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1 Introduction

Higher expected risks demand higher expected returns. This is the corner stone in

every asset pricing model. While the classical CAPM of Sharpe (1964) and Lintner

(1965) prices the covariation of stock returns with market returns only, recent studies

(e.g, see Coval and Shumway (2001), Ang et al. (2006) or Adrian and Rosenberg

(2008)) show that the covariation of stock returns with aggregate market volatility

is an additional priced risk factor. Yet, aggregate market volatility may stem from

diffusive movements of the market index and/or from sudden jumps in the index

level. Looking at these different components of aggregate volatility, recent studies

have shown that both components are important drivers of the market’s equity

premium (e.g., see Bates (1991), Duffie et al. (2000) or Santa-Clara and Yan (2010)).

In addition, Cremers et al. (2015) highlight the importance of these risks for pricing

the cross-section of stock returns. They show that the covariation of stock returns

with both, diffusive and jump, market risks are independently priced in the cross-

section of stock returns. While Cremers et al. (2015) among others concentrate on the

covariation of cross-sectional returns with aggregate risk measures, a second strand of

the literature focuses on the pricing implication of individual stock’s total volatility.

For example, Ang et al. (2006) show that realized idiosyncratic total volatility carries

a negative price of risk and Bollerslev et al. (2017) argue that stock price jump risk

is priced in the cross-section of stock returns. However, none of these studies looks

at the risk return relation of these different volatility components at the same time.

Goal of this paper is to assess the risk return relation by analyzing the different

components of a stock’s total volatility simultaneously in a model-free fashion. Every

stock price is subject to a continuous and a discontinuous movement e.g., the total

volatility risk of a stock is driven by diffusive and jump risks.1 Both of these risks

1Throughout this paper I will use the term total volatility to describe the stock price movements

stemming from diffusive movements and jumps. In addition, I will use the terms diffusive, continu-
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may be driven by the market or are purely idiosyncratic. This makes a stock prone to

four potential risks: market volatility risk, idiosyncratic volatility risk, market jump

risk, and idiosyncratic jump risk. Martin (2017) and Martin and Wagner (2018)

show that both the level of market’s and the level of individual stocks’ risk-neutral

total volatility is an essential driver for expected returns. Thus, I expect the four

different types of total volatility risks to have important, and potentially different

pricing implications as well.

I make use of the cross-section of stock options for measuring a stock’s jump

and volatility risks. Stock options have the desirable feature of incorporating market

participants’ expectation into their prices. Thus, they allow to measure expected

risks conditional on the current information set, without making use of historic data.

This has the advantage that risk measures relying on options may be more accurate

and adapt faster to innovations in these risks than measures estimated from historical

returns. Building on, but extending the approach of Cremers et al. (2015), I construct

option portfolios that have a constant exposure to either changes in the stochastic

volatility or changes in the jump probabilities, while hedging the other risk. This

generates option portfolios with returns solely driven by either volatility or jump

risks. The constant risk exposure is important, since it allows comparing returns on

the portfolios over time and across different stocks. More precise, the option portfolio

returns are proportional to changes in the market and idiosyncratic volatility (jump)

risk premium and the sensitivity of the portfolio values towards these risks. Keeping

the sensitivities constant leaves the remaining variation in returns to changes in the

risk prima. Constructing the two option portfolios for the market as well as for single

stocks, allows to decompose the volatility (jump) risk of a stock into a component

stemming from the market and an idiosyncratic component left unexplained.

The empirical analysis shows that both option portfolios are a good proxy

ous and volatility risk synonymously if not explicitly stated otherwise. Similar, I use discontinuous

risk and jump risk synonymously.
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for either volatility or jump risks. On the market level, the highest returns on the

jump risk portfolio are followed by the most extreme 5 minute returns in the sam-

ple. Similarly, the largest returns on the volatility risk portfolios are associated with

the highest increases in realized volatility. Market participants are willing to pay a

premium to hedge against volatility and jump risks on both, the market and single

stock level. The daily median return on the volatility (jump) risk portfolio is −9

basis points (−58 basis points) on the market and −1 basis points (−56) on single

stock level. Contemporaneously, I find volatility and jump risk to be negatively re-

lated to returns on the market. An increase in both risks lowers contemporaneous

returns, an observation often described in the literature (e.g., see Pindyck (1984) or

French et al. (1987)). On the single stock level, I find the market’s risk components

to be significantly negatively related to contemporaneous returns only. This is due

to a diverse effect of the idiosyncratic risks. While all four risk components explain

negative returns contemporaneously, most important in explaining positive returns

are the idiosyncratic risks. A one standard deviation increase in the idiosyncratic

jump (volatility) component increases positive returns by 130 (102) basis points,

while the effect of the markets volatility component is insignificant and a one stan-

dard deviation increase in the market jump component increases positive returns by

3 basis points, only.

Cross-sectional portfolio sorts imply a positive price of idiosyncratic jump risk.

Stocks that have a lower idiosyncratic jump risk component are the ones investors are

willing to pay the largest premium to hedge these risks. The increase in expected risk-

neutral jumps is larger than the corresponding increase under the physical measure,

for these stocks. Thus, investors dislike jumps and demand a premium to hold these

stocks. This intuition is directly supported by the results of the portfolio sorts.

The next month returns and alphas of value weighted portfolios are monotonically

deceasing, giving rise to a statistically significant difference of the low-minus-high

portfolio of 0.57% and an alpha of 0.67%. On the contrary there is no significant
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relation between the other risk measures and subsequent returns. Cross-sectional

predictive regressions further show that the findings are robust to various stock

characteristics and cannot be explained by the low beta anomaly or risk-neutral

higher moments.

Central to the analysis is an appropriate measure for volatility and jump risk,

at the market and the single stock level. As mentioned above, I rely on but extend

the methodology of Cremers et al. (2015). Different from other measures as the

implied tail measure of Bollerslev and Todorov (2011) or Bollerslev et al. (2015),

Cremers et al. (2015) construct option portfolios that either proxy for volatility or

jump risk using straddles with different times to maturity. These portfolios have

the striking advantage that their construction relies on at-the-money options only,

rather than deep out-of-the-money options as other tail measures. This is essential

for an analysis on a single stock level, since mostly at-the-money equity options are

liquidly traded on single stocks. Options that are no more that 10% in- or out-of-the-

money account for 63,76% of the overall pooled trading volume. Thus, concentrating

on at-the-money options allows to estimate the jump and volatility risk measures for

a considerably large cross-section of stocks. Yet, when following the exact method

of Cremers et al. (2015) the analysis would suffer from a drawback, when it comes

to calculating the option portfolios on a single stock level. While Cremers et al.

(2015) ensure the delta and the vega (gamma) of the portfolio to be always zero,

they require the gamma (vega) to be positive, only. This results in a high time

series variation of the gamma (vega) of the hedge portfolio and would induce a

large dispersion in cross-sectional gamma (vega). However, the returns of the option

portfolios are proportional to changes in the risk premium and the gamma (vega)

of the portfolio. If gamma and vega are not constant, any difference between two

returns of the jump (volatility) risk portfolios of differnt stocks might be either due

to different changes in the risk prima itself (jump/volatility) or due to different

exposures to these risks, while changes in the risk prima are the same. This makes
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the measure as proposed by Cremers et al. (2015) inappropriate, when the main aim

is to compare the cross-sectional differences in the returns of the option portfolios.

That is why I keep the gamma and vega constant over time and across stocks using

a numerical optimization to reduce any data noise. Thus, the constructed portfolios

ensure that their gamma (vega) is always constant and any differences in portfolio

returns should be directly related to differences in the risk prima.

