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ABSTRACT 

Globally, studies find an estimated 4 million people die prematurely because of air pollution 

every year. Much of this evidence relies on exposure-risk relations from studies focused on 

urban areas or uses extreme pollution events such as forest fires to identify the effect. 

Consequently, little is known about how air pollution impacts vulnerable subpopulations 

in the developing world where low incomes and limited access to health care in rural areas 

may heighten mortality risk. In this study, I exploit seasonal changes in air quality arising 

due to agricultural fires – a widespread practice used by farmers across the developing 

world to clear land for planting. Unlike large events like forest fires, agricultural fires are 

a marginal increase in pollution and thus reflect common levels of pollution exposure.  I 

estimate the causal impact of air pollution on infant mortality at a countrywide scale by 

linking satellite imagery on the location and timing of more than 800,000 agricultural fires 

with air quality data from pollution monitoring stations and geocoded survey data on nearly 

half-a-million births across India over a ten-year period. To address the concern that fires 

may be more prevalent in wealthier agricultural regions, I use satellite data on wind 

direction to isolate the effect of upwind fires, controlling for other nearby fires. I find that 

a 10 𝜇𝑔/𝑚3 increase in PM10 results in more than 90,000 additional infant deaths per year, 

nearly twice the number found in previous studies. The mortality burden is much higher 

among rural households and the urban poor. These findings underscore the need to better 

understand the heterogeneity in pollution impacts and suggest that failure to do so results 

in underestimating these adverse effects. 
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1. Introduction 

Air pollution is thought to be one of the leading contributors to premature mortality 

risk globally, but accurately quantifying the relationship between air quality and mortality 

in low- and middle- income countries remains a challenge. Estimating the causal effect of 

pollution on health requires overcoming various endogeneity concerns and is further 

complicated in the developing world due to a paucity of both pollution and health data. As 

a result, previous studies that have used plausibly exogenous sources of variation are 

limited in their spatial and temporal coverage. These are typically confined to urban areas 

and focus on vehicular or industrial sources of pollution. Other studies that have a wider 

geography usually examine the fallout from forest fires or other extreme events that lead 

to a short-term spike in ambient pollution. Both scenarios raise concerns of external 

validity. Additionally, they also typically lack the statistical power required to investigate 

the differential effects across subpopulations – for instance, rural and low-income urban 

households with limited options for avoidance behavior and low access to healthcare.  

In this study, I overcome the empirical challenges outlined above by harnessing the 

marginal changes in air quality caused by seasonal agricultural fires used by farmers to 

clear land for agriculture and burn crop-residue after harvest. Using satellite data on 

agricultural fires and wind direction over India, I match the location and timing of each 

birth from a nationally representative household survey data to exposure from up-wind 

fires1. The identifying assumption is that after controlling for seasonal and other climatic 

variables, the variation in wind-direction and fire activity is unlikely to affect birth 

outcomes except through air pollution. I provide support for this assumption by using 

pollution monitoring station data to show that particulate levels increase due to up-wind 

fire activity but are not driven down-wind fires. 

                                                 
1 Up-wind and down-wind throughout the text are used relative to a household’s locations. Therefore up-

wind fires refer to those fires that are in the direction that wind is blowing from at each household’s location. 



The approach used in this paper offers several improvements over previous studies 

investigating the link between air pollution and infant mortality. Agricultural fires occur 

across the country with a wide degree of seasonal and spatial variation (Figure 1). The 

household survey data used in this study records the complete birth histories for each 

woman interviewed which allows us to construct a dataset of nearly half-a-million births 

and their mortality outcomes from 2006 to 2016. In combination with changing wind 

direction, the data and the identification strategy allow me to measure the impact of 

variation in pollution exposure over a much larger area and time period than previous 

studies and investigate the heterogeneity in exposure-response relationships across 

subpopulations. A further advantage of this methodology is that it limits potential 

measurement error in exposure to pollution. Pollution monitoring stations are sparsely 

located in most developing countries and relying on monitoring data can lead to for 

measuring exposure can lead to attenuation towards zero, and result in underestimating the 

effect.  Using satellite measures of agricultural fire activity along with geocoded household 

locations allows me to circumvent this measurement issue.  

This study provides the first large-scale causal estimates of the infant mortality 

costs of air pollution in India. This developing country setting is of particular significance 

with 90 percent of the 4.2 million premature deaths attributed to ambient air pollution in 

2015 occurring in low- and middle-income countries (WHO 2018). Along with India, the 

use of agricultural fires is growing across many developing countries. Crop-residue 

burning alone is estimated to contribute nearly 30,000 gigagrams of carbon dioxide 

equivalents (more than four times the total emissions from the transportation sector in the 

U.S) in 2016 (FAO 2018.; US EPA 2018). These emissions have grown by more than 1.2 

percent per year on average within the 2006 – 2016 period (FAO 2018). Therefore, the 

results in this study have significant implications for other low-income countries that are 

seeing widespread use of agricultural fires. 

 Agricultural fires are used in India to clear land for crops as well as burn stubble 

left on fields after harvest. Both types of burning are estimated to contribute to the air 



pollution in India and surrounding regions (Venkataraman et al. 2006). Crop-residue 

burning is estimated to contribute as much as half of the particulate pollution in some cities 

in India during harvest seasons (Kaskaoutis et al. 2014; Cusworth et al. 2018). The location 

of these fires is driven by agricultural practices, including the expansion of mechanical 

harvesting (Gupta 2012).  In central and north-eastern parts of India, farmers frequently 

burn forest growth to clear land for their one crop per year, where they practice rain-fed 

agriculture associated with low yields (Venkataraman et al. 2006). In contrast, crop-residue 

burning is also common in the agriculturally productive regions of the Indo-Gangetic plain 

where farmers have access to irrigation and plant two or more seasons of crops during a 

year. Given these underlying drivers of crop residue burning, the location of agricultural 

fires is likely to be correlated with other factors that influence child health outcomes, 

complicating the empirical estimation of the effects of such fires on infant mortality. I 

overcome this identification challenge by isolating the effect of exposure to agricultural 

fires that occur up-wind of a households’ location and show that pollution levels increase 

only from up-wind fires. 

I draw upon multiple satellite data sources to assemble a spatial panel dataset on 

agricultural fire activity, wind conditions and other climatic variables across India spanning 

a ten-year period. Using administrative data from the government of India’s Central 

Pollution Control Board, I also construct a monthly panel of air pollution measures for over 

250 cities for 2013-15. Finally, I combine the satellite measures of fire activity and wind 

direction with information on infant births and mortality outcomes from a geocoded 

national scale household survey – the National Family and Health Survey 4 (IIPS 2017). 

Using these data, I present two sets of empirical results. First, I document the impact of 

agricultural fires on pollution measures.  Second, I present estimates of fires on the effect 

on neonatal and infant mortality and other birth outcomes. In both cases, the identification 

strategy is similar in spirit to a difference-in-differences approach. I compare the changes 

in the outcome (pollution or mortality rates) within the same season over different years, 

and across locations with high versus locations with a low number of up-wind fires. The 

main specification estimating the mortality effects controls for season time-trends flexibly 

for each sample cluster in the NFHS survey. Each sample cluster is approximately 



analogous to a village. This specification compares changes in mortality amongst children 

born within the same season in the same village, across different years. The results remain 

robust to the use of mother fixed effects which compares the birth outcomes for siblings 

born under different pollution exposure levels. Alternative fixed effects which control 

flexibly for season and location at slightly higher levels of aggregation such as district or 

state also show similar results. I also undertake sensitivity tests varying the catchment area 

(i.e. buffer) used to calculate the fire exposure around each household location and find 

that the estimates remain consistent. Finally, I also show that fire exposure during months 

13-14 after birth and 1-2 months after birth do no predict mortality within the first year or 

the month of birth, respectively. These additional tests reduce the concern that these 

pollution impacts might be driven by other unobserved factors. 

To first measure the effect of agricultural fires on pollution, I combine the air quality 

measures with the agricultural fires and wind data to calculate the incidence of up-wind 

fires at the city-month level. Consistent with previous work on the pollution impact of 

agricultural fires in India within the atmospheric sciences literature (T. Liu et al. 2018; 

Kaskaoutis et al. 2014), I find that up-wind agricultural fires have a robust and significant 

effect on particulate matter (as measured by PM10 levels). These results are also consistent 

with a growing set of studies within economics that utilize wind movements to construct a 

plausibly exogenous source of variation in pollution (Deryugina et al. 2018; Rangel and 

Vogl 2017; Anderson 2016). Additionally, I also show that down-wind fires do not affect 

the pollution level. Further, I find that the impact of up-wind fires on PM10 is non-linear. 

Low levels of fire activity (less than four fires in the month) do not affect PM10, whereas 

a higher intensity of fires (5 or more fires) increases PM10 levels by an average of more 

than 3 percent.  

The main results in the paper focus on the impact of exposure to up-wind 

agricultural fires during in-utero months on infant birth outcomes. Previous studies within 

both economics and the medical literature find an increase in the mortality risk due to 

pollution exposure during pregnancy. While it is known that embryos and fetuses are 



susceptible to damage from air pollution, the biological mechanisms that link in-utero 

pollution exposure to adverse birth outcomes are still debated. Recent medical studies 

hypothesize that air pollution potentially leads to oxidative stress, inflammation, and 

hemodynamic changes that damage oxygen and nutrient transport to the fetus (La Marca 

and Gava 2018). The period of the pregnancy in which pollution exposure is most relevant 

for infant mortality is likely to vary by the type of pollutant (Lacasaña, Esplugues, and 

Ballester 2005). However, some recent systematic reviews of available data suggest that 

the effect is most pronounced during the third trimester of pregnancy when oxidative stress 

within the womb might be higher (Beate Ritz and Wilhelm 2008; Stieb et al. 2012). The 

data and the availability of pollution exposure measures over a long time period allows me 

to explore the effect across the in-utero months in this study. 

I use data from birth histories of women aged 15-49 interviewed in the National 

Family and Health Survey (NFHS 4) limiting the sample to births recorded within the last 

ten years (from 2006 – 2016) to minimize recall errors. I include birth histories of only 

those women who have resided in the same location since the birth was recorded to avoid 

measurement error due to migration. The birth histories provide information on the month 

and year of their birth, whether the child survived and if died, the age at which they died. 

Using this information, I construct measures of in utero agricultural fire exposure, i.e., the 

number of fires that were within a certain radius up-wind of the household’s location during 

each of the months that the mother was pregnant. I then estimate the impact on mortality 

using exposure for each of the in-utero months. For both neonatal and infant mortality, 

exposure during the late pregnancy months and the month of birth is found to have the 

most substantial effect. The significance of exposure during the final months of pregnancy 

is consistent with results from previous studies in the economic literature. For instance, 

Jayachandran (2009) finds that exposure to pollution from Indonesian forest fires in the 

three months before birth has a strong effect on reducing survival. Rangel and Vogl (2017) 

also find that exposure to pollution from sugarcane burning during the last 13 weeks of 

gestation has a strong negative effect on birthweight. Similar adverse effects of exposure 

to particulate matter and carbon monoxide during the late pregnancy periods have been 



documented in epidemiological studies in the US as well (Wilhelm and Ritz 2005; B Ritz 

and Yu 1999).  

The results from the preferred specification that controls for season by sample 

cluster fixed effects show that exposure to pollution from up-wind agricultural fires 

increases neonatal mortality rate and infant mortality rate, while downwind fires have no 

effect. The increase in mortality ranges from by 2.7 additional deaths per 1000 births for 

neonatal mortality to 3.0 additional deaths for infant mortality - an increase of more than 8 

percent and 6.7 percent relative to the sample mean of 33.3 neonatal and 45.4 infant deaths 

per 1000 births. These results also remain robust to varying the extent of the area around 

each household that is used to measure exposure to fires. I also examine the impact on 

mortality risk at age 5 and find similar, consistent results – in-utero exposure increases 

under-5 mortality rate by nearly six percent relative to the sample mean.  

