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Abstract

We develop a model to study the cross-sectional properties of asset returns in the presence

of ambiguity in the distribution of asset returns. In our model, the cross-sectional expected

returns can be described by a three-factor model, capturing risk, mean ambiguity and variance-

covariance ambiguity, respectively. Expected returns include a mean ambiguity premium, a

variance-covariance ambiguity premium, as well as the standard risk premium. The expected

returns exhibit cross-sectional characteristics consistent with the empirical fact that the overall

beta-return relation and IVOL-return relation are both negative, but the beta-return relation is

negative and stronger among over-priced stocks while positive and weaker among under-priced

stocks, and the IVOL-return relation is negative and stronger among over-priced stocks but

positive and weaker among under-priced stocks (Black, Jensen, and Scholes (1972), Ang et al.

(2006), Liu, Stambaugh, and Yuan (2018), and Stambaugh, Yu, and Yuan (2015)).
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1 Introduction

In the numerous empirical stylized facts documented in the literature, the beta anomaly and the

idiosyncratic volatility anomaly are perhaps the simplest fundamental and yet challenging empirical

regularity to understand. Beta anomaly refers to the pattern in cross-section returns that security

market line is too flat relative to the one predicted by the CAPM theory (Black, Jensen, and

Scholes (1972) and Fama and MacBeth (1973)). Idiosyncratic volatility anomaly refers to the

negative relation between idiosyncratic volatility and subsequent stock returns (Ang et al. (2006)).

There is a large literature that aims at explaining the two anomalies. Recently, however,

Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018) offered additional evidence

that provide a new perspective on the anomalies and raised issues with the existing explanations.

Stambaugh, Yu, and Yuan (2015) find that when examined for the subsample of over-priced and

under-priced stocks, the relations between mispricing and idiosyncratic volatility have opposite

signs, which they argue is a challenge to the existing explanations of the idiosyncratic volatility

anomaly. Similarly, Liu, Stambaugh, and Yuan (2018) show that while the security market line for

over-priced stocks is flatter than that predicted by the standard CAPM theory as documented in

the literature, the security market line for under-priced stocks is not flatter if not steeper. They

argue that the existing explanations of the beta anomaly are difficult to reconcile with this evidence.

They argue further that the beta anomaly is in fact closely related to the idiosyncratic volatility

anomaly as a result of the positive correlation between beta and idiosyncratic volatility.

In this paper, we provide an explanation of the beta and idiosyncratic volatility anomalies

that is consistent with the findings of Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and

Yuan (2018). The individuals in our model are rational. The financial markets in our model are

frictionless. The key ingredient of our model is that investors do not have perfect knowledge of

the probability distribution of stock returns. As a consequence, investors ask for a premium as

the compensation for that ambiguity. That premium is the mis-pricing, relative to the CAPM.

Under natural assumptions, the premium exhibits a pattern that is consistent with the beta and

idiosyncratic volatility anomalies.

In our model, agents are homogeneous and are fully aware that there is ambiguity about the

probability law of stock returns and the data can only provide an approximation to the true

distribution. Due to their aversion to ambiguity, they adjust their portfolios computed according

to a reference distribution to account for the ambiguity. The adjustment leads to equilibrium
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returns that deviate from those computed according to the reference distribution. We show that

the deviation can be tracked by two factor portfolios, one for the ambiguity in the expected returns

of the stocks and the other for the ambiguity in the covariances of the returns of the stocks. As

such the premia on those two factors (portfolios) are interpreted as the premia for the two sources

of ambiguity. It should, however, be emphasized that those two factors are not factors in the

traditional sense. They do not track any fundamental macro or aggregate risks. They capture

instead the systematic ambiguity in the stock returns.

When agents are ambiguity averse, the two factors earn positive ambiguity premia. Variation

in the loadings of stocks on these two factors lead to variation in the cross section of expected

returns. Stocks that have higher loading on those factors earn higher premia, while stocks that

have lower or negative loading on those factors earn lower or even negative premia. As there is no

good reason to believe that the reference distribution is related to the level of ambiguity, beta of

stocks calculated according to the reference distribution is unlikely to be related to the systematic

ambiguity of the stocks. As a consequence, if the stocks are double-sorted on mis-pricing and beta

or idiosyncratic volatility, the alphas can and in fact are likely to exhibit the pattern as shown in

Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018).

Through simulation we show that our model produces qualitatively similar patterns of alphas

as shown in the literature. The security market line is flatter than predicted by CAPM. The overall

idiosyncratic volatility-return relation is negative. However, the beta-return relation is negative

and stronger among over-priced stocks while positive and weaker among under-priced stocks, and

the idiosyncratic volatility-return relation is negative and stronger among over-priced stocks, but

positive and weaker among under-priced stocks.

Our paper is related to two branches of the literature. One branch is that on ambiguity and

its implications for asset prices. To model ambiguity averse agents, we follow the multiple-prior

approach of Gilboa and Schmeidler (1989). The dynamic version of it is proposed by Epstein and

Schneider (2003). In the study of asset pricing implications of ambiguity, similar approach has been

taken by Dow and Werlang (1992), Epstein and Wang (1994, 1995), Chen and Epstein (2002) and

Epstein and Miao (2003), Kogan and Wang (2003), Easley and O’Hara (2009, 2010), among many

others. An alternative approach to modeling ambiguity averse agents is introduced by Hansen and

Sargent (2001) and Anderson, Hansen, and Sargent (2003). That approach is taken by Uppal and

Wang (2003), Maenhout (2004, 2006), Liu, Pan, andWang (2005), among others. The third, smooth

ambiguity preference, approach to modeling ambiguity averse agents is introduced by Klibanoff,
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Marinacci, and Mukerji (2005). Klibanoff, Marinacci, and Mukerji (2009), Hayashi and Miao (2011)

provide a dynamic axiomatization of the smooth ambiguity preference. Ju and Miao (2012) propose

a generalized recursive smooth ambiguity model which permits a three-way separation among risk

aversion, ambiguity aversion, and inter-temporal substitution in a consumption-based asset-pricing

model. The innovation of our model is that it allows for ambiguity both in the mean and in the

variance-covariance matrix, while most of the existing literature assumes away the ambiguity in the

variance-covariance matrix. Epstein and Ji (2013) consider ambiguity in the volatility of one asset.

Liu and Zeng (2017) study the effect of correlation ambiguity on portfolio under-diversification. The

paper that is closely related to ours is Kogan and Wang (2003). One difference is our introduction

of ambiguity in variance-covariance matrix. The key difference is, however, in our focus on the role

of ambiguity for understanding of the beta and the idiosyncratic volatility anomalies.

The second branch is the large literature on the beta anomaly and the idiosyncratic volatility

anomaly, which is impossible to review completely given the limited space. Blitz, Falkenstein, and

van Vliet (2014), Liu, Stambaugh, and Yuan (2018), and Hou and Loh (2016) provide excellent

summaries of the literature. There several arguments in the existing explanations of the two anoma-

lies. One common argument is based on trading constraints. For example, in their explanation

of the flat security market line, Black (1972) assumes constraint on riskless borrowing. Frazzini

and Pedersen (2014) assumes leverage constraint, Hong and Sraer (2016) and Liu, Stambaugh, and

Yuan (2018)) assume short-sale constraint. Another common argument is that investors exhibit

particular preferences. It can be due to the desire to benchmark their portfolios (Baker, Bradley,

and Wurgler (2011) and Christoffersen and Simutin (2016)), or preferences for positive skewness

(Barberis and Huang (2008), Boyer, Mitton, and Vorkink (2010)), lottery-like payoffs (Bali, Cakici,

and Whitelaw (2011)). Other explanation includes those based on earnings surprises (Jiang, Xu,

and Yao (2009), Wong (2011)), one-month return reversal (Fu (2009), Huang et al. (2010)), illiq-

uidity (Bali and Cakici (2008)), unpriced information risk (Johnson (2004)), and a missing factor

(Chen and Petkova (2012)). As argued by Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh,

and Yuan (2018) all the existing explanations have difficulty in reconciling with the their empirical

findings.