The remainder of the paper is structured as follows. In the subsequent Section

2, I discuss the literature which is closest to my research. In Section 3 I describe the

data and the methods to calculate the proxy for jump and volatility risk. Section 4

contains my main results and last, Section 5 concludes.

2 Literature Review

There is a considerably wide consensus that changes in the market volatility should

command a negative risk premium (e.g., Campbell (1993), Campbell (1996) and

Campbell et al. (2018)). Since an increase in the market volatility goes along with a

deterioration of the investment opportunity set, any asset covarying positively with

market volatility can be used as hedge and thus is expected to yield lower returns.

Therefore, Ang et al. (2006) analyze changes in the VIX and find that these carry

a significant negative premium for the cross-section of stock returns. In a similar

spirit, Adrian and Rosenberg (2008) differentiate between short term and long term

market volatility and find a negative premium too. In a more general setting Bansal

et al. (2013) empirically show that changes in macroeconomic volatility are priced.

Next to market volatility, there is a considerably large discussion about the

pricing of idiosyncratic volatility in the cross-section of stock returns. Initiated by

Ang et al. (2006), who find the level of idiosyncratic volatility to be negatively

priced, many follow-up studies find either a negative, a positive or no price of risk
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(e.g., see Ang et al. (2009), Fu (2009) or Bali and Cakici (2008)). While there is no

clear consensus about the explanation for these findings (for a broad discussion see

Hou and Loh (2016) or Branger et al. (2018)), all these studies look at realized total

volatility and thereby do not differentiate between volatility stemming from price

jumps and diffusive price movements. Thus, I add to these discussions by splitting

these two components up by analyzing wether idiosyncratic diffusive or jump risks

drive the findings of Ang et al. (2006).

There is also evidence that price jumps in the market carry a risk premium.

Chang et al. (2013) show that market skewness is priced in the cross-section of stock

returns. They show that stocks which return co-varies positively with market skew-

ness earn lower returns. Using high frequency data, Bollerslev et al. (2016) measure

betas for continuous and discontinuous returns. They show that betas associated

with jumps earn a significant risk premium in the cross-section of stock returns,

while they find no such support for the continuous betas. Cremers et al. (2015)

analyze the pricing of market jump and volatility risk in the cross-section of stock

returns separately. To do so, the authors use options on S&P 500 futures contracts

and construct calendar-spread portfolios using two market-neutral straddles with

different maturities. In order to measure jumps, the authors construct the option

portfolio in such a way, that it is delta-vega-neutral, but gamma positive. This makes

the portfolio returns insensitive to changes in the volatility, but sensitive to large

changes in the price of the underlying. In the same spirit they construct the volatil-

ity factor to be delta-gamma-neutral, but vega positive. Again, this ensures that

the returns of the portfolio are insensitive to small and large changes in the price of

the underlying, but sensitive to changes in the expected volatility of the underlying.

The authors conclude that both these market factors are priced in the cross-section

of stock returns. However, they look at market risk only.

I am not the first to analyze the impact of individual jump risk on stock
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returns. Conrad et al. (2013) analyze the effect of risk-neutral skewness on a single

stock level on subsequent stock returns. They find that stocks with an high ex-

ante skewness yield lower returns. Bollerslev et al. (2017) analyze the normalized

difference between realized semi-variances, which they measure with high frequency

data. They argue that their measure proxies for jumps in the stock prices, since

it isolates the discontinuous part of the stock price dynamics while hedging the

continuous component. They find that their measure indicates a highly significant

premium for jump risk, which is robust to various stock characteristics. Kapadia and

Zekhnini (2017) analyze cross-sectional stock returns and find a large fraction of the

average return on a stock to be driven by idiosyncratic jump events. To do so, they

measure realized idiosyncratic jumps as idiosyncratic returns which are larger than

three standard deviations of the stocks return distribution. The authors argue that

on average the total annual return on a stock is gained only on four to five days on

which idiosyncratic jumps are detected. While this analysis only holds ex-post, they

use the implied tail measure of Bollerslev and Todorov (2011) to proxy for expected

jumps in the stock price. Thereby, the authors conclude that they do find evidence

for a priced jump risk premium in the cross-section of returns. However, all these

papers either focus on total jumps in the stock price or on idiosyncratic jumps only,

rather than comparing it to the market jump risk. Bégin et al. (2017) estimate a

parametric model, which incorporates both, diffusive and jump risk. They separate

each risk into market driven and purely idiosyncratic and find that idiosyncratic

jumps are largely responsible for the equity premium. However, while their findings

are very interesting, their parametrization imposes an rather high model risk. Any

estimated price of risk might be due to a misclassification of the model. Thus, I add

to these findings by analyzing the impact of jump and volatility risk on stock returns

separately for both, the idiosyncratic and the market component of these risks and

du so in a model-free fashion.
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3 Data and Methodology

In this section I discuss my measure of jump and volatility risk first and then elab-

orate on the data used.

3.1 Measures of Jump and Volatility Risks

Assume changes in the stock price are due to a continuous and a discontinuous

component, where both are driven to a certain degree from the markets continuous

and discontinuous components. In such a case the price process of any asset stems

from four components and can be described as:

dSit
Sit−

= αit dt+ βiV OL

√
V M
t dWM

t +

√
V εi
t dW

εi

t + βiJUMPk
M
t dq

M
t + kε

i

t dq
εi

t (1)

where αit is some drift. WM
t and W εi

t are the market and idiosyncratic Brownian

motion and orthogonal to each other. V M
t and V εi

t are the variances of the diffusive

components and are stochastic themselves. The last two terms are due to jumps. qM

and qε
i

are Poisson counters with orthogonal, instantaneous intensities λMt and λε
i

t

and jump sizes kMt and kε
i

t . In this specification, the overall continuous volatility of

a stock is partly explainable by the continuous volatility of the market and a rest

which is idiosyncratic. In the same spirit the total discontinuous price movement of

a stock is partly explainable by market jumps, while the rest remains idiosyncratic.

Thus, the price movement of any asset is driven by four components. These four

components might constitute separately priced risk factors in the cross-section of

stock returns, which implies that the drift αit is directly related to the pricing of

these risks.

Central for my analysis are measures for jump and volatility risk for each stock

as well as for the market. In order to run a meaningful analysis on the cross-section,
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these measures should be applicable for a rather large fraction of the cross-section.

There are a couple of studies using high frequency data to measure the realized

continuous and discontinuous component (e.g., see Bollerslev et al. (2016), Bollerslev

et al. (2017) or Guo et al. (2017)). However, as Cremers et al. (2015) argue, when

looking at realized, rather than expected jumps it might be that jumps do not

materialize even if the jump probability is high. Thus, a naturale attempt to extract

these expected measures is to make use of stock options, since these incorporate

markets expectations about future jump probabilities and changes in the stochastic

volatility. There are different attempts to do so. Some papers use a model free

approach to gain insights from the risk neutral distribution (e.g., see Bakshi et al.

(2003), Du and Kapadia (2012), or Martin (2017)). Andersen et al. (2015) show

that under rather mild assumptions, the VIX measures the risk-neutral expected

realized variance stemming from diffusive movements and jumps. Thus, measures

relying on model-free risk-neutral volatilities generally capture both, the continuous

and the discontinuous part. In a similar manner Bollerslev and Todorov (2011) and

Bollerslev et al. (2015) estimate in a semi-parametric fashion the left and right tail

risk variation for the market. Their approach heavily relies on out-of-the-money

options.

