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Abstract

Eugene Fama stated in his Nobel Prize lecture that “there is no statistically reliable

evidence that expected stock returns are sometimes negative” (2013). However, various

theoretical models such as Barberis et al. (2015) and Barlevy and Veronesi (2003) imply

that expected stock returns are sometimes negative. This paper provides evidence that

expected excess aggregate stock market returns are sometimes negative, and that portfolios

composed of the most liquid stocks have predictable downturns as well. This paper presents

a forecasting model that relies exclusively on ex-ante information to predict stock market

downturns only when the day-prior confidence of a downturn is relatively high, and shows

that the average excess return on days which are predicted to be downturns by the forecasting

model is -13.9 basis points. Volatility and classic factor return variables alone are sufficient

to predict downturns in the sample and are the most powerful downturn predictors. A

market timing portfolio using these ex-ante predictions generates a risk-adjusted return of

3.5 basis points per day, annualized to an average 8.8% risk-adjusted return.
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There is one remaining result in the literature on return predictability that war-

rants mention. The available evidence says that stock returns are somewhat pre-

dictable from dividend yields and interest rates, but there is no statistically reliable

evidence that expected stock returns are sometimes negative. Fama and French

(1987) find that predictions from dividend yields of negative returns for market

portfolios of U.S stocks are never more than two standard errors below zero. Fama

and Schwert (1977) find no evidence of reliable predictions of negative market re-

turns when the forecast variable is the short-term bill rate.

Eugene F. Fama (2013), Nobel Prize Lecture

Although there is a large literature that predicts returns in the time series, there is surpris-

ingly little focus on predicting negative excess stock returns. This is despite the fact that re-

searchers continue to produce behavioral and rational asset pricing models with the primary

prediction that expected stock returns are sometimes negative. For example, some behavioral

models (e.g. Cutler and Poterba (1990), Barberis et al. (2016), and Barberis et al. (2015))

have extrapolative agents that generate periods of negative expected excess returns. Barlevy

and Veronesi (2003) present a rational model with uninformed and informed agents which

also generates negative expected returns. In this model, the uninformed agents observe price

drops and correctly realize there is negative future cash flows news. They therefore reduce de-

mand, leading to a further price drop. However, as referenced in Eugene Fama’s quote above,

there remains very little evidence of negative expected excess aggregate stock market returns

in the empirical literature.

The very large predictability literature has typically focused on statistical significance of

predictors in predictive regressions and marginal R2 (e.g. Martin Lettau and Sydney Ludvig-

son (2001)), simple correlations (e.g. Owen A. Lamont and Jeremy C. Stein (2004)), or root

mean squared error (e.g. Welch and Goyal (2008)). These methods of course do not answer

the question of whether there exists predictable downturns.

In this paper, I employ a simple two-step process to evaluate whether expected returns are

sometimes negative as follows: 1) estimate a forecasting model on a rolling window time pe-

riod to generate rolling out-of-sample predictions of negative or non-negative excess returns

and 2) test whether the average return of all days with negative ex-ante predictions is actu-

ally statistically less than zero. I show that the average return, conditional on a negative day-

prior prediction, is strongly statistically negative.
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Many finance practitioners and academics hold the view that predicting downturns is a

losing endeavor that “diminishes long-term returns” because it causes investors to “lose out

in rising markets.”1 Thus the simplest test for sensitivity (i.e. whether a model correctly pre-

dicts downturns) and specificity (i.e. whether a model incorrectly predicts upturns as down-

turns) is to simply take the average excess return over all the days that were predicted to be

downturns. If the average is positive (negative), then pulling out of the market based on the

forecasting model hurts (boosts) returns relative to the market.

To avoid making false inference due to stale stock prices at the daily level, I predict down-

turns in the value weight portfolio of the largest 10 stocks (selected at the end of the year for

the following year). I show that the daily average excess return across all days with ex-ante

negative excess return predictions is -13.9 basis points (bps) with a standard error of 1.5 bps.

I show a battery of robustness checks. I show that this result is robust to changing the

number of stocks in the portfolio. I also show that there are predictable downturns in the

Center for Research in Security Prices (CRSP) value weight market excess return. I decom-

pose the return on the days with negative predictions into intraday and overnight returns

according to Dong et al. (2017), and show that both intraday and overnight returns are sta-

tistically negative and economically large. I also show that there are still days with expected

negative excess returns even in the last few decades as well as earlier periods.

Whether or not predictable downturns exist in the market is a very different question

than whether downturns are predictable. For example, the latter question is concerned with

both correctly predicting upturns (true positives) and downturns (true negatives), and both

incorrectly predicting positive excess returns (false positives) and incorrectly predicting down-

turns (false negatives). However, showing the existence of negative expected stock returns

(predictable downturns) is concerned only with a predictor that is accurate on average condi-

tional on a negative prediction. In other words, the question of the existence of predictable

downturns is concerned only with true negatives and false negatives, but is not concerned

with true positives or false positives. Figure 3 illustrates this point.

I also examine which predictor variables are the most powerful downturn forecasting vari-

ables. I find that volatility and classic asset pricing factor variables are both enough to pre-

dict downturns and the most powerful predictors. I also find most of the other variables in

the model help very little or hurt the ability to predict downturns in the main model on av-

1Goodbye to Market Timing, February 6 2012, Wall Street Journal
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erage, at least at the end of the sample period where the predictive strength of the variables

can be effectively compared.

I also construct a market timing portfolio based on the ex-ante predictions, which either

invests completely in the value weight portfolio of the largest 10 stocks or completely in the

risk-free asset, depending on the downturn forecast. This portfolio, which never has a short

position, yields a risk-adjusted return (alpha) of about 3.5 bps per day.

I show that given a very simple mean-reverting process of returns, that the probability

of predicting downturns in the aggregate market over periods longer than a couple of weeks

should be zero given the estimated parameters. Consistent with this, the forecasting model’s

ability to predict downturns steadily declines over longer periods, and fails at periods longer

than two weeks.

The rest of the paper is as follows. In section I, I give a brief review of the related liter-

ature and discuss this paper’s contribution. In section II, I discuss the empirical strategy I

employ to test the hypothesis of negative expected returns. In section III, I present the data I

use. In section IV I present the main results. In section V, I evaluate how the market timing

portfolio, based the ex-ante downturn prediction, performs. In section VI, I examine how the

results vary over longer horizons than daily returns. Finally, in section VII, I conclude.

I Literature Review

As discussed above, there are is a multitude of theoretical models that have negative expected

returns. For example, Barberis et al. (2015) present a behavioral model with extrapolative

agents that generate negative expected returns, while Barlevy and Veronesi (2003) show that

rational but uninformed investors can also generate negative expected returns.

Although this is the first paper that gives evidence of negative expected returns in the ag-

gregate stock market, there are other papers that give evidence of negative expected returns

in other assets. For example, Greenwood and Hanson (2013) give evidence of predictable neg-

ative returns on high yield debt, and Baron and Wei (2017) predict negative returns on bank-

ing sector equity.

This paper is connected to the very large literature on market return predictability. For

example, aggregate short interest (Owen A. Lamont and Jeremy C. Stein (2004)), the con-

sumption / wealth ratio (Martin Lettau and Sydney Ludvigson (2001)) new stock issuance
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(Malcolm Baker and Jeffrey Wurgler (2000)), aggregate dividend yields (Fama and French

(1988)), stock volatility (French et al. (1987)) all predict variation in returns in the time se-

ries. Welch and Goyal (2008) argued that historical averages were actually better for forecast-

ing aggregate market returns than out-of-sample regressions. However, Campbell and Thomp-

son (2008) showed that by using economically motivated sign restrictions on estimates to de-

crease estimation noise, out-of-sample regressions were better at forecasting aggregate returns

than historical averages. Importantly, the key tests of these papers is whether the predictive

variables statistically predict variation in returns and not whether they predict negative re-

turns.

Greenwood et al. (2017) seek to address, in challenge a statement from Eugene Fama, the

question of whether downturns are predictable. They try to predict downturns at the indus-

try level at a monthly frequency, instead of the daily frequency at the market level like this

paper. In their paper, they use a variety of predictors in different models, but with most of

their predictors, the strategy of shorting the industry when it is predicted to decline usually

results in a loss. In other words, according to their different models, when an industry is pre-

dicted to have a decline, it tends to go up more than down at most horizons across many of

their models. They do create portfolios that switch in and out of industries and into the mar-

ket according to decline predictions, which can beat the market. However, they ultimately do

not have a parsimonious model that shows that the expected industry returns are sometimes

negative.

It is important to note that I am not claiming that my method predicts bubbles. Fama

(2013) defines a bubble to be “an irrational strong price increase that implies a predictable

strong decline.” I give substantial evidence that there are predictable declines at the aggre-

gate level. However, I do not show that these predictable declines (or the preceding run-ups)

are driven by irrationality, which is of course more difficult to show.

II Empirical Strategy

I first write down the hypothesis in formal terms, and then I discuss the hypothesis, assump-

tions, and possible misconceptions. Then I discuss the prediction method that I employ to

generate ex-ante downturn predictions.
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A. Formal Hypothesis Development

In this subsection, I show formally that if the average over all the days that are predicted to

be negative by some forecasting model is actually negative statistically, where the forecasting

model uses only ex-ante information, then there is evidence of periods with negative expected

returns.

Let rt be the value weight market return in excess of the risk-free rate. Define

zt = Et[rt+1] = E[rt+1|Ft] (1)

where each Ft contains all public information about the stock market at the market close on

day t.