The remainder of this paper is organized as follows. Section 2 describes our model. Section 3

presentsits the equilibrium asset pricing implications. Section 4 focus on the role of ambiguity for

understanding beta and idiosyncratic anomalies. Section 5 summarizes the results and concludes.
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2 The Model

2.1 The Setting

Similar to that in Kogan and Wang (2003), we consider a frictionless representative agent economy

where the agent has constant absolute risk aversion utility with risk aversion parameter γ > 0,

U(x) = −e−γx

γ
,

The agent is endowed with an initial wealth W0, which is, without loss of generality, assumed to

be equal to one. Consumption takes place at the end of the period. The agent trades N +1 assets,

one riskless asset with riskless return r and N risky assets whose returns follow a joint normal

distribution. The representative agent knows that the returns are jointly normally distributed. She

is, however, ambiguous about the expected return vector µ and variance-covariance matrix Ω. It

is this ambiguity that differentiate our setting from that of the CAPM theory. We turn now to the

description of the ambiguity and the agent’s aversion to it.

2.2 Ambiguity and Ambiguity Averse Preferences

Due to the ambiguity, the agent’s preference can not be represented by the standard expected

utility. It is instead represented by a max-min utility (Gilboa and Schmeidler (1989)).

min
Q∈P

{EQ[u(W )]}, (1)

where P is a set of probability priors.

For our study, the specification of P is important. It is a confidence region around a reference

probability measure P . Specifically, the set of priors, P, is assumed to take the form

P =
{
Q : v⊤JkΩ

−1
Jk

vJk ≤ 2η1,k, tr(Ω
−1
Jk

UJk)− ln |IJk +Ω−1
Jk

UJk | ≤ 2η2,k, k = 1, ...,K
}

(2)

where Q are probability measures under which the returns of the assets are jointly normally dis-

tributed with density function given by

fQ(R) = (2π)−N/2|Ω̂|−1/2e−
1
2
(R−µ̂)⊤Ω̂−1(R−µ̂),

Jk is a subset of {1, 2, . . . , N}, v = (µ−µ̂), U = (Ω̂−Ω), and vJk denotes the sub-vector consisting of

the elements of v in the subset Jk. All the other notations with subscript Jk have similar meaning.
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In the set P, the probability measure for which v = 0 and U = 0 is the reference model and is

denoted by P . The density function of the return distribution under P is given by

f(R) = (2π)−N/2|Ω|−1/2e−
1
2
(R−µ)⊤Ω−1(R−µ).

The motivation of the specific form of P is the same as in Kogan and Wang (2003) and Uppal

and Wang (2003), which will be briefly described shortly. It is essentially a confidence region defined

by log likelihood ratio or relative entropy (Anderson, Hansen, and Sargent (2003) and Uppal and

Wang (2003)). In Kogan and Wang (2003), as there is no ambiguity about the variance-covariance

matrix, η2,k = 0, for k = 1, . . . , K. The P in (2) can accommodate ambiguity both in the mean

and in variance-covariance matrix.

We now provide the detailed explanation of what set P captures. We do so with two elaborated

examples.

2.2.1 A Single Source of Information

As the true probability law of asset returns is unknown, an econometrician has to estimate a model

of asset returns based on the data available. Suppose that there is only a single data source of the

stock returns and the result of the estimation is the reference model P . This is the case where

K = 1 and J1 = {1, . . . , N}. As the data is typically limited, the econometrician is not completely

sure that his reference model P is indeed the true model. So he provides, along with the reference

model P , a measure of his confidence that the true model is not far from the reference model, say,

a 95% confidence region. Let Q be a probability measure that is potentially the true model. As the

representative agent knows that the returns follow a joint normal distribution, the return under Q

has density given by

fQ(R) = (2π)−N/2|Ω̂|−1/2e−
1
2
(R−µ̂)⊤Ω̂−1(R−µ̂),

Under this measure, the expected return vector is µ̂ and the variance-covariance matrix is Ω̂.

One measure of confidence the econometrician can use is the log likelihood ratio, EQ[ln ξ], where

ξ = dQ/dP is the density of Q with respect to P . In terms of the reference probability, the

likelihood ratio is the relative entropy, E[ξ ln(ξ)], of Q with respect to P . As argued in Kogan

and Wang (2003) and Uppal and Wang (2003), E[ξ ln(ξ)] is a good approximation of the empirical

log-likelihood when the number of observations is large.
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It is readily verified that

dQ

dP
= ξ(R) =

|Ω|
1
2

|Ω̂|
1
2

e−
1
2
(R−µ̂)⊤Ω̂−1(R−µ̂)+ 1

2
(R−µ)⊤Ω−1(R−µ),

A bit of algebra shows

E[ξ ln(ξ)] =
1

2

[
tr(Ω−1(Ω̂− Ω))− ln |I +Ω−1(Ω̂− Ω)|+ (µ− µ̂)⊤Ω−1(µ− µ̂)

]
(3)

Suppose that Q is the true model and it is in the confidence region specified in (2). Consider

first the case where there is no ambiguity about the true variance-covariance matrix. Following (3)

the relative entropy in this case, denoted by Lmean, is given by

LQ
mean =

1

2
(µ− µ̂)⊤Ω−1(µ− µ̂)

Thus the relative entropy of Q, LQ
mean < η1,1. Suppose next the case where there is no ambiguity

about the true mean return vector. The relative entropy in this case, denoted Lcov, is given by

LQ
cov =

1

2

(
tr(Ω−1(Ω̂− Ω))− ln |I +Ω−1(Ω̂− Ω)|

)
This in this case, the relative entropy of Q, LQ

cov < η2,1.

Given LQ
mean and LQ

cov, what (2) says is that for Q to be in P, its mean likelihood, measured

by LQ
mean, must be less than η1,1 and its variance-covariance likelihood, measured by LQ

cov, must be

less than η2,1.

2.2.2 Multiple Sources of Information

More realistically, the investors can obtain multiple data sources on the returns and each data

source pertains to only a subset of the risky assets. To model multiple sources of information,

let Jk = {j1, j2, ..., jNk
}, k = 1, 2, . . . , K, be subsets of {1, 2, . . . , N}, and ∪kJk = {1, 2, ..., N}.

So overall the agent has some information about each asset. The distribution of asset returns for

any source of information Jk is RJk = (Rj1 , Rj2 , ..., RjNk
). We assume the reference probability

law implied by the various sources of information coincides with the marginal distributions of the

reference model P (denoted as PJk). The density function of RJk under the true model Q is

f(RJk) = (2π)−1|Ω̂Jk |
−1/2e

− 1
2
(RJk

−µ̂Jk
)⊤Ω̂−1

Jk
(RJk

−µ̂Jk
)
,

which is the marginal distribution of Q (denoted as QJk), where µ̂Jk and Ω̂Jk are the mean return

vector and variance-covariance return matrix of RJk . Thus, the likelihood ratio of the marginal
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distribution QJk with respect to PJk is

ξ(RJk) =
|ΩJk |

1
2

|Ω̂Jk |
1
2

e−
1
2
(RJk

−µ̂Jk
)⊤Ω̂Jk

(RJk
−µ̂Jk

)+ 1
2
(RJk

−µJk
)⊤ΩJk

(RJk
−µJk

),

For convenience, we use the same notation Ω̂−1
Jk

(Ω−1
Jk

) to denote the N ×N -matrix whose elements

in the jm-th row and jn-th column, for jm and jn in Jk, is the same as the elements in the m-th

row and n-th column of the matrix Ω̂−1
Jk

(Ω−1
Jk

), otherwise it is zero. Then the relative entropy is

E[ξJk ln(ξJk)] =
1

2

[
tr(Ω−1

Jk
(Ω̂Jk − ΩJk))− ln |I +Ω−1

Jk
(Ω̂Jk − ΩJk)|+ (µ− µ̂)⊤Ω−1

Jk
(µ− µ̂)

]
(4)

With expression (4), we see that for a Q to be in the set P, its mean likelihood and variance-

covariance likelihood based on information k must be less than η1,k and η2,k, respectively, for all

k = 1, . . . ,K.

