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Abstract

Taking random draws from a parameter region in order to approximate
its shape is a supervised learning problem (analogous to sampling pixels of an
image to recognize it). Misclassification error—a common criterion in machine
learning—provides an off-the-shelf tool to assess the quality of a given approx-
imation. We say a parameter region can be learned if there is an algorithm
that yields a misclassification error of at most ε with probability at least 1´δ,
regardless of the sampling distribution. We show that learning a parameter
region is possible if and only if it is not too complex. Moreover, the tightest
band that contains a d-dimensional parameter region is always learnable from
the inside (in a sense we make precise), with at least p1 ´ εq{ε lnp1{δq draws,
but at most p2d{εq lnp2d{δq. We illustrate the usefulness of our results using
structural vector autoregressions. We show how many orthogonal matrices are
necessary/sufficient to evaluate the impulse responses’ identified set and how
many ‘shotgun plots’ to report when conducting joint inference on impulse
responses. (JEL-Classification: C1, C32)
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1 Introduction

Machine learning can be broadly defined as a set of data-driven computational
methods used to make informed decisions in different ‘learning’ tasks, such as pre-
diction, ranking and classification problems (Mohri, Rostamizadeh and Talwalkar
(2012)). There is now a large and important body of work showing that machine
learning algorithms can be extended and adapted to problems that are of interest for
economists; for example estimation of heterogeneous treatment effects (Wager and
Athey (2018)); policy evaluation with very many regressors (Belloni, Chernozhukov
and Hansen (2014); Belloni et al. (2017)); and the analysis of discretized unobserved
heterogeneity (Bonhomme, Lamadon and Manresa (2017)).

This paper aims to contribute to the recent gainful connection between machine
learning and econometrics. The paper uses well-known concepts in the supervised
learning literature—such as misclassification error, sample complexity, and the def-
inition of learning itself—to study a common approach to describing parameter re-
gions in econometric problems: sampling elements from inside of these regions at
random.

To fix ideas and introduce notation, consider the problem of reporting the re-
sponse of prices to a contractionary monetary shock in a sign-restricted structural
vector autoregression (SVAR); see Uhlig (2005) and Faust (1998). Theory (the sign
restrictions) and data (reduced-form estimators) restrict the model’s structural pa-
rameters, denoted θ, to belong to some set S. The parameter region of interest,
λpSq, is the set of d-horizon impulse responses implied by the structural parameters
in S; where λp¨q is the function that maps θ to the vector of impulse responses.

Describing a parameter region is complicated. Verifying whether some vector
of impulse responses belongs to λpSq requires ‘inverting’ λp¨q; and this is typically
a hard problem. Also, the parameter region of interest is typically of more than
one dimension and not much is known about its shape. This means that reporting
features of λpSq, such as the form of its boundary, is rather difficult.

A common and practical approach to describing parameter regions is random
sampling. This means that the econometrician chooses some probability distribution
P , takes M i.i.d. draws of θ, computes λpθq, and then uses this to construct some
approximation pλM for the set λpSq.

This paper argues that approximating a parameter region as described above can
be phrased as a supervised (machine) learning problem, where the object of interest
is to ‘learn’ λpSq. In our leading examples, parameter regions will be thought of
as either an estimated identified set, a confidence set formed by test inversion, or
a highest posterior density credible set. The supervised learning analogy allows us
to use some well-known machine learning concepts to achieve two objectives. First,
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discipline the way we think about the ‘accuracy’ of a random sampling approxima-
tion. Second, provide some guidance on the number of random draws that suffice to
guarantee an accurate approximation. To the best of our knowledge, none of these
issues have been addressed in the literature before.1

Accuracy of Random Sampling Approximations : When can we say
that pλM provides a good description/approximation of λpSq? The proposal of this
paper is to use the misclassification error criterion, which is commonly used in
the supervised learning literature (Murphy, 2012, p. 205). Imagine there is an
omniscient agent (an oracle) who can easily check whether some parameter λpθq
belongs to the sets λpSq and pλM . To judge the quality of the approximation, the
oracle computes how often the econometrician’s approximation errs on classifying
λpθq according to some probability measure Q. This is, the oracle computes

LppλM ;λpSq, Qq ” Q
´

1tλpθq P λpSqu ‰ 1tλpθq P pλMu
¯

. (1)

The oracle has two concerns. On the one hand, he worries that—due to a possibly
insufficient number of draws—the quality of the approximation provided by pλM

(which is random as it depends on the sample of M i.i.d draws from P ) could
be poor too often. On the other hand, he also worries about the econometrician’s
choice of probability distribution P to conduct random sampling. To protect himself
against these two issues, the oracle would like the econometrician to guarantee that
the number of draws has been large enough to make

P
´

LppλM ;λpSq, Qq ă ε
¯

ě 1´ δ (2)

for any probability distribution P , and for any possible shape of the set λpSq (which
both the oracle and the econometrician know to belong to some class Λ). In other
words, the oracle demands that (2) be satisfied for a sample size large enough, that
can only depend on the values of ε and δ. These accuracy parameters ensures the
probability of observing a misclassification error less than ε occurs with probability
at least 1´ δ, regardless of P and the shape of the parameter region λpSq.

The econometrician’s problem presented above can be described using supervised
learning jargon. There is a sample pλpθ1q, . . . , λpθMqq of ‘inputs’ that are i.i.d draws
from a distribution P and there are also ‘labels’ plpθ1q, . . . , lpθMqq, where lpθq “
1tθ P Su. Equation (1) is usually referred to as the generalization error or simply
the misclassification probability (see Definition 2.1 in Mohri, Rostamizadeh and
Talwalkar (2012)). When P equals Q—that is, when the measure used by the

1The closest reference that we are aware of is the work of Bar and Molinari (2013), who pro-
pose computational methods for set-identified models via data augmentation and support vector
machines.
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oracle to compute misclassification coincides with one used by the econometrician
to generate random samples—the criterion in (2) is the Probably Approximately
Correct (PAC) learning guarantee.2 Thus, whenever P equals Q (an assumption
that we will maintain in the remaining part of the paper), the econometrician’s
problem of summarizing λpSq is tantamount to using the labeled data to (machine)
learn λpSq.3

Guidance on the number of draws: The Fundamental Theorem of Sta-
tistical Learning (Blumer et al. (1989), Theorem 2.1) allows us to prove that if Λ,
the class of sets where the parameter region lives, is too complex—in the sense of
having an infinite Vapnik–Chervonenkis dimension (Vapnik (1998))—then it is im-
possible for the econometrician to satisfy Equation (2). In econometric applications,
this result will bind often. For example, some assumptions that are often thought
to simplify the analysis of econometric problems (such as the restricting parameter
regions to be convex sets), do not simplify the supervised learning problem.4 Note
that the choice of concept class Λ is not only a theoretical concern: it defines the
objects that the approximation algorithm can output.

We circumvent this impossibility result by making two modifications to the def-
inition of learning in Equation (2).

First, we assume that both the oracle and the econometrician agree to focus
on learning the tightest band containing the parameter region. Bands—which are
defined as products of intervals in each dimension—are a convenient compromise,
for they are often used to summarize uncertainty in the estimation of vector-valued
parameters, particularly in the SVAR literature. Moreover, bands are objects of
low complexity, regardless of the underlying shape of the parameter region of in-
terest. To enforce the agreement, the oracle computes misclassification error in
Equation (1) with respect to the tightest band containing the parameter region of
interest. Throughout the paper we denote such tightest band as rλpSqs.