If it is observed that zt < 0, then I can conclude that expected stock returns are some-

times negative. However, since zt is of course not observed, I use some prediction of rt+1 us-

ing only information at time t, denoted as r̂t+1|t. Define εt+1 = rt+1 − zt. Also, let π̂t+1|t =

P̂robt(r̂t+1|t < 0) be some ex-ante prediction of the probability of a downturn. Thus if π̂t+1|t

is close to 1 (0), then the ex-ante probability of rt+1 being below zero is high (low). I refer to

π̂t+1|t as the negative probability prediction. If π̂t+1|t > c for some probability cutoff c, then

I refer to this as a negative prediction. Formally, assume π̂t+1|t is a random variable on the

probability space associated with Ft, which I denote, as an abuse of notation, as π̂t+1|t ∈ Ft.

This leads to the very simple but important proposition below:

Proposition: If π̂t+1|t ∈ Ft and for any c ∈ (0, 1), E[rt+1|π̂t+1|t > c] < 0, then zt < 0.

The following proof is quite simple. By way of contradiction, assume zt ≥ 0, but

π̂t+1|t ∈ Ft and for any c ∈ (0, 1), E[rt+1|π̂t+1|t > c] < 0. Then:

E[rt+1|π̂t+1|t > c] = E[zt|π̂t+1|t > c] + E[εt+1|π̂t+1|t > c] ≥ 0 (2)

since π̂t+1|t ∈ Ft implies that E[εt+1|π̂t+1|t > c] = 0 and zt ≥ 0 implies E[zt|π̂t+1|t > c] ≥ 0.

In words, this proposition states that if the negative probability prediction contains only

information available at time t (π̂t+1|t ∈ Ft) and the expected returns conditional on a fore-

casted negative return is actually negative (E[εt+1|π̂t+1|t > c] < 0), then the expected return

is negative (Et[rt+1] = zt < 0). Thus the key to the paper is to show that a prediction model

that uses ex-ante information can actually predict downturns. If this model is successful, in
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a formal statistical sense, then this proposition states that expected returns are sometimes

negative.

Under standard ergodicity assumptions, the average return over all days where π̂t+1|t > c,

denoted as γ̂− = A(rt+1|π̂t+1|t > c) converges in probability to the expectation of

E[rt+1|π̂t+1|t > c] over the distribution of π̂t+1|t, which I denote as γ−. Thus in this case,

rejecting the following null hypothesis:

H0 : γ̂− = A(rt+1|π̂t+1|t > c) ≥ 0 (3)

provides evidence that expected excess market returns are sometimes negative. This is the

key hypothesis tested in this paper. Thus, for this key hypothesis, a type I error is false rejec-

tion of the null hypothesis that expected returns are always non-negative. A type II error is

of course retaining the false null hypothesis of always non-negative expected returns.

The average γ̂− can be obtained by estimating the regression

rt+1 = γ+I (̂̂πt+1|t ≤ c) + γ−I(π̂t+1|t > c) + et+1 (4)

where I(·) is simply the indicator function. Of course, from this regression, γ̂+ is simply the

estimated mean of returns on days with an estimated ex-ante probability of being positive

greater than or equal to 1 − c. Estimating γ− with the regression or just by a simple average

of course yields identical numerical estimates, but using the regressions allows me to easily

vary the way the standard error is calculated to ensure the results are robust.

B. Hypothesis Development Discussion

I highlight the three main insights below from this proposition.

The first insight from the proposition above is that although there could potentially be

large differences between the actual conditional expectation of returns, zt, and the return

forecast r̂t+1|t, a statistically negative average return on days with forecasted downturns pro-

vides evidence that the conditional expectation is sometimes negative. One possible miscon-

ception about the empirical strategy of this paper is that a negative estimated average over

days with forecasted downturns does not actually inform researchers that the expected return

is sometimes negative if the forecasting model differs from the true expected return by a large

amount. This proposition shows that even if |r̂t+1|t − zt| is large, but E[rt+1|π̂t+1|t > c] is

6



 Electronic copy available at: https://ssrn.com/abstract=3204773 

negative, then the conditional expected return zt is negative.

For example, a forecasting model that underfits or overfits increases the average |r̂t+1|t −

zt|, but does not actually increase the type I error rate (false rejection of always non-negative

expected returns). Thus if a forecaster accurately predicts downturns, the potential underfit-

ting or overfitting does not in any way diminish the validity of the results that there are neg-

ative expected stock returns. In fact, underfitting and overfitting both increase the average

|r̂t+1|t − zt|, thus increasing the type II error rate (making it more difficult to find evidence of

negative expected returns).

The second insight is that for any ex-ante negative return probability forecaster π̂t+1|t and

for any cutoff c, if the forecasting model predicts negative returns (E[rt+1|π̂t+1|t] < 0), then

it must be the case that the expected return is negative (Et[rt+1] = zt < 0). Thus it takes

only a single predictor and a single cutoff value c to find evidence that expected returns are

sometimes negative. However, if multiple different cutoff values c and different forecasting

models π̂t+1|t are considered, then this becomes a classic multiple comparisons problem. By

using Bonferroni’s correction for multiple comparisons, if even a single model with a single

cutoff value c finds statistically significant evidence of predicting negative returns, then this

provides evidence of negative expected stock returns.

In practice, as I describe below, I picked one main forecasting model with a single cutoff

probability of 55% (c = 0.55). However, I also calculate with Bonferroni’s correction the num-

ber of other hypotheses that would need to be tested in order to lose statistical significance of

the main model with this cutoff value. I find that the number of other hypotheses that would

need to be tested in order for the main model to lose statistical significance is far too large for

any researcher to have feasibly tested.

If many forecasting models are selected, and the one with the most statistically significant

results are presented without a multiple comparisons correction, then surely the type I error

is much higher than reported. Thus model selection, and not model complexity, matters for

determining the validity of the results. Thus I outline in the next subsection transparently

how I selected the forecasting model. In the rest of the paper, I show that the results are ro-

bust through a variety of ways:

1. All predictor variables are known at time t.

2. I compute the number of other predictive models that would need to be tested in order
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to lose statistical significance at the 99.9% confidence level, using Bonferroni’s correc-

tion. I find that the number of other models that would need to be tested in order to

lose statistical significance is large enough that it would have been unfeasible for any

researcher to have possibly tested.

3. Forecasting model hyperparameters are robust to variation.

4. Alternative forecasting models are used and the results are robust.

5. All downloaded variables are used in the model, even though I show that simple mod-

els with few predictive variables can also predict negative returns. In other words, the

predictive variables are not selected based on ex-post information.

6. I estimate the conditional averages in different periods.

7. I decompose the returns into intraday and overnight returns, in order to ensure that the

intraday component is statistically negative.

It is important to note that there is a trade-off between a high and relatively low cutoff

probability c. As shown in Figure 3, a negative prediction, defined as π̂t+1|t > c, can either

result in a true negative (return is actually negative) or a false negative (return is not nega-

tive). A higher value of c (more conservative negative predictions) should increase the true

negative rate and decrease the false negative rate, resulting in a more negative γ−. This chan-

nel therefore decreases the type II error rate as c increases. However, as c increases, the sam-

ple size of the estimate γ̂− = A(rt+1|π̂t+1|t > c) decreases, which works to increase the type II

error rate. Thus being relatively conservative about negative predictions (c > 0.5) while being

careful so c is not so high as to decrease the sample size substantially gives the best chance of

finding evidence that expected returns are sometimes negative.

However, if c is chosen ex-post in order to find evidence of negative expected returns with-

out correcting for testing multiple hypotheses (different values of c), then of course the type I

error rate is higher than stated. Thus in practice, I chose c = 0.55 (at least a predicted 55%

chance of being negative), but I show that the results are robust to varying c over a relatively

large range.
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C. Forecasting Model Selection

In this subsection, I explain the out-of-sample forecasting model that generates the return

predictions r̂t+1|t and the predicted probability of a negative excess return π̂t+1|t. Denote

Xt as a large vector of variables known at time t. I seek to forecast rt+1 with Xt using some

function gt(Xt). In other words, with an estimated function ĝt(Xt) I have a forecast

r̂t+1|t = ĝt(Xt) (5)

To estimate gt(Xt), I use the rolling window approach shown in Figure 2. In particular,

at the end of the first trading day of each month, I fit gt(Xt) using the previous 10 years of

daily trading data. This fitted function gt is used to predict returns for the entire month,

once the information becomes available. The next month, the process is repeated. Each day,

at the end of the trading day, Xt is available, and the forecast for the next day is generated

as r̂t+1|t = ĝt(Xt). This creates an out-of-sample time series of forecasts, that I then subse-

quently use to evaluate downturn predictions. For example, consider forecasting the January

7, 1983 (t + 1) aggregate excess market return. The method uses data from January 4, 1973

through January 3, 1983 (the first trading day of the month) to fit gt. Then using January 6,

1983 (t) information Xt, plugged into gt, I forecast January 7, 1983 (t + 1) aggregate excess

market returns with r̂t+1|t = ĝt(Xt).

I use a random forest regression with 100 regression trees as the main forecasting model

function gt. I chose to use a random forest because it is flexible, does not assume linearity,

and is easy to understand and interpret (Breiman (2001)). I also use linear regression as a ro-

bustness check. I use a host of predictive variables Xt, discussed in the data section below.

Finally, as discussed above, I predict negative returns when the ex-ante negative return prob-

ability is at least 55% (c = 0.55), and I show how the results vary as this cutoff varies. I refer

to this model, with the c = 0.55 cutoff as the main model throughout the paper.

An obvious concern is that random forests will overfit the training data, especially with

a large amount of predictive variables. However, as discussed above, overfitting will only in-

crease |r̂t+1|t − zt| but will not increase the type I error rate. In other words, overfitting will

not increase the chance of finding evidence of negative expected returns.

