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Abstract 

 
In this paper, we introduce the Input Rank as a measure to study the organization of supply 
networks at the firm level. We assume that a Markov process of exploration may be started by 
a producer throughout her web of direct and indirect suppliers, to assess the technological 
relevance of each direct and indirect input, when her ability to outreach in the supply network 
may be limited. Therefore, each producer ends up with an input-output eigenvector centrality, 
which is higher when a direct or indirect input is relatively more requested to produce other 
direct or indirect inputs, and when that input is relatively more requested to produce other 
highly-requested inputs. Finally, we compute the Input Rank on U.S input-output tables and test 
its empirical validity for choices of vertical integration on a dataset made of 20,489 U.S. parent 
companies controlling 154,836 affiliates worldwide. Results show that a higher Input Rank is 
positively associated to a higher probability that that input is vertically integrated, relatively 
more when the demand faced by the parent company is more elastic. We argue that a producer 
reduces the risk of disruption in her supply network when a central input is vertically integrated. 
In this framework, the Input Rank is at least complementary to previous sequential metrics (e.g. 
upstreamness or downstreamness), because it better catches the recursive nature of real-world 
supply networks, whereas linear technological sequences may be just corner solutions.  
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1  Introduction 
 
 
Modern economies are organized as webs of specialized producers. Each company can be plunged 
into a supply network that starts with the idea of a product in engineering, design or research labs. 
After that, parts and components are manufactured and assembled, then they reach producers of 
final products who require the services of marketing, advertising and distribution companies to get 
to the market. 
      In fact, the configuration of production processes can be much complex and recursive in 
nature, when the same intermediate goods and services are repeatedly needed along the supply 
network, at different stages of the production process. Take logistics and distribution services, 
which are crucial in the delivery of parts and components to other companies, as well as in the case 
of final goods destined to consumers. Raw materials are the basis of so many manufactured inputs 
and outputs. Innovation can require the services of R&D labs, engineering and design at various 
stages during the production process.  
      Against this background, in recent decades, supply networks have been increasingly 
fragmenting on a global scale since a process of unbundling started, due to the dramatic advances 
in transportation and communication technologies that scattered production stages across different 
countries (Baldwin, 2016).  
      Although fragmentation can originate either spider-like or snake-like configurations, 
depending on the technological peculiarities of the production processes (Baldwin and Venables, 
2013), the international organization of production has been mainly studied after assuming a 
separation of production stages along ordered and linear sequences. That is, complex production 
networks have been proxied as snake-like processes running from the conception of the product to 
its delivery for final usage (Costinot, Vogel and Wang, 2013; Antràs and Chor, 2013; Fally and 
Hillberry, 2015; Alfaro et al., 2017; Antràs and de Gortari, 2017), therefore neglecting the spider-
like nature of the organization of production for sake of simpler assumptions on theory and 
empirics. Specialization patterns by country along global value chains (GVC) and firm-level 
choices of vertical integration have been both envisaged as partitions of ideally linear segments 
oriented on upstream-downstream directions.  
      So far, empirical efforts have followed theory when proposing positioning metrics, e.g. the 
upstreamness or downstreamness of a production stage, which simulate a technological sequence 
constructed on input-output tables (Fally, 2012, Antràs et al., 2012, Antràs and Chor, 2013, Alfaro 
et al., 2017, Miller and Temurshoev, 2017, Wang et al., 2017, Antràs and Chor, 2017). Albeit an 
advancement for understanding the interdependence among buyers and suppliers, linear circuits 
certainly underestimate the relative central importance of some inputs, which can magnify or 
dampen a shock in presence of technological loops, kinks and corners. 

Take the case of the U.S. economy, which we plot as a production network in Figure 1. 
According to the U.S. BEA 2002 input-output tables, the U.S. economy can be represented as a 
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collection of 425 industries (i.e., nodes) linked by 51,768 transactions (i.e., edges). In Figure 1, we 
organize U.S. industries on a two-dimension space according to their reciprocal connectivity, 
following a Fruchterman and Reingold (1991) layout, which in our case posits more requested 
inputs at the center stage. Interestingly, services industries make the core of the U.S production 
network because they are used as direct inputs in many other manufacturing and services 
industries. Primary industries, like agriculture and forestry, are rather peripheral and mostly 
located in the north-west area of the graph. Among services, let us pick the case of R&D (code 
541700) and Wholesale Trade (code 541800), which seem to be among the most connected 
industries. In fact, wholesalers have a prominent role in professionally distributing many 
intermediate inputs in different moments of the production process, whereas R&D services are 
pivotal in fostering innovation across most U.S. sectors. Let us consider now the case of two 
consumer goods industries: Electronic Computer Manufacturing (code 334111) and Automobile 
Manufacturing (code 336111). Although their products can be used as capital goods in some other 
sectors, they appear to be at the periphery of the U.S. production network, because their final usage 
prevails on the intermediate usage.  

 
 
Figure 1: Input-Output Network from U.S. BEA 2002 I-O tables, and selected industries 

 
Note: Nodes represent 425 6-digit NAICS industries from the U.S. Bureau of Economic Analysis 2002 Input-Output 
tables. Edges represent 51,768 industry-pair transactions. The graph is visualized using a Fruchterman and Reingold 
(1991) layout using the GEPHI software. More connected industries (weighted out-degree) at the center of the graph. 
Selected industries in evidence.  
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     In fact, at a first glance, Figure 1 shows a rather compact network with a relatively high 
density, i.e., the fraction of actual linkages out of all potential linkages is 0.286. The average path 
length connecting any two industries is just 1.7 links, pointing to a small-world nature of the US 
economy. Briefly, on average, any producer sources inputs from most of the other industries, either 
directly or indirectly. Indeed, the network of Figure 1 is not separable: it is self-contained in a 
unique connected component, and it is always possible to run seamlessly from one node to another, 
just following input linkages. 
      Once we compare the positions of selected industries in the production network with their 
position on the downstreamness segment (Antràs and Chor, 2013), in Figure 2, we curiously find 
that both R&D and Wholesale Trade are in the middle of the ideally linear supply chain. This is in 
contrast with the stylized chain we may have in mind, where a representative business line would 
start with R&D services and ends with distributions services. In fact, when we review computation 
methodologies, we find that downstreamness segments are essentially derived from the weighted 
relative usage of the tasks, intermediate vis à vis final, in one or more industries, therefore 
confounding the distance from the final demand and the central role they may have across different 
production processes, when the actual production network is collapsed on a segment.1  
 
 

Figure 2: Downstreamness of selected industries from U.S. BEA 2002 I-O tables 

 
Note: Downstreamness (DuseTuse) sourced from Antràs and Chor (2013). Frequency indicates how many industries 
out of total 425 from U.S. input-output tables are found in that position. Selected industries: Scientific Research and 
Development Services (code 541700, value 0.504); Wholesale Trade (code 541800, value 0.666); Electronic 
Computer Manufacturing (code 334111, value 0.959); Automobile Manufacturing (code 336111, value 0.999). 
 
 

Instead, we argue that the mutually interactive and recursive nature of production processes 
is better understood when we consider not only how inputs enter in a different order (downstream 

                                                      
1 More recently, Alfaro et al. (2017) compute a Relative Upstreamness to consider the heterogeneity of input positions 
oriented towards different outputs. However, also in this case, the position of R&D services is on average located in 
the middle of the output-specific technological sequences, i.e., the average upstreamness value is 3.044 for an indicator 
that originally ranges approximately from 1 to 8.9. 
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vs upstream), but also how central they are because they are required more than once along the 
same production processes (as inputs of inputs). 
      In the end, a bird’s eye view of the U.S. production network represented in Figure 1 returns 
an idea of a ‘global’ centrality for each industry, for example rendering the crucial role of the R&D 
services for the entire U.S. economy. However, what we are actually interested in is a measure of 
the ‘local’ technological relevance of any (direct or indirect) input for the completion of a specific 
target output.  
      In this respect, we introduce the Input Rank as a solution to a Markov stochastic process 
that ranks direct and indirect inputs oriented towards a target output, once assuming that producers 
have limited information on indirect transactions and scarce time to outreach the intricate web of 
direct and indirect suppliers. For this, we get our inspiration from the Page Rank centrality, which 
is a measure originally used in social networks and search engines to assess the relevant content 
of information (Brin and Page, 1998). The tool has by now spread to many different domains2, 
from biology and genetics, to financial debts, bibliometrics and engineering of road networks 
(Gleich, 2015).  
 
      In our perspective, the Input Rank can be seen as the result of a Markov stochastic process 
started by a producer that is embedded in a supply network made of direct and indirect suppliers. 
We can easily assume that a representative producer does not know the details of indirect 
transactions, further upstream, although they can be much relevant for the completion of her 
output. Therefore, she starts navigating her web of suppliers (e.g., making phone calls to her direct 
or indirect suppliers) to collect information on the quantity and quality of these transactions. In her 
random walks, she can encounter some resistance, for example, due to a reduced contractibility of 
some indirect inputs, which means that they are not quoted at any exchange nor are they referenced 
priced, possibly tailored for the specific need of their buyers. When a resistance is encountered, 
because information is difficult to collect, then it is more likely that the producer stops her 
exploration along that path, goes back to headquarters and starts following a different trail. 
However, at the end of each exploration, she can update her personal ranking, considering more 
relevant the inputs that are encountered more often and that are required more. The idea is very 
simple:  
 

• A (direct or indirect) input that is also relatively more requested to produce other (direct or 
indirect) inputs must rank relatively higher;  

• A (direct or indirect) input that is relatively more requested to produce other highly-
requested (direct or indirect) inputs is relatively more relevant than a (direct or indirect) 
input that links with less-requested inputs. 
 

