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Abstract

I develop an approach, which I term narrow thinking, to break the decision-maker’s ability to
perfectly coordinate her multiple decisions. For a narrow thinker, different decisions are based
on different, non-nested, information. The narrow thinker then makes each decision with an
imperfect understanding of the others. Formally, it is as if the decision-maker is a collection
of multiple selves playing an incomplete-information game. The friction effectively attenuates
the degree of interaction across decisions and can translate into either over- or under-reaction
depending on the environment. The narrow thinker violates the fungibility principle, and can
exhibit mental accounting-type behavior. Narrow thinking also reconciles other seemingly
disparate phenomena in a unified framework, such as excess sensitivity to temporary income
shocks, the small wage elasticity of daily labor supply, temptation and comfort zones. Finally,
I study an endogenous narrow thinking problem: the decision maker chooses optimally what
information each decision is based upon, subject to a cognitive constraint.
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1 Introduction

Each decision maker faces multiple economic decisions. She purchases different goods, supplies
labor, and chooses portfolios separately. In standard modeling practice, we nevertheless implicitly
assume perfect self-coordination among all these decisions. Consider a standard textbook con-
sumer problem of demanding multiple goods. The classical demand function is derived imposing
that, when the consumer purchases a particular good, she has perfect knowledge of all her other
consumption decisions. The consumer can then fully incorporate other consumption decisions’
impact on this particular decision. It is as if the decision maker determines all of her consumption
decisions together, and perfectly coordinates them. In the language of Read, Loewenstein and
Rabin (1999), such a decision maker “broadly brackets” all her decisions. However in practice, as
researches in psychology and behavioral economics point out (Tversky and Kahneman, 1981; Rabin
and Weizsacker, 2009), the decision maker often “narrowly brackets,” and makes each decision in
isolation.

In this paper I develop an approach, which I term narrow thinking, to break the decision-
maker’s ability to perfectly coordinate her multiple decisions. I then show how this approach can
explain seemingly disparate behavioral phenomena in a unified framework.

Notion of narrow thinking. The notion of narrow thinking I use throughout the paper is that
different decisions are based on different, non-nested, information. This notion is motivated by the
psychological observation that the decision maker may not incorporate all the relevant information
when making each decision (Kahneman, 2011). As an example of such a narrow thinker, consider
the following consumer. When she purchases food, she knows the food price, but does not have the
gasoline price on top of her mind (which can arise from bounded recall or selective retrieval from
memory when making a particular decision). When she purchases gasoline, she knows the gasoline
price, but does not have the food price on top of her mind. As her two consumption decisions are
based on different and non-nested information, such a decision maker is a narrow thinker as defined
above. As explained shortly, such within-person, cross-decision, frictions cause the decision-maker
to effectively discount the influence of other decisions when making a particular decision.

More abstractly, consider the following general multiple-decision problem. The decision maker’s
utility depends on her N decisions {xi}Ni=1, and the fundamental θ⃗: u

(
x1, · · · , xN , θ⃗

)
. Under

narrow thinking, the decision maker is subject to a decision-specific information constraint: each
decision xi needs to be a function of the decision-specific (potentially multi-dimensional) signal ωi,
which captures the state of mind when the decision maker decides on xi. The decision-maker can
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then be thought as a team of multiple selves (Marschak and Radner, 1972). Each self is in charge
of one decision but different selves do not perfectly share their information.

Narrow thinking as a formalization of within-person coordination frictions. The
decision problem under narrow thinking is then shown to be mathematically equivalent to multiple
selves playing an incomplete-information, common interest, game. In the unique equilibrium of
the game, each self’s decision is made with an imperfect understanding of the others’ decisions. In
this sense, the narrow thinking approach formalizes within-person coordination frictions.

I then use a simple example to illustrate how such within-person coordination frictions influence
the narrow thinker’s behavior. In this example, the decision maker’s utility depends on both how
closely each of her decision xi can track its “local fundamental” θi, and how her different decisions
interact. As each self of the narrow thinker has an imperfect perception of the others’ decisions,
her beliefs about the others’ decisions are anchored in response to shocks to fundamentals. Such
belief anchoring leads to an effective attenuation of interaction across decisions: it is as if each
of the decision maker’s decisions is less influenced by other decisions, and she thinks “narrowly.”
Narrow thinking then leads to a dampening of indirect effects — the movement of one decision
driven by the movement of other decisions.

It is worth clarifying the relationship between narrow thinking and rational inattention (Sims,
2003; Matejka and McKay, 2015; Koszegi and Matejka, 2018). The narrow thinking approach
builds upon the rational inattention literature by using imprecise information (noisy signals) to
capture bounded rationality, but with a few key differences. The key friction of interest for nar-
row thinking is the decision maker’s difficulty to coordinate her multiple decisions. The narrow
thinker’s different decisions are based on different information, and each of her decision is then
made with an imperfect understanding of other decisions. By contrast, the key friction of interest
for rational inattention is the decision maker’s imperfect perception of the fundamental. When
applying it to static multiple-decision problems such as those studied in this paper (e.g. demand
of multiple goods), different decisions are based on the same, imperfect, information (e.g. Koszegi
and Matejka, 2018). The decision maker then perfectly knows her other decisions when making
a particular decision.1 In a complementary approach to rational inattention, Gabaix (2014) de-
velops a novel “sparsity” method to model the decision maker’s sparse representation of the state
of the world. There, multiple decisions are made based on the same, imprecise, perception of the

1When applying the rational inattention approach to dynamic problems (Steiner, Stewart and Matejka, 2017),
similar to the standard sequential decision problem, the typical assumption is that the information of the earlier
decision is perfectly nested in the information of the later decision. On the other hand, the narrow thinker’s different
decisions are based on different, non-nested, information. This will be discussed in detail in Section 2.

2



fundamental.2

The classical consumer problem and the case without income effects. I first study a
classical consumer problem of demanding multiple goods under narrow thinking. In this context, it
is natural to consider the following narrow thinker: when each self i of the narrow thinker decides
on the consumption of good i, she perfectly knows its price pi, but only receives noisy signals about
other prices.

To tease out the main mechanism, I start from the case with quasi-linear utility and no income
effects. In this case, the interaction across different consumption decisions comes from the comple-
mentarity/substitutability embedded in the utility function (i.e. the cross-derivatives of the utility
function). In response to shocks to prices, narrow thinking effectively attenuates such interaction.
Such a friction and the accompanying dampening of indirect effects can then translate into the
attenuation of both cross-price and own-price demand elasticities. The narrow thinker’s Slutsky
matrix can also be asymmetric.

The case with income effects and the violation of the fungibility principle. I then
turn to the case with income effects. The interaction across different decisions now comes from
the budget constraint. In this context, different selves have different beliefs about the marginal
value of money. The narrow thinker then violates the fungibility principle: she behaves as if the
money allocated to one good cannot perfectly substitute the money allocated to another. Such
a violation then generates mental accounting-type behavior which has “no agreed-upon model”
(Farhi and Gabaix, 2015), e.g. excess sensitivity to own-price changes (Hastings and Shapiro,
2013).

To illustrate how narrow thinking can generate such excess sensitivity, consider an increase
in the food price. Under standard consumer theory, the decision maker can decrease other con-
sumption to smooth out the drop in the food consumption. Under narrow thinking, however, the
coordinated response of other consumption is limited, the indirect effects from smoothing out other
consumption are dampened, and the food consumption will decrease more. It is worth noting that
the frictional behavior under narrow thinking is about the response to temporary price shocks.
The average allocation of funds across different goods under narrow thinking, nevertheless, can be
frictionless.

The narrow thinking approach provides a model of the violation of the fungibility principle
without relying on the explicit mental budgeting in Heath and Soll (1996). It also generates new

2Gabaix (2014)’s sparsity approach does not use noisy signals and the perception of the fundamental there is
imperfect but deterministic.
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testable predictions. For example, excess sensitivity to price changes under narrow thinking only
happens for goods with respect to which the decision maker’s demand is not very elastic.

Under-reaction and over-reaction with narrow thinking. The previous analysis focuses
on how the narrow thinker’s demand responds to price changes. Narrow thinking can generate
interesting economic implications beyond this scope. In a general multiple-decision problem, the
key lessons from the previous analysis remain valid: in response to shocks to the fundamental,
narrow thinking leads to an effective attenuation of interaction across decisions and a dampening
of indirect effects.

A point worth emphasizing is that, depending on the environment, narrow thinking can trans-
late into either over- or under-reaction. A rule of thumb is the following: when the indirect effect
works in the same direction as the direct effect, a dampening of the indirect effect under narrow
thinking often leads to under-reaction. When the indirect effect works in the opposite direction
of the direct effect, a dampening of the indirect effect under narrow thinking often leads to over-
reaction. The analysis then contrasts with the often-held belief that noises in the decision maker’s
mental representation of the world typically lead to under-reaction.

Narrow thinking can then explain various empirical examples of under- and over-reaction. For
example, excess smoothness to taste shocks (Heath and Soll, 1996), the small wage elasticity of
daily labor supply (Camerer et al., 1997), excess sensitivity to income shocks (Thaler, 1999) and
the label effect (Abeler and Marklein, 2016). Narrow thinking also offers a novel theory of comfort
zones and temptation.

Costly contemplation. The main analysis lets different decisions be based on different, but
exogenous, information. In the last part of the paper, I study a “costly contemplation” problem in
which such information is endogenized. In this problem, besides making the multiple-decisions, the
decision maker also chooses what information each decision is based upon, subject to a cognitive
constraint. The costly contemplation problem studies the optimal information choice problem at
the decision-level, going beyond the standard rational inattention paradigm. It captures the idea
that, when the decision maker makes a particular decision, she cannot effortlessly use/recall the
information used for other decisions.

As different decisions are based on different decision rules, each self is “interested in” different
parts of the fundamental. As a result, it is optimal for different selves’ signals to take different
forms. For example, in the context of the simple illustrative example, it is optimal for each self to
receive a more precise signal about her local fundamental than other selves. In this sense, narrow
thinking arises endogenously.
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Layout. The remainder of the paper is organized as follows. Section 2 sets up a general
multiple-decision problem, defines the notion of narrow thinking, and provides a game theoretic
representation. Section 3 uses a simple example to show how narrow thinking leads to an effective
attenuation of interaction across decisions and a dampening of indirect effects. Section 4 studies
consumer theory under narrow thinking and shows how the narrow thinker violates the fungibility
principle and generates mental-accounting type behavior. Section 5 turns to other applications.
Section 6 studies the costly contemplation problem. Section 7 concludes. The Appendix contains
proofs and additional results.

1.1 Related Literature

This paper builds on, and adds to, the growing literature on rational inattention (Sims, 2003;
Mackowiak and Wiederholt, 2009; Matejka, 2015, 2016; Matejka and McKay, 2015)3 and sparsity
(Gabaix, 2014, 2017). There, the key friction is the decision maker’s imperfect perception of
the fundamental, while the decision maker perfectly knows her other decisions when making a
particular decision. On the other hand, the narrow thinking approach lets different decisions be
based on different, non-nested, information and captures the friction that each decision can be
made with an imperfect understanding of other decisions.

As the decision problem under narrow thinking is equivalent to multiple selves playing an
incomplete information game, the paper also builds upon the literature on incomplete information
“beauty contests” (Morris and Shin, 2002; Angeletos and Pavan, 2007; Bergemann and Morris,
2013). This literature studies linear best-response games under incomplete information.4 A key
insight from the literature is that incomplete information can attenuate the equilibrium interaction
(Angeletos and Lian, 2016, 2018; Bergemann, Heumann and Morris, 2017). In these works, the
behavior of each individual is frictionless and the focus is on inter-personal coordination friction
and macroeconomic applications. The current paper, on the other hand, focuses on intra-personal

3Other notable contributions in the rational inattention and endogenous information acquisition literature in-
clude, but are not limited to: Myatt and Wallace (2012, 2017), Colombo, Femminis and Pavan (2014), Stevens
(2015), Morris and Yang (2016), Hébert and Woodford (2017), Denti (2017b) and Steiner, Stewart and Matejka
(2017). See Sims (2010), Veldkamp (2011), Mackowiak, Matejka and Wiederholt (2018) for further references and
Caplin and Dean (2015), Caplin, Dean and Leahy (2017) and Oliveira et al. (2017) for axiomatic foundations.
In other contributions, Ofek, Yildiz and Haruvy (2007) and Gabaix and Laibson (2017) focus on the decision
maker’s imperfect perception of her own utility, Ilut and Valchev (2017) focus on the decision maker’s difficulty
of deriving optimal decision rules, and Khaw, Li and Woodford (2018) focus on the decision maker’s noisy mental
representations of the decision situation.

4Technically, compared to these works, the studied game among multiple selves has a particular feature: common
interest. This feature facilitates a sharper characterization of the narrow thinker’s behavior, especially in the costly
contemplation problem.
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friction in coordinating a decision maker’s multiple decisions and behavioral applications. This
change of focus permits me to build a bridge between the incomplete information literature and
the bounded rationality literature. The paper then shows how such intra-personal frictions can
deliver a novel theory to reconcile seemingly disparate behavioral phenomena.

By viewing the decision maker as a team of multiple selves, the paper also connects to the liter-
ature on multiple-selves and team theory. The multiple-selves literature (Piccione and Rubinstein,
1997; Benabou and Tirole, 2002, 2003, 2004; Gottlieb, 2014, 2017) mostly focuses on motivated
beliefs and reasoning, and explores reasons why the decision maker’s beliefs and behavior can be
systematically biased. The focus of the current paper is about frictional behavior in response to
shocks. Narrow thinking does not necessarily leads to systematical bias on average. The team
theory literature (Marschak and Radner, 1972; Dessein and Santos, 2006; Dessein, Galeotti and
Santos, 2016), on the other hand, mostly focuses on optimal information design in an organization.
Angeletos and Pavan (2007) develop a method to use team theory to find the constrained efficient
allocation in an economy with dispersed information. Angeletos and Pavan (2009) and Angeletos
and La’O (2018) then use the method to characterize optimal policy with informational frictions.

Multiple cognitive frictions can let different decisions be made based on different, non-nested,
information and lead to narrow thinking – for example, Gennaioli and Shleifer (2010), Kahana
(2012), Bordalo, Gennaioli and Shleifer (2017) and Jehiel and Steiner (2018) on bounded recall,
and Tversky and Kahneman (1973), Anderson (2009), Kahneman (2011) on heuristics, biases, and
selective retrieval from memory. Gennaioli and Shleifer (2010) use the term “local thinking” to
capture the representativeness heuristic and study its implications for single-decision problems.
The current paper, on the other hand, focuses on the decision maker’s difficulty in coordinating
her multiple decisions.

On the applied side, narrow thinking provides a unified framework to explain different behav-
ioral phenomena. Depending on the environment, narrow thinking can translate into either over-
or under-reaction. Applications studied in the paper connect to the literature on mental account-
ing (Thaler, 1985, 1999; Heath and Soll, 1996; Gilboa and Gilboa-Schechtman, 2003; Hastings
and Shapiro, 2013; Abeler and Marklein, 2016), excessive sensitivity to temporary income shock
(Johnson, Parker and Souleles, 2006; Parker et al., 2013; Kueng, 2018), the small cross-price de-
mand elasticity (Gabaix and Laibson, 2006; Abaluck and Gruber, 2011, 2016; Allcott and Wozny,
2014; Allcott and Taubinsky, 2015), the small wage elasticity of daily labor supply (Camerer et al.,
1997; Crawford and Meng, 2011; Farber, 2015; Thakral and To, 2017) and temptation (Laibson,
1997; O’Donoghue and Rabin, 1999; Gul and Pesendorfer, 2001; Fudenberg and Levine, 2006).
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For each application, narrow thinking’s distinct economic implications and testable predictions
will be discussed. Koszegi and Matejka (2018) is a recent, complementary, paper that shares the
focus on an information-based theory of mental accounting. That paper stays within the rational
inattention paradigm, and different decisions are based on the same, imperfect, information.

2 Narrow Thinking in a Multiple-Decision Problem

This section first introduces a general, unconstrained, multiple-decision problem and defines the
notion of narrow thinking: different decisions are based on different, non-nested, information. I
next show the solution to this single-agent problem under narrow thinking is formally equivalent to
an incomplete information, common interest, game among multiple selves: each self is in charge of
one decision, but different selves do not perfectly share their information. I then explain why such
a narrow thinker makes each decision with an imperfect understanding of the others, and the sense
in which she faces frictions in coordinating her multiple decisions. I later discuss the psychological
justifications for narrow thinking, that is, why different decisions are based on different, non-
nested, information. I finally discuss how to map constrained problems to the unconstrained
problem introduced here.

2.1 Environment and the Definition of Narrow Thinking

Utility. The decision maker’s utility depends on N decisions x⃗ = (x1, · · · , xN) ∈ X1 × · · · × XN

and the fundamental θ⃗ = (θ1, · · · , θM) ∈ Θ :

u
(
x⃗, θ⃗
)
, (1)

where u : X1×· · ·×XN×Θ → R is a twice continuously differentiable function and strictly concave
over x⃗. For each i, Xi, a convex set on R, denotes the set of possible decision xi. Θ ⊆ RM denotes
the set of possible fundamental θ⃗.

Information. First, I let (S,F , P ) denote the probability (state) space. The fundamental θ⃗
then should be viewed as the realization of a random vector on the probability space.5

To accommodate narrow thinking, I introduce decision-specific information. For each decision
i ∈ {1, · · · , N}, I use ωi ∈ Ωi to denote the information, i.e. signal (potentially multi-dimensional),

5For notation simplicity, in the rest of the paper (except for Section 6), I use the same letter to denote a random
variable and its realization.

7



under which decision i is made, where Ωi denotes the set of possible signal realizations for decision.
As further discussed in Section 2.3, one should interpret ωi as the state of mind when the decision
maker decides on xi. Here, each ωi is the realization of an exogenously drawn random vector on
the probability space. Later, in Section 6, I study a costly contemplation problem in which the
decision maker chooses endogenously the information upon which each decision is based. I finally
let Fi be the σ−algebra (on the probability space) generated by decision i’s signal ωi.6

Decision problem. The decision maker chooses jointly all her decision rules {xi (·) : Ωi → Xi}Ni=1

to maximize her expected utility

max
{xi(·)}Ni=1

E
[
u
(
x1 (ω1) , · · · , xN (ωN) , θ⃗

)]
. (2)

The only restriction embedded in (2) is an information constraint: each decision i needs to be a
function of its signal ωi.

Mathematically, the problem set up in (2) is essentially a “team” problem in the sense of
Marschak and Radner (1972). In Marschak and Radner (1972), the objective is the common
payoff of the team, and the constraint is a team-member-specific information constraint. In the
single-agent multiple-decision context studied here, one can think the decision-maker as a team
of multiple selves (Piccione and Rubinstein, 1997). The common objective is the utility of the
decision maker, and the constraint is a self-specific information constraint.

It is worth noticing that, as u is strictly concave over x⃗, the optimum of (2), if it exists, is
unique.7’8

Lemma 1 If the optimum of (2) exists, is unique.

Narrow thinking. Now, I introduce the notion of narrow thinking used throughout the paper:
different decisions are made based on different, non-nested, information.

Definition 1 A decision maker is a narrow thinker if there exists a pair of (i, j) ∈ {1, · · · , N}
such that Fi ⊈ Fj and Fj ⊈ Fi.

The above condition means that there are at least two decisions (i, j) such that, in the Black-
well’s sense, neither decision i’s signal is more informative than decision j’s signal nor decision

6Fi ≡
{
ω−1
i (B) : B ∈ Bl

}
, where Bl is the collection of Borel set on Rl and l is the dimensionality of ωi.

7Uniqueness is in the sense that, in any two optima, decision rules are the same almost surely.
8For generality, I do not restrict the potential set for each xi, Xi, to be compact. As a result, the optimum of

(2) may not exists.
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j’s signal is more informative than decision i’s signal. Equivalently, Definition 1 means that, for
the pair (i, j), decision i’s corresponding partition is neither coarser nor finer than decision j’s
corresponding partition.9

To understand what the definition of narrow thinking captures, consider a simple consumer
theory example. When the decision maker purchases food, she perfectly knows the food price.
However, she does not have the gasoline price on top of her mind, i.e. she only receives a noisy
signal about the gasoline price. When she purchases gasoline, she perfectly knows the gasoline
price, but only receives a noisy signal about the food price. Such a decision maker is a narrow
thinker, as her two consumption decisions are based on different, non-nested, information. In
Section 2.3, I further discuss the psychological justifications for narrow thinking, that is, why
different decisions are made based on different, non-nested, information.

Broad thinking. I then contrast the notion of narrow thinking with the notion of broad
thinking. The latter lets the multiple-decisions be made based on the same information.

Definition 2 A decision maker is a broad thinker if all decisions are made based on the same
information. Formally, it means, for all i ̸= j, Fi = Fj.

In the context of multiple-decision problems that are traditionally treated as static (the main
focus of the paper), the notion of broad thinking nests both classical consumer theory and a few
standard bounded rationality approaches (e.g. rational inattention and sparsity). To illustrate,
consider a standard consumer problem of demanding multiple goods. In the case of standard
consumer theory (Mas-Colell, Whinston and Green, 1995), all decisions are based on the same,
perfect, knowledge of the fundamental θ⃗, i.e. the price vector. In the case of rational inatten-
tion (Koszegi and Matejka, 2018) and sparsity (Gabaix, 2014), the decision maker has imperfect
knowledge of the fundamental θ⃗, i.e. the price vector, when making each decision. Nevertheless,
different decisions are based on the same, though imperfect, information.

2.2 Narrow Thinking as an Incomplete Information Game

Mapping to the game. The problem in (2) is a single-agent planning problem: the decision
maker chooses all decisions jointly, subject to a decision-specific information constraint.10 To
further understand the mathematical nature of the decision problem under narrow thinking in (2)

9Specifically, I use Ii to denote the partition of the state space S generated by decision i’s signal ωi. Each element
of Ii is then given by ω−1

i (y) , where y ∈ Ωi is a possible signal realization for decision i.
10In the context of broad thinking, such a decision-maker level planning problem maps to the standard practice:

given her information, the decision maker chooses all her decisions jointly to maximize her expected utility.
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and provide an alternative interpretation, it is useful to provide an equivalent, game-theoretic,
representation of (2).11 First notice, as the utility u (·) is strictly concave over x⃗, the following
decision-by-decision optimality condition is a necessary and sufficient condition for the optimum
in (2).

Lemma 2 {x∗1 (·) , · · · , x∗N (·)} solves (2) if and only if

x∗i (ωi) = argmax
xi

E
[
u
(
xi, x⃗

∗
−i, θ⃗

)
|ωi
]

∀i, ωi ∈ Ωi. (3)

Condition (3) means that, for each i, the optimal decision x∗i (ωi)maximizes the decision maker’s
expected utility, given the signal realization ωi and the optimal decision rules of other decisions.
Lemma 2 then points to the equivalence between the decision problem under narrow thinking and
an incomplete information, common interest, game G among multiple selves. In this game, each
player i corresponds to the self i, who is in charge of decision i. Condition (3) then characterizes
the optimal strategy for each self i. To define this game G formally:

1. The underlying probability (state) space (S,F , P ), the fundamental θ⃗, and signals {ωi}Ni=1

are as defined above.
2. There are N players. All players share the same payoff function u

(
x⃗, θ⃗
)
, where x⃗ =

(x1, · · · , xN) ∈ X1 × · · · × XN and xi is player i’s action.
3. Each player i’s Harsanyi type is given by her signal ωi.

Proposition 1 The Bayesian Nash Equilibrium in the above defined incomplete information,
common interest, game G among multiple selves coincides with the optimum in (2).

Narrow thinking as a formalization of within-person coordination frictions. The
game-theoretic representation then permits me to explain in what sense the narrow thinker faces
frictions in coordinating her multiple decisions. Under narrow thinking, different decisions are made
based on different, non-nested, information. In the Bayesian Nash Equilibrium of the equivalent
game, each self’s uncertainty about other selves’ information then translates into her uncertainty
about other selves’ decisions. This means that when the decision maker makes a particular decision,
she has an imperfect perception of other decisions. In this sense, the narrow thinker faces frictions in

11The main goal of the game-theoretic representation is to help clarify the mathematical nature of the decision
problem under narrow thinking. It does not mean the decision maker literally solves the Bayesian game in her mind.
One should view the analysis in the paper as a disciplined method to capture an important behavioral feature: the
decision maker often neglects other decisions’ impact when making a particular decision. As further discussed in
Section 2.3, the only departure from the standard individual decision problem is that ωi, which captures the state
of mind when the decision maker decides on xi, may not summarize all the relevant information.
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coordinating her multiple decisions. As the later analysis shows, such friction effectively attenuates
the interaction across decisions in response to shocks to the fundamental and it is as if the decision
maker “thinks narrowly.”

Under broad thinking, however, different decisions are made based on the same information.
The game among multiple selves becomes a complete information game. In the unique Bayesian
Nash equilibrium, each self’s knowledge about other selves’ information then translates into her
perfect knowledge about other selves’ decisions. The decision maker is then able to fully consider
the impact of other decisions when making a decision. In this sense, she can perfectly coordinate
her multiple decisions. It is as if all decisions are made together.