3 Portfolio Choice

Because of the presence of ambiguity, the representative agent’s portfolio choices will be different

from that when there is no ambiguity. The agent will not only consider the trade-off between risk

and return, but also the trade-off between those with ambiguity. To understand how the agent

trades off ambiguity, risk and return, it is useful to introduce a metric for ambiguity. In the next

two subsections, we will introduce our metric for mean return and variance-covariance ambiguity,

respectively.

3.1 Measure of Mean Ambiguity

Suppose first that there is no variance-covariance ambiguity. In this case, the relative entropy

including mean ambiguity only becomes

E[ξ ln(ξ)] =
1

2
(µ− µ̂)⊤Ω−1(µ− µ̂),

Let θ denote the portfolio of the risky assets of the agent and θ⊤R the portfolio return. The metric

we use to measure the ambiguity in the mean return of the portfolio is given as

∆1(θ) = sup
Q∈P

{θ⊤(µ− µ̂)}, (5)

where

P1 = {Q : E[ξJk ln(ξJk)] = (µ− µ̂)⊤Ω−1
Jk

(µ− µ̂) ≤ 2η1,k, k = 1, 2, ...,K}.
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By construction of the metric, the difference between the expected return of the portfolio under the

reference model P and the true expected return of the portfolio, θ⊤(µ − µ̂), falls into the interval

[−∆1(θ),∆1(θ)]. Thus ∆1(θ) is the maximum possible error in using the reference model P to gauge

the true expected return of the portfolio, given the confidence region described by P1. Clearly, the

smaller the ∆1(θ), the less ambiguity there is about the expected return of the portfolio. Lemma

1 provides more on the metric.

Lemma 1 Let θ be a portfolio of the risky assets of the agent. A solution to (5) exists. If the

portfolio θ is such that θi ̸= 0 for all i = 1, . . .N , then the solution v(θ) is unique and is given by,

v(θ) = Ωµ(θ)θ, (6)

where Ωµ(θ)

Ωµ(θ) =

(
K∑
k=1

λ1,k(θ)Ω
−1
Jk

)−1

and λ1,k, k = 1, . . . , K, are Lagrangian multipliers for the K constraints in the definition of P1.

Obviously, ∆1(θ) = θ⊤v(θ) depends on the set P1 and the portfolio θ. The Lagrangian mul-

tipliers λ1,k(θ), k = 1, . . . , K, measure how much each source of information contributes to the

ambiguity of the portfolio. If λ1,k(θ) = 0, for example, the kth source of information does not help

to reduce the ambiguity for the portfolio θ.

3.2 The Measure of Variance-Covariance Ambiguity

Now suppose that there is no ambiguity in the mean return vector. In this case,

Eξ ln ξ] =
1

2

(
tr(Ω−1(Ω̂− Ω))− ln |I +Ω−1(Ω̂− Ω)|

)
We define the measure of the ambiguity in variance-covariance by

∆2(θ) = sup
Q2∈P2

{θ⊤Uθ}, (7)

where U = (Ω̂− Ω) and

P2 =

{
Q :

1

2

[
tr(Ω−1

Jk
(Ω̂Jk − ΩJk))− ln |IJk +Ω−1

Jk
(Ω̂Jk − ΩJk)|

]
≤ η2,k, k = 1, 2, ...,K

}
.

If Ω̂ is the true variance-covariance matrix, then the true variance of the portfolio return is θ⊤Ω̂θ.

However, under the reference model P , the variance is θ⊤Ωθ. Thus, by using the reference model,
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given the confidence region described by P2, the maximum error in the variance of the return of

the portfolio is given by ∆2(θ).

Lemma 2 If the portfolio θ is such that θi ̸= 0 for all i = 1, . . .N , then the solution of (7) exits

and is unique.

3.3 Portfolio Choice

Having defined the preference of the investor and the measure of ambiguity, we now turn to the

portfolio choice problem of the agent. Using the utility function from (1), the representative agent’s

utility maximization problem is

sup
θ

min
Q∈P

{EQ[−γ−1e−γW ]},

where the set P is as given in (2), subject to the agent’s wealth constraint

W = W0[θ(R− r1) + 1 + r].

where 1 is the N -vector (1, 1, . . . , 1)⊤.

Proposition 3 The agents utility maximization problem has a solution θ given by,

θ = γ−1(Ω + U(θ))−1(µ− r1− v(θ)), (8)

where v(θ) and U(θ) are the solutions of (5) and (7), respectively, given the portfolio θ.

The solution (8) is fairly intuitive. When there is no ambiguity, that is, v(θ) = 0 and U(θ) = 0,

(8) reduces to the standard mean-variance optimal portfolio. When there is only ambiguity in the

expected returns, (8) reduces to the formula given in Kogan and Wang (2003). More generally,

(8) says that in the presence of ambiguity, the agent behaves as if the true expected return vector

of the assets is given by µ − r1 − v(θ) and the variance-covariance matrix is given by Ω + U(θ).

The expected portfolio return is then θ(µ− r1) + (1 + r)−∆1(θ) and the variance of the portfolio

return is θ⊤Ωθ+∆2(θ). That is, the agent behaves as if the expected portfolio return is that under

the reference model provided by the econometrician adjusted downward by ∆1(θ), which is the

ambiguity in the mean, and the variance is that under the reference model adjusted upward by

∆2(θ), which is the ambiguity in the variance.

9



4 Equilibrium Expected Returns

To derive the equilibrium, let θm denote the market portfolio of risky assets. In equilibrium, the

representative agent holds the market portfolio. By Proposition 3, the expected return on the

individual stocks and on the market must satisfy

µ− r1 = γΩθm + γU(θm)θm + v(θm) (9)

µm − r = γθ⊤mΩθm + γθ⊤mU(θm)θm +∆1(θm). (10)

In equilibrium, the representative agent must hold the market portfolio of the risky assets. The

following theorem follows readily.

Theorem 4 The equilibrium vector of expected excess returns is given by

µ− r1 = λβ + λµβµ + λΩβΩ, (11)

where

β =
Ωθm

θ⊤mΩθm
, λ = γθ⊤mΩθm = γσ2

m

βµ =
Ωµ(θm)θm

θ⊤mΩµ(θm)θm
, λµ = ∆1(θm) = θ⊤mΩµ(θm)θm

βΩ =
U(θm)θm

θ⊤mU(θm)θm
, λΩ = γ∆2(θm) = γθ⊤mU(θm)θm.

where Ωµ(θm) and U(θ) are solutions of (5) and (7), respectively.