                                                      
2 For a previous adaptation of a Page Rank centrality in the economics domain, see the DebtRank by Battiston et al. 
(2012), where connectivity among financial institutions and debt exposures are considered to determine the systemic 
importance of a node in a financial network. 
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      In principle, our Input Rank can fit the analysis of complex webs of firm-to-firm 
transactions, as well as the study of more aggregate buyer-supplier linkages recorded in input-
output tables. For sake of comparison with previous studies on the global organization of 
production, we compute our Input Rank exploiting U.S. input-output tables sourced from the 
Bureau of Economic Analysis (BEA). Thereafter, we test its empirical validity as a determinant of 
vertical integration choices in the fashion of Antràs and Chor (2013), Alfaro et al. (2017), and Del 
Prete and Rungi (2017), on a sample of 20,489 U.S. parent companies controlling 154,836 
affiliates worldwide.  
      We find that a higher Input Rank is positively associated to higher odds that a (direct or 
indirect) input is vertically integrated within a firm boundary, relatively more when the demand 
faced by the root producer is more elastic. With a general reference to the contract theory of the 
firm, we argue that a choice of vertical integration is a way for the parent company to prevent that 
a central (direct or indirect) supplier reneges on her commitment, therefore endangering the 
functioning of the entire supply network. Our findings are robust to different sample compositions, 
to changes in parameters that measure the ability to outreach by a producer on the complex network 
structure, and to several empirical strategies. Interestingly, our findings are also robust to the 
inclusion of downstreamness/upstreamness metrics, which show some ambivalence in the case of 
midstream parents, in line with what previously found in Del Prete and Rungi (2017). Therefore, 
we discuss how the role of the elasticity of substitution is not clear when vertical integration is 
started by a producer of intermediate inputs.  
 

The rest of the paper is organized as follows. The next section positions our contribution 
with respect to related literature. Section 3 introduces the Input Rank and its properties. In Section 
4, we compute the Input Rank on U.S. input-output tables and describe some preliminary evidence. 
In Section 5, we test the role of the Input Rank in firm-level choices of vertical integration. 
Concluding remarks are offered in Section 5. 

 
 
2  Related literature 
 
A flourishing literature is emerging to study how the network dimensions in the organization of 
production can contribute to explain the response of aggregate fluctuations to microeconomic 
shocks (Acemoglu et al., 2012; Carvalho, 2014, Acemoglu et al., 2016). On the other hand, the 
shape of a production network is increasingly seen as the result of endogenous collective choices 
by buyers and suppliers, who establish reciprocal input linkages hence shaping both individual and 
aggregate productivities (Oberfield, 2018).  
      Yet, the fragmentation of global value chains (GVC) is still modelled and tested as on a 
linear sequence made of producers, who decide whether to ‘make or buy’ an input, even though 
the existence of spider-like vs snake-like production has been acknowledged as depending on 
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engineering details (Baldwin and Venables, 2013). To date, few works have considered the 
richness of buyer-supplier networks from an international perspective3, and there is much to do 
for understanding the implications of network structures on the global organization of production. 
We make an effort to cover this gap starting with the introduction of the Input Rank as a measure 
of the technological relevance of an input, which takes into account the recursive nature of real-
world webs of suppliers and buyers.  
      Realistically, we assume that each producer is plunged into a production network made of 
both direct and indirect suppliers, where inputs may be recursively used at different production 
stages. Therefore, we assume that a representative producer may have direct knowledge of the 
transactions in which she is a contracting party, but she has only limited knowledge of the 
transactions occurring among suppliers of suppliers. Nonetheless, what happens in the upstream 
technological and contractual space has consequences on her ability to deliver an output. Thus, she 
starts random walks (say, random phone calls) on her web of suppliers to acquire knowledge about 
indirect input transactions. We represent such a process as a Markov discrete chain in the spirit of 
the Page Rank problem, which originally ranks the consumption of information and regulates the 
workings of many social networks (Brin and Page, 1998). More specifically, we get inspired by 
the ‘personalized’ version of the Page Rank proposed by Haveliwala (2003) and White and Smyth 
(2003). In fact, the Page Rank has become a more general tool of the network theory and it is 
adapted to many diverse scientific domains (Gleich, 2015), from biology and bibliometrics, to 
neuroscience and engineering of road networks. 
 
      To show a practical empirical usage of the Input Rank, we test its role for the firm-level 
choices of vertical integration. Since the 1980s, several attempts have been made to model the 
‘make or buy’ decision based on the relative degree of contractibility between a buyer and a 
supplier4. Acemoglu et al. (2007) are the first to study a theoretical framework where unique 
headquarters commit to contracts with multiple suppliers. More recently, Harms et al. (2012) 
analyze the offshoring decision of firms whose production process is characterized by a sequence 
of steps and a non-monotonic variation of transportation costs. Costinot et al. (2013) derive a 
sequential multi-country model in which mistakes can occur with a given probability along a 
sequence. Hence, countries performing more knowledge-intensive tasks are better situated 
relatively more upstream, participating to a larger share in world income distribution. Interestingly, 
Fally and Hillberry (2015) include Coasian transaction costs to explain the length of a supply chain 
and the cross-country variation in gross output-to-value added ratios.  

 
In each of the previous works, the notion of a sequence assumes different shades of 

meaning. More properly, we believe that Antràs and Chor (2013) and Alfaro et al. (2017) model a 
supply chain as a technological sequence made of production stages, from the start of a business 
                                                      
3 For a first review of the first attempts made until now, see Bernard and Moxnes (2017). 
4 For a detailed review since the seminal work by Grossman and Hart (1986), see Aghion and Holden (2011). See 
also Antràs and Yeaple (2014) for a review on trade and firm-level organization of multinational enterprises. 
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line to the delivery to final demand, where each downstream output depends on a set of upstream 
(direct or indirect) inputs. In this framework, all producers shall rely on a surplus from the sale of 
the final output, and an economic and contractual dependence is established along the supply 
chain, for how that surplus is optimally generated by and allocated among producers. Eventually, 
the main prediction by the authors is that final-good producers integrate production stages that are 
relatively more downstream (upstream) when final demand is sufficiently elastic (inelastic).  

In this respect, we believe that the latter strand of research has a potential to be extended 
to more complex production structures, while leaving the technological sequence, i.e., the chain, 
as a corner solution of real-world supply networks. In fact, more recently Antràs and de Gortari 
(2017) succeed in extending a supposedly linear technological sequence with the introduction of a 
notion of geographic centrality. In a multi-country setting, the authors predict an optimal location 
of a production stage to be dependent also on the geographical proximity to other stages. In that 
framework, downstream stages are preferably located in more central destinations, where 
centrality is to be interpreted in terms of geographic proximity. 

 
When it comes to firm-level empirics, both Del Prete and Rungi (2017) and Alfaro et al. 

(2017) positively test the predictions by Antràs and Chor (2013), assuming as from theory that 
integration starts from the end of the supply chain. If final demand is sufficiently elastic (inelastic), 
producers of final goods integrate production stages that are more proximate to (far from) the 
consumers. However, in the case of midstream parents, when integration starts from the middle of 
the supply chains, Del Prete and Rungi (2017) find that the same theoretical predictions are no 
more statistically significant. In either case, integrated production tasks tend to be rather proximate 
to the parent on the downstreamness segment, possibly due to some local unexplored technological 
complementarities. 

 
In our empirical application of the Input Rank, we build on the latter framework and test 

whether the ‘make or buy’ decision can be driven by the technological centrality of an input in the 
specific production process. In fact, we find that a higher Input Rank is associated with higher odds 
that that input is vertically integrated, even more, when the elasticity of demand faced by the parent 
is more elastic. In this context, our findings seem to show that the network positioning of an input 
is at least as important as its distance from final consumption, the latter proxied by the 
downstreamness/upstreamness segments. 
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3  The Input Rank 
 
3.1  A producer in a supply network 
 

Our aim is to catch the central position of each input, i.e., its technological relevance for 
the completion of a network-like production process. We start by representing the problem of a 
producer who plans the delivery of her output based on the requirements of both direct and indirect 
inputs. In other words, a producer is aware that the completion of her production process requires 
the contribution of her direct transactions, for which she has immediate knowledge, and of indirect 
transactions among suppliers of suppliers, whose quantity and quality are not immediately known.  

 
To clarify better the nature of the producer problem, let us consider a stylized production 

network sketched in Figure 3, where we represent an economy made of six producers and a final 
consumer. A producer 6i  transacts with four suppliers in the set }{ 2 3 4 5, , ,i i i i  to buy intermediate 

goods and services. Besides direct transactions, what happens more upstream is not directly 
disclosed to her. For example, there is a set of suppliers }{ 2 3 5, ,i i i  who directly rely on purchases 

from 1i . On the other hand, suppliers in }{ 3 4,i i  reciprocally exchange part of their output to be 

used as intermediate inputs in their production process, whereas typically the supplier 4i  employs 
a share of her output to be reinvested in her production process as an intermediate input. Going 
further up in the production network, the supplier 1i  is also an indirect supplier of supplier 4i , 

through the production process made by 3i , who eventually is both a direct and an indirect supplier 

of our target producer 6i . In a nutshell, the stylized supply network of Figure 3 includes the main 
elements that make the production process recursive in nature. 