Second, we restrict the class of probability distributions that both the econome-
trician and the oracle can consider. We show that learning the tightest band con-
tinues to be difficult, for the set-difference between rλpSqs and λpSq can be attached

2See Mohri, Rostamizadeh and Talwalkar (2012) p. 13, Definition 2.3 for a textbook treatment.
To the best of our knowledge, the definition of learning concepts that are defined by regions in
Euclidean n-dimensional spaces was first introduced by Blumer et al. (1989), extending the seminal
work of Valiant (1984).

3In Appendix C we argue that considering a set-up in which P and Q are different is not very
interesting for at least two reasons. First, learning in the sense of (2) is generally impossible if P
is allowed to be arbitrary different to Q. Second, and not surprisingly, the criterion in (2) can be
satisfied if P is sufficiently close to Q; in which case the arguments and results we can obtain are
very similar to the case in which P “ Q.

4If Λ is the class of convex subsets of Rd with d ą 1, there is no algorithm satisfying Equation (2)
that can be used to approximate λpSq by means of random sampling. This is because the class of
convex subsets of Rd with d ą 1 has infinite VC dimension.
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an arbitrarily high probability. To avoid this problem, both the econometrician and
the oracle agree to consider only probability distributions that sample from inside
the parameter region of interest.

Under these two modifications, we show that the tightest band that contains
the parameter region can be learned from the inside, in a sense made precise but
analogous to (2). The algorithm for learning rλpSqs from the inside consists of
reporting the largest and smallest values of the random draws inside λpSq, along
each dimension. We show that the sample complexity of this algorithm—that is, the
minimal number of draws required to achieve learning—can be bounded from above
by p2d{εq lnp2d{δq and below by pp1´ εq{εq lnp1{δq.5

We illustrate our results using two examples motivated by recent research in
SVARs (see Kilian and Lütkepohl (2017) for a modern, comprehensive treatment of
the topic).

First, we examine the question of how many orthogonal matrices are necessary
or sufficient for constructing identified sets of impulse responses in a sign-identified
SVAR model. We use random sampling to evaluate a natural estimator of the
impulse responses’ identified set in a sign-restricted model. We fix the model’s
reduced-form parameters at their sample estimates and use random draws from the
algorithm of Rubio-Ramirez, Waggoner and Zha (2010) (henceforth, RRWZ). With
ε “ δ “ 0.1 (misclassification error of at most 10% with probability at least 90%),
the number of draws that suffice to approximate the 16-quarters ahead identified set
(of one variable to one shock) is 1, 982. This translates to almost 15, 000 iterations
of the RRWZ algorithm.

Second, we study the question of how many draws are required when conducting
joint inference on structural impulse responses in a point identified SVAR model.
We also use random draws to generate ‘shotgun plots’ (Inoue and Kilian (2013,
2016, 2018)) in a point-identified SVAR model. The objective is to describe both
a 68% Wald-ellipse and a 68% highest posterior density set for structural impulse
response functions. We take two thousand draws—which for a 68% confidence set
implies 1, 360 draws from inside the parameter region—and report an iso-draw curve.
Namely, all the combinations of pε, δq that could be supported with this number
of draws. Our formulae imply that 2, 000 total draws to summarize a 68% Wald

5In some problems, instead of using random sampling, one can solve for bands by solving con-
strained maxima/minima problems in each dimension:

min
θPS

λjpθq and max
θPS

λjpθq,

where λjpθq is the jth coordinate of λpθq. However this approach requires that the optimization
problem be sufficiently well-behaved, which may or may not hold depending on the application.
The main advantage of random sampling to learn bands is that it requires no special structure in
the problem.
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ellipse are sufficient to support the combination ε “ δ “ 0.1377. In particular, this
implies that 2, 000 total draws are sufficient to guarantee that with probability at
least 87.23% probability, the misclassification error less than 13.77%.

Outline: Section 2 presents our main definitions and theoretical results. Sec-
tion 3 presents our SVAR application. Section 4 concludes. Appendix A contains
proofs. Appendix B compares the bands for identified sets computed via random
sampling in Section 3.1 with those obtained by nonlinear programming using the
algorithm in Gafarov, Meier and Montiel Olea (2018). Appendix C discusses the
learning problem when Q (the measure used by the oracle to compute misclassifi-
cation error) differs from P (the measure used by the econometrician to generate
random draws).

2 Theory

Let Θ Ď Rp denote the parameter space for the finite-dimensional component
of a parametric or semi-parametric statistical model. Let us assume that due to
either theory, or data, or both, the econometrician is able to restrict the values of
θ P Θ to belong to some subset S Ď Θ. Assume also that the indicator function
lpθq ” 1tθ P Su can be computed without difficulty, so that each element of θ can
be given a binary label of whether it belongs to S (label 1) or not (label 0).

The examples we have in mind are as follows. The set S could be an estimator of
an identified set ; in this case S would contain the parameter values that satisfy some
restriction (like a sample moment inequality or a sign restriction). S could also be a
confidence region obtained by test inversion; in this case S would represent the set
of θ values such that, when postulated as a null hypothesis, cannot be rejected. S
could also be a highest posterior density credible set ; in this case S would represent
the set of parameter values for which the posterior density is above some threshold.

We allow for the possibility that the parameter of interest is not θ per se, but
instead the image of θ under some function λ : Θ Ñ Rd. This will be relevant in our
leading example, a set-identified SVAR, where—as discussed in the introduction—λ

represents the impulse response coefficients over different horizons. More generally,
λ could report a subvector of θ of dimension d ă p, or if θ is the object of interest,
λ could be the identity map.

As we mentioned in the introduction, the econometrician is interested in de-
scribing the set λpSq, which mathematically is the image of the set S under λ.6 We
will refer to this set as the parameter region. To describe a parameter region, the
econometrician chooses a distribution P over Θ, generates a sample of size M and
computes λpθmq. Each of the elements in the sample has a label lpθmq. Note that

6The image of the set S under a function λ is defined as λpSq ” tλ | D θ P S s.t. λ “ λpθqu.

6



lpθmq “ 1 if and only if λpθmq P λpSq, thus the label tells us whether λpθmq belongs
to the parameter region λpSq or not.

2.1 Learning λpSq

In our set-up, the shape of the parameter region λpSq is not known. To capture
this lack of knowledge it will be assumed that λpSq belongs to some class of sets
Λ Ď 2λpΘq. We will refer to Λ as a concept class and we will call each of its elements,
λ, a concept.7 Note that the choice of concept class Λ is not only a theoretical
concern: it defines the objects that the algorithm can output.

Our supervised learning problem is formulated as follows. The econometrician
(or learning agent) generates a sample of sizeM , drawn i.i.d. from some distribution
P ; evaluates these θ-draws under λ, and generates labels that inform whether a draw
λpθmq belongs to λpSq or not. The econometrician’s task is to use a sample tpλpθmq,
lpθmqqu

M
m“1 to select a concept pλM P Λ that approximates the true concept λpSq. A

mapping from samples to concepts is called an algorithm.
Let L denote the generalization error defined in (1) assuming Q (the measure

used by the oracle) equals P (the measure used by the econometrician to generate
random draws). We will say that the concept λpSq in the class Λ can be learned if
it satisfies the following definition:

Definition 1 (Learnability of λpSq). The concept λpSq P Λ is said to be learnable if
there exists an algorithm pλM and a function mpε, δq such that for any 0 ă ε, δ ă 1:

P
´

LppλM ;λ, P q ă ε
¯

ě 1´ δ

for all distributions P on Θ and for any λ P Λ; provided M ě mpε, δq.