In the cross-section, out-of-the-money options are rarely traded, as indicated

by Table 1. Panel A of Table 1 summarizes the percentage of traded option contracts

for different moneyness and maturity buckets of the option sample used in the later

analysis. Overall, most contracts are traded for options that mature within the next

30 days and are up to 10% out-of-the-money (8.79%). The second highest fraction

accounts to short term options which are up to 10% in-the-money (7.42%). The

same holds true when looking at the percentage of trading volume in Panel B. Here,

short term options that are up to 10% out-of-the-money (in-the-money) account for

17.66% (12.25%) of the total volume. For both, number and volume, the percentage

sharply decreases in maturity (aggregated over all monyness buckets: 21.92 - 1.03%
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and 36.59 - 0.86%, respectively). A simular picture can be seen when looking at

the moneyness and aggregating all maturities. While options that are no more than

10% in- or out-of-the-money account combined for 50.31% (63.76%) of all contracts

(total trading volume), deep in/out-of-the-money options that are more than 40%

in- or out-of-the-money account combined for 4.35% (2.6%) of all contracts (total

trading volume), only. Due to the lack of available deep out-of-the-money equity

options, methods as in Bollerslev and Todorov (2011) and Bollerslev et al. (2015)

are not applicable to obtain a rather large cross-section of these jump and volatility

measures.

Cremers et al. (2015) use a different approach and rely on returns of option

portfolios of at-the-money option straddles. As Coval and Shumway (2001) argue,

due to a high vega, straddle returns strongly react to changes in the expected volatil-

ity but are insensitive to small changes in the underlying. However, next to a high

vega, straddles are also gamma positive. This makes the portfolio sensitive to large

realized and expected movements in the underlying and thus sensitive to jumps in

the stock price. Since the vega of an option is increasing in the maturity, while the

gamma is decreasing in the maturity, Cremers et al. (2015) use two straddles with

different maturity to construct an option portfolio that is delta-gamma neutral,

but vega positive, and a portfolio that is delta-vega neutral but gamma positive.

As they argue, these portfolios proxy for expected changes in the continuous and

discontinuous component of the market in Equation (1). While this approach is in-

tuitively convenient, their option portfolios show a high time variation in the vega

and gamma, respectively. In Table 1 of their paper, Cremers et al. (2015) report a

mean vega (gamma) of 180.01 (0.0124) with a standard deviation of 88.155 (0.0089).

This results in difficulties of estimating the direct effect of jump and volatility

risk in the cross-section of returns. In the appendix I show that the instantaneous

excess returns of the market and single stock volatility risk portfolios are given by:
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is the vega of the market portfolio and
∂Oit
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sensitivities of the portfolio value with respect to changes in market and idiosyncratic

volatility, where
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is the total vega of the single stock portfolio. If

realized volatility is an martingale under the physical probability measure, then

dV M
t −EQ

[
dV M

t

]
states the changes in the market variance risk premium stemming

from the continuous component in Equation (1). Similar, dV εi

t − EQ
[
dV εi

t

]
states

the changes in the idiosyncratic variance risk premium. Thus, the option portfolio

returns will be proportional to changes in the risk prima scaled by the sensitivities

towards these risks. Using the exact approach of Cremers et al. (2015) makes a

direct comparison of two option portfolio returns therefore impossible. A higher

return might either signal a lager change in a risk premium or a higher gamma

(vega) given the same change in the risk premium.

I extend the measure of Cremers et al. (2015) by constructing an option port-

folio consisting of straddles that is delta-vega neutral and has a constant gamma of

0.01 to measure jump risk. In the same fashion I construct an option portfolio from

straddles that is delta-gamma neutral and has a constant vega of 100 in order to

measure volatility risk.2 Specifically, on every trading day I pick those two option

pairs (call and put with same maturity) that are closest to being at-the-money and

that have two different maturities between 7 to 90 days. If multiple option pairs are

equally close to the money, I pick the ones with shortest and longest maturities. The

2 I choose Γ = 0.01 and V = 100, since it is close to the reported average in Cremers et al.

(2015). As long as gamma and vega are kept constant, the exact level is from minor importance

since it just scales the portfolio returns equally for the entire cross-section.
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vega of an option is increasing in maturity and gammas is deceasing in maturity, so

I require the two options of the short maturity pair to be short (long) and the two

options with larger maturities to be long (short) in order to construct the volatility

(jump) portfolio. The construction of the option portfolios requires to solve a linear

equation system with four unknowns, the absolute number of contracts for each op-

tion, and three equations, the portfolio delta, gamma and vega. This gives one degree

of freedom, which I use to minimize the relative weight each option constitutes to the

portfolio value. I do so, in order to minimize any potential data noise associated with

the options when calculating returns. In contrast, Cremers et al. (2015) calculate

two market neutral straddles before neutralizing the last greek (vega or gamma).

However, this might result in extreme relative portfolio weights and the portfolio

return might be driven by few options, only. This becomes critical, when looking at

equity option where the data quality might be less good and bid-ask spreads larger

than for the market. Thus, on every day I run the following optimization:

arg min
ω

4∑
i=1

(
ωiOi

abs (ω)>O

)2

(4)

s.t.

ω>∆ = 0

ω>V = 0

ω>Γ = 0.01

in order to construct my jump factor. ω is a vector, containing the number of Options

invested in the portfolio and ωi is one element in ω. O is the vector of the single

option values with elements Oi. ∆, Γ and V are vectors of the corresponding option

greeks, so that the constrains ensure that the delta and vega of the portfolio is
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always zero, while the gamma is always equal to 0.01. I follow the same approach

to calculate my volatility factor, but replace the last two constrains in Equation (4)

with ω>V = 100 and ω>Γ = 0. This ensures that the option portfolios will load

positively on the different risks and the objective function in Equation (4) reduces

potential data noise only. While the greeks are hold constant, the value of the option

portfolio might differ. That is the portfolio meith become a zero cost portfolio. In

order to keep the return always well defined, I calculate the return relatively to the

absolute amount invested into the short and long position. Therefore, the objective

function is defined relatively to the absolute amount invested in the options.

I hold the option portfolio for one trading day and measure its return over that

day. I pick new option pairs the next day. This gives me a continuous time series for

my jump and volatility factor for both, the market and on a single stock level.

3.2 Data

I merge stock price data from CRSP with stock options data from OptionMetrics.

Thereby I look at more than 20 years of daily data, spanning a sample period

from 01/1996 until 04/2016. I use daily bid/ask prices, implied volatilities, trading

volumes, and open interests of American stock-options as well of SPX options and

the zero yield curve from Ivy DB US provided by OptionMetrics. From CRSP I

obtain daily and monthly stock data, such as split-adjusted returns, prices, dividend

amounts, dividend frequency and trading volume. Further, to calculate the book-

to-market ratio I include the book-value on an annual basis from Compustat in

my analysis. Last, I obtain daily Fama-French factors from Kenneth French’s data

library.

For my stock-option data set I employ filters similar to Goyal and Saretto

(2009). That is I exclude all options with zero open interest and exclude options with

time-to-maturity of less than 5 days. I calculate option prices as the mid bid-ask price
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and delete any option violating arbitrage bounds. The stock-options have American

exercise style. However, to construct my factors I rely on standard Black-Scholes

greeks. Thus, given the American option prices I calculate synthetic European option

prices to make my analysis robust with respect to the early exercise premium. I do

so, in the same way as OptionMetrics calculates implied volatilities with a binomial-

tree following Cox et al. (1979). Specifically, on every day and for every option

in my data set I use the quoted implied volatility to span a CRR-tree with 1,000

time steps. Thereby, I explicitly account for expected dividends and reprice the

American options using that tree, first. I exclude all options, where I could not

match the American option price with the observed one. That is if the mid bid-ask

price deviates more than 1% from the calculated price. For the remaining options I

calculated European option prices using the same CCR-trees.