2.3 Additional Discussion

Comparison with standard sequential decisions. Though the main focus of the paper is
multiple-decision problems that are traditionally treated as static (e.g. demand of multiple goods),
it is also worth clarifying the difference between narrow thinking and the standard practice for the
sequential-decision problem. The environment set up in Section 2.1 can also be interpreted as a
sequential-decision problem in which decision i is made before decision j for all i < j. In this case,
the standard practice imposes the information of the earlier decision i is perfectly nested in the
information of the later decision j (perfect recall). Formally, it means Fi ⊆ Fj for all i < j. On the
other hand, under narrow thinking, different decisions are made based on different, non-nested,
information.

Sources of narrow thinking. Why are different decisions made based on different, non-
nested, information? There can be multiple cognitive frictions justifying narrow thinking. First, a
fundamental finding of psychological study of memory is that people have bounded recall (Kahana,
2012). For example, the recency effect in psychology documents that a person often only has
perfect recall of the last a few items she encounters. In the above consumer theory context,
such bounded recall means that when the decision maker purchases food (gasoline), she may not
perfectly remember the gasoline (food) price and consumption.

Second, narrow thinking can also arise because of heuristics and biases in decision making
(Tversky and Kahneman, 1973; Gennaioli and Shleifer (2010); Kahneman, 2011), which is closely
connected to the notion of selective retrieval from memory in cognitive psychology (Anderson,
2009). That is, when the decision maker makes a particular decision, she only evokes a very
limited amount of information stored in her memory. Kahneman (2011) and Enke (2018) use the
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“What You See Is All There Is” principle to summarize this type of cognitive friction. For example,
when the decision maker purchases food (gasoline), she only sees the food (gasoline) price, and
does not have the gasoline (food) price on top of her mind.

Finally, in section 6, I also study a costly contemplation problem: the decision maker chooses
optimally what information each decision is based upon, subject to a cognitive constraint. As
different decisions are based on different decision rules, it is optimal for different decisions’ signals
to take different forms.

In sum, due to these cognitive frictions, ωi, which captures the state of mind when the decision
maker decides on xi, may not summarize all the relevant information. This why different decisions
can be made based on different, non-nested, information.

Planning problem as an incomplete information game. The decision problem in (2) is
a single-agent planning problem with a decision-specific information constraint. I then map its
optimum to the Bayesian Nash equilibrium of an incomplete information, common interest, game
among multiple selves. The method is also reminiscent of Angeletos and Pavan (2007): they use
team theory to find the social planer’s constrained efficient allocation in a multiple-agent economy
with dispersed information and potentially conflicted interests. They then relate the constrained
efficient allocation to the equilibrium of a fictitious game.

Constrained problems. The problem considered above is an unconstrained optimization
problem. In applications, one sometimes faces a constrained problem in which the fundamental
and decisions need to satisfy

B
(
x⃗, θ⃗
)
≤ 0, (4)

where B is twice continuously differentiable and convex over x⃗.
How to guarantee the constraint is satisfied under bounded rationality is a hotly debated issue

in the literature. Here I choose a simple and standard approach, i.e. let the last decision adjust
automatically given the constraint and other boundedly rational decisions.12 Specifically, I let the
last decision, xN+1, be made with perfect knowledge about the fundamental and other decisions,
and this guarantees that (4) holds. For this to be feasible, for any given (x1, · · · , xN) ∈ X1×· · ·×XN

and θ ∈ Θ, I assume that there exists a xN+1 ∈ XN+1 such that the constraint (4) is satisfied.
For example, in the consumer theory example studied in Section 4, I let XN+1 = R, hence one
can always find an xN+1 ∈ XN+1 (possibly negative) such that (4) is satisfied. In this case, the
key friction of interest is the difficulty of coordinating the first N decisions. In fact, when the

12For another example of a similar approach, Sims (2003) lets the saving adjust automatically based on the budget
constraint and the rationally inattentive consumption decision.
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constraint in (4) always binds in the optimum, one can use it to substitute xN+1 in the utility and
the problem becomes an unconstrained problem in (2) for the first N decisions.

3 An Illustrative Example

I first use a simple example to illustrate a few key abstract insights about the optimal behavior
under narrow thinking. As each self of the narrow thinker has an imperfect perception of the
others’ decisions, each self’s beliefs about the others’ decisions are anchored in response to shocks
to fundamentals. I then show how such belief anchoring leads to an effective attenuation of
interaction across decisions and a dampening of indirect effects — the movement of one decision
driven by the movement of other decisions. These insights will be useful later in more concrete
applications.

3.1 Environment

Utility. There are N decisions x⃗ = (x1, · · · , xN) ∈ RN and N fundamentals θ⃗ = (θ1, · · · , θN) ∈
RN . The decision maker’s utility is quadratic and given by:

u
(
x⃗, θ⃗
)
= −1

2

N∑
i=1

(xi − θi)
2 +

∑
1≤i<j≤N

γi,j + γj,i
2

xixj, (5)

where, for all i ̸= j, γi,j = γj,i and, for all i,
∑

j ̸=i |γi,j| < 1, which guarantees that u is strictly
concave over x⃗. For notation simplicity, I also set γi,i = 0 for all i.

The decision maker’s utility therefore has two components. The first captures how closely each
of her decisions xi can track its “local fundamental,” θi ∼ N

(
θ̄i, σ

2
θi

)
. The second captures how

her different decisions interact with each other. The scalar γi,j then parametrizes the strength of
the interaction from decision j to decision i. Finally, different θis are independent from each other.

Optimal decision rules. The optimal decision rule for each decision i can be characterized
by the decision specific optimality condition in (3). Taking the first order condition of (3), we have

E

[
∂u

∂xi

(
x∗i (ωi) , x⃗

∗
−i, θ⃗

)
|ωi
]
= 0 ∀i, ωi ∈ Ωi. (6)
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Together with the utility in (5), the optimal decision rule for each i is then given by:

x∗i (ωi) = Ei

[
BRi

(
x⃗∗−i; θ⃗

)]
≡ Ei [θi]︸ ︷︷ ︸

direct effect

+Ei

[∑
j ̸=i

γi,jx
∗
j (ωj)

]
︸ ︷︷ ︸

indirect effect

∀i, ωi ∈ Ωi, (7)

where Ei [·] = E [·|ωi] and the signals {ωi}Ni=1 will be specified shortly.
For each i, the local fundamental θi summarizes the fundamental θ⃗’s direct influence on the

optimal decision i, holding other decisions fixed. In the equivalent game among multiple selves,
θi captures the fundamental’s influence on self i’s best response function, i.e. the “intercept” of
BRi

(
x⃗∗−i; θ⃗

)
.

On the other hand, γi,j summarizes how decision i is influenced by decision j. A positive
(negative) γi,j means that self i’s decision increases (decreases) with self j’s decision. In the
equivalent game among multiple selves, γi,j captures the slope of the best response function BRi (·)
with respect to xj. In fact, one can think of (7) as the best response function of a linear network
game (Bergemann, Heumann and Morris, 2017; Golub and Morris, 2017a,b; Denti, 2017a). The
matrix Γ = {γi,j}1≤i,j≤N can then be interpreted as the interaction matrix, where γi,j captures the
“weight” that self i assigns to self j’s decision in her best response function.

In fact, the optimal decision rules here are essentially the same as those in the quasi-linear
consumer theory context in Section 4.2 (baring an approximation there). There, each decision i is
the consumption of the good i, and its “local fundamental” is (a negative multiple of) the price of
the good i, pi. The interaction across decisions comes from the complementarity/substitutability
embedded in the utility function, i.e. the second-order cross-derivatives of the utility function.

Information. To isolate the friction of interest, I study the following narrow thinker: each self
i ∈ {1, · · ·N} , who is in charge of decision i, perfectly knows its local fundamental θi, but only
receives a noisy signal about each of the other θj: si,j = θj + ϵi,j, ϵi,j ∼ N

(
0, σ2

i,j

)
. Noises ϵi,j are

independent from fundamentals and each other. To summarize, ωi =
{
{si,j}j∈{1,··· ,N}

}
, where for

notation simplicity, si,i = θi and σ2
i,i = 0, i.e. each self i has a perfect signal about θi. As each self

i perfectly knows its local fundamental θi, the direct effect in (7) is the same as in the frictionless
case, and the friction comes solely from each self’s imperfect perception of other decisions.13

The above information structure captures the idea that each self has more precise information
13This case then offers a sharp contrast from the one considered in rational inattention and sparsity. There, the

key friction is the decision maker’s uncertainty about the fundamental, that is, the frictional direct effects. On the
other hand, the decision maker perfectly knows her other decisions when making a particular decision.
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about the fundamental that directly influences her decision, the form of narrow thinking that
is of interest throughout the paper. A similar information structure arises endogenously in the
costly contemplation problem studied in Section 6, when the decision maker chooses optimally
the information upon which each decision is made: the decision maker has incentives to let each
self i receive a more precise signal about her own local fundamental θi than other selves. In the
context of quasi-linear consumer theory (Section 4.2), as mentioned above, the local fundamental
θi corresponds to (a negative multiple of) the price of the good i, pi. The information structure
then means that each self i perfectly knows the price of the good she buys, pi, and receives a noisy
signal of each of the other prices pj.

3.2 Belief Anchoring

Question of interest. I now turn to the question of interest: how the narrow thinker’s decisions
respond to shocks to each of the fundamental θk.

Belief anchoring. From (7), we know these responses depend on both the direct effects
(frictionless) and the indirect effects (frictional). To understand these indirect effects, we need to
understand how each self i’s beliefs about how other decisions, i.e. Ei

[
x∗j
]
, respond to shocks to

θk. Under narrow thinking, as each self has an imperfect perception of other selves’ decisions, this
type of beliefs will be anchored.

Specifically, I use E [·|θk] to denote the conditional expectation with respect to θk. For i ̸= j,
E
[
Ei
[
x∗j
]
|θk
]
captures how much self i’s belief about decision j moves with respect to shocks to θk

and E
[
x∗j |θk

]
captures how much decision j itself moves with respect to shocks to θk. Proposition

2 below then shows that self i’s belief about decision j moves less than decision j itself in response
to shocks to θk, and is anchored towards the prior E

[
x∗j
]
(the unconditional mean of decision j).

Proposition 2 In response to shocks to θk, each self i’s belief about decision j ̸= i, Ei
[
x∗j
]
, is

anchored:
E
[
Ei
[
x∗j
]
|θk
]
= λi,kE

[
x∗j |θk

]
+ (1− λi,k)E

[
x∗j
]

∀k, ∀i ̸= j, (8)

where λi,k = σ2
θk

σ2
θk

+σ2
i,k

∈ (0, 1].

The degree of such anchoring is parametrized by λi,k = σ2
θk

σ2
θk

+σ2
i,k

∈ (0, 1], which is a function of
the signal-to-noise ratio of self i’s signal about θk, si,k. For self i, the signal si,k can have two roles.
First, it helps self i predict θk. Second, it helps self i predict how other decisions respond to θk.
From (7), the first role does not matter per se for the optimal xi for any i ̸= k. On the other hand,
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the second role is crucial in determining each optimal xi and the noise in such prediction leads to
the belief anchoring in condition (8).14

3.3 Effective Attenuation of Interaction

Narrow thinker’s decision functions. To facilitate the study of the narrow thinker’s response
to shocks to fundamentals, I define the narrow thinker’s decision function, xNarrow

i

(
θ⃗
)
, as

xNarrow
i

(
θ⃗
)
≡ E

[
x∗i (ωi) |θ⃗

]
∀i, (9)

where E
[
·|θ⃗
]
denotes the conditional expectation with respect to θ⃗.15 By averaging over the

realization of noises in signals, xNarrow
i

(
θ⃗
)
captures the narrow thinker’s decision as a function of

fundamentals, and can be directly compared to

{
xStandard
i

(
θ⃗
)}N

i=1
= arg max

{xi}Ni=1

u
(
x1, · · · , xN , θ⃗

)
, (10)

the standard, frictionless, decision function in which each decision is made with perfect knowledge
of all the fundamentals. From the perspective of an econometrician who has data on fundamentals
and decisions (but not the signal of each narrow thinker’s self), xNarrow

i

(
θ⃗
)
defined in (9) is also

the object of interest.
Effective attenuation of interaction. Now we study how the narrow thinker’s decisions

respond to shocks to each fundamental θk, i.e.
{
∂xNarrow

i

∂θk

}N
i=1

.16 For each decision i, the belief
anchoring in (8) dampens the impact from other decisions xj to xi in response to the shock, and
leads to an effective attenuation of interaction across decisions.

14As each self i perfectly knows her own θi, we have λi,i =
σ2
i,i

σ2
θi

+σ2
i,i

= 1. That is, self i can perfectly predict how
other xjs respond to her own local fundamental θi, i.e., E

[
Ei

[
x∗j
]
|θi
]
= E

[
x∗j |θi

]
. This is a corner case as self i

perfectly knows her own θi. Even so, x′is response to θi will still deviate from the standard benchmark, as other xjs
respond differently to θi. In the consumer theory context studied in the next section, this point will be explained
further when I study the own-price demand elasticities in Propositions 7 and 8.

15Without taking conditional expectation with respect to θ⃗, narrow thinking then provides a model of stochastic
choice. This is a direction worth further exploring. Different from the logit model commonly studied in the stochastic
choice literature, the narrow thinker’s problem studied here is a continuous, multiple-decision, problem.

16For each i, the xNarrowi

(
θ⃗
)

defined in (9) is linear in its arguments. This is because fundamentals and signals
are Normally distributed and the optimal decision rule in (7) is linear. This permits me to characterize decision
functions’ partial derivatives in Proposition 3.
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Proposition 3 In response to shocks to θk, the effective interaction across decisions is attenuated:

∂xNarrow
1

∂θk
∂xNarrow

2

∂θk

· · ·

∂xNarrow
N

∂θk


=
(
IN − Γ̃k

)−1



0

· · ·
1

· · ·
0


, (11)

where Γ̃k captures the narrow thinker’s effective interaction matrix in response to θk with

Γ̃k =



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ,

and ◦ is the element by element product.

Proposition 3 is the main result of this Section. From the above condition, one can see that,
in response to shocks to θk, for each pair of decisions (i, j), the effective degree of interaction
from decision j to decision i, Γ̃k (i, j), is attenuated by a factor λi,k between 0 and 1. That is, in
response to shocks to θk, because self i’s belief about decision j is anchored, an one unit increase
(decrease) in xj only effectively increases (decreases) xi by λi,kγi,j. It is as if self i cares less
about the influence of other decisions, and she “thinks narrowly.” The result is also reminiscent
of Bergemann, Heumann and Morris (2017): in a multiple-agent network game setting, they find
that incomplete information attenuates the interaction across players.

One interesting feature about Proposition 3 is that the degree of such effective attenuation of
interaction is shock specific (the matrix Γ̃k depends on k). As a result, the analysis here allows the
following possibility: if a fundamental θk is volatile, each self may pay “more attention” to θk and
all selves’ signal about θk will be more precise. Different selves then better coordinate in response
to θk, that is, there is less attenuation of interaction in response to θk driven by narrow thinking.
In fact, in the context of the costly contemplation problem studied in Section 6 where the decision
maker chooses optimally what information each decision is based upon, the above scenario arises
endogenously in Proposition 25 in Appendix E.
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3.4 Dampening of Indirect Effects

Dampening of indirect effects. As defined in condition (7), each decision i’s response to shocks
to fundamentals can be decomposed into a direct and an indirect effect. As each self i knows her
local fundamental θi, the direct effect is maintained under narrow thinking. On the other hand, as
each self has an imperfect understanding about other selves’ decisions, the indirect effect should
be dampened under narrow thinking in response to shocks to fundamentals.

To formalize the above intuition, one needs to deal with an additional complication. There
could be some components of the indirect effect that positively influence the optimal decision i

and there could be some components of the indirect effect that negatively influence the optimal
decision i. Dampening of each component may not mean dampening of the net total. Nevertheless,
as the above logic suggests, I can further decompose the indirect effect into positive and negative
components. I can then show each component is dampened under narrow thinking.

Formally, in the current environment, the absolute value of all eigenvalues of the interaction
matrix Γ is less than one,17 and the game among multiple selves is solvable by iterating the best
response:

x∗i (ωi) = θi +
∑
j ̸=i

γi,jEi
[
x∗j
]
= θi +

∑
j ̸=i

γi,jEi [θj] +
∑
j ̸=i

γi,j

(∑
l ̸=j

γj,lEi [Ej [x
∗
l ]]

)

= θi︸︷︷︸
Direct

+
∑
j ̸=i

γi,jEi [θj] +
∑
j ̸=i

γi,j

(∑
l ̸=j

γj,lEi [Ej [θl]]

)
+ · · ·︸ ︷︷ ︸

Indirect

. (12)

The above condition means that, as the indirect effect on xi comes from self i’s belief about
other decisions, it in turn depends on self i’s belief about other selves’ local fundamentals, self i’s
belief about other selves’ beliefs about other selves’ local fundamentals, ad infinitum. I can then
define xInd,+

i (ωi) , the indirect effect that positively influences xi, by collecting all belief terms with
positive coefficients. I can also define xInd,−

i (ωi) , the indirect effect that negatively influences xi,
as the collection of all belief terms with negative coefficients.

I then compare the size of each component of the narrow thinker’s indirect effect with its fric-
tionless counterpart (indexed by the superscript Standard, as above). To facilitate the comparison,
similar to (9) above about the narrow thinker’s decision function, I average the realization of noises
in signals, and define xInd,+,Narrow

i

(
θ⃗
)
≡ E

[
xInd,+
i (ωi) |θ⃗

]
and xInd,−,Narrow

i

(
θ⃗
)
≡ E

[
xInd,−
i (ωi) |θ⃗

]
.

17This is because, for all i,
∑

j ̸=i |γi,j | < 1.
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Proposition 4 For each decision xi and in response to shocks to each θk, each component of the
indirect effect is dampened under narrow thinking:∣∣∣∣∣∂xInd,+,Narrow

i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,+,Standard

i

∂θk

∣∣∣∣∣ and
∣∣∣∣∣∂xInd,−,Narrow

i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,−,Standard

i

∂θk

∣∣∣∣∣ ∀i, k.

The result comes from the general property that beliefs of higher-order are anchored more in
response to shocks (e.g. Samet, 1998 and Angeletos and Lian, 2018). In environments in which
one component of the indirect effect dominates the other,18 Proposition 4 then means the net total
of the indirect effect is dampened. In fact, this will be the case for most applications studied in
the rest of paper. Depending on whether the net total of the indirect effect works in the same
direction as the direct effect, such a dampening of the indirect effect can then translate into either
under- or over-reaction with narrow thinking. This is a main theme throughout the rest of the
paper.

3.5 Additional Discussion

Correlated fundamentals and rational confusion. In the analysis above, I let different θis
be uncorrelated. When different θis are correlated, an additional channel, “rational confusion,”
emerges: as self i perfectly knows her own local fundamental θi but only receives a noisy signal
about other θj, to the extent that θi and θj are correlated, self i can use θi to forecast θj. Given
the interpretation that each self’s imperfect knowledge about other selves’ local fundamentals
comes from cognitive frictions, one may not want to take into account such rational confusion
considerations. In fact, when different θis are correlated, this section’s analysis can be interpreted
as a characterization of the narrow thinker’s behavior when such rational confusion is shut down.
That is, each self i’s forecast about θj is based on her signal about θj, si,j, solely. In this case,
Ei [θj] = E [θj|si,j] . In later analysis, I also establish results about the behavior under narrow
thinking allowing such rational confusion considerations, e.g. Proposition 22 in Appendix D.19

Frictional response to shocks and unbiasedness on average. The above frictional
18For example, in the context here, if all γi,j > 0, all indirect effects are in the same direction. For all i, all

indirect effects are captured by xInd,+i (ωi) , and xInd,−i (ωi) is zero.
19Alternatively, one can derive robust predictions that are independent from the correlation structure of the fun-

damental and the information structure, along the line of Bergemann and Morris (2013) and Bergemann, Heumann
and Morris (2017). In the narrow thinking context, predictions that can be delivered along this line seem to be
quite limited. Still, in Appendix F, I am able to establish a version of the dampening of indirect effects result in
Proposition 4 under general information structure. A difference compared to Bergemann and Morris (2013) and
Bergemann, Heumann and Morris (2017) is that I focus on conditional response to shocks, while they mainly focus
on volatility.
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behavior under narrow thinking is about the response to fundamental shocks. As the narrow
thinker’s prior about the fundamental coincides with the statistical mean, the narrow thinker’s
behavior is unbiased on average.

Proposition 5 On average, each of the narrow thinker’s decisions coincide with the frictionless
one:

E
[
xNarrow
i

]
= E

[
xStandard
i

]
∀i, (13)

where E [·] averages over the realization of all fundamental and signals.

Comparison with rational inattention. It is worth clarifying the difference between narrow
thinking and rational inattention in the context of the illustrative example here. When applying
rational inattention to static multiple-decision problems (e.g. Koszegi and Matejka, 2018), dif-
ferent decisions are based on the same, though imperfect, information about the fundamentals.
As a result, each decision is made with perfect knowledge of other decisions. In fact, a form
of certainty equivalence emerges for the rationally inattentive decision maker: one can use the
standard, frictionless, decision function, xStandard

i (·) , to characterize her decision. Specifically, in
the environment considered here, the rationally inattentive decision maker’s decision i is given by
xStandard
i

(
E
[
θ⃗|ω
])

, where ω is her imperfect, but common, signal. Narrow thinking, on the other

hand, breaks such certainty equivalence: x∗i (ωi) ̸= xStandard
i

(
E
[
θ⃗|ωi

])
.

4 Consumer Theory under Narrow Thinking

In this section, I study a classical consumer problem of demanding multiple goods under narrow
thinking. To tease out the mechanism, I first solve two polar cases. In the first, the decision
maker’s utility is quasi-linear. The interaction across decisions comes from the complementar-
ity/substitutability embedded in the utility function, and there are no income effects. In the
second, the decision maker’s utility is separable but there are income effects. The interaction
across decisions then comes from the budget constraint. In this case, as different selves of the
narrow thinker have different beliefs about the marginal value of money, the fungibility principle
is violated: she behaves as if the money allocated to one good cannot perfectly substitute the
money allocated to another. The narrow thinking approach then generates a model of mental
accounting-type behavior. It provides an alternative to the explicit mental budgeting model in
Heath and Soll (1996) and offers new testable predictions. I finally study the general case with
both non-separable utility and income effects.
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4.1 Set up

Set up. The decision maker’s utility depends on her consumption of N goods, (x1, · · · , xN) , and
the numeraire y (which can be interpreted as consumption in the future or money). Her utility is
given by ũ (x1, · · · , xN , y) , where ũ is strictly increasing in each of her arguments, strictly concave
and twice continuously differentiable. She is subject to the budget constraint

∑N
i=1 pixi + y ≤ w,

where pi is good i’s price and w is the decision maker’s total wealth (treated as a constant, as I am
interested in response to shocks to prices here).20 Along the line of the discussion about constraint
problems in Subsection 2.3, I always let the last decision, y, be made with perfect knowledge about
prices and other decisions. Note that I let ũ be well defined for all y ∈ R. This allows the possibility
that the “residual decision” y is negative and guarantees that one can find a y such that the budget
constraint is satisfied.

As the budget constraint always binds in the optimum, one can use the budget constraint to
substitute y:

u (x1, · · · , xN , p⃗) = ũ

(
x1, · · · , xN , w −

N∑
i=1

pixi

)
. (14)

This is then nested in the unconstrained problem in (2), with θ⃗ = p⃗.

Information. In this context, it is natural to consider the following case of narrow thinking:
when self i decides on the consumption xi, she perfectly knows its price pi, but only receives
noisy signals about other prices. Similar to the information structure considered in Section 3, it
captures the idea that each self i has more precise knowledge about her “local fundamental.” It is
also consistent with the “What You See is All There Is” principle raised in Kahneman (2011).

Specifically, I let prices and signals be log-normally distributed. This facilitates the analytical
characterization of the narrow thinker’s behavior and makes sure that prices are always positive.
Each self i ∈ {1, · · · , N} of the narrow thinker, who is in charge of purchasing good i, perfectly
knows pi ∼ logN

(
log p̄i, σ2

pi

)
, but receives a noisy signal about each of the other pj: si,j = pjϵi,j,

with ϵi,j ∼ logN
(
0, σ2

i,j

)
and σ2

i,j > 0. To summarize, for i ∈ {1, · · · , N} , self i’s signal is given by
ωi =

{
{si,j}j∈{1,··· ,N}

}
, where for notation simplicity, si,i = pi and σ2

i,i = 0, i.e. each self i has a
perfect signal about pi. Finally, different ps and ϵs are independently distributed and there is no
“rational confusion.”

Log-linearization. As I am mostly interested in the response to small temporary price shocks,
I will work with log-linearized optimal decision rules throughout. This approximation allows me

20For notation simplicity, I normalize the price of the last good y is normalized to 1. In fact, as long as its price
is common knowledge across different selves, this normalization is without loss of generality.
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to analytically characterize the narrow thinker’s behavior. Such an approximation is standard in
the applied literature and provides simple and interpretable formula for commonly used utility
functions (e.g. CES and CRRA utility). It also allows me to state the prediction about the narrow
thinker’s behavior in terms of elasticities, better connecting to the empirical literature.21

Specifically, I log-linearize around the point where each price is fixed at p̄i and each decision
is made with perfect knowledge of all prices: {x̄i}Ni=1 = argmax{xi}Ni=1

u (x1, · · · , xN , p̄1, · · · p̄N) . I
then use a hat over a variable to denote its log-deviation from this point, e.g. x̂i = log xi

x̄i
.