To compare these results with the existing literature on pollution exposure, I convert 

the effects of up-wind fires into mortality effects in terms of change in pollutant levels. 

Using the estimates from the effect of up-wind fires on PM10, I find that an increase in 

PM10 levels of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3  results in an increase in infant mortality rate of 9.1 deaths 

per 1000 births, more than 20 percent of the sample infant mortality rate mean of 45.4 

deaths per 1000 births. These effects are much higher than those found in Africa and 

Mexico City (Heft-Neal et al. 2018; Arceo, Hanna, and Oliva 2016)  and similar to the 19 

percent mortality effect found in China for the 0-4 age group (He, Fan, and Zhou 2016).  

I then examine the differential effects across various subpopulations by interacting 

the up-wind fire exposure variable with sample characteristics. The adverse effects are 

driven entirely by the mortality impact of agricultural fires within rural areas. Neonatal 

mortality increases by 3.2 and infant mortality by 3.7 additional deaths per 1000 births. 

The results also show a similar pattern for under-5 mortality – it increases in rural areas by 

more than six percent, while there is no effect in urban regions. While the overall effect in 

urban regions is relatively muted, I find that poorer urban households fare worse. However, 



wealth level does not change the mortality risk for rural households. I also find that children 

born to mothers who work as agricultural or manual labor are likely to have higher neonatal 

and infant mortality risk in rural areas. I do not see significant differential effects across 

gender of the birth, while higher order births are likely to be more susceptible to mortality 

risk. Overall, the results indicate that wealthier urban households may be able to undertake 

avoidance behavior such as staying indoors during pregnancy. They may also have better 

access to health and maternal care services such as deliveries in hospitals that could 

mitigate the immediate consequences of air pollution on birth outcomes. These urban-rural 

disparities are consistent with the findings in the previous literature that document the 

existence of higher pollution burden on rural residents (Neidell 2004; MAPS Working 

Group 2018).  

Further, I find some evidence that down-wind fire activity is associated with a 

decline in the infant (12-month) and under-5 years mortality rate. This finding goes to show 

that fire activity is likely to be associated with other economic and agricultural productivity 

factors that appear positively correlated with 12-month survivability. Using data for a sub-

sample of births for whom additional health inputs information is recorded I find that 

agricultural fire activity is positively associated with an increased likelihood of having 

delivered the birth at a hospital, formal health records for the child and increased 

vaccination rates in the first year. These health investments are likely to offset some of the 

adverse effects of the pollution exposure which is captured by the negative sign on down-

wind fire activity. Therefore, it is essential to differentiate between exposures to up-wind 

versus down-wind fires.  

Finally, I also look at the impact of agricultural fire exposure on birth-weight and 

find no evidence for a reduction in birth-weight. These results suggest that there might be 

selectivity in neonatal mortality such that weaker infants (who are likely to weigh less) 

have lower survival rates when exposed to agricultural fire pollution. However, the sample 

used in this analysis only includes births that occurred within five years of the survey, and 

the accuracy of recalled weights may be suspect (Channon, Padmadas, and McDonald 



2011). I also estimate results for a smaller sample of births for whom birth-weights are 

reported from health cards or other written records. The null result remains for this sample 

as well. 

This paper contributes to the growing literature from the fields of economics, 

environment, and epidemiology that examines the health burden of air pollution. Within 

economics, the focus has often been on modern, industrial sources of pollution within 

developed countries owing to the relatively better data availability on air quality measures 

(Graff Zivin and Neidell 2013). Recent work has expanded to look at the consequences of 

air pollution on health, education and labor market outcomes in developing countries  

(Greenstone and Hanna 2014; Bharadwaj et al. 2017; Hanna and Oliva 2015). Overall, 

these studies indicate a significant adverse effect on human capital outcomes. However, 

these studies are mostly limited to specific cities and focus on pollution sources that are 

more common in urban settings.  One might be concerned that rural households, 

particularly in countries like India with a large population of rural poor, might be 

particularly vulnerable given that they are primarily engaged in outdoor work. Other 

studies that look at the effect of pollution from large-scale fires such as forest wildfires 

(Sastry 2002; Jayachandran 2009; Kim et al. 2017). While these studies shed light on the 

potential effects of biomass burning, such events studied are usually rare, with extreme 

levels of pollution. These results may differ from the effects that one would find in response 

to cyclical exposure to moderate levels of pollution that result from smaller, agricultural 

fires.  

The closest previous study is by Rangel and Vogl (2017) who examine the effect of 

sugarcane residue burning in the state of São Paulo, Brazil, also exploiting the direction of 

the wind. Their analysis uses birth registry data from hospital records in 13 sugar-growing 

municipalities within São Paulo from 2009-2014, and the outcomes that they focus on are 

those observed immediately after birth. They find that exposure to fires results in adverse 

birth outcomes such as low birth-weight but find no impact on risk of mortality within the 

first day of life. This study adds to their result in several different ways. First, while their 



analysis is limited to the outcomes at birth, the NFHS data used in this study allows for an 

examination of not only health outcomes at birth but also the mortality risk at different 

periods of early childhood. Previous studies have found that fetal exposure to adverse 

temperature, rainfall and pollution has a significant impact on health outcomes in later-

infancy, childhood and adult life as well (Almond and Currie 2011; Currie et al. 2014). 

Second, the context for their study differs from this paper in many characteristics. With a 

mostly urban population, São Paulo has a much lower infant mortality rate of 11 deaths per 

1000 births, higher income and much better health delivery systems than India where the 

mortality rate is nearly four times higher (44 deaths per 1000 births, average of 2006-2016) 

(The World Bank 2018). As a result, the degree of vulnerability to air pollution in India 

may be much higher. This heightened risk is evidenced by the fact that they find no effect 

on mortality risk at birth, while the results from this study show a significant neonatal 

mortality cost due to agricultural fires. The nature of pollution exposure from agricultural 

fires is also likely to differ – sugarcane burning in Brazil occurs once a year as opposed to 

the seasonal agricultural fires that peak more than once a year and covers a much larger 

territory across India. Consequently, births exposed to fire emissions in India are much 

higher. The results in this paper are likely to be generalizable to other developing country 

contexts where agriculture associated fires are frequent. 

I also take advantage of the nationally representative nature of the data to present 

estimates of the total number of deaths attributable to pollution exposure within the 

population. Population estimates indicate that the average number of neonatal deaths per 

year in India from all causes to be 0.8 million during the sample period (UN IGME 2018). 

Given this, the average impact from the regression estimates of an eight percent increase 

in neonatal mortality due to pollution implies that nearly 62,000 deaths per year occur due 

to in-utero exposure to pollution. Similarly, the average number of under-5 deaths per year 

for the sample period is estimated to be 1.47 million per year (UN IGME 2018).  Given 

these mortality estimates, the results in this study imply an additional mortality burden of 

more than 90,000 under-5 deaths per year due to exposure to agricultural fires. In terms of 

pollution levels, the results imply that an increase in PM10 of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 results in more 

than 96,000 additional under-5 deaths per year. These estimates are a much larger mortality 



cost than thought previously. For instance, most recent disease burden models estimate 

about 51,000 under-5 deaths in India attributable to ambient air-pollution risk during 2015 

(Lee and Kim 2018; Lelieveld, Haines, and Pozzer 2018). These estimates apply exposure-

response functions based on studies mostly focused on developed countries or urban areas 

and have been found to underestimate the mortality impact of pollution in Africa as well 

(Heft-Neal et al. 2018). 

2. Background: Agricultural fires in India 

Agricultural burning has been used to clear land for agriculture and get rid of crop 

waste since the early periods of human history (Brandt 1966). Limited use of fires, under 

controlled conditions, can help in land renewal, removal of invasive species and pests and 

can provide other ecosystem benefits. In India, farmers use open field burning for two main 

purposes. First, it is used to clear stubble left on the field after harvesting and second, it is 

also used to clear undergrowth on lands left fallow between cropping seasons 

(Venkataraman et al. 2006).   

There is a wide spatial and temporal gap between these two types of burning 

practices associated with agriculture in India. Crop-residue burning is mainly associated 

with the stubble left over from rice and wheat crop. Farmers employing the rice-wheat 

system usually grow rice in the monsoon or the kharif season. The crop is sown following 

the onset of monsoon rains in June-July and harvested during the months of October-

November. Wheat is then planted as soon as possible in the wheat (rabi) season and 

harvested starting in April. Crop-residue fires are seen in post-harvest months 

corresponding to these cropping seasons in areas where the rice-wheat system is dominant 

such as in the states of Punjab, Haryana, Uttar Pradesh, Bihar, and Himachal Pradesh. 

Under the rice-wheat system, farmers have a limited window within which they need to 

harvest and clear their field before planting next season’s crop. A crucial input in this quick 

turnaround has been the use of combined harvesters. The harvester usually spreads the crop 

residue in the fields which can be time and labor intensive for farmers to collect. As a result, 



farmers tend to burn this residue to clear their fields quickly and at a low cost (Kumar, 

Kumar, and Joshi 2015). These fires are often observed within proximity to urban areas. 

Delhi, the capital city, is particularly prone to high levels of pollution from post-harvest 

fires (Cusworth et al. 2018; Chandra and Sinha 2016; Ghosal and Chatterjee 2015). 

Consequently, much of the focus on agricultural fires in India has been on such crop-

residue burning practices. 

In contrast to crop-residue burning, previous literature has mostly ignored the 

pollution and health implications of fires used for clearing agricultural land. These fires 

mostly occur close to forest lands in central and north-east India (Venkataraman et al. 

2006). Farmers in these regions usually plant one season of rice and then leave the land 

empty after harvest. Many follow “shifting” agriculture where the land is left fallow for 

more than a year, and the farmers switch between alternate plots of land across years 

(Ramakrishnan 1992). These fallow lands may be overtaken by undergrowth and weeds 

which need to be removed before planting the next rice season. Farmers resort to the use 

of fire to clear these lands, and such fires peak during February to May (Venkataraman et 

al. 2006). 

 The effect of seasonal crop-residue burning on pollution levels in India has been a 

source of growing concern for policymakers and researchers. Several studies in the fields 

of atmospheric and environmental sciences have examined the emissions from these fires. 

These studies use a combination of atmospheric modeling methods and statistical analysis 

and mostly focus on a specific city or region, primarily in the vicinity of the rice-wheat 

system states. Across sites, these studies have documented a significant increase in 

particulate matter (PM10 and PM2.5), aerosol concentrations as well as sulfur and nitrous 

oxide levels associated with increased agricultural fire activity. For instance, Mittal et al. 

(2009) find an increase in PM 2.5 of more than 547 micrograms per cubic meter in the city 

of Patiala in Punjab. Cusworth et al. (2018) estimate that up to 78% of the PM2.5 increases 

in Delhi can be attributed to agricultural fires during peak harvest seasons in some years. 

Similar associations have been found over a larger region of analysis as well. Mishra and 



Shibata (2012) find that aerosol optical depth increases by 0.1 – 0.3 over the Indo-Gangetic 

Plain during seasons with agricultural fires.  No studies have related this increase in 

pollution in India to health outcomes. The results that I present in this study on the impact 

of agricultural fires on pollution measures are consistent with those found in much of this 

literature. 

3. Data  

3.1 Agricultural fires 

Administrative data on agricultural fire incidents are not available in much of the 

developing world, and India is no exception. However, it is possible to detect fires from 

space using satellite-derived thermal information. I use fire detection data accessed from 

the MODIS (Terra and Aqua datasets) Fire Mapper product (collection 5, spatial resolution 

1 × 1 km) provided by the Fire Information for Resource Management System (FIRMS)2. 

The algorithm used to detect fire activity exploits the intense emission of mid-infrared 

radiation from fires (Giglio et al. 2003). The MODIS algorithm examines the radiation 

from each pixel of the MODIS swath and flags it as having a fire if at least one thermal 

anomaly is detected within that pixel (NASA 2018). The dataset consists of a daily record 

of these fire pixels along with geographic coordinates that correspond to the approximate 

center for each pixel. A pixel corresponds to an area of about one square kilometer on the 

ground. 