This concept of learnability is known in the statistical learning literature as
Probably Approximately Correct (PAC) learning. The parameter ε determines how
‘far’ (in terms of generalization error) the concept returned by the algorithm pλM is
from the true concept λpSq (this is the ‘approximately correct’ part). The parameter
δ indicates how often the algorithm will yield a misclassification probability larger
than ε (this is the ‘probably’ part).

Perhaps without a surprise, our ability to learn will depend on how rich the
concept class Λ is. We formalize this argument in the following theorem:

Theorem 1. λpSq P Λ Ď 2λpΘq is learnable if and only if Λ has finite Vapnik-
Chervonenkis (VC) dimension.

7We use this terminology in order to establish a closer connection to the supervised learning
literature.
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Proof. See Appendix A.2.

In a nutshell, Theorem 1 states that a concept class is learnable if and only if it
is not too complex. We prove Theorem 1 by invoking the Fundamental Theorem
of Statistical Learning (FTSL). See Chapter 6.4 in Shalev-Shwartz and Ben-David
(2014) for a textbook treatment or Theorem 2.1 in Blumer et al. (1989) p. 935 for
the statement of the result as used in the proof of Theorem 1. An application of
VC dimension as a measure of complexity of decision rules in decision making along
with an application of the FTSL can be found in Al-Najjar (2009); Al-Najjar and
Pai (2014).

Theorem 1 emphasizes that approximating the unknown parameter region λpSq
will require the econometrician to take a stand on the complexity of the concept class
Λ in which the algorithm takes values (and this class has to be correctly specified).
If this class is too complex—in the sense of having infinite VC dimension—then
learning is not possible.8

The restriction on the complexity of learnable concept classes is relevant in ap-
plications. For example, even certain restrictions that seem to simplify the approx-
imation problem (like restricting Λ to be the class of convex sets so that they can
be summarized using their support function) are usually not enough.9 The final
message of this section is that learning λpSq, in the conventional sense of the word,
is difficult and oftentimes impossible.

2.2 Learning rλpSqs

With the impossibility result of Theorem 1 in mind, we introduce the notion of
the tightest band that contains the parameter region λpSq. We want to argue that
such a band is learnable from the inside in a sense we will make precise.

The tightest bands containing the parameter region λpSq is defined as the hyper-
rectangle

rλpSqs ”
d

ą

j“1

„

inf
θPS

λjpθq , sup
θPS

λjpθq



,

where λjpθq denotes the jth coordinate of λpθq.
Figure 1 displays an example of a parameter region λpSq of strange shape along

the band rλpSqs.
Bands for vector-valued parameters are versatile tools for visualizing estimation

uncertainty in econometric problems (see Horowitz and Lee (2012), Freyberger and
8See Appendix A.1 for a definition and discussion of VC dimension.
9If d ą 1 then the VC dimension of the class of convex sets in Rd is infinity.
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λpSq

rλpSqs

Figure 1: λpSq and rλpSqs.

Rai (2018), Montiel Olea and Plagborg-Møller (2018)). For example, bands for
impulse response functions at different horizons are typically reported in SVAR
applications.

In the context of statistical learning theory, bands (usually referred to as axis-
aligned hyperrectangles) are objects of low complexity: the VC dimension of a band
in Rd is 2d. Thus, in light of Theorem 1, if the concept class Λ to which λpSq belongs
consisted only of bands, then λpSq would be learnable. The following algorithm—
which keeps track of the maximum and minimum value of the random draws in each
dimension (provided those draws are in the set we want to learn)—would guarantee
learning.

Definition 2 (Learning algorithm for bands). Given a sample θM ” pθ1, . . . , θMq

with labels lM ” plpθ1q, . . . , lpθMqq, let rpλM s denote the algorithm that reports

rpλM spθM , lMq ”
d

ą

j“1

„

min
m|lpθmq“1

λjpθmq, max
m|lpθmq“1

λjpθmq



,

where λjpθq is the jth coordinate of λpθq.

The algorithm simply keeps track of the largest and smallest ‘1-labeled’ draws
of λjpθmq in each of the j “ 1, . . . , d dimensions. Note that if there is no draw θm

for which lpθmq “ 1, the algorithm above outputs the empty set.
Can the algorithm rpλM s learn rλpSqs in the sense of Definition 1? To be more

precise, we would like to know if there exists a function mpε, δq such that

P
´

LprpλM s; rλs, P q ă ε
¯

ě 1´ δ (3)
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for any distribution P on Θ, and for any λ P Λ, provided M ě mpε, δq? Unfor-
tunately, we answer this question in the negative. Theorem 2 below shows that
even if we allow ourselves to compute misclassification error relative to rλs, learning
is still not possible due the richness of the class of probability distributions under
consideration.

Theorem 2 (Impossibility of learning bands). Suppose there exists a concept λ P Λ

that is not a band; that is rλszλ ‰ H. Suppose further that there exists a probability
distribution that places arbitrarily large mass on the set rλszλ. That is, for any
η P p0, 1q there exists Pη over Θ such that:

Pηpλpθq P rλszλq ě η.

Under the assumptions above, rpλM s cannot learn rλpSqs. Moreover, there is no
algorithm pλM that both i) returns the empty set whenever lpθiq “ 0 for all i “ 1, . . . ,

M and ii) learns in the sense of (3).

Proof. See Appendix A.3.

2.3 Learning rλpSqs from the inside

Theorem 2 demonstrates that even when we focus on algorithms that output
bands (and thus allow us to ignore the complexity of Λ), learning continues to be
difficult. In particular, Theorem 2 shows that the richness of the class of probability
distributions for which (3) must hold is to blame for the impossibility result. If
we allow probability distributions that place arbitrarily large mass on the difference
between rλs and λ then, with high probability, we will get samples with only 0-
labels. As we showed above, this would lead to an arbitrarily large misclassification
probability.

One way to get around this problem, is to restrict the class of distributions that
the econometrician can use to conduct random sampling from S. In particular, we
define the set

PpSq ” tP | P is a distribution on Θ and P pSq “ 1u .

Note that PpSq is the collection of all probability distributions that sample from
inside the set S, and thus from inside the parameter region λpSq. This means that
for any P P PpSq we will have that P pλpθq P rλszλq “ 0. We use this class to relax
the learning desideratum presented in Definition 1.

Note that in practice, sampling from inside of S need not be an issue for the
econometrician. For any distribution P 1 that places positive mass on S, we can
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construct a distribution P P PpSq, by simply discarding all draws that fall outside
S. The cost we pay to learn from the inside is that the required number of draws
has to come from inside S.

Theorem 3 below provides an explicit formula for the number of draws that
suffice to learn the set rλpSqs from the inside. The formula depends on the accuracy
parameters pε,δ), and on the dimension of the space where λpθq lives, which we have
assumed to be Rd. The theorem also provides a formula for the number of draws
that are necessary to learn rλpSqs, which is obtained under the assumption that the
true parameter region λpSq contains at least two different points.

Theorem 3. The algorithm rpλM s in Definition 2 learns rλpSqs from the inside.
Moreover, the sample complexity of rpλM s—denotedm˚pε, δq—admits the upper bound:

m˚
pε, δq ď p2d{εq lnp2d{δq.

Additionally if λpSq contains at least two different points, then m˚pε, δq admits the
lower bound:

p1´ εq{ε ln p1{δq ď m˚
pε, δq.

Proof. See Appendix A.4.