Theorem 4 provides the characterization of equilibrium asset expected returns. It has rich

implications for the cross section of asset returns. Equation (11) is the key equation that the

analysis of beta anomaly and idiosycratic volatility anomaly in Section 6 will be based on. The

three terms on the right hand side of equation (11) have the natural interpretation that λβ is

the risk premium, λΩβΩ is the variance-covariance ambiguity premium, and λµβµ is the mean

ambiguity premium. Clearly, when there is no ambiguity, the second and third terms on the right

hand side of (11) are equal to zero and (11) reduces to the standard CAPM. The β is then the

standard CAPM beta. Just as the interpretation for the risk premium where λ is the price of risk

and β is the systematic risk, λµ and λΩ are the prices of ambiguity in the expected return and

variance-covariance matrix, and βµ and βΩ are the systematic ambiguities in the expected return

and variance-covariance matrix, respectively, which will be explained shortly.
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While the risk premium is well understood from the standard CAPM theory, what exactly are

those ambiguity premia and how are they related to the ambiguity introduced earlier in (5) and

(7)? To understand the relation, consider first the case where there is only mean ambiguity. Let

θµ be the portfolio defined by θµ = Ω−1Ωµ(θm)θm. The return of the portfolio is Rµ = θ⊤µR. By

Lemma 1, ν(θm) = Ωµ(θm)θm = Ωθµ. Next let θ be an arbitrary portfolio. As shown in Kogan

and Wang (2003), the total ambiguity of the portfolio θ is θ⊤ν(θ) and its systematic ambiguity is

θ⊤ν(θm). Using the portfolio θµ, the systematic mean ambiguity of the portfolio θ is θ⊤Ωθµ, which

is the covariance between the return of the portfolio θ and that of θµ. According to Theorem 4,

the mean ambiguity beta of the portfolio θ is

βµ(θ) =
θ⊤Ωµ(θm)θm
θ⊤mΩµ(θm)θm

=
θ⊤Ωθµ

θ⊤mΩµ(θm)θm
=

cov(Rθ, Rµ)

θ⊤mΩµ(θm)θm

Therefore, the mean ambiguity beta of the portfolio θ, βµ(θ), is zero if and only if the systematic

mean ambiguity of the portfolio θ is zero. In other words, a portfolio earns mean ambiguity premium

if and only if its systematic mean ambiguity is non-zero, and that systematic ambiguity is captured

by the covariance between the return of the portfolio θ and that of θµ. Because of the relationship

between the systematic mean ambiguity of θ and the covariance between Rθ and Rµ, θµ is a factor

portfolio for the ambiguity of the expected returns. Any asset or portfolio that has non-zero loading

on the factor will earn a (mean) ambiguity premium.

Similarly, the total variance-covariance ambiguity of the portfolio θ is θ⊤U(θ)θ and its systematic

ambiguity is θ⊤U(θm)θm. Let θΩ be the portfolio defined by θΩ = Ω−1U(θm)θm and RΩ = θ⊤ΩR be

its return. According to Theorem 4, the variance-covariance ambiguity beta of the portfolio θ is

βΩ(θ) =
θ⊤U(θm)θm
θ⊤mU(θm)θm

=
θ⊤ΩθΩ

θ⊤mU(θm)θm
=

cov(Rθ, RΩ)

θ⊤mU(θm)θm

That is, the variance-covariance ambiguity beta of the portfolio θ, βΩ(θ), is zero if and only if the

systematic variance-covariance ambiguity of the portfolio θ is zero. The portfolio earns variance-

covariance ambiguity premium if and only if its systematic variance-covariance ambiguity, captured

by cov(Rθ, RΩ), is non-zero. The portfolio θµ is a factor portfolio for the variance-covariance

ambiguity.

As a simple example to illustrate the contrast between the standard CAPM and Theorem

4, consider a market neutral strategy. When there is no ambiguity, a zero-beta portfolio θ that

neutralizes the standard market risk (θ⊤β = 0) delivers the market neutral returns. When there

is ambiguity, however, the return on that portfolio may no longer be market neutral. The three
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factor structure described in Theorem 4 suggests that a portfolio θ that also neutralize ambiguity,

that is, the portfolio such that θ⊤β = 0, θ⊤βµ and θ⊤βΩ = 0, is more likely to be market neutral.

Theorem 4 provides a three-factor structure for the expected returns of the asset. A fundamental

question is whether such a prediction of Theorem 4 is empirically distinguishable from that of the

CAPM theory. We provide two examples to elaborate on that.

One Source of Information

When there is only one source of information (K = 1), it can be shown that

µ− r1 = (γ + γδ1 + δ2)Ωθm

where δ1 > 0 and δ2 > 0 are two positive numbers. Thus it is as if the representative agent lives

in a world with risk only and she has a higher level of risk aversion. The standard CAPM holds.

This is reminiscient of the result in Anderson, Hansen, and Sargent (2003). This example shows

that the presence of ambiguity does not necessarily leads to violation of CAPM. In this case, the

standard zero-beta portfolio will neutralize with the confidence determined by P, the uncertainty

from both risk and ambiguity.

Multiple Non-overlapping Sources of Information

Another interesting case is one of non-overlapping sources of information. Suppose that there are

K sources of information and they are non-overlapping in the sense that each source of information

is about a subset of the N assets and the subsets do not overlap. In this case we can divide N

assets into K non-overlapping groups and solve (5) and (7) to get explicit expressions for ∆1(θ)

and ∆2(θ).

Lemma 5 Let θ be a portfolio weight vector and θJk be the sub-vector of portfolio weights on assets

in group k for k = 1, . . . , K. If the K sources of information are non-overlapping, then the

solutions of (5) and (7) are given by,

v(θ) =


√

2η1,1
σJ1

ΩJ1 · · · 0

...
. . .

...

0 · · ·
√

2η1,K
σJK

ΩJK



θJ1
...

θJK

 (12)
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and

U(θ) =


2·ΩJ1

θJ1θ
⊤
J1

ΩJ1

(λ2,1−2)·θ⊤J1ΩJ1
θJ1

· · · 0

...
. . .

...

0 · · ·
2·ΩJK

θJK θ⊤JK
ΩJK

(λ2,K−2)·θ⊤JKΩJK
θJK

 (13)

where σ2
Jk
(θm) = θ⊤JkΩJkθJk , λ1,k and λ2,k are given as the solutions of

λ1,k =

√
θ⊤JkΩJkθJk

2η1,k
, 2η2,k = − ln

(
1 +

2

λ2,k − 2

)
+

2

λ2,k − 2
. (14)

Given the explicit solutions, it follows from Theorem (4) that, for the asset j in group k, the

mean ambiguity beta is, for j ∈ Jk,

βµ,j =
1

∆1(θm)
vj(θm) =

√
2η1,kσJk∑K

k=1

√
2η1,kσJk

βJk,j ,

where βJk,j = cov(rj , θ
⊤
Jk
RJk)/σ

2(θJk). Interestingly, the mean ambiguity beta of the market port-

folio is the risk beta of portfolio θJk scaled down by a weight, with the weight being determined by

the ambiguity.

For the variance-covariance ambiguity beta,

βΩ,j =
[Uθm]j
θ⊤mUθm

=
θ⊤JkUJk(θm)θJk

∆2(θm)

[UJk(θm)θJk ]j

θ⊤JkUJk(θm)θJk
=

2
λ2,k−2σ

2
Jk∑K

k=1
2

λ2,k−2σ
2
Jk

βJk,j .

Putting things together, we have the following corollary,

Corollary 6 If the K sources of information are non-overlapping, then the expected return on the

individual asset j in the group k is given by

µj − r = γσ2
mβj +

(√
2η1,kσJk +

2γσ2
Jk

λ2,k − 2

)
βJk,j , (15)

Corollary 6 shows that when there are more than one sources of information on the probability

distribution of the returns, the equilibrium expected returns in our model differs from those in the

CAPM theory.

5 Equilibrium Asset Prices

In this section, to prepare for the analysis in Section 6, we rewrite the equilibrium returns in

Theorem 4 in terms of exogenous dividends and calculate the equilibrium prices. Suppose that
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the vector of exogenous dividends D follows a normal distribution. The reference distribution is

one with mean vector d and variance-covariance matrix Σ. Let P denote the equilibrium price

vector. Let θm denote the market portfolio in terms of portfolio weights and θ̄m denotes the market

portfolio in terms of shares. Then

Rj =
Dj

Pj
− 1, µj =

dj
Pj

− 1, Ω = diag(1/P )Σdiag(1/P ),

Rm =
θ̄⊤mD

θ̄⊤mP
− 1, θm = diag(P )θ̄m, (Ωθm) = diag(1/P )Σθ̄m.

where diag(x) is the diagonal matrix whose diagonal elements are given by the elements of vector

x. Note that θ⊤m1 is not necessarily equal to one as the riskless rate r is exogenously given.