The algorithm detects both actively burning fires and smoldering patches. The data 

are acquired by the satellites at least once daily over the whole Indian region. Giglio et al. 

(2003) note that fires under 1000 square-meters are detectable under average conditions, 

which corresponds to about one-tenth the size of an average agricultural field size in India 

                                                 
2 Available online at: https://earthdata.nasa.gov/active-fire-data 



of about 1.15 hectare (Bodh et al. 2016) and therefore provides a high degree of confidence 

that majority of the on-field agricultural fires are captured in the data. 

There are a couple of caveats to be noted about the use of MODIS fire data product. 

First, the data corresponds to “fire pixels” having at least one fire, and there is no way of 

knowing how many fires are within each pixel. So, the fire counts may be an underestimate 

of the actual number of fires that are on the ground within each pixel. Second, while most 

of the fires recorded in the data are vegetation fires, it is possible that volcanic eruptions or 

flares from gas wells may also be detected as thermal anomalies and flagged as fire pixels. 

This is less of an issue in the context of this study since the Indian region has no active 

volcanoes on the mainland, and most natural gas wells are located offshore.  

There are more than 800,000 pixels with fire activity during the study period from 

2006-2016. For each such fire pixel, the data record the location and the detection date. 

Figure 1 shows the seasonal variation in the agricultural fire incidents recorded by the 

MODIS instrument over the sample period. Panel (a) of the figure portrays the fires 

recorded from February to June. These fires correspond to the land clearing fires used by 

farmers mostly in the north-eastern states of the country and some in the central regions as 

well. We also find some fire activity in the north and north-west regions which corresponds 

to the burning of crop-residue left on the field after the winter crop harvest. Panel (b) of 

Figure 1 shows the fires that occur from September to January. This period corresponds to 

the harvesting of the monsoon (kharif) crop, mostly rice. The fire activity is predominantly 

concentrated in the northern regions of the country, around the states of Punjab, Haryana, 

and parts of western Uttar Pradesh.  

3.2 Pollution measures 

I obtain daily pollution meter data from the Central Pollution Control Board (CPCB 

2018). The CPCB operates under the aegis of the Ministry of Environment, Forest and 



Climate Change of the Government of India and is the primary regulatory and monitoring 

agency for environmental pollution. Ground-based measurements of air pollution levels in 

India are limited to urban areas and not available for much of the rural hinterland. Given 

these limitations, I focus on examining the link between agricultural fires and air quality 

within nearby cities. The pollution meters record data on sulfur dioxide (SO2), and 

particulate matter (PM10), and nitrogen dioxide (NO2) for a sub-sample of cities.  

Figure 2 shows the distribution of the cities for which the pollution meter data are 

available. The number of pollution monitoring stations per city varies from a single 

monitoring station for smaller cities to a maximum of 19 stations for larger cities such as 

Delhi or Mumbai, with a median of 3 stations. I limit the sample of observations to recent 

years (2013-15) in the dataset for which consistent coverage is available. I also aggregate 

the pollution measures to the monthly average level in each city. In total, the final dataset 

consists of more than 250 cities, spanning the period from January 2013 to December 2015. 

Table 1 in the appendix presents descriptive statistics on the number of fire counts with a 

75 km radius around each city center. 

3.3 Wind direction and other climate variables 

 The critical atmospheric information that I utilize in the identification strategy is 

the wind direction over the locations of interest. The data for constructing this variable 

comes from the Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) vector 

wind analysis product (Version 2.0)3. The CCMP wind data product has near-global 

coverage with high-spatial and temporal resolution, starting in 1987 (Ricciardulli 2017). I 

obtain a 0.25 degree gridded wind vector data at the monthly level from 2006 – 2016 

(Wentz et al., n.d.). The wind data are a combination of satellite, ground-based and wind 

model measurements; further details are documented in Atlas et al. (2011). The data are in 

the form of the monthly mean horizontal (U) and vertical (V) components of the wind 

                                                 
3 CCMP Version-2.0 vector wind analyses are produced by Remote Sensing Systems. Data are available 

at www.remss.com. 

http://www.remss.com/


vector for each grid cell.  The U and V components are relative to true north, i.e., they have 

positive values if the wind is blowing towards the north-east direction. Using these two 

components, I calculate the wind direction using the standard trigonometric function  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑉, 𝑈) (1) 

where 𝜃 ∈ (−𝜋, 𝜋], is the angle (in radians) relative to the positive x-axis. I then use this 

direction to classify the wind direction to one of eight octants. Going clockwise from north, 

these octants range from north-to-north-east (NNE) when  
𝜋

4
≤ 𝜃 <

𝜋

2
  to north-west-to-

north (NWN) when 
𝜋

2
≤ 𝜃 <

3𝜋

4
.  

  In addition to the wind data, I also use satellite and climatic model-based data on 

temperature and precipitation. Temperature and rainfall shocks have been found to affect 

mortality and human health in a variety of contexts, including India (Burgess et al. 2017; 

Maccini and Yang 2009), further, they might affect the dispersion of smoke from the fires. 

Therefore, I control for these factors in the estimates. The temperature data are retrieved 

from the Global Historical Climatology Network (version 2) and the Climate Anomaly 

Monitoring System (GHCN CAMS). GHCN CAMS is a high resolution (0.5x0.5 degree) 

analyzed global land surface temperatures from 1948 to near present4. GHCN CAMS uses 

data from station observations across the globe combined with interpolation techniques to 

construct the gridded data. Fan and van den Dool (2008) describe the process in detail. 

Rainfall data come from the Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS). CHIRPS uses satellite imagery along with in-situ station data to create a gridded rainfall 

product at a very high spatial resolution and available in near real-time (Funk et al. 2015). I use 

monthly average rainfall data from CHIRPS with 0.05 x 0.05-degree spatial resolution over the 

2006-2016 period. I use a distance weighted interpolation method to estimate the wind, 

                                                 
4 These data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at 

https://www.esrl.noaa.gov/psd 



temperature and precipitation data values at the point locations of the cities in case of the 

pollution results, or the sample clusters when examining the impact on infant mortality5.  

3.4 Infant mortality and birth outcomes data 

  The data for the outcome measures of infant mortality and health come from the 

National Family and Health Survey – IV (NFHS 4). The NFHS is the Demographic and 

Health Survey (DHS) equivalent in India. The NFHS 4 survey collected data from January 

2015 – December 2016 from over 600,000 households covering all areas of the country 

(IIPS 2017). This sample size was much larger than previous rounds of the NFHS (nearly 

four times larger than in NFHS 3), and the sample was designed to be representative at the 

district level.  For each sample household, the NFHS 4 survey canvassed four 

questionnaires: a household questionnaire, a woman’s questionnaire, a man’s questionnaire 

and a biomarker survey (IIPS 2017).  

The main variables in this analysis come from the woman’s questionnaire. The 

NFHS interviews all eligible women between the ages of 15-49 within each sample 

household on a variety of issues. Each woman is asked about her entire reproductive history 

thereby providing details on the birth histories of all children ever born to her. The birth 

histories include information on when a child was born (month and year), their gender, and 

birth order. The survey also records whether the child is currently alive, and if not, the the 

age at which the child died is collected. For births that occurred within five years of the 

survey, the woman is also asked about other birth outcomes including the child’s weight at 

birth. The analysis of infant mortality that I carry out uses this recall data on child births 

                                                 
5 The results are similar across a variety of interpolation methods including bilinear or cubic spline estimates. 



and deaths. For the whole sample of women interviewed in the NFHS 4, a total of 1,315,617 

births are recorded in the birth history data.  

The use of recall birth history data may lead to potential measurement error. For 

instance, the selective omission of those births that did not survive from the birth histories 

would result in an underestimation of mortality (IIPS 2017). However, the infant mortality 

rates from the NFHS birth history data are very close to the mortality statistics that the 

Census Bureau of India provides based on its Sample Registration System (SRS) of births 

lending support to the accuracy of deaths reported in the recalled birth history in the NFHS. 

I provide further details later when discussing the descriptive statistics.  

A second potential source of error could arise from measurement error in the recall 

of the timing of births and deaths. To minimize such bias, I limit the sample used in the 

main set of estimates to births recorded within the past ten years before the survey (about 

472,000 births). The results are robust to varying this recall time horizon. Finally, exposure 

to pollution from agricultural fires could be mismeasured if the child was born in a different 

location than the location in which the household currently resides. The NFHS records 

information on how long the individual has resided in this location. I utilize these data to 

restrict my sample to only those births that have occurred since the interviewed woman has 

been residing in the current location. By doing so, I exclude about 12 percent of the births 

within the past ten years. 

From an empirical standpoint, one of the main advantages of using the NFHS 4 

data for this analysis is the availability of geo-referenced sample clusters. There are more 

than 28000 sample clusters in NFHS 4, with each cluster containing an average of 46 

households. To ensure respondent confidentiality the cluster GPS latitude/longitude 

coordinates are randomly displaced in the public NFHS 4 data files.  Urban clusters are 



displaced between 0 2 kilometers, and rural clusters are displaced between 0 and 5 

kilometers. Further, about 1% of the rural clusters are displaced up to 10 kilometers. In all 

cases, the displacement is restricted so that the final coordinates lie within the boundaries 

of the original district from which the households were sampled. I minimize the spatial 

measurement error by using agricultural fire exposure over a much larger buffer of 75 

kilometers around each cluster that accounts for any error due to the displacement in the 

clusters’ coordinates. Also, the results remain robust to varying the buffer radius. Table 1 

in the appendix presents descriptive statistics on the number of fire counts in the in-utero 

months within a buffer of 75 km radius. 

4. Empirical methodology  

The empirical methodology for measuring the impact of agricultural fires on 

pollution as well as infant outcomes is similar. The main estimation equation is of the 

following form: 

𝑦𝑖,𝑐,𝑚,𝑦 = β0 + ∑ β𝑘

𝑛

𝑘=1

∗ 𝐹𝑢𝑝,𝑐,𝑟
𝑘 + ∑ δ𝑘

𝑛

𝑘=1

∗ 𝐹𝑑𝑜𝑤𝑛,𝑐,𝑟
𝑘 + γ𝐹𝑜𝑡ℎ𝑒𝑟,𝑐,𝑟  +  𝛼𝑡𝑇𝑐,𝑚,𝑦

+ αrPrecipc,m,y +  𝑿′𝒊Γ + 𝜇𝑐,𝑞 + 𝜂𝑞,𝑦 + 𝜆𝑚

+ 𝜀𝑖,𝑐,𝑚,𝑦                                                               (2) 

where 𝑦𝑖,𝑐,𝑚,𝑦 is the outcome variable. In the pollution equation, the outcome variable is 

the PM10 levels measured in city 𝑐, in month 𝑚, for year 𝑦. In the case of infant birth 

outcomes, the outcome variable is the birth outcome for individual 𝑖, born in cluster 𝑐, 

during month 𝑚, and year 𝑦. When the outcome is mortality, I scale this variable so that it 

takes the value 0 when the individual survives and takes the value 1000 if the individual 

dies. This allows for the coefficients to be interpreted in terms of standard mortality rate 



measured as deaths per 1000 births. 𝐹𝑢𝑝,𝑐,𝑟
𝑘 , the main variable of interest is a measure of the 

exposure to up-wind fires (described below). I also control for measures of down-wind fire 

(𝐹𝑑𝑜𝑤𝑛,𝑐,𝑟
𝑘 ) as well as fires that are in other (neither up- or down- wind) directions 𝐹𝑜𝑡ℎ𝑒𝑟,𝑐,𝑟. 