4.2 The Case Without Income Effects

Utility. In this subsection, I study a commonly used utility function, namely CES with quasi-
linear utility. Specifically, the decision maker’s utility in (14) is given by

u (x1, · · · , xN , p⃗) =

(∑N
i=1

1
N
x

ϱ−1
ϱ

i

) ϱ(1−κ)
ϱ−1

1− κ
+ w −

N∑
i=1

pixi, (15)

where ρ > 0 captures the elasticity of substitution between each pair of goods (in standard con-
sumer theory), and κ > 0 captures the rate at which the marginal value of consumption moves

with respect to the “total consumption,” X =

(∑N
i=1

1
N
x

ϱ−1
ϱ

i

) ϱ
ϱ−1

. The utility function in (15) is
strictly concave over x⃗. As discussed above, I study the following narrow thinker: when her self
i decides on the consumption xi, she perfectly knows its price pi, but only receives noisy signals
about other prices. The distributions of prices and signals are as specified above.22

Optimal consumption decisions. The narrow thinker’s optimal consumption decision for
each good i is given by the decision-by-decision optimality in (3). Given the environment in (15)
and taking first order condition of (3), we have, for each i,

Ei

[
∂u

∂xi

(
x∗i (ωi) , x⃗

∗
−i
)]

= Ei

[
1

N
x∗i (ωi)

− 1
ϱX

1
ϱ
−κ
]
= pi. (16)

I then log-linearize the above condition and use a hat over a variable to denote its log-deviation
21One can also work with linearized optimal decision rules. Then, the prediction about the narrow thinker’s

behavior would be stated in terms of gradients instead of elasticities.
22In the current CES context, I also let x̄i be equal across i. This will lead to the symmetric optimal consumption

decision rules in (17). This scenario arises when p̄i = p̄j for each i ̸= j.
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from the point of log-linearization, e.g. x̂i = log xi
x̄i
. Collecting terms, we have

x̂∗i (ωi) = Ei
[
BRi

(
x⃗∗−i; p⃗

)]
≡ −ψp̂i︸ ︷︷ ︸

direct effect

+
∑
j ̸=i

γEi
[
x̂∗j (ωj)

]
︸ ︷︷ ︸

indirect effect

, (17)

where ψ = 1
1− 1

N
ϱ

+ κ
N

> 0 and γ =
( 1
ϱ
−κ) 1

N

1− 1
N

ϱ
+ κ

N

∈
(
−1, 1

N−1

)
. The first term in (17) captures the

direct effect of price changes on xi, that is, the effect of p⃗ holding other decisions fixed. ψ then
parametrizes the size of such an effect. In the quasi-linear environment here, such a direct effect
on xi depends solely on pi. As self i perfectly knows the price of the good she purchases, the size
of such a direct effect is the same as the one in standard consumer theory.

The second term in (17) captures the indirect effect on xi, that is, other consumption de-
cisions’ impact on xi. A positive (negative) γ means that each pair of goods are complements
(substitutes),23’24 and that the optimal consumption of good i increases (decreases) with self i’s
belief about each of the other consumption xj.

In fact, the optimal decision rules in (17) are exactly the same as those in the illustrative
quadratic example, (7). The lessons from Section 3 then remain valid: in response to shocks to
the fundamental, each self’s beliefs about the others’ decisions are anchored; and narrow thinking
leads to an effective attenuation of interaction across decisions and a dampening of indirect effects.

Narrow thinker’s demand. Now I translate those abstract insights (effective attenuation of
interaction and dampening of indirect effects) into predictions about the narrow thinker’s behavior.
Specifically, the main question of interest is how the narrow thinker’s consumption responds to
price changes. Similar to (9), for each i, I define the narrow thinker’s (log) demand as a function
of (log) prices:

x̂Narrow
i (p̂1, · · · , p̂N) ≡ E [x̂∗i (ωi) |p̂1, · · · , p̂N ] ∀i, (18)

averaging over the realization of noises in signals. It can then be directly compared to x̂Standard
i (p̂1, · · · , p̂N) ,

the (log) demand function in standard consumer theory, in which each consumption decision is
made with perfect knowledge of all prices.

For i ̸= j,
∂x̂Narrow

i

∂p̂i
and ∂x̂Narrow

i

∂p̂j
then capture consumption i’s own- and the cross-price elasticities

for the narrow thinker, while ∂x̂Standard
i

∂p̂i
and ∂x̂Standard

i

∂p̂j
capture consumption i’s own- and the cross-

price elasticities in standard consumer theory.
23In the quasi-linear context here, there is no difference between gross and net complements (substitutes).
24From the expression of γ, we know that if the elasticity of substitution is large, i.e. ϱ > 1

κ , γ < 0.
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Cross-price demand elasticities. From condition (17), we know that cross-price demand
elasticities are driven solely by changes of each self’s beliefs about the others’ decisions, i.e. indirect
effects. Not surprisingly, from Proposition 2 (belief anchoring) and Proposition 4 (dampening of
indirect effects), cross-price demand elasticities are typically attenuated under narrow thinking.

Proposition 6 All of the narrow thinker’s cross-price demand elasticities are attenuated:∣∣∣∣∂x̂Narrow
i

∂p̂j

∣∣∣∣ ≤ ∣∣∣∣∂x̂Standard
i

∂p̂j

∣∣∣∣ ∀i ̸= j,

when at least one of the following three conditions hold: 1) Complements, i.e. γ > 0. 2) Two
goods, i.e. N = 2. 3) Symmetric information, i.e. λi,j ≡

σ2
pj

σ2
pj

+σ2
i,j

= λ for all i ̸= j.

In the case of substitutes without symmetric information, an intriguing possibility arises: it is
not always the case that all of the cross-price elasticities are attenuated. This possibility contrasts
with the prediction under rational inattention and arises because of the coexistence of opposing
indirect effects discussed in Proposition 4. Such possibility is discussed further in the proof of
Proposition 6.25

Own-price demand elasticities. We now turn to own-price demand elasticities. Interest-
ingly, even though each self perfectly knows the price of the good she buys, own-price elasticities
are attenuated under narrow thinking. That is, the narrow thinker’s consumption of each good is
excessively smooth in response to changes to the price of that good.

Proposition 7 For each i, the narrow thinker’s consumption xi decreases (increases) less in
response to positive (negative) shocks to pi :

∂x̂Standard
i

∂p̂i
≤ ∂x̂Narrow

i

∂p̂i
< 0 ∀i. (19)

Moreover, the inequality is strict when γ ̸= 0 (when the indirect effect is non-zero).
25As an example, fix i ̸= j. Let both self i and self j perfectly know pi, but let other selves do not have knowledge

about the shock to pi. That is, λj,i = 1 and λl,i = 0 for all l ̸= i, j. Consider a positive shock to pi. An increase
in pi has a negative direct effect on xi. As different goods are substitutes, the consumption of other goods should
increase. However, for all l ̸= i, j, xl does not respond to the shock. As a result, self j, who does know the shock,
increases xj more. That is, her cross-price elasticity is larger under narrow thinking. Such possibility arises because
of the coexistence of opposing indirect effects. The increase in pi has two opposing indirect effects on xj . First, an
increase in pi will decrease xi, which will in turn increase xj . Second, an increase in pi will decrease xi, which will
in turn increase other xl and then in turn decrease xj . Under the information structure considered, the first type of
indirect effect is maintained while the second type of indirect effect is attenuated. Together, it leads to an increase
in the cross-price elasticity is under narrow thinking.
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To understand (19), let us first consider the complements case with γ > 0. From (17), we
know an increase in pi will have a negative direct effect on xi. As different goods are complements,
the consumption of other goods xj will also decrease. Such an decrease will further decrease xi,
generating a negative indirect effect on xi. Under narrow thinking, as discussed above, other
consumption xj decreases less in response to an increase in pi. The indirect effect on xi is then
dampened, and xi decreases less in response to an increase in pi.

We now turn to the substitutes case with γ < 0. Similarly, an increase in pi has a negative
direct effect on xi. As different goods are substitutes, the consumption of other goods xj will now
increase. Such an increase will then further decrease xi, again generating a negative indirect effect
on xi. Under narrow thinking, other consumption xj increases less in response to an increase in
pi.26 The indirect effect on xi is dampened, and xi decreases less in response to an increase in pi.

In sum, as the indirect effect of pi on xi comes from a second degree interaction, the indirect
effect is always in the same direction as the direct effect. The dampening of the indirect effect
then leads to excess smoothness, i.e. the attenuation of own-price elasticities in Proposition 7.

Slutsky asymmetry. Under narrow thinking, the Slutsky matrix can be asymmetric. For
example, when N = 2, as long as λ1,2 ̸= λ2,1, that is, when the signal-to-noise ratio of the first
self’s signal about p2 differs from the signal-to-noise ratio of the second self’s signal about p1, the
Slutsky matrix becomes asymmetric.27

Testable predictions. The above discussion also points out testable differences between the
narrow thinker’s demand and the demand under standard consumer theory. First, the Slutsky
matrix under narrow thinking can be asymmetric. Second, in the same spirit of Proposition 5 in
Section 3, the narrow thinker’s frictional behavior studied above is about the response to price
shocks. The narrow thinker’s demand elasticity estimated based on temporary price shocks can
then differ from the one estimated based on persistent price differences. This is different from the
standard consumer theory. Appendix B provides further discussion along this line.

4.3 Income Effects and the Violation of the Fungibility Principle

I now turn to the second case with income effects but separable utility, polar to the first. The
interaction across different decisions now comes from the budget constraint. In this context,

26As discussed above, there is a possibility that some xj may increase more in response to an increase in pi under
narrow thinking. However, in this context, the total indirect effect on xi, summing over the influence of all other
consumption, is always dampened under narrow thinking.

27Note that the Slutsky matrix is about demand gradients instead of demand elasticities. To derive demand
gradients from demand elasticities (at the point of log-linearization), we have, for all i, j, ∂xNarrow

i

∂pj
=

∂x̂Narrow
i

∂p̂i
x̄i
p̄j
.
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different selves have different beliefs about the marginal value of money. The narrow thinker then
violates the fungibility principle: she behaves as if the money allocated to one good cannot perfectly
substitute the money allocated to another. Such a violation then generates mental accounting-type
behavior which has “no agreed-upon model” (Farhi and Gabaix, 2015),28 e.g. excess sensitivity to
own-price changes (Hastings and Shapiro, 2013).29 To illustrate how narrow thinking can generate
such excess sensitivity, consider an increase in the food price. Under standard consumer theory,
the decision maker can coordinate all her decisions by decreasing other consumption to smooth
out the drop in food consumption. Under narrow thinking, however, the coordinated response
of other consumption is limited, the indirect effects from smoothing out other consumption are
dampened, and the food consumption will decrease more. By providing a model of the violation of
the fungibility principle without relying on the explicit mental budgeting model in Heath and Soll
(1996), the narrow thinking approach to mental accounting also generates new testable predictions.

Environment. In the consumer problem set up in Section 4.1, I let the consumer’s utility be
given by

ũ (x1, · · · , xN , y) =
N∑
i=1

vi (xi) + h (y) . (20)

In (20), vi (xi) = x
1−κi
i

1−κi captures the consumer’s utility from consuming good i, where κi > 0

parametrizes the rate at which the marginal utility of consuming good i moves with respect to
xi. A higher κi means the demand for good i is less elastic.30 h (y) , a strictly concave function
on R,31 captures the consumer’s utility from the last decision, which can be interpreted as utility
from the consumption in the future or the value of money. The decision maker is subject to the
budget constraint:

∑N
i=1 pixi + y ≤ w, where pi is the price of the good i and w is her total

wealth (treated as a constant now). As discussed above, I always let the last decision, y, be made
with perfect knowledge about all the fundamentals and other decisions, which guarantees that
the budget constraint is satisfied. Same as the previous section, I consider the following narrow
thinker: each self i ∈ {1, · · · , N} of the narrow thinker decides on the consumption xi; she perfectly

28By mental accounting-type behavior, I mean behavior akin to that generated by an explicit mental budget as
in Heath and Soll (1996). An explicit mental budget means, for example, that the consumer allocates exactly 100
dollars to food spending. The discussion after Proposition 8 will elaborate further.

29Hastings and Shapiro (2013) find that, when gasoline prices rise, consumers substitute to lower octane gasoline,
to an extent that cannot be explained by neoclassical effects.

30Holding the spending share for good i fixed, a higher κi means a less elastic Marshallian demand for good i. In
fact, in the frictionless consumer theory, −1/κi captures the “Frisch” elasticity of demand for good i, that is, the
elasticity holding the marginal utility of money fixed.

31This allows the possibility that the “residual decision” y is negative and guarantees that the budget constraint
will always be satisfied.
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knows its price pi, but only receives noisy signals about other prices. The distributions of prices
and signals are as specified above.

Optimal consumption decisions. The optimal decision for each self i ∈ {1, · · · , N}, x∗i (ωi) ,
must satisfy

v
′

i (x
∗
i (ωi))︸ ︷︷ ︸

marginal utility of consuming good i

= piEi

 h′ (y∗)︸ ︷︷ ︸
marginal value of monery

 . (21)

From each self i’s perfective, her expected marginal rate of substitution between the consumption xi
and the consumption y should equal pi. This condition holds because the last decision is made based
on perfect knowledge, and the standard perturbation argument holds between the consumption xi
and y.

I then log-linearize the above condition and the budget constraint, and use a hat over a variable
to denote its log-deviation from the point of log-linearization, e.g. x̂i = log xi

x̄i
. The optimal decision

rule (21) for each i then becomes

−κix̂∗i (ωi) = p̂i − κhEi [ŷ
∗] , (22)

where −κix̂∗i (ωi) captures the marginal utility of consuming good i, −κhEi [ŷ∗] captures self i’s
belief about the marginal value of money and κh = −h

′′
(ȳ)ȳ

h′(ȳ)
captures the rate at which the marginal

value of money moves with respect to y (at the point of log-linearization).
The log-linearized budget constraint is given by

N∑
i=1

µi (x̂
∗
i (ωi) + p̂i) + µyŷ

∗ = 0, (23)

where µi = p̄ix̄i
w

and µy = ȳ
w
are the spending share of good i and y at the point of log-linearization.

To see how the income effects emerge in the current environment, note that an shock to any p̂j
directly influences the budget constraint (23) and thus ŷ∗. As a result, each self i’s belief about the
marginal value of money, −κhEi [ŷ∗] , will also change. Such change will then influence the optimal
consumption for each x̂i. This channel is muted in the quasi-linear case above, as the marginal
value of money is a constant there.

Violation of the fungibility principle. From (22), one can also see that the fungibility
principle is violated under narrow thinking. As different selves have different information, they
hold different beliefs about the marginal value of money, −κhEi [ŷ∗]. From (22), the marginal value
of spending an additional unit of money on each good i,−κix̂∗i (ωi) − p̂i = −κhEi [ŷ∗] , then also
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differs.

Lemma 3 In standard consumer theory (as above, indexed by superscript Standard), the marginal
value of spending an additional unit of money on each good is the same:

− κix̂
Standard
i (p̂1, · · · , p̂N)− p̂i = −κjx̂Standard

j (p̂1, · · · , p̂N)− p̂j ∀i ̸= j. (24)

Under narrow thinking, it is possible to find a pair (i, j) of decisions such that the marginal
value of spending an additional unit of money on them differs:

− κix̂
∗
i (ωi)− p̂i ̸= −κjx̂∗j (ωj)− p̂j. (25)

Excess sensitivity to own-price changes. I then formalize how narrow thinking can gener-
ate mental accounting-type behavior, i.e. excess sensitivity to own-price changes. Similar to condi-
tion (18), for each i, I define the narrow thinker’s (log) demand function as x̂Narrow

i (p̂1, · · · , p̂N) ≡
E [x̂∗i (ωi) |p̂1, · · · , p̂N ] , averaging over the realization of noises in signals.

Proposition 8 For each good i such that κi > 1, the narrow thinker’s consumption xi decreases
(increases) more in response to positive (negative) shocks to pi :32

∂x̂Narrow
i

∂p̂i
<
∂x̂Standard

i

∂p̂i
< 0.

To see the mechanism behind the excess sensitivity, note when κi > 1, an increase in pi will
decrease the consumption of other goods, xj (both in standard consumer theory and under narrow
thinking). This is because, when κi > 1, the income effect of pi on xj (negative) will dominate
the substitution effect of pi on xj (positive). Under narrow thinking, such smoothing out from the
decrease of other consumption is limited. This dampens the indirect effect and generates a larger
drop of xi in response to an increase in pi.

One may wonder why we see over-reaction (excess sensitivity) in the own-price demand elas-
ticity, here, in Proposition 8 but under-reaction (excess smoothness) in the own-price demand
elasticity in Proposition 7. Here, when κi > 1, the indirect effect of an increase in pi on xi,

through the decrease of other consumption, positively influences xi. The indirect effect works in
the opposite direction of the direct effect. A dampening of the indirect effect under narrow think-
ing then leads to over-reaction. This contrasts with the case in Proposition 7, where the indirect

32Similar to Proposition 6, in the current environment, one can establish that all of the narrow thinker’s cross-price
demand elasticities are attenuated under narrow thinking when either N = 2 or λi,j = λ for all i ̸= j.
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effect of an increase in pi on xi is negative and works in the same direction as the direct effect. As
a result, a dampening of the indirect effect leads to under-reaction there.

Additional economic implications. First, the excess sensitivity in Proposition 8 does not
require the consumers to have an explicit mental budget as in Heath and Soll (1996). An explicit
mental budget means, for example, that the consumer allocates exactly 100 dollars to food spend-
ing. Narrow thinking nevertheless brings the consumer’s demand elasticity closer to the case of ex-
plicit mental budgeting.33 In this sense, the narrow thinker exhibits mental accounting-type behav-
ior, and the narrow thinking approach can be viewed as a “smooth version” of the explicit mental
budgeting model. The degree of the frictional behavior under narrow thinking is then summarized

by the signal-to-noise ratio of each self’s signals about other prices, i.e.
{
λi,j ≡

σ2
pj

σ2
pj

+σ2
i,j

}N
i,j=1

.

Second, when κi < 1, instead, the narrow thinker’s consumption xi drops less in response to
an increase in pi. That is, for all i, ∂x̂Standard

i

∂p̂i
<

∂x̂Narrow
i

∂p̂i
.34 This is because an increase in pi now

increases the consumption of other goods, xj, as the substitution effect of pi on xj (positive) now
dominates the income effect of pi on xj (negative). A increase in xj after an increase in pi will
then further decrease xi. This scenario falls into the case that the indirect effect works in the
same direction as the direct effect. A dampening of the indirect effect under narrow thinking then
leads to under-reaction. Interestingly, in a recent paper (Hirshman, Pope and Song, 2018), the
authors find that consumers exhibit excess sensitivity in response to gasoline price changes, but
not in response to price changes of pens, glass cleaner and paper clips. It seems possible that
the consumer’s demand with respect to gasoline is less elastic (has a higher κi). As a result, the
empirical finding is line with the prediction in Proposition 8.

Finally, the frictional behavior under narrow thinking is about the response to temporary price
shocks. The average allocation of funds across different goods under narrow thinking, neverthe-
less, may still be consistent with standard consumer theory. This is in line with Proposition 5
studied above. Such differential predictions in response to shocks versus on average are a unique
testable prediction under narrow thinking. The difference also sheds light on a key issue in Read,
Loewenstein and Rabin (1999): when the decision maker has a narrow bracket and when she has
a broad bracket. The narrow thinker has a narrow bracket, that is, she neglects the interaction
across decisions, in response to shocks. On the other hand, she has a broad bracket, that is, she
takes into account the impact of other decisions on each decision, on average.

33See the proof of Proposition 8 for a proof of this statement.
34In fact, in this case, it is possible that ∂x̂Narrow

i

∂p̂i
> 0.
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4.4 Additional Results and Discussion

Consumer theory with general non-quasi linear utility. In Section 4.2, I studied a case
in which the utility is quasi-linear and the interaction across decisions comes solely from the
complementarity/substitutability embedded in the utility function. In Section 4.3, I studied a
case in which the utility function is separable across i and the interaction across different decisions
comes solely from the budget constraint. These cases help me tease out the key mechanism behind
the narrow thinker’s frictional behavior. Now, I study the general case introduced in Section
4.1, with both non-separable utility and income effects. In this general case, the lessons from
the illustrative example in Section 3 remain valid: in response to shocks to the fundamental,
narrow thinking leads to an effective attenuation of interaction across decisions and a dampening
of indirect effects. I refer the reader to Appendix C for detail.

In terms of how each of the narrow thinker’s consumption xi responds to its own price pi, we
know that there are competing channels from Propositions 7 and 8: the attenuation of interaction
that comes from the complementarity/substitutability directly embedded in the utility function
leads to excess smoothness, while the attenuation of interaction that comes from the budget con-
straint can lead to excess sensitivity. Whether one channel dominates the other then depends
on the environment.35 On the other hand, one can establish that each of the narrow thinker’s
consumption xi responds more sluggishly to shocks to other prices pj, i.e. the attenuation of cross-
price demand elasticities, in a general non-quasilinear case with symmetry. This is Proposition 14
in Appendix C.

Cognitive inertia and the boundary of a self. In the above analysis, each self is in charge
of purchasing one good. She perfectly knows its price, and receives noisy signals about other
prices. More generally, one should define the boundary of a self as a group of decisions made
based on the same information. Such definition also connects naturally to the notion of “cognitive
inertia” in Read, Loewenstein and Rabin (1999): if multiple decisions come to the decision maker
one at a time, she will bracket them narrowly; if multiple decisions come to the decision maker
collectively, she will bracket them broadly. Using the language of this paper, in the first case,
different decisions are based on different information and made by different selves. Each decision
is then made with an imperfect understanding of other decisions. In the second case, different
decisions are based on the same information and made by the same self. Each decision is then

35In a general non-quasilinear case with symmetry, Proposition 15 in Appendix C gives conditions about when
each channel dominates.
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made with perfect knowledge of other decisions.36 In sum, as Kahneman (2011) points out, “we
tend to make decisions as problems arise.”

5 Under- and Over-reaction with Narrow Thinking

In this section, I move beyond the response to price changes, and study the narrow thinker’s
behavior in other contexts. The key lessons from the previous sections remain valid: in response
to shocks to the fundamental, narrow thinking leads to an effective attenuation of interaction across
decisions and a dampening of indirect effects. In the general multiple-decision problem introduced
in Section 2, I establish those results in Propositions 16 and 17 in Appendix D.

A point worth emphasizing is that, depending on the environment, narrow thinking can trans-
late into either over- or under-reaction. A rule of thumb is the following: when the indirect effect
works in the same direction as the direct effect, a dampening of the indirect effect under narrow
thinking often leads to under-reaction. When the indirect effect works in the opposite direction
of the direct effect, a dampening of the indirect effect under narrow thinking often leads to over-
reaction.37 The analysis also contrasts with the often-held belief that noises in the decision maker’s
mental representation of the world typically lead to under-reaction. In the rest of this Section,
I then explain how narrow thinking provides a unified framework to explain various empirical
examples of over- and under-reaction.

5.1 Under-reaction with Narrow Thinking

Excess smoothness to taste shocks. One often mentioned form of under-reaction is excess
smoothness to taste shocks, which is also connected to mental accounting. Consider an example
in Heath and Soll (1996). A consumer goes to a store, wanting to buy a pair of trousers. She
realizes that she does not like any trousers in the store (a negative taste shock), but still chooses
to buy a pair. To illustrate how narrow thinking can generate excess smoothness to taste shocks,

36As an example of the second case, consider a decision maker who plans to buy fuji and gala apples at the
supermarket. The decision maker can observe the fuji apple’s price and the gala apple’s price at the same time, and
make the consumption decisions of both goods together. The analysis in this Section in fact can easily nest this
case. If decisions (xi1 , · · · , xiK ) are made together and based on the same information, I can simply let λia,ib = 1
and λia,j = λib,j for all a, b ∈ {1, · · · ,K} and j ∈ {1, · · · , N} .

37This is called a rule of thumb instead of a proposition, because, as discussed in Proposition 4, there can be
opposing indirect effects that work in different directions. A dampening of each part of the indirect effects may
not mean the dampening of the net total. Reassuringly, this rule of thumb holds in all application in this Section.
Moreover, in a symmetric consumer theory context with income effects, I am able to formalize this rule of thumb
in Proposition 15 in Appendix C.
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consider a positive taste shock to food. Under standard consumer theory, the decision maker can
coordinate all her decisions by decreasing other consumption to help increase the food consumption,
in response to the positive taste shock. Under narrow thinking, however, such a coordinated
response is limited, and food consumption will increase less.

To formalize, consider an environment similar to the one in Section 4.3 (consumer theory with
income effects). The decision maker’s utility is given by

N∑
i=1

φivi (xi) + h (y) , (26)

where vi (x) and h (y) are defined as in Section 4.3. Here I introduce taste shocks, and φi ∼
logN

(
log φ̄i, σ2

φi

)
parametrizes the taste for good i. The decision maker needs to satisfy the budget

constraint,
∑N

i=1 pixi + y ≤ w. As above, I always let the last decision, y, be made with perfect
knowledge about all the fundamentals and other decisions, which guarantees that the budget
constraint is satisfied. As I am interested in response to taste shocks, I treat w and all ps as
constants.