9
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In order to compute π̂t+1|t, I assume

rt+1 ∼ N(r̂t+1|t, σ
2
t ) (6)

I estimate σ2t as

σ̂2t = V̂ar(rτ+1 − r̂Iτ+1|τ ) (7)

where r̂Iτ+1|τ is the in-sample out-of-bag return predictions and of course V̂ar(·) is the typical

estimator of variance across the 10-year sample. I use this estimate to compute

π̂t+1|t = Φ

(
−
r̂t+1|t

σ̂t

)
(8)

where Φ(·) is the standard normal cumulative distribution function.

This ex-ante estimate has the property that

π̂t+1|t > 0.5 iff r̂t+1|t < 0 (9)

While one common way to estimate the distribution of the target variables with a random

forest is to use the individual regression trees to generate an empirical distribution, I eschew

this method for the one described above because the estimate of π̂t+1|t has this property,

while the empirical distribution does not.

I also fit a simple linear model that uses the same predictive variables as the random for-

est model, and also the same 10 year rolling window approach fitted monthly. The linear

model, like the main model, incorporates the predictive variables into the model as they be-

come available in the time series. I calculate the ex-ante negative return probability in two

ways. First, I use the same normality assumption as above, but instead of using r̂Iτ+1|τ , I use

the in-sample linear fit of the model. The second way I use to compute the ex-ante negative

return probability prediction is to calculate the prediction confidence of a negative return

based on the standard ordinary least squares (OLS) prediction interval. That is, the standard

1− α prediction confidence interval for a given estimate r̂t+1|t is

[r̂t+1|t − td(1− α/2)σ̂p,t, r̂t+1|t + td(1− α/2)σ̂p,t] (10)

where td(1 − α/2) is the cumulative density function of the t distribution with d degrees of
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freedom evaluated at 1 − α/2, and σp,t is the standard deviation of the prediction (which of

course is larger than the standard error of the estimate). The degrees of freedom equals the

number of observations minus the number of covariates. From this, a natural negative return

probability forecast is

td

(
−
r̂t+1|t

σ̂p,t

)
(11)

In practice, unsurprisingly, these two methods yield very similar results. I simply use both

in order to show the typical OLS prediction confidence is similar to just the method that as-

sumes normality described above.

III Data

I use a host of predictive variables. In particular, I downloaded a total of 126 variables from

four sources: Chicago Board Options Exchange (CBOE) data from Wharton Research Data

Services (WRDS), Center for Research in Security Prices (CRSP), Federal Reserve Economic

Data (FRED), and Ken French’s website2. I also use the month and weekday indicators as

predictor variables. I use only day t information to predict ri,t+1. The earliest data available

is from July 1926 through the end of July 2017. Although there are 126 variables, since I also

month and weekday indicators, there are 143 variables total.

I group these variables into six different groups: CBOE, CRSP, FRED, French portfolios,

French industry portfolios, and calendar indicator variables. The CBOE group consists of

only 4 variables: the VIX, VXO, VXD, and VXN. The CRSP group consists of 19 predictor

variables that include market capitalization decile return indices and various other stock mar-

ket variables, as well as 9 different portfolios of the largest N stocks (with 9 different values

of N as described below) and their associated overnight and intraday return. Thus there are

46 total CRSP variables. There are 12 variables downloaded from FRED, such as the Bank

of America high yield spread and federal funds rate. I use 15 classic asset pricing factor vari-

ables, such as the risk-free rate, excess market returns, Small Minus Big (SMB) and High Mi-

nus Low (HML) returns from Ken French’s website. I refer to these as French portfolio vari-

ables. There are 49 French stock market industry portfolios. Finally, there are 17 calendar

indicator variables (12 months and 5 weekdays).

Table 1 shows summary statistics of these variables, the group of the variables, and a de-

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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scription of each variable. It also gives the date that each variable begins. Note that many of

the variables are not available until later in the sample period. This is an important point.

Instead of restricting my sample period to the intersection of when all the variables are avail-

able, I simply incorporate new predictors when the data become available, similar to Welch

and Goyal (2008). The predictors are generated at the end of the trading day or before. Also,

none of the predictor data has been modified after the fact, except CRSP which has done his-

toric return backfilling. This backfilling of course is not an issue, since the information being

backfilled was available at the time.

Although the portfolio returns are available in 1926, since I use a 10-year rolling window

to predict future returns, the generated time series of r̂j,t+1 is not available until 1936. Thus

all of the return averages on days with negative predictions are estimated using the sample

period from July 1936 through July 2017.

The objective of this paper is to test whether the aggregate stock market has periods

of negative expected excess returns. However, as described in Ahn et al. (2002), stale stock

prices induce positive autocorrelation in portfolio returns. This illiquidity creates an illusion

of high potential returns due to this predictability by trading the component stocks. Thus a

forecasting model that predicts downturns in the CRSP market portfolio excess returns may

actually just be due to stale prices. Thus, in order to avoid this, for the entirety of the paper,

the key variable predicted is the excess return of the value weight portfolio of the largest 10

stocks chosen at the end of the previous year. To construct this portfolio, I simply take all

common shares of CRSP, and at the end of each calendar year, the largest 10 stocks by mar-

ket capitalization are chosen to be in the portfolio. As usual, I subtract the treasury bill rate

from CRSP as the risk-free rate to create a daily excess return. I refer to this excess return

as simply the big 10 portfolio return. I use this as the key portfolio return in the paper in or-

der to alleviate the concerns that any predictability is due to the illiquidity of smaller stocks

in the CRSP value weight market index. As a robustness check, I also create other portfo-

lios in a similar way but with the largest N stocks, where N is either 50, 100, 200, 300, 400,

500, 1,000, or 2,000. I show that there is evidence of periods of negative expected returns in

each of these portfolios, as well as the CRSP value weight market index. In Table 2 I show

the correlations of these excess portfolio returns. Note that the correlation of the excess big

10 portfolio return and the CRSP value weight market return is 93.4%. Table 3 shows the

Capital Asset Pricing Model (CAPM) alphas and betas of these same portfolios, using the ex-
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cess return on the CRSP value weight market return on the right-hand side of the regression.

Note that the CAPM betas are all close to 1, and the CAPM beta of the big 10 portfolio in

particular is 0.99.

IV Results

A. Main Estimates

With the main prediction model explained above, 21.2% of trading days in the sample are

predicted to be have negative excess returns. Figure 4 shows the number of trading days in

each calendar year in the sample that are predicted to be negative. As this plot shows, be-

tween 1% to nearly 50% of trading days in any given year are predicted to be negative. Fig-

ure 5 shows the total number of downturn predictions by weekday, and Figure 6 shows the

total number of downturn predictions by month.

Although this paper is focused on the mean of excess returns on days that are predicted

to be negative, Figure 7 shows how the the entire distribution of excess returns on days with

downturn predictions differs from the distribution of returns on days that lack a downturn

prediction. The beige and purple colors together represent the histogram of returns in the

sample which had ex-ante downturn predictions. The purple and blue colors represent the

histogram of excess returns on days which did not have downturns predictions. From this

plot, although most of the plot is overlap between the two empirical distributions, the distri-

bution of returns with negative predictions is slightly to the left of the distribution of returns

that lack negative predictions.

The average excess big 10 return conditional on a negative prediction is -13.9 bps, which

is the key estimate of this paper. This result is shown in the first column of Table 4. The

standard error is 1.6 bps even when using Newey and West (1987) standard errors with 3

lags. Table 5 shows that the standard error estimates of this average using the typical OLS

estimate is 15 bps, Newey West standard error estimates calculated using 2, 3, 5, and 21 (one

month of trading days) lags are all 1.6 bps. I use Newey West standard errors with 3 lags in

order to be relatively conservative throughout the paper, but the difference in standard errors

using typical OLS standard errors or Newey West standard errors with various lags is always

small.

As discussed above, under the null of always non-negative expected returns, γ̂− is greater
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than or equal to zero. The estimated t-statistic is −8.57, which means that a one-sided test

gives a rejection of this null hypothesis with a p-value of 5.33(10)−18. A natural worry about

forecasting estimates is that the results are just a result of data drudging. That is, it could

perhaps be the case that a researcher runs many different forecasting regressions, and re-

ports only the results are the statistically significant, without taking into account the prob-

lem of multiple comparisons. However, I would need to estimate approximately 187 trillion

(0.001/(5.33(10)−18)) models that use only ex-ante information in order to lose statistical sig-

nificance of this model at the 99.9% significance level under Bonferroni’s correction for mul-

tiple comparisons. Bonferroni’s correction is the most conservative correction for multiple

comparisons, and using other more statistically powerful corrections results in an even larger

number of statistical tests that would need to be conducted in order to lose statistical signifi-

cance at the 99.9% confidence level. In other words, since the predictor variables contain only

ex-ante information, a result with this p-value is highly unlikely to be data mined or occur by

chance and gives strong evidence that expected excess stock returns are sometimes negative.

Since most of the predictive variables I use are available at market close, one obvious con-

cern is that the predictable component is mostly the overnight return. If it is the case that

most of the predictable movement occurs overnight, this would likely decrease or perhaps

even eliminate potential profits made from trading on the strategy. In order to test this, I de-

compose the return on the days that are predicted to be negative into intraday and overnight

returns following the same methodology as Dong et al. (2017). Column 3 of Table 4 shows

that the average intraday return on days with negative predictions is an average -5 bps. This

estimate is statistically significantly less than zero at the 99.9% level. Column 2 shows that

the average overnight return on these days is -2.2 bps, and is also statistically significant at

the 99.9% level. Note that these are not log returns, and the intraday and overnight returns

are not in excess of the risk-free rate, thus the average intraday and overnight returns do not

sum up the excess close-to-close big 10 portfolio return.