Additional controls include month-year mean temperature and precipitation (𝑇𝑐,𝑚,𝑦 and 

Precipc,m,y). I control for the mean temperature and precipitation during in-utero months 

including the square of the mean temperature and rainfall as well as their interaction. I also 

control for individual, maternal and household characteristics such as the gender of the 

child, maternal age and education, religion, caste group, household asset index and other 

factors. The regression equation includes location specific seasonal fixed effects (city- or 

cluster-by-quarter of birth fixed effects) 𝜇𝑐,𝑞, year specific seasonal fixed effects (quarter 

of birth-by-year of birth fixed effects) 𝜂𝑞,𝑦 , and month of birth dummies 𝜆𝑚. This 

specification flexibly accounts for city/cluster specific seasonal trends, and controls for 

time invariant spatial and seasonal (quarter) unobservable characteristics within each 

city/cluster. The identification is therefore based on comparing the change in outcomes 

within a city- or cluster-quarter over different years with respect to change in the intensity 

of up-wind agricultural fires.   

For the heterogeneity analysis, I interact the up-wind fire exposure variable with 

key characteristics to examine differential effects across various dimensions. I also present 

results from using alternative fixed effects specifications. In particular, given that nearly 

80 percent of the women in the sample have more than one child, I present results using 

mother fixed effects as well. This specification compares the change in mortality outcome 

within siblings exposed to varying levels of pollution in-utero.  

I construct measures of exposure to agricultural fires around each city or cluster 𝑐 

for month 𝑚 in year 𝑦 as follows. I first find the prevailing wind direction for each month-

year for each city or cluster using the gridded wind product. Second, I calculate the number 



of fires around each 𝑐 within varying radii, as well as the bearing (angle) between each fire 

in the buffers and the location of 𝑐. I then create counts of the fires in each octant (45-

degree sectors) of the circular buffer. Using the wind direction and location of these fires, 

I aggregate the fires that are up- and down-wind of each cluster or city. For instance, if the 

wind is blowing from the southwest-west (SWW) octant towards north-northeast octant 

(NNE), then the fires that are in the SWW direction are up-wind fires (𝐹𝑢𝑝,𝑐,𝑟) and those in 

the NNE direction are down-wind (𝐹𝑑𝑜𝑤𝑛,𝑐,𝑟). I first present results for the pollution impact 

using a flexible specification of the 𝐹𝑢𝑝 and 𝐹𝑑𝑜𝑤𝑛 and show evidence for the non-linear 

effect of the up-wind fires. Based on these initial results, the main specification that I use 

relies on splitting the fire counts into bins.  

5. Impact of agricultural fires on pollution 

5.1 Preliminary evidence 

I use the daily air quality measures from the Central Pollution Control Board 

(CPCB) for 257 cities during 2013-2015 to estimate the effect of agricultural fires on 

pollution. While many cities have more than one pollution measuring station, data on the 

location of each measuring station is unavailable. Therefore, I aggregate air quality 

measures to the city level. I geocode the city locations at the approximate center of each 

city and use this as the reference to calculate the fire counts as well as to interpolate the 

wind and other climatic variables. The primary air quality measure that I focus on is the 

level of particulate matter measured by PM10 levels in micrograms per cubic meter 

(𝜇g/𝑚3). I also have data on sulfur dioxide for this period, and measures of nitrogen dioxide 

for some cities (130 out of the 257 cities), and I present results of the impact of fires on 

these measures in the appendix.  



I first present descriptive evidence showing the link between pollution and 

agricultural fires. Figure 3 shows the weekly variation in the average value of PM10 across 

all the sample cities for the year 2015. Also shown in the same plot is the average weekly 

number of fires in the up-wind direction within 100 km of each city. The PM10 levels and 

the number of fires track closely with each other. Two additional points stand out from this 

figure. First, we see two definite periods of high fire activity that correspond to the seasonal 

variation in fires described earlier and shown in Figure 1 for the whole sample period. 

Second, the PM10 levels, on average, are several magnitudes higher than safe air quality 

standards for this sample of India cities. The mean PM10 level is 93.3 which is more than 

four times the WHO prescribed safe level of 20 𝜇g/𝑚3 annual mean (World Health 

Organization 2006, 9) and more than 1.5 times the CPCB prescribed standard of 60 𝜇g/𝑚3 

per year. The average PM10 levels remain much higher than these safe levels even during 

the weeks when fire activity is low.  

A similar picture is presented by the descriptive statistics of the air pollution 

measures for the full sample period 2013 – 2015 in Table 1. Column (1) and (2) present the 

mean levels for city-months with above zero (the median) number of fires and with zero 

fires respectively, and column (3) presents the mean and standard deviation for the full 

sample. The difference in means in PM10 levels between (1) and (2) is nearly 15 units 

(Column (4)), more than 16% higher than the average PM10 value for the city-months with 

zero fires in Column (2). Similar higher average levels of SO2 and NO2 are also observed 

for the city-months with at least one up-wind fire.   As with PM10 levels in 2015 seen in 

Figure 3, the overall PM10 average across the three-year period remains much higher than 

prescribed safe levels at more than 97 𝜇g/𝑚3. Given these already high pollution levels, 

the marginal impact of a single fire within the vicinity of a city is likely to be small, but the 

effect is more likely to be detectable at higher levels of fire activity. This intuition is 

reflected in the regression results presented below.  

 



5.2 Regression results 

While the pollution data is at the daily level, analysis at this temporal scale is 

difficult due to missing data issues. Similar problems are documented previously in the 

economics and atmospheric science literature using these data in the Indian context 

(Burgess et al. 2017; T. Liu et al. 2018). Also, the infant birth outcome analysis can be 

performed only at the monthly level since only the month of birth is recorded.  Therefore, 

to keep the analysis consistent between these two sets of results, I focus on estimating the 

pollution equation at the city-month level. I first estimate the regression equation (2) using 

a flexible functional form for the number of fires by using indicators for each fire from 1 

to 9 and a separate category for a higher number of fires. I present these coefficients in 

Figure 4. The regression equations for both these figures control for fires in the other 

directions. Panel (a) presents the coefficients on the up-wind fire categories using a 75 km 

buffer around each city while panel (b) presents corresponding results for a 100 km buffer. 

In each case, we find graphical evidence suggesting a threshold effect wherein the marginal 

PM10 response is relatively flat for 1-4 fires but sees a definite increase when going beyond 

four fires. 

Given this non-linearity that we observe in the effect of fires on PM10, I create 

three up-wind fire bins with ranges {0}, [1,4], ≥ 5 corresponding to the overall pattern that 

we observe in Figure 4. Table 2 presents the results using these categories for up-wind fires 

and down-wind fires. Also, I control for the number of fires that are in the other directions 

(non-up/down fires). Consistent with Figure 4 we find that 1-4 up-wind fires do not 

increase PM10 levels, but we see a significant increase when there are five fires or more in 

a month. Down-wind fires show no impact. The results remain consistent when I increase 

the buffer radius from 75 km to 100 km. On average, the higher fire intensity categories 

increase PM10 by about 3.5% over the sample mean of 98.4 𝜇g/𝑚3.  

I present similar sets of results for the impact of up-wind fires on SO2 and NO2 in 

the appendix (Appendix Figures A1 and A2, Table A2). I find no evidence for the impact 



of the fires on SO2 levels and limited evidence for an increase in NO2 levels in the cities. 

These results for SO2 and NO2 are in contrast to the results reported by Mittal et al. (2009) 

who find an increase in the levels of both gases associated with postharvest months when 

crop-residue burning occurs. However, their study focused on data from five monitoring 

stations around a single city close to crop-residue burning locations in Punjab. The PM10 

and NO2 results here are consistent with those reported by Rangel and Vogel (2017) who 

also find that up-wind fires from sugarcane burning in Brazil increase PM10 but appear to 

have no effect on NO2. Overall, the results of the pollution analysis indicate a robust 

relation between agricultural fires and PM10 levels measured by the air quality meters 

across a large sample of cities across India.  

6. Impact on infant outcomes 

6.1 Descriptive evidence 

Table 3 provides descriptive statistics of the outcome variables as well as some of 

the key individual and household covariates. Column (1) and (2) provide the mean and 

standard deviation for births that are above and below the median number of up-wind fire 

exposure during the prenatal months. The median is equivalent to splitting the sample into 

births with at least one up-wind fire during the 0 – 9 months period before birth (about 45% 

of the sample) and those with zero (55% of the sample) fires since the median number of 

fires is zero. Column (3) presents the summary statistics for the whole sample while 

Column (4) presents the differences in means and results of the corresponding t-tests. 

Column (5) presents t-tests for the differences when we stratify by district-quarter 

dummies. For the overall sample, the average mortality rate measured at one month after 

birth is 33.4 deaths per 1000 births, and this increases to 45.25 deaths per 1000 births when 

mortality is measured at 12 months after birth. These mortality rates are very similar to the 

statistics from the Sample Registration System (SRS) which tracks births and death and is 



the primary source of vital demographic statistics in India (Bhat 2002)6. The average infant 

mortality rate (under 12 months) from the SRS for the years’ corresponding to the sample 

period (2006-2016) is 45.27, almost precisely the sample mean in the NFHS data (NITI 

Aayog 2018).  

The difference in means is indicative of higher mortality rates amongst births 

exposed to agricultural fires. The average neonatal and infant mortality rates are both 

significantly higher for births exposed to at least one up-wind fires, with 1.97 more 

neonatal deaths and 2.86 more deaths within 12 months after birth. Both these differences 

are more than 6% of their respective mean for the total sample. The differences in means 

remain significant in Column (5) which presents the results of the t-test after including 

district-by-quarter fixed effects7. 

The NFHS 4 also records birth-weights for the individuals born in the past five 

years before the survey. This sample numbers nearly 163,000, about 40% of the sample 

used in the mortality analysis.  The birth-weight is reported from a health card or other 

written record if available. If no record is available, it is based on the mother’s recall of the 

birth-weight. Previous analysis of NFHS birth-weights has found that accuracy of recalled 

weights may be suspect, with evidence of heaping around multiples of 500 grams 

(Channon, Padmadas, and McDonald 2011). Given these issues, I look at birth-weights for 

the whole sample, as well as for those for whom birth-weight data is based on written 

records (about 53% of the sample). When differences between birth-weight are examined 

for the whole sample, we find that infants exposed to at least one up-wind fire have a 

slightly higher birth-weight on average (about a 0.4% increase over the total sample mean). 

                                                 
6 The SRS undertakes continuous registration of births and deaths for a nationally representative sample of 

villages and urban blocks and is updated at a half-yearly period using surveys for updating and verification 

of deaths and births. 
7 The p-values in Column (5) correspond to those obtained by regressing the row variable on the group 

dummy (0 for below and 1 for above median) and district-by-quarter dummies. The p-values correspond to 

the coefficient on the group dummy. 



The difference in means is not significant when comparing with district-quarter in Column 

(5). The difference in means of the birth-weight is also significantly reduced when I limit 

the birth-weight sample to observations with written records. I also use the birth-weights 

with written records to classify births that fall into low birth-weight (LBW) category. LBW 

individuals are those who weighed less than 2500 grams at birth (WHO 2014). The overall 

LBW share of births is about 17%, and there do not appear to be significant differences in 

the mean levels between the two groups. 

In addition to the outcome variables, Table 3 also shows that significant differences 

exist between the two groups in terms of individual and maternal characteristics. Mothers 

are slightly older and have about half-a-year of education more amongst those exposed to 

agricultural fires. The households are also wealthier, based on the asset-based wealth index 

that the NFHS constructs. The asset wealth index is a principal component-based index of 

the household’s ownership of assets such as television, bicycles, the material used for house 

construction, the source of drinking water and other factors. I control for all these 

covariates in the regression models that I estimate. These differences in covariates seen in 

Table 3 imply that the location of agricultural fire activity may not be exogenous and 

motivates the empirical methodology that I use in the regression estimates below. 