The upper bound on the sample complexity provides a very concrete recommen-
dation on the number of draws that suffice to learn the set rλpSqs from the inside.
For example, in the context of a sign-restricted SVAR, the upper bound to learn
the tightest band that contains any k coefficients of the impulse response function
is p2k{εq lnp2k{δq draws. For ε “ δ “ 0.01 (misclassification error of at most 1%
with probability 99%) and k “ 25 the recommendation of Theorem 3 is that 42, 586

draws of impulse response coefficients that satisfy the sign restrictions are sufficient
to learn. The number of draws necessary to learn (the lower bound) is 456 draws.

We understand that it might be difficult for the researcher to take a stand on
his/her desired combination of ε and δ. Our bound can still be of practical use
in those cases. For any number of draws the researcher is willing to take, we can
associate all possible combinations of pε, δ) that would make our upper bound return
such a number. We refer to such mapping as an “iso-draw” curve and we display it
in Figure 2 for a parameter region of dimension d “ 25.

The theorem in this section differs quite substantially from those that one would
usually see in the statistical learning literature. Instead of trying to learn the true
set, we are trying to learn a crude approximation for it. This approximation can be
learned, even though we only have labels for λpSq and not rλpSqs. The price that
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Figure 2: Iso-draw curves. For a fixed M , the combinations of pε, δq such that
M “ p2d{εq lnp2d{δq. In this example d “ 25.

we pay for this, is that we can only guarantee learning for distributions that draw
from inside λpSq.

Note also that the bound on the sample complexity grows with the dimension of
the set we are trying to learn (d), not the set in which the labels are generated ppq.
Clearly when λ lives in a lower dimensional space, this can substantially reduce the
number of draws required to learn.

3 Applications to SVARs

As an illustrative example, we consider a simple 3-variable monetary SVAR that
includes the GDP Deflator ppt), GDP (gdpt), and the Federal Funds rate (it). The
variables have quarterly frequency and the sample period is October 1982 to October
2007.10 The model is given by

yt “ µ` A1yt´1 ` ¨ ¨ ¨A4yt´4 `Bεt, (4)

10The FRED codes are: GDPDEF, GDP, and DFF.
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where εt are the structural innovations, distributed i.i.d. according to some unknown
distribution F , with EF rεts “ 03ˆ1, EF rεtε1ts “ I3 for all t “ 1 ¨ ¨ ¨ , T . B is an
unknown 3ˆ 3 matrix and

yt “ pln pt, ln gdpt, itq.

The object of interest is the vector of dynamic impulse response coefficients of the
natural logarithm of the GDP deflator to a monetary policy shock. The kth period
ahead structural impulse response function of variable i to shock 3 (which we assume
to be the monetary policy shock) is defined as

λk,i,3pA,Bq “ e1iCkpAqBe3, (5)

where ei denotes the ith column of I3 and A ” pA1, . . . , A4q.11

Without further restrictions, time series data on yt allow the econometrician to
consistently estimate A and Σ “ BB1, but not B. There are, in principle, many
matrices B such that BB1 “ Σ, and thus many structural impulse response functions
that can be rationalized by the data. Consequently, it is common in the applied
macroeconomics literature to use equality and sign restrictions in an attempt to
identify the structural IRF’s in (5). If the restrictions allow the econometrician to
map pA,Σq into only one matrix B, the SVAR is said to be point-identified. If the
map is one-to-many, the SVAR is said to be set-identified.

3.1 Summarizing the identified set in set-identified SVARs

Consider first an SVAR set-identified by means of the sign restrictions on the
contemporaneous impulse response coefficients, displayed in Table 1 below.

Series Contractionary MP Shock
ln pt -
ln gdpt -
it +

Table 1: Restrictions on contemporaneous responses to a contractionary monetary
policy shock. ‘-’ stands for a negative sign restriction and ‘+’ for a positive sign
restriction.

Given the least-squares or Maximum Likelihood estimators p pA, pΣq we would like
11CkpAq is defined recursively by the formula C0 ” In, and

CkpAq ”
k
ÿ

m“1

Ck´mAm, k P N

with Am “ 0 if m ą 4; see (Lütkepohl, 1990, p. 116).
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to describe the set of all dynamic responses of ln pt to a contractionary monetary
policy shock that are consistent with the parameter estimates. The identified set—
the set of structural matrices B that satisfies the sign restrictions—is defined as:

S ”
!

B P R3x3
ˇ

ˇ

ˇ
BB1 “ pΣ, and B satisfies the sign restrictions in Table 1

)

.

The parameter region of interest is the impulse responses’ identified set for horizons
h “ 0, 1, . . . , 16, defined as:

λpSq ”
!

pλ0, λ1, λ2, . . . , λ16q P R17
ˇ

ˇ

ˇ
λk “ λi,k,3p pA,Bq, B P S

)

.

Whilst λpSq is typically thought of as a frequentist object, Moon and Schorfheide
(2012)(p. 757) recommend reporting the impulse responses’ identified set even in
Bayesian applications.

Algorithm 2 of RRWZ can be used to sample at random from inside the set S to
describe λpSq. LetM denote the total number of draws. 1) Draw a standard normal
3ˆ 3 matrix N and let N “ QR be the QR decomposition of N with the diagonal
on R normalized to be positive. 2) Let B “ cholppΣqQ, and generate the impulse
responses using (5). 3) If the impulse responses do not satisfy the sign restrictions,
discard the draw and return to step 1. 4) Repeat until one has M draws.

Setting ε “ δ “ 0.1 and d “ 17; evaluating the upper bound in Theorem 3 the
number of draws, M , that we would require from inside the identified set is

p2d{εq lnp2d{δq “ 1, 982.

Thus, in order to ensure a misclassification error of less than 10% with probability
90%, our result suggests to stop the algorithm once we have obtained 1, 982 draws
of B that satisfy the sign restrictions.12

Figure 3 displays the bands on the identified set for the response of inflation to
a contractionary monetary policy shock. For each horizon, we report the minimum
and the maximum value of the response of ln pt over the draws of B that satisfy the
sign restrictions (this is exactly the algorithm rpλM s we described in Definition 2).

In models with tight restrictions, using the RRWZ algorithm to generate draws of
B that satisfy the sign restrictions and fall inside the identified set can be challenging.
Amir-Ahmadi and Drautzburg (2017) propose an alternative algorithm for partially
12To the best of our knowledge there are no theory-based suggestions on how many draws are
required to stop the RRWZ algorithm. (Canova and Paustian, 2011, p. 351) recommend a fixed
number of 15, 000 draws from inside the identified set. (Kilian and Lütkepohl, 2017, p. 432)
recommend re-estimating the identified set with different seeds of a Gaussian random number
generator, and increasing the number of draws if different seeds lead to qualitatively different
results. The theorems in this paper complement the existing recommendations.
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Figure 3: The tightest band that contains the identified set. The parameter region
λpSq is defined as the dynamic responses of ln pt to a contractionary monetary policy
shock on impact and for 16 quarters after impact. The sufficient number of draws
from inside the parameter region required to learn, for ε “ δ “ 0.1 and with d “ 17,
is 1, 982. These bands are plotted in red. Bands constructed using 100 draws from
within λpSq are plotted in blue.

identified models, in which all draws of B satisfy the sign restrictions, and fall inside
S.

3.2 Summarizing a Wald Ellipse in point-identified SVARs

Consider now an SVAR where the dynamic responses to a monetary shock are
point identified using two exclusion restrictions: namely, neither output nor prices
are affected by a monetary policy shock upon impact.13 Under such an identification
scheme, the vector of 17 impulse responses, denoted γ, can be estimated consistently.
The goal here is to summarize a Wald ellipse reporting shotgun plots as in Inoue
and Kilian (2016) (IK henceforth).

