, they yield respectively RL ≥ R̃x given by (29)

and RL ≤ x−λx
1−λx R̄.

We can conclude that s∗ = λx and p∗ = x−λx
1−λx

1
RL

is an equilibrium when R̃x ≤ RL ≤
x−λx
1−λx R̄.
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ii) When s+ (1− s) pRL < x:

D = S yields s∗ given by (30). Note that given s + (1− s) pRL < x, s∗ < λx. The

individual incentive condition for equilibrium ∂π
∂s = 0 yields p∗ given by (31). Since p∗ ≤ 1

should hold, we have

RL ≥ R̂x
The upper bound of RL is given by s+ (1− s) pRL = x and s∗ = λx as well as (31) , which

yields

RL < R̃x

We can therefore conclude that the pair of s∗ and p∗ given by (30) and (31) is an

equilibrium when R̂x ≤ RL < R̃x.

2. Equilibria with S > D

In such equilibrium, if exist, p∗ = 1, implying that the price of the security is its

fundamental value since there exist excess supply in the market. We consider three subcases:

i) When s+ (1− s)RL > x:

In such case, S > D requires s∗ > λx. However, the marginal return on cash is ∂π
∂s =

1− R̄ < 0, which implies that s = 0 is profitable deviation. Therefore, there does not exist

an equilibrium with s+ (1− s)RL ≥ x and S > D.

ii) When s+ (1− s)RL = x:

s+ (1− s)RL = x gives

s∗ =
x−RL
1−RL

S > D requires s∗ > λx. This yields

RL <
x− λx
1− λx

We know that ∂π
∂s = 1− R̄ < 0 at s such that s+ (1− s)RL = x. Therefore, the equilibrium

condition (28) requires:

∂π

∂s
(s < s∗) =

(
1− R̄

)
+ (1− µ)λ

(y
x
− 1
)

(1−RL) ≥ 0

because ∂π
∂s (s > s∗) = 1− R̄ is always negative. This yields

RL < R̂x

Note that R̂ < x−λx
1−λx . We can therefore conclude that p∗ = 1 and s∗ = x−RL

1−RL
is an equilibrium

when RL < R̂ given that R̂ > 0. If R̂ ≤ 0, there does not exist such an equilibrium. Note

that as RL becomes smaller, s∗ becomes bigger.
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iii) When s+ (1− s)RL < x:

On the one hand, no profitable deviation condition gives

∂π

∂s
= 1− R̄+ (1− µ)λ (y − 1) (1−RL) = 0

yielding

RL = R̂x

On the other hand, from S > D,

s∗ >
λ (µ+ (1− µ)RL)

λ (µ+ (1− µ)RL) + 1− λ = ŝx

We can conclude that a pair of p∗ = 1 and any value of s ∈
(
ŝx,

x−R̂x

1−R̂x

)
can be an equilibrium

when RL = R̂ given R̂ > 0, . If R̂ ≤ 0, there does not exist such an equilibrium.
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