Another obvious concern is that perhaps this predictability is because of early sample is-

sues, and is eliminated in the later end of the sample. In order to test this, I take the average

return conditional on a negative prediction from the beginning of of 1980 through the end of

the sample. Column 4 of Table 4 shows that this average return is -10.5 bps. This is statis-

tically significant at the 99.9% confidence level. Column 6 shows the average intraday return

on these days is -7.6 bps, and also statistically significant at the 99.9% confidence level. Inter-
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estingly, the point estimate of the overnight return is 0.5 bps, and is not statistically different

from zero.

Although stale prices should likely make portfolios with less liquid stocks more predictable

as described in Ahn et al. (2002), I test whether the portfolios with more stocks, discussed in

the data section above, exhibit periods of negative expected stock returns. In Table 6, I show

the average excess returns of different portfolios conditional on a negative return prediction.

In each case, the random forest is fit to the portfolio excess return every month, just as de-

scribed above. As in the main model, I use a 55% ex-ante negative return probability cutoff.

Note that all of these portfolios have statistically significant negative return averages condi-

tional on downturn predictions, with p-values well below 0.001. Column 10 of this table shows

the average excess return of the CRSP value weight market index, conditional on a negative

return prediction.

I also estimate the average return on days with negative predictions by decade. Figure 8

shows these results, with the black curve showing the estimates, and the grey region showing

the 95% confidence interval. The point estimates are negative for every decade, but the esti-

mates for the 1940’s, 1980’s, and 1990’s are not statistically significant at the 95% confidence

level. However, as Table 4 shows, the average return on days with negative predictions on all

days from the 1980’s through the end of the sample is negative and statistically significant at

the 99% confidence level.

I also show that the average return on days with negative predictions is statistically signif-

icant at the 95% confidence level for a wide range of cutoff probabilities c. Figure 9 plots the

average return on days with negative predictions across the entire sample, as a function of the

cutoff probability c. The dark grey region represents the 95% confidence interval. Note that

for cutoff probabilities anywhere in the region between 46% - 83%, the result is statistically

significant at the 95% confidence level.

It is important to note from the proposition above that statistical significance with even a

single cutoff probability c, given that there is an appropriate correction for multiple hypothe-

ses being tested if multiple cutoff values are used, provides evidence that expected returns are

sometimes negative. In the discussion above of multiple hypotheses and Bonferroni’s correc-

tion, it is clear that it is infeasible for any researcher to have possibly tested enough hypothe-

ses to have lost statistical significance of the main model I use in this paper.

Column 5 of Table 7 shows that the average returns conditional on a downturn prediction
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of a linear model is -8.4 bps, which is also statistically less than zero at the 99.9% confidence

level. This model uses a cutoff probability of 55% and a negative return probability predic-

tion using the normality assumption described above. Column 4 shows the the result is sim-

ilar using the OLS prediction probability described above. Column 3 shows that the random

forest model with a cutoff probability of 50%, which is the same as predicting a downturn

precisely when r̂t+1|t < 0, has an average return on days with negative predictions of -5.5 bps.

This is also statistically significant at the 99.9% confidence level. Columns 1 and 2 also show

that the linear model with a cutoff probability of 50% yields an average -4.1 bps return on

days with negative predictions. Column 1 uses the OLS prediction probability method, while

column 2 uses the normality approach.

Linear regressions for prediction are classically known for underfitting the training data,

while random forests can easily overfit training data. The fact that both types of models find

statistically significant evidence of negative expected returns indicates that the results are not

model dependent. Also, the random forest model yields a 65% higher average return in abso-

lute value on days with negative predictions than the linear model, with the 55% probability

cutoff. Thus, perhaps unsurprisingly, it appears that the linear model underfitting is more se-

vere than the overfitting or perhaps even underfitting of the random forest model.

B. What are the Predictor Variables that Most Effectively Predict Downturns?

In order to understand what variables are the best downturn predictors, I take the average

importances across all of the random forests that are fitted monthly. An importance of 0

means that the predictor variable explained 0% of the variation in the target variable, while

an importance of 100 means that the variable explained 100% of the variation in the tar-

get variable that is explained by all predictor variables. Since not all predictor variables are

available at the beginning of the sample period but are incorporated into the random forest

models when they are available, the average importance for each predictor variable is just the

average over all the random forest models which use the predictor. Table 8 shows the ten pre-

dictors with the largest importances. The volatility indices VXO, VIX, and VXN are among

the most important, and the precious metals stock index and petroleum and natural gas stock

index rank in the top 10 as well. As the table shows, the volatility indices correlate positively

with next day returns, while the precious metals and petroleum and natural gas indices corre-

late negatively with next day returns.
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In order to test which groups of variables were most influential, I compared the various

predictive abilities of the main model using all combinations of the six groups of predictive

variables described in the data section above. There are 63 (26 − 1 = 63) such combina-

tions, so I generated 63 different times series of predictions using every different combination

of these groups of predictor variables. I then estimate the 63 different average returns on days

with downturn predictions from the various models. I do this exercise in order to compare

the predictive power of the groups of variables, but the CBOE variables in particular are not

available until later in the sample. For example, the first CBOE variables that are available

are the VXO in 1986 and the VIX in 1990. In order to compare the groups during a period

where the data is available, I estimate the average from 2000 onward, since this is 10 years

after the VIX creation (because the model uses a 10 year rolling window prediction method).

Like the main model, I use a random forest model with a 55% negative return probability

cutoff.

Some of the notable estimation results, from among these 63 estimates, are in Table 9.

Since there are 63 different tests, I use Bonferroni’s correction in order to assess statistical

significance. In order to account for these multiple comparisons, this table uses significance

asterisks differently than the rest of the tables in the paper. In this table, three asterisks

next to an average return conditional on a downturn prediction (γ−) estimate signifies that

the estimate is statistically less than zero at the 95% confidence level using a one sided test

with Bonferroni’s correction (it has a p-value less than 0.05/63 ≈ 0.00079). The asterisks on

the γ+ estimates are similar, but use a one-sided test with a null hypothesis that the average

on these days is equal to or less than zero. Two asterisks means that the p-value is less than

0.01, and one asterisk signifies that the p-value is less than 0.05.

Although there are 63 tests estimated over this short sample period and I use Bonferroni’s

correction (which is well-known to reduce the power of the individual tests), there are still

3 models that reject the null hypothesis of always non-negative expected returns at the 95%

significance level. Columns 2, 3, and 4 of Table 9 show these estimates. Column 2 in particu-

lar shows that the model with only CBOE and French portfolio variables are enough to reject

the null hypothesis of always non-negative expected returns at the 95% confidence level even

after Bonferroni’s correction.

Note that the estimate using the model with only CBOE variables to predict downturns

would be statistically significant at the 99% confidence level without the multiple compar-
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isons correction, as shown in Column 1. However, the model that uses CBOE variables alone

loses statistical significance at the 95% confidence level since 63 tests are simultaneously per-

formed. Even with Bonferroni’s correction, this estimate is still statistically significant at the

90% confidence level. Column 5 shows the full model results during this period with all six

groups, and like the model with only CBOE variables, γ− has a p-value is less than 0.01 but

loses statistical significance at the 95% confidence level when Bonferroni’s correction is ap-

plied.

In all three cases where the models reject the null hypothesis of always non-negative ex-

pected returns even after Bonferroni’s correction (Columns 2, 3, and 4 of Table 9), the CBOE

and French portfolio groups are included in the models, and the French industry portfolios

and CRSP variables are not included. In fact, the full model loses statistical significance with

Bonferroni’s correction when these are included. This seems to suggest, at least in this pe-

riod, that the CBOE and French portfolio variables tend to help predict downturns, while in-

cluding the CRSP and French industry portfolios tends to lead to overfitting and worse down-

turn predictions.

In order to investigate further which predictor groups tended to help or hinder the pre-

diction during the sample, I compare models excluding and including different groups. More

precisely, consider predictor variable group j, and consider the value tj − tbj , where tj is the

estimated t-statistic on γ− from some model that includes group j, and tbj is the estimated

t-statistic from a model with the same predictors but excludes group j (baseline model). If

tj − tbj is very negative, then adding the predictor group j to the baseline model helped pre-

dict downturns better statistically. If tj − tbj is close to zero, then adding group j to the base-

line model did very little, and if tj − tbj is positive, then adding group j to the baseline model

likely caused overfitting and actually eroded the quality of downturn predictions. Note that

the t statistics can be compared, because the degrees of freedom are equivalent across models.

For each j, there are of course 31 (25−1) different possible baseline model comparisons. I plot

these t-statistic differences in Figure 10 for each of the six predictor groups.

Note that by this difference of t-statistic metric, the CBOE, FRED, and French portfolio

variables tend to improve the downturn predictions, while the CRSP, calendar, and French

industry portfolios tend to decrease or have little affect on the ability to predict downturns

during this period on average. Note that the grey points represent estimates tj that are not

statistically significant at the 95% confidence level, and the yellow points have p-values be-
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tween 0.05/63 (Bonferroni 95% confidence level cutoff) and 0.05. The red points represent tj

values negative enough be statistically significant at the 95% confidence level with Bonfer-

roni’s correction.