In order to construct my jump and my volatility factor, I pick two traded

option pairs which are closest to being at-the-money on every trading day and have

different maturities beween 7 to 90 days. I calculate option sensitivities according to

the Black-Scholes model and run the optimization in Equation (4). I exclude a factor

for a stock on an observation day if the optimization failed. That is if the constrains

in Equation (4) are violated. Having the weights I, calculated the portfolio return

over the next trading day relatively to the absolute wealth invested into the long

and short position and interpolate implied volatilities if an option is not traded on

that day. Specifically, I apply a Gaussian kernel smoother, where I smooth over

moneyness, log maturity and a put-call identifier with a constant bandwidth.3 If too

few observations are available to interpolate, I drop the jump and volatility measure

on that day for the given stock.

3A very similar approach is done by OptionMetrics to estimate the implied volatility surface.
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4 Results

In this section I discuss my main results. I start with analyzing the empirical per-

formance of my jump and volatility measure first and analyze the pricing of the

different risks afterwards.

4.1 Market Jump and Volatility Risks

Before analyzing the pricing of jump and volatility risk, I analyze the measures

itself first to test if they indeed proxy for jump and volatility risk. Therefore, Table

2 shows summary statistics for the measures on the market. Panel A displays the

mean returns of the jump and volatility portfolio. Both are on average negative,

indicating that market participants are on average willing to pay a premium to

hedge against these risks. Comparing both, the returns for the volatility factor show

less skewness (1.0056) and kurtosis (12.2926) as compared to the returns of the jump

portfolio (3.1873 and 27.4118, respectively). Also the daily mean (median) returns of

−0.04% (−0.09%) of the volatility portfolio are closer to zero than the ones for the

jump portfolio (−0.17% and −0.58%). This leads to a lower annualized Sharp Ratio

for the jump portfolio of −0.7591 as compared to the volatility portfolio (−0.4125).

The last row of Panel A in Table 2 displays changes in the risk-neutral expected

variance, measured by VIX2. Andersen et al. (2015) show that under rather mild

assumptions, the square of the VIX as computed by the CBOE is a jump robust

measure for the risk-neutral expected total realized variance of the S&P 500. Thus,

changes in the VIX2 should stem from changes in the continuous part and/or changes

in the discontinuous part of the total volatility. That is why these changes should

be directly related to the measures of jump and volatility risk. The table highlights

that changes in VIX2 show higher (lower) standard deviation, skewness and kurtosis

(0.1356, 1.9314 and 16.0358, respectively) than the returns of the volatility (jump)
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portfolio. While on average changes in VIX2 are slightly positive (0.73%), the median

changes are negative (−0.72%).

Panel B of Table 2 reports the pairwise correlation between the two measures

and changes in the VIX2. The jump and volatility risks proxy are positively corre-

lated with 12.41%. In addition, both measures show a high correlation with changes

in VIX2. The volatility portfolio is correlated with changes in VIX2 by 56.16% and

returns on the jump risk portfolio show an correlation with ∆VIX2 of 40.48%. This

indicates that both measures carry important information for the variation in total

volatility.

To assess the time-series behaviour of the jump and volatility risk measurers

Figure 1 plots the time series of returns of the markets jump and volatility risk

portfolio. Again, the third plot of the figure displays the changes in the VIX2. Sev-

eral observations emerge when comparing the three plots in the figure. First, while

on average the returns of both portfolios are relatively small, at certain points in

time these spike to rather large values. When comparing the portfolio returns with

changes in the VIX2, it becomes obvious that when the VIX increases by a large

amount, often at least one of the two portfolios shows a spike as well. For example,

in 2001 the VIX2 and the return of the volatility portfolio jointly spike, while the

jump portfolio is rather unaffected. In contrast, in 2009 the VIX and the jump port-

folio spike jointly, but the volatility portfolio is rather unaffected, and in late 2007

all three measures spike jointly.

The spikes in the two portfolios take place when changes in the jump prob-

ability (stochastic volatility) occur, as supported by a deeper look into the figure.

The vertical lines in Figure 1 indicate the 0.5% largest positive (dashed line) and

negative (dotted line) 5 minute returns. Almost in all cases a vertical line occurs on

the same day or few days after the return of the jump portfolio spiked up. This is a

clear indication, that the portfolio proxies rather good expected jumps. Especially
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during late 2008 when the return of the jump portfolio seems to be the most volatile

also the most extreme 5 minute returns are observed. In contrast, this pattern is less

pronounced when looking at the returns of the volatility portfolio. While some spikes

go indeed along with an extreme 5 minute return, many others do not. Especially

during late 2008 the returns on the volatility portfolio do not seem to be larger than

during other periods. This picture changes when looking at Figure 2. In this figure

the vertical lines indicate the 1% largest increases in daily realized volatility mea-

sured as the sum of squared 5 minutes log returns. Almost all spikes in the volatility

factor go along with an increase in realized volatility. Again, this pattern is weaker

when looking at the returns of the jump portfolio. All in all, these findings clearly

indicate that the portfolios are a good measure for jump and volatility risk and that

both risks are rather independent of each other.

To quantify the importance of the measures further, Table 3 reports results of

additional regression analysis. For the full sample period I regress either the change

in VIX2 or the return on the S&P 500 on my two portfolio returns:

xMt = αM + βMVOLVOLMt + βMJUMPJUMPM
t + εMt (5)

The first column in Table 3 shows that ∆VIX2 loads positively on both, the return

of the volatility and the jump risk portfolio. Both betas are highly significant on

the 1% level and the adjusted R2 is 42.92%, which supports the previous argumen-

tation that changes in the VIX are directly related to expected changes in either

the continuous or discontinuous part of the volatility. The second column reports

results for regressing the market return on the jump and volatility risk measure.

Again, the adjusted R2 is rather high (13.10%). Both betas are negative and highly

significant, indicating that the jump and the volatility factor capture an important

facet for describing returns. Since a straddle loads on positive and negative returns,

the jump risk portfolio does not differentiate between positive and negative jumps

in the underlying. That is, a spike in the jump risk measure dose not revel the ex-
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pected direction of the price jump, but only its increased probability. This is also

supported by Figure 1, since spikes in the jump measure go along with positive

and negative 5 minute returns. In order to gain a better picture on this relation

the last two columns in Table 1 show results of regressing only positive (negative)

market returns on the measures. While the over all picture stays unchanged for

negative returns, for positive S&P 500 returns the beta of the jump risk portfolio

gets positive and statistically highly significant, while the beta of the volatility risk

portfolio becomes insignificant. Thus, as intuitively expected, jumps have a rather

diverse influence on returns. All in all, I conclude that both factors proxy rather

good volatility and jump risk.