6.2 Regression estimates 

  The main effects that I focus on are the impacts of pollution exposure on neonatal 

and infant mortality, although I also test for mortality under five years of age as well. The 

first month is believed to be the most vulnerable period of life, and globally neonatal 

mortality accounts for more than half of the total infant deaths (Do, Joshi, and Stolper 

2018). Within the study sample, neonatal and infant mortality contribute 66.4 and 90.1 

percent of the total under-5 mortality respectively. While neonatal and infant mortality do 



not account for all potential health costs, their high incidence makes them a substantial 

factor in the overall health burden of pollution. I also examine the effect on birthweight 

using the sub-sample of births for whom this data is recorded but find no evidence of any 

impact on either weight at birth in grams or on the incidence of low-birthweight 

(birthweight less than 2500 grams). These estimates are presented in the Appendix (Tables 

A4 and A5). I discuss the mortality effects below.  

  The first set of results I present consider the impact due to up-wind fire exposure 

during each month of the in-utero period, i.e., 0 to 9 months before birth. The estimation 

equation is identical to that shown in Equation (2) except for the addition of month-wise 

fire count categories for both up- and down-wind fires. For each month, I categorize the 

confidence-weighted count of fires in the up-wind octant into three bins - {0}, [1,4], ≥ 5. 

These categories are consistent with the monthly fire count bins used in the regressions for 

measuring PM10 impact. Figure 5 presents these results for neonatal and infant mortality. 

The regressions include month-of-birth dummies, quarter-by-year fixed effects, and 

cluster-by-quarter fixed effects. Other control variables included are temperature, 

precipitation, and individual and household covariates. 

  The effect on both neonatal and infant mortality is most pronounced during the later 

stage of pregnancy from 0 to 2-months before birth. The higher vulnerability of infants to 

pollution exposure during the third trimester of pregnancy and just after birth is consistent 

with some of the earlier studies on air pollution and infant mortality. Biological literature 

suggests that maternal exposure to particulate matter and other air pollutants could lead to 

a decrease oxygen and nutrient supply to the fetus, and also result in adverse placental 

inflammation particularly during the final trimester (Beate Ritz and Wilhelm 2008; Stieb 

et al. 2012). Recent medical literature also hypothesizes that infants in the months before 

birth and neonatal stages may be more susceptible to pollution effects due to alveoli in the 

lungs being less developed (Hajat et al. 2007). Previous studies of exposure to biomass 



fires also find that the late pregnancy months have a strong effect on birth outcomes and 

mortality (Rangel and Vogl 2017; Jayachandran 2009). Chay and Greenstone (2003),  find 

that particulate matter exposure increases mortality the most during one month period after 

birth, and much less in the following one year period during the early 1980s in the US. 

They note that evidence for the underlying biological pathways is unclear. Given these 

results, I focus on examining the impact of fire exposure in the late pregnancy months on 

birth outcomes in further detail below. 

  Table 4 presents regression results for the impact on neonatal mortality. Column (1) 

presents the results of the full sample using a 75 km radius around each NFHS cluster for 

measuring fire exposure. Consistent with the threshold effects seen in the PM10 results, 

we see no impact when exposed to four or fewer up-wind fires. Exposure to five or more 

up-wind fires increases mortality by more than 2.7 deaths per 1000 births relative to those 

exposed to no fires. Down-wind fires have no significant effect on mortality rate indicating 

that the channel through which agricultural fires impact birth outcomes is most likely 

through changes in air quality. This increase in neonatal mortality rate is about 8.2 percent 

relative to the average sample neonatal mortality rate of 33.3 deaths per 1000 births. The 

estimates remain very similar when I vary the exposure radius from 75 km to a 100 km 

buffer in Column (2). The magnitude of the coefficient on exposure to five or more fires 

remains very stable, and the remaining coefficients remain qualitatively the same as well.  

  Table 5 presents similar results for the impact on infant mortality. These results are 

also consistent with the finding that pollution from agricultural fires increases mortality 

risk. For the full sample (Columns (1) and (2)), the magnitude of the coefficient on five or 

more up-wind fires increases slightly to 2.8 – 3.0 additional deaths compared to the 

estimates for neonatal mortality. However, the effect size relative to the mean mortality rate 

in the sample of 45.4 deaths per 1000 births is smaller at about 6.7 percent. This pattern of 

results repeats in Table 6 which shows the effects on under-5 mortality. Here again, the 



negative effects of up-wind fire exposure are large and significant with around 3 additional 

deaths. Relative to the mean under-5 mortality rate of 50.1 deaths per 1000 within the 

sample, the share of pollution-related deaths linked to agricultural fires remains around six 

percent.  

  To compare these results with the existing literature on pollution exposure, I convert 

the effects of up-wind fires into mortality effects in terms of change in pollutant levels. To 

do so, I divide the coefficient on exposure to five fires or more in the mortality regressions 

by the coefficient on the effect of a similar number of up-wind fires on PM10. The resulting 

estimate is analogous to a Wald estimator. I assume that the marginal impact on PM10 

levels estimated using the data from pollution meters from the 250 cities is extensible to 

the broader geographic region covered by the NFHS sample of births. For purposes of this 

discussion, I focus on the estimates from the regressions using the 75 km buffer. Appendix 

Table A3 provides details of these calculations.  

The estimates in Table 2 show that up-wind fire activity of five or more fires 

increase PM10 levels by 3.3 𝜇𝑔 𝑝𝑒𝑟 𝑚3 on average. Using a conversion factor of PM2.5 = 

0.7∗PM10 similar to Heft-Neal et al. (2018) results in an equivalent increase of 2.3 

𝜇𝑔 𝑝𝑒𝑟 𝑚3 in terms of PM2.5. The effect of a similar level of up-wind fire activity on 

infant mortality rate is 3.03 additional deaths per 1000 births. This implies that an increase 

in PM10 levels of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 would result in an increase in infant mortality rate of 9.1 

deaths per 1000 births, more than 20 percent of the mean infant mortality rate of 45.4 deaths 

per 1000 births in the sample. A similar increase in PM2.5 levels would imply an increase 

of nearly 13 deaths per 1000 births, about 28.6 percent of the sample mean. These effects 

are much higher than the infant mortality effect of 9.2 percent estimated by Heft-Neal et 

al. (2018) for a selection of African countries for an increase of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 in PM2.5. 

They are also larger than the 8.8 percent infant mortality estimated in Mexico City (Arceo, 

Hanna, and Oliva 2016) for an increase of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 in PM10. The impact I find is 



very similar to the 19 percent mortality effect for an increase of 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 in PM10 

levels found in China for the 0-4 age group (He, Fan, and Zhou 2016).  

I also take advantage of the nationally representative nature of the data to present 

estimates of the total number of deaths attributable to pollution exposure within the 

population. I use the mortality numbers for India estimated by the UN Inter-agency Group 

for Child Mortality Estimation (UN IGME 2018). During the sample period 2006-2016, 

nearly 1.1 million infant mortality deaths occur per year on average, and the mean mortality 

rate is estimated to 43.4 per 1000 births. I apply the estimated pollution-induced mortality 

rate for a 10 unit increase in PM10 or PM2.5 to the population number of deaths, 

accounting for the population mortality rate and the fraction of the sample that is exposed 

to five or more fires (see Appendix Table A3 for details). This calculation results in an 

estimate of nearly 94,000 (135,000) additional infant deaths per year attributable to a 10 

unit increase in PM10 (PM2.5).   

These population mortality estimates can be compared to disease burden model-

based estimates that are derived by applying exposure-response functions to spatial 

population data. The underlying integrated exposure-response functions measure the 

relative risk from ambient PM2.5 exposure using a theoretical minimum risk exposure level 

between 2.4 – 5.9 𝜇𝑔 𝑝𝑒𝑟 𝑚3 compared to the ambient PM2.5 exposure levels derived 

from annual averages based on satellite data and chemical transport models (Cohen et al. 

2017). These average ambient exposure levels used for India are in general much greater 

than the 10 𝜇𝑔 𝑝𝑒𝑟 𝑚3 increase in particulate pollution that I use in calculating the 

mortality numbers above. For instance, in 2015 the annual average PM2.5 value for India 

was 74.3 𝜇𝑔 𝑝𝑒𝑟 𝑚3 and the corresponding number of under-5 deaths were estimated to 

be around 51,000 (Lelieveld, Haines, and Pozzer 2018) – less than 40 percent of the number 

of under-5 deaths that I find using the pollution exposure results in this study. I also 

calculate average infant and under-5 deaths per annum for the 2006-2016 period using the 

Global Burden of Disease tool (GBD 2017) which also result in much lower estimates 



compared to the results that I find. For instance, the GBD estimate of  about 70,000 infant 

deaths per annum is 52 percent of the estimated mortality burden that I find for a 10 

𝜇𝑔 𝑝𝑒𝑟 𝑚3 increase in PM2.5 and is closer to the number of deaths that my results imply 

for an increase of 5 𝜇𝑔 𝑝𝑒𝑟 𝑚3  in PM2.5 (67,000 deaths per annum). 

The GBD estimates apply exposure-response functions derived mostly from urban 

settings in developed countries and have been found to underestimate the mortality impact 

of pollution in Africa as well (Heft-Neal et al. 2018). This could be driven by the fact that 

households in developing countries are poor and are less likely to adopt avoidance 

behaviors. Consequently, the effect of air pollution is expected to be much higher (He, Fan, 

and Zhou 2016; Arceo, Hanna, and Oliva 2016). While I cannot directly test to see whether 

households engage in avoidance behavior, I present suggestive evidence in the results 

below by exploring the heterogeneity in pollution impacts across key population 

dimensions.  

6.3 Heterogeneity in pollution effects on mortality 

  I first explore the difference in the mortality effects of pollution exposure between 

urban and rural populations. The urban and rural regions comprise 22 percent and 78 

percent of the births respectively in the sample used for analysis. Columns (3) and (4) in 

Tables 4 – 6 present the regression estimates for the rural sample using 75 and 100 km 

buffers, while Column (5) to (6) present the same for the urban sample. The adverse 

mortality impact of pollution exposure is evident across all stages of early childhood in the 

rural sample, and the magnitude is larger than the corresponding coefficient on exposure 

to five or more up-wind fires seen within the full sample in Columns (1) and (2). Neonatal 

mortality increases by more than 3.1 deaths per 1000 births, infant mortality by 3.7 and 

under-5 mortality by a similar amount. These mortality impacts translate to about 9.2, 7.7 

and 6.6 percent of the sample neonatal, infant and under-5 mortality, respectively. The 



magnitudes as a share of the sample mean are higher than in the overall sample even though 

the sample average mortality rates are higher in the rural areas.  

While down-wind fires are not associated with changes in neonatal mortality rates, 

the infant and under-5 mortality results in the rural sample suggest that down-wind fires 

are potentially associated with a reduction in mortality rates. A plausible explanation for 

this finding is that overall agricultural fire activity is likely to be correlated with higher 

agricultural productivity, and consequently, households in such areas may have more 

resources to invest in early childhood health. I provide evidence to support this in Table 7 

which looks at the association between total agricultural fire-activity (in the same 0-2 

month before birth period) and indicators of health inputs. I use the data from a sub-sample 

of births within five years of the survey date for which the NFHS records several health 

input indicators. I find that fire activity is positively correlated with increased likelihood of 

institutional births and the mother having a card provided by a healthcare facility to keep 

track of the child’s vaccination schedule and growth (Columns (1) and (2) of Table 7). The 

children in areas with higher agricultural fires are also more likely to receive critical 

vaccinations in their first year of life (Columns 3 – 5). These improved health inputs 

correlated with fire activity may offset some of the mortality effects later in childhood 

(under-12 months and under-5 mortality), but do not mitigate the adverse effects at early 

life (neonatal mortality within one month of birth). The sample for which the information 

is available for these variables is limited to the most recent birth recorded with the past five 

years, and the limited variation across these observations make it difficult to investigate 

the potential heterogeneity in mortality effects along these dimensions in greater detail. 