Define the Wald statistic

W pγq “ pγ ´ γ̂T q
1
pΣ´1

pγ ´ γ̂T q, (6)

where γ̂T is the least squares estimator of γ and pΣ is the estimator for Σ suggested
by IK based on bootstrap draws of pγT . Consider the Wald ellipse

S ” tγ P R17
|W pγq ď cαu,

where the critical value cα is computed using the procedure outline in p. 425 of IK.

13This recursive identification scheme is implemented by setting B “ cholpΣ̂q.
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Note that in this example, λ is the identity and rSs is simply the projection of the
Wald ellipse onto each of its coordinates.

The algorithm to report shotgun plots suggested by IK can be thought of as a
particular implementation of the algorithm in Definition 2: a value of γ is drawn at
random (using the residual bootstrap) and plotted only if it belongs to S. We can
suggest a number of γ-draws by pretending that the goal of the shotgun plots is to
learn the parameter region rSs.

Figure 4 displays shotgun plots for the response of inflation to a contractionary
monetary policy shock, where 100, and 2, 000 total draws are used, which for a 68%

confidence interval corresponds to 68 and 1, 360 draws from inside S respectively.
IK rely on 2, 000 total γ draws, corresponding to 1, 360 draws from inside S. Instead

Figure 4: Shotgun plot of the 68% joint confidence region of the dynamic response of
ln pt to a monetary policy shock. blue and red lines represent 68 and 1, 360 draws
from inside S, respectively. black lines represent the minimum and maximum
(pointwise) at each horizon.

of choosing specific values of pε, δq, Figure 5 displays the iso-draw curve for M “ 1,

360, all possible combinations of accuracy parameters that could be supported using
1, 360 γ draws from inside the parameter region.

In situations where it may be difficult to target a certain number of draws, one
can report an iso-draw curve to demonstrate the accuracy of the approximation.

3.3 Highest posterior density credible set in SVARs

Consider again the point-identified model described in the previous subsection.
Suppose now that we are interested in constructing the highest posterior density
(HPD) credible set for the dynamic structural impulse responses of ln pt to a mon-
etary shock. Denote ppγ | yT q as the posterior density of the dynamic structural
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Figure 5: ‘Iso-draw’ curve for M “ 1, 360 and d “ 17.

impulse responses given data yT . The 100p1´ αq% HPD credible set is

S “ tγ P R17
| ppγ|yT q ě cαu,

where cα is defined as the largest constant such that ppS|yT q ě 1´α. We construct
the HPD credible set as in Inoue and Kilian (2013, 2018). We assume a diffuse
Gaussian-inverse Wishart prior for the reduced-form VAR parameters θ, which leads
a conjugate posterior which can be easily drawn from. We take N draws of reduced
form parameters, and compute the impulse responses and their posterior density.
The 100p1´ αq highest posterior density credible set is then the M “ 100p1´ αqN

impulse responses with the highest posterior density.
Figure 6 displays the HPD credible set for α “ 0.32, and N equal to 100 and

2, 000, corresponding to M equal to 68 and 1, 360 respectively. With 1, 360 draws
from inside λpSq, Figure 5 from the previous subsection corresponds to the iso-draw
curve for this application.
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Figure 6: 68% highest posterior density credible set for the dynamic response of
ln pt to a monetary policy shock. blue and red lines represent 68 and 1, 360 draws
from inside S, respectively. black lines represent the minimum and maximum
(pointwise) at each horizon.

4 Conclusion

We showed that sampling at random from a parameter region in order to describe
it, can be framed as a supervised (machine) learning problem. We used concepts
from the supervised learning literature—misclassification error, sample complexity,
and the definition of learning itself—to provide some practical guidance on two
issues. First, how to think about the accuracy of a random sampling approximation
to a parameter region. Second, how many random draws are necessary/sufficient to
learn it.

We started by formalizing an obvious observation: parameter regions can be
learned if and only if they are not too complex. This result binds often, as some
assumptions that are typically imposed to simplify the analysis of econometric prob-
lems, do not simplify the supervised learning problem.

We circumvent the impossibility result by introducing two modifications to the
standard definition of learning.

First—and in order to avoid making assumptions about the shape of the pa-
rameter region of interest—we focus on learning the tightest band that contains it.
This is done by computing misclassification error relative to such tightest band that
contains the parameter region, instead of the true set. Bands are convenient, for
they are already used to summarize uncertainty in the econometric models used as
our main illustrative example.

Second, we restrict that class of probability distributions that both the econo-
metrician and the oracle can consider. In particular, we restrict the econometrician
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to sample from inside the parameter region of interest.
Under these two modifications—which simplify the learning desiderata—we show

that the tightest band containing the parameter region of interest can be learned from
the inside. Our learning algorithm simply keeps track of the largest and minimum
value of the parameter of interest in each of its dimensions. We show that learning
from the inside requires at least p1´ εq{ε lnp1{δq draws and at most p2d{εq lnp2d{δq

draws. In both cases, the random draws have to come from inside the parameter
region. We also note that d is the dimension of λpΘq not of Θ (which in our examples
has a higher dimension).

We used SVARs to showcase the application of our bounds. We considered the
problem of describing the identified set in a set-identified SVAR and also the problem
of reporting shotgun plots for both frequentist and Bayesian simultaneous inference
on impulse responses. We used the bounds directly and indirectly. Directly, to
provide a concrete recommendation of the number of draws required for a given ε

and δ. Indirectly, by constructing iso-draw curves. Given a number of drawsM , the
iso-draw curve collects all combinations of pε, δq that yield M as recommendation.
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A Appendix A

A.1 VC dimension

Given a nonempty class Λ P 2Rd and a finite set of points λpSq Ď Rd, let ΠΛpλpSqq

denote the set of all subsets of λpSq that can be obtained by intersecting λpSq with
a concept λ P Λ, that is:

ΠΛpλpSqq “ tλpSq X λ | λ P Λu.

If ΠΛpλpSqq “ 2λpSq, then we say that λpSq is shattered by Λ.

Definition 3 (Vapnik–Chervonenkis dimension). The Vapnik–Chervonenkis (VC)
dimension of a concept class Λ, denoted V CdimpΛq, is the cardinality of the largest
finite set of points λpSq that can be shattered by Λ.

If arbitrarily large finite sets are shattered, the VC dimension of Λ is infinite. Our
presentation of shattering and VC dimension follow Blumer et al. (1989) p. 934. An
alternative reference is Dudley (1999), p. 134.14

A.2 Proof of Theorem 1

Proof. First we will show that if Λ is trivial— in the sense of either containing only
one concept or two disjoint concepts that partition λpΘq—we always have learning
in the sense of Definition 1.

Suppose that Λ contains only one concept. An algorithm that reports only
this concept will always have a misclassification error of zero and thus satisfies
Definition 1, for any M ě 0.

Suppose Λ contains only two disjoint concepts λ1 and λ2, such that λ1 Y λ2 “

λpΘq. Suppose we observe a sample that contains a single observation x and a label
lpxq. The algorithm

pλ “

#

λ1 if (x P λ1 and lpxq “ 1) or (x P λ2 and lpxq “ 0);
λ2 if (x P λ2 and lpxq “ 1) or (x P λ1 and lpxq “ 0).

will achieve zero misclassification error. Hence Definition 1 is satisfied for anyM ě 1,
using an algorithm that throws away all the data points but the first one.