In summary, the only variables needed to predict downturns during this period are the

CBOE volatility variables and classic asset pricing factor variables, referred to as French fac-

tor portfolio variables. Furthermore, it appears that these groups of variables, along with the

FRED group helped to predict downturns during this period, while the calendar, CRSP and

French industry portfolio variables tend to hurt or have little affect on the ability to success-

fully predict downturns.

V Market Timing Portfolio

I form a simple market timing portfolio using the results from the main model. The portfolio

invests completely in the big 10 portfolio when there is no downturn prediction, and invests

completely in the risk-free asset (treasury bill) when there is a negative return prediction.

Figure 11 shows the cumulative return of both this market timing portfolio, and the big

10 portfolio, on a log scale. The market timing portfolio results in a cumulative return that is

over one hundred times larger at the end of the sample period than just investing in the big

10 portfolio.

This market timing portfolio has an unconditional market beta and alpha, using the ex-

cess return on the CRSP market index, of 0.73 and 3.5 bps respectively, as shown in column

1 of Table 10. This translates into an 8.8% annual alpha (252 * 0.035). Columns 2, 3, 4, and

5 correspond to, respectively, the Fama and French (1993) 3 factor model, Carhart (1997) 4

factor model, Fama and French (2015) 5 factor model, and a model with these same 5 factors

with momentum. The alpha stays around 3.5 bps or slightly larger, and is statistically signifi-

cant at the 99.9% confidence level in every model.

In order to see how this portfolio performs each year, I estimate the average difference of

the market timing portfolio return and the big 10 portfolio return every year in the sample.

Figure 12 plots these yearly differences, and the grey region represents the 95% confidence

region. For most years, the market timing portfolio outperforms the big 10 portfolio, although

the difference is rarely statistically significant, at least in part due to a small sample size for

each estimate.
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Perhaps a better benchmark for the market timing portfolio is a portfolio with similar

market exposure on average. The big 10 portfolio has a CAPM beta, using the CRSP value

weight market portfolio, of 0.99, as shown in Table 3. Since the market timing portfolio con-

sists of both the risk-free asset and the big 10 portfolio, the market timing portfolio has a

CAPM beta of 0.73. Thus I estimate the CAPM alpha yearly, using the CRSP value weight

market return, and plot these estimates through time in Table 13. For most years, the market

timing portfolio has positive alpha, but once again is rarely statistically significant.

VI Prediction Horizon Results

In this section, I answer the following question: given the predictive power of the empirical

model, what is the time horizon over which downturns can be predicted?

I first discuss a basic but classic prediction horizon model. Let rt+1 be a log excess return.

Define a = E[rt+1] and xt = Et[rt+1]− a. Also, assume

εt+1 = rt+1 − a− xt, xt+1 = ρxt + et+1 (12)

εt ∼ N(0, σ2ε ) iid, et ∼ N(0, σ2e) iid, σε,e = Cov(et, εt) (13)

The classic prediction horizon result is that the log of the cumulative returns from period

t+ 1 to t+ T , regressed on xt results in the equation:

T∑
s=1

rt+s = Ta+

(
T∑
s=1

ρs−1

)
xt + ηt+T (14)

where

ηt+T =

T∑
s=1

[
εt+s + et+s

(
T−s−1∑
l=0

ρl

)]
(15)

Thus the intercept and the coefficient on xt increase over longer horizons. If the predic-

tor xt is persistent, i.e. ρ ≈ 1, then the coefficient on xt grows at approximately a linear rate

as a function of the time horizon. The regression R2 tends to increase as the prediction hori-

zon T increases, until ρT decays sufficiently. Thus, in summary, return predictability tends to

improve over longer horizons.

However, in the case of predicting downturns, the opposite is true. Define a true negative

over the return horizon t + 1 to t + T , denoted as pt+T , as the unconditional probability of
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observing both a negative prediction and an actually negative return. Thus if a > 0 and 0 <

ρ < 1, then

pt+T = Prob

(
Ta+

(
T∑
s=1

ρs−1

)
xt < 0 and

T∑
s=1

rt+s < 0

)
→ 0 as T →∞ (16)

In words, the probability of experiencing a true negative converges to zero as the prediction

horizon expands. In summary, although predictability tends to improve over longer horizons,

the ability to predict downturns decreases over longer horizons.

I estimate the parameters of this very simple model using the main prediction model, in

order to see how fast this convergence occurs. Tables 11 contain these point estimates. I use

the mean of the log excess big 10 portfolio return as an estimate for a. The table shows 100

times the estimate of a, in order to be roughly in terms of percentage points. For xt, I set

xt = log(r̂t+1|t)− log(r̂t+1|t) (17)

where the second term on the right hand side is just the mean of the log predicted return. I

demean the predictions because in this very simple model, E[xt] = 0. I estimate ρ with the

typical AR(1) regression using xt. I then set εt and et as the respective residuals, and esti-

mate the variance and covariance terms with the typical consistent estimators.

Figure 14 plots the model generated probability of a true negative as a function of the

prediction horizon. The probability of a true negative is approximately zero at any predic-

tion horizon longer than seven days. Prediction horizons of seven or fewer days have positive

true negative probabilities. Thus this basic model, with these parameter values, implies that

predicting downturns at horizons longer than a week is difficult, and longer than two weeks is

not possible.

I fit the main model, using the same monthly estimation with a 10 year rolling window

and 55% prediction probability cutoff as described above, to predict the log of the cumulative

excess return of the big 10 portfolio at different horizons. Figure 15 plots the average log of

the cumulative excess returns during periods that were predicted ex-ante to be negative, as

a function of the prediction horizon. The grey area shows the 95% confidence region of the

estimates, using Hodrick (1992) standard errors to correct for the overlapping sample. Similar

to the basic model, it appears that predicting downturns with the predictive power of this

model is possible at anything less than a one week horizon, becomes difficult between one and
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two weeks, and fails at horizons longer than two weeks.

VII Conclusion

This paper finds evidence that expected returns are sometimes negative. I present a parsi-

monious forecasting model where, conditional on a downturn prediction, the average excess

return is -13.9 bps on portfolio of only the most liquid stocks. The same model works to pre-

dict stock market wide downturns as well, with a similar magnitude. The degree of statistical

significance suggests that the null hypothesis of always non-negative expected stock returns

is overwhelmingly rejected. Although I selected the main predictive model without regard to

its actual empirical success, the estimate would lose statistical significance, using Bonferroni’s

correction, only if literally trillions of other predictive models are also tested.

I show that the main model predicts downturns during the entire sample period, and still

predicts downturns in the last few decades as well. I show that the results are robust to vary-

ing different model parameters, such as the negative probability prediction cutoff. The main

model predicts downturns even in the intraday return over the next day alleviating any con-

cerns about using information available at market close on day t to predict day t + 1 close-

to-close returns. I also show that a simple linear prediction model also predicts market down-

turns.

I perform a formal test of multiple predictive models, correcting for the multiple compar-

isons, in order to determine the power of the predictive variables in forecasting downturns. I

find that the CBOE volatility variables and classic asset pricing factor variables are the most

powerful predictors, and these two groups are sufficient to reject the null hypothesis of always

non-negative expected returns at the 95% confidence level even with Bonferroni’s correction.

I construct a simple market timing portfolio based on the main model downturn predic-

tions, and find that it earns an approximately daily 3.5 bps alpha, which translates into an

8.8% annual alpha. I show that this return typically outperforms the market during the sam-

ple period, and is not focused at the beginning or end of the sample.

I also show, with a simplistic model, that predicting downturns over periods longer than

two weeks is essentially impossible with the estimated parameters. This paper suggests that

even with a flexible model that leverages many variables to predict downturns, predictions of

market downturns that are longer than two weeks are extremely difficult. This section sug-
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gests that claims of impending declines over a long time horizon, even using powerful fore-

casting methods, are heavily suspect.

As discussed in the literature review, much of the asset pricing prediction literature has

focused on overall variation that is predictable, but not actually predicting downturns. Green-

wood et al. (2017) discuss predicting downturns, but do not have a parsimonious model that

predicts downturns, even in industry portfolios. The lack of empirical evidence of predictable

downturns, before this paper, is especially striking given both the behavioral models (e.g.

Barberis et al. (2015)) and at least one rational model (Barlevy and Veronesi (2003)) pre-

dicts that expected returns are sometimes negative. Although other papers, such as Green-

wood and Hanson (2013) and Baron and Wei (2017) give evidence of predictable downturns

in other assets, this is the first paper that gives evidence of negative expected excess aggre-

gate stock market returns.
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Figures

Figure 1: Variation in Et[rt+1] versus Negative Et[rt+1]

This stylized plot shows hypothetical Et[rt+1] values (red curve) and actual return realizations
rt+1 (blue dots). Note that in this hypothetical case, while there is substantial variation in
Et[rt+1], it is still the case that Et[rt+1] > 0 for all t.

Figure 2: Estimation Rolling Window Timeline

Time

0

excluded

from estimation

t− S t− 1 t t+ 1

estimation period
(estimate ĝt using
Xt−S , ..., Xt−1 and
rj,t−S+1, ..., rj,t)

predict r̂t+1 = ĝt(Xt)

observe rt+1

This figure shows how the forecasts of future returns are generated. The S + 1 periods from
t− S to t are used to forecast the t+ 1 return. Xt is a vector of predictor variables available
at time t, and r̂t+1 is the forecast of rt+1 generated at time t.
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Figure 3: Confusion Matrix

Actual Return

Prediction

π̂t+1|t < c π̂t+1|t > c

rt+1 > 0
True
Positive

False
Negative

rt+1 < 0
False
Positive

True
Negative

This table shows the two kinds of successful predictions (true positive and true negatives) and
the two kinds of errors (false positives and false negatives). I discuss in the paper how the
crucial error is false negatives, and that for the sake of testing whether a prediction method
can predict negative returns, false positives matter very little. Here, π̂t+1|t is the forecast of
the probability of rt+1 being negative generated at time t.