In contrast to the heightened adverse effects on mortality in the rural areas, we do 

not see any effect on the mortality rates in urban areas due to up-wind fire exposure 

(Columns 5 and 6 in Tables 4-6). Part of the reason is potentially due to better antenatal 

and postnatal health care. The NFHS records several of these indicators for births that 



occurred within five years prior to the survey dates, and significant urban-rural differences 

are visible in these factors. 76 percent of the women in urban areas report receiving any 

antenatal care from a doctor for their most recent birth, while the corresponding number 

amongst rural women is just over 50 percent. The number of antenatal care visits are also 

lower amongst rural women.  

Similarly, while more than 25 percent of rural births were delivered outside of a 

hospital (mostly at home), the share of such births among urban women is less than 12 

percent. Delivery at a hospital is more likely to result in a postnatal check of the health of 

the infant in the first two days. These checks are likely to be critical in improving survival 

rates amongst those born with poor health conditions (International Institute for Population 

Sciences (IIPS) and ICF 2017). 

  In addition to healthcare availability and access, household wealth level is an 

important determinant of infant health outcomes. Panel A of Table 8 presents results 

examining the heterogeneity in mortality effects across household wealth.  The regression 

specification used here adds interactions between up-wind fire exposure indicators and 

wealth level measured by the NFHS asset wealth index to the specification used earlier. 

The estimates are based on the 75 km buffer. Mortality risk due to pollution from up-wind 

fires does not vary with wealth level in the rural sample either in the neonatal stage or the 

first one year of life (Columns 1 and 3). However, wealth makes a difference to neonatal 

mortality in the urban sample. An increase in household wealth as measured by asset 

ownership reduces the neonatal mortality risk amongst urban births. This suggests that the 

urban poor may be more susceptible to adverse birth outcomes due to pollution exposure.  

  The remaining results in Table 8 examine the heterogeneity along other important 

dimensions. Panel B looks at differences across gender and Panel C across birth order. The 



mortality risk does not appear to vary across either of these factors. Panel D examines if 

mortality risk increases for those births whose mothers are engaged in agricultural or 

manual labor. Women who are work as labor may be more likely to work outdoors and later 

into their pregnancy term. As a result, they may face the risk of higher pollution exposure. 

The results in Panel D provide suggestive evidence for this mechanism, particularly in the 

rural sample. The coefficients on the interaction with exposure to five or more up-wind 

fires for the rural sample are much higher than the average mortality estimates seen earlier. 

Neonatal mortality is higher by more than 6 additional deaths per 1000 births and infant 

mortality by more than 10. However, the standard errors are generally less precise for these 

heterogeneity estimates. 

6.4 Robustness tests 

 The first set of robustness tests take the form of a placebo regression in which I test 

that fires in the months after which mortality is measured do not predict mortality. For 

instance, up-wind fires during the second and third month should not explain mortality in 

the first month after birth. Similarly, fires in the 13th and 14th months should not effect 

infant mortality within the first 12 months after birth. Table 9 presents the results of these 

tests for neonatal and infant mortality in the rural sample using both 75 and 100 km radii 

for the buffer. The regressions include controls for down-wind and fires in other directions 

for the lead months as well. The coefficients on up-wind fires for the lead months are not 

statistically significant across the outcomes, irrespective of the radius used for measuring 

fire exposure. The in-utero up-wind fire coefficients remain consistent with those estimated 

earlier. These findings reduce the potential concern that there might be some other 

unobserved factors correlated with wind direction and agricultural fire activity that also 

drive mortality.  



 I also test the sensitivity of the results to other specifications. Columns (1) and (4) 

presents results from using an alternative set of fixed effects which flexibly control for 

state-specific seasonal effects and district-specific time trends along with month and birth-

year effects. The coefficients show that neonatal and infant mortality effects remain 

consistent with the results from the preferred specification presented in earlier tables.  

Columns (2) and (4) show estimates from using mother fixed effects. This specification 

compares outcomes for siblings born to the same mother but having different levels of up-

wind fire exposure. The results remain very similar to the results using cluster-by-quarter 

fixed effects. In columns (3) and (6), I show that the estimates in the main specification are 

robust to clustering by district rather than at the cluster level. The standard errors remain 

very similar to those obtained earlier.  Overall, these additional tests provide added validity 

to the pollution impacts found in the study. 

7. Conclusions 

This study examines the adverse health consequences of in-utero pollution 

exposure on early childhood outcomes. The identification strategy uses seasonal variation 

in agricultural fires, a widespread practice among farmers in India as well as other parts of 

the developing world. To overcome the lack of ground-based measures of agricultural fires, 

I utilize satellite-derived data on the location and timing of agricultural fires at a high 

degree of spatial and temporal resolution. I combine the fire activity data with 

georeferenced daily pollution meter measurements from more than 250 Indian cities to first 

establish the impact of agricultural fires on levels of airborne particulates. I then leverage 

the birth history data of all women interviewed in the National Family and Health Survey 

(NFHS 4) to construct a panel of births and deaths at the month-by-year level for each 

NFHS sample cluster. Using these data, I then estimate the effect of exposure to agricultural 

fires on mortality and health outcomes at infancy. In both analyses, I exploit the variation 

in wind direction and isolate exposure to fires that are up-wind of the pollution meter or 



the household. This allows me to disentangle the potential income effect on infant health 

due to higher agricultural productivity or economic activity that be correlated with higher 

fire incidence. I show that both pollution and infant health are affected by fires that are up-

wind, while down-wind fires have no effect. 

The results show that up-wind fire activity has a significant effect on PM10 levels 

in the sample of Indian cities used in the analysis. Months that have 5 or more fires result 

in an average increase in PM10 levels of close to 4 𝜇g/𝑚3 – 20 percent of the safe limit of 

20 𝜇g/𝑚3 prescribed by the World Health Organization (WHO). Rather surprisingly, this 

large impact of fires on PM10 levels is seen even though the average PM10 levels are 

already very high (mean of 98.4 𝜇g/𝑚3) in the sample. These results are consistent with 

those seen in previous studies, largely in the environmental and atmospheric science 

literature, in India and those examining sugarcane burning in Brazil (Venkataraman et al. 

2006; Mittal et al. 2009; Rangel and Vogl 2017).  

The most potent effects of agricultural fire exposure on infant outcomes are seen in 

the higher likelihood of mortality across early childhood.  Mortality rates within one month 

after birth (neonatal mortality) and during the first 12 months (infant mortality) show a 

significant increase with exposure to agricultural fires. I also find that the in-utero pollution 

exposure has lasting effects even up to five years of age leading to an increase in under-5 

mortality rate of around 3 deaths per 1000 births.  The increase in neonatal mortality is 

about 2.7 and infant mortality is nearly 3 deaths per 1000 births. These mortality costs are 

substantial even when India’s high infant and child mortality levels are taken into account. 

The mortality effects of agricultural fire exposure amount to between 6 to 9 percent relative 

to the sample average of the mortality rates. These effects are concentrated in the sample 

of rural households, while urban areas show no evidence for an impact due to agricultural 

fire exposure. Differences is health care access as well household wealth may be potential 

factors underlying these differential effects.  



At the aggregate, nationwide level, the results of this study imply nearly 94,000 

(135,000) additional infant deaths per year attributable to a 10 unit increase in PM10 

(PM2.5). These estimates signify a much larger mortality cost of pollution exposure than 

previously thought. For instance, recent studies estimate about 51,000 under-5 deaths in 

India attributable to ambient air-pollution risk during 2015 (Lee and Kim 2018) – less than 

40 percent of the number of under-5 deaths that I find using the pollution exposure results 

in this study. 

The results of this study add to the growing literature on air pollution and health. 

Unlike most previous studies in this area, this paper focuses on pollution from non-

industrial, non-urban sources of pollution. I build upon previous research by improving 

measurement of exposure to the fires combining detailed georeferenced survey and satellite 

datasets. The large sample of births in the data also makes it possible to provide analysis at 

a much greater geographic scale, encompassing both urban and rural areas in the country. 

These results also highlight the public health implications of agricultural fires and the need 

for feasible policies to reduce such practices among farmers. Addressing the issue of crop-

residue burning is going to be challenging since the expansion of mechanized harvesting 

through use of combined harvesters appears to be one of the drivers (Gupta 2012; Kumar, 

Kumar, and Joshi 2015). In recent years, there has been an increased focus on finding 

solutions for reducing crop-residue burning. Initial attempts, starting in 2015, to place a 

ban on any residue burning failed (Down to Earth 2017). Later, starting in 2018, the 

government in the state of Punjab has initiated policies to promote direct seeding 

machinery that can circumvent the need for clearing the residue from the field before 

planting, as well as subsidies for other residue management technologies (ET Bureau 

2018). The potential for policies such as these to reduce the practice of crop-residue 

burning among farmers remains and subsequent effect on infant health remains to be seen.   
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Figures and Tables 

Figure 1: Seasonal and spatial distribution in agricultural fire activity 
(a) February to June 

 

 

Note: Data based on MODIS instrument detected fire activity at the pixel level. The 

data covers the period from January 1, 2006, to December 31, 2016. The map shows 

the confidence-weighted number of fires in each district. 



Figure 1: (cont.) Seasonal and spatial distribution in agricultural fire activity 
(b) September to January 

 

 

Note: Data based on MODIS instrument detected fire activity at the pixel level. The data covers the period 

from January 1, 2006, to December 31, 2016. The map shows the confidence-weighted number of fires in 

each district. 



Figure 2: Location of air quality meters 

 
 

Figure 3: Weekly variation in PM10 levels and agricultural fires within 100 km radius during 2015 

 
 

Note: Number of fires is the confidence-weighted average number of fires in the up-wind octant around each 

city, for each week, based on MODIS fire counts. PM10 level based on air quality meter data from a sample 

of 257 cities, averaged by week.



Figure 4: Impact of up-wind fires on PM10 (µg per m3): Plot of regression coefficients 
 

(a) 

 

(b) 

 

Note: Standard errors are clustered at the city level. Estimates shown from the regression of PM10 on number of up-wind fires. Reference 

category is zero up-wind fires. Sample is monthly air- quality meter data 2013-15 for 257 cities. All specifications include month FE, 

quarter-by-year FE, city-by-year FE, similar category dummies for number of fires in down-wind octant, and number of non-up/down-

wind directions, and monthly mean temperature and precipitation.



 

Figure 5: Impact of up-wind fires in each in utero months on mortality (deaths per 1000 births) 
 

(a) Neonatal mortality 

 

 
 

(b) Infant mortality 

 

 
 

Note: Graphs show the coefficient on variable that takes value 1 if individual was exposed to more than four fires in that month. Standard 

errors are clustered at the NFHS sample cluster level. Cumulative effect (sum of coefficients for each month) is 6.11(s.e = 4.28) for panel 

(a) and 3.99 (s.e = 5.32) for panel (b. Specification includes controls for down-wind and fires in other directions, temperature, rainfall 

and individual, maternal and household characteristics. All specifications also include month of birth FE, quarter-by-year FE, and cluster-

by-quarter FE. 