So now we will focus on non-trivial concept classes. We show first that if Λ has
finite VC dimension, then λpSq P Λ is learnable in the sense of Definition 1.

To see this, let PΘ denote the set of all probability distributions over Θ Ď Rp

and let PpRdq denote the set of all probability distributions over Rd (the space in
14A class with finite VC dimension has finite bracketing numbers, and satisfies uniform laws of
large numbers for every ergodic process (Adams and Nobel (2012)).

20



which λ takes its values). Note that each P P PΘ induces a probability distribution
P̃ over Rd in the obvious way: for any measurable A P 2Rd , P̃ pAq ” P pλ´1pAqq. Let
PλpPΘq denote the set of all probability measures induced by the elements of PΘ

through the mapping λ. Evidently PλpPΘq Ď PpRdq.
The Fundamental Theorem of Statistical Learning in Blumer et al. (1989) The-

orem 2.1 part i) implies that if Λ Ď 2λpΘq Ď 2Rd has finite VC dimension, then there
exists an algorithm pλM such that for any 0 ă ε, δ ă 1 and any λ P Λ :

sup
PPPpRdq

P
´

LppλM ;λ, P q ě ε
¯

ď δ,

provided M ě mpε, δq. Since PλpPΘq Ď PpRdq, it then follows that:

sup
PPPλpPΘq

P
´

LppλM ;λ, P q ě ε
¯

ď sup
PPPpRdq

P
´

LppλM ;λ, P q ě ε
¯

ď δ,

provided M ě mpε, δq. Thus, λpSq P Λ is learnable in the sense of Definition 1.
Now we show that λpSq P Λ is learnable only if Λ has VC finite dimension.

Suppose to the contrary that Λ Ď 2λpΘq has infinite VC dimension. Then for any
d˚ P N there exist d˚ distinct points tx1, x2, . . . , xd˚u that are shattered by Λ. Since
Λ Ď 2λpΘq, this implies the existence of at least d˚ points θ1, θ2, . . . , θd˚ P Θ such that
λpθq “ xm. Since PΘ contains all possible distributions on Θ, it contains the uniform
distribution over tθ1, θ2, . . . , θd˚u which induces a uniform distribution over tx1, x2,

. . . , xd˚u. The proof of part (ii)(b) Case 2 of Theorem 2.1 in (Blumer et al., 1989,
pp. 936-937) then implies that any learning algorithm should use at least Opd˚q
draws. We supposed that Λ has infinite VC dimension, so this must hold for any
d˚ P N. Therefore, learning is not possible. if Λ has an infinite VC dimension.

A.3 Proof of Theorem 2

Proof. Suppose that there is an algorithm pλM that satisfies iq and iiq. Take any
concept λ P Λ that is not a band. This means that λ is such that A ” rλszλ ‰ H.
Suppose that we observe an i.i.d. sample of size M , θM “ pθ1, θ2, . . . , θMq such that
λpθmq P A for all m “ 1, . . . ,M .

For any such sample, an algorithm that satisfies iq outputs the empty set (this
happens because for every m, we must have λpθmq R λ, and consequently θi cannot
be in S). Thus, a sample with λpθmq P A for all m has only 0-labels and any
algorithm satisfying iq will, at best, misclassify all λpθmq P A. So for any probability
distribution P :

λpθmq P A, @m “ 1, . . . ,M ùñ LppλM ; rλs, P q ě P pλpθq P Aq. (7)
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By assumption, for every 0 ă η ă 1 there exists a probability distribution Pη such
that Pηpλpθq P Aq ě η. This means that for every η we have that

Pη

´

LppλM ; rλs, Pηq ě η
¯

ě Pη

´

LppλM ; rλs, Pηq ě Pηpλpθq P Aq
¯

(as Pηpλpθq P Aq ě ηq,

ě Pηpλpθmq P A @m “ 1, . . . ,Mq

(by (7)),

ě ηM .

If iiq is satisfied, then there must exist a function mpε, δq—that depends on the
algorithm pλM—such that for anyM ě mpε, δq we have that for any η, PηpLppλM ; rλs,

Pηq ě εq ď δ. However, note that for any η1 ě ε it follows that

Pη1
´

LppλM ; rλs, Pη1q ě η1
¯

ď Pη1
´

LppλM ; rλs, Pη1q ě ε
¯

ď δ.

But then this implies that for any η1 ě ε, we have a fortiori that pη1qM ď δ. Rear-
ranging for M yields, M ě lnpδq{ lnpη1q for any M ě mpε, δq. In particular, if we
let m̄pε, δq denote the smallest integer larger than or equal to mpε, δq we have that
m̄pε, δq ě lnpδq{ lnpη1q for all η1 P pε, 1q. This implies that mpε, δq has to be infinity
for every ε, δ pair as η1 can be arbitrarily close to 1. This contradicts iiq.

A.4 Proof of Theorem 3

To prove Theorem 3 we first need a lemma. Define a d-dimensional hyperrectangle
as the Cartesian product of d intervals in the real line; that is:

r ”
d

ą

j“1

rrj, rjs, (8)

where rj ă rj for j “ 1, ¨ ¨ ¨ , d. For any d-dimensional rectangle r and any A Ď R
we will also define r´jpAq as the subset of Rd generated by replacing the jth interval
rrj, rjs in the hyperrectangle R by the set A. That is:

r´jpAq “ rr1, r1s ˆ . . . rrj´1, rj´1s ˆ Aˆ rrj`1, rj`1s . . . rrd, rds.

Lemma 1. For any ε P p0, 1q, any probability measure P on Rd, and any d-
dimensional hyperrectangle r in the form of (8) such that P prq ą ε, let

hj ” inft h1 P rrj, rjs | P pr´jprrj, h
1
sqq ě εu. (9)
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Figure 7: Hyperrectangle r when d “ 2.

Then P p̊rhjq ď ε, where r̊hj ” r´jprrj, hjqq.

Proof. Fix any k P rrj, rjs. Let rk ” r´jprrj, ksq and r̊k ” r´jprrj, kqq. Note that hj
in (9) is well defined as the set

t h1 P rrj, rjs | P pr´jprrj, h
1
sqq ě εu

is nonempty by the assumption P prq ą ε. Note also that

1. r̊k Ă rk (by definition of rk and r̊k).

2. If k ă hj, then P prkq ă ε (by definition of hj).

3. If kn Ò hj, then
Ť8

n“1 r̊kn “ r̊h.

The definition of hj implies that for every strictly increasing sequence kn Ò hj, we
have

P p̊rknq
by 1
ď P prknq

by 2
ď ε.

By 3 in the list above and continuity from below of probability measures, it follows
that P p̊rhjq “ limnÑ8 P p̊rknq ď ε. A similar proof can be constructed for sets
r̊hj ” r´jpph

1, rjsq where

hj ” supt h1 P rrj, rjs | P pr´jprh
1, rjsqq ě εu.

Remark on Lemma 1: In the proof of the main theorem we will need to construct
rectangles that have probability greater than or equal to ε{2d, but ensure that the
the interior has probability strictly less than ε{2d. This lemma establishes such
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result without the need to assume absolute continuity of the probability measure.
We can think of constructing these rectangles by slowly increasing the maximum (or
minimum), h, in the jth dimension, until the probability is greater than or equal to
ε{2d. Then, a rectangle that doesn’t contain this endpoint will have probability less
than or equal to ε{2d. Clearly this relies on only the continuity from above of all
probability measures, as opposed to assuming absolute continuity. Note also that
for absolutely continuous probability distributions, our construction gives rectangles
of mass exactly equal to ε{2d.