Figure 4: Number of Days with Negative Predictions by Year

This plot shows the number of days with negative excess return big 10 predictions by year.
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Figure 5: Number of Days with Negative Predictions by Day of the Week

This shows the number of days with negative excess return big 10 predictions by day of the
week.

Figure 6: Number of Days with Negative Predictions by Month

This shows the number of days with negative excess return big 10 predictions by month.
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Figure 7: Overlapping Histograms of Returns Conditional on Predictions

This shows the empirical distribution of two types of returns, those with negative return
predictions and those that are not predicted to be negative. The beige and purple colors
represent the distribution of returns conditional on a negative prediction. The blue and
purple colors represent the distribution of returns conditional on not being predicted to be
negative. The purple color is the overlap between the two distributions. Note that 21.2%
percent of days in the sample are predicted to be negative, so both distributions are scaled in
order to integrate to 1.
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Figure 8: Estimated Average of Returns Conditional on a Negative Prediction by Decade

This shows the average return of days that are predicted to have a negative excess return,
estimated by each decade. The grey region show the estimated 95% confidence interval for
the estimated averages.

Figure 9: Varying the Cutoff Probability

This shows how the average return conditional on a negative prediction π̂t+1|t > c varies as
the cutoff probability c varies. The cutoff c is on the x-axis, and the average return given a
negative prediction with different cutoff values c are on the y-axis, with the shaded area
representing the 95% confidence interval of the mean for different values of c.
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Figure 10: Comparing Six Groups of Data Predictors

This box plot seeks to determine the strength of the six predictor variable groups described in
the data section of the text. Consider predictor variables group j, and consider the value
tj − tbj , where tj is the estimated t-statistic on γ− from some model that includes group j, and

tbj is the estimated t-statistic from a model with the same predictors but excludes group j

(baseline model). If tj − tbj is very negative, then adding the predictor group j to the baseline

model helped predict downturns better statistically. For each j, there are 31 (25 − 1) different
possible baseline model comparisons. This plots each of the 31 comparisons, for each of the
six groups. Note that Industry refers to the 49 French Industry portfolio returns, and French
refer to the 15 classic asset pricing factor variables. The sample period for these estimates is
from January 2000 to July 2017.
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Figure 11: Cumulative Return of Market Timing Portfolio

This graph shows the cumulative return of two portfolios. One is the big 10 portfolio
discussed in the text, and the other is the market timing portfolio, which is 100% long the big
10 portfolio on days lacking downturn predictions, and holds on the risk-free asset on days
with downturn predictions.

Figure 12: Market Timing Portfolio Performance by Year

This graphs shows the estimated average market timing portfolio return minus the big 10
portfolio return every year in the sample. The shaded region represents the 95% confidence
interval of the average difference.
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Figure 13: CAPM α of Market Timing Portfolio by Year

This graphs shows the estimated CAPM alpha estimated every year in the sample, with the
shaded region representing the corresponding 95% confidence interval.

Figure 14: Theoretical Probability of True Negative over Different Time Horizons

This graph shows the unconditional probability of experiencing a true negative return
(predicting to be negative and is actually negative) as a function of the number of days over
which the cumulative return is predicted. Thus, at least with this basic model and estimated
parameters, the probability of predicting a downturn correctly over a period of one week (5
trading days) is small, while the probability of predicting a downturn beyond two weeks is
essentially zero.
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Figure 15: Prediction Horizon Results

This graph shows the average log excess return over periods that are predicted to be negative,
as a function of the number of days over which the prediction is made. The shaded region
represents the 95% confidence interval of the estimates, where the standard errors are
calculated according to a Hodrick (1992) overlapping cumulative return sample technique.
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Tables

Table 1: Description of Predictors

First Date Variable Name Group Description Mean Std.
Dev.

1986-01-02 VXO CBOE S & P 100 Volatility Index 20.32 8.96
1990-01-02 VIX CBOE S & P 500 Volatility Index 19.51 7.86
1997-10-07 VXD CBOE DJIA Volatility Index 19.52 7.97
2001-02-02 VXN CBOE NASDAQ-100 Volatility Index 25.17 12.45
1926-11-01 CAP1RET CRSP Lowest Decile Market Cap Return 0.07% 1.26
1926-11-01 CAP2RET CRSP Decile 2 Market Cap Return 0.05% 1.17
1926-11-01 CAP3RET CRSP Decile 3 Market Cap Return 0.05% 1.12
1926-11-01 CAP4RET CRSP Decile 4 Market Cap Return 0.05% 1.11
1926-11-01 CAP5RET CRSP Decile 5 Market Cap Return 0.05% 1.14
1926-11-01 CAP6RET CRSP Decile 6 Market Cap Return 0.05% 1.14
1926-11-01 CAP7RET CRSP Decile 7 Market Cap Return 0.05% 1.15
1926-11-01 CAP8RET CRSP Decile 8 Market Cap Return 0.04% 1.12
1926-11-01 CAP9RET CRSP Decile 9 Market Cap Return 0.05% 1.10
1926-11-01 CAP10RET CRSP Largest Decile Market Cap Return 0.04% 1.07
1926-11-01 EWRETD CRSP Equal Weight Stock Return 0.09% 1.06
1926-11-01 EWRETX CRSP Equal Weight Stock Return (Ex-

cluding Dividends)
0.07% 1.06

1926-11-01 TOTCNT CRSP % Chg. in Number of Listed
Stocks

0.01% 1.06

1926-11-01 TOTVAL CRSP % Chg. in Value of Listed Stocks 0.04% 1.11
1926-11-01 USDCNT CRSP % Chg. in Number of Listed

Stocks in CRSP Market Index
0.01% 1.05

1926-11-01 USDVAL CRSP % Chg. in Value of Listed Stocks
in CRSP Mkt. Index

0.04% 1.11

1926-11-01 VWRETD CRSP Value Weight Stock Return 0.04% 1.07
1926-11-01 VWRETX CRSP Value Weight Stock Return (Ex-

cluding Dividends)
0.03% 1.07

1962-07-03 SPRTRN CRSP S&P 500 Return 0.03% 1.01
1954-07-01 DFF FRED Federal Funds Rate 4.89 3.64
1962-01-02 DGS1 FRED 1-Year Treasury Yield 5.23 3.41
1962-01-02 DGS10 FRED 10-Year Treasury Yield 6.28 2.86
1976-06-01 T10Y2Y FRED 10-Year Treasury Yield Minus

2-Year Treasury Yield
0.97 0.93

1986-01-02 DBAA FRED Moody’s Baa Corporate Bond
Yield

7.51 1.87

1986-01-02 USD1MTD156N FRED 1-Month LIBOR 3.76 2.80
1987-05-20 DCOILBRENTEU FRED Brent Crude Oil Price 45.09 33.46
1995-01-04 DTWEXB FRED Trade Weighted US Dollar Index 109.69 10.24
1996-12-31 BAMLH0A0HYM2EY FRED BofA High Yield Index 9.15 2.85
1999-01-04 DEXUSEU FRED US/Euro Exchange Rate 1.21 0.17
2003-01-02 T10YIE FRED 10-Year Inflation Rate 2.09 0.41
2003-01-02 T5YIFR FRED 5-Year Forward Inflation Expecta-

tion Rate
2.33 0.35

1926-11-01 MKTRF French Excess Value Weight Market Re-
turn

0.03% 1.07

1926-11-01 SMB French Small Minus Big 0.01% 0.59
1926-11-01 HML French High Minus Low 0.02% 0.59
1926-11-03 UMD French Up Minus Down (Momentum

Portfolio)
0.03% 0.75

1926-11-01 RF French risk-free Rate (Treasury) 0.01% 0.01
1963-07-01 CMA French Conservative Minus Aggressive

(Investment Portfolio)
0.01% 0.36
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1963-07-01 RMW French Robust Minus Weak (Profitability
Portfolio)

0.01% 0.37

1926-07-01 HIGH French Long End of HML Return 0.03% 1.67
1926-07-01 LOW French Short End of HML Return 0.03% 0.44
1963-07-01 SMALL French Long End of SMB Return 0.04% 1.38
1927-07-01 BIG French Short End of SMB Return 0.03% 2.02
1926-07-01 UP French Long End of UMD Return 0.08% 0.28
1926-07-01 DOWN French Short End of UMD Return 0.08% 0.28
1930-03-20 LTREV French Long Run Reversals Index 0.01% 0.60
1926-11-01 STREV French Short Run Reversals 0.02% 0.92
1926-11-01 AERO French