When there is no ambiguity, the equilibrium price vector is given by,

P =
1

1 + r
(d− γΣθ̄m),

and the beta is given by

β =
1

θ̄⊤mΣθ̄m
diag(1/P )Σθ̄m,

The expected excess return of individual asset and market portfolio are respectively,

µ− r1 = γdiag(1/P )Σθ̄m, µm − r = γθ̄⊤mΣθ̄m,

The CAPM holds,

µj − r =
1

Pj

(Σθ̄m)j

θ̄⊤mΣθ̄m
(µm − r).

When there is mean ambiguity and variance-covariance ambiguity under independent source of

information, Corollary 6 in Section 4 shows that the equilibrium price for the asset j in group k is

Pj =
1

1 + r

(
dj − γ(Σθ̄m)j −

(√
2η1,k

θ̄⊤JkΣJk θ̄Jk
+

2γ

(λ2,J − 2)

)
(ΣJk θ̄Jk)j

)
. (16)

Now we turn to the understanding of the beta and idiosyncratic volatility anomalies.

6 Understanding Anomalies

As discussed in the introduction, the literature has provided several possible explanations of the

beta and idiosyncratic volatility anomalies. In this section, we show that the theory developed in

the preceding sections can be applied to provide an alternative understanding of the beta and IVOL

anomalies. While a serious empirical evaluation is beyond the scope of this paper, the simulation

exercise provided highlights the economic mechanism that underlies our explanation.
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6.1 Over-Pricing and Under-Pricing

An analysis of anomaly typically starts with the mis-pricing of assets according to a benchmark

asset pricing theory. To provide our analysis of the beta anomaly and the idiosyncratic volatility

anomaly, we first define what we mean by over-pricing and under-pricing in our model.1

The setting of our model is that of CAPM, except that the representative agent has max-min

utility instead of the expected utility. Thus the benchmark theory for over-pricing and under-pricing

is CAPM. That is,

µj − r = αj + (µm − r)βj ,

and a non-zero αj implies mis-pricing. Asset j is under-priced if αj > 0. It is over-priced if αj < 0.

It then follows from Theorem 4 that

αj = [λ− (µm − r)]βj + λµβµ,j + λΩβΩ,j .

Since µm − r = λ+ λµ + λΩ,

αj =

(
λµ

[
βµ,j
βj

− 1

]
+ λΩ

[
βΩ,j

βj
− 1

])
βj . (17)

Equation (17) is the basis on which we provide our analysis of the beta and idiosyncratic volatility

anomalies.

6.2 Beta Anomaly

In the classical CAPM of Sharpe (1964) and Lintner (1965) theory, stocks with higher betas should

earn higher premia than stocks with lower betas. However, the empirical evidence shows that high-

beta stocks earn too little compared to low-beta stocks (Black, Jensen, and Scholes (1972) and

Fama and MacBeth (1973)). As noted in the introduciton, there are several explanations in the

literature. Here in this section, based on the theory developed earlier, we provide an alternative

explanation of the beta anomaly.

The basic idea is that when there is ambiguity, equilibrium return should compensate investors

for bearing both risk and ambiguity. However, if the econometrician takes CAPM as the true

model and uses realized returns to estimate the expected return and beta for each asset, he will see

violation of CAPM and may misunderstand it as beta anomaly.

1It should be noted that there is not a universal benchmark theory. The benchmark theory used typically depends

on the particular empirical anomaly being evaluated and the particular study. The benchmark we provide is based

on the mean-variance framework we used to develop our theory.
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We focus on the special case of (17) where there are non-overlapping sources of information

about the mean of the liquidating dividends. We assume there is no ambiguity about the variance-

covariance matrix and simulate the model as follows.

1. Set the number of stocks n to be 1000. We make 1000 draws from the normal distribution

N(200, 5) as the mean vector d of the 1000 liquidating dividends.2 We use US stocks monthly

price and return data to estimate the monthly variance-covariance matrix of the liquidating

dividends Σ as follows. We randomly choose 1000 stocks (we require that each stock should

have over 20 years’ monthly data) and calculate the correlation matrix. We then draw 1000

times from N(0.45, 0.08) and take the absolute values of the 1000 draws as the elements of

the diagonal of Σ.3 The supply of each asset equals to 1. The risk aversion coefficient is 2.

The risk-free rate is set to be r = 3%, annualized.

2. Assume that there are non-overlapping sources of information about mean ambiguity of the

liquidating dividends. We divide the 1000 stocks into two groups of 500 each. Draw 600 times

from the joint dividends distribution N(d,Σ) and take those samples as realized dividends

for the assets (dividend data for 50 years). Calculate the equilibrium return based on the

simulated dividends, rj,t = Dj,t/Pj − 1. The mean ambiguity confidence level of the first

group and the second group are η1 = 200 and η2 = 250 respectively.

3. The econometrician uses those realized returns to run regressions to estimate CAPM beta

and to calculate the variance of the residuals as Ivol for each asset. Calculate the average

of excess returns of each asset as the true return and the average of market excess returns

as the true market excess return. Then define the alpha as the difference between the true

return and the product term of CAPM betas multiplying average market excess return. We

also use alphas to proxy for mispricing.

4. We double-sort the stocks by mis-pricing (α) and beta into 5 quintiles each and obtain 5× 5

cells. For each cell, we compute the average of the αs of the stocks in that cell. We also

compute the t-statistics of the average.

2The particular choice of the mean of this distribution is not very important, as the price is proportional to the

mean dividend. The standard deviation is to ensure the mean returns have some variation.
3 This is a convenient way of generating the a 1000×1000 variance-covariance matrix of dividends whose correlation

matrix mimic that of the 1000 stocks chosen.
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Table 1: Alphas for Portfolios Sorted on Beta and Mispricing

The table reports the alpha for portfolios formed by an independent 5 × 5 sort on Beta and Mispricing.

Mispricing Beta Quintile

Quintile Lowest 2 3 4 Highest H-L

A. Alpha (%)

over-priced -0.66 -0.63 -0.59 -0.69 -0.80 -0.15

2 -0.24 -0.24 -0.26 -0.25 -0.24 -0.01

3 0.02 -0.01 0.01 0.01 0.03 0.01

4 0.27 0.25 0.25 0.24 0.26 -0.01

under-priced 0.66 0.65 0.67 0.71 0.72 0.07

Over-Under -1.32 -1.28 -1.26 -1.40 -1.53

All stocks 0.10 0.05 0.04 -0.07 -0.13 -0.24

B. T statistics

over-priced -14.99 -16.63 -15.55 -17.44 -27.39 -2.59

2 -15.54 -17.74 -20.74 -19.17 -15.80 -0.33

3 1.97 -0.65 1.22 1.17 1.87 0.65

4 21.32 24.28 22.70 19.04 13.05 -0.40

under-priced 20.30 16.24 15.29 14.41 19.77 1.35

Over-Under -24.17 -22.26 -20.36 -21.91 -32.73

All stocks 3.29 1.80 1.35 -2.14 -2.85 -4.21
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The result of the simulation is reported in the Table 1. Panel A reports the averages of the αs

and Panel B reports the t-statistics of the averages. In the middle of Panel A are the 5× 5 cells of

double-sort. The last row reports the average of αs of all stocks sorted by beta. The second last

row are the differences in α between the most over-priced and the most under-priced stocks. The

last column of Panel A shows the differences, H −L, between the average αs of the stocks with the

highest beta and that with the lowest beta.