4.2 Market and Idiosyncratic Jump and Volatility Risks

After having assessed that the returns on the option portfolios proxy rather good

market jump and volatility risks, I analyze these measures for the cross-section

of equity options. Table 4 reports summary statistics and Panel A displays mean,

standard deviation, median, kurtosis, skewness and the annualized Sharp Ratio for

the pooled sample, that is for all cross-sectional observations on all days. Comparing

the numbers to the findings in Table 2, the results on single stock level seem a bit

different than for the market. While the average daily return of the jump portfolio

stays negative (−0.27%), the mean daily return of the volatility portfolio is positive

(0.08%) now. Also the skewness of the volatility (jump) portfolio is higher on single

stock level than for the market, 4.7852 (4.0309). Therefore, the median daily return

of both portfolios is slightly negative (−0.01% and −0.56%), indicating that market

participants are also willing to pay a premium to hedge against these risks on single

stock level. Interestingly, the median return of the jump risk portfolio on single

stock level −0.56% is close to the one of the market −0.58%, suggesting a similar

premium. Since the average daily return of both portfolios is smaller, compared to
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the portfolios for the market, the Sharp Ratio is much smaller as well. In order

to asses the quality of the jump and volatility risk proxy I calculate a VIX2i on

a single sock level and thereby follow the CBOE approach.4 Again, following the

argumentation in Andersen et al. (2015), any change in the square of the single stock

VIXi should be related to the continuous or discontinuous component in Equation

(1). Overall, the changes in VIX2i are more extreme than the ones for the market

VIX2M , whit high skewness and extreme kurtosis.

Panel B of Table 4 displays pairwise correlations between the stocks jump and

volatility risks, the changes in VIX2i and the markets jump and volatility risks.

I calculate the correlation for each stocks time-series separately and report cross-

sectional averages and standard errors. Overall the picture is similar as for the

market. Yet, the average correlation between the returns of the jump and volatility

risks portfolios is -32.36% and highly statistically significant. This suggests that

different from the market jump and volatility risk is complementary on single stock

level. Thus, the jump intensity should not be positively linked to the volatility

level for single stocks. On the other hand, both portfolio returns show a rather

high correlation with the ∆VIX2i . While overall a bit lower than for the market, the

average correlation between the returns from the volatility risk portfolio and ∆VIX2i

(15.54%) is a bit lower than the correlation between JUMPi and ∆VIX2i (19.60%),

both being statistically different from zero at the 1% confidence level. The returns

on the individual jump risk portfolio show on average a higher correlation with the

markets jump risk portfolio (11.23%) than with the markets volatility risk portfolio

(5.26%). While this finding makes intuitively sense, since both jump portfolios proxy

for the same kind of risk, the correlation of VOLi with the market risks proxies is

generally lower (7.75% with VOLM and 3.57% with JUMPM). The discontinuous

4I follow the same approach for single stocks as the CBOE (2016) does for the S&P500. This

is done by the CBOE for selected stocks too (currently Amazon, Apple, Goldman Sachs, Google

and IBM), as well as selected ETFs.
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jump risks of the single stocks seem to coincide more with the continuous volatility

risk of the market than this is the case for the jump risks of single stocks and the

volatility risk of market. This suggests that during times of highly expected market

jumps, also the continuous volatility of single stocks is expected to increase.

The two measures on single stock level proxy the total risk stemming from

volatility or jumps, that is they do not differentiate between idiosyncratic and market

risk. In order to measure purely the fraction coming from market and idiosyncratic

risks, I run for every time-series in my cross-section a full sample regression. Thereby,

I make use of the linear relation in Equation (3) to orthogonalize these components:

X i
t = αiX + βiXX

M
t + εiX,t, (6)

where X is either the return on the VOL or JUMP factor. I then define

JUMPi,M
t = βiJUMPJUMPM

t and JUMPi,ε
t = αiJUMP+εiJUMP,t ( VOLi,Mt = βiVOLVOLMt

and VOLi,εt = αiVOL + εiVOL,t). Panel D in Table 4 reports summary statistic of these

measures for the pooled sample. Due to robustness I include a time-series only if it

has at least one year of data observable to run the regression in Equation (6). Once

again, all median daily returns are negative, indicating that market participants are

willing to pay a premium to hedge against all these risks, no matter if they stem

from the market or are idiosyncratic only. The returns of the idiosyncratic jump risk

portfolio are on average (−0.14%), while the idiosyncratic volatility risk portfolio has

extremely positive returns on average (11.05%). The high average return is mainly

driven by a few extremely high return realizations of the idiosyncratic volatility risk

portfolio.5

5I avoid winsorizing the sample, since as seen in Figure 1 spikes in the portfolio returns might

be due to changes in the risk prima. In unreported results I confirm that results are the same when

excluding 1% of the most extreme realizations.
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In order to further assess the relation between the different continuous and

discontinuous components on stock returns, Table 5 reports cross-sectional averages

of regression coefficients stemming from time-series regressions similar to Equation 5.

Average cross-sectional standard errors are given in parenthesis. The table highlights

that changes in VIX2i load on all four components, where the betas on the continuous

and discontinuous components are on average statistically different from zero at the

1% level. Thus, the innovations in idiosyncratic and market jump and volatility risks

are able to explain a considerably large fraction of the variation in ∆VIX2i with an

average adjusted R2 of 10.87%. On the other hand, stock returns load on average

only statistically significant on the market measures, where the average adjusted R2

is 8.62%. Since the jump risk portfolio loads on negative and positive expected jumps

I regress positive and negative stock returns on these measures separably, to get a

better picture of how these effect returns. While the betas of all four components are

negative and become on average statistically significant on the 1% confidence level

for negative returns, positive returns do not load on market volatility significantly.

The other components are significant at the 1% level, increasing the adjusted R2

to 31.19% for positive returns and 37.97% for negative returns. The idiosyncratic

components are economically the most important for explaining positive returns.

A increase of one average standard deviation in the idiosyncratic jump (volatility)

component increases positive returns by 130 (102) basis points, while the effect of the

markets volatility component is insignificant and a one standard deviation increase

in the market jump component increases positive returns by 3 basis points, only.

4.3 The Pricing of Jump and Volatility Risk

The previous Section shows that there is a clear link between the different continuous

and discontinuous idiosyncratic and market risks and stock returns. However, the

analysis has been contemporaneous and for every time-series separately so far. To see
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if these four components are priced in the cross-section of stock returns, I analyze if

they can predict cross-sectional returns. Thereby, I look at the characteristics of each

stock. If they are priced, the alpha in Equation (1) should carry a compensation for

these risks. That is, a stock with a higher volatility risk component stemming from

the market should earn significantly different expected returns than a stock with a

low market volatility risk component as long as the market’s continuous volatility

component carries any price of risk.

To do so, I run a portfolio sort analysis. That is on the end of every month in

the sample I estimate VOLi,Mt , VOLi,εt , JUMPi,M
t and JUMPi,ε

t following Equation

(6), first. Thereby I use the daily observations of the last month (from t − 1 until

t). I allow no more than two missing observations during the estimation period to

include a stock’s risk measures. Having estimated the sensitivities in Equation (6), I

calculated the cumulative returns of the risks components over the last month (from

t − 1 until t). This aggregates changes in the risk prima over the previous month

and these cumulate returns proxy for the expected risk of these factors. Finally, to

test if they carry a price of risk, I sort stocks into quintile portfolios and calculate

value weighted contemporaneous (from t − 1 until t) and next month (from t until

t+ 1) returns as well as next month Fama-French three factor alpha.