Industry
Aircraft Index 0.05% 1.78

1926-11-01 AGRIC French
Industry

Agriculture Index 0.03% 1.50

1926-11-01 AUTOS French
Industry

Automobiles and Trucks Index 0.03% 1.57

1926-11-01 BANKS French
Industry

Banking Index 0.04% 1.47

1926-11-01 BEER French
Industry

Beer & Liquor Index 0.04% 1.46

1926-11-01 BLDMT French
Industry

Construction Materials Index 0.03% 1.25

1926-11-01 BOOKS French
Industry

Printing and Publishing Index 0.03% 1.55

1926-11-01 BOXES French
Industry

Shipping Containers Index 0.04% 1.25

1926-11-01 BUSSV French
Industry

Business Services Index 0.04% 1.97

1926-11-01 CHEMS French
Industry

Chemicals Index 0.03% 1.27

1926-11-01 CHIPS French
Industry

Electronic Equipment Index 0.04% 1.75

1926-11-01 CLTHS French
Industry

Apparel Index 0.03% 1.14

1926-11-01 CNSTR French
Industry

Construction Index 0.04% 2.00

1926-11-01 COAL French
Industry

Coal Index 0.03% 2.12

1926-11-01 DRUGS French
Industry

Pharmaceutical Products Index 0.04% 1.14

1926-11-01 ELCEQ French
Industry

Electrical Equipment Index 0.04% 1.56

1963-07-01 FABPR French
Industry

Textiles Index 0.01% 1.49

1926-11-01 FIN French
Industry

Fabricated Products Index 0.04% 1.58

1926-11-01 FOOD French
Industry

Food Products Index 0.03% 0.92

1926-11-01 FUN French
Industry

Entertainment Index 0.04% 1.80

1963-07-01 GOLD French
Industry

Precious Metals Index 0.03% 2.28

1963-07-01 GUNS French
Industry

Defense Index 0.04% 1.38

1926-11-01 HARDW French
Industry

Computers Index 0.04% 1.53

1969-07-01 HLTH French
Industry

Healthcare Index 0.03% 1.53

1926-11-01 HSHLD French
Industry

Consumer Goods Index 0.03% 1.16

1926-11-01 INSUR French
Industry

Insurance Index 0.03% 1.37
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1926-11-01 LABEQ French
Industry

Measuring and Control Equipment
Index

0.04% 1.43

1926-11-01 MACH French
Industry

Machinery Index 0.03% 1.37

1926-11-01 MEALS French
Industry

Restaurants, Hotels, and Motels
Index

0.04% 1.34

1926-11-01 MEDEQ French
Industry

Medical Equipment Index 0.04% 1.59

1926-11-01 MINES French
Industry

Non-Metallic and Industrial Metal
Mining Index

0.03% 1.53

1926-11-01 OIL French
Industry

Petroleum and Natural Gas Index 0.03% 1.28

1926-11-01 OTHER French
Industry

Almost Nothing Index 0.02% 1.48

1929-07-01 PAPER French
Industry

Business Supplies Index 0.06% 3.28

1927-07-01 PERSV French
Industry

Personal Services Index 0.03% 2.02

1926-11-01 RLEST French
Industry

Real Estate Index 0.03% 2.14

1926-11-01 RTAIL French
Industry

Retail Index 0.03% 1.13

1930-07-01 RUBBR French
Industry

Rubber and Plastic Products
Index

0.04% 1.67

1926-11-01 SHIPS French
Industry

Shipbuilding and Railroad Equip-
ment Index

0.03% 1.51

1926-11-01 SMOKE French
Industry

Tobacco Products Index 0.04% 1.19

1963-07-01 SODA French
Industry

Candy & Soda Index 0.04% 1.39

1965-07-01 SOFTW French
Industry

Computer Software Index 0.03% 2.37

1926-11-01 STEEL French
Industry

Steel Works Etc Index 0.03% 1.67

1926-11-01 TELCM French
Industry

Communication Index 0.03% 1.03

1926-11-01 TOYS French
Industry

Recreation Index 0.03% 2.14

1926-11-01 TRANS French
Industry

Transportation Index 0.03% 1.35

1926-11-01 TXTLS French
Industry

Textiles Index 0.03% 1.31

1926-11-01 UTIL French
Industry

Utilities Index 0.03% 1.09

1926-11-01 WHLSL French
Industry

Wholesale Index 0.03% 1.64

1926-11-01 MONTH Calendar month
1926-11-01 WEEKDAY Calendar weekday
1926-07-01 BIG10 CRSP VW Portfolio of Largest 10 Stocks 0.03% 1.12
1926-07-01 BIG10INTRADAY CRSP Intraday Return of Big10 0.00% 0.85
1926-07-01 BIG10OVERNIGHT CRSP Overnight Return of Big10 0.02% 0.45
1926-07-01 BIG50 CRSP VW Portfolio of Largest 50 Stocks 0.03% 1.08
1926-07-01 BIG50INTRADAY CRSP Intraday Return of Big50 0.00% 0.81
1926-07-01 BIG50OVERNIGHT CRSP Overnight Return of Big50 0.02% 0.43
1926-07-01 BIG100 CRSP VW Portfolio of Largest 100

Stocks
0.03% 1.08

1926-07-01 BIG100INTRADAY CRSP Intraday Return of Big100 0.00% 0.8
1926-07-01 BIG100OVERNIGHT CRSP Overnight Return of Big100 0.02% 0.43
1926-07-01 BIG200 CRSP VW Portfolio of Largest 200

Stocks
0.03% 1.08

1926-07-01 BIG200INTRADAY CRSP Intraday Return of Big200 0.00% 0.8
1926-07-01 BIG200OVERNIGHT CRSP Overnight Return of Big200 0.03% 0.44
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1926-07-01 BIG300 CRSP VW Portfolio of Largest 300
Stocks

0.03% 1.08

1926-07-01 BIG300INTRADAY CRSP Intraday Return of Big300 0.00% 0.8
1926-07-01 BIG300OVERNIGHT CRSP Overnight Return of Big300 0.03% 0.44
1926-07-01 BIG400 CRSP VW Portfolio of Largest 400

Stocks
0.03% 1.07

1926-07-01 BIG400INTRADAY CRSP Intraday Return of Big400 0.00% 0.79
1926-07-01 BIG400OVERNIGHT CRSP Overnight Return of Big400 0.03% 0.44
1926-07-01 BIG500 CRSP VW Portfolio of Largest 500

Stocks
0.03% 1.07

1926-07-01 BIG500INTRADAY CRSP Intraday Return of Big500 0.00% 0.79
1926-07-01 BIG500OVERNIGHT CRSP Overnight Return of Big500 0.03% 0.44
1926-07-01 BIG1000 CRSP VW Portfolio of Largest 1000

Stocks
0.03% 1.07

1926-07-01 BIG1000INTRADAY CRSP Intraday Return of Big1000 0.00% 0.79
1926-07-01 BIG1000OVERNIGHT CRSP Overnight Return of Big1000 0.03% 0.44
1926-07-01 BIG2000 CRSP VW Portfolio of Largest 2000

Stocks
0.03% 1.07

1926-07-01 BIG2000INTRADAY CRSP Intraday Return of Big2000 0.00% 0.79
1926-07-01 BIG2000OVERNIGHT CRSP Overnight Return of Big2000 0.03% 0.44

This table shows the time t predictor variables used to predict time t+ 1 returns. It gives the
variables name, the day the data series is available, the group variable belongs to as described
in the text (6 group total), the description, and the mean and standard deviation. Both the
French industry and French portfolio group variables were downloaded from Ken French’s
website, as discussed in the text.

Table 2: Correlation Matrix of Key Portfolios

10 50 100 200 300 400 500 1000 2000 market

10 1 0.975 0.966 0.958 0.953 0.949 0.947 0.941 0.938 0.934
50 1 0.997 0.992 0.989 0.987 0.985 0.981 0.978 0.975
100 1 0.998 0.996 0.995 0.993 0.990 0.987 0.985
200 1 0.999 0.999 0.998 0.996 0.994 0.992
300 1 1.000 0.999 0.998 0.996 0.995
400 1 1.000 0.999 0.998 0.997
500 1 0.999 0.998 0.997
1000 1 1.000 0.999
2000 1 1.000

market 1

This table shows the correlation matrix of the excess returns of the various portfolios I
predict in this paper. For example, 10 represents the value weight portfolio excess return of
the 10 stocks with the largest market capitalization at the end of the previous year. This
portfolio is referred to as the big 10 portfolio in the text. The portfolio labeled “market” is
the excess return on the CRSP value weight portfolio.
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Table 3: CAPM Alpha and Beta of Key Portfolios

Dependent variable:

10 50 100 200 300 400 500 1000 2000

(1) (2) (3) (4) (5) (6) (7) (8) (9)

α −0.001 −0.001 −0.002 −0.001 −0.001 −0.001 −0.0004 0.0001 0.0003∗

(0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.0005) (0.0003) (0.0002)

Excess Market 0.987∗∗∗ 0.993∗∗∗ 1.000∗∗∗ 1.003∗∗∗ 1.005∗∗∗ 1.005∗∗∗ 1.005∗∗∗ 1.003∗∗∗ 1.002∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.0005) (0.0003) (0.0002)

Obs. 24,034 24,034 24,034 24,034 24,034 24,034 24,034 24,034 24,034
R2 0.873 0.951 0.971 0.985 0.990 0.993 0.995 0.998 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the CAPM alpha and beta, using the excess return on the CRSP value
weight market portfolio on the right-hand side of the regression, of the excess returns of the
various portfolios I predict in this paper. For example, 10 represents the value weight
portfolio excess return of the 10 stocks with the largest market capitalization at the end of
the previous year. This portfolio is referred to as the big 10 portfolio in the text.