 
 
 



Table 1: Descriptive statistics of air quality measures 

 (1) 

Above median 

 

(2) 

Below median 

(3) 

Total  

(1)-(2) 

t-test Difference 
Variable N Mean/SE N Mean/SE N Mean/SE 

PM10  

(µ g per m3) 
2832 106.661 4611 91.713 7443 97.401 14.948*** 

  [3.555]  [3.176]  [3.094]  

SO2  

(µ g per m3) 
2762 9.398 4554 8.245 7316 8.680 1.153** 

  [0.559]  [0.391]  [0.433]  

N O2  

(µ g per m3) 
1427 26.814 2392 24.988 3819 25.670 1.825* 

  [1.605]  [1.226]  [1.238]  

Note: The value displayed for t-tests are the differences in the means across the groups. Above and below median based on number of 

up-wind fires within 75 km radius. Standard errors are clustered at the city level. City-by-quarter fixed effects are included in all estimation 

regressions. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 

 

Table 2. Impact of fires on PM10 (µg per m3) 

 (1) (2) 

75 km 100 km 

Up-wind fires:   

1-4 
0.0928 

(0.8385) 
-0.2679 
(0.8647) 

   

≥ 5 
3.3253∗∗∗ 

(1.1660) 
3.4091∗∗∗ 
(0.9516) 

Down-wind fires:    

1-4 
0.4591 

(0.8267) 
1.4256 

(0.8649) 
   

≥ 5 
-0.2947 

(1.2404) 

0.7947 

(1.1490) 

   

Dep. var. mean 98.39 98.39 

Observations 7277 7277 

Notes. Sample consists of average monthly air quality meter readings from 257 cities for 2013 - 2015. Standard errors clustered at city 

level (N = 257). Control variables include temperature and number of fires in non-up/down-wind direction. All specifications include 

month FE, quarter-by-year FE, and city-by-quarter FE.  ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 



Table 3: Summary of mortality rate, maternal and individual characteristics 
 (1) (2) (3) t-test t-test 

 Above 

median 

Below 

median 
Total Difference Difference 

Variable Mean/[SE] Mean/[SE] Mean/[SE] (1)-(2) (1)-(2) 

Neonatal mortality (deaths per 

1000 births) 
34.422 32.449 33.343 1.973*** 1.973** 

 [0.477] [0.423] [0.330]   

Infant mortality (deaths per 1000 

births) 
46.811 43.952 45.248 2.859*** 2.859** 

 [0.559] [0.494] [0.389]   

Birth weight (g)  2823.863 2812.383 2817.452 11.480*** 11.480 

 [2.682] [2.414] [1.947]   

N 71835 90858 162693   

Birth weight (g) written record 2820.194 2819.355 2819.726 0.839 0.839 

 [3.319] [2.965] [2.348]   

N 38321 48428 86749   

Share - low birth-weight  

(< 2500 g) 
0.167 0.168 0.168 -0.001 -0.001 

 [0.002] [0.002] [0.001]   

N 38321 48428 86749   

Total children ever born  3.017 3.022 3.020 -0.005 -0.005 
 [0.008] [0.007] [0.007]   

Mother's age 29.462 29.238 29.340 0.224*** 0.224*** 
 [0.020] [0.019] [0.016]   

Maternal education (years) 5.629 5.174 5.381 0.455*** 0.455*** 
 [0.025] [0.024] [0.022]   

Household head is female = 1 0.111 0.120 0.116 -0.009*** -0.009** 
 [0.001] [0.001] [0.001]   

Age of household head 44.221 44.003 44.102 0.218*** 0.218 
 [0.055] [0.051] [0.044]   

Child is twin 0.024 0.024 0.024 -0.001 -0.001 
 [0.001] [0.001] [0.000]   

Sex of child (girl = 1) 0.472 0.476 0.474 -0.003 -0.003 

 [0.002] [0.002] [0.001]   

Wealth index category (1 – 5) 2.684 2.502 2.585 0.182*** 0.182*** 
 [0.008] [0.008] [0.007]   

N 182415 219853 402268   

Clusters 25972 27078 27997   

District-by-quarter FE    No Yes 

      

Note: The value displayed for t-tests are the differences in the means across the groups. Standard errors are clustered at NFHS sample 

cluster level. Sample consists of all births recorded from January 2007 to August 2016. Groups based on median of up-wind fires within 

75 km radius during prenatal months (0 – 9 months prior to birth). The median value is zero fires. ***, **, and * indicate significance at 

the 1, 5, and 10 percent critical level. 

 

 

 

 

 



 

Table 4. Impact on neonatal mortality 

 Full sample Rural Urban 

 
(1) (2)  (3) (4)  (5) (6) 

75 km 100 km  75 km 100 km  75 km 100 km 

Up-wind fires: 

 
        

1 − 4 0.1996 0.9340  0.2224 1.0581  0.2025 0.6786 

 (1.1620) (1.1924)  (1.2871) (1.3258)  (2.6687) (2.6798) 

         

≥ 5 2.7186∗ 2.7656∗  3.2243∗ 3.1026∗  0.6870 1.6081 

 (1.4890) (1.4701)  (1.6560) (1.6352)  (3.3919) (3.3252) 

Down-wind fires:         

1 − 4 -0.4706 -0.7158  -0.0112 -0.6544  -2.5986 -1.0263 

 (1.1668) (1.1880)  (1.3029) (1.3173)  (2.5621) (2.7104) 

         

≥ 5 0.9572 0.0887  1.8796 1.0292  -3.2210 -4.1844 

 (1.5130) (1.4595)  (1.6922) (1.6220)  (3.3106) (3.2989) 

Dep. var. mean 33.34 33.34  35.18 35.18  26.67 26.67 

Observations 402268 402268  315437 315437  86831 86831 

Notes. Sample consists of all births recorded from January 2007 to August 2016. Dependent variable takes value 1000 if individual died 

within one month of birth. Standard errors are clustered at the NFHS sample cluster level (N = 27997). Fire exposures is measured for 

the period 0-2 months before birth. Control variables include mother’s age (5-year groups) and education category, asset-based wealth 

index, religion, gender of household head, gender of birth, birth order, and indicators for multiple births (twins or more). All specifications 

also include month of birth FE, quarter-by-year FE, and cluster-by-quarter FE. . ***, **, and * indicate significance at the 1, 5, and 10 

percent critical level. 

 

 

Table 5. Impact on infant mortality  

 Full sample Rural Urban 

 
(1) (2)  (3) (4)  (5) (6) 

75 km 100 km  75 km 100 km  75 km 100 km 

Up-wind fires: 

 
        

1 − 4 0.3188 1.0695  0.7750 1.4459  -1.6817 -0.3875 

 (1.2547) (1.2797)  (1.4029) (1.4286)  (2.7830) (2.8533) 

         

≥ 5 3.0332∗ 2.8282∗  3.6852∗∗ 
3.8750∗

∗ 
 0.2420 -1.5308 

 (1.5922) (1.5617)  (1.7895) (1.7533)  (3.4878) (3.4150) 

Down-wind fires:         

1 − 4 -1.5968 -2.7453∗∗  -1.3603 -3.0732∗∗  -2.7046 -1.1969 

 (1.2338) (1.2747)  (1.3934) (1.4305)  (2.5900) (2.7627) 

         

≥ 5 0.3846 -2.3835  1.1973 -2.0082  -3.1468 -3.9797 

 (1.6060) (1.5525)  (1.8155) (1.7439)  (3.3692) (3.3631) 

Dep. var. mean 45.44 45.44  48.09 48.09  35.79 35.79 

Observations 365589 365589  286960 286960  78629 78629 

Notes. . Sample consists of all births recorded from January 2007 to November 2015 (births recorded at least 12 months before survey 

date to   ensure full exposure). Dependent variable takes value 1000 if individual died within one year of birth. Standard errors are 

clustered at the NFHS sample cluster level (N = 27997). Fire exposures is measured for the period 0-2 months before birth. Control 

variables include mother’s age (5-year groups) and education category, asset-based wealth index, religion, gender of household head, 

gender of birth, birth order, and indicators for multiple births (twins or more). All specifications also include month of birth FE, quarter-

by-year FE, and cluster-by-quarter FE. . ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 



Table 6. Impact on under-5 mortality  

 Full sample  Rural  Urban 

 (1) (2)   (3) (4)  (5) (6) 

 75 km 100 km   75 km 100 km  75 km 100 km 

Up-wind fires: 

1 − 4 
 

0.1422 
 

0.9288 
  

 
0.1711 

 
1.1401 

 
 

0.1294 
 

0.2047 

 (1.2313) (1.2557)   (1.3875) (1.4102)  (2.6259) (2.7217) 

≥ 5 2.9754∗ 3.1232∗∗   3.4927∗∗ 3.9822∗∗  1.0614 -0.2086 

 (1.5564) (1.5334)   (1.7651) (1.7356)  (3.2615) (3.2146) 

Down-wind fires:  
1 − 4 

 

-1.5199 -2.2156∗ 
  

 

-1.1324 

 

-2.0886 
 

 

-3.2688 

 

-2.8748 

 (1.2144) (1.2383)   (1.3711) (1.3932)  (2.5626) (2.6619) 

≥ 5 -0.4788 -2.1927   0.4346 -1.3170  -4.3365 -5.9506∗ 

 (1.5843) (1.5294)   (1.8036) (1.7305)  (3.2163) (3.2028) 

Dep. var. mean 50.19 50.19   53.40 53.40  38.55 38.55 

Observations 402268 402268   315437 315437  86831 86831 

Notes. Sample consists of all births recorded from January 2007 to August 2016. Dependent variable takes value 1000 if individual died 

within five years of birth. Standard errors are clustered at the NFHS sample cluster level (N = 27997). Fire exposures is measured for the 

period 0-2 months before birth. Control variables include mother’s age (5-year groups) and education category, asset-based wealth index, 

religion, gender of household head, gender of birth, birth order, and indicators for multiple births (twins or more). All specifications also 

include month of birth FE, quarter-by-year FE, and cluster-by-quarter FE. . ***, **, and * indicate significance at the 1, 5, and 10 percent 

critical level. 

 

 

 

 

Table 7. Total number of fires and early childhood health investments  

Dependent variables measured per 1000 births 

 Institutional medical access 

indicators 

Vaccinations in first one year 

 (1) (2) (3) (4) (5) 

 Delivery in 

hospital 

Has health 

card 

Received 

BCG 

Received DPT Measles 

Number of fires 0.0172*** 0.0159*** 0.00663* 0.0191*** 0.0551 *** 

 (0.00511) (0.00356) (0.00388) (0.00401) (0.00388) 

Dep. var. mean 714.01 887.92 881.55 852.84 701.87 

Observations 174053 165600 165600 165600 165600 

Notes. Sample consists of births recorded within 5 years of survey date in the rural sample. Dependent variable takes value 1000 if 

answered Yes. Fire exposures is measured for the period 0-2 months before birth within 75 km radius. All specifications include state-

by-year FE. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 

 

  



Table 8 Heterogenous effects across household wealth 

 Neonatal mortality  Infant mortality 

 (1) (2)  (3) (4) 

Rural Urban  Rural Urban 

Panel A: Interaction with wealth 

1 − 4 × Wealth index -0.7539 -3.1188  -0.6401 -2.7030 

 (1.3095) (2.8622)  (1.6535) (3.0935) 

≥ 5 × Wealth index -0.8005 -4.8487∗  -1.6822 -4.1917∗ 

 (1.3756) (2.8653)  (1.7250) (2.1564) 

Panel B: Interaction with gender 

1 − 4 × Female -0.7332 -0.8500  -0.1506 -1.8837 

 (2.1292) (4.2740)  (2.6517) (4.6739) 

≥ 5 × Female 0.1246 -4.6452  0.1780 -5.5065 

 (2.0274) (3.7493)  (2.5366) (4.0711) 

Panel C: Interaction with birth order 

1 − 4 × Second child -3.1448 -2.6948  -4.0484 -0.6268 
 (2.7156) (4.6932)  (3.3428) (5.2208) 
1 − 4 × Higher order -2.8546 5.7549  -5.1222 6.7153 
 (2.7204) (5.5727)  (3.3073) (6.0868) 

≥ 5 × Second child -4.9141∗∗ 0.6341  -3.9042 0.3192 
 (2.5003) (4.3861)  (3.0780) (4.7917) 
≥ 5 × Higher order -0.8895 1.2703  -0.5634 2.0317 
 (2.5992) (4.9979)  (3.1808) (5.4990) 

Panel D: Interaction with mother working in agricultural or manual labor 

1 − 4 × Ag. or manual labor 4.9689 -7.6458  4.7224 3.4835 
 (5.4612) (17.8464)  (6.6071) (20.6381) 

≥ 5 × Ag. or manual labor 6.5412 -2.5020  10.6110+ 11.3869 
 (5.3385) (14.7592)  (6.6330) (18.4015) 