 
 

Figure 3: A stylized production network made of six producers 
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Against this background, the producer problem reduces to a ranking of all direct and 
indirect suppliers considering their technological centrality in the supply network. What happens 
if one of them does not deliver? Who increases at most the risk of a disruption on the supply 
network?  

Obviously, beyond the stylized network of Figure 3, real-life production processes can see 
the engagement of an incredibly high number of direct and indirect suppliers, active in many 
industries and in many countries. For this reason, the representative producer can find it difficult 
to collect information on upstream transactions, especially when global production is more and 
more fragmented. Realistically, we can imagine that the exploration process started by the 
producer can be proxied by a Markov discrete chain on paths of suppliers, but with heterogeneous 
abilities to outreach on the entire web of suppliers. 

 
 

3.2  Random walks on a production network 
 
Let us start by considering an economy in the form of an oriented graph: 

 

                         ( ), , ,N E V D                          (1) 

 

made of a set of producers,  ,i j N∀ ∈ , connected by a set of direct input-output linkages, .ije E∈  

Each producer generates an amount of output, iv V∈ , that is distributed through linkages whose 

weights correspond to (normalized) input requirements, ijd D∈ , falling in a range [ ]0,  1 . Each 

input requirement, ijd , represents the amount of the ith direct input necessary to produce a unit of 

the jth output.  
 

From a producer’s perspective, her supply network is a sub-graph of the entire economy 
that can be navigated through upstream paths in the form: 

 

                                   ( ), ,...,ir l mP r i i− =                                 (2) 

 
where the rth node represents headquarters, li  and mi  are any direct and indirect supplier, 

respectively. The negative sign on irP−  indicates the orientation of the path 5 , from the root 

                                                      
5 For sake of generality, we could also define a downstream relationship running from suppliers to buyers based on 

input deliveries, i.e., a supply side on the production network with positively oriented paths, irP+ , which tell us whether 

a supplier can reach a root buyer in a positive transitive closure r
+ . For a reference, see Gilles (2010). 
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producer upstream, where at each step there is the placement of a demand order for an input. The 
simpler path is, of course, one that runs from the root producer until a direct supplier. More 
sophisticated paths can run through production cycles, as in the stylized network of Figure 3. 

In this context, let us define a transitive closure, r
− , as a collection of all technological 

paths, such that ir rP− −∈ .  

In other words, an oriented transitive closure, r
− , represents a mapping that tells us 

whether and how any supplier can be reached by a root producer, given the entire technological 
network,  , that defines an economy. Please note how we can find more than one demand path 
running between a root buyer and any supplier6, possibly given by the recursive nature of the 
production processes. Usefully, the introduction of a generic root buyer allows us changing the 
reference point in the supply network for how many producers we can find in the entire economy, 
hence spotting local properties that are specific for each target producer and her production 
process. 

In other words, any (supply or demand) path that is left outside a (positive or negative) 
transitive closure oriented to the rth buyer does not participate to the production process of the 
latter. Fixing an eye on a different root buyer would imply the separation of a different sub-network 
from the entire network economy.  

 
Given the previous framework, we can finally solve the problem of attributing a ranking to 

direct and indirect suppliers from the perspective of the root buyer. The idea is rather simple: 
  

• an input is more technologically relevant to the rth producer if it is also relatively 
more requested to produce other (direct or indirect) inputs; 
 

• an input is more technologically relevant to the rth producer if it is also relatively 
more requested to produce other highly-requested (direct or indirect) inputs. 

 
At this point, we can define a measure of the Input Rank as a stochastic process7 started 

by the root producer, who needs travelling random walks to collect information on the 
characteristics of all direct and indirect inputs needed to complete her production.  

                                                      
6 For example, in the simple network described by Figure 3, a (positive or negative) transitive closure oriented on 6i  
includes a total of 18 paths of variable length: four paths of length one, seven paths of length two, four paths of length 
3 and three paths of length 4. Among others, the indirect supplier 1i  is connected to buyer 6i  through seven paths 
of variable length: ( )1 5 6, ,i i i , ( )1 2 6, ,i i i , ( )1 3 6, ,i i i , ( )1 2 5 6, , ,i i i i , ( )1 3 4 6, , ,i i i i , ( )1 3 4 3 6, , , ,i i i i i , ( )1 3 4 4 6, , , ,i i i i i . Please 
note how the presence of reciprocal supplies (i.e., cycles) and in-house production requires the multiple accounting of 
some suppliers on the same path. 
7 To construct the Input Rank, we get our inspiration from the Page Rank centrality introduced by Brin and Page 
(1998) to organize web pages based on their connectivity with the rest of the web. Nowadays, the Page Rank centrality 
is considered a useful tool from network theory and is used across different domains: bibliometrics, biology, physics, 
etc. (Gleich, 2015). For a previous economic application, see Battiston et al. (2012), who adopt a notion of Debt Rank 
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We assume that the root producer travels randomly, going from one supplier to another, 
e.g., calling them by phone and asking on characteristics of deliveries. At any step in the web of 

transactions, she has a probability α to proceed in the exploration and a probability ( )1 α− to 

fall back to headquarters. The parameter α  proxies an information wedge between the buyer 
and the supplier that prevents full disclosure of the attributes of transactions.  

At any time-step t, the root producer collects information on the direct requirement, ijd , 

of each transaction, and she updates her information following a Markov process as follows: 
 

     ( )1 1rt rrtα α− + −π Dπ h=                              (3) 

 
where rtπ  and 1rt−π  are column vectors including rankings of any ith input at time-steps t  and 

1t − , respectively. The transition matrix D  collects all (column-normalized) direct requirement 
coefficients, 𝑑𝑑𝑖𝑖𝑖𝑖, of transactions in the economy. The vector rh  has all its elements equal to 0 
except for the rth element, which is 1 for the selected root producer8.  

In our case, the vector rh  uniquely identifies a (negative) transitive closure, r
− , hence 

avoiding that the buyer falls outside her technology when back from her random walks. More in 
general, the vector rh  excludes that the root producer lingers in other areas of the production 
network while assuring her a safe journey back to headquarters.  

The probability α  falls in a range ( )0,  1 . A value proximate to 0 implies that the 

producer encounters a higher difficulty to travel upstream in the production network. A value 
proximate to 1 implies that the producer encounters almost no resistance in the exploration of her 
network. We shall exclude that the parameterα is equal to either 0 or 1, because in either case no 
exploration is needed or started at all. In the next paragraph, we will discuss an attempt to better 
qualify this parameter from an economic point of view, and we will discuss how sensitive results 
are at changing thresholds of this parameter. More in general, a constant parameter α can be seen 
as an information wedge between a producer and her web of suppliers, such that inputs that are 
more closely related to the target output are also more easily reached by the root producer starting 
from the headquarters.  

 
What we know from the Perron-Frobenius theorem is that a stationary distribution, *

rπ , 
of the Markov process in (3) can be found, it is unique, and the sum of its single elements is such 

that * 1ir
i

π =∑ , because the transition square matrix D is positive and column-stochastic, with all 

                                                      
for assessing financial systemic risk. 
8 See Appendix A for a comparison between our Input Rank on supply networks and the original Page Rank on social 
networks and web engines.  
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positive single elements, 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0 . In the stationary status, the single element [ ]* 0,  1irπ ∈  

indicates the final rank of any ith supplier in the supply network of the root producer. 
 
To understand the workings of the underlying Markov process, let us consider the updated 

distance, *
rk r−π π , which is the distance the root producer is from the true Input Rank solution 

after the kth exploration. It satisfies the recursion: 
 
                            * *

1( )r rk r rkα −− = −π π D π π                          (4) 
 

Since matrix αD  has a spectral radius by construction smaller than 1, rkπ  tends to *
rπ  when 

the number of time-steps becomes large enough, k →∞ .  

Let us assume that we start approximating *
rπ  with an initial value 0r r=π h . That is, let 

us assume that a producer’s exploration starts from scratch, with no information at all on any direct 

or indirect transaction, when leaving headquarters represented by the unitary vector rh , while 

going through the recursion of eq. (4) up to a sufficiently large number of time-steps t .  

 

For smaller networks, the Jacobi or the Power iterative methods for the solution of a linear 

system of equations are sufficient (Gentle, 1998). For bigger networks, the convergence of eq. (4) 

could be difficult to obtain and some adaptive methods have been suggested (e.g. Kamvar et al. 

2003), according to which single nodes whose centrality has converged are not considered in 

following iterations, in this way introducing a degree of approximation9.  

In the simpler network represented by a relatively small input-output table, as the one we 

will use from Section 4, the following solution of the linear production system can be derived: 

 

                              ( )( ) 1* 1r rα α −= − −π I D h                           (6) 

 

3.3  Introducing input-specific frictions 
 
So far, the parameterα has been considered as an arbitrary constant that represents a general 
information wedge that the root producer encounters any time she must gather information on the 
characteristics of any transaction. From another perspective, this parameter discounts the ability 

                                                      
9 For detailed references on the mathematical properties of Page Rank tools, see Langville and Meyer (2011), and Gleich (2015). 