Similar to the case above, I consider the following narrow thinker: each self i ∈ {1, · · · , N} of
the narrow thinker, who is in charge of purchasing good i, perfectly knows the taste φi, but receives
a noisy signal about each of the other φj. Specifically, for i ∈ {1, · · · , N} , self i’s signal is given
by ωi =

{
{si,j}j∈{1,··· ,N}

}
, where si,i = φi and, for i ̸= j, si,j = φjϵi,j, with ϵi,j ∼ logN

(
0, σ2

i,j

)
and σ2

i,j > 0. All ϵs and φs are independent from each other.
I use a hat over a variable to denote its log-deviation from the point of log-linearization.38

Similar to conditions (9) and (18), for all i, I define the narrow thinker’s (log) demand function as
x̂Narrow
i (φ̂1, · · · , φ̂N) ≡ E [x̂∗i (ωi) |φ̂1, · · · , φ̂N ] , where E [·|φ̂1, · · · , φ̂N ] averages over the realization

of noises in signals. Compared to the standard frictionless case when each decision is made with
perfect knowledge of all fundamentals (indexed by the superscript Standard, as above), one can
then establish excess smoothness to taste shocks under narrow thinking.

Proposition 9 For each good i, the narrow thinker’s consumption xi increases (decreases) less in
response to positive (negative) taste shocks to φi :

∂x̂Standard
i

∂φ̂i
>
∂x̂Narrow

i

∂φ̂i
> 0. (27)

38Specifically, I log linearize around the point where each φi is fixed at φ̄i and each decision is made with perfect
knowledge of all fundamentals.
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To see the mechanism behind the excess smoothness, note an increase in taste φi always
increases xi (a positive direct effect) and decreases the consumption of other goods xj. The
decrease of other consumption xj further increases xi (a positive indirect effect). This scenario
falls into the case that the indirect effect works in the same direction as the direct effect, and the
dampening of the indirect effect under narrow thinking leads to under-reaction. Specifically, under
narrow thinking, other xj’s coordinated decrease is limited, and the consumer increases xi less. As
a result, the narrow thinker’s consumption exhibits excess smoothness to taste shocks.39

Comfort zones. Now I turn to the context of time management and offer a novel theory of
“comfort zones:” the narrow thinker under-reacts to shocks to the attractiveness of each of her
activity.

Specifically, the decision maker’s utility is given by:

N∑
i=1

φivi (xi)− c

(
N∑
i=1

xi

)
, (28)

where xi is the time the decision maker assigns to activity i, φivi (xi) = φi
x
1−κi
i

1−κi with κi > 0

is her utility from activity i, φi parametrizes the attractiveness of activity i, c
(∑N

i=1 xi

)
is the

opportunity cost of time, and c (x) = x1+κc

1+κc
with κc > 0 is a strictly convex function. Similar to

the case above, I consider the following narrow thinker: when self i of the narrow thinker decides
on xi, she perfectly knows the attractiveness φi, but only receives noisy signals about other φjs.

In fact, the time management problem here is formally similar to the previous model of excess
smoothness to taste shocks. To see this, note that, after using the budget constraint, the decision
maker’s utility in the previous model can be written as

∑N
i=1 φivi (xi)+h

(
w −

∑N
i=1 pixi

)
, where

h is concave. Her utility in the previous model is then convex in
∑N

i=1 xi, similar to the utility in
(28) here. A result similar to Proposition 9 can then also be established here (Proposition 18 in
Appendix D). In this context, it means, under narrow thinking, the amount of time allocated for
each activity i is more sluggish in response to shocks to its attractiveness. The narrow thinker will
stay within her “comfort zones,” even if activity i becomes more attractive.

For a concrete example of the above comfort zones behavior, consider an engineering student
who decides on how much time she will spend on the economics class. She realizes the economics
class has a great professor, that is, the φi of spending time on the economics class is high. However,

39Interestingly, the excess smoothness to taste shocks to φi does not require the decision maker’s utility with
respect to that good has a high κi (recall vi (xi) = x

1−κi
i

1−κi
). This is because an increase in φi always decreases the

consumption of other goods xj .
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she is concerned that she will not decrease the amount of time spent on engineering classes. In
the end, as the student has limited time, it is hard for the engineering student to go outside of her
comfort zones and engage in the economics class, even with an excellent professor.

The small wage elasticity of daily labor supply. Another well documented empirical
example of under-reaction is the small wage elasticity of daily labor supply (Camerer et al., 1997,
Crawford and Meng, 2011, Farber, 2015, Thakral and To, 2017). In the standard labor supply
theory, when the wage on a particular day increases, the decision maker should coordinate her
behavior by increasing her labor supply on the day of wage increase and decreasing her labor
supply on other days. Such a coordinated response then generates a large elasticity of daily labor
supply. Under narrow thinking, however, labor supply on other days will not be as responsive, and
such frictions will prevent a large increase in labor supply on the day of wage increase. Proposition
19 in Appendix D formalizes how narrow thinking generates the small wage elasticity of daily labor
supply.

A few additional predictions of the narrow thinking approach emerge. First, as the narrow
thinking approach does not require the decision maker to have an explicit daily income target,
the narrow thinker’s behavior can be consistent with the empirically documented positive, but
small, wage elasticity of daily labor supply. This avoids the difficulty raised by Farber (2015),
who points out that income targeting and reference dependence model often predicts negative
wage elasticity of daily labor supply, inconsistent with the empirical evidence. Second, in line
with Proposition 5, the smaller wage elasticity of labor supply under narrow thinking is about the
response to temporary daily wage shocks. In fact, based on wage variations at longer frequency,
Fehr and Goette (2007) and Angrist, Caldwell and Hall (2017) find a larger wage elasticity of labor
supply. Third, the narrow thinking approach’s prediction is consistent the finding in Camerer et al.
(1997) and Farber (2015) that wage elasticity of daily labor supply increases with the taxi driver’s
experience. More experience is akin to an increase in cognitive capacity τ in Section 6, facilitating
the decision maker to coordinate her multiple selves.

5.2 Over-reaction with Narrow Thinking

An information-based theory of the label effect. One often mentioned form of over-reaction
is “the label effect:” consumption decisions can be sensitive to the label attached to the con-
sumer’s budget (Beatty et al., 2014,Benhassine et al., 2015,Abeler and Marklein, 2016,Hastings
and Shapiro, 2017). For example, Beatty et al. (2014) study the UK Winter Fuel Payment pro-
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gram. Despite its label, the program is in fact a mere cash transfer and there is no obligation
to spend any of the payment on fuel despite the label. Beatty et al. (2014) nevertheless find
that households increase their fuel consumption much more after receiving the Winter Fuel Pay-
ment than after receiving cash. Such behavior is inconsistent with standard consumer theory and
violates the fungibility principle.

Here, I will show how narrow thinking can generate such excess sensitivity. Similar to Section
4.3 (consumer theory with income effects), consider a decision maker whose utility is

N∑
i=1

vi (xi) + h (y) ,

where vi (x) and h (y) are defined as in Section 4.3. The decision maker is subject to the budget
constraint:

∑N
i=1 xi + y ≤ w +

∑N
i=1wi, where w is the decision maker’s initial wealth (treat as a

constant) and wi is the money labelled for the consumption of good i. Note that under standard
consumer theory (indexed by the superscript Standard, as above), consumption decisions only
depend on the total wealth level, w +

∑N
i=1wi, independent from the labels. As above, the last

self, who is in charge of the consumption of y, has perfect knowledge of all the fundamentals and
other decisions. This makes sure that the budget constraint always holds.

Let me turn to the narrow thinker. Each self i ∈ {1, · · · , N} of the narrow thinker, who is in
charge of purchasing good i, perfectly knows wi ∼ N

(
w̄i, σ

2
wi

)
, but receives a noisy signal about

each of the other wj. Specifically, for i ∈ {1, · · · , N} , self i’s information (signals) is given by
ωi =

{
{si,j}j∈{1,··· ,N}

}
, where si,i = wi and, for i ̸= j, si,j = wj + ϵi,j with ϵi,j ∼ N

(
0, σ2

i,j

)
and

σ2
i,j > 0. All ϵs and ws are independent from each other. The information structure captures the

idea that decision maker has the winter Fuel Payment on top of her mind when purchasing fuel,
but not necessarily when making other purchases.

Similar to conditions (9) and (18), for all i, I define the narrow thinker’s demand function:40

xNarrow
i (w1, · · · , wN) ≡ E [x∗i (ωi) |w1, · · · , wN ] ∀i, (29)

where E [·|w1, · · · , wN ] averages over the realization of noises in signals. Compared to the standard
frictionless case when each decision is made with perfect knowledge of all fundamentals (indexed by
the superscript Standard, as above), one can then establish the label effect under narrow thinking.

40For this application, I work with linearization instead of log-linearization, as the empirical evidence cited above
focuses on the marginal propensity to spend instead of elasticities.
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Proposition 10 1. The label effect: it is possible to find a pair (i, j) such that

∂xNarrow
i

∂wi
̸= ∂xNarrow

i

∂wj
.

2. Excess sensitivity: the narrow thinker’s consumption xi increases (decreases) more in
response to positive (negative) shocks to wi :

∂xNarrow
i

∂wi
>
∂xStandard

i

∂wi
> 0 ∀i.

Part 1 of Proposition 10 shows how narrow thinking can generate the label effect. Different
from the standard consumer theory, the label attached to each component of the total wealth level,
w +

∑N
i=1wi, is relevant for consumption decisions. As different selves of the narrow thinker have

different beliefs about shocks to each wi and hence different beliefs about the marginal value of
money, the fungibility principle is violated and the label effect emerges.

Part 2 of Proposition 10 further establishes the excess sensitivity result. To understand the
intuition behind the excess sensitivity, note that in standard consumer theory, an increase in wi

will increase the consumption of both xi (the positive direct effect) and other consumption xj. The
increase in other consumption xj then decreases xi (the negative indirect effect). This scenario
falls into the case that the indirect effect works in the opposite direction of the direct effect, and
narrow thinking leads to over-reaction.

Excess sensitivity to temporary income shocks. Similar mechanism can also explain the
excess sensitivity to temporary income shocks. As Stephens Jr and Unayama (2011), Parker (2017)
and Kueng (2018) document, such excess sensitivity cannot be fully explained by the existence of
liquidity constraints. As an example of such behavior, Thaler (1999) mentioned his own experience
after earning a speaking fee for a conference in Switzerland. He spent excessively on hotels and
meals for an additional week of vacation in Switzerland. He said he would not spend so much on the
vacation without the speaking fee. Such behavior is inconsistent with the standard consumption
smoothing behavior: the decision maker should increase her consumption by a small amount at
all points in time. Under local thinking, however, consumption at other points in time may not
be as responsive to current temporary income shocks. As a result, the local thinker increases her
current consumption more. This is Proposition 20 in Appendix D.

Temptation. Now I offer another example of over-reaction: the narrow thinker is particularly
tempted by new attractions. To illustrate, consider that each self i of the narrow thinker is in charge
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of how long she will play computer games on day i. Now a new computer game is introduced, and
the attractiveness of playing on all days increases.41 When the narrow thinker decides how long
she will play on each day i, her belief about playing time on other days is anchored. The indirect
effect from longer playing time on other days is then dampened. As a result, she will play longer
on day i. In this sense, the narrow thinker over-reacts: she is “tempted” by the new computer
game.42 This is Proposition 22 in Appendix D.

The narrow thinking theory of temptation also connects to the neglect of the “adding-up effects”
in Read, Loewenstein and Rabin (1999). In this setting, the cost of playing more computer games
on a single day is low. However, the cumulative costs can be large (e.g. opportunities costs and
eye damage), and can increase faster than the cumulative benefits. The narrow thinker, who
underestimates how long she will play on other days after the introduction of the new game, then
also underestimates the “adding-up” costs.

The temptation motive predicted by narrow thinking is particularly pronounced in response to
a new stimuli. This differs from the prediction based on self-control and habit formation (Laibson,
1997; O’Donoghue and Rabin, 1999; Gul and Pesendorfer, 2001; Fudenberg and Levine, 2006).
Moreover, this prediction can also explain the supply side of the temptation good production. As
the decision maker is particularly tempted to new attractions, the computer game company always
has incentives to develop new versions of their products.

6 Endogenous Narrow Thinking: Costly Contemplation

The previous analysis lets different decisions be made based on different, but exogenous, informa-
tion. In this section, I try to endogenize such information, in a “costly contemplation” problem.43

In this problem, besides making the multiple-decisions, the decision maker also chooses what in-
formation each decision is based upon, subject to a cognitive constraint. As different decisions
are based on different decision rules, it is optimal for different decisions’ signals to take different
forms. The analysis also provides a framework to study the optimal information choice problem

41In the model of comfort zones, I study the impact of shocks to the attractiveness of one activity. Here, the
shock of interest is a common shock influencing the attractiveness of all activities.

42Here the common increase in the attractiveness will have a positive direct effect on the playing time on each
day. As the cost of playing computer games (e.g. opportunities costs and eye damage) is convex in the total playing
time, the increase in playing time on other days will then have a negative indirect effect on the playing time on each
day. As a result, the direct effect and the indirect effect work in opposite directions, and narrow thinking leads to
over-reaction.

43As discussed in Section 2.3, there are multiple cognitive frictions justifying narrow thinking. The analysis in
this section is complementary to other justifications discussed there.
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at the decision-level, going beyond the standard rational inattention paradigm.

6.1 Set up

In this section, for notation clarity, I use bold letters to denote random variables and normal
letters to denote their realizations. Let (S,F , P ) be the underlying probability space. The decision
maker’s utility is given by u

(
x⃗, θ⃗
)
, where u is twice continuously differentiable and strictly concave

over x ∈ X1×· · ·×XN and Xi, a convex set on R, denotes the set of possible decision xi. The payoff
relevant fundamental, θ⃗, is the realization of an exogenously drawn random vector θ⃗ : S → Θ,
where Θ ⊆ RM denotes the set of possible fundamental.

I then use ωi to denote the signal (potentially multi-dimensional) under which each decision i
is made. ωi is the realization of a random vector ωi : S → Ωi, where Ωi denotes the set of possible
signal realizations for decision i. Different from Section 2, ωi, which summarizes how decision i’s
signal is generated, is chosen endogenously from a set of random vectors Ωi.

Specifically, in the costly contemplation problem, the decision maker chooses jointly the infor-
mation upon which each decision is made upon {ωi ∈ Ωi}Ni=1, and the decision rules {xi (·) : Ωi → Xi}Ni=1.

She maximizes her expected utility, subject to a cognitive constraint:

max
{ωi∈Ωi,xi(·)}Ni=1

E
[
u
(
x1 (ω1) , · · · , xN (ωN) , θ⃗

)]
(30)

s.t.

N∑
i=1

I
(
ωi; θ⃗

)
≤ τ. (31)

In the cognitive constraint (31), I
(
ωi; θ⃗

)
denotes the mutual information between decision

i’s signal ωi and the fundamental θ⃗, which equals to the entropy reduction H
(
θ⃗
)
− H

(
θ⃗|ωi

)
.

It captures the cognitive cost for decision i. (31) then means the sum of cognitive costs used
by all decisions i cannot surpass the decision maker’s total cognitive capacity, τ. Finally, I let
ω1,ω2, · · · ,ωN be conditionally independent given θ⃗. That is, the noise in each decision i’s signal
about θ⃗ is idiosyncratic.44

The above costly contemplation problem can be decomposed into two sub-problems. The first
is about how decisions are made given the chosen information {ωi}Ni=1. This sub-problem is the

44This follows the literature on information acquisition in games (e.g. Yang, 2015, Morris and Yang, 2016).
Such assumption can be justifiable as the noise in each self’s signal comes from cognitive costs to perfectly track
the fundamental. Based on this assumption, different decisions’s signals will always be different because of these
idiosyncratic noises. Nevertheless, this section focuses on how different decisions’ signals take different forms.
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same as the one studied in Section 2, and the optimal decision rule can be characterized by (7).
The second is about choosing the optimal information {ωi ∈ Ωi}Ni=1 for each decision i, subject to
the cognitive constraint in (31). One can henceforth interpret the costly contemplation problem in
(30) as follows. The decision maker first chooses {ωi}Ni=1 , i.e. how each self i’s signal is generated,
subject to the cognitive constraint in (31). Given the information structure {ωi}Ni=1, different
selves play the equivalent incomplete information Bayesian game defined in Proposition 1.

It is worth highlighting the difference of the costly contemplation problem under narrow think-
ing from the canonical rational inattention and sparsity paradigms. There, the decision maker
decides what information about the fundamental to acquire subject to a cognitive constraint, but
different decisions are based on the same information. The optimal information choice problem is
at the decision-maker level. Here, the information is decision specific, and the optimal information
choice problem is at the decision level. It captures the idea that, when the decision maker makes
a particular decision, she cannot effortlessly use/recall the information used for other decisions.
Moreover, there is also an additional layer to the costly contemplation problem here: the optimal al-
location of which decision uses more cognitive capacities, i.e. the allocation of

{
τi ≡ I

(
ωi; θ⃗

)}N
i=1

.

It is also worth noting that, to be parallel with the rational inattention literature, I let the the
cognitive cost for decision i be equal to the mutual information I

(
ωi; θ⃗

)
. In fact, most results in

this section can be generalized to the case that the the cognitive cost for decision i is an arbitrary
continuously differentiable convex function of I

(
ωi; θ⃗

)
.

Notation-wise, for the rest of the section, I use {ω∗
i }

N
i=1 to denote the optimally chosen signals

and {x∗i (·)}
N
i=1 to denote the optimal chosen decision rules. Finally, I use τ ∗i = I

(
ω∗

i ; θ⃗
)
to denote

the cognitive capacity allocated for decision i in the optimum.

6.2 Revisiting the Illustrative Example

I first study the costly contemplation problem in the context of the quadratic example in Section
3. To illustrate, let me first consider the N = 2 case. Same as (5), the decision maker’s utility
can be written as u

(
x1, x2, θ⃗

)
= −1

2
(x1 − θ1)

2 − 1
2
(x2 − θ2)

2 + γx1x2, where γ ≡ γ1,2 = γ2,1. For
i ∈ {1, 2} , θi ∼ N

(
θ̄i, σ

2
θi

)
and is independent from each other. At the information side, I do not

directly impose that each self i has perfect knowledge of her local fundamental θi. Instead, I let
the decision maker choose endogenously the precision of each self’s signal about θ1 and θ2.

Specifically, each potential signal ωi = {si,1, si,2} ∈ Ωi for decision i consists of a noisy signal
about θ1, si,1 = θ1 + ϵi,1, and a noisy signal about θ2, si,2 = θ2 + ϵi,2. All ϵs are Normally
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distributed and independent from fundamentals and each other. The variance of the noise in these
signals is free to choose, subject to the cognitive constraint in (31).

Proposition 11 In the optimum of the costly contemplation problem in (30):

(
σ∗
1,1

)2
<
(
σ∗
2,1

)2 and
(
σ∗
2,2

)2
<
(
σ∗
1,2

)2
,

where σ∗
i,j is the variance of the noise of self i’s signal about θj in the optimum.

Proposition 11 means that, in the optimum, self 1’s signal about her local fundamental θ1 is
more precise than self 2’s signal about θ1. Similarly, self 2’s signal about her local fundamental
θ2 is more precise than self 1’s signal about θ2. Even though the set of potential signals for two
decisions is the same, i.e. Ω1 = Ω2, it is optimal to choose different signals for different decisions.
Specifically, as θi directly influences self i’s optimal decision rule, it is optimal for self i to have a
more precise signal about θi than the other self. This also justifies the information structure used
in Section 3, in which self i has a more precise signal about her local fundamental θi than other
selves.45

In the appendix, I also work out the analogue of Proposition 11 in the N -decisions case. A
result similar to Proposition 11 can be established in the case that u is symmetric across i. That
is, in the optimum, self i’s signal about her local fundamental θi is more precise than other selves’
signals about it. The analysis is more complicated with asymmetric utility functions. What can
be established there is a limit result: when the cognitive capacity τ is small enough, it is optimal
for each self i to only receive signal about her local fundamental θi. That is, in the optimum, self
i’s signals about the others’ local fundamental are completely uninformative. This is Proposition
24 in the Appendix.

6.3 An Alternative: Flexible Information Acquisition

Environment. In the previous subsection, I restrict each potential signal ωi ∈ Ωi to have a
particular form: each ωi consists of N noisy signals, one for each θj , j ∈ {1, · · · , N} . This is
consistent with the information structure studied in the rest of the paper. An alternative is to let
the set of potential signals, Ωi, be unrestrictive. That is, it is possible for the signal to depend

45As the optimal decision rules in this illustrative example are the same as those in the quasi-linear consumer
theory context in Section 4.2, Proposition 11 also applies to the quasi-linear consumer theory context (barring an
approximation). In that context, it means that self 1’s signal about her p1 is more precise than self 2’s signal about
p1, and vice versa.
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on the fundamental arbitrarily. With such flexible form of information acquisition, I can achieve a
sharp characterization about the optimum of the costly contemplation problem (30) in the general
multiple-decision setting.

Specifically, in this subsection, I allow arbitrary concave and quadratic utility functions u, and
arbitrarily Normally correlated fundamentals θ⃗. For notation simplicity, I normalize the mean of
θ⃗ to be 0⃗. Without loss of generality, I also restrict that u does not have terms which are linear
functions of x⃗. Such terms will only add a constant to each optimal decision rule.

Optimal information choice. I first study the form of optimal information ω∗
i for each

decision i, given the cognitive capacity allocated for decision i, τ ∗i .

Lemma 4 With unrestricted Ωi, in the optimum of the costly contemplation problem in (30), each
decision i is based on an one-dimensional signal s∗i :46

ω∗
i = {s∗i } and s∗i = ϑi + E

[∑
j ̸=i

γi,jx
∗
j

(
ω∗

j

)
|θ⃗

]
+ ϵi ≡ ti + ϵi. (32)

In (32), ϵi ∼ N (0, σ2
i ) is the idiosyncratic noise in the signal, σ2

i is pinned down by 1
2
log2

(
σ2
i +σ

2
ti

σ2
i

)
=

τ ∗i , σ
2
ti
is the variance of ti defined in (32), and ϑi is a linear function of θ⃗ that summarizes how

the fundamental directly influences optimal decision i, holding other decisions fixed.47

Without the cognitive constraint, the optimal decision i is given by ϑi+
∑

j ̸=i γi,jx
∗
j

(
ω∗

j

)
. Now,

with limited cognitive capacity, Lemma 4 shows that the optimal information for decision i will be
given by a signal about the fundamental θ⃗ that is closest to ϑi +

∑
j ̸=i γi,jx

∗
j

(
ω∗

j

)
. The variance

of the noise in this signal is pinned down by decision i′s allocated cognitive capacity τ ∗i .
As different decisions are based on different decision rules, each self is “interested in” different

parts of the fundamentals. As a result, the optimal signals for different decisions take different
forms. In this sense, narrow thinking arises endogenously.

Given the optimal signal in (32), one can then solve optimal decision rules {x∗i (·)}
N
i=1 . From

(32), we know each self’s optimal signal in turn depends on other selves’ optimal decision rules.
46For each i, the optimal signal s∗i is unique up to a linear transformation. That is, from an informational

perspective, s∗i is equivalent to αs∗i + β, where α ̸= 0 and β are scalars.
47Remember that in the general set up here, θ⃗ = (θ1, · · · ,θM ) is an M -dimensional fundamental. Taking the first

order condition of the decision-specific optimality condition in (3) and collecting terms, the optimal decision rule for
each self i is then given by x∗i (ωi) = Ei

[∑
1≤m≤M ψi,mθm +

∑
j ̸=i γi,jx

∗
j (ωj)

]
, where ψi,m = − ∂2u

∂xi∂θm

(
∂2u
∂x2
i

)−1

and γi,j = − ∂2u
∂xi∂xj

(
∂2u
∂x2
i

)−1

. ϑi ≡
∑

1≤m≤M ψi,mθm then summarizes how the fundamental directly influences
decision i.
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Solving this fixed-point problem, one can then characterize how each optimal signal s∗i depends
on the fundamental θ⃗.

Proposition 12 The optimal signals depend on the fundamental θ⃗ as follows:



E
[
s∗1|θ⃗

]
· · ·

E
[
s∗N |θ⃗

]


=



t1

· · ·

tN


=


IN −



1 λ1 · · · λ1 λ1

λ2 1 · · · λ2 λ2

· · ·
λN−1 λN−1 · · · 1 λN−1

λN λN · · · λN 1


◦ Γ



−1

ϑ1

· · ·
ϑk

· · ·
ϑN


,

(33)
where λi =

σ2
ti

σ2
i +σ

2
ti

= 1− 22τ
∗
i ∈ (0, 1) is pinned down by decision i′s allocated cognitive capacity τ ∗i .

Similar to Proposition 3, as self i does not perfectly know self j’s decision, the effective degree
of interaction from decision j to decision i is attenuated by a factor λi between 0 and 1. As the
effective interaction across decisions is attenuated, optimal decision i will be influenced more by
ϑi, summarizing the fundamental’s direct influence. This in turn lets the optimal signal for self i
depend more on her own ϑi. To further illustrate the last point, consider a symmetric optimum
for the costly contemplation problem with two decisions. From (33), we have

 t1

t2

 =

I2 −

 1 λ

λ 1

 ◦ Γ

−1 ϑ1

ϑ2

 =

 ϑ1

1−γ2λ2 + λγ ϑ2

1−γ2λ2
ϑ2

1−γ2λ2 + λγ ϑ1

1−γ2λ2

 ,

where γ = − ∂2u
∂x1∂x2

(
∂2u
∂x21

)−1

. One can see that, for the optimal signal for each self i, the weight
on the other self’s ϑ−i compared to her own ϑi is attenuated by the factor λ between 0 and 1.
In this sense, the within-person coordination friction induces the optimal signal for each self i to
depend more on her own ϑi. In fact, when the cognitive constraint is severe (τ is small so λ is
close to zero), the optimal signal for each self i will effectively only depend on ϑi. The decision
maker becomes a “completely” narrow thinker: each decision i is only based on her own ϑi, i.e.
the fundamental’s direct influence. This also echoes the limit result in Proposition 24 discussed
above.48

Allocation of cognitive capacities across different decisions. We finally turn to the
optimal allocation of cognitive capacities, τ ∗i , across different decisions.