Table 6 reports returns and alpha as well as Newey-West adjusted standard

errors of the single sorts. In Panel A stocks are sorted according to their level of the

market volatility risk component, Panel B reports sorts of the idiosyncratic volatil-

ity risk components, Panel C of the market jump risk components and Panel D

sorts according to the idiosyncratic jump risk components. The contemporaneous

returns of all portfolios are monotonically increasing in the portfolio rank. That is

stocks where the increases in physical (expected) risk is higher than the increase

in risk-neutral expected risk tend to earn higher returns contemporaneously than

stocks where the increase in risk-neutral expected risk was higher. The returns of
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the low-minus-high portfolios are all except for the market jump risk components

significantly different from zero. When looking at expected returns, only idiosyn-

cratic jumps are able to generate a significant spread of 0.54% (0.67%) in returns

(alpha) for the low-minus-high portfolio. Low JUMPi,ε
t stocks have an higher in-

crease in risk-neutral expected idiosyncratic jump risk than in physical (expected)

idiosyncratic jump risk. Thus, investors dislike the jump risk of these stocks more

compared to high JUMPi,ε
t stocks and are willing to pay a premium to hedge these

risks. Consequently, they will require a compensation by higher expected returns

for holding low JUMPi,ε
t stocks compared to high JUMPi,ε

t stocks. This implies a

positive price of idiosyncratic jump risk. On the other hand, the results of the other

risk components suggest that these are not priced in the cross-section, since there

is no significant difference in next month returns or alpha of the 1-5 portfolios.

In order to ensure the robustness of these results I run cross-sectional predictive

regressions. Compared to portfolio sorts, these have the advantage of being able

to control for multiple characteristics simultaneously. On every month I estimate

VOLi,Mt , VOLi,εt , JUMPi,M
t and JUMPi,ε

t following the same approach as for the

sorts and using the daily returns of the past month. Then I regress the next month

returns on these risk components and additional controls:

rit+1 = αt + βV OL
M

t VOLi,Mt + βV OL
ε

t VOLi,εt (7)

+βJUMPM

t JUMPi,M
t + βJUMP ε

t JUMPi,ε
t + βcontt X i

t + εit

Table 7 reports time-series averages as well as Newey-West adjusted standard

errors of the estimated coefficients. As a control I include the firms size, as it might

explain the cross-sectional variation according to Fama and French (1992). To rule

out that the results are driven by liquidity issues, I further add the illiquidity measure

(ILLIQ) of Amihud (2002) to the regression analysis. Frazzini and Pedersen (2014)

show, that a strategy going long low beta stocks and short high beta stocks, earns on

average a significant positive subsequent return. Thus I also control for the market
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beta, where calculate the beta following Frazzini and Pedersen (2014). Conrad et al.

(2013) show that risk-neutral higher moments (e.g., volatility and skewness) imply

a negative price of risk in the cross-section of stock returns. Thus I include these

measures as a control. In addition, Bollerslev et al. (2017) argue that the normalized

difference between realized good and bad (total) volatility can be used as a measure

for jumps, which has pricing implications in the cross-section of stock returns. Thus,

I calculate their measure of signaled relative jumps (SRJ) using risk neutral moments

to make use of the forward looking information. That is I calculated the differences

between the good volatility, which comes from the right side of the risk neutral

distribution following Bakshi et al. (2003), and bad volatility and normalize it by

total volatility.

Overall, column (1) to (3) indicate that market jump and volatility risk as

well as idiosyncratic volatility risk have no cross-sectional predictive power and

stay insignificant. On the contrary, the beta of idiosyncratic jump risk is negative

and highly statistically significant, as indicated in column (4) and (5). Non of the

betas of other controls has any statistical significance. This is especially remarkable.

By construction my measure of jump risk cannot differentiate between upward or

downward jumps, while the sign of SRJ should clearly indicates the expected jump

direction. Similar, a positive risk-neutral skewness might be due to fat tails of the

physical distribution as argued by Bakshi et al. (2003). Still, my measure of jump

risks seem to carry superior information, when relating it to stock returns. Also

the insignificant loading on the risk-neutral volatility measured by VIXi suggests

splitting up total volatility in a diffusive and a jump component adds valuable

information in understanding the pricing of stock return dynamics.

All in all, I conclude that idiosyncratic jump risk is a priced risk factors in the

cross-section of stock returns. This relation seems to be very robust. No matter of

the controls added to the predictive regressions in Table 7, the average loading on
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idiosyncratic jump risks stays in a rather narrow corridor. While the positive price

of risk might seem to contradict Ang et al. (2006), two things are worth mentioning.

First, Ang et al. (2006) focus in their study exclusively on realized idiosyncratic

volatility and expected returns, while I analyse a risk prima and expected returns.

Second, while these authors analyse the absolute level of the volatility, I concentrate

on the changes in the risks prima. Overall, the findings indicate the importance of

idiosyncratic jumps. These should constituted price risk factors in stock and stock

option pricing.

5 Conclusion

This Paper analyzes the pricing of different volatility components in the cross-section

of stock returns. Using returns on stock options I construct option portfolios that

load on either diffusive or on jump risk. Since the Portfolios relies on at-the-money

options, it is largely applicable for the cross-section of equity options. This allows

to decompose the total diffusive (jump) risks of a stock into a part stemming from

the market and a part being idiosyncratic only. The analysis indicates that these

diffusive and jump measures are a rather good risk proxy. It holds, whenever the

return on the market jump risk portfolio spikes, the S&P 500 realizes a jump on

that day or shortly after that day. Similar, whenever the return on the volatility

portfolio spikes, the realized volatility shows the highest changes. Both measures

embed important information to explain changes in the total volatility, measured by

the VIX.

On the single stock level, the same observations hold. Both kind of risks - dif-

fusive and jump risk - help in explaining the changes in the total volatility, measured

by a VIXi on single stock level. While idiosyncratic diffusive and jump risk are the

most important components in order to explain positive returns contemporaneously.
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Moreover, both market risk components are negatively related to contemporaneous

stock returns. On the other hand, both market risk components are not able to

cross-sectionally predict future returns. In addition, idiosyncratic diffusive risk is

not priced but idiosyncratic jump risk carries a positive price of risk. This relation

seems very robust with respect to various stock characteristics, risk-neutral higher

moments and the low beta anomaly. My results shead light on the relation between

stocks volatility risks and expected returns and have important implications for asset

and option pricing.
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A Appendix

In the following I show, that the returns of the VOL portfolios are proportional to
the variance risk in a stochastic volatility model. Assume that the dynamics of a
stock are given by the following process:

dSit/S
i
t = αit dt+ βiV OL

√
V M
t dWM

t +

√
V εi
t dW

εi

t (8)

dV M
t = κM

(
V̄ M − V M

t

)
dt+ σdW V,M

t (9)

dV εi

t = κε
i
(
V̄ εi − V εi

t

)
dt+ σdW V,εi

t (10)

where V M
t is the market variance and V εi

t is the idiosyncratic variance. Thus,
dWM

t and dW εi

t are two Brownian motions and orthogonal to each other. Using Ito’s
Lemma the dynamics of any option on the underlying are given by:

dU i
t =

∂U

∂t
dt+

∂U

∂St
dSt +

∂U

∂V M
t

dV M
t +

∂U

∂V εi
t

dV εi

t

+
1

2

∂2U

∂S2
t

(dSt)
2 +

1

2

∂2U

∂V M
t

2

(
V M
t

)2
+

1

2

∂2U

∂V εi
t

2

(
dV εi

t

)2
+

∂2U

∂St∂V M
t

(
dV M

t

)
(dSt) +

∂2U

∂St∂V εi
t

(dSt)
(
dV εi

t

)
(11)

Further assume that both, market and idiosyncratic, variance risks are priced and
carry an individual market price of risk λ∗. Thus, the PDE is given by:

0 =
∂U

∂t
dt+

∂U

∂St
(r − δ)St +

∂U

∂V M
t

(
κm(V̄ M − V M

t )− λM
)

+
∂U

∂V εi
t

(
κε(V̄ ε − V ε

t )− λε
)