14 
 

of a producer to reach on bigger and complex webs of suppliers, when the time is scarce to navigate 
through all faraway transactions. The inclusion of such a parameter is certainly useful along 
increasingly fragmented global supply networks when producers shall navigate through many 

industries and countries. Conversely, the generic parameter ( )1 α− brings back the root producer 
to headquarters, possibly to start navigation on another production path contained in the transitive 
closure, ir rP− −∈ . 
 

In this section, we introduce the possibility that this parameter is a proxy for an input-
specific friction in a variant of the Input Rank. 
 
      In other words, we introduce a full vector α , whose single elements, iα , is a 
(normalized) indicator of input contractibility (Rauch, 1999; Nunn, 2007; Nunn and Trefler, 2013), 
which assesses how much that input is referenced priced and/or exchanged on thick markets. In 
other words, a higher input contractibility implies that the root producer can more easily gather 
the information on that transaction, for example because there is some standard contract that has 
been signed between the parties. If a single transaction is relatively more contractible, the root 
producer proceeds more easily upstream to explore the supply network beyond that transaction.  
       

In this case, the Markov process can be expressed as: 
     

                             ( )1rt rrt− +π αDπ 1- α h=                          (7) 

 
where 1  is a vector with all elements equal to one, and α is the normalized contractibility vector. 
Main mathematical properties are kept, as from Section 3.2, including convergence in bigger 
networks after a reasonably big number of time steps, following iterative methods. In the following 
analyses, we will employ both this variant and the one in Section 3.2 for an empirical validation 
of the Input Rank on a smaller network generated by input-output tables 
 

 
4  An application to U.S. input-output tables 
 
In principle, the Input Rank can be computed for any producer plunged into a supply network made 
of firm-to-firm transactions. In this contribution, we pick more aggregate transactions sourced 
from the U.S. 2002 Input-Output tables, compiled by the Bureau of Economic Analysis (BEA), 
which we consider as a good training case for several reasons.  
       
      First, U.S. BEA tables represent a reasonably detailed picture of a production networks 
established among 425 industries, in absence of actual firm-to-firm transactions. Second, the same 
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U.S. tables have been extensively used in previous works to study both production networks 
(Carvalho, 2014) and vertical integration choices (Acemoglu et al., 2009; Alfaro et al., 2016). 
Third, the same data have been recently used to compute upstreamness and downstreamness 
metrics10, as a proxy for the technological distance on supposedly linear production sequences. 
  

In fact, we already visualized in Figure 1 a solid and complex production network 
generated by the U.S. Input-Output tables, which collects 51,768 linkages. After a closer look at 
it, we can also register a strong heterogeneity of sourcing strategies developed among its 425 
industries. In Appendix Figures B1 and B2, we report both the in-degree and out-degree 
distributions by industry, i.e., the number of inputs received, and the deliveries made by each node 
of the U.S. production network. As expected, the industry with the highest number of input 
industries (296) is the Retail Trade (code 4A0000), because retailers professionally sell physical 
goods to consumers. Interestingly, the industry with the highest number of purchasing industries 
(425) is the Wholesale Trade (code 420000), because wholesalers professionally distribute 
intermediate physical inputs to all industries. However, the ‘global’ centrality measured by out-
degrees in Figure 1 is of scarce interest for our scope. More properly, the Input Rank introduced 
in Section 3 shall return a measure of ‘local’ eigenvector centrality, which better catches the 
technological relevance of an input with respect to any root producer.  

 
In Figure 4, we visualize the results of the computation after following a power iteration 

method to derive the Input Rank as a vector of industry-pair values with a Matlab code that we 
cross-validate with a Python code, assuming a stochastic process described as in eq. (3). Each 6-
digit industry is an input when on the y-axis, and it is an output when on the x-axis. A darker row 
implies that that industry is more technologically relevant across most industries. Interestingly, in 
the upper part of the figure, we find that services industries have a relatively more important role 
than manufacturing industries used as inputs across either manufacturing or services industries. 
Within manufacturing outputs, a crucial role is played by inputs coming from more aggregate 
Primary Metal Manufacturing (code 331) and Fabricated Metal Product Manufacturing (332). As 
expected, Mining industries (code 21) are technologically relevant for manufacturing producers.  

 
 
 
 
 
 
 

                                                      
10 The 2002 U.S. Input-Output tables have been used for the computation of absolute downstreamness metrics in 
Antràs and Chor (2013), as an exercise based on previous upstreamness metrics proposed in Antràs et al. (2012). 
Alfaro et al. (2017) more recently proposed an alternative output-specific relative upstreamness computed on an older 
1992 version of the U.S. Input-Output tables.  
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Figure 4: A visualization of the Input Rank computed on U.S. BEA rev. 2002 input-output tables 

 

 
              Note: Input Rank vectors are computed for each root output among 425 industries classified at the 6-digit  
               in the U.S. BEA 2002 tables after using the power iteration method. Inputs on the y-axes and outputs on  
              the x-axes by alphabetical order. A darker cell implies that input is more technologically relevant for that 
              output. 

 
 
In Tables 1 and 2, we report some moments of Input Rank distribution: first for all the top 

20 inputs, then for the top 20 manufacturing inputs, excluding services. These are useful to look 
at some details of the input usage. Here, as well, services industries are on average ranked higher 
than manufacturing industries. The first highly ranked input is the Management of Companies and 
Enterprises (code 550000)11, which unquestionably points to a general professional nature of the 
management of U.S companies. Some post-production services also rank relatively high, as 
expected, as in the case of Wholesale Trade (code 420000) and Advertising (code 541800). 
Immediately after, we spot Electric Power Generation (code 221100) and bank credit, as included 
in Monetary Authorities and Depository Credit Intermediation (code 52A000). In Appendix Table 
B1, we look at the rank of R&D input services (code 541700) and discover that the latter are more 

                                                      
11 As from the original definition (BLS, 2018): This sector comprises: i) companies that hold financial activities 
(securities or other equity interests) in other companies for the purpose of a corporate control to influence management 
decisions; ii) companies that professionally administer, oversee, and manage other companies through strategic or 
organizational planning and decision making. 
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relevant to the General Federal Defense Government Services (code S00500) than to other life 
sciences industries (In-vitro Diagnostic Substance Manufacturing, code 325413; Biological 
Product Manufacturing, code 325413; Pharmaceutical Preparation Manufacturing, code 325412; 
Medicinal and Botanical Manufacturing, code 325411). 

 
 
 

Table 1: Top 20 inputs (all industries) by Input Rank (alpha = 0.5),  
from U.S. BEA 2002 I-O tables 

 

 
                                                    

 
 
 
 
 
 

IO code Input name mean p50 sd min max
550000 Management of companies and enterprises 0.0323 0.0306 0.0143 0.0068 0.0936
420000 Wholesale trade 0.0277 0.0279 0.0124 0.0030 0.0949
531000 Real estate 0.0235 0.0170 0.0174 0.0066 0.1215
541800 Advertising and related services 0.0145 0.0125 0.0078 0.0042 0.0606
221100 Electric power generation, transmission, 

and distribution
0.0116 0.0093 0.0079 0.0023 0.0749

52A000 Monetary authorities and depository credit 
intermediation

0.0115 0.0092 0.0072 0.0041 0.0589

517000 Telecommunications 0.0093 0.0073 0.0062 0.0032 0.0666
484000 Truck transportation 0.0090 0.0079 0.0065 0.0011 0.0785
331110 Iron and steel mills and ferroalloy 

manufacturing
0.0088 0.0022 0.0156 0.0003 0.1192

523000 Securities, commodity contracts, 
investments, and related activities

0.0084 0.0064 0.0142 0.0026 0.2471

324110 Petroleum refineries 0.0083 0.0045 0.0141 0.0017 0.1307
561300 Employment services 0.0078 0.0053 0.0062 0.0028 0.0382
211000 Oil and gas extraction 0.0072 0.0040 0.0144 0.0012 0.1975
541100 Legal services 0.0071 0.0064 0.0029 0.0030 0.0246
533000 Lessors of nonfinancial intangible assets 0.0070 0.0059 0.0052 0.0017 0.0770
541610 Management, scientific, and technical 

consulting services
0.0065 0.0049 0.0044 0.0018 0.0451

722000 Food services and drinking places 0.0061 0.0048 0.0040 0.0018 0.0250
230301 Nonresidential maintenance and repair 0.0054 0.0043 0.0056 0.0018 0.0790
522A00 Nondepository credit intermediation and 

related activities
0.0054 0.0041 0.0065 0.0022 0.1042
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Table 2: Top 20 inputs (manufacturing only) by Input Rank (alpha = 0.5),  
from U.S. BEA 2002 I-O tables 

 

 
 
 
The first manufacturing input encountered among the top 20 is the Iron and Steel Mills and 

Ferroalloy Manufacturing (code 331110), which comes only after Truck Transportation (code 
484000). In general, we observe a high variation of the Input Rank across root industries, as shown 
by relatively high values of the standard deviations.12 In this case, it is more useful to look from 
the perspective of selected root industries (Electronic Computer Manufacturing, code 334111; 
Automobile Manufacturing, code 336111), in Appendix Tables B2 and B3 we find that the Input 
Rank is indeed specific to the technological nature of the production processes.  

                                                      
12 Please note how in absence of actual firm-to-firm transactions, different aggregations of the input-output industries 
may alter the Input Rank. We expect that a higher aggregation of an input industry entails an overestimation of its 
Input Rank for any other root industry. In this case, we shall rely on official statistics offices that separate industries 
based on their technological relevance in modern economies, as is the scope of periodic updates of input-output tables.  