48Proposition 24 discussed above means that, when the cognitive constraint is severe, it is optimal for each self i
to only receive signal about θi. In the context there, θi captures the fundamental’s influence on self i’s best response
function and corresponds to ϑi defined in the general multiple-decision problem here.
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Proposition 13 In the optimum of the costly contemplation problem in (30),

τ ∗i > τ ∗j ⇐⇒
∣∣∣∣∂2u∂x2i

∣∣∣∣V ar (ti) > ∣∣∣∣∂2u∂x2j

∣∣∣∣V ar (tj) .
Proposition 13 shows that more volatile decisions (with high V ar (ti)) and decisions with

respect to which the marginal utility is more sensitive (with high
∣∣∣∂2u∂x2i

∣∣∣) will be based on more
precise information. For example, the decision maker may allocate more cognitive capacity to
the self who is in charge of purchasing computers (high

∣∣∣∂2u∂x2i

∣∣∣) than to the self who is in charge of

purchasing apples (low
∣∣∣∂2u∂x2i

∣∣∣). Similarly, the decision maker may allocate more cognitive capacities
to the self who invests bitcoins (volatile ti) than to the self who invests ETFs (stable ti).49

7 Conclusion

Each decision maker faces multiple economic decisions, and makes these decisions separately. Nev-
ertheless, in standard modeling practice, we implicitly assume perfect self-coordination among all
these decisions. It is as if the decision maker determines all her decisions together. In this paper,
I try to break such perfection. I develop an approach, narrow thinking, to capture the decision
maker’s difficulty in coordinating her multiple decisions. The notion of narrow thinking I use
throughout the paper is that different decisions are based on different, non-nested, information.
This notion is motivated by the psychological observation that the decision maker may not in-
corporate all the relevant information when making each decision. Under narrow thinking, each
decision of the decision maker is made with an imperfect understanding of other decisions. In
response to shocks to the fundamental, it is as if each decision is made caring less about the
influence of other decisions. I then show how narrow thinking can provide a unified explanation
to seemingly disparate behavioral phenomena, such as the attenuation of cross-demand elasticity,
mental accounting, over- and under- reaction.

49One may wonder whether it is the case that τ∗i > τ∗j ⇐⇒
∣∣∣∂2u
∂x2
i

∣∣∣V ar (vi) >
∣∣∣∂2u
∂x2
j

∣∣∣V ar (vj) , where ϑi is defined
above, summarizing how the fundamental directly influences optimal decision i. This is not necessarily the case.
Even if ϑi is volatile, if the ϑjs of all other decisions who influence decision i (i.e. decisions js such that γi,j > 0)
are not volatile, the decision maker may not want to allocate a lot of cognitive capacities to self i.
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Appendix A: Proofs

Proof of Lemma 1. If the optimum of (2) is not unique,50 consider two solutions of (2), {x∗1 (·) , · · · , x∗N (·)}

and {y∗1 (·) , · · · , y∗N (·)} , such that they differ with a non-zero probability. Now, consider {z∗1 (·) , · · · , z∗N (·)},

such that for all i, z∗i (·) = λx∗i (·)+(1− λ) y∗i (·) with λ ∈ (0, 1) . Because u is strictly concave over x⃗, we have

E
[
u
(
z∗1 (ω1) , · · · , z∗N (ωN ) , θ⃗

)]
> E

[
u
(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)]
andE

[
u
(
z∗1 (ω1) , · · · , z∗N (ωN ) , θ⃗

)]
>

E
[
u
(
y∗1 (ω1) , · · · , y∗N (ωN ) , θ⃗

)]
. This contradicts with the optimality of {x∗1 (·) , · · · , x∗N (·)} and {y∗1 (·) , · · · , y∗N (·)} .

Proof of Lemma 2. The solution of (2) must satisfy the decision-by-decision optimality condition in

(3). This proves the necessity part. Now we turn to the sufficiency. If the sufficiency is not true, consider

{x∗1 (·) , · · · , x∗N (·)} that satisfies the decision-by-decision optimality condition in (3) but is not the optimum

in (2). Let me use {y∗1 (·) , · · · , y∗N (·)} to denote the optimum in (2). We then have

E
[
u
(
y∗1 (ω1) , · · · , y∗N (ωN ) , θ⃗

)]
> E

[
u
(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)]
.

We then define

f (t) = E
[
u
(
x∗1 (ω1) + t (y∗1 (ω1)− x∗1 (ω1)) , · · · , x∗N (ω1) + t (y∗N (ωN )− x∗N (ωN )) , θ⃗

)]
.

From the decision-by-decision optimality condition in (3) and the fact that u is twice continuously differ-

entiable, we have, for all i, E
[
∂u
∂xi

(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
|ωi
]
= 0. Moreover, we have

f ′ (0) =

N∑
i=1

{
E

[
∂u

∂xi

(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
(y∗i (ωi)− x∗i (ωi))

]}
.

Now, using law of iterated expectations, we have, for each i,

E

[
∂u

∂xi

(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
(y∗i (ωi)− x∗i (ωi))

]
= E

[
E

[
∂u

∂xi

(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
(y∗i (ωi)− x∗i (ωi)) |ωi

]]
= E

[
E

[
∂u

∂xi

(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
|ωi
]
(y∗i (ωi)− x∗i (ωi))

]
= 0.

As a result f ′ (0) = 0.

Because u is strictly concave over x⃗, f (t) is also strictly concave. This means that t = 0 is the maximum

of f (t). However, we have f (1) > f (0) = u
(
x∗1 (ω1) , · · · , x∗N (ωN ) , θ⃗

)
. This is contradictory. In fact, this

50Uniqueness is in the sense that, in any two optima, decision rules are the same almost surely.
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proposition is essentially Theorem 1 in Chapter 5 of Marschak and Radner (1972).

Proof of Proposition 1. The optimality condition for each player i in the equivalent game is the same

as the decision-specific optimality condition for decision i in (3). The equivalence between the Bayesian

Nash Equilibrium in the Bayesian game played by multiple selves and the solution of (2) is then a direct

corollary of Lemma 2.

Proof of Proposition 2 and Proposition 3. For notation simplicity, I normalize the mean of each

θi, θ̄i, to be zero. Based on Lemma 1 and Lemma 2, I use guess and verify approach to find the unique

optimum. I conjecture the optimal decision rule for each self i, x∗i (ωi) , is linear in her signals,

x∗i (ωi) =

N∑
k=1

αi,ksi,k, (34)

with a reminder that si,i = θi, i.e. each self i has a perfect signal about θi.

Given the information structure, we have, for all i ̸= j and k,

Ei [sj,k] = Ei [θk] = E [θk|si,k] = λi,ksi,k.

We then have

Ei
[
x∗j
]
=

N∑
k=1

λi,kαj,ksi,k. (35)

Together with the optimal decision rule in (7) and the guess in (34), we have, for all i,

x∗i (ωi) = si,i +
∑
j ̸=i

γi,j

N∑
k=1

λi,kαj,ksi,k.

For the guess in (34) to be valid, we then need to have, for all i, k,

αi,k = 1i=k +
∑
j ̸=i

λi,kγi,jαj,k. (36)
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(36) are satisfied when



α1,k

α2,k

· · ·

αN,k


=


IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ



−1

0

· · ·

1

· · ·

0


.

This verifies that the guess in (34) indeed characterizes the narrow thinker’s optimal decision rules. Be-

cause different θis are independent, Proposition 2 then follows immediately from (34) and (35). To prove

Proposition 3, note that based on the definition in (9), we then have, for all i,

xNarrow
i

(
θ⃗
)
=

N∑
k=1

αi,kθk.

Taking partial derivative with respect to each θk then leads to Proposition 3.

Comment. In the proof, one may wonder why


IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ


is in-

vertible. Note that condition (36) can be re-written as

λ−1
i,kui,iαi,k +

∑
j ̸=i

ui,jαj,k = λ−1
i,k 1i=k ∀i, k,

where ui,j = ∂2u
∂xi∂xj

. To prove


IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ


is invertible is then equiva-

lent to prove





λ−1
1,k 1 · · · 1 1

1 λ−1
2,k · · · 1 1

· · ·

1 1 · · · 1 λ−1
N,k


◦ U


is invertible, where U (i, j) = ui,j is a negative definite
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matrix (as u is strictly concave over x). Then note that,



λ−1
1,k 1 · · · 1 1

1 λ−1
2,k · · · 1 1

· · ·

1 1 · · · 1 λ−1
N,k


◦ U = U + diag

{(
λ−1
1,k − 1

)
u1,1, · · · ,

(
λ−1
N,k − 1

)
uN,N

}

is also negative definite. As a result,



λ−1
1,k 1 · · · 1 1

1 λ−1
2,k · · · 1 1

· · ·

1 1 · · · 1 λ−1
N,k


◦ U


and thus 

IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ


is invertible.

Proof of Proposition 4. For all i1, · · · , ik ∈ {1, · · · , N} ,where il ̸= il+1 for 1 ≤ l ≤ k − 1, we have

Ei1
[
Ei2
[
· · ·Eik−1

[θik ]
]]

= λi1,ik · · ·λik−1,iksi1,ik , (37)

and

E
[
Ei1
[
Ei2
[
· · ·Eik−1

[θik ]
]]

|θ⃗
]
= λi1,ik · · ·λik−1,ikθik . (38)

From conditions (12) and (38), we have

∂xNarrow
i

∂θk
(θ1, · · · , θN ) = 1i=k +

∑
j ̸=i

λi,kγi,j1j=k +
∑
j ̸=i

λi,kγi,j
∑
l ̸=j

λj,kγj,l1l=k + · · · .

Using the fact that each λ is a factor between 0 and 1 and collecting terms with positive and negative
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coefficients prove Proposition 4.

Proof of Proposition 5. Taking an unconditional expectation, averaging over the realization of all

fundamentals and signals, of condition (7), we have

E
[
xNarrow
i

]
= E [θi] +

∑
j ̸=i

γi,jE
[
xNarrow
j

]
∀i,

where the law of iterated expectation is used. The above condition also holds when each self perfectly

knows all the fundamental:

E
[
xStandard
i

]
= E [θi] +

∑
j ̸=i

γi,jE
[
xStandard
j

]
∀i.

As u is strictly concave, (IN − Γ) is invertible. We then have E
[
xNarrow
i

]
= E

[
xStandard
i

]
∀i.

Proof of Propositions 6 and 7. In the proof, for notation simplicity, I remove the hat and each vari-

able denotes its log-deviation from the point of log-linearization. From the optimal consumption decisions

(17) and similar to the proof of Proposition 3, we have

∂xNarrow
i

∂pi
= −ψ + γ

∑
l ̸=i

∂xNarrow
l

∂pi
∀i,

∂xNarrow
i

∂pj
= λi,jγ

∑
l ̸=i

∂xNarrow
l

∂pj
∀i ̸= j,

Solving the above two equations, we have

∂xNarrow
i

∂pi
= − ψ

1 + γ
− γ

1 + γ

ψ
1+γ

1− γ
1+γ −

∑
l ̸=i

λl,iγ
1+λl,iγ

∀i, (39)

∂xNarrow
j

∂pi
=

λj,iγ

1 + λj,iγ

− ψ
1+γ

1− γ
1+γ −

∑
l ̸=i

λl,iγ
1+λl,iγ

∀i ̸= j. (40)

Case 1: γ > 0. Using the fact that γ < 1
N−1 and that 1− γ

1+γ −
∑

l ̸=i
λl,iγ

1+λl,iγ
is larger than its standard

counterpart (all λs are 1), Propositions 6 and 7 follow directly from (39) and (40) when γ > 0.

Case 2: γ < 0. Let γ′
= −γ ∈ (0, 1)

∂xNarrow
i

∂pi
= − ψ

1− γ′
+

γ′

1− γ′

ψ
1−γ′

1
1−γ′ +

∑
l ̸=i

λl,iγ′

1−λl,iγ′

∀i.
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∂xNarrow
j

∂pi
=

λj,iγ
′

1− λj,iγ′

ψ
1−γ′

1
1−γ′ +

∑
l ̸=i

λl,iγ′

1−λl,iγ′

∀i ̸= j,

Using the fact that γ′ < 1 and that 1
1−γ′ +

∑
l ̸=i

λl,iγ′

1−λl,iγ′ is smaller than its standard counterpart (all

λs are 1), we have ∂xStandard
i

∂pi
< ∂xNarrow

i

∂pi
for all i. Together with the fact that γ′

1−γ′

ψ

1−γ′

1

1−γ′ +
∑
l̸=i

λl,iγ
′

1−λl,iγ′

≤ ψγ′

1−γ′ ,

we know ∂xNarrow
i

∂pi
< 0 for all i. This proves Proposition 7 for γ < 0.

For cross-price elasticities (Proposition 6), if, for all i ̸= j, λj,i = λ, we have ∂xStandard
j

∂pi
>

∂xNarrow
j

∂pi
=

λγ′

1−λγ′

ψ

1−γ′
1

1−γ′ +
(N−1)λγ′

1−λγ′
> 0. Similarly, when N = 2,

∂xStandard
j

∂pi
>

∂xNarrow
j

∂pi
= λj,iγ′

1−λj,iγ′

ψ

1−γ′

1

1−γ′ +
λj,iγ

′

1−λj,iγ′

> 0. Without

such symmetry and when N ≥ 3, it is possible that ∂xNarrow
j

∂pi
>

∂xStandard
j

∂pi
> 0 for a particular i ̸= j. To

see this, fix i ̸= j, let λl,i = 0 for all l ̸= i, j and let λj,i = 1. We then have ∂xNarrow
j

∂pi
= γ′

1−γ′

ψ

1−γ′
1

1−γ′ +
γ′

1−γ′
>

∂xStandard
j

∂pi
= γ′

1−γ′

ψ

1−γ′
1

1−γ′ +
2γ′

1−γ′
.

Proof of Lemma 3. Under standard consumer theory, we have

−κix̂Standard
i (p̂1, · · · , p̂N )− p̂i = −κhŷStandard (p̂1, · · · , p̂N ) = −κj x̂Standard

j (p̂1, · · · , p̂N )− p̂j ∀i ̸= j.

Under narrow thinking, if condition (25) holds with equality for each pair of (i, j) , averaging over the

realization of noises in signals, we then have

− κix̂
Narrow
i (p̂1, · · · , p̂N )− p̂i = −κj x̂Narrow

j (p̂1, · · · , p̂N )− p̂j ∀i ̸= j, (41)

and

− κi
∂x̂Narrow

i

∂p̂i
− 1 = −κj

∂x̂Narrow
j

∂p̂i
∀i ̸= j. (42)

This is inconsistent with the formula about price elasticities in the proof of Proposition 8.

Proof of Proposition 8. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. From conditions (22) and (23), and similar to

the proof of Proposition 3, we have

−κk
∂x̂Narrow

k

∂p̂k
= 1 +

κh
µy

 N∑
j=1

µj
∂x̂Narrow

j

∂p̂k
+ µk

 ∀k,

−κi
∂x̂Narrow

i

∂p̂k
=
κh
µy

µi∂xNarrow
i

∂pk
+ λi,k

∑
j ̸=i

µj
∂x̂Narrow

j

∂p̂k
+ µk

 ∀i ̸= k,
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where λi,k =
σ2
pk

σ2
pk

+σ2
i,k
. We have

∂x̂Narrow
i

∂p̂k
=

λi,kκh
κi + (1− λi,k)

κh
µy
µi

µk
1−κk
κk(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
κh + µy

∀i ̸= k,

∂x̂Narrow
k

∂p̂k
=
κh
κk

µk
1−κk
κk(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
κh + µy

− 1

κk
∀k. (43)

Note that
∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj is smaller than its standard counterpart (all λs are 1). As a result,

when κk > 1, ∂x̂
Narrow
k

∂p̂k
<

∂x̂Standard
k

∂p̂k
< 0. On the other hand, when κk < 1, we have ∂x̂Standard

k

∂p̂k
<

∂x̂Narrow
k

∂p̂k
.

Finally, I will prove the statement in the main text that, “narrow thinking nevertheless brings the

consumer’s demand elasticity closer to the case of explicit mental budgeting.” For a decision maker with

explicit mental budgets (indexed byMB), pkxMB
k =Mk ∀k. As a result, ∂x̂

MB
k

∂p̂k
= −1. Then note that, from

(43), we have ∂x̂Narrow
k

∂p̂k
= ∂x̂MB

k

∂p̂k
− 1−κk

κk

 (∑
j ̸=k µj

µyλj,k

µyκj+(1−λj,k)κhµj

)
κh+µy(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj
+
µk
κk

)
κh+µy

 . As
∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj

is smaller than its standard counterpart (all λs are 1), narrow thinking moves ∂x̂Narrow
k

∂p̂k
closer to ∂x̂MB

k

∂p̂k
, no

matter whether κk > 1 or κk < 1.

Proof of Proposition 9. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. The optimality condition for each decision i

and the budget constraint become

φi − κix
∗
i (ωi) = −κhEi [y∗] ∀i,

N∑
i=1

µix
∗
i (ωi) + µyy

∗ = 0,

where, as in Section 4.3, κh = −h
′′
(ȳ)ȳ

h′(ȳ) . Now consider shocks to φk. Similar to the proof of Proposition 8,

we have

1− κk
∂xNarrow

k

∂φk
=
κh
µy

 N∑
j=1

µj
∂xNarrow

j

∂φk

 ∀k,

−κi
∂xNarrow

i

∂φk
=
κh
µy

µi∂xLi
∂φk

+ λi,k

∑
j ̸=i

µj
∂xNarrow

j

∂φk

 ∀i ̸= k,
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where λi,k =
σ2
φk

σ2
φk

+σ2
i,k
. Solving the above two equations, we have

∂xNarrow
i

∂φk
= −

λi,kκh
κi + (1− λi,k)

κh
µy
µi

µk
κk(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
κh + µy

∀i ̸= k,

∂xNarrow
k

∂φk
= −κh

κk

µk
κk(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
κh + µy

+
1

κk
∀k. (44)

Note that
(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
is smaller than its standard counterpart (all λs are 1). As

a result, ∂x
Narrow
k

∂φk
<

∂xStandard
k

∂φk
. Moreover,

∂xNarrow
k

∂φk
=

1

κk

−
κh

µk
κk(∑

j ̸=k µj
µyλj,k

µyκj+(1−λj,k)κhµj +
µk
κk

)
κh + µy

+ 1


≥ 1

κk

(
−

κh
µk
κk

µk
κk
κh + µy

+ 1

)
> 0.

This proves Proposition 9.

Proof of Proposition 10. For this application, I work with linearization instead of log-linearization,

as the empirical evidence cited in the main text focuses on the marginal propensity to spend instead of

elasticities. In the proof, for notation simplicity, each variable denotes its deviation from the point in which

each wi is fixed at its mean w̄i . We first derive the linearized optimal decision rule for each consumption

x∗i (ωi) and the budget constraint:

−κi
x∗i (ωi)

x̄i
= −κhEi

[
y∗

ȳ

]
,

N∑
i=1

pix
∗
i (ωi) + y∗ =

N∑
i=1

wi,

where κh = −h
′′
(ȳ)ȳ

h′(ȳ) .

Using the definition in (29) and averaging over the realizations of noises in signals, we have

−κk
∂xNarrow

k

∂wk
= κh

x̄k
ȳ

 N∑
j=1

pj
∂xNarrow

j

∂wk
− 1

 ∀k,

−κi
∂xNarrow

i

∂wk
= κh

x̄i
ȳ

pi∂xNarrow
i

∂wk
+ λi,k

∑
j ̸=i

pj
∂xNarrow

j

∂wk
− 1

 ∀i ̸= k,
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where λi,k =
σ2
wk

σ2
wk

+σ2
i,k
. Together, we have

∂yNarrow

∂wk
=

1

κhpkx̄k
κkȳ

+
∑

j ̸=k
λj,kκh

pjx̄j

ȳ

κj+κh(1−λj,k)
pjx̄j

ȳ

+ 1

∀k,

∂xNarrow
i

∂wk
=

λi,kκh
x̄i
ȳ

κi + κh
x̄i
ȳ (1− λi,k) pi

1

κhpkx̄k
κkȳ

+
∑

j ̸=k
λj,kκh

pjx̄j

ȳ

κj+κh(1−λj,k)
pjx̄j

ȳ

+ 1

∀i ̸= k,

∂xNarrow
k

∂wk
=
κhx̄k
κkȳ

1

κhpkx̄k
κkȳ

+
∑

j ̸=k
λj,kκh

pjx̄j

ȳ

κj+κh(1−λj,k)
pjx̄j

ȳ

+ 1

∀k.

To prove part 1, note that, if and only if when all λs are 1 (the standard counterpart), ∂x
Narrow
i

∂wk
= ∂xNarrow

i

∂wi

for all i ̸= k.

To prove part 2, note that
∑

j ̸=k
λj,kκh

pjx̄j

ȳ

κj+κh(1−λj,k)
pjx̄j

ȳ

is smaller than its standard counterpart (all λs are

1). As a result, ∂x
Narrow
k

∂wk
>

∂xStandard
k

∂wk
for all k.

Proof of Proposition 11. As discussed in the main text, the costly contemplation problem in (30)

can be divided into two subproblems, the optimal information choice subject to the cognitive constraint

in (31), and the optimal decisions given the chosen information. From condition (7), given any chosen

information {ωi}2i=1, the optimal decision rule {x∗i (·)}
2
i=1 can be characterized by

E
[
x∗i (ωi)− θi − γx∗−i (ω−i) |ωi

]
= 0 ∀i, ωi ∈ Ωi. (45)

Using law of iterated expectations, we henceforth have

1

2
E
[
[x∗i (ωi)]

2 − θix
∗
i (ωi)− γx∗i (ωi)x

∗
−i (ω−i)

]
= 0 ∀i ∈ {1, 2} .

Substituting into the decision maker’s utility function, the optimal information choice in (31) is then

equivalent to

max
{ωi∈Ωi}2

i=1

1

2
E [θ1x

∗
1 (ω1) + θ2x

∗
2 (ω2)] (46)

s.t. x∗i (ωi) satisfy (45)

2∑
i=1

I
(
ωi; θ⃗

)
≤ τ.
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Now, given the Ωi specified in the main text, any ωi = {si,1, si,2} takes the form of si,1 = θ1 + ϵi,1

and si,2 = θ2 + ϵi,2, with ϵi,1 ∼ N
(
0, σ2i,1

)
, ϵi,2 ∼ N

(
0, σ2i,2

)
and all ϵs and θs are independent from

each other. Similar to the proof of Proposition 3, we have

 ∂E[x∗
1(ω1)|θ1,θ2]
∂θ1

∂E[x∗
2(ω2)|θ1,θ2]
∂θ1

 =

IN −

 1 λ1,1

λ2,1 1

 ◦ Γ

−1 λ1,1

0

 ,

and  ∂E[x∗
1(ω1)|θ1,θ2]
∂θ2

∂E[x∗
2(ω2)|θ1,θ2]
∂θ2

 =

IN −

 1 λ1,2

λ2,2 1

 ◦ Γ

−1 0

λ2,2

 ,

where λi,j =
σ2
θj

σ2
θj
+σ2

i,j
∈ (0, 1]. The problem in (46) then becomes

max
{0≤λi,j≤1}

1≤i,j≤2

g
(
{λi,j}1≤i,j≤2

)
≡ 1

2

λ1,1
1− λ1,1λ2,1γ2

σ2θ1 +
1

2

λ2,2
1− λ2,2λ1,2γ2

σ2θ2 (47)

s.t. h
(
{λi,j}1≤i,j≤2

)
≡

∑
1≤i,j≤2

1

2
log2

(
1

1− λi,j

)
≤ τ ,

where I use the fact that all ϵs and θs are independent from each other, and I
(
ωi; θ⃗

)
= 1

2 log2

(
1

1−λi,1

)
+

1
2 log2

(
1

1−λi,2

)
.

Now we prove Proposition 11. If, in the optimum of the costly contemplation problem, we have(
σ∗1,1

)2 ≥
(
σ∗2,1

)2
. This means λ∗1,1 ≤ λ∗2,1, where λ∗i,j =

σ2
θj

σ2
θj
+(σ∗

i,j)
2 ∈ (0, 1]. As a result,

∂g
(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

1,1
>

∂g
(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

2,1
and

∂h
(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

1,1
≤

∂h
(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

2,1
. This is inconsistent with the first order condition

of (47):

∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗1,1

/

∂h

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗1,1

=

∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗2,1

/

∂h

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗2,1

.

Therefore,
(
σ∗1,1

)2
<
(
σ∗2,1

)2. Similarly, we can prove
(
σ∗2,2

)2
<
(
σ∗1,2

)2
.