The reported result is consistent with the existing literature. First, the last row of Panel A shows

that there is a negative relation between α and beta, which is the beta anomaly reported in Black,

Jensen, and Scholes (1972) and Fama and MacBeth (1973), among others. Next, differentiating

between over-priced and under-priced stocks, the first row of Panel A shows that among over-priced

stocks, there is a negative relationship between α and beta, while the fifth row shows that among

under-priced stocks, there is a positive relationship between α and beta, but the relation is not

statistically significant. That is, if over-priced and under-priced stocks are differentiated, there is

beta anomaly in the over-priced stocks and there is no beta anomaly in the under-priced stocks. If

anything, the relation between αs and beta for the under-priced stocks is more likely to be positive,

opposite to the sign in the beta anomaly. The middle rows, which are for stocks that are not

obviously mispriced, α and beta exhibit a flat relation. Third, Panel B of Table 1 shows that the

negative relations between α and beta for all stocks and for over-priced stocks, measured by H-L in

the last column in Panel A, are statistically significant, while the positive relation between α and

beta for under-priced stocks is not statistically significant at the usual levels of confidence. Overall,

the pattern of α reported in Table 1 is qualitatively similar to that reported in Liu, Stambaugh,

and Yuan (2018).

The basic intuition can be explained as follows. Consider the case where there is ambiguity in

the mean only, which is the case for the simulation. In that case, (17) reduces to

αj = λµ

[
βµ,j
βj

− 1

]
βj . (18)

This equation suggests that for assets with positive betas, which is the case for most assets in the

real world data and in our simulation, there is over-pricing if and only if βµ,j < βj . If βµ,j and βj are

un-correlated, then, for over-priced (under-priced) stocks with positive betas, αj averaged for each

beta quintile is decreasing (increasing) in βj and hence H-L is negative (positive) for over-priced

(under-priced) stocks. Thus, double sorting by mis-pricing and beta is likely to lead to what is

seen in Table 1. When the ambiguity is not too large, βµ,j is relatively small and
βµ,j

βj
< 1 for
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most stocks. Consequently, over-pricing occurs more often than under-pricing and the result on

under-priced stocks is less likely to be statistically significant.

The explanations of the beta anomaly provided in the literature are mostly based on short-

selling or borrowing constraints. One argument is that when short-selling constraint is binding,

investors behave as if they are holding the market portfolio and a zero-beta portfolio (Black (1972),

Frazzini and Pedersen (2014)). The expected return on the zero-beta portfolio is higher than that

of the riskless rate. Thus it appears that the security market line is flatter than the one predicted by

the CAPM theory. Another argument is that heterogeneous expectations and short-sale constraints

tend to lead to over-pricing of high beta stocks. Thus the security market line is flatter or even

downward sloping in time of higher disagreement (Hong and Sraer (2016)). The third and more

recent argument is that the beta anomaly maybe the consequence of the idiosyncratic volatility

anomaly (Liu, Stambaugh, and Yuan (2018)).

As argued in Liu, Stambaugh, and Yuan (2018), while most of the explanations provided in the

literature are consistent with the negative relation between α and beta as seen in the last row of

Panel A of Table 1, the pattern of relations between α and beta when examine for over-priced and

under-priced stocks separately, as shown in Panel A, present a challenge for those explanations.

Liu, Stambaugh, and Yuan (2018) provided their own explanation. Their argument is based on

limits to arbitrage. over-priced stocks are more difficult to arbitrage because of the higher cost in

short sale, therefore the mispricing is stronger. under-priced stocks on the other hand are easier to

arbitrage. The positive relation between α and beta is weaker. The well-known beta anomaly is

the net result of relative stronger effect of the negative relation between α and beta for over-priced

stocks over that of the under-priced stocks. What differentiates our explanation from those in the

literature is that we assume neither short-sale constraints nor limits to arbitrage.

6.3 Idiosyncratic Volatility (IVOL) Anomaly

Idiosyncratic volatility anomaly is a puzzling empirical pattern that was first documented by Ang

et al. (2006). Stocks with higher idiosyncratic volatility have subsequent lower returns. It is

puzzling because traditional theories predict either no relation between idiosyncratic volatility and

expected returns (CAPM theory) or a positive relation due to market incompleteness and frictions

(Merton (1987), Hirshleifer (1988)). As referred to in the introduction, a number of explanations

have been provided in the literature. In this section, we provide a new angle for understanding the

IVOL anomaly.
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We first describe the simulation result. We use the same simulation data as in the preceding

section, but double sort the data by idiosyncratic volatility instead of beta. Specifically, we indepen-

dently assign stocks to Mispricing (α) Quintiles and IVOL Quintiles and obtain 5× 5 intersecting

cells.

Table 2: Alphas for Portfolios Sorted on IVOL and Mispricing

The table reports the alpha for portfolios formed by an independent 5 × 5 sort on IVOL and Mispricing.

Mispricing IVOL Quintile

Quintile Lowest 2 3 4 Highest H-L

A. Alpha (%)

over-priced -0.62 -0.60 -0.60 -0.62 -0.91 -0.29

2 -0.22 -0.25 -0.27 -0.21 -0.26 -0.04

3 0.00 0.01 0.00 0.00 0.01 0.01

4 0.26 0.26 0.28 0.26 0.28 0.01

under-priced 0.60 0.60 0.61 0.67 0.79 0.18

Over-Under -1.22 -1.20 -1.21 -1.30 -1.69

All stocks 0.03 0.02 0.02 0.02 -0.09 -0.12

B. T statistics

over-priced -12.76 -21.44 -20.34 -17.27 -22.08 -3.46

2 -18.87 -19.26 -21.06 -17.59 -15.30 -1.88

3 0.43 1.11 -0.37 0.04 0.90 0.54

4 24.07 24.51 21.63 17.44 15.80 0.62

under-priced 19.11 18.88 21.45 19.67 15.85 2.48

Over-Under -22.09 -28.42 -29.46 -26.08 -26.50

All stocks 1.19 0.64 0.59 0.48 -1.79 -2.13

The result is reported in the Table 2. Panel A reports the averages of the αs and Panel B

reports the t-statistics of the averages. In the middle of Panel A are the 5× 5 cells of double-sort.

The last row reports the average of αs of all stocks sorted by IVOL. The second last row are the
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differences in α between the most over-priced and the most under-priced stocks. The last column

of Panel A shows the differences, H − L, between the average αs of the stocks with the highest

IVOL and that with the lowest IVOL.

In Table 2, first we see that in the last row of Panel A, there is a negative relation between IVOL

and return among over-priced stocks, which is the idiosyncratic volatility anomaly first reported in

Ang et al. (2006). The rest of the result in Panel A has a similar pattern as in Panel of Table 1.

When differentiating between over-priced and under-priced stocks, the first row of Panel A shows

that among over-priced stocks, there is a negative relationship between α and IVOL, while the fifth

row shows that among under-priced stocks, there is a positive relationship between α and IVOL,

but the relation is not statistically significant. The middle rows, which are for stocks that are not

obviously mispriced, α and IVOL exhibit a flat relation. Third, Panel B of Table 2 shows that

the negative or positive relations between α and IVOL for all stocks, for over-priced stocks, or for

under-priced stocks, measured by H-L in the last column in Panel A, are statistically significant.

Overall, the result reported in Table 2 is qualitatively similar to that reported in Stambaugh, Yu,

and Yuan (2015).

To provide the explanation of the result, we note that as in the case of beta anomaly, the

mispricing is given by

αj = λµ

[
βµ,j
βj

− 1

]
βj = λµ [βµ,j − βj ] . (19)

Note next that

βµ,j =
(Ωµθm)j
θ⊤mΩµθm

, βj =
(Ωθ)j
θ⊤Ωθ

Thus

βµ,j − βj =
ρj,Ωµσj√
θ⊤mΩµθm

−
ρj,Ωσj√
θ⊤Ωθ

=

[
ρj,Ωµ√
θ⊤mΩµθm

−
ρj,Ω√
θ⊤Ωθ

]
σj

where ρj,Ωµ is the correlation coefficient between the market portfolio and asset j when Ωµ is

taken as the variance-covariance matrix, and ρj,Ω is the correlation coefficient between the market

portfolio and asset j when Ω is taken as the variance-covariance matrix. Clearly, ceteris paribus,

the mispricing range is increasing in stock’s total volatility (σj). However, there is no reason to

believe that
ρj,Ωµ√
θ⊤mΩµθm

is alway greater than
ρj,Ω√
θ⊤Ωθ

, or vice versa. In fact for over-priced stocks,

αj is negative and
ρj,Ωµ√
θ⊤mΩµθm

<
ρj,Ω√
θ⊤Ωθ

. Moreover, there is no reason to believe that σj is strongly

correlated with
ρj,Ωµ√
θ⊤mΩµθm

− ρj,Ω√
θ⊤Ωθ

. Then when over-priced stocked are divided into σj quintiles,

there is likely a negative relation between mispricing and σj . As empirically, there is a strong

correlation (over 95%) between total volatility and idiosyncratic volatility, that negative relation
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implies a negative relation between mispricing and IVOL, which explains the first row of Panel.