IO code Input name mean p50 sd min max
331110 Iron and steel mills and ferroalloy manufacturing 0.0088 0.0022 0.0156 0.0003 0.1192
324110 Petroleum refineries 0.0083 0.0045 0.0141 0.0017 0.1307
336300 Motor vehicle parts manufacturing 0.0052 0.0024 0.0143 0.0010 0.1686
325211 Plastics material and resin manufacturing 0.0052 0.0015 0.0139 0.0002 0.1584
325190 Other basic organic chemical manufacturing 0.0051 0.0019 0.0108 0.0003 0.0934
334413 Semiconductor and related device manufacturing 0.0041 0.0030 0.0061 0.0004 0.0792
322210 Paperboard container manufacturing 0.0039 0.0022 0.0051 0.0003 0.0418
32619A Other plastics product manufacturing 0.0039 0.0020 0.0044 0.0005 0.0299
334418 Printed circuit assembly (electronic assembly) 

manufacturing
0.0035 0.0024 0.0047 0.0003 0.0400

321100 Sawmills and wood preservation 0.0030 0.0006 0.0109 0.0002 0.1318
323110 Printing 0.0030 0.0016 0.0057 0.0007 0.0704
322120 Paper mills 0.0028 0.0010 0.0086 0.0002 0.0863
326110 Plastics packaging materials and unlaminated film and 

sheet manufacturing
0.0027 0.0010 0.0045 0.0001 0.0380

332710 Machine shops 0.0026 0.0019 0.0025 0.0002 0.0143
3259A0 All other chemical product and preparation 

manufacturing
0.0023 0.0015 0.0026 0.0003 0.0207

322130 Paperboard mills 0.0021 0.0012 0.0051 0.0002 0.0627
33131A Alumina refining and primary aluminum production 0.0020 0.0003 0.0084 0.0001 0.1146
332800 Coating, engraving, heat treating and allied activities 0.0019 0.0018 0.0015 0.0001 0.0081
325220 Artificial and synthetic fibers and filaments 

manufacturing
0.0019 0.0001 0.0105 0.0000 0.1271
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4.1  The sensitivity to the parameter α 
 
In general, the parameter α  can be interpreted as the probability to proceed further in the 
exploration of a supply network, therefore its complement to one is the probability to stop 
exploration and fall back to headquarters at each time-step. In Section 3.3, we discussed how we 
can make use of this parameter to introduce an input-specific friction: the contractibility of an 
input. The latter would catch the thickness of the input market in the fashion of Rauch (1999), 
Nunn (2007), and Nunn and Trefler (2013). In this case, we could assume that a root producer can 
more easily gather information on the implicit characteristics of the transaction thanks, for 
example, to the existence of a reference price or the signature of a standard supply contract for that 
input. 

 
Figure 5: Sensitivity of Input Rank to changing values of the parameter alpha 

 

 
 
 

The alternative is to make reference to other notable constants previously used in the use 
of some Page Rank centralities. For example, Brin and Page (1998) originally suggest a damping 
factor 0.85α = . As neutral as possible, 0.5α =  implies an equal probability of proceeding 
through exploration or stopping at each time-step. Indeed, the latter is the reference value we use 
for main descriptive statistics and for baseline regressions in this text. However, we will make sure 
in the next paragraphs that our econometric results are robust to changing thresholds of the 
parameter α . 

In Figure 5, we plot the changing shapes of the (log) distributions of the Input Rank, as 
computed on industry pairs from the U.S. 2002 Input-Output Tables, at different constant values 
of the parameter α . In Table 3, we report pairwise correlations among these distributions, 
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including also the case when iα  is the (normalized) input specific contractibility. Finally, in 

Appendix Figure B3, we compare the latter case with a parameter 0.5α = . In general, we find 
that shapes can be very similar, although shifting to the left at lower parameter values, because 
they discount relatively less faraway input industries in the supply network. In the end, the rankings 
of inputs are highly correlated at varying values of the parameter, at least before approaching the 
unit value. 

 
 

Table 3: Pairwise correlations: Input Rank computed at several values of the alpha 
 

 
 
 
From Table 3, it is evident that when 0.99α =  the distribution becomes very different. 

In fact, the stochastic process described in eq. (4) degenerates when 1α → . In Appendix Figure 
B3, we find that the distribution after the introduction of an input-specific friction, as in the case 
of input contractibility, resembles the case of 0.5α = . When we perform our econometric 
exercises in the next sections, we will consider both 0.5α = and input-specific iα  as baseline 
metrics, while checking for the robustness of our findings at different threshold values of the 
parameter α . As we will see, the magnitudes can change considerably but statistical significance 
will not. Therefore, one can choose which value to assign to the parameter α  as dependent on 
the nature of the frictions to proxy in the supply network. 
 
 
 

5    The role of the Input Rank in choices of vertical integration 
 
The decision to make or buy an input is an example of a situation when a producer needs gathering 
information on the technological relevance of direct and indirect inputs. In this Section, we test 
whether the Input Rank can play a role as a determinant for the decision to integrate a production 
stage within the firm boundary (i.e., vertical integration), as an alternative to signing supply 
contracts with independent firms (i.e., outsourcing). For our purpose, we will make use of a dataset 
of U.S. parent companies that have integrated at least one production stage over time. Our 

Values of alpha = .01 = .25 = .50 = .75 = .85 = .99
= input 

contractibility

= .01 1.00
= .25 0.99 1.00
= .50 0.98 0.99 1.00
= .75 0.92 0.94 0.97 1.00
= .85 0.80 0.83 0.88 0.97 1.00
= .99 0.08 0.11 0.18 0.39 0.61 1.00

= input contractibility 0.78 0.79 0.80 0.78 0.72 0.18 1.00
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empirical strategy explicitly takes on the theoretical framework by Antràs and Chor (2013), while 
augmenting the estimates by Del Prete and Rungi (2017) with the inclusion of the Input Rank, 
therefore assuming that a root producer has an albeit reduced ability to collect information on her 
supply network. 
 
 
5.1   A sample of U.S. parent companies 
 
Our firm-level data are sourced from the Orbis database, compiled by the Bureau van Dijk, which 
gathers financial and ownership information for companies on a global scale. For our scope, we 
collect information on 20,489 U.S. parent companies controlling 154,836 subsidiaries in 210 
countries at the end of the year 201513. The selection of U.S. parent companies is coherent with 
the subsequent use of regressors that are based on U.S. input-output tables and trade data. In Table 
4, we provide some descriptive statistics of the geographic coverage of the subsidiaries. 
       
      Both subsidiaries and parent companies can be active in any industry: manufacturing 
(28.86%), services (69%), primary (0.29%), and extractive (1.85%). About 81% of subsidiaries 
integrated by U.S. parents are domestic. Not surprisingly, U.S. parent companies are involved 
mainly in global supply networks that spread across other OECD economies, where 96% of their 
subsidiaries are located. The member States of the European Union host the largest number of 
foreign subsidiaries. Among them, Germany, the United Kingdom, and the Netherlands attract a 
significant share of U.S. foreign affiliates active in services industries. Not surprisingly, member 
States of NAFTA, Canada and Mexico, mainly host manufacturing of final and intermediate goods. 
However, a non-negligible share of subsidiaries is present in Asia, Africa and the Middle East. 
 
      To validate our sample, we compare with official ‘Data on Activities of Multinational 
Enterprises’ (BEA, 2018) and OECD Statistics on Measuring Globalization (OECD, 2018). In 
2015, BEA (2018) reports 6,880 billion dollars of total sales by foreign affiliates and 12,628 billion 
dollars of total sales by parent companies. The U.S. multinational enterprises present in our sample 
account for 94% and 92% of the BEA (2018) values, respectively. The number of foreign affiliates 
in our sample corresponds to 88.6% on the total of U.S. foreign subsidiaries reported in OECD 
(2018), although the latter source only reports the latest value valid for the year 2014. 
 
 
 

                                                      
13 To build our sample of parents and subsidiaries, we follow international standards for complex ownership structures 
(OECD, 2005; UNCTAD, 2009; UNCTAD, 2016), according to which the unit of observation is the control link 
between a parent company and each of its subsidiary after a concentration of voting rights is detected (> 50%). See 
Rungi et al. (2017). Similar data structures were used in Alviarez et al. (2016), Cravino and Levchenko (2017), and 
Del Prete and Rungi (2017). 
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Table 4: Sample geographic coverage by country of subsidiaries 
 

 
Note: intermediate and final manufacturing categories based on industry affiliates and following the  

BEC rev. 4 classification provided by the UN Statistics Division. 
 