We can now move onto the proof of Theorem 3. We will prove the upper and
lower bounds separately.

Proof of upper bound

Proof. The target concept is rλpSqs; which we have defined as the smallest hyper-
rectangle containing the set λpSq. In Rd, we define rλpSqs as

rλpSqs “
d

ą

j“1

rrj, rjs,

Let θM “ pθ1, . . . , θMq be a sample of size M drawn from the distribution P , which
need not be absolutely continuous with respect to the Lebesgue measure on Rp. Fix
ε ą 0 and consider a hypothesis rpλM s as the proposed d-dimensional hyperrectangle
generated by the learning algorithm at an arbitrary—albeit fixed—data realization.
Note that

LprpλM s; rλpSqs, P q “ P p1tλpθq P rpλM su ‰ 1tλpθq P rλpSqsuq

“ P
´

λpθq P rpλM s and λpθq R rλpSqs
¯

` P
´

λpθq R rpλM s and λpθq P rλpSqs
¯

. (10)

Note that the definition of rpλM s implies that if λpθq P rpλM s then λpθq P rλpSqs as
rpλM s Ď rλpSqs. Therefore the second term in (10) is 0 and:

LprpλM s; rλpSqs, P q “ P pλpθq P rλpSqszrpλM sq. (11)

Our argument to show that our algorithm learns will rely on the construction of
2d d-dimensional ‘special’ hyperrectangles pr1, r2, ¨ ¨ ¨ , r2dq. These hyperrectangles
will be used to bound the misclassification error of our learning algorithm. The
construction is based on Lemma 1 and it goes as follows.
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Special hyperrectangles: For any odd j in the set t1, 2, . . . , 2du define

hj ” inft h1 P rrj, rjs | P pr´jprrj, h
1
sqq ě ε{2du

and consider the ‘special’ hyperrectangle rj :“ r´jprrj, hjsq. Note that hj is well-
defined as by assumption P pλpSqq “ 1, which implies P prλpSqsq “ 1.

Likewise, for any even index j in the set t1, 2, . . . , 2du, let:

hj ” supt h1 P rrj, rjs | P pr´jprh
1, rjsqq ě ε{2du

and let rj :“ r´jprhj, rjsq. Figure 8 displays the construction of our special hyper-
rectangles in the case when d “ 2.

The constructed hyperrectangles are ‘special’ because of two reasons. First
note that, by construction, the probability of the special hyperrectangles is lower
bounded:

P prjq ě ε{2d.

Second, note that:

P

˜

2d
ď

j“1

r̊j

¸

ď

2d
ÿ

j“1

P p̊rjq ď
2d
ÿ

j“1

ε{2d ď ε, (12)

where r̊j ” r´jprrj, hjqq for j odd and r̊j ” r´jpphj, rjsq for j even, and the last
inequality follows from Lemma 1, which implies that P p̊rjq ď ε{2d, for all j “ 1,

. . . , 2d.

Bound on the misclassification error: Now we use the special hyper-
rectangles to bound the misclassification error. For each j P t1, 2, . . . , 2du consider
the event:

Ej ”
!

pθ1, . . . , θMq | rpλM s X rj ‰ H
)

.

This event contains the samples in which our algorithm intersects the jth special
hyperrectangle. We claim that:

pθ1, θ2, . . . , θMq P
2d
č

j“1

Ej ùñ rλpSqszrpλM s Ď
2d
ď

j“1

r̊j,

and, consequently, LppλM ; rλpSqs, P q ď ε. To verify such a claim, take any point
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S

Figure 8: d “ 2. rλpSqs (black) is the true smallest rectangle that contains S
(cyan). rpλM s (blue) is the smallest rectangle that contains all positive labels
(black, circles). 4 ‘special’ rectangles r1, r2, r3, r4 (red) parallel to each side of
rλpSqs. Note that we have rpλM s X rj ‰ H, @j “ 1, 2, 3, 4.

λ P rλpSqszrpλM s. Since rpλM s is a rectangle, we can write it as:

rpλM s “ rpr1,pr1s ˆ . . .ˆ rprd,prds.

Since λ R rpλM s, there must exist a coordinate—denote it λj—such either λj ą prj

or λj ă prj. Without loss of generality, assume that λj ă prj. Since rpλM s intersects
every special rectangle, in particular it intersects r2pj´1q, which implies that λj ď
prj ď h2pj´1q. Consequently, λ P r̊2pj´1q.

From (12) and (11):

pθ1, θ2, . . . , θMq P
2d
č

j“1

Ej ùñ LprpλM s; rλpSqs, P q ď ε. (13)

Learning guarantee: Our goal is now to find the required number of samples
M such that the probability of the event in which LprpλM s; rλpSqs, P q ą ε is less than
δ. We have shown that the event LprpλM s; rλpSqs, P q ą ε implies that

pθ1, θ2, . . . , θMq R
2d
č

j“1

Ej,

or equivalently, that rpλM s X rj “ H for some j. Therefore, it will suffice to show
that we can find a sample size large enough such that the events Ec

j have arbitrarily
small probability. Note that by definition of rpλM s, the event Ej happens if and only
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if D mpjq P t1, 2, . . . ,Mu such that:

λpθmpjqq P rj and θmpjq P S. (14)

This means that Ec
j happens if there is no M such that (14) happens. Note that:

P
´

LprpλM s; rλpSqs, P q ą ε
¯

ď P

˜

pθ1, θ2, . . . , θMq P
2d
ď

j“1

Ec
j

¸

(by (13)),

ď

2d
ÿ

j“1

P prpλM s X rj “ Hq

(by Boole’s inequality),

ď

2d
ÿ

j“1

P pE θm s.t. both λpθmq P rj and θm P Sq

(by definition of rpλM s, as explained in (14)),

“

2d
ÿ

j“1

P p@ θm either pλpθmq R rjq or pθm R Sqq

“

2d
ÿ

j“1

P pλpθmq R rj or θm R SqM

(as θm are i.i.d.),

ď

2d
ÿ

j“1

pP pλpθmq R rjq ` P pθm R Sqq
M

(by Boole’s inequality),

“

2d
ÿ

j“1

P ppλpθmq R rjq
m

(as P pSq “ 1),

ď 2dp1´ ε{2dqM

(as P prjq ě ε{2d),

ď 2d exp

ˆ

´Mε

2d

˙

(as 1´ x ď expp´xq for all x P Rq.

Thus for any δ ą 0, to ensure P
´

LprpλM s; rλpSqs, P q ą ε
¯

ď δ, we require 2d exp
`

´Mε
2d

˘

ď

δ. Rearranging for M yields M ě 2d
ε

ln
`

2d
δ

˘

.
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Proof of lower bound

Proof. The proof of the upper bound was for any P P PpSq. In order to con-
struct a lower bound on the sample complexity we construct a specific probability
distribution in PpSq, and find the required number of draws to learn from the inside.

By assumption there exists a concept λpSq P Λ that has two different points.
This means that there exists at least two different points in S, denoted θ1 and θ2.
Consider the probability distribution

P pθ1q “ 1´ ε, P pθ2q “ ε.

Note that this probability distribution belongs PpSq, as P pSq “ 1.
Suppose that we observe a sample of sizeM that contains only the value θ1. The

probability of observing such a sample is

P ppθ1, θ1, . . . , θ1
loooooomoooooon

m times

qq “ p1´ εqM .

On this sample, our algorithm reports the set tλpθ1qu, but misclassifies λpθ2q. Hence
the when we observe this sample, the loss is

LprpλM s, rλpSqs, P q “ P pθ2q “ ε.