The row for the under-priced stock in Panel can be explained by a similar argument. Again,

when the ambiguity is not too large, βµ,j is relatively small and βµ,j < βj for most stocks. Conse-

quently, over-pricing occurs more often than under-pricing and the result on over-priced stocks is

stronger and that for under-priced stocks. These arguments explain the other rows of Panel A.

So far, we have looked at the beta anomaly and idiosyncratic volatility separately. Since the

same set simulation data exhibit both of these two anomalies as in the real world, one cannot help

wonder if there is a deeper connection between the two. Now obviously, if there is a strong positive

correlation between idiosyncratic volatility and beta, then beta anomaly and idiosyncratic volatility

anomaly are highly related, one implying the other. So we next examine whether in our model

there is a the positive relation between idiosyncratic volatility and beta.

We still use total volatility as a bridge to connect idiosyncratic volatility and beta. The total

volatility can be decomposed as

σ2
i = β2

i σ
2
m + σ2

i,ϵ.

Because of diversification, the total volatility of the market portfolio is typically much smaller than

the volatility of individual stock’s. Thus total volatility (σi) is highly correlated with idiosyncratic

volatility (σi,ϵ). Thiis is consistent with empirical findings. Empirically, the correlations between

total volatility and idiosyncratic volatility in the G7 countries are all over 95% (Ang et al. (2009)).

On the other hand, the beta of an individual stock is

βi = ρi,m
σi
σm

.

As there is no reason to believe that ρi,m is highly correlated with σi, other things being equal,

high total volatility should imply high risk beta. This argument suggests there is a positive relation

between total volatility and beta, which is also what is true both in our simulation data set and in

the real world (Stambaugh, Yu, and Yuan (2015) reports a correlation coefficient of 0.33).

7 Conclusion

We develop a model that is useful for understanding the cross-sectional characteristics of asset

returns. The model is otherwise standard. The additional ingredient is that the agent is ambiguous

about the probability distribution of the returns of the assets and he is ambiguity averse. The

ambiguity can be about the mean as well as the variance-covariance matrix of the returns. The
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equilibrium cross-sectional expected returns can be described by a three-factor model, capturing

risk, mean ambiguity and variance-covariance ambiguity respectively. Expected returns include a

mean ambiguity premium, a variance-covariance ambiguity premium, as well as the standard risk

premium.

Our model helps explain a number of cross-sectional asset return behavior that is silent in

standard models. Beta and idiosyncratic volatility are positively correlated. Overall the alpha in

our model decreases with beta. However, when sorted by mis-pricing, alpha of over-priced assets

decreases with beta, while alpha of under-priced assets increases with beta. The alphas’ exhibit

similar characteristics when sorted by total or idiosyncratic volatility. Alpha of over-priced assets

decreases with total or idiosyncratic volatility, while alpha of under-priced assets increases with

total or idiosyncratic volatility. Overall alpha decreases with beta total or idiosyncratic volatility.

As argued by Liu, Stambaugh, and Yuan (2018), these cross-sectional characteristics of asset returns

help address the challenges faced in the literature in understanding the beta anomaly (Black, Jensen,

and Scholes (1972) and Fama and MacBeth (1973)) and the idiosyncratic volatility anomaly (Ang

et al. (2006)).
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A Appendix

A.1 Relative Entropy

Suppose that R ∼ N(µ,Ω) under P and R ∼ N(µ̂, Ω̂) under Q. Then

E[ξ ln(ξ)] = EQ[ln ξ] =
1

2
EQ

[
ln(

|Ω|
|Ω̂|

)− (R− µ̂)⊤Ω̂−1(R− µ̂) + (R− µ)⊤Ω−1(R− µ)

]

=
1

2
ln(

|Ω|
|Ω̂|

) +
1

2
EQ[−tr(Ω̂−1(R− µ̂)(R− µ̂)⊤) + tr(Ω−1(R− µ)(R− µ)⊤]

=
1

2
[ln(

|Ω|
|Ω̂|

)−N + tr(Ω−1Ω̂) + (µ− µ̂)⊤Ω−1(µ− µ̂)]

=
1

2
[tr(Ω−1(Ω̂− Ω))− ln |Ω−1Ω̂|+ (µ− µ̂)⊤Ω−1(µ− µ̂)],

as is to be shown.

A.2 Proof of Lemma 1

The first statement of the lemma is the same as that in the lemma 1 in Kogan and Wang (2003).

The second statement of the lemma is a straightforward application of the Lagrangian duality

approach.

A.3 Proof of Lemma 2

Uniqueness: Note that the objective function is a linear function of Ω̂. In order to prove the

uniqueness of the solution, we first prove the convexity of the constraints function. For any k ∈ K,

denote

g(Ω̂Jk) =
1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−NJk + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k,

=
1

2
[− ln(|Ω̂Jk |) + tr(Ω−1

Jk
Ω̂Jk)] +

1

2
[ln(|ΩJk |)−NJk ]− ϕ2η2,k,

=
1

2
[− ln(|Ω̂Jk |) + tr(Ω−1

Jk
Ω̂Jk)] + Ck,

where Ck = 1
2 [ln(|ΩJk |)−NJk ]− ϕ2η2,k is a constant. Next we need to show, for any Ω̂1

Jk
, Ω̂2

Jk
and

a ∈ (0, 1),

g(aΩ̂1
Jk

+ (1− a)Ω̂2
Jk
) ≤ ag(Ω̂1

Jk
) + (1− a)g(Ω̂2

Jk
),
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Need to show,

− ln(|aΩ̂1
Jk

+ (1− a)Ω̂2
Jk
|) + tr[Ω−1

Jk
(aΩ̂1

Jk
+ (1− a)Ω̂2

Jk
)] ≤

a[− ln(|Ω̂1
Jk
|) + tr(Ω−1

Jk
Ω̂1
Jk
)] + (1− a)[− ln(|Ω̂2

Jk
|) + tr(Ω−1

Jk
aΩ̂2

Jk
)],

which is,

ln(|aΩ̂1
Jk

+ (1− a)Ω̂2
Jk
|) ≥ a ln(|Ω̂1

Jk
|) + (1− a) ln(|Ω̂2

Jk
|),

From the simple version of Minkowski Inequality, if A and B are positive semidefinite Hermite

Matrices, we can have,

|A+B| ≥ |A|+ |B|,

Therefore, only need to show,

ln(a|Ω̂1
Jk
|+ (1− a)|Ω̂2

Jk
|) ≥ a ln(|Ω̂1

Jk
|) + (1− a) ln(|Ω̂2

Jk
|),

which is obvious because of the concavity of the log function.

Then we follow the same idea from lemma 1 in Kogan and Wang (2003). Suppose to the

contrary that there exist two distinct solution Ω̂1 and Ω̂2. The convexity of all the constraints

functions implies that for any a ∈ (0, 1), denote Ω̂a = aΩ̂1 + (1 − a)Ω̂2 and let Ω̂h
Jk
, h = (1, 2, a)

denote the corresponding solution for Jk,

g(Ω̂a
Jk
) =

1

2
[ln(

|ΩJk |
|Ω̂a

Jk
|
)−NJk + tr(Ω−1

Jk
Ω̂a
Jk
)]− ϕ2η2,k,

≤ ag(Ω̂1
Jk
) + (1− a)g(Ω̂2

Jk
),

≤ 0, k = 1, 2, ...,K.