 

N. % N. % N. % N. %

United States 20,571 16.3 24,590 19.5 80,729 64.1 125,890 100.0

European Union 1,934 11.5 2,084 12.3 12,872 76.2 16,890 100.0
of which:
   Germany 273 13.2 306 14.8 1,494 72.1 2,073 100.0
   France 171 11.0 213 13.7 1,167 75.2 1,551 100.0
   United Kingdom 563 11.4 624 12.7 3,734 75.9 4,921 100.0
   Italy 136 19.4 139 19.8 427 60.8 702 100.0
   Netherlands 158 6.8 171 7.3 2,005 85.9 2,334 100.0

Canada 980 30.4 923 28.6 1,325 41.1 3,228 100.0

Russia 18 11.7 30 19.5 106 68.8 154 100.0

Asia 251 15.0 312 18.7 1,109 66.3 1,672 100.0
of which:
   Japan 87 11.5 76 10.1 592 78.4 755 100.0
   China 92 12.1 66 8.7 605 79.3 763 100.0
   India 122 15.7 149 19.1 508 65.2 779 100.0

Africa 67 14.2 93 19.7 313 66.2 473 100.0

Middle East 82 18.2 80 17.8 288 64.0 450 100.0

Latin America 221 12.1 395 21.6 1,210 66.3 1,826 100.0
of which:
   Argentina 24 8.1 70 23.6 203 68.4 297 100.0
   Brazil 137 14.6 219 23.3 583 62.1 939 100.0
   Mexico 98 23.3 154 36.6 169 40.1 421 100.0

Australia 123 14.2 157 18.1 586 67.7 866 100.0

Rest of the world 489 16.5 585 19.7 1,892 63.8 2,966 100.0
Total 24,834 16.0 29,403 19.0 100,599 65.0 154,836 100.0

Intermediates Services All industriesCountry of 
subsidiaries

Final goods
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      For the scope of our analysis, we map industry affiliations of both parent companies and 
their subsidiaries, from the NAICS rev. 2012 classification into the 2002 U.S. BEA I-O Input-
Output Tables. The match by industry affiliations allows us combining firm-level data with sector-
level metrics, like the Input Rank we computed in Section 4 and the upstreamness segments 
sourced from Alfaro et al. (2017). In absence of actual data on firm-to-firm transactions, such a  
mapping onto input-output tables14 allows us proxying the technological relevance of a (direct or 
indirect) input with reference to a root output, in the case of the Input Rank, and the relative 
technological distance of an input from the target output, in the case of the upstreamness segment. 
Finally, we complement our data with industry-level estimates of demand elasticity from Broda 
and Weinstein (2006), and with a measure of input contractibility retrieved from Antràs and Chor 
(2013) based on the methodology by Nunn (2007).  

 
 
5.2   Baseline results 
 
We test a conditional logit model with parent-level fixed effects15. The fixed effects conditional 
logit is a natural empirical strategy for the multinomial case of ex-ante alternatives. That is, we 
can test the determinants of vertical integration choices controlling for the characteristics of the 
production stages that were both vertically integrated and not integrated by the parent company. 
      Let 1, 2, ..., i N=  denote all the inputs, as from the input-output tables, and let 

1, 2, ..., r R=  denote the root parent companies. The dependent variable, iry , takes on a value of 
1 when at least one subsidiary has been integrated that produces the ith input, and 0 otherwise. 

Therefore, for each thr parent company, we have a vector ( )1 , ...., r r Nry y=y  made of 0s and 1s 

when each input has been integrated or not, respectively.  

      We want to consider the probability that a generic parent chooses a value of ry  

conditional on 
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where the element irs  of the vector is  is equal to 1 when the ith input is integrated, and 0 

                                                      
14 For similar mappings of firm-level data into input-output tables by industry affiliations, see Alfaro and Charlton 
(2009), Acemoglu et al. (2010), Alfaro et al. (2016), Rungi and Del Prete (2018). 
15 See McFadden (1974) and Chamberlain (1980) for more details. Present notation is borrowed from Hamerle and 
Ronning (1995), and Hosmer et al. (2013). See also Head et al. (1995) and Del Prete and Rungi (2017) for previous 
applications in international economics, the latter with reference to firm-level vertical integration choices. 
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otherwise.  

      For each input-parent pair, we can identify a vector of covariates, irx , which includes: the 
Input Rank relative to the ith input with respect to the output of the rth parent company; the 
interaction term of the Input Rank with the binary variable Complements relative to the ith input; 
the Input upstreamness sourced from Alfaro et al. (2017) measuring the technological distance of 
the ith input to the rth target output; the interaction term of the Input upstreamness with 
Complements; the input-specific Contractibility derived as in Nunn (2007); the Direct requirement 

coefficient available from the U.S. input-output tables that ranges in [ ]0,  1 . In this context, the 

variable Complements is equal to 1 when the elasticity of substitution of the parent industry is 

below the median ( )>r medρ ρ , and 0 otherwise ( )r medρ ρ< . Errors are clustered by parent 
companies and variables are standardized. Results from nested specifications are reported in 
Tables 5 and 6. In Table 5, we report findings when we assume there is an equal probability that a 
producer proceeds exploring at each time-step the supply network or she falls back to the 
headquarters. In Table 6, we consider that the probability to proceed with the exploration is 
dependent on the input-specific contractibility. In the latter case, we do not include the input 
contractibility as a separate variable in the specifications. 

 
The coefficient of immediate interest to us is the one on the Input Rank, which indicates 

whether the odds of vertical integration change for a more central input in the supply network. It 
is positive and significant throughout our estimations. 

In the first columns, we consider all parent companies whether active in a manufacturing 
or a service industry. We find that one additional standard deviation of the Input Rank is correlated 
with 1.35 higher odds of vertical integration. Please note that in further columns, when we 
introduce subsequent controls, the sample reduces to manufacturing parents only, because the 
elasticity of substitution by Broda and Weinstein (2006) is estimated on U.S. imports of 
manufacturing only. Our specification is complete in the fourth column of Table 5 and in the third 
column of Table 6, where a standard deviation increase of the Input Rank correlates with 1.16 and 
1.08 higher odds of vertical integration, respectively. 
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Table 5: Baseline regressions I: parent-level fixed effects conditional logit 
 

 
Errors clustered by parent in parentheses. Variables are standardizes. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-
value < 0.10, respectively.   

 
 
Our findings are robust after the inclusion of the Input Upstreamness, which should proxy 

the relative technological distance from an input and its target output. In this case, more distant 
inputs are less likely integrated by the parent company. The central tenet of the theoretical 
framework by Antràs and Chor (2013) and Alfaro et al. (2017) is tested by the sign of the 
interaction term between the Input Upstreamness and Complements. According to these authors, 
when final demand is sufficiently elastic (inelastic), parents integrate production stages that are 
more proximate to (far from) final demand. This seems to be the case for producers of final goods 
(penultimate columns in Tables 5 and 6), although a sign reversal is observed in the case of 
midstream parents (last columns), i.e., when considering integration choices by producers of 
intermediate goods, in line with what tested by Del Prete and Rungi (2017).  

In an effort to extend the role of the elasticity of substitution to the case of supply networks, 
we include a similar interaction term of the variable Complements with the Input Rank. In this 
case, when final demand is sufficiently elastic, we find that the odds are proportionally higher that 
a central input is integrated within the boundary of the firm. 

Dependent variable: (1) (2) (3) (4) (5) (6)
Input is integrated ==1

Input Rank (alpha = 0.5) 0.318*** 0.196*** 0.197*** 0.149*** 0.189*** 0.085***
(0.001) (0.003) (0.003) (0.004) (0.005) (0.006)

Input Rank * Complements 0.090*** 0.014* 0.209***
(0.005) (0.008) (0.008)

Input upstreamness -0.595*** -0.583*** -0.782*** -0.443*** -1.166***
(0.023) (0.025) (0.031) (0.035) (0.068)

Input upstreamness * Complements -0.044* -0.037 0.336*** -0.177*** 0.955***
(0.025) (0.028) (0.039) (0.048) (0.078)

Contractibility -0.385*** -0.390*** -0.645*** -0.249***
(0.018) (0.017) (0.032) (0.025)

Direct requirement 0.063*** 0.049*** 0.025*** 0.015*** 0.010* 0.026***
(0.004) (0.003) (0.003) (0.005) (0.006) (0.004)

Observations 8,564,068 1,437,785 1,151,908 1,151,908 595,218 542,872
N. parent companies 20,294 4,203 4,084 4,084 2,110 1,925
Pseudo R-squared 0.409 0.215 0.250 0.257 0.203 0.342
Log pseudolikelihood -96,831.2 -29,841.3 -22,779.5 -22,560.8 -12,739.4 -9,281.4
Clustered errors by parent Yes Yes Yes Yes Yes Yes

Activity of parent companies All
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Final goods

Intermediate 
goods
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Please note how, as expected, the Direct Requirement and the input-specific Contractibility 
have a positive and negative coefficient, respectively. In the first case, a higher value of the 
transaction (if any) is trivially correlated with higher odds of vertical integration. In the second 
case, a more contractible input is less likely integrated because the agreement between a producer 
and an independent supplier can be more easily enforced by law, and the incentives for vertical 
integration are lesser. 