Hence

P
´

LprpλM s; rλpSqs, P q ě ε
¯

ě P
´

LprpλM s; rλpSqs, P q “ ε
¯

“ P ppθ1, θ1, . . . , θ1qq

“ p1´ εqM .

Learning from the inside, implies that P pLprpλM s; rλpSqs, P q ě εq ď δ, and hence
learning from the inside implies that p1´ εqM ď δ. Re-arranging for M yields

M ě
lnp1{δq

´ lnp1´ εq
.

Therefore in order to learn from the inside, we require M ě
lnp1{δq
´ lnp1´εq

. In partic-
ular as 1

´ lnp1´εq
ě 1´ε

ε
for all ε P p0, 1q, learning from the inside with rpλM s implies

that M ě 1´ε
ε

ln
`

1
δ

˘

. Thus, the smallest mpε, δq required to learn from the inside
has to be at least 1´ε

ε
ln
`

1
δ

˘

.
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B Appendix B

Comparison with Gafarov, Meier and Montiel Olea (2018)

In this appendix we compare our bands from Section 3.1 with the analytical
bands from Gafarov, Meier and Montiel Olea (2018). In a set-identified model with
restrictions in only one shock, the tightest bands that contains the identified set
are the solution to a nonlinear programming problem. We compare the results of
our algorithm with these analytical bands. Figure 9 plots both the analytical bands
and the bands generated by 100 draws (chosen ad-hoc) and 1, 982 draws, which are
sufficient to learn when ε “ δ “ 0.1 and d “ 17.

0 2 4 6 8 10 12 14 16

-4

-3

-2

-1

0
10

-3

Figure 9: Analytical bands of Gafarov, Meier and Montiel Olea (2018) are plotted
in black. Bands generated using rxλM s using 100 draws (blue) and 1, 982 (red)
that satisfy the sign restrictions. 1, 982 draws is sufficient to support ε “ δ “ 0.1,
with d “ 17.

C Appendix C

In this appendix we consider the possibility of computing the misclassification
error when the probability measure Q (the measure used by the oracle to compute
misclassification error) differs from P (the measure used by the econometrician to
generate random draws). Given an algorithm pλM , the misclassification error of
learning a concept λ thus becomes LppλM , λ,Qq.

A concept λ P Λ is pQ,P q learnable if there exists an algorithm pλM and a function
mpε, δq such that for any 0 ă ε and δ ă 1:

P
´

LppλM ;λ,Qq ă ε
¯

ě 1´ δ, (15)
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for all distributions P on Θ and for any λ P Λ; provided M ě mpε, δq.
We establish the following results

1. We provide a simple example, where θ has dimension d “ 1, that shows that
learning in the sense of (15) is impossible even if Λ has finite VC dimension.
The example shows that when Q and P are different, learning becomes com-
plicated because there is a lot of flexibility in the choice of P .

2. We also show that, not surprisingly, if we restrict P to belong to a class PQ
such that

sup
AP continuity sets of Q

|P pAq ´QpAq| ď η,

for sufficiently small η, then learning is possible (for a fixed ε and δ) and the
sufficient number of draws becomes

ln

ˆ

1

δ

˙

1

2ε´ η
, η ă 2ε.

which is larger than ln
`

1
δ

˘

1
2ε
; the number of draws that would be required if

P were equal to Q.

The example suggests that allowing P and Q to differ does not add much to our
previous results.

Example:

Suppose that the parameter of interest lives in the real line, so that d “ 1.
Suppose that the concept class contains elements of the form ra,8q. The class has
VC dimension 1.15

For notational simplicity, we identify sets of the form rλ,8q, rpλ,8q by the scalars
λ, pλ. Algebra shows that

P
´

Lppλ;λ,Qq
¯

“ |Qpλq ´Qppλq|.

Assume that Q is absolutely continuous with respect to the Lebesgue measure.
We show that in this example, learning is not possible. It is sufficient to show

that for any algorithm pλM , there exists ε, δ and λ such that for some P

P
´

LppλM ;λ,Qq ě ε
¯

ě δ.

15Suppose we have 1 point, then λ can label it either 0 or 1, implying one point can be shattered.
Suppose there are 2 points. We can generate labels p0, 0q, p1, 1q and p0, 1q, but can’t generate p1, 0q
labels. 2 points cannot be shattered, and thus the VC dimension (the largest number of points
that can be shattered) of Λ is 1.
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regardless of the sample size.
Fix λ P R and let pλM be an arbitrary algorithm. Let M be an arbitrary sample

size.
Without loss of generality,16 consider algorithms pλM : px1, . . . , xmq Ñ R such

that for any set pa, bq Ă R,

pλ´1
M pa, bq ‰ H. (16)

Take an arbitrary value λ˚, and an arbitrary set pλ˚, λ˚q, such that λ˚ P pλ˚, λ˚q.
ε˚ “ mintQpλ

˚
q ´Qpλ˚q, Qpλ˚q ´Qpλ˚qu ą 0. Such a set exists as Q is absolutely

continuous w.r.t. to the Lebesgue measure. For any algorithm satisfying (16) we
have

P
´

LppλM ;λ,Qq ě ε˚
¯

ě 1´ P ppλM P pλ˚, λ
˚
qq.

For any sample size—and given that P is unrestricted—there is a P such that
P ppλM P pλ˚, λ

˚
qq can be made arbitrary small. The example shows learning is

impossible, even if the concept has finite VC dimension.
Now we show that if we allow for probability distributions P that are close to

Q, learning is still possible. The result is not surprising at all, and all we need is to
use the right definition of “closeness”. Let

P η
Q ”

"

P | sup
AP cont sets of Q

|P pAq ´QpAq| ď η

*

.

We argue that the algorithm that sets pλM “ mintxi|xi “ 1u or pλM “ maxtxi|xi “ 0u

learns uniformly, for a fixed pair pε, δq, where ε ě η{2.
The proof goes as follows. Fix λ P R. Find λpλq ă λpλq such that Qpλpλqq ´

Qpλq “ ε “ Qpλq ´Qpλpλqq. Define the set Apλq “ rλpλq, λpλqs. Then

P
´

LppλM ;λ,Qq ě ε
¯

“ P pxi R rλpλq, λpλqs, @iq

“ p1´ P pApλqqqM .

16If this were not the case, consider any pa, bq for which pλ´1
M pa, bq “ H. Then we could pick

λ P pa, bq and set ε˚ “ mintQpaq ´Qpλq, Qpλq ´Qpaqu. In this case, we have that for any P :

P
´

LppλM , λ,Qq ě ε˚
¯

ě P ppλM ě bq ` P ppλM ď aq

“ 1´ P ppλM P pa, bqq “ 1´ P pHq “ 1.
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Note by definition QpApλqq “ 2ε, which makes the line above equal to

p1´ rP pApλqq ´QpApλqqs ´ 2εqM ,

implying

P pLppλM ;λ,Qq ě εq ď p1´ p2ε´ ηqqM ,

as for any P P P η
Q, we have ´η ď P pAq ´QpAq ď η. Therefore for a fixed pε, δq

M ě ln

ˆ

1

δ

˙

1

2ε´ η

suffices to learn the concept class. This requires more draws than when Q “ P ,
which would be exactly

ln

ˆ

1

δ

˙

1

2ε
.

This formalizes the result that, if P is required to be sufficiently close to Q, then
learning is indeed possible (but the number of draws required to learn is practically
the same as when P “ Q).
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