Dep. var. mean 35.18 26.67  48.09 38.55 

Observations 315437 86831  286960 78629 

Notes. Standard errors are clustered at the NFHS sample cluster level (N = 27997). Fire exposures is measured for the period 0-2 months 

before birth using a 75 km buffer. Only the interaction terms are presented for brevity. Control variables include mother’s age (5-year 

groups) and education category, asset-based wealth index, religion, gender of household head, gender of birth, birth order, and indicators 

for multiple births (twins or more). All specifications also include month of birth FE, quarter-by-year FE, and cluster-by-quarter FE. ***, 

**, * and + indicate significance at the 1, 5, 10 and 15 percent critical level. 

  



Table 9. Placebo tests: no effect of up-wind fires in subsequent months on mortality during prior 

months 

Neonatal mortality Infant mortality 
 

(1) (2) 
 

(3) (4) 

75 km 100 km  75 km 100 km 

In-utero fires: 

1 − 4 
 

0.1618 

 
0.3096 

  
0.8827 

 
0.9968 

 (1.1614) (1.4742)  (1.1927) (1.5033) 

≥ 5 2.6699∗ 3.0871∗  2.6776∗ 2.8238 
 (1.4914) (1.8728)  (1.4724) (1.8364) 

Fire lead 2 months:      

1 − 4 -0.2273 0.8517  -0.8100 -0.3073 
 (1.1681) (1.4688)  (1.1366) (1.4211) 

≥ 5 -1.6010 0.8691  -0.9402 0.7389 
 (1.6487) (2.0822)  (1.4988) (1.8677) 

Dep. var. mean 33.34 33.21  48.09 38.55 

Observations 402268 365589  402268 365589 

Notes. Standard errors are clustered at the NFHS sample cluster level (N = 27997. Fires lead correspond to up-wind fires in the second 

and third month after birth for neonatal mortality and months 13-14 for infant mortality, respectively. Regressions include controls for 

down-wind fires and fires in other directions. Control variables include mother’s age (5-year groups) and education category, asset-based 

wealth index, religion, gender of household head, gender of birth, birth order, and indicators for multiple births (twins or more). All 

specifications also include month of birth FE, quarter-by-year FE, and cluster-by-quarter FE. ***, **, and * indicate significance at the 

1, 5, and 10 percent critical level. 



Table 10. Robustness tests using alternative specifications 
 

 Neonatal mortality    Infant mortality  

(1) (2) (3)  (4) (5) (6) 

Up-wind fires: 

1-4 
 

0.1090 0.0900 

 

0.2315 

  

0.2173 

 

1.0823 

 

0.7750 
 (0.9488) (1.5596) (1.2273)  (1.1531) (1.8162) (1.5810) 

≥ 5 2.5596∗∗ 3.5866∗ 3.2401∗∗  3.0408∗∗ 3.7409 3.6852∗ 
 (1.1628) (1.9491) (1.5702)  (1.4019) (2.5524) (2.0540) 

Down-wind fires:       

1-4 -0.4988 0.0281 0.0087  -1.5306 -1.9262 -1.3603 
 (0.9527) (1.5580) (1.2763)  (1.1370) (2.0657) (1.6137) 

≥ 5 -0.0147 1.9124 1.8684  0.6816 1.5782 1.1973 

 (1.1820) (2.0033) (1.7249)  (1.4262) (2.6090) (2.1504) 

Dep. var. mean 35.18 41.26 35.18  48.09 57.02 48.09 

Observations 315437 228117 315437  286960 201647 286960 

Fixed effects State-quarter Mother Main spec.  State-quarter Mother Main spec. 
 District-year       District-quarter District SE  District-year  District-quarter District SE 

 Year-quarter   Year-quarter 
Month-of-birth 

  Year-quarter 
Month-of-birth 

Year-quarter  

Notes. Standard errors are clustered at the NFHS sample cluster level, expect for columns (3) and (6). Sample consists of rural births. Fire exposures is 

measured for the period 0-2 months before birth using 75 km radius. All regressions control for down-wind and fires in other directions along with weather 

variables and other controls used in previous regressions.  ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 



Appendix 

Figure A1: Impact of up-wind fires on NO2 (µg per m3): Plot of regression coefficients 
 

(a) 

 

(b) 

Note: Standard errors are clustered at city level. Estimates from the regression of NO2 on number of up-wind fires. Reference category is 

zero up-wind fires. Sample is monthly air- quality meter data 2013-15 for 135 cities. All specifications include month FE, quarter-by-

year FE, city-by-year FE, number of fires in non-up/down-wind directions and temperature. 



Figure A2: Impact of up-wind fires on SO2 (µg per m3): Plot of regression coefficients 
 

(a) 

 
(b) 

 

Note: Standard errors are clustered at city level. Estimates from the regression of SO2 on number of up-wind fires. Reference category is 

zero up-wind fires. Sample is monthly air- quality meter data 2013-15 for 257 cities. All specifications include month FE, quarter-by-

year FE, city-by-year FE, number of fires in non-up/down-wind directions and temperature. 



Figure A3: Locations of NFHS - IV sample clusters 

 

 

  



Table A1. Fire activity within 75 km buffer 

 
Up-wind fires Down-wind fires Total fires 

Panel A: Fire activity around cities with pollution measures 
 

mean sd mean sd mean sd 

City-month 5.414 27.725 6.727 35.250 49.305 209.115 

Observations 7449 
     

       

Panel B: Fire activity - sample of births in NFHS 4 
 

Up-wind fires Down-wind fires Total fires 

Months before birth mean sd mean sd mean sd 

0 5.157 23.329 4.838 21.253 40.091 133.611 

1 5.003 22.891 4.708 20.749 38.817 129.697 

2 4.853 22.428 4.545 20.122 37.718 126.687 

3 4.789 22.126 4.452 19.711 37.263 124.777 

4 4.707 21.863 4.381 19.197 36.681 122.940 

5 4.660 21.729 4.311 19.034 36.011 122.001 

6 4.618 21.388 4.276 19.070 35.771 121.951 

7 4.592 21.491 4.309 19.187 35.757 122.101 

8 4.751 22.495 4.300 19.094 36.130 123.122 

9 4.901 22.510 4.463 19.854 37.456 125.971 

10 5.054 23.159 4.802 21.317 39.440 132.150 

Observations 407386 
     

 

Table A2. Impact of fires on SO2 and NO2 (µg per m3) 

 SO2 NO2 

 (1) (2) (1) (2) 

75 km 100 km 75 km 100 km 

Up-wind fires:     
1-4 0.0729 0.0665 0.4867 0.0306 

 (0.0955) (0.0762) (0.3857) (0.3869) 

≥ 5 0.3684 0.1485 1.1416 1.2637∗∗ 

 (0.3066) (0.1914) (0.8412) (0.5332) 

Down-wind fires:     

1-4 
0.0827 -0.0026 

 
-0.3748 

 
-0.5540∗ 

 (0.1338) (0.0834) (0.3757) (0.3024) 

≥ 5 -0.2581 -0.2096 -0.9927 -0.4103 

 (0.2460) (0.1662) (0.6716) (0.5193) 

Dep. var. mean 8.64 8.64 25.99 25.99 

Observations 7150 7150 3689 3689 

     

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001. Sample consists of average monthly air quality meter readings from 257 cities for 2013 - 

2015. Standard errors clustered at city level (N = 257). Control variables include temperature, precipitation and number of fires in non-

up/down-wind direction. All specifications include month FE, quarter-by-year FE, and city-by-quarter FE.  

 

 

 

 



Table A3. Population mortality calculations 

 
Effect of ≥ 5 up-wind fires on PM10 from Table 2, 

Column (1) 
3.33      𝜇𝑔 𝑝𝑒𝑟 𝑚3 

 Equivalent effect on PM2.5 (PM2.5 = 0.7 × PM10) 2.33      𝜇𝑔 𝑝𝑒𝑟 𝑚3 
  (1) (2) (3) 
  NMR IMR Under-5 

[A] 
Effect of ≥ 5 up-wind fires on mortality rate (per 

1000 births) 
2.72 3.03 2.98 

[B] Sample mean mortality rate (per 1000 births) 33.34 45.44 50.19 

[C] 
Share of births in sample exposed to ≥ 5 up-wind 

fires (%) 
0.408 0.414 0.408 

[D] 

Mortality rate increase per 10 unit increase in 

PM10        

(10 ∗[A])/3.33 

8.17 9.10 8.95 

[E] 

Mortality rate increase per 10 unit increase in 

PM2.5 

(10 ∗[A])/2.331     

11.67 13.00 12.78 

[F] 
UNIGME estimate population number of deaths 

per annum (2006-2016 average) 
809603 1082837 1468474 

[G] 
UNIGME mortality rate estimate (per 1000 

births) (2006-2016 average) 
30.83 43.36 55.77 

[H] 
Additional deaths due to 10 unit increase in 

PM10 per annum ([D] × [C])/([G] × [F]) 
87480 93976 96087 

[I] 
Additional deaths due to 10 unit increase in 

PM2.5 per annum ([E] × [C])/([G] × [F]) 
124971 134251 137267 

[J] 

GBD estimates of deaths due to ambient 

particulate matter pollution risk, all causes 

(2006-2016 average) 

- 69497 83766 

Note: Population mortality number and rate from estimates generated by the UN Inter-agency Group for Child Mortality Estimation 

(UN IGME 2018), available at http://www.childmortality.org. Estimated mortality  due to ambient particulate matter pollution based 

on Global Burden of Disease Study tool (GBD 2017) available from http://ghdx.healthdata.org/gbd-results-tool.  
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Table A4. Impact on birth weight (in grams) 
 

 

Rural Urban 

 (1) (2)       (3) (4) 

 75 km 100 km   75 km 100 km 

Up-wind fires:        

1 − 4 5.6848 4.0678   -26.7673 -25.8967 

 (15.4198) (16.3429)   (32.9839) (32.9888) 

≥ 5 15.9166 14.0556   -13.5560 -27.3476 

 (20.3011) (19.9379)   (44.1431) (41.4024) 

Down-wind fires:       

1 − 4 4.0559 -1.6982   -21.2541 -37.7147 

 (15.8001) (16.1571)   (34.2317) (33.8637) 

≥ 5 -2.4501 -26.1212   -31.4194 -37.2721 

 (20.1681) (20.1027)   (45.4563) (41.6457) 

Dep. var. mean 2813.67 2813.67   2837.12 2837.12 

Observations 64441 64441   22301 22301 

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Sample consists of all births recorded from February 2010 to August 2016 (five years prior 

to survey date). Standard errors are clustered at the NFHS sample cluster level. Control variables include mother’s age (5-year groups) 

and education category, asset-based wealth index, religion, gender of household head, gender of birth, birth order, and indicators for 

multiple births (twins or more). All specifications also include month of birth FE, quarter- by-year FE, and cluster-by-quarter FE. 

 

Table A5 Impact on LBW (< 2500 grams)  
 

Rural Urban 

 (1) (2)  (3) (4) 

 75 km 100 km  75 km 100 km 

Up-wind fires:       

1 − 4 -0.0019 -0.0048  0.0131 0.0141 

 (0.0102) (0.0108)  (0.0211) 
(0.0207

) 
      

≥ 5 -0.0191 -0.0181  0.0056 0.0166 

 (0.0134) (0.0129)  (0.0276) (0.0261) 

Down-wind fires:      

1 − 4 -0.0004 -0.0010  0.0258 0.0216 

 (0.0104) (0.0107)  (0.0210) (0.0217) 

      

≥ 5 0.0022 0.0170  0.0444 0.0409 

 (0.0137) (0.0132)  (0.0274) (0.0263) 

Dep. var. mean 0.17 0.17  0.17 0.17 

Observations 64441 64441  22301 22301 

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.002. Sample consists of births recorded from February 2010 to August 2016 (five years prior to 

survey date). Dependent variable takes value 1 if birth-weight was less than 2500 grams. Standard errors are clustered at the NFHS 

sample cluster level. Control variables include mother’s age (5-year groups) and education category, asset-based wealth index, religion, 

gender of household head, gender of birth, birth order, and indicators for multiple births (twins or more). All specifications also include 

month of birth FE, quarter- by-year FE, and cluster-by-quarter FE. 
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