 
 
Table 6: Baseline regressions II, parent-level fixed effects conditional logit 

 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 

 
 

 
5.3   Robustness checks 
 
      Our main findings are robust to several checks of robustness. First, in Table 7, we check 
whether sample compositions can have an impact on the sign and significance of coefficients.  
      In the first column, we exclude cases of inputs coming from the same 2-digit industry of 
the parent companies. In the second column, we exclude services inputs because some of them 
could uniquely lead to previous results, as they are more central than manufacturing (see Figure 1) 
in most production processes. In the third column, we modify our indicator of Complements, 

Dependent variable: (1) (2) (3) (4) (5)
Input is integrated ==1

Input Rank (alpha = contractibility) 0.307*** 0.140*** 0.074*** 0.129*** 0.016**
(0.001) (0.003) (0.004) (0.006) (0.007)

Input Rank * Complements 0.118*** 0.034*** 0.181***
(0.008) (0.010) (0.011)

Input upstreamness -0.769*** -0.860*** -0.685*** -1.078***
(0.026) (0.028) (0.029) (0.063)

Input upstreamness * Complements -0.074** 0.080** -0.144*** 0.399***
(0.033) (0.033) (0.034) (0.040)

Direct requirement 0.122*** 0.076*** 0.073*** 0.084*** 0.065***
(0.004) (0.002) (0.003) (0.005) (0.003)

Observations 8,564,068 1,437,785 1,437,785 745,554 675,473
N. parent companies 20,294 4,203 4,203 2,179 1,975
Pseudo R-squared 0.369 0.166 0.172 0.133 0.219
Log pseudolikelihood -103,307.9 -31,720.9 -31,485.0 -17,830.4 -13,396.9
Clustered errors by parent Yes Yes Yes Yes Yes

Activity of parent companies All
Manu- 

facturing
Manu- 

facturing
Final goods

Intermediate 
goods
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explicitly considering the difference between the elasticities of the output and of the input 

( )r iρ ρ− , which more specifically provides a reference point to understand how much elastic the 

demand of the root producer is. In the fourth column, we reduce our sample to the top 100 (direct) 
inputs of the parent output, as from I-O tables, to check whether the role of the Input Rank is 
exclusively driven by direct vs indirect inputs. In all these cases, when an input is more 
technologically relevant in the supply network, the odds are higher that the parent companies will 
make rather than buy the input from an independent supplier.  
      In Appendix Tables B4, B5, B6 and B7, we further control for: i) sample compositions 
when the Input Rank is built by considering the input-specific contractibility at each time-step of 
the network exploration (see Section 3.3); ii) sample compositions when we consider only 
midstream manufacturing parents; iii) changing values of the constant parameter α ; iv) empirical 
specifications different from the fixed-effects conditional logit. All main findings are similar in 
sign and significance with baseline estimates, with the exception of a lack of statistical significance 
of the coefficient of the Input Rank in Table B4, when we exclude possibly horizontal strategies 
in the 2-digit industries of the parent company. 
 

 
Table 7: Robustness on sample composition, parent-level fixed effects conditional logit 

 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 

Dependent variable:
Input is integrated ==1

Input Rank (alpha = 0.5) 0.749*** 0.152*** 0.171*** 0.134***
(0.151) (0.004) (0.004) (0.005)

Input Rank * Complements 0.306*** 0.091*** 0.064*** 0.118***
(0.076) (0.006) (0.005) (0.006)

Input upstreamness -0.892*** -0.768*** -0.649*** -0.611***
(0.035) (0.030) (0.026) (0.051)

Input upstreamness * Complements 0.286*** 0.313*** 0.137*** 0.748***
(0.046) (0.040) (0.038) (0.062)

Contractibility -0.505*** -0.289 -0.413*** -0.453***
(0.025) (0.016) (0.017) (0.023)

Direct requirement -0.028* -0.008 0.028*** 0.040***
(0.015) (0.005) (0.003) (0.003)

Observations 741,066 905,640 1,151,908 156,705
N. parent companies 2,637 3,903 4,084 2,847
Pseudo R-squared 0.080 0.281 0.254 0.398
Log pseudolikelihood -19,399.7 -18,622.2 -22,653.3 -7,949.5
Clustered errors by parent Yes Yes Yes Yes

Activity of parent companies
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing

No 
horizontal

Only manuf 
inputs

Input vs 
output elast

Top 100 
inputs
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6  Conclusions 
 
In this contribution, we introduced the Input Rank as an eigenvector centrality measure applicable 
to recursive production networks made of transactions among many buyers and suppliers. It 
measures the technological relevance of suppliers in the entire supply network of a root producer. 
Adapted from previous metrics of information consumption in social networks and web engines, 
the Input Rank proxies a stochastic process that is started by a root producer, who needs gathering 
information on the technology of her entire supply network made of both direct and indirect 
suppliers. After random walks throughout her supply network (e.g., random phone calls), she 
comes at each time-step with a numerical value and an updated ranking of how important is that 
(direct or indirect) input for the completion of her production process. Given increasingly complex 
webs of suppliers and an increasing fragmentation of the production processes, it is possible that 
a generic root producer is scarcely able to navigate faraway areas of her supply network, therefore 
a dumping parameter is introduced at each time-step to discount the difficulty to gather information 
on a specific transaction, e.g., due to its contractibility, and therefore the probability that the root 
producer falls back home and starts a new journey of exploration. 
      The Input Rank can be computed either on firm-to-firm transactions or on input-output 
tables, keeping its simple mathematical properties. For sake of comparison with previous 
positioning metrics (e.g., downstreamness and upstreamness segments) of GVCs, we compute it 
on U.S. 2002 BEA Input-Output tables, and thereafter we test firm-level choices of vertical 
integration by U.S. parent companies. We find that a higher Input Rank correlates with higher odds 
that that input is vertically integrated, even more so when the demand faced by the parent company 
is more elastic. We argue that vertical integration allows reducing the possibility that otherwise 
independent suppliers renege on commitments and disrupt the supply network, generating more 
damage for the completion of the production processes. Even more so when the margins on which 
the root producer can rely are smaller. Our findings are robust to several checks on sample 
compositions, parameter choices and empirical models. 
       More in general, we argue that the Input Rank better catches the recursive and complex 
nature of real-world supply networks, which have been so far represented as supposedly linear 
technological sequences in studies for the international organization of production. Certainly, both 
empirics and theory need better considering the technological loops, kinks and corners, which can 
magnify or dampen a shock in a supply network, finally shaping the organizational response of the 
company. 
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A – Appendix: from the Page Rank to the Input Rank 
 

The intuition of the Input Rank is adapted from the ‘personalized’ version of the Page Rank 
centrality, first used in social networks and search engines (Brin and Page, 1998) to present to 
users the most pertinent content. Some variants of the Page Rank have been used in many domains 
(bibliometrics, biology, physics, engineering of infrastructures, financial exposure, etc.) as an 
alternative to the Katz (1953) centrality (Gleich, 2015). The underlying assumption is that more 
important nodes (in our case, inputs) are likely to receive more links from other nodes (in our case, 
inputs of inputs), and that proximity to central nodes implies, in turn, a relatively higher centrality. 
    For our scope, the main limitation of the original formulation of the Page Rank is its ‘global’ 
outreach on a supposedly unique network, whereas we are interested in a ‘local’ outreach of a 
specific root buyer in her oriented supply network. Therefore, we needed a ‘personalization’ of 
the Page Rank, in the spirit of Haveliwala (2003) and White and Smyth (2003), where different 
rankings are possible for different root nodes, given an initial prior knowledge of the stochastic 
process.  
 
      Starting from the original formulation of the PageRank, adopting the notation proposed by 
Gleich (2015), the eigenvalue problem can be represented by the following identity:  
 
 
                             ( )1 Tα α − + = P ve x x                          (A1) 

 
      For our scope, we substitute each term with a corresponding in our Input Rank from eq. 
(5), to take into account the peculiar economic process at stake: 
 

• In the Page Rank, a transition matrix P  contains the probabilities that an internet user 
clicks on one page following a web link present on the one she is visiting, column-
normalized by the total number of received links, i.e. its in-degree. In the Input Rank, we 
substitute the matrix P  with an input-output matrix D , whose single elements are 
column-normalized buyer-supplier transactions, ijd . Even though in the present work we 

propose estimates of the Input Rank using input-output tables (US BEA, 2002), our 
framework is open to applications to firm-to-firm transactions. In the latter case, an element 
of the matrix D  would be a firm-to-firm actual shipment, always normalized by column 
(i.e., expressed by receiving firm as a percentage of all input shipments). 
 

• A vector v  is a critical tool that allows for the ‘personalization’ of the Page Rank. In 
absence of ‘personalization’, this vector contains just a uniform distribution of probability 
across all web pages. Therefore, personalized versions of the Page Rank make it non-
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uniform, so that a particular region of the internet is highlighted with a higher probability. 
At the same time, the vector e  is a vector of 1s that algebraically extends the same 
(uniform or non-uniform) distribution in v  to all web users. In our Input Rank, we 
substitute v  with a root-specific unitary vector, rh  made of all 0s except for the rth 

element that is equal to 1. Together with the term α , the unitary vector rh  avoids that 
the rth buyer navigates outside her network of suppliers while pointing at headquarters. 
 

• The term ( )0,  1α ∈  is a teleportation parameter in the Page Rank, otherwise called a 

damping factor. It indicates the probability that a ‘web surfer’ interrupts a random 
navigation following page-to-page links and falls elsewhere, on any other web page not 

directly linked to the one she is visiting. By converse, ( )1 α−  is the probability that the 

user goes on randomly following her web path made of cross-link citations. In our Input 
Rank, α  must be read in connection to the peculiarity of rh . In our case, α  is the 
probability that the root producer stops travelling in her production network and goes back 

to the headquarters (i.e., the 1 in the unitary vector rh ). Conversely, ( )1 α−  is the 

probability that the producer goes on exploring her web of suppliers. Later on, in Section 
3, we further personalize introducing input-specific iα , which considers the contractual 
friction that prevents a producer to collect, for example, the input degree of contractibility 
(Rauch, 1999; Nunn, 2007; Nunn and Trefler, 2013). 
 