For k from 1 to K, we want to find all the possible k satisfy the following,

1

2
[ln(

|ΩJk |
|Ω̂a

Jk
|
)−NJk + tr(Ω−1

Jk
Ω̂a
Jk
)]− ϕ2η2,k = 0, for a = 0, 1, ā.

where ā ∈ (0, 1). Then we can have Ω̂1
Jk

= Ω̂2
Jk

because of the convexity. Denote by A the set of

such k. If

JA = ∪k∈AJk = 1, 2, ..., N,
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then Ω̂1 = Ω̂2, contradiction. When JA ̸= 1, 2, ..., N , WLOG, assume the first element is not in JA.

Thus for all Ω̂ of the following form

Ω̂ =


σ11 σ12 · · · σ1N

σ21 σ1
12

... σ1
2N

...
...

. . .
...

σN1 σ1
N2 · · · σ1

NN

 (20)

satisfy

1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−NJk + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k = 0, for k ∈ A.

where σ1i ∈ R, i = 1, 2, ..., N is the variance (covariance). Note that for a = 1
2 ,

Ω̂a =



σ1
11+σ2

11
2

σ1
12+σ2

12
2 · · · σ1

1N+σ2
1N

2

σ1
21+σ2

21
2

σ1
22+σ2

22
2

...
σ1
2N+σ2

2N
2

...
...

. . .
...

σ1
N1+σ2

N1
2

σ1
N2+σ2

N2
2 · · · σ1

NN+σ2
NN

2

 =



σ1
11+σ2

11
2

σ1
12+σ2

12
2 · · · σ1

1N+σ2
1N

2

σ1
21+σ2

21
2 σ1

22

... σ1
2N

...
...

. . .
...

σ1
N1+σ2

N1
2 σ1

N2 · · · σ1
NN


because JA = 2, ..., N . Then we have,

1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−NJk + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k < 0, for k /∈ A.

From continuity, there exists a ϵ > 0 such that for all the Ω̂ in (20) with σ1i ∈ (
σ1
1i+σ2

1i
2 − ϵ,

σ1
1i+σ2

1i
2 +

ϵ), i = 1, 2, ..., N .

1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−NJk + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k ≤ 0, for k /∈ A.

Combining with the case k ∈ A, we have,

1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−NJk + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k ≤ 0, for k = 1, 2, ...,K.

As we mentioned before, the objective function is a linear function of Ω̂, so we have,

θ⊤Ω̂1θ

θ⊤Ωθ
=

θ⊤Ω̂2θ

θ⊤Ωθ
=

θ⊤ Ω̂1+Ω̂2

2 θ

θ⊤Ωθ
,

But now, all the Ω̂ in (20) with σ1i ∈ (
σ1
1i+σ2

1i
2 − ϵ,

σ1
1i+σ2

1i
2 + ϵ), i = 1, 2, ..., N are in the choice set,

we can choose specific ϵ (Ω̂ϵ) to achieve higher value of θ⊤Ω̂ϵθ
θ⊤Ωθ

, contradiction!
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Next, we will apply the standard Lagrangian duality approach to solve the optimal matrix. We

first write down the Lagrangian function as follows,

L =
θ⊤Ω̂θ

θ⊤Ωθ
−

K∑
k=1

λ2,k{
1

2
[ln(

|ΩJk |
|Ω̂Jk |

)−N + tr(Ω−1
Jk

Ω̂Jk)]− ϕ2η2,k},

Note that ∂tr(Ω−1U)/∂uij = tr(Ω−1Uij) where Uij is the matrix which has zero everywhere

except in the ith row and jth column where it is equal to 1. ∂ ln |I + Ω−1U |/∂uij = (I + U)−1
ij .

tr(A⊤B) =
∑

i

∑
j AijBij . FOC is

∂L
∂Ω̂

=
θθ⊤ ◦ S
θ⊤Ωθ

−
K∑
k=1

λ2,k

2
(−Ω̂−1

Jk
+Ω−1

Jk
) = 0,

where S is a sign matrix whose elements take 1 if there is variance-covariance ambiguity information

about the corresponding elements in Ω and takes 0 otherwise. θθ⊤ ◦ S is the entry-wise product

between two matrices, which produces another matrix where each element ij is the product of

elements ij of the original two matrices. So

K∑
k=1

λ2,k(θ)[Ω̂
∗
Jk
(θ)]−1 =

K∑
k=1

λ2,k(θ)Ω
−1
Jk

− 2θθ⊤ ◦ S
θ⊤Ωθ

.

Note, similar with Lemma 1, the proof above is also based on the assumption that there are

multiple sources of information (K) and the information can cover all the assets in the market. So∑K
k=1 λ2,k(θ)Ω

−1
Jk

should be a full-rank matrix. If there is no variance-covariance ambiguity about

some elements in the original Ω, the above equations becomes 0 = 0 in the corresponding elements,

which means those equations are redundant.

A.4 Proof of Proposition 1

The agents utility maximization problem is

sup
θ

min
Q∈P

EQ

[
−1

γ
e−γ(θ⊤(R−r1)+(1+r))

]
= sup

θ

[
−1

γ
e−γ[θ⊤(µ−r1)+1+r−∆1(θ)]+

1
2
γ2[θ⊤Ωθ+∆2(θ)]

]
,

The FOC for θ is given by

µ− r1−∆′
1(θ)− γΩθ − 1

2
γ∆′

2(θ) = 0,

So the optimal portfolio choice follows

µ− r1 = ∆′
1(θ) + γΩθ +

1

2
γ∆′

2(θ).
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By envelope theorem, we have, ∆′
1(θ) = v(θ) and ∆′

2(θ) = 2U(θ)θ. Thus

µ− r1 = v(θ) + γ(Ω + U(θ))θ,

as is to be shown.

If there is only one source of information, we can write down the optimal solution explicitly.

For mean ambiguity,

v∗(θ) = λ−1
1 (θ)Ωθ,

plugging into the constraint, we can solve for λ1(θ),

λ1(θ) =

√
θ⊤Ωθ

2η1
,

so

v∗(θ) =

√
2η1
θ⊤Ωθ

Ωθ.

when ambiguity aversion coefficient ϕ or mean ambiguity level η1 takes 0, then ϕv∗(θ) = 0. Hence

there is no mean-ambiguity effect.

For variance-covariance ambiguity,

λ2(θ)[Ω̂
∗(θ)]−1 = λ2(θ)Ω

−1 − 2θθ⊤

θ⊤Ωθ
.

so

Ω̂∗(θ) = (Ω−1 − 2

λ2(θ)

θθ⊤

θ⊤Ωθ
)−1,

= Ω+
2

[λ2(θ)− 2]θ⊤Ωθ
Ωθθ⊤Ω,

plugging into the constraint, we can solve for λ2(θ),

2ϕ2η2 = ln(
|Ω|

|Ω̂∗(θ)|
)− n+ tr(Ω−1Ω̂∗(θ))

= ln(
|Ω|

|Ω||E + 2
[λ2(θ)−2]θ⊤Ωθ

θθ⊤Ω|
)− n+ tr(E +

2

[λ2(θ)− 2]θ⊤Ωθ
θθ⊤Ω)

= − ln(|E +
2

[λ2(θ)− 2]θ⊤Ωθ
θθ⊤Ω|) + 2

[λ2(θ)− 2]θ⊤Ωθ
tr(θ⊤Ωθ)

= − ln(1 +
2

λ2(θ)− 2
) +

2

λ2(θ)− 2
= − ln(1 +

2

λ2 − 2
) +

2

λ2 − 2
.

when ambiguity aversion coefficient ϕ or variance-covariance ambiguity level η2 takes 0, then
2

λ2−2 =

0, and Ω̂∗(θ) = Ω. Hence there is no variance-covariance-ambiguity effect.
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