Table 4: Conditional Averages

Dependent variable:

Big 10 Big 10 Overnight Big 10 Intraday Big 10 Big 10 Overnight Big 10 Intraday

July 1936 - July 2017 January 1980 - July 2017

(1) (2) (3) (4) (5) (6)

γ+ 0.072∗∗∗ 0.027∗∗∗ 0.025∗∗∗ 0.063∗∗∗ 0.026∗∗∗ 0.024∗∗∗

(0.007) (0.003) (0.005) (0.012) (0.005) (0.009)

γ− −0.139∗∗∗ −0.022∗∗∗ −0.050∗∗∗ −0.105∗∗∗ 0.005 −0.076∗∗∗

(0.016) (0.007) (0.011) (0.029) (0.014) (0.020)

Observations 21,058 21,058 21,058 9,478 9,478 9,478

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows estimates of the average excess return of the big 10 portfolio conditional on
a negative prediction, γ−, using the main model described in the text. It also shows the
average return conditional on lacking a negative prediction, γ+. Note that the units are given
in percentage points, and the Newey and West (1987) standard errors with 3 lags are in
parentheses. Column 1 is the average on days with downturns predicted by the main model
described in the text, while columns 2 and 3 are the average return on these same days of just
the overnight and intraday return respectively. Columns 1, 2, and 3 are estimated over the
entire sample period. Columns 4, 5, 6 are the same as columns 1, 2, and 3 respectively except
these statistics are estimated using the period from the beginning of 1980 through the end of
the sample (July 2017).
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Table 5: Different Standard Error Calculations of Conditional Averages

Dependent variable:

Big 10 Excess Return

Std. Err. Calculation: OLS NW2 NW3 NW5 NW21

(1) (2) (3) (4) (5)

γ+ 0.072∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.072∗∗∗

(0.008) (0.007) (0.007) (0.007) (0.007)

γ− −0.139∗∗∗ −0.139∗∗∗ −0.139∗∗∗ −0.139∗∗∗ −0.139∗∗∗

(0.015) (0.016) (0.016) (0.016) (0.016)

Observations 21,058 21,058 21,058 21,058 21,058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows estimates of the average excess return of the big 10 portfolio conditional on
a negative prediction, γ−, with the main forecasting model discussed in the text. It also
shows the average return conditional on lacking a negative prediction, γ+. Note that the
units are given in percentage points. Column 1 shows the typical OLS standard errors in
parentheses. Columns 2, 3, 4, and 5 show the Newey and West (1987) standard errors with 2,
3, 5, and 21 lags respectively in parentheses.

Table 6: Predicting Various Excess Portfolio Returns

Dependent variable:

10 50 100 200 300 400 500 1000 2000 mkt

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

γ+ 0.072∗∗∗ 0.068∗∗∗ 0.065∗∗∗ 0.077∗∗∗ 0.078∗∗∗ 0.077∗∗∗ 0.081∗∗∗ 0.089∗∗∗ 0.086∗∗∗ 0.086∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

γ− −0.139∗∗∗ −0.115∗∗∗ −0.101∗∗∗ −0.138∗∗∗ −0.138∗∗∗ −0.131∗∗∗ −0.142∗∗∗ −0.158∗∗∗ −0.147∗∗∗ −0.150∗∗∗

(0.016) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Obs 21,058 21,058 21,058 21,058 21,058 21,058 21,058 21,058 21,058 21,058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows estimates of the average excess return of various portfolios conditional on a
negative prediction, γ−, using the main model described in the text. It also shows the average
return conditional on lacking a negative prediction, γ+. Note that the units are given in
percentage points, and the Newey and West (1987) standard errors with 3 lags are in
parentheses. The column labeled 10 represents the value weight portfolio excess return of the
10 stocks with the largest market capitalization at the end of the previous year. This
portfolio is referred to as the big 10 portfolio in the text. The other columns are similar,
except with the labeled number of stocks instead of 10. The portfolio labeled “mkt” is the
excess return on the CRSP value weight portfolio.
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Table 7: Different Prediction Methods

Dep. Variable: Big 10 Excess Return

Model: Linear RF Linear RF

Cutoff: c = 0.5 c = 0.55

Prob. Measure: OLS Normal OLS Normal

(1) (2) (3) (4) (5) (6)

γ+ 0.082∗∗∗ 0.082∗∗∗ 0.094∗∗∗ 0.059∗∗∗ 0.059∗∗∗ 0.072∗∗∗

(0.009) (0.009) (0.009) (0.007) (0.007) (0.007)

γ− −0.041∗∗∗ −0.041∗∗∗ −0.055∗∗∗ −0.086∗∗∗ −0.084∗∗∗ −0.139∗∗∗

(0.010) (0.010) (0.010) (0.016) (0.016) (0.016)

Observations 21,058 21,058 21,058 21,058 21,058 21,058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows estimates of the average excess return of the big 10 portfolio conditional on
a negative prediction, γ−, using various prediction models. It also shows the average return
conditional on lacking a negative prediction, γ+. Note that the units are given in percentage
points, and the Newey and West (1987) standard errors with 3 lags are in parentheses.
Columns 1, 2, 4, and 5 use the linear prediction model described in the text, while columns 3
and 6 use the random forest model described in the text. Columns 1, 2, and 3 use a cutoff
probability value of 0.5, while columns 4, 5, and 6 use a probabilty cutoff value of 0.55.
Columns 1 and 4 use the OLS negative probability prediction, while columns 2, 3, 5, and 6
use the normality negative probability prediction.
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Table 8: Top 10 Predictor Importances

First Date Variable
Name

Source Description Avg.
Imp.

Corr.

1986-01-02 VXO CBOE S&P 100 Volatility Index 1.5 0.14
1926-11-01 USDVAL CRSP % Chg. in Value of Listed

Stocks in CRSP Mkt. Index
1.24 -0.05

1926-11-01 STREV French Short Run Reversals 1.09 -0.03
1990-01-02 VIX CBOE S&P 500 Volatility Index 1.09 0.15
1926-11-01 OIL French Petroleum and Natural Gas

Index
1.07 -0.01

1963-07-01 GOLD French Precious Metals Index 1.02 -0.05
1997-10-07 VXD CBOE DJIA Volatility Index 1.01 0.16
1963-07-01 RMW French Robust Minus Weak (Prof-

itability Portfolio)
0.96 0.13

1926-11-01 SMB French Small Minus Big 0.95 -0.08
2001-02-02 VXN CBOE NASDAQ-100 Volatility

Index
0.95 0.11

This table shows the 10 predictor variables with the largest random forest importances,
averaged across time. Note that not all predictor variables are available during the entire
sample, thus each average is actually just the average of all the models in which the predictor
is used. An importance of 100 means the predictor variable explained 100% of the variation
in next day returns explained by all predictor variables. The columns correspond, from left to
right, to the day the data series is available, the name of the variable, the source of the data,
the variable description, the variable importance, and the correlation of this variable at time t
with day t+ 1 big 10 excess returns.
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Table 9: Strength of Predictor Variable Groups

Dependent variable:

big10

(1) (2) (3) (4) (5)

γ+ 0.048∗ 0.055∗∗ 0.056∗∗ 0.058∗∗ 0.050∗∗

(0.021) (0.019) (0.019) (0.020) (0.019)

γ− −0.079∗∗ −0.149∗∗∗ −0.153∗∗∗ −0.127∗∗∗ −0.133∗∗

(0.034) (0.042) (0.042) (0.040) (0.043)

CRSP No No No No Yes
CBOE Yes Yes Yes Yes Yes
FRED No No No Yes Yes
Calendar No No Yes Yes Yes
French Portfolios No Yes Yes Yes Yes
French Industry No No No No Yes
Observations 4,422 4,422 4,422 4,422 4,422

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p< 0.05/63

This table shows estimates of the average excess return of the big 10 portfolio conditional on
a negative prediction, γ−, using various prediction models. It also shows the average return
conditional on lacking a negative prediction, γ+. Note that the units are given in percentage
points, and the Newey and West (1987) standard errors with 3 lags are in parentheses. Note
that the sample period is from January 2000 through July 2017. The cutoff probability c used
to make the predictions, like the main model, is 0.55. For each of the six predictor variable
groups described in the data section of the text, a “Yes” indicates the predictor variable
group was used in the model, and “No” of course means the opposite. Note that, as the text
explains, there were 63 models total, and thus I use a Bonferroni’s correction with one-sided
tests to calculate statistical significance. The note immediately below the table shows what
the asterisks represent.
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Table 10: Factor Regressions with Market Timing Portfolio

Dependent variable:

Market Timing Portfolio Excess Return

(1) (2) (3) (4) (5)

α 0.035∗∗∗ 0.039∗∗∗ 0.037∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.004) (0.004) (0.004) (0.005) (0.005)

Excess Market 0.734∗∗∗ 0.730∗∗∗ 0.735∗∗∗ 0.732∗∗∗ 0.735∗∗∗

(0.004) (0.004) (0.004) (0.005) (0.005)

HML −0.092∗∗∗ −0.077∗∗∗ −0.190∗∗∗ −0.168∗∗∗

(0.007) (0.007) (0.011) (0.012)

SMB −0.324∗∗∗ −0.325∗∗∗ −0.329∗∗∗ −0.333∗∗∗

(0.007) (0.007) (0.010) (0.010)

Momentum 0.061∗∗∗ 0.043∗∗∗

(0.005) (0.007)

CMA 0.176∗∗∗ 0.159∗∗∗

(0.016) (0.017)

RMW 0.135∗∗∗ 0.127∗∗∗

(0.014) (0.014)

Observations 21,058 21,058 21,058 13,614 13,614
R2 0.625 0.661 0.663 0.653 0.654

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the alpha and betas of the market timing portfolio described in the text.
The excess market variable is the excess return on the CRSP value weight market index
return. Columns 1, 2, 3, 4, and 5 correspond to, respectively, the CAPM model, Fama and
French (1993) 3 factor model, Carhart (1997) 4 factor model, Fama and French (2015) 5
factor model, and a model with these same 5 factors with momentum. The units of alpha are
in terms of percentage points, and the estimated standard errors are in parentheses.

Table 11: Time Horizon Model Parameter Estimates

a ρ σε σe cor(εt, et)

0.021 0.363 1.045 0.290 −0.010

This table shows the estimated parameters of the basic prediction horizon model described in
Section VI.
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