+
1

2

∂2U

∂S2
t

(
β2V M

t + V εi

t

)
S2
t +

1

2

∂2U

∂V M
t

2σ
M 2

+
1

2

∂2U

∂V εi
t

2σ
ε2

+
∂2U

∂St∂V M
t

ρMσMSt +
∂2U

∂St∂V εi
t

ρεσεSt − rU (12)
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Inserting the PDE into Equation (11), one can rewrite option returns as:

dU i
t

U i
t

= rdt+
1

U i
t

∂U

∂St
dSt +

1

U i
t

∂U

∂V M
t

dV M
t +

1

U i
t

∂U

∂V εi
t

dV εi

t

− 1

U i
t

∂U

∂St
(r − δ)Stdt−

1

U i
t

∂U

∂V M
t

(
κm(V̄ M − V M

t )− λM
)
dt

− 1

U i
t

∂U

∂V εi
t

(
κε(V̄ ε − V ε

t )− λε
)
dt

= rdt+
1

U i
t

∂U

∂St
(dSt − (r − δ)dt) +

1

U i
t

∂U

∂V M
t

(
dV M

t −
(
κm(V̄ M − V M

t )− λM
)
dt
)

+
1

U i
t

∂U

∂V εi
t

(
dV εi

t −
(
κε(V̄ ε − V ε

t )− λε
)
dt
)

= rdt+
1

U i
t

∂U

∂St

(
dSt − EQ [dSt]

)
+

1

U i
t

∂U

∂V M
t

(
dV M

t − EQ [dV M
t

])
+

1

U i
t

∂U

∂V εi
t

(
dV εi

t − EQ
[
dV εi

t

])
(13)

Since the option portfolios (O) are constructed in such a way that they have a zero
delta but positive vega, the excess returns are proportional in the two volatility
components:

dOi
t

Oi
t

− rdt =
1

Oi
t

∂O

∂V M
t

(
dV M

t − EQ [dV M
t

])
+

1

Oi
t

∂O

∂V εi
t

(
dV εi

t − EQ
[
dV εi

t

])
(14)

Since both risk charnels are orthogonal, O
Vt

= O
VMt

+ O

V ε
i

t

. In the empirical analysis
O
Vt

is set to equal 100. Thus, all option portfolios have the overall same exposure to
volatility risk. However, to portion stemming from the market or being idiosyncratic
might differ.
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Summary Statistics for Market Volatility and Jump Risk Factors

Panel A: Descriptive Statistics
Mean SD Median Skewness Kurtosis Sharpe Ratio

VOLM -0.0004 0.0145 -0.0009 1.0056 12.2926 -0.4125
JUMPM -0.0017 0.0360 -0.0058 3.1873 27.4118 -0.7591

∆VIX2M 0.0073 0.1356 -0.0072 1.9314 16.0358 -

Panel B: Pairwise Correlations

VOLM JUMPM ∆VIX2M

VOLM 1
JUMPM 0.1241 1

∆VIX2M 0.5616 0.4048 1

Table 2: The table shows summary statistics of the jump and volatility risk proxy
over the sample period from 1996/01 to 2016/04. Mean, standard deviation, median,
skewness and kurtosis are given for daily returns. The Sharp Ratio is annualized.

Contemporaneous Market Regressions

∆VIX2M

t rMt rM
+

t rM
−

t

Intercept 0.0040
(0.0007)

*** 0.0001
(0.0002)

0.0090
(0.0002)

***
=0.0079

(0.0002)

***

VOL 2.3582
(0.0484)

***
=0.2637

(0.0112)

***
=0.0171

(0.0113)
=0.1064

(0.0108)

***

JUMP 0.6221
(0.0195)

***
=0.0518

(0.0045)

*** 0.1471
(0.0054)

***
=0.1117

(0.0037)

***

adj. R2 0.4292 0.1310 0.2226 0.3479

Table 3: The table shows intercept, betas and adjusted R2 for different regressions:
xMt = αM + βMVOLVOLMt + βMJUMPJUMPM

t + εMt over the full sample period from
01/1996 until 04/2016. The first column shows results for regressing changes in the
VIX2 on the measures. In the second column, returns of the S&P 500 are regressed
on the factors. In the last two columns only positive (negative) returns of the S&P
500 are regressed on the two factors. Standard errors are stated in parenthesis. ∗, ∗∗

and ∗∗∗ indicate statistical significance on the 90%, 95% and 99% confidence level.
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Summary Statistics for Individual Volatility and Jump Risk Factors

Panel A: Descriptive Statistics
Mean SD Median Skewness Kurtosis Sharpe Ratio

VOLi 0.0008 0.0305 =0.0001 4.7852 406.35 0.0000
JUMPi

=0.0029 0.0498 =0.0056 4.0309 138.25 =0.0001

∆VIX2i 0.1031 14.7282 =0.0143 367.95 146125.52 -

Panel B: Pairwise Correlations

VOLi JUMPi ∆VIX2i VOLM JUMPM

VOLi 1
JUMPi

=0.3236
(0.0032)

*** 1

∆VIX2i 0.1554
(0.0024)

*** 0.1960
(0.0018)

*** 1

VOLM 0.0775
(0.0018)

*** 0.0357
(0.0015)

*** 0.0922
(0.0017)

*** 1

JUMPM 0.0526
(0.0013)

*** 0.1123
(0.0018)

*** 0.0578
(0.0016)

*** 0.0003 1

Panel C: Descriptive Statistics of Decomposed Measures
Mean SD Median Skewness Kurtosis Sharp Ratio

VOLi,M =0.0075 5.1704 =0.0040 =0.0379 774.2500 =0.0228
VOLi,ε 0.1105 6.0085 =0.0007 0.4764 472.2220 0.2907
JUMPi,M

=0.0004 0.0066 =0.0006 1.3226 25.4584 =1.0402
JUMPi,ε

=0.0014 0.0421 =0.0045 4.5905 13.1580 =0.5425

Table 4: The table shows summary statistics of the jump and volatility risk proxy
over the sample period from 1996/01 to 2016/04. Mean, standard deviation, median,
skewness and kurtosis are given for daily returns. The Sharp Ratio is annualized.
Panel A displays the quantities for the pooled sample. Panel B reports cross-sectional
means. Cross-sectional standard errors are given in brackets, where appropriate. ∗,
∗∗ and ∗∗∗ indicate statistical significance on the 90%, 95% and 99% confidence level.
Panel C displays summary statistics of the pooled sample of orthogonal market
and idiosyncratic measures by the full sample regression: X i

t = αi + βiXM
t + εit.

VOLi,M = βiVOLMt and VOLi,ε = αi + εit.
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Contemporaneous Time-Series Regressions

∆VIX2i

t rit ri
+

t ri
−
t

Intercept 0.0148
(0.0067)

*** 0.0007
(0.0013)

0.0250
(0.0012)

***
=0.0221

(0.0010)

***

VOLi,M 0.1649
(0.1388)

***
=0.0553

(0.0279)

***
=0.0239

(0.0272)
=0.0060

(0.0246)

***

VOLi,ε 0.0130
(0.0027)

***
=0.0005

(0.0004)
0.0017
(0.0004)

***
=0.0022

(0.0004)

***

JUMPi,M 1.5870
(4.7951)

***
=0.4716

(1.0824)

*** 0.4147
(1.2251)

***
=0.4409

(0.7554)

***

JUMPi,ε 0.8455
(0.1469)

*** 0.0158
(0.0280)

0.2887
(0.0257)

***
=0.2660

(0.0223)

***

adj. R2 0.1081 0.0862 0.3119 0.3797

Table 5: For every stock in the sample period from 1996/01 to 2016/04, having
more than one year of observations, I regress changes in ∆VIX2i

t and the return
on the four volatility and jump measures: X i

t = αi + βi,MVOLVOLi,Mt + βi,εVOLVOLi,εt +
βi,MJUMPJUMPi,M

t + βi,εJUMPJUMPi,ε
t + εit. The table reports the regression coefficients

and adjusted R2 as cross-section averages. Cross-sectional average standard errors
are given in parentheses. ∗,∗∗ and ∗∗∗ indicate average statistical significance at the
90%, 95% and 99% confidence level.