Proof of Lemma 4. A necessary condition for {ω∗
i , x

∗
i (·)}

N
i=1 to be an optimum of the costly contem-

plation problem in (30) is that, for each i, (ω∗
i , x

∗
i (·)) is optimally chosen, taking other

{
ω∗
j , x

∗
j (·)

}
j ̸=i

as

53



given. That is, (ω∗
i , x

∗
i (·)) solves

max
ωi∈Ωi,xi(·)

E
[
u
(
x1 (ω1) , · · · , x∗N (ω∗

N ) , θ⃗
)]

(48)

s.t. I
(
ωi; θ⃗

)
≤ τ −

∑
j ̸=i

I
(
ω∗
j ; θ⃗
)
, (49)

As u is quadratic, maximizes the objective in (48) is equivalent to maximizing

E

ui,i
2

xi (ωi)− ϑi −
∑
j ̸=i

γi,jE
[
x∗j
(
ω∗
j

)
|θ⃗
]2

+
ui,i
2

∑
j ̸=i

γi,j

(
x∗j
(
ω∗
j

)
− E

[
x∗j
(
ω∗
j

)
|θ⃗
])2

+ f
({
x∗j
(
ω∗
j

)}
j ̸=i , θ⃗

) ,
(50)

where ui,i = ∂2u
∂x2

i
and I use the fact that ω1,ω2, · · · ,ωN is conditionally independent given θ⃗. The problem

based on the objective in (50) and the constraint in (49) is then the standard tracking problem with

quadratic loss function and Normally distributed target. From Sims (2003), we know the optimal signal ωi

takes the form in Lemma 4.

Proof of Proposition 12. Given the chosen information {ω∗
i }

N
i=1, the optimal decision rule {x∗i (·)}

N
i=1

can be characterized by (7). We then have x∗i (ω∗
i ) = E

[
ϑi +

∑
j ̸=i γi,jx

∗
j

(
ω∗
j

)
|s∗i
]
= λis

∗
i , where λi =

σ2
ti

σ2
i+σ

2
ti

. Together with (32), we have

ti = ϑi +
∑
j ̸=i

λjγi,jtj .

This leads to (33).

Proof of Proposition 13. For
{
0 ≤ Λi ≤ 1, ς2i

}N
i=1

, define g
({

Λi, ς
2
i

}N
i=1

)
≡ E

[
u
(
x1, · · · , xN , θ⃗

)]
,

where for all i, xi = Λi (ti + ϵi) , ϵi ∼ N
(
0, ς2i

)
, and {ti}Ni=1 are given by



t1

· · ·

tN


=


IN −



1 Λ1 · · · Λ1 Λ1

Λ2 1 · · · Λ2 Λ2

· · ·

ΛN−1 ΛN−1 · · · 1 ΛN−1

ΛN ΛN · · · ΛN 1


◦ Γ



−1

ϑ1

· · ·

ϑk

· · ·

ϑN


. (51)
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Based on Lemma 4 and Proposition 12, in the optimum of the costly contemplation problem in (30),{
λi, σ

2
i

}N
i=1

defined in Lemma 4 and Proposition 12 must solve

max
{Λi,ς2i }

N
i=1

g
({

Λi, ς
2
i

}N
i=1

)
(52)

h
({
ς2i
}N
i=1

)
=

1

2

∑
i

log2
ς2i + σ2ti
ς2i

≤ τ,

where σ2ti is the variance of ti defined based on (51). Rewrite g in a way similar to (50), we have

∂g
({

Λi, ς
2
i

}N
i=1

)
∂
(
ς2i
) =

ui,i
2

Λ2
i and

∂h
({
ς2i
}N
i=1

)
∂
(
ς2i
) = − 1

2 log 2
σ2ti

ς2i
(
σ2ti + ς2i

)
where ui,i = ∂2u

∂x2
i
. As

{
λi =

σ2
ti

σ2
i+σ

2
ti

, σ2i

}N
i=1

must solve (47), in the optimum of the costly contemplation

problem in (30), we must have

ui,iΛ
2
i /

(
σ2ti

σ2i
(
σ2ti + σ2i

)) = uj,jΛ
2
j/

 σ2tj

σ2j

(
σ2tj + σ2j

)
 ∀i, j,

and

ui,iσ
2
ti (1− λi) = uj,jσ

2
tj (1− λj) .

As λi = 1− 2−2τ∗
i , Proposition 13 follows.

Appendix B: Consumer Theory under Narrow Thinking:

The Case Without Income Effects

Identification of Demand Gradients.

Consider an environment with K consumers. All consumers have the same utility as (15). There are T

periods. In each period, each consumer solves the same consumer problem with a newly drawn price vector.

Specifically, the price vector faced by consumer k ∈ {1, · · · ,K} at period t ∈ {1, · · · , T} , pki,t, is drawn

i.i.d (across time, consumers and goods) from consumer k’s price distribution, logN
(
log p̄ki , σ2pki

)
. Same as

Section 4.2, each self i ∈ {1, · · · , N} of the consumer k at period t perfectly knows the price of the good

she buys pki,t, but only receives a noisy signal about each of the other price faced by her other selves, pkj,t.

All consumers share the same signal-to-noise ratio of their signals (thus same {λi,j}) in each period.

As different consumers have the same utility and same λs, they all share the same demand elasticities in
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response to price shocks. However, the mean demand for each good i differs across different consumers, as

the price distribution for each consumer is different.

Specifically, first, as the price distribution is drawn i.i.d across time, one can study how each consumer

responds to the temporary price shocks she faces. Specifically, for each consumer k, we can look at how

each of her consumption xti,k moves with respect to p⃗kt =
(
pk1,t, · · · , pkN,t

)
, for t ∈ {1, · · · , T} . This will

identify the narrow thinker’s demand elasticity with respect to price shocks studied in main text.

Second, one can first calculate the average demand and the average price for each consumer (across all

T periods), and then study how such each consumer’s average demand varies with her average price. Such

method will identify a different demand elasticity under narrow thinking. The one identified will coincide

with the frictionless demand elasticity under standard consumer theory.

Appendix C: Consumer Theory under Narrow Thinking:

Income Effects and the Violation of the Fungibility Principle

Consumer with General Non-quasi Linear Utility.

Consider the general consumer theory under narrow thinking set up at the start of Section 4. As shown

in (14), it can be translated into the general unconstrained multiple-decision problem in (2) introduced in

Section 2. For this general multiple-decision problem, the results about how narrow thinking leads to an

effective attenuation of interaction across decisions and a dampening of indirect effects are established in

Propositions 16 and 17 in Appendix D.

Attenuation of the Cross-Price Demand Elasticity with Income Effects.

Here I establish the attenuation of cross-price demand elasticity under narrow thinking in a general non-

quasilinear case with symmetry. Specifically, I let the consumer’s utility be v (x1, · · · , xN ) + h (y) , where

v and h are strictly increasing in each of her arguments, strictly concave and twice differentiable.51 The

consumer is subject to the budget constraint
∑N

i=1 pixi+ y = w. I consider the same information structure

as in Section 4. Specifically, each self i ∈ {1, · · · , N} of the narrow thinker, who is in charge of purchasing

good i, perfectly knows pi ∼ logN
(
log p̄, σ2p

)
, but receives a noisy signal about each of the other pj . To

summarize, for i ∈ {1, · · · , N} , self i’s signal is given by ωi =
{
{si,j}j∈{1,··· ,N}

}
, where si,i = pi and, for

all i ̸= j, si,j = pjϵi,j , with ϵi,j ∼ logN
(
0, σ2

)
and σ2 > 0. All ϵs and ps are independent from each other.

The last self, who is in charge of the consumption of y, has perfect knowledge of the fundamentals and
51I let h (y) be well defined for all y ∈ R. This allows the possibility that the “residual decision” y is negative and

guarantees that the budget constraint will always be satisfied.
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other decisions. This makes sure that the budget constraint always holds. The problem is symmetric across

i ∈ {1, · · · , N}. It means that the utility function v is symmetric across each good i and each self i’s signal

about other prices pj have the same signal-to-noise ratio, i.e. λi,j =
σ2
p

σ2
p+σ

2 are the same for all i ̸= j.

Similar to condition (21), the optimal consumption decision of each self i ∈ {1, · · · , N}, x∗i (ωi) , must

satisfy

Ei

[
∂v

∂xi

(
x∗i (ωi) , x⃗

∗
−i
)]

= piEi

[
h

′
(y∗)

]
. (53)

That is, from each self i’s perfective, her expected marginal rate of substitution between the consumption of

good i and the consumption of y should equal pi. Log-linearizing the above condition and budget constraint

around the point where each price i is fixed at p̄i and each decision is made with perfect knowledge of all

prices, we have

x̂∗i (ωi) = −ψ′
p̂i +

∑
j ̸=i

γ
′
Ei
[
x̂∗j (ωj)

]
+ κhEi [ŷ

∗] , (54)

N∑
i=1

µ (x̂∗i (ωi) + p̂i) + µyŷ
∗ = 0, (55)

where, with symmetry, ψ′
= −

p̄i
∂v(x̄1,··· ,x̄N )

∂xi

∂2v(x̄1,··· ,x̄N )
∂x2
i

x̄i
> 0, γ

′
= −

∂2v(x̄1,··· ,x̄N )
∂xi∂xj

x̄j

∂2v(x̄1,··· ,x̄N )
∂x2
i

x̄i
∈
(
− 1
N−1 ,

1
N−1

)
and κh =

h
′′
(ȳ)ȳ

∂v(x̄1,··· ,x̄N )
∂xi

h′(ȳ)
∂2v(x̄1,··· ,x̄N )

∂x2
i

x̄i
> 0. µ = p̄ix̄i

w and µy = ȳ
w are the spending share of each good i and y at the point

of log-linearization.

Substituting the last self’s consumption, ŷ∗ and using the budget constraint, we then have

x̂∗i (ωi) = −ψp̂i −
∑
j ̸=i

ΨEi [p̂j ] +
∑
j ̸=i

γEi
[
x̂∗j (ωj)

]
, (56)

where ψ =
ψ

′
+
κhµ

µy

1+
κhµ

µy

> 0, Ψ =
κhµ

µy

1+
κhµ

µy

> 0, and γ =
γ
′−κhµ

µy

1+
κhµ

µy

∈
(
−1, 1

N−1

)
. Similar to Section 4.3, I define

the narrow thinker’s (log) demand function as x̂Li (p̂1, · · · , p̂N ) ≡ E [x̂∗i (ωi) |p̂1, · · · , p̂N ] , averaging over

the realization of noises in signals. I then establish the attenuation of cross-price demand elasticity under

narrow thinking in this set-up.

Proposition 14 The cross-price demand elasticities are attenuated under narrow thinking:

∣∣∣∣∂x̂Narrow
i

∂p̂j

∣∣∣∣ ≤ ∣∣∣∣∂x̂Standard
i

∂p̂j

∣∣∣∣ ∀i ̸= j,

where I use superscript Standard to denote standard consumer theory’s demand function when each decision

is made with perfect knowledge of all prices.
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Proof of Proposition 14. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. Similar to the proof of Proposition 8, given

the optimal consumption rule in (56), we have

∂xNarrow
i

∂pi
= −ψ + γ

∑
l ̸=i

∂xNarrow
l

∂pi
∀i,

∂xNarrow
i

∂pj
= −λΨ+ λγ

∑
l ̸=i

∂xNarrow
l

∂pj
∀i ̸= j,

where λ =
σ2
p

σ2+σ2
p
. We then have

∂xNarrow
i

∂pi
= −ψ + γ (N − 1)

−λΨ− λγψ

1− λγ2 (N − 1)− λγ (N − 2)
, (57)

∂xNarrow
i

∂pj
=

−λΨ− λγψ

1− λγ2 (N − 1)− λγ (N − 2)
. (58)

Using the fact that λ ∈ [0, 1), ψ > Ψ > 0 and γ ∈
(
−1, 1

N−1

)
,52 Proposition 14 follows directly.

Own-demand Elasticity with Income Effects: Over-reaction vs. Under-
reaction

In the symmetric consumer theory with income effects context studied in Proposition 14 above, I formalize

the following rule-of-thumb useed in the main text: when the indirect effect works in the same direction as

the direct effect, a dampening of the indirect effect under narrow thinking often leads to under-reaction.

When the indirect effect works in the opposite direction of the direct effect, a dampening of the indirect

effect under narrow thinking often leads to over-reaction.

First note that from (57), standard consumer theory’s own-price elasticity can be characterized by:

∂xStandard
i

∂pi
= −ψ︸︷︷︸

direct effect

− (N − 1) γ (Ψ + γψ)

1− γ2 (N − 1)− γ (N − 2)︸ ︷︷ ︸
indirect effect

.

Proposition 15 In terms of own-demand elasticity:

1. When the indirect effect works in the same direction as the direct effect, that is, when (N−1)γ(Ψ+γψ)
1−γ2(N−1)−γ(N−2) >

0, narrow thinking leads to under-reaction:

∂xStandard
i

∂pi
<
∂xNarrow

i

∂pi
< 0.

52This means 1− λγ2 (N − 1)− λγ (N − 2) > 0.
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2. When the indirect effect works in the opposite direction of the direct effect, that is, when (N−1)γ(Ψ+γψ)
1−γ2(N−1)−γ(N−2) <

0, narrow thinking leads to over-reaction:

∂xNarrow
i

∂pi
<
∂xStandard

i

∂pi
< 0.

Proof of Proposition 15. Using the fact that λ ∈ [0, 1), ψ > Ψ > 0, and γ ∈
(
−1, 1

N−1

)
, we know

1− γ2 (N − 1)− γ (N − 2) > 0, 1− λγ2 (N − 1)− λγ (N − 2) > 0, and ∂x̂Si
∂p̂i

< 0 always. The results then

follow directly from conditions (57) and (58).

Appendix D: Beyond the Response to Price Changes

The Effective Attenuation of Interaction

Each self’s best response function. Consider the general multiple-decision problem in Section 2,

where the decision maker’s utility depends on N decisions x⃗ = (x1, · · · , xN ) ∈ RN and the fundamentals

θ⃗ = (θ1, · · · , θM ) ∈ RM :

u
(
x⃗, θ⃗
)
,

where u is strictly concave over x⃗. To analytically characterize the narrow thinker’s behavior, I also let u be

quadratic. Without loss of generality, I also restrict that u does not have terms which are linear functions

of x⃗. Such terms will only add a constant to each optimal decision rule.

Taking the first order condition of the decision-specific optimality condition in (3) and collecting terms,

the optimal decision rule for each self i can be summarized as

x∗i (ωi) = Ei

 ∑
1≤k≤M

ψi,kθk +
∑
j ̸=i

γi,jx
∗
j (ωj)

 ∀i, ωi ∈ Ωi, (59)

where ψi,k = − ∂2u
∂xi∂θk

(
∂2u
∂x2

i

)−1
and γi,j = − ∂2u

∂xi∂xj

(
∂2u
∂x2

i

)−1
. ψi,kθk summarizes how the k-th element of

the fundamentals directly influences decision i. γi,j captures how decision i is influenced by decision j. One

can think of (59) as the best response function of a linear network game. The matrix Γ = {γi,j}1≤i,j≤N
can then be interpreted as the interaction matrix.53

Alternatively, without quadratic utility, one can arrive at the linear decision rule in (59) by linearizing

or log-linearizing the FOC of each decision.

Information. I study the following narrow thinker: each self i’s information is given by ωi =

53I set γi,i = 0 for all i.
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{
{si,k}k∈{1,··· ,M}

}
, where si,k = θk + ϵi,k, θk ∼ N

(
θ̄k, σ

2
θk

)
and noises ϵi,k ∼ N

(
0, σ2i,k

)
are indepen-

dent from the fundamentals and each other.

The information structure here nests those considered in the main text. For example, in the illustrative

example studied in Section 3, the dimensionality of the fundamental M = N. There, I let each self i ∈

{1, · · · , N} of the narrow thinker perfectly know her own θi (i.e. σi.i = 0) and receive a signal about each

of the other θk.

Finally, I let different θks be uncorrelated. As also discussed in Section 3, the key additional channel

with correlated θks is “rational confusion:” to the extent that θk and θl are correlated, self i can use

signals of θk to forecast θl and vise versa. Given the interpretation that the noise of self i’s signal of each

fundamental comes from cognitive frictions, one may not want to take into account such rational confusion

considerations. In fact, when different θks are correlated, this section’s analysis can be interpreted as a

characterization of the narrow thinker’s behavior when such rational confusion is shut down. That is, each

self i’s forecast about θk is based on her signal about θk, si,k, solely. In this case, Ei [θk] = E [θk|si,k] .

Belief anchoring. Similar to Proposition 2, under narrow thinking, as each self has an imperfect

perception of other selves’ decisions, each self i’s belief about how other decisions respond to shocks will

be anchored. Specifically, consider self i’s belief about the decision j ̸= i, Ei
[
x∗j

]
. In response to shocks to

each θk,

E
[
Ei
[
x∗j
]
|θk
]
= λi,kE

[
x∗j |θk

]
+ (1− λi,k)E

[
x∗j
]

∀k, ∀i ̸= j, (60)

where λi,k =
σ2
θk

σ2
θk

+σ2
i,k

∈ (0, 1] is a function of the signal-to-noise ratio of self i’s signal about θk, si,k. It

captures how precise self i can predict how other decisions respond to θk.

Effective attenuation of interaction. I now turn to the narrow thinker’s response to shocks to

fundamentals. To achieve this goal, along with (9) in Section 3, I first define the narrow thinker’s decision

as a function of fundamentals xLi (θ1, · · · , θM ) as

xNarrow
i (θ1, · · · , θM ) ≡ E [x∗i (ωi) |θ1, · · · , θM ] ∀i, (61)

where E [·|θ1, · · · , θM ] averages over the realization of noises in signals. I will then study how narrow

thinker’s decision xi responds to shocks to each θk, that is, ∂x
Narrow
i

∂θk
, for all i, k. In response to such shocks,

the belief anchoring in (60) dampens the impact from other decisions xj to xi and leads to an effective

attenuation of interaction.
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Proposition 16 The narrow thinker’s response to shocks to each θk can be summarized as54



∂xNarrow
1

∂θk
∂xNarrow

2

∂θk

· · ·

∂xNarrow
N

∂θk


=


IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ



−1

λ1,kψ1,k

· · ·

λk,kψk,k

· · ·

λN,kψN,k


, (62)

where ◦ is element by element product.

The above condition means that, in response to shocks to θk, for each pair of decision (i, j), the effective

degree of interaction from decision j to decision i is attenuated by a factor λi,k between 0 and 1. That is,

in response to shocks to θk, an one unit increase in xj only effectively increases xi by λi,kγi,j . It is as if

each self cares less about other decisions’ influence, and she “thinks narrowly.”

Let me explain the difference compared to Proposition 3 in the main text. In the environment for

Proposition 3, θk only has a direct effect on xk. Thus, only the k-th element of the last row of (11), which

summarizes the direct effect of θk, is non-zero. Moreover, as self k perfectly knows θk, the direct effect is

maintained under narrow thinking. Thus, there are no λs in the last row of (11) . Here, I allow θk to directly

influence each decision. As the result, each element of the last column in (62), which summarizes the direct

effect, can be non-zero. Moreover, I allow the possibility that the direct effect can also be attenuated here.

Such attenuation is summarized by the λs in the last row of (62).

Proof of Proposition 16. For notation simplicity, I normalize the mean of each θk, θ̄k, to be zero.

Based on Lemma 1 and Lemma 2, I use guess and verify approach to find the unique optimum. I conjecture

the optimal decision rule for each self i, x∗i (ωi) , is linear in her signals,

x∗i (ωi) =

M∑
k=1

αi,ksi,k. (63)

Given the information structure, we have, for all i ̸= j and k,

Ei [sj,k] = Ei [θk] = E [θk|si,k] = λi,ksi,k.

54Proposition 16 studies the narrow thinker’s response to each θk. Sometimes, one is also interested in response
to a different linear function of the fundamental vector θ⃗, i.e., Θ =

∑M
k=1 vkθk. As different θks are independent

and there is no rational confusion, we have dxNarrow
i

dΘ =
∑M

k=1 vk
∂xNarrow
i

∂θk
, where ∂xNarrow

i

∂θk
can be calculated directly

from Proposition 16.
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We then have

Ei
[
x∗j
]
=

M∑
k=1

λi,kαj,ksi,k. (64)

Together with the optimal decision rule in (59) and the guess in (63), we have, for all i,

x∗i (ωi) =

M∑
k=1

ψi,kλi,ksi,k +
∑
j ̸=i

γi,j

M∑
k=1

λi,kαj,ksi,k.

For the guess in (63) to be valid, we then need to have, for all i, k,

αi,k = λi,kψi,k +
∑
j ̸=i

λi,kγi,jαj,k. (65)

(65) are satisfied when



α1,k

α2,k

· · ·

αN,k


=


IN −



1 λ1,k · · · λ1,k λ1,k

λ2,k 1 · · · λ2,k λ2,k

· · ·

λN,k λN,k · · · λN,k 1


◦ Γ



−1

λ1,kψ1,k

· · ·

λk,kψk,k

· · ·

λN,kψN,k


.

This verifies that the guess in (63) indeed characterizes the narrow thinker’s optimal decision rules. Because

different θis are independent, the belief anchoring in (60) then follows immediately from (63) and (64). To

prove Proposition 16, note that based on the definition in (61), we then have, for all i,

xLi

(
θ⃗
)
=

M∑
k=1

αi,kθk.

Taking partial derivative with respect to each θk then leads to Proposition 16.

Dampening Indirect Effects.

Similar to Proposition 4, one can also show that each self’s imperfect perception of other decisions under

narrow thinking leads to a dampening of indirect effects — the movement of one decision driven by the

movement of other decisions.

I first impose conditions such that the game among multiple selves are solvable by iterating best response.

Assumption 1 The absolute value of all eigenvalues of Γ are less than one.
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Iterating the optimal decisions rule in condition (59), we have

x∗i (ωi) =

M∑
k=1

ψi,kEi [θk] +
∑
j ̸=i

γi,jEi
[
x∗j
]

=

M∑
k=1

ψi,kEi [θk] +
∑
j ̸=i

γi,j

(
M∑
k=1

ψj,kEi [Ej [θk]]

)
+
∑
j ̸=i

γi,j

∑
l ̸=j

γj,lEi [Ej [x
∗
l ]]


=

M∑
k=1

ψi,kEi [θk]︸ ︷︷ ︸
Direct

+
∑
j ̸=i

γi,j

(
M∑
k=1

ψj,kEi [θk]

)
+
∑
j ̸=i

γi,j

∑
l ̸=j

γj,l

(
M∑
k=1

ψl,kEi [Ej [θk]]

)+ · · ·

︸ ︷︷ ︸
Indirect

.

(66)

The above representation shows that, as the indirect effect for each decision i comes from self i’s belief

about other decisions, it in turn depends on self i’s belief about other selves’ belief about θs, self i’s belief

about other selves’ beliefs about other selves’ belief about θs, ad infinitum. I can then define, xInd,+
i (ωi) ,

the indirect effect that positively influences xi, by collecting all belief terms with positive coefficients. I can

also define, xInd,−
i (ωi) , the indirect effect that negatively influences xi, as the collection of all belief terms

with negative coefficients. Similar to condition (61), averaging over the realization of noises in signals, one

can then define each part of the indirect effects as a function of fundamentals: xInd,+,Narrow
i (θ1, · · · , θM ) ≡

E
[
xInd,+
i (ωi) |θ1, · · · , θM

]
and xInd,−,Narrow

i (θ1, · · · , θM ) ≡ E
[
xInd,−
i (ωi) |θ1, · · · , θM

]
. One can then es-

tablish:

Proposition 17 Under Assumption 1, for each decision xi, each part of its indirect effect is dampened

under narrow thinking in response to shocks to each θk,∣∣∣∣∣∂xInd,+,Narrow
i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,+,Standard

i

∂θk

∣∣∣∣∣ and
∣∣∣∣∣∂xInd,−,Narrow

i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,−,Standard

i

∂θk

∣∣∣∣∣ ∀i, k

where, as above, a superscript Standard denotes the case when each self perfectly knows all the fundamentals.

Proof of Proposition 17. For all i1, · · · , im ∈ {1, · · · , N} ,where il ̸= il+1 for 1 ≤ l ≤ m− 1, we have

Ei1 [Ei2 [· · ·Eim [θk]]] = λi1,k · · ·λim,ksi1,k, (67)

and

E
[
Ei1 [Ei2 [· · ·Eim [θk]]] |θ⃗

]
= λi1,k · · ·λim,kθk. (68)
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From conditions (66) and (68), we have

∂xNarrow
i

∂θk
= λi,kψi,k +

∑
j ̸=i

λi,kγi,jψj,k +
∑
j ̸=i

λi,kγi,j
∑
l ̸=j

λj,kγj,lψl,k + · · · .

Using the fact that each λ is a factor between 0 and 1 and collecting terms with positive and negative

coefficients prove Proposition 16.

Comfort Zones

The decision maker’s utility is given by,

N∑
i=1

φivi (xi)− c

(
N∑
i=1

xi

)
, (69)

where xi is the time the decision maker assigns to activity i, φivi (xi) = φi
x
1−κi
i

1−κi with κi > 0 is her utility

from activity i, φi parametrizes the attractiveness of activity i, c
(∑N

i=1 xi

)
is the opportunity cost of time,

and c (x) = x1+κc

1+κc
with κc > 0 is a strictly convex function.