• Finally, x  is the solution to the eigenvalue problem in (A1), which indicates the relevance 
of the web content in the case of the Page Rank. In our Input Rank, the root-specific 

solution *
rπ  in eq. (5) represents the technological relevance resultant from the 

exploration of the input-output linkages by the root producer.  
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B – Appendix Tables and Graphs 
 
 

Figure B1: In-degree distribution of Input-Output Network from U.S. BEA 2002 I-O 
tables 

 

 
Note: Number of input industries by output ordered on the x-axis. Average: 122. Minimum at the Logging industry 
(code 113300) is 45. Maximum at the Retail Trade (code 4A0000) is 296. 
 
 
 

Figure B2: Out-degree distribution of Input-Output Network from U.S. BEA 2002 I-O 
tables 

 

 
Note: Number of buying industries by output ordered on the x-axis. Average: 122. Minimum at the Museums, 
Historical Sites, Zoos, and Parks (code 712000) is 0. Maximum at the Wholesale Trade (code 420000) is 425.  
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Table B1: Top 10 highest Input Rank values of the R&D services (code 541700) by 
output 

 

 
 
 
 

Table B2: Top 10 direct or indirect inputs by Input Rank for the Automotive 
Manufacturing (code 336111) 

 

 
 
 
 
 

IO code Output name
R&D Input rank  

(alpha =0.5)

S00500 General Federal defense government services 0.0384
325413 In-vitro diagnostic substance manufacturing 0.0317
325414 Biological product (except diagnostic) 

manufacturing
0.0293

325412 Pharmaceutical preparation manufacturing 0.0247
325411 Medicinal and botanical manufacturing 0.0226
325320 Pesticide and other agricultural chemical 

manufacturing
0.0211

3259A0 All other chemical product and preparation 
manufacturing

0.0211

325620 Toilet preparation manufacturing 0.0193
325910 Printing ink manufacturing 0.0192
325610 Soap and cleaning compound manufacturing 0.0190

IO code Input name
Input rank  

(alpha = 0.5)
336300 Motor vehicle parts manufacturing 0.1686
420000 Wholesale trade 0.0353
550000 Management of companies and enterprises 0.0302
331110 Iron and steel mills and ferroalloy manufacturing 0.0101
531000 Real estate 0.0087
541800 Advertising and related services 0.0078
334413 Semiconductor and related device manufacturing 0.0072

484000 Truck transportation 0.0071
32619A Other plastics product manufacturing 0.0057
221100 Electric power generation, transmission, and 

distribution
0.0054
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Table B3: Top 10 direct or indirect inputs by Input Rank for the Electronic Computer 
Manufacturing (code 334111) 

 

 
 
 
 
 

Figure B3: Distributions of the (logs of) Input Rank when alpha is 0.5 and alpha is input-
specific contractibility  

 

 
 
 
 
 
 

IO code Industry name
Input rank  

(alpha = 0.5)
334112 Computer storage device manufacturing 0.0568
420000 Wholesale trade 0.0553
550000 Management of companies and enterprises 0.0467
334418 Printed circuit assembly (electronic assembly) 

manufacturing
0.0400

334413 Semiconductor and related device manufacturing 0.0374
511200 Software publishers 0.0305
33411A Computer terminals and other computer peripheral 

equipment manufacturing
0.0190

541800 Advertising and related services 0.0132
531000 Real estate 0.0121
541700 Scientific research and development services 0.0112
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Table B4: Robustness to sample composition when alpha is input contractibility, parent-
level fixed effects conditional logit 

 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent variable:
Input is integrated ==1

Input Rank (alpha = contractibility) 0.614*** 0.067*** 0.114*** 0.080***
(0.050) (0.003) (0.004) (0.005)

Input Rank * Complements 0.808*** 0.126*** 0.109*** 0.136***
(0.060) (0.009) (0.007) (0.014)

Input upstreamness -0.842*** -0.889*** -0.882*** -0.695***
(0.032) (0.028) (0.026) (0.046)

Input upstreamness * Complements 0.220*** 0.025 0.091** 0.352***
(0.039) (0.037) (0.039) (0.054)

Direct requirement 0.017*** 0.039*** 0.064*** 0.080***
(0.005) (0.003) (0.003) (0.003)

Observations 953,458 925,155 1,151,908 252,897
N. parent companies 2,796 3,903 4,084 3,020
Pseudo R-squared 0.094 0.202 0.210 0.201
Log pseudolikelihood -25,884.9 -20,793.8 -23,986.9 -14,925.6
Clustered errors by parent Yes Yes Yes Yes

Activity of parent companies
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing

No 
horizontal

Only manuf 
inputs

Input vs 
output elast

Top 100 
inputs
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Table B5: Robustness to sample composition considering midstream parents only, parent-
level fixed effects conditional logit 

 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent variable:
Input is integrated ==1

Input Rank (alpha = 0.5) 0.097 0.080*** 0.173*** 0.049***
(0.177) (0.006) (0.005) (0.007)

Input Rank * Complements 0.931*** 0.223*** 0.090*** 0.234***
(0.080 (0.008) (0.008) (0.009)

Input upstreamness -1.254*** -1.197*** -0.794*** -1.618***
(0.073) (0.065) (0.047) (0.116)

Input upstreamness * Complements 0.793*** 1.112*** 0.385*** 1.904***
(0.084) (0.078) (0.062) (0.132)

Contractibility -0.191*** -0.163*** -0.271*** -0.276***
(0.030) (0.024) (0.025) (0.029)

Direct requirement -0.016 0.012*** 0.033*** 0.011**
(0.017) (0.004) (0.003) (0.005)

Observations 316,429 437,805 542,872 87,847
N. parent companies 1,126 1,887 1,925 1,591
Pseudo R-squared 0.096 0.363 0.313 0.460
Log pseudolikelihood -8,141.9 -8,063.6 -9,688.9 -3,848.8
Clustered errors by parent Yes Yes Yes Yes

Activity of parent companies
Intermediate 

goods
Intermediate 

goods
Intermediate 

goods
Intermediate 

goods

No horizontal
Only manuf 

inputs
Input vs 

output elast
Top 100 

inputs
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Table B6: Robustness to changing values of the parameter alpha, parent-level fixed 
effects conditional logit 

 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent variable:
Input is integrated ==1

Input Rank 0.139*** 0.142*** 0.149*** 0.167*** 0.198*** 0.209***
(0.004)   (0.004)   (0.004) (0.005)   (.006) (0.013)   

Input Rank * Complements 0.089*** 0.089*** 0.090*** 0.097*** 0.115*** 0.128***
(0.005)   (0.005)   (0.005) (0.006)   (.007) (0.015)   

Input upstreamness -0.779*** -0.781*** -0.782*** -0.780*** -0.777*** -0.898***
(0.030)   (0.031)   (0.031) (0.031)   (.032) (0.030)   

Input upstreamness * Complements 0.332*** 0.334*** 0.336*** 0.342*** 0.350*** -0.073*  
(0.038)   (0.039)   (0.039) (0.039)   (.017) (0.039)   

Contractibility -0.388*** -0.388*** -0.390*** -0.393*** -0.395*** -0.410***
(0.017)   (0.017)   (0.017) (0.017)   (0.017) (0.018)   

Direct requirement 0.036*** 0.026*** 0.015*** 0.001   -0.007 0.070***
(0.004)   (0.004)   (0.005) (0.005)   (.005) (0.002)   

Observations 1,151,908 1,151,908 1,151,908 1,151,908 1,151,908 1,151,908
N. parent companies 4,084 4,084 4,084 4,084 4,084 4,084
Pseudo R-squared 0.257   0.257   0.257 0.257   0.257 0.147   
Log pseudolikelihood -22,569.0 -22,564.7 -22,560.8 -22,553.1 -22,548.5 -25,905.4
Clustered errors by parent Yes Yes Yes Yes Yes Yes

Activity of parent companies
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing
Manu- 

facturing

alpha = 
0.01

alpha = 
0.25

alpha = 
0.75

alpha = 
0.85

alpha = 
0.99

alpha = 
0.50
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Table B7: Robustness to changing empirical strategy 
 

 
Errors clustered by parent in parentheses. ***, **, * stand for p-value < 0.01, p-value < 0.05 and p-value < 0.10, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent variable:
Input is integrated ==1

Input Rank (alpha = 0.5) 0.011*** 0.151*** 0.074***
(0.001)   (0.005)   (0.002)   

Input Rank * Complements 0.024*** 0.242*** 0.117***
(0.001)   (0.004)   (0.002)   

Input upstreamness -0.003*** -0.766*** -0.273***
(0.001)   (0.025)   (0.009)   

Input upstreamness * Complements -0.001*** -0.415*** -0.160***
(0.001)   (0.025)   (0.009)   

Contractibility -0.001*** -0.354*** -0.141***
(0.001)   (0.017)   (0.007)   

Direct requirement -0.001*** 0.018*** 0.011***
(0.001)   (0.004)   (0.001)   

Constant 0.005*** -5.894*** -2.789***
(0.001)   (0.033)   (0.012)   

Observations 1,257,668 1,257,668 1,257,668
N. parent companies 4,717 4,717 4,717
R squared / Pseudo 0.124   0.209   0.215   
Log pseudolikelihood - -29,320.3 -29,098.1
Clustered errors by parent Yes Yes Yes
Activity of parent companies Manufacturing Manufacturing Manufacturing

Linear probability 
model

Logit Probit
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