35



Cross-Sectional Single Sorts

1 2 3 4 5 1-5

Panel A: Sort on VOLi,M

VOLi,M =0.0294
(0.0001)

***
=0.0091

(0.0001)

*** 0.0001
(0.0001)

0.0094
(0.0001)

*** 0.0310
(0.0002)

***
=0.0606

(0.0002)

***

rt 0.0085
(0.0036)

*** 0.0104
(0.0037)

*** 0.0118
(0.0038)

*** 0.0140
(0.0038)

*** 0.0139
(0.0040)

***
=0.0060

(0.0028)

***

rt+1 0.0069
(0.0034)

** 0.0043
(0.0038)

0.0070
(0.0039)

* 0.0084
(0.0040)

** 0.0053
(0.0042)

0.0007
(0.0023)

αt+1 0.0014
(0.0012)

=0.0016
(0.0015)

0.0012
(0.0018)

0.0031
(0.0019)

=0.0011
(0.0027)

0.0017
(0.0027)

Panel B: Sort on VOLi,ε

VOLi,ε =0.0963
(0.0001)

***
=0.0300

(0.0001)

*** 0.0049
(0.0001)

*** 0.0427
(0.0001)

*** 0.1313
(0.0002)

***
=0.2278

(0.0002)

***

rt 0.0083
(0.0037)

** 0.0098
(0.0033)

*** 0.0116
(0.0036)

*** 0.0133
(0.0039)

*** 0.0188
(0.0062)

***
=0.0111

(0.0060)

*

rt+1 0.0079
(0.0044)

* 0.0060
(0.0040)

0.0067
(0.0035)

* 0.0041
(0.0037)

0.0041
(0.0038)

0.0030
(0.0029)

αt+1 0.0019
(0.0019)

0.0001
(0.0015)

0.0011
(0.0014)

=0.0015
(0.0015)

=0.0016
(0.0025)

0.0027
(0.0029)

Panel C: Sort on JUMPi,M

JUMPi,M
=0.0637

(0.0002)

***
=0.0239

(0.0001)

***
=0.0057

(0.0001)

*** 0.0131
(0.0001)

*** 0.0558
(0.0003)

***
=0.1200

(0.0004)

***

rt 0.0098
(0.0040)

*** 0.0114
(0.0036)

*** 0.0135
(0.0036)

*** 0.0116
(0.0035)

*** 0.0132
(0.0038)

***
=0.0039

(0.0027)

rt+1 0.0045
(0.0052)

0.0080
(0.0033)

*** 0.0056
(0.0035)

0.0089
(0.0035)

*** 0.0051
(0.0040)

=0.0014
(0.0036)

αt+1 =0.0025
(0.0030)

0.0032
(0.0011)

*** 0.0003
(0.0016)

0.0030
(0.0012)

***
=0.0008

(0.0020)
=0.0025

(0.0039)

Panel D: Sort on JUMPi,ε

JUMPi,ε
=0.2404

(0.0002)

***
=0.1358

(0.0002)

***
=0.0654

(0.0002)

*** 0.0156
(0.0002)

*** 0.1993
(0.0003)

***
=0.4413

(0.0003)

***

rt 0.0064
(0.0031)

** 0.0070
(0.0028)

*** 0.0096
(0.0035)

*** 0.0137
(0.0038)

*** 0.0171
(0.0050)

***
=0.0114

(0.0039)

***

rt+1 0.0091
(0.0042)

** 0.0077
(0.0034)

** 0.0071
(0.0036)

** 0.0059
(0.0040)

0.0028
(0.0047)

0.0054
(0.0033)

**

αt+1 0.0032
(0.0023)

0.0024
(0.0015)

* 0.0014
(0.0014)

0.0000
(0.0016)

=0.0043
(0.0025)

* 0.0067
(0.0035)

***

Table 6: The table reports time-series averages of contemporaneous and next month
returns for value weighted portfolios. For every month of the entire sample period
from 1996/01 until 2016/04 the market and idiosyncratic components of VOL and
JUMP are estimated using daily observations of the last month (t-1 to t). Stocks
are sorted into quintile portfolios. Newey-West adjusted standard errors are given in
parentheses. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90%, 95% and 99%
confidence level.
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Cross-Sectional Predictive Regressions

(1) (2) (3) (4) (5)

Intercept 0.0218
(0.0083)

*** 0.0207
(0.0083)

*** 0.0208
(0.0083)

*** 0.0180
(0.0082)

** 0.0190
(0.0081)

***

VOLi,M =1.5410
(1.4161)

=1.1519
(1.4115)

VOLi,ε 0.1233
(0.1731)

0.0058
(0.1642)

JUMPi,M 0.0304
(0.5402)

=0.0503
(0.4858)

JUMPi,ε
=0.2305

(0.1070)

**
=0.2941

(0.1238)

***

Size =0.0007
(0.0010)

=0.0009
(0.0010)

=0.0008
(0.0010)

=0.0007
(0.0010)

=0.0004
(0.0010)

ILLIQ 0.0000
(0.1044)

0.0023
(0.1048)

0.0030
(0.1053)

0.0480
(0.1097)

0.0552
(0.1089)

βFP =0.0002
(0.0039)

0.0002
(0.0040)

=0.0005
(0.0039)

=0.0009
(0.0039)

=0.0012
(0.0040)

VIXi
=0.0107

(0.0125)
=0.0107

(0.0126)
=0.0091

(0.0125)
=0.0121

(0.0125)
=0.0122

(0.0124)

SRJRN 0.0010
(0.0024)

0.0011
(0.0022)

0.0012
(0.0023)

0.0012
(0.0023)

0.0009
(0.0024)

SKEWRN =0.0014
(0.0011)

=0.0013
(0.0011)

=0.0013
(0.0011)

=0.0010
(0.0011)

=0.0014
(0.0011)

Table 7: The table reports time-series averages of cross-sectional predictive regres-
sions. For every month of the entire sample period from 1996/01 until 2016/04,
the next month realized returns are regressed on the JUMP and VOL measures:
rit+1 = αt+β

V OLM

t VOLi,Mt +βV OL
ε

t VOLi,εt +βJUMPM

t JUMPi,M
t +βJUMP ε

t JUMPi,ε
t +εit.

The market and idiosyncratic components of VOL and JUMP are estimated using
daily observations of the last month (t-1 to t). Newey-West adjusted standard errors
are given in parentheses. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 90%,
95% and 99% confidence level.
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Figure 1: The figure displays the changes in the VIX and daily returns of the jump
and volatility factor on the market over the sample periods 01/1996-04/2016. Dashed
vertical lines indicate the 0.5% largest positive 5 minute returns of S&P 500 futures.
Dotted lines show the 0.5% largest negative 5 minute returns. Solid vertical lines
if one of the largest positive and negative 5 minute returns occurred on the same
trading day.
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Figure 2: The figure displays the changes in the VIX and daily returns of the jump
and volatility factor on the market over the sample period 01/1996-04/2016. Vertical
dashed lines indicate the 1% largest increases in realized volatility measured with 5
minutes returns on S&P 500 futures.
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