For consistency, I consider a information structure for the narrow thinker similar to the one used in

the main text. As I will work with log-linearization later, I let fundamentals and signals be log-normally

distributed. Specifically, each self i ∈ {1, · · · , N} of the narrow thinker, who is in charge of activity i,

perfectly knows φi ∼ logN
(
log φ̄i, σ2φi

)
, but receives a noisy signal about each of the other φj . This makes

sure that the budget constraint always holds. Specifically, for i ∈ {1, · · · , N} , self i’s signal is given by

ωi =
{
{si,j}j∈{1,··· ,N}

}
, where si,i = φi and, for i ̸= j, si,j = φjϵi,j , with ϵi,j ∼ logN

(
0, σ2i,j

)
and σ2i,j > 0.

All ϵs and φs are independent from each other.

I use a hat over a variable to denote its log-deviation from the point of log-linearization.55 Then, similar

to condition (18), for all i, I define the narrow thinker’s (log) decision function as a function of fundamentals:

x̂Narrow
i (φ̂1, · · · , φ̂N ) ≡ E [x̂∗i (ωi) |φ̂1, · · · , φ̂N ] , (70)

where E [·|φ̂1, · · · , φ̂N ] averages over the realization of noises in signals. Compared to the standard friction-

less case when each decision is made with perfect knowledge of all fundamentals (indexed by the superscript

Standard, as above), one then have:

Proposition 18 (A narrow thinking theory of comfort zones) For each i, the narrow thinker in-

creases (decreases) her time allocated for activity i less in response to positive (negative) taste shocks to
55Specifically, I log linearize around the point where each φi is fixed at φ̄i and each decision is made with perfect

knowledge of all fundamentals.
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φi :
∂x̂Standard

i

∂φ̂i
>
∂x̂Narrow

i

∂φ̂i
> 0.

To understand the intuition behind the Proposition, first consider the case that each decision is made

with perfect knowledge of all the fundamentals. An increase in φi will increase xi as activity i becomes

more attractive, but decrease other xj for j ̸= i, as the cost function is convex over the sum of efforts.

Under narrow thinking, such a coordinated response to φi is hindered: other selves’ xj will not decrease

as much in response to the increase in φi. As a result, xi will not increase as much. In other words, the

narrow thinker stays within her comfort zones, despite the fact that activity i becomes more attractive.

For a concrete example of the above comfort zones behavior, consider an engineering student who

decides how much time she will spend on the economics class. She realizes the economics class has a great

professor, that is, the φi of spending time on the economics class is high. However, she is concerned that

she will not decrease the amount of time spent on engineering classes. In the end, as the student has limited

time, it is hard for the engineering student to go outside of her comfort zone and engage in the economics

class, even with an excellent professor.

Here, the direct effect of φi on xi is positive. The indirect effect of φi on xi, through the decrease of

other xj , is also positive. A dampening of the indirect effect under narrow thinking then leads to under-

reaction. This is as suggested by the rule of thumb of when narrow thinking leads to under-reaction at the

start of Section 5.

Proof of Proposition 18. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. The optimality condition for each decision i

becomes

φi − κix
∗
i (ωi) = κcEi

 N∑
j=1

µjx
∗
j (ωj)

 ∀i,

where µi = x̄i∑N
l=1 x̄l

denotes the share of time spent on activity i in the steady state. Similar to the proof of

Proposition 9, we have

1− κk
∂xNarrow

k

∂φk
= κc

 N∑
j=1

µj
∂xNarrow

j

∂φk

 ∀k,

−κi
∂xNarrow

i

∂φk
= κc

µi∂xNarrow
i

∂φk
+ λi,k

∑
j ̸=i

µj
∂xNarrow

j

∂φk

 ∀i ̸= k,
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where λi,k =
σ2
φk

σ2
φk

+σ2
i,k
. Solving the above two equations, we have

∂xNarrow
i

∂φk
= −

λi,k
κi + (1− λi,k)κcµi

µk
κk(∑

j ̸=k µj
λj,k

κj+(1−λj,k)κcµj +
µk
κk

)
+ 1

κc

∀k, (71)

∂xNarrow
k

∂φk
= − 1

κk

µk
κk(∑

j ̸=k µj
λj,k

κj+(1−λj,k)κcµj +
µk
κk

)
+ 1

κc

+
1

κk
∀k. (72)

Note that
(∑

j ̸=k µj
λj,k

κj+(1−λj,k)κcµj +
µk
κk

)
is smaller than its standard counterpart (all λs are 1). As a

result, ∂x
Narrow
k

∂φk
<

∂xStandard
k

∂φk
for all k.

The Small Wage Elasticity of Daily Labor Supply.

In the standard labor supply theory, when the wage on a particular day increases, the decision maker will

coordinate her behavior by increasing her labor supply on the day of wage increase and decreasing her

labor supply on other days. Such a coordinated response generates a large elasticity of daily labor supply.

Under narrow thinking, however, labor supply on other days may not be as responsive, and such friction

will prevent a large increase in labor supply on the day of wage increase.

Environment. To formalize, consider a decision maker whose utility is

N∑
i=1

−v (li) + h (y)

where li is the labor supply on day i, v (li) = l1+κi

1+κ captures the disutility of labor on day i, and h (y) = y1−κh
1−κh

is her utility from consumption, with κ > 0 and κh > 0. The decision maker is subject to the budget

constraint:
∑
wili + w ≤ y, where w is her initial wealth level (constant) and wi is her wage on day i. As

I am focusing on response to daily wage fluctuations, I let different wis be independent.

Information. Different from problems studied in the main text, as each i here denotes a period of

time, the above problem should be treated as a sequential decision problem. Specifically, I study the

following narrow thinker here. Each self i of the narrow thinker perfectly knows the wage she faces wi,

but receives a noisy signal about each of the past wj , for all j < i (can arise from bounded recall or

selective retrival from memory when making decision i). In the sequential setting here, as different wis are

independently drawn and I focus on response to unanticipated shocks here, the narrow thinker does not

have knowledge of future wj for j > i. The last self, who is in charge of the consumption of y, has perfect

knowledge of all fundamentals and other decisions. This makes sure that the budget constraint always

holds. As I would work with log-linearization later, I let prices and signals be log-normally distributed.
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Specifically, for i ∈ {1, · · · , N} , self i’s information (signals) is given by ωi =
{
{si,j}j∈{1,··· ,N}

}
, where

si,i = wi ∼ logN
(
log w̄i, σ2wi

)
and, for i ̸= j, si,j = wjϵi,j with ϵi,j ∼ logN

(
0, σ2i,j

)
and σ2i,j > 0. ϵs are

independent from each other and all ws.

I then compare the narrow thinker’s behavior with the behavior of a standard decision maker with

perfect recall (indexed by Perfect). Specifically, with perfect recall, each self i of the decision maker

perfectly knows current wi and all past wj for j < i (and thus also all past decisions). As different wis

are independently drawn and I focus on response to unanticipated shocks here, she also does not have

knowledge of future wj for j > i.

Narrow thinker’s behavior. Parallel with (21), each optimal labor supply l∗i (ωi) must satisfy

v
′
(l∗i (ωi)) = wiEi [h

′ (y∗)] . Similar to the main text, I then use a hat over a variable to denote its log-

deviation from the point of log-linearization.56 The optimal labor supply condition for each i and the

budget constraint then become

κl̂∗i (ωi) = ŵi − κhEi [ŷ
∗] , (73)

N∑
i=1

µi

(
l̂∗i (ωi) + ŵi

)
= ŷ∗, (74)

where µi = w̄i l̄i
ȳ is the share of day i income in total wealth at the point of log-linearization.

Small wage elasticity of daily labor supply. I then study how the narrow thinker’s labor supply

on each day i responds to shocks to the wage on that day. Similar to condition (18), for each i, I define the

narrow thinker’s (log) labor supply function as l̂Narrow
i (ŵ1, · · · , ŵN ) ≡ E

[
l̂∗i (ωi) |ŵ1, · · · , ŵN

]
. Similarly I

define the (log) labor supply function for the decision maker with perfect recall, l̂Perfect
i (ŵ1, · · · , ŵN ). I can

then formalize the small wage elasticity of daily labor supply under narrow thinking.

Proposition 19 For each i, the narrow thinker’s labor supply li is smaller (larger) in response to positive

(negative) shocks to wi :
∂l̂Narrow
i

∂ŵi
≤ ∂l̂Perfect

i

∂ŵi
.

To see the mechanism behind the small wage elasticity of daily labor supply, note that an increase in wi
decreases labor supply, lj , for j ≥ i (both in standard consumer theory and under narrow thinking). This

is because the income effect of wi on lj (negative) and the substitution effect of wi on lj (negative) work

in the same direction. The decrease of other lj then further increases li (a positive indirect effect). Under

narrow thinking, in response to an increase in wi, the decision maker decreases labor supply on other days
56I log-linearize around the point where each wage is fixed at w̄i and each decision is made with perfect knowledge

of all wages.
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less. The indirect effect is dampened, and the narrow thinker’s li is smaller in response to the increase in

wi.

Economic implications and testable predictions. First, there are some potential testable differ-

ences between the narrow thinking theory of small wage elasticity of daily labor supply and the existing

daily income targeting model, potentially micro-founded by loss aversion around the target in Farber (2015).

As Farber (2015) points out, such model tends to predict negative wage elasticity of daily labor supply,

which is inconsistent with the empirical evidence. The prediction under narrow thinking, however, can be

consistent with the empirically documented positive, but small, wage elasticity of daily labor supply.

Second, in line with Proposition 5, the smaller wage elasticity of labor supply under narrow thinking is

about response to temporary daily wage shocks. The narrow thinker’s labor supply decision, average across

days, as a function of the average wage can coincide with that in the standard benchmark. Such prediction

is consistent with the larger wage elasticity of labor supply found in Fehr and Goette (2007) and Angrist,

Caldwell and Hall (2017) based on wage variations at longer frequency.

Third, the within-person coordination friction driven by narrow thinking can decrease with the experi-

ence. More experience is akin to an increase in cognitive capacity τ in Section 6, facilitating the decision

maker to coordinate her multiple selves. This is indeed consistent with the finding in Camerer et al. (1997)

and Section 8 in Farber (2015) that wage elasticity of daily labor supply increases with the taxi driver’s

experience.

Proof of Proposition 19. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. From conditions (73) and (74), similar to the

proof of Proposition 8, we have

κ
∂lNarrow
k

∂wk
= 1− κh

 N∑
j=1

µj
∂lNarrow
j

∂wk
+ µk

 ∀k,

κ
∂lNarrow
i

∂wk
= −κh

µi ∂lLi
∂wk

+ λi,k

∑
j ̸=i

µj
∂lNarrow
j

∂wk
+ µk

 ∀i ̸= k,

where λi,k =
σ2
wk

σ2
wk

+σ2
i,k

for k < i, λk,k = 1, and λi,k = 0 for k > i. We then have

∂lNarrow
i

∂wk
= −

λi,kκh
κ+ (1− λi,k)κhµk

(κ+ 1)µk

κ
(
µk

κh
κ +

∑
j ̸=k µj

λj,kκh
κ+(1−λj,k)κhµj

) ∀i ̸= k,

∂lNarrow
k

∂wk
= −κh

κ

(κ+ 1)µk

κ
(
µk

κh
κ +

∑
j ̸=k µj

λj,kκh
κ+(1−λj,k)κhµj

) +
1

κ
∀k. (75)
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Then note that the sequential decision maker with perfect recall (Perfect) in fact corresponds to the

case that λi,k = 1 for k ≤ i and λi,k = 0 for k > i. Further note that
(
µk

κh
κ +

∑
j ̸=k µj

λj,kκh
κ+(1−λj,k)κhµj

)
is

increasing in all λs. As a result, ∂l
Narrow
j

∂wj
≤ ∂lPerfect

j

∂wj
for all j.

Excess Sensitivity to Anticipated Temporary Income Shocks.

One often mentioned form of over-reaction is excess sensitivity to anticipated temporary income shocks.

As Stephens Jr and Unayama (2011), Parker (2017) and Kueng (2018) document, such excess sensitivity

cannot be fully explained by the existence of liquidity constraints. As an example of such behavior, Thaler

(1999) mentioned his own experience: he spent most of his speaking fee for a conference in Switzerland

on fancy hotels and meals there. He said he would not spend so much without the speaking fee. Such

behavior is inconsistent with the standard consumption smoothing behavior: the decision maker should,

instead, increase her consumption by a small amount at different points in response to a temporary income

shock. Under narrow thinking, however, consumption at other points in time may not be as responsive to

the shock. As a result, the narrow thinker’ consumption at the time of the income shock increases more.

To formalize, consider a decision maker whose utility is

N∑
i=1

vi (xi) + h (y) ,

where vi (x) and h (y) are defined similar to those in Section 4.3. The decision maker is subject to the

budget constraint:
∑N

i=1 xi + y ≤ w +
∑N

i=1wi, where w is the decision maker’s initial wealth (treat as a

constant) and wi is the income earned by self i.

In this environment, each self i ∈ {1, · · · , N} should be interpreted as in charge of the consumption

decision for a period of time.57 Self i perfectly knows wi ∼ logN
(
log w̄i, σ2wi

)
, the income she earns during

that period. She receives a noisy signal about each of the other selves’ wj . Specifically, for i ∈ {1, · · · , N} ,

self i’s information (signals) is given by ωi =
{
{si,j}j∈{1,··· ,N}

}
, where si,i = wi and, for i ̸= j, si,j = wjϵi,j

with ϵi,j ∼ logN
(
0, σ2i,j

)
and σ2i,j > 0. All ϵs and ws are independent from each other. As above, I always

let the last self’s decision y be made with perfect knowledge about all the fundamentals and other decisions,

which guarantees that the budget constraint is satisfied.

I use a hat over a variable to denote its log-deviation from the point of log-linearization.58 Similar to
57To determine the length of such a period here, one can also apply the cognitive inertia principle about the

boundary of a self discussed above. For example, when a decision maker decides on her consumption in Switzerland,
the income she earns in Switzerland, but not other incomes, is on top of her mind.

58Specifically, I log linearize around the point where each wi is fixed at w̄i and each decision is made with perfect
knowledge of all fundamentals.
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conditions (9) and (18), for all i, I define the narrow thinker’s (log) consumption function:

x̂Narrow
i (ŵ1, · · · , ŵN ) ≡ E [x̂∗i (ωi) |ŵ1, · · · , ŵN ] ∀i, (76)

where E [·|ŵ1, · · · , ŵN ] averages over the realization of noises in signals. Compared to the standard friction-

less case when each decision is made with perfect knowledge of all fundamentals (indexed by the superscript

Standard, as above), one can then establish excess sensitivity to temporary income shocks under narrow

thinking.

Proposition 20 For each i, the narrow thinker’s consumption xi increases (decreases) more in response

to positive (negative) shocks to wi :

∂x̂Narrow
i

∂ŵi
>
∂x̂Standard

i

∂ŵi
> 0.

To understand the intuition behind the excess sensitivity, note that in standard consumer theory, an

increase in wi will increase the consumption of both xi (the positive direct effect) and other consumption

xj . The increase in other consumption xj then decreases xi (the negative indirect effect). This scenario falls

into the case that the indirect effect works in the opposite direction of the direct effect, and the dampening

of the indirect effect under narrow thinking leads to over-reaction. Specially, under narrow thinking, other

consumption xj increases less, xi increases more.

Note that, in Proposition 20, each self of the benchmark frictionless consumer (indexed by the super-

script Standard) makes her consumption decision with perfect knowledge of all wis, including those earned

by future selves. Proposition 20 is then designed to explain the empirical evidence that consumers exhibit

excess sensitivity to anticipated temporary income shocks. In Proposition 21 below, I also study how narrow

thinking can explain excess sensitivity to unanticipated temporary income shocks (Hall and Mishkin, 1982;

Jappelli and Pistaferri, 2014).59

Proof of Proposition 20. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. We first derive the log-linearized optimal

decision rule for each consumption x∗i (ωi) and the budget constraint:

−κix∗i (ωi) = −κhEi [y∗] ,
59There, the benchmark frictionless consumer has perfect recall, but does not have perfect knowledge about her

future incomes.
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N∑
i=1

µxi x
∗
i (ωi) + µyy

∗ =

N∑
i=1

µwi wi,

where κh = −h
′′
(ȳ)ȳ

h′(ȳ) , µ
x
i = x̄i

w and µwi = w̄i
w are the spending and income share of self i, and µy = ȳ

w is the

spending share of y.

Using the definition in (76) and averaging over the realizations of noises in signals, we have

−κk
∂xNarrow

k

∂wk
=
κh
µy

 N∑
j=1

µxj
∂xNarrow

j

∂wk
− µwk

 ∀k,

−κi
∂xNarrow

i

∂wk
=
κh
µy

µxi ∂xNarrow
i

∂wk
+ λi,k

∑
j ̸=i

µj
∂xNarrow

j

∂wk
− µwj

 ∀i ̸= k,

where λi,k =
σ2
wk

σ2
wk

+σ2
i,k
. Together, we have

∂yNarrow

∂wk
=

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀k,

∂xNarrow
i

∂wk
=

λi,kκh
κi + (1− λi,k)

κh
µy
µxi

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀i ̸= k,

∂xNarrow
k

∂wk
=
κh
κk

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀k.

Note that
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh is smaller than its standard counterpart (all λs are 1). As a result,
∂xNarrow

k

∂wk
>

∂xStandard
k

∂wk
for all k.

Excess Sensitivity to Unanticipated Temporary Income Shocks.

Above, I study how narrow thinking can explain excess sensitivity to anticipated temporary income shocks.

Here I study how narrow thinking can explain sensitivity to unanticipated temporary income shocks (Hall

and Mishkin, 1982; Jappelli and Pistaferri, 2014).

Environment. The decision maker’s utility is the same as in Section 5.2. Here, I study the following

narrow thinker. Each self i of the narrow thinker perfectly knows wi, the income earned by her, but receives

a noisy signal about each of the past wj , for all j < i (can arise from bounded recall or selective retrieval

from memory when making decision i). Different from the case in the main text, as I am interested at

unanticipated income shocks here, the narrow thinker does not have knowledge of future wj for j > i.

The last self, who is in charge of the consumption of y, has perfect knowledge of all fundamentals and
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other decisions. This makes sure that the budget constraint always holds. As I would work with log-

linearization later, I let prices and signals be log-normally distributed. Specifically, for i ∈ {1, · · · , N} , self

i’s information (signals) is given by ωi =
{
{si,j}j∈{1,··· ,N}

}
, where si,i = wi ∼ logN

(
log w̄i, σ2wi

)
and, for

i ̸= j, si,j = wjϵi,j with ϵi,j ∼ logN
(
0, σ2i,j

)
and σ2i,j > 0. ϵs are independent from each other and all ws.

I then compare the narrow thinker’s behavior with the behavior of a standard decision maker with

perfect recall (indexed by Perfect). Specifically, with perfect recall, each self i of the decision maker

perfectly knows current wi and all past wj for j < i (and thus also all past decisions). As I am interested

at unanticipated income shocks here, she also does not have knowledge of future wj for j > i.

Similar to the main text, I use a hat over a variable to denote its log-deviation from the point of

log-linearization.60 Similar to conditions (18), for each i, I define the decision’s (log) demand function

as x̂Narrow
i (ŵ1, · · · , ŵN ) ≡ E [x̂∗i (ωi) |ŵ1, · · · , ŵN ] . Similarly I define the (log) demand function for the

decision maker with perfect recall, x̂Perfect
i (ŵ1, · · · , ŵN ). One can then establish:

Proposition 21 (Excess sensitivity to temporary income shocks) For each i, the narrow thinker’s

consumption xi increases (decreases) more in response to positive (negative) shocks to wi :

∂x̂Narrow
i

∂ŵi
≥ ∂x̂Perfect

i

∂ŵi
> 0.

To see the mechanism behind the excess sensitivity, note that an increase in wi will increase the con-

sumption of all xj for j ≥ i. Under narrow thinking, other selves’ xj will increase less to wi. As a result,

the current self will consume more.

Proof of Proposition 21. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. We first derive the log-linearized optimal

decision rule for each consumption x∗i (ωi) and the budget constraint:

−κix∗i (ωi) = −κhEi [y∗] ,

N∑
i=1

µxi x
∗
i (ωi) + µyy

∗ =

N∑
i=1

µwi wi,

where κh = −h
′′
(ȳ)ȳ

h′(ȳ) , µ
x
i = x̄i

w and µwi = w̄i
w are the spending and income share of self i, and µy = ȳ

w is the

spending share of y.
60I log-linearize it around the point where each wi is fixed at w̄i and each decision is made with perfect knowledge

of all wis.
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Using the definition in (76) and averaging over the realizations of noises in signals, we have

−κk
∂xNarrow

k

∂wk
=
κh
µy

 N∑
j=1

µxj
∂xNarrow

j

∂wk
− µwk

 ∀k,

−κi
∂xNarrow

i

∂wk
=
κh
µy

µxi ∂xNarrow
i

∂wk
+ λi,k

∑
j ̸=i

µj
∂xNarrow

j

∂wk
− µwj

 ∀i ̸= k,

where λi,k =
σ2
wk

σ2
wk

+σ2
i,k
. Together, we have

∂yNarrow

∂wk
=

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀k,

∂xNarrow
i

∂wk
=

λi,kκh
κi + (1− λi,k)

κh
µy
µxi

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀i ̸= k,

∂xNarrow
k

∂wk
=
κh
κk

µwk

µxk
κh
κk

+
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

κh + µy
∀k.

Then note that the sequential decision maker with perfect recall (Perfect) in fact corresponds to the

case that λi,k = 1 for k ≤ i and λi,k = 0 for k > i. Further note that
∑

j ̸=k µ
x
j

λj,k
κj+(1−λj,k)κhµy µ

x
j

is increasing

in all λs. As a result, ∂x
Narrow
k

∂wk
≥ ∂xPerfect

k

∂wk
for all k.

Temptation.

The environment is similar to the time management problem used for the study of comfort zones behavior.

There, I study the response to shocks to an individual activity’s attractiveness φi. Here I am interested in

the impact of a common shock influencing the attractiveness of all activities.

Specifically, the decision maker’s utility is given by

N∑
i=1

φiv (xi)− c

(
N∑
i=1

xi

)
, (77)

where xi is the time the decision maker assigns to activity i, φiv (xi) = φi
x1−κ
i

1−κ with κ > 0 is her utility

from activity i, φi parametrizes the attractiveness of activity i, c
(∑N

i=1 xi

)
is the opportunity cost of time,

and c (x) = x1+κc

1+κc
with κc > 0 is a strictly convex function.
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As I am interested in the impact of the common shock, I let the stochastic property of shocks and the

information structure be symmetric across each i. Specifically, I let the attractiveness of each activity i have

an idiosyncratic and a common component: φ̂i = φ̂ + δi, where φ̂ ∼ N
(
0, σ2φ

)
, δi ∼ N

(
0, σ2δ

)
and they

are independent from each other.61 Similar to the information structure considered throughout, each self i

perfectly knows her own φ̂i, and receives a noisy signal about each of the other φ̂j : si,j = φ̂j + ϵi,j ∀j ̸= i.

Noises ϵi,j ∼ N
(
0, σ2ϵ

)
are independent from the fundamental and each other.62

Let me put the environment in a concrete setting. Consider that each self i is in charge of how long she

will play computer games on day i, xi. Her utility from playing on day i is captured by φiv (xi) , where φi
parametrizes the attractiveness of playing computer games on day i, and c

(∑N
i=1 xi

)
captures the cost of

playing computer games. Each self i perfectly knows how attractive it is to play on day i, but only receives

noisy signals about how attractive it is to play on other days. Now, a new computer game is introduced,

and it generates a common shock increasing all φi. I am then interested in how the narrow thinker responds

to the introduction of the new game.

Similar to (70), I define the narrow thinker’s (log) decision as a function of the fundamentals as

x̂Narrow
i (φ̂1, · · · , φ̂N ) ≡ E [x̂∗i (ωi) |φ̂1, · · · , φ̂N ] . I then study dx̂Narrow

i

dφ̂ = limφ̂→0
x̂Narrow
i (φ̂,··· ,φ̂)−x̂Narrow

i (0,··· ,0)
φ̂ ,

which summarizes each decision i’s response to the common shock. Compared to the standard frictionless

case when each decision is made with perfect knowledge of all fundamentals (indexed by the superscript

Standard, as above), one then have:

Proposition 22 For each i, the narrow thinker increases (decreases) her time allocated for activity i more

in response to positive (negative) common taste shocks φ :

dx̂Narrow
i

dφ̂
>
dx̂Standard

i

dφ̂
> 0 ∀i.

To understand the intuition behind the result, note that the common increase in φ will have positive

direct effects on all xi through the increase in each φi. As each self i perfectly knows her own φi, such

direct effects are maintained under narrow thinking. Nevertheless, as self i does not perfectly know other

φjs, her belief about how other xjs respond to the common shock is anchored. The indirect effect of the

common shock on xi through other xjs will then be dampened under narrow thinking. In this context,

the indirect effect of the common shock through the increase in other xjs negatively influences xi, as the
61As above, a hat over a variable to denote its log-deviation from the point of log-linearization.
62As different φis are correlated, there is room for rational confusion. For example, self i can use the attractiveness

of her own activity, φi, to predict the attractiveness of other activities other φjs, which she does not perfectly know.
Such motif is taken into consideration in the proof of Proposition 22. Alternatively, one can shut down such
rational confusion by letting each self i’s forecast about φj be based on her signal about φj , si,j , solely. That is,
Ei [φ̂j ] = E [φ̂j |si,j ] . Proposition 22 continues to hold in this case. See the end of Appendix D for detail.
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cost function is convex. As a result, the direct effect and the indirect effect of the common shock work in

opposite directions, and narrow thinking leads to over-reaction.63

To further illustrate Proposition 22, consider the above example where a new computer game is intro-

duced. When the narrow thinker decides how long she will play on a particular day, her belief about playing

time on other days is anchored. As a result, she will play longer on that particular day. In this sense, the

decision maker is tempted by the new computer game. Such a prediction also connects to the neglect of

the “adding-up effects” in Read, Loewenstein and Rabin (1999). In this setting, the cost from playing the

computer game on a single day is low. However, the cumulative costs can be large (e.g. opportunities costs

and eye damage), and increase faster than the cumulative benefits (due to the convex cost function). The

narrow thinker, who underestimates how long she will play on other days, then also underestimates the

“adding-up” costs.

The temptation motive predicted by narrow thinking is particularly pronounced in response to a new

stimuli. This differs from to the prediction based on self-control (Laibson, 1997, O’Donoghue and Rabin,

1999, Gul and Pesendorfer, 2001, Fudenberg and Levine, 2006). Moreover, such prediction can also explain

the supply side of the temptation good production. As the decision maker is particularly tempted to new

attractions, the computer game company always has incentives to develop new versions of their products.

Proof of Proposition 22. In the proof, for notation simplicity, I remove the hat and each variable

denotes its log-deviation from the point of log-linearization. Given the environment, the optimal decision

rule for each i is

x∗i (ωi) = Ei

ψφi − γ
∑
j ̸=i

x∗j (ωj)

N

 , (78)

where ψ = 1
κ+κc

N

> 0 and γ =
κc
N

κ+κc
N

∈ (0, 1) .

Given the information structure, we have

Ei [φi] = φi ∀i, (79)

Ei [φ] =
σ−2
δ

σ−2
φ + σ−2

δ + (N − 1)
(
σ2δ + σ2ϵ

)−1φi +
∑
l ̸=i

(
σ2δ + σ2ϵ

)−1

σ−2
φ + σ−2

δ + (N − 1)
(
σ2δ + σ2ϵ

)−1 si,l ∀i,

63In the case of the common shock, if different selves’ decisions are strategic substitutes (as here), the direct
effect and the indirect effect of the common shock on each xi are in opposite directions. Narrow thinking generates
over-reaction. If different selves’ decisions are strategic complements, the direct effect and the indirect effect of the
common shock on each xi are in the same direction. Narrow thinking generates under-reaction. However, such
relationship between strategic complementarity/substitutability and under-/over- reaction under narrow thinking
only hold in response to the common shock. If the shock is idiosyncratic, as the case in Proposition 18, the indirect
effect of φi on xi is from a second order interaction (φi to xj then to xi). As a result, under-reaction can arise in
the case of strategic substitutability.
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Ei [φj ] = Ei [φ] +
σ−2
ϵ

σ−2
δ + σ−2

ϵ
(si,j − Ei [φ]) (80)

≡ λsi,j + µφi + ω
∑
l ̸=i,j

si,l ∀i ̸= j,

where λ, µ, ω ∈ (0, 1) and λ+ µ+ ω (N − 2) < 1.

Similar to the proof of Proposition 16, as the optimal decision rule (78) is linear and all variables are

distributed Normally, for all i, x∗i (ωi) is linear in its signal and xLi (φ1, · · · , φN ) is linear in all φs. From

condition (78) and the fact that the noise in each self’s private signal is not predictable, we have

x∗i (ωi) = ψφi − γ
∑
j ̸=i

xNarrow
j (Ei [φ1] , · · ·Ei [φN ]) ,

where ψ = 1
κ+κc

N

> 0 and γ =
κc
N

κ+κc
N

∈ (0, 1) .

Using (79) and (80), averaging across noise in the realizations of signals, and taking partial derivatives

with respect to each θj , we have

∂xNarrow
i

∂φi
= ψ − γ

∑
j ̸=i

∂xNarrow
j

∂φi
− µγ

∑
j ̸=i

∑
l ̸=i

∂xNarrow
j

∂φl︸ ︷︷ ︸
rational confusion

∀i,

∂xNarrow
i

∂φk
= −λγ

∑
j ̸=i

∂xNarrow
j

∂φk
− ωγ

∑
j ̸=i

∑
l ̸=k,i

∂xNarrow
j

∂φl︸ ︷︷ ︸
rational confusion

∀i, k.

Using symmetry, we know ∂xNarrow
i

∂φi
are equal for each i and ∂xNarrow

i

∂φk
are equal for each i ̸= k, we then have,

∂xNarrow
i

∂φi
= ψ − γ (N − 1)

∂xNarrow
i

∂φk
− µγ

(
(N − 1)

∂xNarrow
i

∂φi
+ (N − 1) (N − 2)

∂xNarrow
i

∂φk

)
,

∂xNarrow
i

∂φk
= −λγ

{
(N − 2)

∂xNarrow
i

∂φk
+
∂xNarrow

i

∂φi

}
− ωγ

(
(N − 2)

∂xNarrow
i

∂φi
+ (N − 2)2

∂xNarrow
i

∂φk

)
.

Collecting terms, we have

∂xNarrow
i

∂φi
=

ψ

1 + µγ (N − 1)− γ2(N−1)(1+µ(N−2))(λ+ω(N−2))

(1+λγ(N−2)+ωγ(N−2)2)

∂xNarrow
i

∂φk
= − γ (λ+ ω (N − 2))

(1 + γ (N − 2) (λ+ ω (N − 2)))

∂xLi
∂φi

.
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Based on the definition of dx
Narrow
i

dφ , we then have

dxNarrow
i

dφ
=
∂xNarrow

i

∂φi
+ (N − 1)

∂xNarrow
i

∂φk
=
∂xNarrow

i

∂φi

(
1− γ (λ+ ω (N − 2)) (N − 1)

(1 + γ (N − 2) (λ+ ω (N − 2)))

)
=

ψ

1 + µγ (N − 1)− γ2(N−1)(1+µ(N−2))(λ+ω(N−2))

(1+λγ(N−2)+ωγ(N−2)2)

1 + γ (N − 2) (λ+ ω (N − 2))− γ (λ+ ω (N − 2)) (N − 1)

(1 + γ (N − 2) (λ+ ω (N − 2)))

=
ψ (1− γ (λ+ ω (N − 2)))

(1 + µγ (N − 1)) (1 + γ (N − 2) (λ+ ω (N − 2)))− γ2 (N − 1) (1 + µ (N − 2)) (λ+ ω (N − 2))

=
ψ (1− γ (λ+ ω (N − 2)))

1 + µγ (N − 1) + γ (N − 2− γ (N − 1)) (λ+ ω (N − 2))
.

Using λ+ µ+ ω (N − 2) < 1 and letting t = λ+ ω (N − 2) ∈ (0, 1) , we then have

dxNarrow
i

dφ
>

ψ (1− γt)

1 + γ (N − 1) (1− t) + γ (N − 2− γ (N − 1)) t

=
ψ

1 + γ (N − 1)
=
dxSi
dφ

.

Temptation, Shutting Down Rational Confusion.

Here I prove Proposition 22 while shutting down the rational specification motive. Specifically, I maintain

the environment and signal structure as above. Nevertheless, even when different φ̂is are correlated, I shut

down rational confusion by letting each self i’s forecast about φ̂j be based on her signal about φ̂j , si,j ,

solely. That is, Ei [φ̂j ] = E [φ̂j |si,j ] . Proposition 22 continues to hold in this case.

Proof. When Ei [φ̂j ] = E [φ̂j |si,j ] , the characterization of the narrow thinker’s decision function

x̂Narrow
i (φ̂1, · · · , φ̂N ) is in fact same as the one in Proposition 18, where there is no rational confusion

as different φ̂j are uncorrelated. From conditions (71) and (72), we then have

dx̂Narrow
i

dφ̂
=
∂x̂Narrow

i

∂φ̂j
+ (N − 1)

∂x̂Narrow
i

∂φ̂j
=

ψ

1− γ
+

(
−λ (N − 1) γ

1− λγ
− γ

1− γ

)
ψ

1 + (N−1)λγ(1−γ)
1−λγ

=
ψ

1− γ
− ψγ

1− γ

[ λ(N−1)(1−γ)
1−λγ + 1

1 + γλ(N−1)(1−γ)
1−λγ

]

<
ψ

1− γ
− ψγ

1− γ

[
N

1 + (N − 1) γ

]
=

ψ

1 + γ (N − 1)
=
dx̂Standard

i

dφ̂
,

where the inequality uses λ =
σ2
φ

σ2
φ+σ

2
ϵ
< 1.
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Appendix E: Endogenous Narrow Thinking: Costly Con-

templation

Costly Contemplation for the Symmetric N-decisions Problem.

Environment. Consider the environment in Section 3. Let the decision maker’s utility be symmetric, given

by u
(
x1, . . . , xN , θ⃗

)
= −1

2

∑N
i=1 (xi − θi)

2 +
∑

i ̸=j γxixj , where γ ≡ γi,j ∈
(
− 1
N−1 ,

1
N−1

)
for all i ̸= j. At

the information side, I do not directly impose that each self i has perfect knowledge of θi and receives a

noisy signal of each of the other θj as in Section 3. Instead, I let the decision maker choose endogenously

the precision of each self’s signal. Specifically, each potential signal ωi ∈ Ωi for self i consists of N noisy

signals, one for each θj : si,j = θj + ϵi,j . All ϵs and θs are independent from each other, but the exact

variance of the noise in these signals is free to choose, subject to the cognitive constraint in (31).

Proposition 23 In the optimum of the costly contemplation problem in (30), self i’s signal about θi is

more precise than other selves’ signal about θi :

(
σ∗i,i
)2
<
(
σ∗j,i
)2 ∀i ̸= j,

where σ∗j,i is the variance of the noise of self j’s signal about θi in the optimum.

Proof. As discussed in the main text, the costly contemplation problem in (30) can be divided into two

subproblems, the optimal information choice subject to the cognitive constraint in (31), and the optimal

decisions given the chosen information. From condition (7), given any chosen information {ωi}Ni=1, the

optimal decision rule {x∗i (·)}
N
i=1 can be characterized by

E

[
∂u

∂xi

(
x∗i (ωi) , x

∗
−i (ω−i) , θ⃗

)
|ωi
]
= 0 ∀i, ωi. (81)

Using law of iterated expectations, we have

1

2
E

[
x∗i (ωi)

∂u

∂xi

(
x∗i (ωi) , x

∗
−i (ω−i) , θ⃗

)]
= 0 ∀i.

Substituting into the decision maker’s utility function, the optimal information choice in (30) is then
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equivalent to

max
{ωi∈Ωi}Ni=1

1

2
E

[
N∑
i=1

θix
∗
i (ωi)

]
(82)

s.t. ∀i x∗i (ωi) satisfy (81)

N∑
i=1

I
(
ω∗
i ; θ⃗
)
≤ τ.

Now, note that any ωi ∈ Ωi takes the form of ωi = {si,1, · · · , si,N} where si,j = θj + ϵi,j with

ϵi,j ∼ N
(
0, σ2i,j

)
and all ϵs and θs are independent from each other. Similar to the proof of Proposition

3, we have



∂xNarrow
1

∂θj
∂xNarrow

2

∂θj

· · ·

∂xNarrow
N

∂θj


=


IN −



1 λ1,j · · · λ1,j λ1,j

λ2,j 1 · · · λ2,j λ2,j

· · ·

λN,j λN,j · · · λN,j 1


◦ Γ



−1

0

· · ·

λj,j

· · ·

0


,

where λi,j =
σ2
θj

σ2
θj
+σ2

i,j
∈ (0, 1] and xNarrow

i

(
θ⃗
)
= Ei

[
x∗i (ωi) |θ⃗

]
. I then use the Sherman–Morrison formula64

(for matrix inversion), the fact that all ϵs and θs are independent from each other, and I
(
ω∗
i ; θ⃗
)

=

64In fact,



∂xNarrow
1

∂θj
∂xNarrow

2

∂θj

· · ·

∂xNarrow
N

∂θj

 =




λ−1
1,j 1 · · · 1 1

1 λ−1
2,j · · · 1 1

· · ·

1 1 · · · 1 λ−1
N,j

 ◦ (IN − Γ)


−1

0
· · ·
1
· · ·
0

 . Then note


λ−1
1,j 1 · · · 1 1

1 λ−1
2,j · · · 1 1

· · ·

1 1 · · · 1 λ−1
N,j

 ◦ (IN − Γ) = −γJ + diag
{
λ−1
1,j + γ, λ−1

2,j + γ, · · · , λ−1
N,j + γ

}
, where J = u′u

and u =


1

· · ·

1

 is a N × 1 vector. One can then use the Sherman–Morrison formula to calculate the matrix

inverse.
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1
2

∑
1≤j≤N log2

(
1

1−λi,j

)
. The problem in (82) becomes

max
{0≤λi,j≤1}1≤i,j≤N

g
(
{λi,j}1≤i,j≤N

)
≡ 1

2

N∑
i=1

 λi,i
1 + γλi,i

+
γ
(

λi,i
1+γλi,i

)2
1− γ

∑
1≤j≤N

(
λj,i

1+γλj,i

)
σ2θi (83)

s.t. h
(
{λi,j}1≤i,j≤N

)
≡

∑
1≤i,j≤N

1

2
log2

(
1

1− λi,j

)
≤ τ .

Now we prove Proposition 23. If in the optimum of the costly contemplation problem, we have
(
σ∗x,x

)2 ≥(
σ∗y,x

)2 for a pair x ̸= y. This means λ∗x,x ≤ λ∗y,x, where λ∗i,j =
σ2
θj

σ2
θj
+(σ∗

i,j)
2 ∈ (0, 1] ∀i, j. If λ∗x,x < λ∗y,x,

then consider
{
λ

′

i,j

}
1≤i,j≤N

where λ′

x,x = λ∗y,x, λ
′

y,x = λ∗x,x and, for other (i, j) , λ′

i,j = λi,j .
{
λ

′

i,j

}
1≤i,j≤N

increases the objective in (83) without changing the constraint and leads to a contradiction. If λ∗x,x = λ∗y,x,

we have
∂g

(
{λ∗

i,j}1≤i,j≤N

)
∂λ∗

x,x
>

∂g
(
{λ∗

i,j}1≤i,j≤N

)
∂λ∗

y,x
and

∂h
(
{λ∗

i,j}1≤i,j≤N

)
∂λ∗

x,x
=

∂h
(
{λ∗

i,j}1≤i,j≤N

)
∂λ∗

y,x
. This is inconsistent

the first order condition in (83):

∂g

({
λ∗i,j

}
1≤i,j≤N

)
∂λ∗x,x

/

∂h

({
λ∗i,j

}
1≤i,j≤N

)
∂λ∗x,x

=

∂g

({
λ∗i,j

}
1≤i,j≤N

)
∂λ∗y,x

/

∂h

({
λ∗i,j

}
1≤i,j≤N

)
∂λ∗y,x

.

As a result,
(
σ∗i,i

)2
<
(
σ∗j,i

)2
∀i ̸= j.

Arbitrary N-decisions Case, a Limit Result.

Environment. Consider the same utility as in Section 3 and the above subsection in Appendix. The only

difference from the above subsection is that I allow u to be asymmetric. At the information side, I do

not directly impose that each self i has perfect knowledge of θi and receives a noisy signal of each of the

other θj as in Section 3. Instead, I let the decision maker choose endogenously the precision of each self’s

signal. Specifically, each potential signal ωi ∈ Ωi for self i consists of N noisy signals, one for each θj :

si,j = θj + ϵi,j . All ϵs and θs are independent from each other, but the exact variance of the noise in these

signals is free to choose, subject to the cognitive constraint in (31).

Proposition 24 There exists τ̄ > 0, such that when the cognitive capacity τ ≤ τ̄ , it is optimal for each

decision i to be only based on its local fundamental about θi. That is, when cognitive capacity is small

enough, in the optimum of the costly contemplation problem in (30),

σ∗i,i <∞ and σ∗i,j = ∞ ∀i ̸= j,
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where σ∗i,j is the variance of the noise of self i’s signal about θj in the optimum.

Proof. Similar to the proof of Proposition 23, the costly contemplation problem in (30) is equivalent to

max
{ωi∈Ωi}Ni=1

1

2
E

[
N∑
i=1

θix
∗
i (ωi)

]
(84)

s.t. ∀i x∗i (ωi) satisfy (81)

N∑
i=1

I
(
ω∗
i ; θ⃗
)
≤ τ.

Now, note that any ωi ∈ Ωi takes the form of ωi = {si,1, · · · , si,N} where si,j = θj + ϵi,j with ϵi,j ∼

N
(
0, σ2i,j

)
and all ϵs and θs are independent from each other. Similar to the proof of Proposition 3, we

have 

∂xNarrow
1

∂θj
∂xNarrow

2

∂θj

· · ·

∂xNarrow
N

∂θj


=


IN −



1 λ1,j · · · λ1,j λ1,j

λ2,j 1 · · · λ2,j λ2,j

· · ·

λN,j λN,j · · · λN,j 1


◦ Γ



−1

0

· · ·

λj,j

· · ·

0


, (85)

where λi,j =
σ2
θj

σ2
θj
+σ2

i,j
∈ (0, 1], and xNarrow

i

(
θ⃗
)

= Ei

[
x∗i (ωi) |θ⃗

]
. As different θs are independent, the

problem in (84) is then equivalent to

max
{0≤λi,j≤1}1≤i,j≤N

g
(
{λi,j}1≤i,j≤N

)
≡ 1

2

N∑
i=1

(
∂xNarrow

i

∂θi
σ2θi

)
(86)

s.t.
∂xNarrow

i

∂θi
is from (85)

h
(
{λi,j}1≤i,j≤N

)
≡

∑
1≤i,j≤N

1

2
log2

(
1

1− λi,j

)
≤ τ. (87)

Now, from the Cramer’s rule, we know, for all i, ∂x
Narrow
i

∂θi
= λi,i

1+Pi,1({λj,i}Nj=1)
1+Pi,2({λj,i}Nj=1)

, where Pi,1 and Pi,2 are

polynomials (without constant) capturing first and higher order terms of {λj,i}Nj=1 . Further note that from

the constraint (87), for all i, j, limτ→0 λi,j = 0. We then have, for all i and j ̸= i,

lim
τ→0

∂g

∂λi,i
=

1

2
σ2θi and lim

τ→0

∂g

∂λi,j
= 0

lim
τ→0

∂h

∂λi,i
=

1

2 ln 2 and lim
τ→0

∂h

∂λi,j
=

1

2 ln 2 .

This then proves Proposition 24 and means that, when the cognitive capacity is small enough, it is optimal
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for each decision i to be only based on information about θi.

Endogenous Shock-Specific Coordination Friction.

As discussed in Section 3, the degree of effective attenuation of interaction under narrow thinking is shock

specific (e.g. the interaction matrix Γ
′

k in Proposition 3 depends on k). In this part of the appendix,

I show how such shock-specific effective attenuation of interactions can arise endogenously in the costly

contemplation problem. I further find conditions characterizing in response to which shocks the decision

maker chooses to better coordinate on.

Environment. I use the 2-decisions case in Subsection 6.2 as an example. Similar results can be

established for symmetric N -goods cases.

Proposition 25 In the optimum of the costly contemplation problem in (30), when σ2θ1 > σ2θ2 , we have

λ∗1,1 > λ∗2,2 and λ∗2,1 > λ∗1,2,

where λ∗i,j =
σ2
θj

σ2
θj
+(σ∗

i,j)
2 , and σ∗i,j is the variance of the noise of self i’s signal about θj in the optimum.

Similarly, when σ2θ1 < σ2θ2 , we have

λ∗1,1 < λ∗2,2 and λ∗2,1 < λ∗1,2.

To illustrate, consider the case that σ2θ1 > σ2θ2 , which means that the first decision’s local fundamental

is more volatile (high σ2θ1) than the second decision’s local fundamental. In this case, Proposition 25 means

that: first, self 1’s signal about her own local fundamental θ1 is more precise than self 2’s signal about her

own local fundamental θ2; second, self 2’s signal about θ1 is more precise than self 1’s signal about θ2.65

As a result, the decision maker chooses to better coordinate on shocks to θ1.

Proof. Following the proof of Proposition 11,
{
λ∗i,j

}
1≤i,j≤2

must solve:

max
{0≤λi,j≤1}1≤i,j≤2

g
(
{λi,j}1≤i,j≤2

)
≡ 1

2

λ1,1
1− λ1,1λ2,1γ2

σ2θ1 +
1

2

λ2,2
1− λ2,2λ1,2γ2

σ2θ2 (88)

s.t. h
(
{λi,j}1≤i,j≤2

)
≡

∑
1≤i,j≤2

1

2
log2

(
1

1− λi,j

)
≤ τ . (89)

65Note the difference from Proposition 11, which compares λ∗1,1 to λ∗2,1 (and λ∗1,2 to λ∗2,2), i.e. the precision of self
1’s signal about θ1 and the precision of self 2’s signal about θ1.
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When σ2θ1 > σ2θ2 , we must have
λ∗1,1

1− λ∗1,1λ
∗
2,1γ

2
≥

λ∗2,2
1− λ∗2,2λ

∗
1,2γ

2
. (90)

Otherwise one could let
{
λ

′

i,j = λ∗−i,−j

}
1≤i,j≤2

, which improve the objective in (88) while maintaining the

constraint in (89).

One can then prove λ∗1,1 > λ∗2,2. If λ∗1,1 ≤ λ∗2,2, from (90), it must be that 1/
[
1− λ∗1,1λ

∗
2,1γ

2
]2 ≥

1/
[
1− λ∗1,2λ

∗
2,2γ

2
]2
. We then have

∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗1,1

=
1[

1− λ∗1,1λ
∗
2,1γ

2
]2σ2θ1

>
1[

1− λ∗1,2λ
∗
2,2γ

2
]2σ2θ2 = ∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗2,2

.

However,
∂h

(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

1,1
≤

∂h
(
{λ∗

i,j}1≤i,j≤2

)
∂λ∗

2,2
. This is contradictory to the of FOC the problem in (88).

One can further prove λ∗2,1 > λ∗1,2. This comes from the fact that

∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗2,1

=

[
λ∗1,1

1− λ∗1,1λ
∗
2,1γ

2

]2
σ2θ1

>

[
λ∗2,2

1− λ∗1,2λ
∗
2,2γ

2

]2
σ2θ2 =

∂g

({
λ∗i,j

}
1≤i,j≤2

)
∂λ∗1,2

,

and h is convex in each λ. This finishes the proof for the case of σ2θ1 > σ2θ2 . The proof for the case of

σ2θ2 > σ2θ1 is similar.

Appendix F: Robust Predictions

Dampening of Indirect Effects.

Set up. Consider the utility in Section 3. I allow arbitrary correlated fundamentals and arbitrary information

structure. This includes non-Gaussian cases. It allows not only signals about fundamentals but also signals

about different selves’ endogenous decisions.

As in condition (12), one can decompose the indirect effect for each decision i into two components:
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xInd,+
i (ωi) , the indirect effect that positively influences xi, and, xInd,−

i (ωi) , the indirect effect that nega-

tively influences xi. I then further decompose xInd,+
i (ωi) and xInd,−

i (ωi) into fundamental-specific compo-

nents. Specifically, I define xInd,+,k
i (ωi) by collecting all belief terms about θk in xInd,+

i (ωi). Similarly, I

define xInd,−,k
i (ωi) by collecting all belief terms about θk in xInd,−

i (ωi) .

I then study how xInd,+,k
i (ωi) and xInd,−,k

i (ωi) respond to shocks to θk. For all i, k, I define xInd,+,k,Narrow
i (θk) ≡

E
[
xInd,+,k
i (ωi) |θk

]
and xInd,−,k,Narrow

i (θk) ≡ E
[
xInd,−,k
i (ωi) |θk

]
.

Proposition 26 For each decision xi and fundamental θk, we have∣∣∣∣∣∂xInd,+,k,Narrow
i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,+,k,Standard

i

∂θk

∣∣∣∣∣ and
∣∣∣∣∣∂xInd,−,k,Narrow

i

∂θk

∣∣∣∣∣ ≤
∣∣∣∣∣∂xInd,−,k,Standard

i

∂θk

∣∣∣∣∣ ,
where as, in the main text, superscript Standard denotes the standard decision function when each decision

is made with perfect knowledge of all fundamentals.

Proof. From (12), we know, to prove Proposition 26, one only need to prove that, for all i1, · · · , ij =

k ∈ {1, · · · , N} , where il ̸= il+1 for 1 ≤ l ≤ j − 1,

∣∣∣∣∣∂E
[
Ei1
[
Ei2
[
· · ·Eij−1

[θk]
]]

|θk
]

∂θk

∣∣∣∣∣ ≤ 1.

This can be seen from

∣∣∣∣∣∂E
[
Ei1
[
Ei2
[
· · ·Eij−1

[θk]
]]

|θk
]

∂θk

∣∣∣∣∣ =
∣∣∣∣∣Cov

(
Ei1,··· ,ij−1

[θk] , θk
)

V ar (θk)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
√
V ar

(
Ei1,··· ,ij−1

[θk]
)
V ar (θk)

V ar (θk)

∣∣∣∣∣∣ ≤ 1.

Comment. Compared to Proposition 4, the difference is that I conduct a further fundamental-specific

decomposition. This decomposition helps focus on how belief terms about θk respond to θk, partialling out

response to θk driven by changes of beliefs about other fundamentals (rational confusion).
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